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LOVE WAVES, SLIP WAVES AND ONE-COMPONENT WAVES IN A PLATE OR

LAYERED PLATE

THOMAS C. T. TING

It is known that one-component surface (Rayleigh) waves exist in an anisotropic elastic half-space.
Since the solution shows that the displacement normal to the free surface vanishes everywhere, a one-
component surface wave is also a one-component slip wave in the half-space if the boundary of the
half-space is a slippery surface. We show that no other one-component slip waves exist for the half-
space. As to steady waves in a bimaterial that consists of two dissimilar anisotropic elastic materials,
one-component slip waves can be constructed from two one-component surface waves. There are no
other one-component slip waves for a bimaterial. By imposing the continuity of the displacement at
the interface on the one-component slip wave, a one-component Stoneley wave is obtained. Although
one-component waves for the half-space can also propagate in a homogeneous plate, we present new
one-component waves in a plate for which the Stroh eigenvalue p is real. By superposition of the one-
component waves in the layer and in the half-space, one-component Love waves can be constructed.
Finally, we show that one-component waves can propagate in a layered plate.

1. Introduction

Surface (Rayleigh) waves in an anisotropic elastic half-space in general consist of two or three com-
ponents. Even for an isotropic elastic material, surface waves consist of two components. It was first
pointed out by Barnett et al. [1991] that one-component surface waves exist for certain special anisotropic
elastic materials. Further study on one-component surface waves was done by Barnett and Chadwick
[1991], Chadwick [1992], Norris [1992], Ting [1992], and Wang and Gundersen [1993]. The question
of whether one-component steady waves exist in a bimaterial when the interface is in sliding contact
or perfectly bonded remains open. Also open is the question of whether one-component waves exist in
Love waves and in layered plates. The purpose of this paper is to address these questions.

The basic equations for steady waves in an anisotropic elastic medium based on the Stroh formalism
[Stroh 1962; Barnett and Lothe 1973; Chadwick and Smith 1977; Ting 1996a] are outlined in Section 2. A
modified version [Ting 2000] that is more suitable for steady waves is presented in Section 3. This version
is employed to find one-component surface waves. The solution shows that the displacement normal to
the free surface vanishes everywhere. Hence one-component Rayleigh waves are also one-component slip
waves in the half-space when the boundary of the half-space is a slippery surface. We proved in Section
4 that there are no other one-component slip waves in the half-space. Steady state waves propagating
in a bimaterial of dissimilar anisotropic materials are studied in Section 5. If the interface is in sliding

Keywords: anisotropic, steady waves, slip waves, one-component waves, Rayleigh waves, Stoneley waves, plate, layered plate,
dispersion equations.
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contact, one can simply take two one-component surface waves for the two half-spaces that automatically
satisfy the sliding contact conditions. Again we show that there are no other one-component slip waves
for the bimaterial. As for the Stoneley waves for which the interface is perfectly bonded, one-component
Stoneley waves can be obtained from the one-component slip waves in the bimaterial by choosing the
material constants such that the displacement is continuous at the interface. This is presented in Section 6.
Thus we obtain a one-component Stoneley wave that is also a one-component slip wave. The question of
whether there are other one-component Stoneley waves is still open. The one-component waves obtained
here are valid if the strain energy density is positive and nonzero. This means that the 5×5 matrix of
the reduced elastic compliance s ′αβ must be positive definite. In Section 7 we present conditions for
positive definiteness of s ′αβ for which one-component Rayleigh waves can propagate. Section 8 studies
the existence of one-component waves in a homogeneous plate. Although one-component waves in the
half-space can also propagate in the plate, we present new solutions in which the Stroh eigenvalue p is
real. By superposition of one-component waves in a plate and in the half-space, one-component Love
waves can be obtained. This is presented in Section 9. Finally, in Section 10, we show how to construct
one-component waves in a layered plate. The interface between the layers can be perfectly bonded or in
sliding contact.

2. Basic equations

In a fixed rectangular coordinate system xi (i = 1, 2, 3), the equation of motion is

σi j, j = ρüi , (2.1)

where σi j is the stress, ui is the displacement, ρ is mass density, the dot denotes differentiation with
respect to time t and a comma denotes differentiation with respect to xi . The stress-strain relation is

σi j = Ci jksuk,s, (2.2)

Ci jks = C j iks = Cksi j = Ci jsk, (2.3)

in which Ci jks is the elastic stiffness. The Ci jks is positive definite and possesses the full symmetry
shown in Equation (2.3). The third equality in (2.3) is redundant because the first two imply the third
[Ting 1996a].

For two-dimensional steady state motion in the x1-direction with a constant wave speed υ > 0, a
general solution for the displacement u in (2.1) and (2.2) is

u= aeikz, z = x1+ px2− υt, (2.4)

where k > 0 is the real wave number, t is the time, and p and a satisfy the equation

[Q− XI+ p(R+RT )+ p2T] a= 0, X = ρυ2. (2.5)

In the above, the superscript T denotes the transpose, I is the identity matrix and

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (2.6)

Introducing the vector
b= (RT

+ pT)a=−p−1(Q− XI+ pR)a, (2.7)
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where the second equality follows from (2.5), the stress computed from (2.2) and (2.4) can be written as

σi1 = Xui,1−φi,2, σi2 = φi,1, (2.8)

where the vector
φ = beikz (2.9)

is the stress function. The two equations in (2.7) can be written as

Nξ = pξ , (2.10)

where [Ingebrigtsen and Tonning 1969]

N=
[

N1 N2

N3+ XI NT
1

]
, ξ =

[
a
b

]
, (2.11)

and
N1 =−T−1RT , N2 = T−1, N3 = RT−1RT

−Q. (2.12)

The matrix N2 is symmetric and positive definite while −N3 is symmetric and positive semidefinite [Ting
1988; 1996a].

There are six eigenvalues p and six associated eigenvectors ξ = (a,b). For a steady wave propagating
in the half-space x2 ≥ 0, p must be complex with a positive imaginary part so that the displacement
u computed from (2.4) vanishes at x2 =∞. If the six eigenvalues p are all complex, they consist of
three pairs of complex conjugates. Let p1, p2, p3 be the eigenvalues with a positive imaginary part. The
general solution for the displacement u and the stress function φ obtained from a superposition of (2.4)
and (2.9) associated with p1, p2, p3 is

u=
3∑

m=1

qmameikzm , φ =

3∑
m=1

qmbmeikzm , (2.13)

zm = x1+ pm x2− υt, (2.14)

where (am , bm) (m = 1, 2, 3) are the eigenvectors associated with the eigenvalues pm (m = 1, 2, 3), and
qm are arbitrary constants. The qm can be chosen such that the boundary condition at x2 = 0 is satisfied.

If the boundary x2 = 0 is a traction-free surface, the boundary condition is

φ = 0 at x2 = 0. (2.15)

Equation (2.13) then gives
3∑

m=1

qmbm = 0. (2.16)

In general, all three qm (m=1,2,3) are needed to satisfy (2.16). We then have three-component surface
waves. For certain anisotropic elastic materials of which isotropic materials are special cases, only two
qm are needed. We have two-component surface waves. Barnett et al. [1991] were the first ones to point
out that there are anisotropic elastic materials for which one-component surface waves can propagate in
the half-space. This is presented briefly in the next section.
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3. One-component surface waves

The explicit expression of N1, N2, N3 in (2.12) was given in [Ting 1988] in terms of the elastic compliance
sαβ , and in [Barnett and Chadwick 1991] in terms of the elastic stiffness Cαβ . The Cαβ is the contracted
notation of Ci jks . N1, N2, N3 have a complicated expression in terms of sαβ or Cαβ . For the problems
we will study here, an alternate equation to (2.10) is more convenient. It is shown in [Ting 2000] that
(2.10) can be written in the form

Xs ′61− p −1 Xs ′65 s ′66− ps ′61 s ′62 s ′64− ps ′65
Xs ′21 −p Xs ′25 s ′26− ps ′21 s ′22 s ′24− ps ′25
Xs ′41 0 Xs ′45− p s ′46− ps ′41 s ′42 s ′44− ps ′45

Xs ′11− 1 0 Xs ′15 s ′16− ps ′11 s ′12 s ′14− ps ′15
0 X 0 −1 −p 0

Xs ′51 0 Xs ′55− 1 s ′56− ps ′51 s ′52 s ′54− ps ′55





a1

a2

a3

b1

b2

b3


= 0, (3.1)

where
s ′αβ = sαβ −

sa3s3β

s33
(3.2)

is the reduced elastic compliance.
For a one-component free surface wave,

σ21 = σ22 = σ23 = 0, (3.3)

at x2 = 0. This means that, from (2.8) and (2.9), b= 0 or

b1 = b2 = b3 = 0. (3.4)

Equation (3.1) reduces to  Xs ′61− p −1 Xs ′65
Xs ′21 −p Xs ′25
Xs ′41 0 Xs ′45− p

 a1

a2

a3

= 0, (3.5a)

and  Xs ′11− 1 0 Xs ′15
0 −X 0

Xs ′51 0 Xs ′55− 1

  a1

a2

a3

= 0. (3.5b)

The second of the three scalar equations implicit in Equation (3.5b) demands that

a2 = 0. (3.6)

Since Im p > 0 (otherwise u does not vanish at x2 = 8) Equation (3.5a)1,3 tells us that a1 and a3 are
nonzero and that the ratio of a1 to a3 cannot be real. It follows from (3.5a)2 and (3.5b)1,3 that

Xs ′11 = 1= Xs ′55, s ′12 = s ′15 = s ′25 = 0. (3.7)

Equation (3.5a) reduces to [
Xs ′16− p Xs ′56

Xs ′14 Xs ′45− p

] [
a1

a3

]
= 0. (3.8)
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For a nontrivial solution for a1 and a3 we must have

(Xs ′16− p)(Xs ′45− p)− X2s ′14s ′56 = 0, (3.9)

or
p = 1

2 X
(
ε+ i
√
−κ
)
, (3.10a)

where
ε = s ′45+ s ′16, κ = (s ′45− s ′16)

2
+ 4s ′14s ′56. (3.10b)

The p must be complex so that

κ = (s ′45− s ′16)
2
+ 4s ′14s ′56 < 0. (3.11)

This means that s ′14 and s ′56 cannot vanish and must have the opposite signs. Thus a one-component
surface wave cannot propagate in monoclinic materials with the symmetry plane at x2 = 0 or x3 = 0
because s ′14 and s ′56 vanish for these materials [Barnett et al. 1991; Chadwick 1992].

The fact that b= 0, that is, φ = 0, does not mean that all stresses vanish. Only σi2 (i=1,2,3) vanish.
σ11 and σ31 can be computed from (2.8)1 while σ33 is from

0= s31σ11+ s33σ33+ s35σ31, (3.12)

which is the vanishing of the strain ε33. Thus both the displacement and the stress are polarized on the
plane x2 = 0. It can be shown [Ting 1992] that the vectors (a1, a3) and (σ11, σ31) are orthogonal to each
other.

The existence of Rayleigh waves in a general anisotropic elastic half-space has been studied by Barnett
and Lothe [1978; 1987; 1989].

4. One-component slip waves in the half-space

If the boundary of the half-space is a slippery surface, we must have

u2 = σ21 = σ23 = 0. (4.1)

This means that
a2 = b1 = b3 = 0. (4.2)

Equation (4.2) is implied by (3.4) and (3.6). Hence the one-component surface waves presented in the
previous section can also propagate in the half-space with a slippery surface.

Equations (3.4) and (3.6) have the restriction b2 = 0 which is not required in (4.2). One may ask if
there are other one-component slip waves in the half-space for which b2 6= 0. The answer is negative.
The proof is very simple. Equation (3.1) consists of six scalar equations of which the fifth equation is

Xa2 = b1+ pb2. (4.3)

When (4.2) holds, (4.3) demands that b2 = 0. Thus there are no one-component slip waves for the
half-space for which b2 6= 0.



636 THOMAS C. T. TING

5. One-component slip waves in a bimaterial

Let the half-space x2 ≥ 0 be occupied by an anisotropic elastic material and the half-space x2 ≤ 0 be
occupied by a different anisotropic elastic material. For a one-component wave, the solution for the
material in x2 ≥ 0 is given in (2.4) and (2.9). The same solution applies for the material in x2 ≤ 0 and is
written as

û= âeikẑ, φ̂ = b̂eikẑ, (5.1)

where we have used the hat to distinguish the solution for the material in x2 ≤ 0 from the solution for
the material in x2 ≥ 0. In Equation (5.1),

ẑ = x1+ p̂x2− υ t, Im p̂ < 0. (5.2)

The imaginary part of p̂ must be negative so that the displacement and the stress function vanish at
x2 =−∞.

In this section we consider the case in which the interface x2 = 0 is in sliding contact. This means
that

b1 = b3 = 0, b̂1 = b̂3 = 0, (5.3a)

b2 = b̂2, a2 = â2. (5.3b)

Equation (4.3) gives, using (5.3a),

b2 = p−1 Xa2, b̂2 = p̂−1 X̂ â2, (5.4)

or, by (5.3b),
(p−1 X − p̂−1 X̂)a2 = 0. (5.5)

But X and X̂ are real, positive and nonzero while Im p > 0 and Im p̂ < 0. Hence p−1 X − p̂−1 X̂ cannot
vanish. Thus Equation (5.5), and hence (5.4) and (5.3b) tells us that

a2 = b2 = â2 = b̂2 = 0. (5.6)

The result is that a one-component slip wave in the bimaterial consists of two one-component Rayleigh
waves in the two half-spaces. There are no other one-component slip waves.

In conclusion, a one-component slip wave exists in a bimaterial if the reduced elastic compliance of
the material in x2 ≥ 0 satisfies the conditions given in (3.7) and (3.11). The eigenvalue p is given by
(3.10). The reduced elastic compliance of the material in x2 ≤ 0 satisfies the same conditions given in
(3.7) and (3.11). The eigenvalue p̂ is given by

p̂ =
X̂
2

(
ε̂− i

√
−κ̂

)
,

where the imaginary part is negative and

ε̂ = ŝ ′45+ ŝ ′16, κ̂ = (ŝ ′45− ŝ ′16)
2
+ 4ŝ ′14ŝ ′56 < 0.

Slip waves in a bimaterial that consists of two general anisotropic elastic half-spaces have been studied
by Barnett et al. [1988].
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6. One-component Stoneley waves

We study in this section the case in which the interface x2 = 0 is perfectly bonded. This means that

âi = ai , b̂i = bi , i = 1, 2, 3. (6.1)

The one-component slip waves in a bimaterial presented in the previous section satisfy the interface
conditions (6.1) except

â1 = a1, â3 = a3. (6.2)

If we can choose the elastic constants of the bimaterial such that (6.2) holds, we have a one-component
Stoneley wave, albeit a rather strange one, because it is also a slip wave. It suffices to consider the
condition

â3

â1
=

a3

a1
. (6.3)

From (3.8)1 we have
a3

a1
=

p− Xs ′16

Xs ′56
=

ps ′11− s ′16

s ′56
, (6.4)

where the second equality follows from (3.7). Substitution of p from (3.10) yields

a3

a1
=

(s ′45− s ′16)+ i
√
−(s ′45− s ′16)

2− 4s ′14s ′56

2s ′56
. (6.5)

For the material in x2 ≤ 0, Im p̂ < 0 so that

â3

â1
=

(ŝ ′45− ŝ ′16)− i
√
−(ŝ ′45− ŝ ′16)

2− 4ŝ ′14ŝ ′56

2ŝ ′56
. (6.6)

Equation (6.3) holds if

ŝ ′56s ′56 < 0 and
ŝ ′45− ŝ ′16

ŝ ′56
=

s ′45− s ′16

s ′56
,

ŝ ′14

ŝ ′56
=

s ′14

s ′56
. (6.7)

In particular, the equations in (6.7) hold when

ŝ ′56 =−s ′56, ŝ ′45 =−s ′45, ŝ ′16 =−s ′16, ŝ ′14 =−s ′14. (6.8)

The wave speed υ obtained from (2.5)2 and (3.7) is

υ2
= (ρs ′11)

−1. (6.9)

This must be the same for the half-space x2 ≤ 0 so that we must have

ρ̂ ŝ ′11 = ρs ′11. (6.10)

Equation (6.10) is the additional condition that is required for a one-component Stoneley wave to prop-
agate in the bimaterial. It is also a slip wave.

To see if there is one-component Stoneley wave that is not a slip wave, we have to solve (3.1) for p,
a and b in terms of X . The same solutions apply to the material in x2 ≤ 0, with Im p̂ < 0. Imposing the
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conditions that â = a, b̂ = b and X̂/ρ̂ = X/ρ, one obtains restrictions imposed on the reduced elastic
compliances s ′αβ and ŝ ′αβ . This is easier said than done because the algebra would be too complicated.
Hence the question is open if there exist one-component Stoneley waves that are not slip waves.

The existence of Stoneley waves in a general anisotropic elastic bimaterial was studied by Barnett
et al. [1985] and Chadwick and Currie [1974].

It should be noted that the application of (4.3) for the materials in x2 ≥ 0 and x2 ≤ 0 leads to, using
(6.1),

Xa2 = b1+ pb2, X̂a2 = b1+ p̂b2. (6.11)

The following are obvious:
(i) If a2 = 0, we must have b1 = b2 = 0.

(ii) If b1 = 0, following the discussion in (5.5) and (5.6) we must have a2 = b2 = 0.
(iii) If b2 = 0, we must have either X = X̂ (which means ρ = ρ̂) or a2 = b1 = 0.

Thus, the vanishing of any one of a2, b1, b2 implies the vanishing of the remaining two with the exception
of when b2 = 0 and X = X̂ .

7. Positive definiteness of strain energy density

The above solutions for one-component waves are valid if, under the restrictions imposed on the elastic
constants, the strain energy density is positive and nonzero. The strain energy density is positive and
nonzero if the 6×6 symmetric matrix of the elastic stiffness Cαβ or the 6×6 symmetric matrix of the
elastic compliance sαβ is positive definite. For the one-component Rayleigh waves, Barnett et al. 1991
provide a numerical example of a 6×6 symmetric matrix sαβ that is positive definite subject to the
conditions (3.7) and (3.11). We will present here a set of general conditions for which the strain energy
density is positive definite under the restrictions (3.7) and (3.11).

The matrices Cαβ and sαβ are the inverse of each other. For two-dimensional deformations of an
anisotropic elastic body, the elements of the third column, and hence the third row, of Cαβ do not appear
in the analysis. Let Co

αβ be the 5×5 matrix obtained from Cαβ by deleting the third row and the third
column. It can be shown that Co

αβ and the 5×5 matrix of the reduced elastic compliance s ′αβ are the inverse
of each other [Ting 1996a; 1996b]. Both Co

αβ and s ′αβ must be positive definite. When a positive definite
s ′αβ is obtained, taking the inverse of s ′αβ gives a positive definite Co

αβ . By inserting C3β (β = 1, 2, . . . , 6)
in the third row and Cα3 (α = 1, 2, . . . , 6) in the third column we obtain Cαβ . One can choose C33 large
enough (see below) to obtain a positive definite Cαβ . The inverse of Cαβ provides a positive definite sαβ .
Hence it suffices to consider the positive definiteness of the 5×5 matrix s ′αβ .

A matrix is positive definite if and only if the leading principal minors of the matrix are positive
and nonzero [Hohn 1965]. For the 5×5 matrix of the reduced elastic compliance s ′αβ that provides
one-component Rayleigh waves in the half-space, we have, from (3.7),

s ′αβ =


s ′11 0 s ′14 0 s ′16

s ′22 s ′24 0 s ′26
s ′44 s ′45 s ′46

s ′11 s ′56
s ′66

 . (7.1)
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Only the upper triangle of the matrix is shown because the matrix is symmetric. To study the conditions
for the matrix to be positive definite, we will move the fourth column to the second column and the
fourth row to the second row. Thus the new matrix is

s∗αβ =


s ′11 0 0 s ′14 s ′16

s ′11 0 s ′54 s ′56
s ′22 s ′24 s ′26

s ′44 s ′46
s ′66

 . (7.2)

If the matrix s ′αβ in (7.1) is positive definite, so is the matrix s∗αβ in (7.2) and vice versa. We can prescribe
the off-diagonal elements of s∗αβ arbitrarily subject to condition (3.11). We can then choose, as shown
below, the diagonal elements s ′11, s ′22, s ′44 and s ′66, in that order, such that all leading principal minors of
s∗αβ are positive and nonzero.

Let 11, 12, . . . , be the first, second, . . . , principal minors of s∗αβ . We have

11 = s ′11, 12 = (s ′11)
2, 13 = s ′22(s

′

11)
2, 14 =

∣∣∣∣∣∣∣∣
s ′11 0 0 s ′14

s ′11 0 s ′54
s ′22 s ′24

s ′44

∣∣∣∣∣∣∣∣ , 15 =
∣∣s∗σβ∣∣ . (7.3)

The matrix s∗αβ is positive definite if 1α (α = 1, 2, . . . , 5) are all positive and nonzero. The first three
equations in (7.3) tell us that we must have

s ′11 > 0, s ′22 > 0. (7.4)

We show below that we can always choose s ′44 and s ′55 such that 14 > 0 and 15 > 0.
Let U be a symmetric square matrix that is divided as

U=
[

E G
GT F

]
, (7.5)

where E and F are symmetric square matrices. If U is positive definite, so are E and F, and the inverse
of E exists. From

U=
[

E G
GT F

]
=

[
E 0

GT I

] [
I E−1G
0 F−GT E−1G

]
, (7.6)

we have
|U| = |E| ·

∣∣F−GT E−1G
∣∣ . (7.7)

The determinant of a larger matrix is replaced by a product of the determinants of smaller matrices. We
pay the price because we must compute the inverse of E [Ting 1996b].

In computing 14 in Equation (7.3), we choose

E=

 s ′11 0 0
s ′11 0

s ′22

 , G=

 s ′14
s ′54
s ′24

 , F= s ′44. (7.8)
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We then have
14 =13[s ′44− (s ′

2
14+ s ′254)(s

′
11)
−1
− s ′224(s

′
22)
−1
]. (7.9)

Hence 14 > 0 if
s ′44 > (s ′

2
14+ s ′254)(s

′
11)
−1
+ s ′224(s

′
22)
−1. (7.10)

For 15 we choose

E=


s ′11 0 0 s ′14

s ′11 0 s ′54

s ′22 s ′24

s ′44

 , G=


s ′16

s ′56

s ′26

s ′46

 , F= s ′66. (7.11)

Hence 15 > 0 if we choose s ′66 such that

s ′66 >GT E−1G, (7.12)

where

E−1
=

1
14


s ′11(s ′22s ′44−s ′224)−s ′22s ′245 −s ′14s ′22s ′45 −s ′11s ′14s ′24 s ′11s ′22s ′14

s ′11(s ′22s ′44−s ′224)−s ′22s ′214 −s ′11s ′24s ′45 −s ′11s ′22s ′45

s ′11(s ′11s ′44−s ′214−s ′245) s ′11s ′224

s ′211s ′22


Thus one-component Rayleigh waves presented earlier are valid if the conditions (7.4), (7.10) and (7.12)
are satisfied.

The above illustration shows that, after the off-diagonal elements of the matrix are specified, one can
always choose the diagonal elements of the matrix in succession, so that the 1i are positive and nonzero.
The same procedure can be employed to find a positive definite matrix s ′αβ for materials for which other
one-component steady waves can propagate.

8. One-component waves in a plate

Consider a plate of uniform thickness h whose mid-plane is parallel to the plane x2 = 0. Let the surfaces
of the plate be traction-free or a slippery surface. The one-component Rayleigh waves presented in
(3.5)–(3.11) apply here. We have

u= aeikz, z = x1+ px2− υt. (8.1)

The imaginary part of p need not be positive. Hence (3.1) and (6.5) are replaced by

p± = 1
2 X

(
ε± i
√
−κ
)
, (8.2)

(
a3

a1

)±
=
(s ′45− s ′16)± i

√
−(s ′45− s ′16)2− 4s ′14s ′56

2s ′56
. (8.3)

However, these two are not the only solutions because the Stroh eigenvalue p need not be complex for
a plate of finite thickness. Below, we will present new solutions associated with a real p.
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When p is real, (3.11) is replaced by

κ = (s ′45− s ′16)
2
+ 4s ′14s ′56 ≥ 0. (8.4)

From Equation (3.5b) we have a2 = 0 so that (3.6) remains valid. Since p is real, (3.5a) suggests that a1

and a3 are also real. For a nontrivial solution of a1, a3 from (3.5b) we must have

(Xs ′11− 1)(Xs ′55− 1)− (Xs ′15)
2
= 0. (8.5)

It gives two solutions

X± =
(s ′55+ s ′11)±

√
(s ′55− s ′11)2+ (2s ′15)2

2(s ′11s ′55− s ′15s ′15)
> 0. (8.6)

They are both real and positive. Equation (3.5b) also gives

a3

a1
=

1− Xs ′11

Xs ′15
. (8.7)

Use of Equation (8.6) leads to

a3

a1
=
(s ′55− s ′11)∓

√
(s ′55− s ′11)2+ (2s ′15)2

2s ′15
= tan θ±, (8.8)

say, for X = X±. The displacement (u1, u3) is polarized along a straight line on a plane parallel to
x2 = 0. The line makes an angle θ+ (or θ−) with the x1-axis when X = X+ (or X−). It is known that
the polarization vectors a associated with two different X are orthogonal to each other. Indeed, one can
show that

(tan θ+)(tan θ−)=−1, (8.9)

so that θ+ and θ− differ by ninety degrees.
With a2 = 0, Equation (3.5a)2 gives

a3

a1
=
−s ′12

s ′25
. (8.10)

Equation (3.5a)1,3 reduces to (3.8). It has a nontrivial solution for a1, a3 if (3.9) holds,

p± =
X
2

{
(s ′45+ s ′16)±

√
(s ′45− s ′16)2+ 4s ′14s ′56

}
. (8.11)

The two roots are real in view of (8.4). The a1, a3 obtained from (3.8)1 is

a3

a1
=

p− Xs ′16

Xs ′56
, (8.12)

or, using (8.11),
a3

a1
=
(s ′45− s ′16)±

√
(s ′45− s ′16)2+ 4s ′14s ′56

2s ′56
, (8.13)

for p = p±. We therefore have four sets of solutions associated with (X+, p+), (X+, p−), (X−, p+)
and (X−, p−). Equations (8.8), (8.10) and (8.13) should be compatible. Hence the conditions for the
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one-component waves are

(s ′55− s ′11)∓
√
(s ′55− s ′11)2+ (2s ′15)2

2s ′15
=
−s ′12

s ′25
, (8.14)

for X = X± and
(s ′45− s ′16)±

√
(s ′45− s ′16)2+ 4s ′14s ′56

2s ′56
=
−s ′12

s ′25
, (8.15)

for p = p±. These are in addition to (8.4).
The one-component waves in plates with real p are the exceptional bulk waves studied by Alshits and

Lothe [1979]. They employed a different derivation. The derivation presented above provides explicit
expression of the solution for X and p, and the restrictions (8.14), (8.15) and (8.4) on s ′αβ so that one-
component waves with real p can propagate in a plate.

The existence of one-component waves in plates with real p is not guaranteed unless the 5×5 matrix
s ′αβ is positive definite, subject to (8.14), (8.15) and (8.4). Since the diagonal elements s ′11 and s ′55

appear in (8.14), we will rearrange the 5×5 matrix s ′αβ and consider

s∗αβ =


s ′11 s ′15 s ′12 s ′14 s ′16

s ′55 s ′52 s ′54 s ′56

s ′22 s ′24 s ′26

s ′44 s ′46

s ′66

 . (8.16)

The first two principal minors are

11 = s ′11, 12 = s ′11s ′55− (s ′15)
2. (8.17)

We can choose s ′11, s ′15 and s ′55 such that

s ′11 > 0, s ′55 > (s ′15)
2/s ′11. (8.18)

We next choose the remaining off-diagonal elements such that (8.4), (8.14) and (8.15) are satisfied. Fol-
lowing the procedure illustrated in Section 7, we can choose s ′22, s ′44 and s ′66 in that order such that 13,
14 and 15 are positive and nonzero.

As a special case, let
s ′11 = s ′55, s ′14s ′56 = 0. (8.19)

Equations (8.6) and (8.8) reduce to

X± = (s ′11∓ s ′15)
−1, a3 =∓a1, (8.20)

and (8.11) simplifies to
p+ = Xs ′45, p− = Xs ′16. (8.21)

For X = (s ′11− s ′15)
−1 and p = Xs ′45, we have a3 =−a1 and (3.5a) is satisfied if

s ′14 = s ′12− s ′25 = s ′16− s ′45− s ′56 = 0. (8.22)
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For X = (s ′11− s ′15)
−1 and p = Xs ′16, we have a3 =−a1 and (3.5a) is satisfied if

s ′56 = s ′12− s ′25 = s ′16− s ′45+ s ′14 = 0. (8.23)

For X = (s ′11+ s ′15)
−1 and p = Xs ′45, we have a3 = a1 and (3.5a) is satisfied if

s ′14 = s ′12+ s ′25 = s ′16− s ′45+ s ′56 = 0. (8.24)

For X = (s ′11+ s ′15)
−1 and p = Xs ′16, we have a3 = a1 and (3.5a) is satisfied if

s ′56 = s ′12+ s ′25 = s ′16− s ′45− s ′14 = 0. (8.25)

If the material is isotropic, there are two solutions, X = 1/s ′11 and X = 1/s ′55, while p = 0. We have

(a1, a3)= (1, 0), s ′12 = 0, for X = 1/s ′11 = 2µ, (8.26)

where µ is the shear modulus and

(a1, a3)= (0, 1), for X = 1/s ′55 = µ. (8.27)

The solution in (8.26) is a longitudinal wave that leaves σ22 = 0. s ′12 must vanish. Otherwise σ22 does
not vanish. The solution in (8.27) is a horizontally polarized shear wave.

Unlike the one-component waves associated with a complex p, the materials for which one-component
waves associated with a real p can propagate can be any anisotropic elastic material, including the
isotropic materials.

Steady waves in a plate of general anisotropy have been extensively studied in the literature. The
readers may consult the references listed in the more recent studies by Shuvalov [2000; 2004] and
Ting [2008].

9. One-component Love waves

Let an anisotropic elastic layer of thickness ĥ occupy the region 0 ≥ x2 ≥ −ĥ. It is attached to the
half-space x2 ≥ 0 of different anisotropic elastic material. The surface x2 = −ĥ of the layer can be
traction-free or a slippery surface.

If the interface x2 = 0 between the layer and the half-space is in sliding contact, the solution for
one-component Rayleigh waves obtained in Section 4 applies for the half-space while the solutions for
a homogeneous plate given in Section 8 apply to the layer here. As shown in Section 8, there are two
possible solutions for the layer when p is complex and four possible solutions when p is real.

If the interface between the layer and the half-space is perfectly bonded, we have to impose the
continuity of the displacement at the interface between the layer and the half-space at x2 = 0 and demand
that the wave speed υ be the same in the layer and the half-space. The wave speed is the same if (6.10)
holds, where the hat refers to materials in the layer. The displacement is continuous if

a3

a1
=

â3

â1
. (9.1)

(a3/a1) for the half-space is given in (6.5), which is complex. (â3/â1) for the layer can be either one
of the two solutions associated with a complex p̂ presented in (8.3). The imaginary part of p̂ can be
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positive or negative. We cannot employ the solutions associated with a real p̂ for the layer because the
displacement would not be complex.

Love waves for which the layer and the half-space are general anisotropic elastic materials have been
studied by Shuvalov and Every [2002]. Ting [2009] considered the case in which the interface can be
either perfectly bonded or in a sliding contact.

10. One-component waves in a layered plate

Consider first a plate that consists of two layers. One layer has thickness h and occupies the region
0≤ x2 ≤ h. The solution is given by

u= a eikz, (10.1)

where
z = x1+ px2− υt. (10.2)

The other layer has the thickness ĥ and occupies the region −ĥ ≤ x2 ≤ 0. The solution is given by

û= â eikẑ, (10.3)

where
ẑ = x1+ p̂x2− υt. (10.4)

The surfaces at x2 = h and x2 =−ĥ of the plate can be traction-free or slippery surfaces.
If the interface at x2 = 0 is in sliding contact, any one of the solutions for a homogeneous plate given

in Section 8 applies to each layer. There are two possible solutions when p is complex and four possible
solutions when p is real for the layer. Thus there are six possible solutions for each layer in the plate.

If the interface between the layer and the half-space is perfectly bonded, we have to impose the
continuity of the displacement at the interface x2 = 0 and demand that the wave speed υ be the same in
the two layers. The wave speed is the same if

X/ρ = X̂/ρ̂. (10.5)

The displacement is continuous if Equation (9.1) holds. For (9.1) to hold, it is necessary that the p in
both layers be either complex or real.

For a plate that consists of n layers, the problem is simple if all interfaces between the layers are in
sliding contact. In this case, each layer can have any one of the six one-component waves (two associated
with a complex p and four associated with a real p) presented in Section 8. The solution in each layer is
independent of the solutions in other layers.

If some of the interfaces are perfectly bonded, we have to impose the continuity of the displacement
across the perfectly bonded interfaces. Let h1, h2,. . . , hn be the thicknesses of the layers that occupy the
regions

h1 ≥ x2 ≥ 0,

h1+ h2 ≥ x2 ≥ h1,

. . .

h1+ h2+ . . .+ hn ≥ x2 ≥ h1+ h2+ . . .+ hn−1,

(10.6)
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respectively. Let the interface between the m-th and (m+1)-th layers be perfectly bonded. The solution
for the one-component wave shown in (2.4) can have a more general expression. For the m-th layer, we
let

u(m) = a(m)eikz(m), m = 1, 2, . . . , n, (10.7)

where
z(m) = x1+ p(m)(x2−αm)+βm − υt. (10.8)

The αm and βm are constants to be determined. The solution for the (m+1)-th layer is obtained by
replacing m by (m+1) in (10.7) and (10.8). At the interface between the m-th and (m+1)-th layers,

x2 =

m∑
i=1

hi , (10.9)

so that (10.8) gives

z(m) = x1+ p(m)
m∑

i=1

hi − p(m)αm +βm − υt,

z(m+1)
= x1+ p(m+1)

m∑
i=1

hi − p(m+1)αm+1+βm+1− υt.

(10.10)

To enforce the continuity of the displacement at the interface, z(m) and z(m+1) in (10.10) must be identical.
They are identical if we set

αm =

m−1∑
i=1

hi , βm =

m−1∑
i=1

p(i)hi . (10.11)

Equation (10.10) then gives
z(m) = x1+βm+1− υt = z(m+1). (10.12)

The continuity of the displacement at the interface is

a(m)3

a(m)1

=
a(m+1)

3

a(m+1)
1

. (10.13)

The Stroh eigenvalues p(m) and p(m+1) must be either complex or real. If they are complex, there are
two possible solutions as shown in Section 8 for each of the two layers. If they are real, there are four
possible solutions for each of the two layers. The wave speed υ must be the same for the two layers.
This means that

X (m)

ρ(m)
=

X (m+1)

ρ(m+1) . (10.14)

Equations (10.13) and (10.14) must be satisfied for the two layers whose interface is perfectly bonded.
Thus, it is not difficult to see that one-component waves can propagate in a special layered plate in

which the interfaces can be in sliding contact or perfectly bonded. The dispersion equations for a general
anisotropic elastic layered plate can be found in [Alshits et al. 2003] and [Ting 2008].
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Remarks

We have shown that one-component steady waves can propagate in the half-space in which the boundary
surface can be traction-free or a slippery surface. We have also shown that one-component steady waves
can propagate in a bimaterial for which the interface can be in sliding contact or perfectly bonded. The
basic solution common to all one-component steady waves is the one-component surface wave. It has
the characteristic that the stress σi2 (i = 1, 2, 3) and the displacement u2 vanish everywhere. Thus any
plane that is parallel to x2 = 0 is a free surface and also a slippery surface. Because of this, the half-
space need not be infinite in extent. We could have a plate of finite thickness h whose surfaces are either
traction-free or slippery surfaces. One-component steady waves can propagate in the plate and the wave
is not dispersive. Likewise, the bimaterial need not be infinite in extent. If one of the two half-spaces is
finite we have one-component Love waves. If both half-spaces are finite, we have a plate that consists
of two layers. Again one-component steady waves can propagate in the two-layered plate and the wave
is not dispersive. For the plate of finite thickness, the Stroh eigenvalue need not be complex. We present
new one-component waves that can propagate in a plate and a layered plate that consists of any number
of layers. These waves are not dispersive.

Acknowledgements

The author benefited greatly from discussions with Professor D. M. Barnett during the course of this
study.

References

[Alshits and Lothe 1979] V. I. Alshits and J. Lothe, “Elastic waves in triclinic crystals, III: the problem of existence of excep-
tional waves and some of their general properties”, Sov. Phys. Crystallogr. 24 (1979), 644–648.

[Alshits et al. 2003] V. I. Alshits, M. Deschamps, and G. A. Maugin, “Elastic waves in anisotropic plates: short-wavelength
asymptotics of the dispersion branches υn, (k”, Wave Motion 37:3 (2003), 273–292.

[Barnett and Chadwick 1991] D. M. Barnett and P. Chadwick, “The existence of one-component surface waves and exceptional
subsequent transonic states of types 2, 4, and E1 in anisotropic elastic media”, pp. 199–214 in Modern theory of anisotropic
elasticity and applications, edited by J. J. Wu et al., SIAM Proceedings, SIAM, Philadelphia, 1991.

[Barnett and Lothe 1973] D. M. Barnett and J. Lothe, “Synthesis of the sextic and the integral formalism for dislocations,
Greens function and surface waves in anisotropic elastic solids”, Phys. Norv. 7 (1973), 13–19.

[Barnett and Lothe 1978] D. M. Barnett and J. Lothe, “The existence of Rayleigh (surface) waves solutions in anisotropic
elastic half-spaces”, pp. 445–457 in Modern problems in elastic wave propagation, edited by J. Miklowitz and J. Achenbach,
Wiley, New York, 1978.

[Barnett and Lothe 1987] D. M. Barnett and J. Lothe, “On the existence of type-6 transonic states in linear elastic media of
cubic symmetry”, P. Roy. Soc. Lond. A Mat. 411:1840 (1987), 251–263.

[Barnett and Lothe 1989] D. M. Barnett and J. Lothe, “Surface wave existence theory for the case of zero curvature transonic
state”, pp. 33–38 in Elastic wave propagation, edited by M. F. McCarthy and M. A. Hayes, North-Holland, Amsterdam, 1989.

[Barnett et al. 1985] D. M. Barnett, J. Lothe, S. D. Gavazza, and M. J. P. Musgrave, “Considerations of the existence interfacial
(Stoneley) waves in bonded anisotropic elastic half-spaces”, P. Roy. Soc. Lond. A Mat. 402:1822 (1985), 153–166.

[Barnett et al. 1988] D. M. Barnett, S. D. Gavazza, and J. Lothe, “Slip waves along the interface between two anisotropic
elastic half-spaces in sliding contact”, P. Roy. Soc. Lond. A Mat. 415:1849 (1988), 389–419.

[Barnett et al. 1991] D. M. Barnett, P. Chadwick, and J. Lothe, “The behaviour of elastic surface waves polarized in a plane of
materials symmetry, I: addendum”, P. Roy. Soc. Lond. A Mat. 433:1889 (1991), 699–710.

http://dx.doi.org/10.1016/S0165-2125(02)00078-1
http://dx.doi.org/10.1016/S0165-2125(02)00078-1
http://dx.doi.org/10.1098/rspa.1987.0065
http://dx.doi.org/10.1098/rspa.1987.0065
http://dx.doi.org/10.1098/rspa.1985.0112
http://dx.doi.org/10.1098/rspa.1985.0112
http://dx.doi.org/10.1098/rspa.1988.0020
http://dx.doi.org/10.1098/rspa.1988.0020
http://dx.doi.org/10.1098/rspa.1991.0071
http://dx.doi.org/10.1098/rspa.1991.0071


EXISTENCE OF VARIOUS TYPES OF WAVES IN A PLATE OR LAYERED PLATE 647

[Chadwick 1992] P. Chadwick, “Some remarks on the existence of one-component surface waves in elastic materials with
symmetry”, Phys. Scripta 44 (1992), 94–97. The Jens Lothe Symposium Volume.

[Chadwick and Currie 1974] P. Chadwick and P. K. Currie, “Stoneley waves at an interface between elastic crystals”, Q. J.
Mech. Appl. Math. 27:4 (1974), 497–503.

[Chadwick and Smith 1977] P. Chadwick and G. D. Smith, “Foundations of the theory of surface waves in anisotropic elastic
materials”, Adv. Appl. Mech. 17 (1977), 303–376.

[Hohn 1965] F. E. Hohn, Elementary matrix algebra, Macmillan, New York, 1965.

[Ingebrigtsen and Tonning 1969] K. A. Ingebrigtsen and A. Tonning, “Elastic surface waves in crystal”, Phys. Rev. 184:3
(1969), 942–951.

[Norris 1992] A. N. Norris, “One-component surface waves in materials with symmetry”, J. Mech. Phys. Solids 40:7 (1992),
1569–1582. The P. Chadwick Symposium Volume.

[Shuvalov 2000] A. L. Shuvalov, “On the theory of wave propagation in anisotropic plates”, P. Roy. Soc. Lond. A Mat. 456:2001
(2000), 2197–2222.

[Shuvalov 2004] A. L. Shuvalov, “General relationship for guided acoustic waves in anisotropic plates”, P. Roy. Soc. Lond. A
Mat. 460:2049 (2004), 2671–2679.

[Shuvalov and Every 2002] A. L. Shuvalov and A. G. Every, “Some properties of surface acoustic waves in anisotropic-coated
solids, studied by the impedance method”, Wave Motion 36:3 (2002), 257–273.

[Stroh 1962] A. N. Stroh, “Steady state problems in anisotropic elasticity”, J. Math. Phys. 41 (1962), 77–103.

[Ting 1988] T. C. T. Ting, “Some identities and the structure of Ni , in the Stroh formalism of anisotropic elasticity”, Q. J. Appl.
Math. Mech. 46 (1988), 109–120.

[Ting 1992] T. C. T. Ting, “The motion of one-component surface waves”, J. Mech. Phys. Solids 40:7 (1992), 1637–1650. The
P. Chadwick Symposium Volume.

[Ting 1996a] T. C. T. Ting, Anisotropic elasticity: theory and applications, Oxford University Press, New York, 1996.

[Ting 1996b] T. C. T. Ting, “Positive definiteness of anisotropic elastic constants”, Math. Mech. Solids 1:3 (1996), 301–314.

[Ting 2000] T. C. T. Ting, “A new modified Lekhnitskii formalism à la Stroh for steady-state waves in anisotropic elastic
materials”, Wave Motion 32:2 (2000), 125–140.

[Ting 2008] T. C. T. Ting, “Dispersion equations for steady waves in an anisotropic elastic plate or a layered plate”, P. Roy. Soc.
Lond. A Mat. 464:2091 (2008), 613–629.

[Ting 2009] T. C. T. Ting, “Steady waves in an anisotropic elastic layer attached to a half-space or between two half-spaces — a
generalization of Love waves and Stoneley waves”, Math. Mech. Solids 14:1-2 (2009), 52–71.

[Wang and Gundersen 1993] L. Wang and S. A. Gundersen, “Existence of one component surface waves in anisotropic elastic
media”, Phys. Scripta 47:3 (1993), 394–404.

Received 22 Nov 2007. Accepted 15 Apr 2008.

THOMAS C. T. TING: tting@uic.edu
Division of Mechanics and Computation, Stanford University, Durand 262, Stanford, CA 94305, United States

http://dx.doi.org/10.1088/0031-8949/1992/T44/015
http://dx.doi.org/10.1088/0031-8949/1992/T44/015
http://dx.doi.org/10.1093/qjmam/27.4.497
http://dx.doi.org/10.1016/S0065-2156(08)70223-0
http://dx.doi.org/10.1016/S0065-2156(08)70223-0
http://dx.doi.org/10.1103/PhysRev.184.942
http://dx.doi.org/10.1016/0022-5096(92)90037-3
http://dx.doi.org/10.1098/rspa.2000.0609
http://dx.doi.org/10.1098/rspa.2004.1319
http://dx.doi.org/10.1016/S0165-2125(02)00013-6
http://dx.doi.org/10.1016/S0165-2125(02)00013-6
http://dx.doi.org/10.1016/0022-5096(92)90042-Z
http://dx.doi.org/10.1177/108128659600100302
http://dx.doi.org/10.1016/S0165-2125(00)00031-7
http://dx.doi.org/10.1016/S0165-2125(00)00031-7
http://dx.doi.org/10.1098/rspa.2007.0246
http://dx.doi.org/10.1177/1081286508092602
http://dx.doi.org/10.1177/1081286508092602
http://dx.doi.org/10.1088/0031-8949/47/3/009
http://dx.doi.org/10.1088/0031-8949/47/3/009
mailto:tting@uic.edu

	1. Introduction
	2. Basic equations
	3. One-component surface waves
	4. One-component slip waves in the half-space
	5. One-component slip waves in a bimaterial
	6. One-component Stoneley waves
	7. Positive definiteness of strain energy density
	8. One-component waves in a plate
	9. One-component Love waves
	10. One-component waves in a layered plate
	Remarks
	Acknowledgements
	References

