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TRANSVERSE AND TORSIONAL SHEAR STRESSES
IN PRISMATIC BODIES HAVING INHOMOGENEOUS MATERIAL PROPERTIES

USING A NEW 2D STRESS FUNCTION

LAMPROS C. KOURTIS, HANEESH KESARI, DENNIS R. CARTER AND GARY S. BEAUPRÉ

We introduce a new formulation to concurrently calculate torsional and transverse shear stresses in
prismatic beams with homogeneous or inhomogeneous material properties. This new formulation is
generated using kinematic assumptions for the torsion problem and using a new stress function for the
transverse shear problem that accounts for Poisson effects. The effect of gradients in material proper-
ties is captured explicitly as body forces. The results using this new formulation are compared to full
three-dimensional solutions and show good agreement (l2 error metric in the order of 10−4), while both
modeling and computational costs are significantly lower. The numerical implementation of this new
formulation can be used to analyze stresses in arbitrary cross sections ranging from structural members
(civil) to long bones (biomechanics) with either homogeneous or inhomogeneous material properties.

1. Introduction

The problem of out-of-plane shear stress calculation in cross sections of prismatic beams presents signif-
icant interest in a variety of applications ranging from structural engineering to biomechanics. Out-of-
plane shear stresses are created by either torsional or transverse loads. In most cases, the two problems
of torsional shear and transverse shear have been addressed separately.

In cases of simple cross sectional geometries, elementary mechanics of materials approaches to the
transverse shear problem [Young and Budynas 2002; Goodier 1962] yield approximations of the stress
distribution and of the maximum stress values. Depending on the application however, these approx-
imations might underestimate the actual stresses present: for example, for a square cross section, the
maximum shear stress value may be underestimated by up to 18% (for ν = 0.5) while for a circular cross
section the maximum shear stress value may be underestimated by up to 12% (for ν = 0) [Barber 1992].
For more detailed analysis, the exact two-dimensional elasticity solution that describes the complete
out-of-plane shear stress distribution is developed and applied to analytically described cross sections
(such as the ellipse or the rectangle) in many classical elasticity textbooks [Barber 1992; Timoshenko
and Goodier 1984; Sokolnikoff 1956].

The torsional shear problem is addressed more frequently in the literature. Many textbooks [Timo-
shenko and Goodier 1984; Sokolnikoff 1956] present the generalized problem under the Saint-Venant
assumption and solve it for specific analytically described cross sections (such as the ellipse, rectangle).
Structural engineering elements (such as I-beams) under torsion may be studied by expanding the so-
lution of the rectangle (primitive) to each of the discrete subregions of the cross section with special
considerations at the junctions where primitives meet [Goodier 1962]. Thin-walled closed sections (such
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as cellular shapes) are usually studied using Bredt’s formulas by adding an analogue of Kirchhoff’s
law for shells [Gjelsvik 1981; Timoshenko and Goodier 1984; Schulz and Filippou 1998]. Sokolnikoff
[1956] discusses the inhomogeneous beam problem, for a finite number of components having different
elastic properties, where additional boundary conditions are imposed at their interfaces.

The finite element method has been used to address the problem of torsion of cross sections of arbitrary
shape using a two-dimensional formulation. Herrmann [1965] presented a solution to the torsion problem
of homogeneous beams based on the Saint-Venant assumption and a numerical formulation using the Ritz
technique. A computer implementation using the Galerkin formulation, called VA-TWIST, to analyze
homogeneous, prismatic beams subjected to torsional loading was developed by [Levenston et al. 1994].
Mason and Herrmann [1968] proposed a finite element formulation to the transverse shear problem by
minimizing the total potential energy of an unknown warping function across the section. An alternative
formulation [Gruttmann et al. 1999] introduces a warping function for torsion and two new functions for
transverse shear — one for the pure transverse shear contribution and one for the effect of Poisson’s ratio
due to flexure, all solved numerically using the finite element method. Reissner [1979; 1983; 1993] used
the principle of minimum complementary energy to derive seven differential equations of equilibrium to
determine stresses in the complex problem of axial, bending, transverse and torsional loads. However,
these formulations are sometimes difficult to implement in a numerical solution [Gruttmann et al. 1999].
They also regard bodies as homogeneous, failing thus to capture inhomogeneity contributions, an impor-
tant factor in biomechanics [Kourtis et al. 2008] or composite materials studies. Muskhelishvili [1963]
derived the governing equations to calculate torsional stresses in beams containing different reinforcing
materials; the equations can lead to closed-form or series solutions for simple geometries.

The goal of this paper is to present a new method to determine shear stresses caused by torsional and
transverse shear loads on an arbitrarily-shaped prismatic body having inhomogeneous material proper-
ties. This new formulation is obtained by superimposing two relatively simple solutions, one for torsion
(derived from an assumed displacement field) and one for transverse shear (derived from an assumed
strain field).

Routinely, elasticity problems are reformulated by introducing stress functions. For example, in the
Airy stress function formulation in plane elasticity, stresses are constructed as derivatives of an unknown
function in a manner such that the equilibrium conditions are automatically satisfied; the problem then
only requires solving the compatibility equations subject to the boundary conditions. The stress function
itself has no obvious physical interpretation in this case. The problem can also be reformulated such that
compatibility is automatically satisfied; the problem then only requires solving the equilibrium equations
subject to the boundary conditions. An example of this approach is the Love strain function in the
axisymmetric elasticity problem [Barber 1992]. The elasticity formulation presented in this work follows
this second approach.

2. Materials and methods

A prismatic body is subjected to far-field transverse and torsional loads (Figure 1); � represents the cross
section interior, 0 denotes the boundary of the section such that �∩0 = 0. The x and y axes lie in-plane;
the z axis defines the out-of-plane direction. At the section under examination, there exist an angular
twist θ (or alternatively torsion T in cases where the center of shear coincides with the centroid) and
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Figure 1. A prismatic beam with Cartesian coordinate system. Bending moments Mx ,
My transverse shear forces Qx , Q y and angular twist θ and torque T are shown at a
representative cross section. Transverse shear and torsional loads create shear stresses
τzx and τzy .

transverse forces Qx and Q y (obtained easily using the method of sections) as well as bending moments
Mx and My .

Since the cross section has inhomogeneous material properties, the effective centroid C : (C∗x ,C∗y ) is
defined in both integral and finite element form as in [Carpenter et al. 2005]:

(C∗x ,C∗y )=
(∫

x E(x, y)d A∫
E(x, y) d A

,

∫
yE(x, y) d A∫
E(x, y) d A

)
=

(∑
xi Ai Ei∑
Ai Ei

,

∑
yi Ai Ei∑
Ai Ei

)
, (1)

where i enumerates the elements, xi , yi are the element’s centroid coordinates, Ai is its area and Ei its
elastic modulus.

For convenience, we shift the coordinate system so the effective centroid (C∗x ,C∗y ) is at the origin:

(C∗x ,C∗y )= (0, 0). (2)

The flexural rigidities I ∗xx , I ∗yy about the axes, the generalized moment of inertia I ∗xy and the axial
stiffness are calculated using inhomogeneous beam theory [Carpenter et al. 2005]:

I ∗xx =

∫
y2 E(x, y) d A =

∑
((I e

xx E)i + y2
i Ai Ei ), (3)

I ∗yy =

∫
x2 E(x, y) d A =

∑
((I e

yy E)i + x2
i Ai Ei ), (4)

I ∗xy =

∫
xyE(x, y) d A =

∑
((I e

xy E)i + xi yi Ai Ei ), (5)

A∗ =
∫

E(x, y) d A =
∑

Ai Ei , (6)

where the sum runs over all elements and I e
xx , I e

yy, I e
xy denote each element’s moment of inertias about

its centroid.
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Transverse forces Qx , Q y applied to the body at a distance z from the cross section under examination
cause bending stresses. Ignoring any axial forces and assuming small strains, the normal stresses in the
longitudinal direction σzz are given as in [Bartel et al. 2006]:

σzz =

(Qx I ∗xx − Q y I ∗xy

I ∗xx I ∗yy − I ∗xy
2 Ei xi +

Q y I ∗yy − Qx I ∗xy

I ∗xx I ∗yy − I ∗xy
2 Ei yi

)
· z. (7)

The prismatic bar with the given cross section and properties under torsional and/or transverse loads
is examined away from the points of load application to avoid stress concentrations. Although transverse
shear and torsion can be solved separately and the stresses can then be superimposed, we developed a
single formulation to address transverse shear and torsion simultaneously.

Transverse shear. Euler-Bernoulli beam theory assumes that the out-of-plane normal stress varies lin-
early with the distance z, but the theory neglects Poisson effects. In this section we use classical elasticity
to derive the transverse shear stress distribution due to bending in a prismatic beam of arbitrary cross
section and inhomogeneous material properties. For this analysis, we make the following assumptions:

• σxx = σyy = τxy = 0.

• τzx , τzy are independent of z.

• The normal stress σzz varies as described in (7).

• The Poisson’s ratio ν is constant across �.

• G, E are arbitrary spatial functions of x, y, at least piecewise continuous across �.

For notational convenience, we introduce

α =
Qx I ∗xx − Q y I ∗xy

I ∗xx I ∗yy − I ∗xy
2 and β =

Q y I ∗yy − Qx I ∗xy

I ∗xx I ∗yy − I ∗xy
2 , (8)

so (7) becomes
σzz = [α · x · E(x, y)+β · y · E(x, y)] · z. (9)

The assumptions above on stress imply the following constraints on strain from linear elasticity:

εxx =−
ν

E(x, y)
σzz, εyy =−

ν

E(x, y)
σzz, εzz =−

1
E(x, y)

σzz, γxy = 0. (10)

The form of γzx and γzy is still unknown. However from the assumptions we know that γzx and γzy

are not functions of z. Therefore:

γzx =
τzx

G(x, y)
and γzy =

τzy

G(x, y)
. (11)

Further information about the form of γzx and γzy can be found using the compatibility conditions.
We therefore assume the following form for γzx and γzy that satisfies compatibility:

γzx = φ,x − 2βνxy, γzy = φ,y − 2ανxy, (12)

where a subscript variable after a comma indicates partial differentiation with respect to that variable.
The unknown function φ = φ(x, y) is C2 continuous in �.
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It is easy to see that the six compatibility relations (13) are satisfied either identically (left column and
first equality on second column), or due to the definition of shear strain in (12):

εxx,yy + εyy,xx = γxy,xy,

εyy,zz + εzz,yy = γyz,yz,

εxx,zz + εzz,xx = γxz,xz,

2εzz,xy = γyz,xz + γxz,yz − γxy,zz,

2εxx,yz =−γyz,xx + γxz,xy + γxy,xz,

2εyy,xz = γyz,xy − γxz,yy + γxy,yz.

(13)

From (11) and (12) we obtain the following form for transverse shear stresses due to bending:

τzx = G(x, y)(φ,x − 2βνxy), τzy = G(x, y)(φ,y − 2aνxy). (14)

Equation (14) will be used later in the development of the strong form of the problem. Having provided
a form for the transverse shear using a stress function, we proceed to find a form for the torsional shear
using kinematic assumptions. We then superimpose the two to satisfy equilibrium.

Torsional shear. In this section we derive the torsional shear stress distribution in a beam of arbitrary
cross section and inhomogeneous material properties due to torsion based on kinematic relations (Saint-
Venant) for a presumed displacement field and for small deformations.

For this analysis, the following assumptions are made:

• σxx = σyy = σzz = τxy = 0.

• τzx , τzy are independent of z.

• G is an arbitrary spatial function of x, y, at least piecewise continuous across �.

Using similar notation as in the previous section, the in-plane torsional displacements ux , u y vary
linearly with the distance from the centroid of the cross section (C∗x ,C∗y ) and are given by:

ux =−θ · y · z, u y = θ · x · z, (15)

where θ is the linear angle of twist.
Torsion is assumed to occur around the effective centroid of the cross section; the same relations hold

for off-centroid torsion cases by replacing (C∗x ,C∗y ) with the center of rotation (Cx ,Cy).
A function ψ , called the warping function, is chosen such that the out-of-plane displacements uz

caused by torsion are given by

uz = θ ·ψ(x, y). (16)

Since we assume a displacement field, the compatibility equations are automatically satisfied. From
(16) we derive a relation for the torsional shear strains:

γxz = uz,x + ux,z, γyz = uz,y + u y,z. (17)

Assuming linear isotropic or transverse isotropic elastic material properties, substituting (15) and (16)
in (17), and employing the constitutive relations we obtain

τxz = G(x, y)θ(ψ,x − y), τyz = G(x, y)θ(ψ,y + x). (18)
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Governing relations and boundary conditions. The equations for equilibrium can be written in compact
notation as σi j, j = 0. The two equilibrium relations in x and y directions are identically satisfied due to
the nature of the assumptions. The third equilibrium equation yields

σzz,z + τzx,x + τzy,y = 0. (19)

Invoking linear superposition we combine expressions (18) and (14), for the stresses arising respec-
tively from torsion and transverse shear, with (19), obtaining

E(αx +βy)+ (G(θψ,x − θy+φ,x − 2βνxy)),x + (G(θψ,y + θx +φ,y − 2ανxy))= 0, (20)

where G, E are given functions of x, y. It is useful to combine the two unknown functions ψ, φ by
setting

4
def
= θψ +φ. (21)

The scalar function ψ , due to the nature of the kinematic assumptions, can be interpreted as a measure
of the out of plane deformations (uz), and is called the warping function; the scalar function ϕ, however,
lends itself to no such physical interpretation.

Simplifying the preceding expression yields the governing equation for the combined transverse shear
and torsional shear problem:

(G4,x),x + (G4,y),y = 2νxy(βG,x +αG,y )− (E−2Gν)(αx+βy)+θ(G,x y−G,y x)= f (x, y). (22)

Note that for an isotropic elastic solid, E can be replaced by

E = 2(1+ ν)G. (23)

The boundary conditions are obtained by imposing zero traction at the boundaries 0:

τzx · nx + τzy · ny = 0 on 0, (24)

where n is the normal vector to the boundary 0. Combining the stresses arising from the torsion (18)
and the transverse shear (14) in (24), and recalling (21), we obtain

G(4,i ni )= G
(
(θy+ 2βνxy)nx − (θx − 2ανxy)ny

)
on 0. (25)

Using (22) and (25), the strong form of the shear problem becomes:

Given α, β, θ and functions G(x, y) and E(x, y), find 4 ∈ C2 such that

(G4,i ),i = f (x, y) on �,

G4,i ni = Gti ni on 0,
(26)

where

f (x, y)= 2νxy(βG,x+αG,y)−(E−2Gν)(αx+βy)+θ(G,x y−G,y x), t =
[
θy+2βνxy
−θx+2ανxy

]
. (27)

The function f (x, y) can be thought of as body force and t can be thought of as a traction vector.
The importance of the material property gradient terms G,x and G,y in the expression of f (x, y) will be
discussed later.
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Finite element approximation. Based on the strong form definition of the problem just given, we intro-
duce the trial function space

ϒ = {w | w ∈H1 on �},

which provides the weak form as∫
�

w
(
G4,i i +G,i4,i − f (x, y)

)
d�= 0 for all (x, y) ∈�, (28)∫

�

w(G4,i )i d�=
∫
�

w f (x, y) d�. (29)

Integrating by parts and using the divergence theorem we get∫
0

(wG4,i )ni d0−
∫
�

w,i G4i d�=
∫
�

w f (x, y) d�. (30)

After incorporating the boundary conditions we obtain the weak form of the problem:

Given α, β, θ and functions G(x, y) and E(x, y), find 4 ∈ ϒ such that∫
�

w,i G4,i d�=
∫
0

wGti ni d0−
∫
�

w f (x, y) d�, (31)

where f (x, y) and t are as in (27).

Introducing the finite element function space and element shape functions [Hughes 2000] we have

ke
ab =

∫
�e

N e
a,i G

e N e
b,i d�

e, (32)

where a and b range over the nodes and superscript e refers to the element space; Ge is the shear modulus
assigned to the element. Moreover

f e
a = ( f f

a )
e
+ ( f g

a )
e, with ( f f

a )
e
=−

∫
�e

N e
a f (x, y) d�e, ( f g

a )
e
=

∫
0e

N e
a Gti ni d0e.

Note that ( f f
a )

e can be easily computed using Gauss quadrature. The gradients of the shear modulus can
be calculated using the shape function derivatives:

G,x =

∫
Na,x Gad�, G,y =

∫
Na,yGad�e, (33)

where Ga , the shear modulus for node a, can be taken as the average of the shear modulus values Ge of
the elements sharing that node.

The shear stresses are calculated from (14), (18) and (21) as

τzx = G(x, y)(4,x − 2βνxy− θy), τzy = G(x, y)(4,y − 2ανxy+ θx). (34)

The torque, T , corresponding to the given angular twist θ can be calculated by integrating over the
element stress contributions weighted linearly by their distance from the centroid:

T =
∫
�

(x τzy − y τzx) d�, (35)
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or by substituting the stresses from (34) and, since φ = 0 (no transverse shear), by replacing 4 = θψ
from (21):

T =
∫
�

G(x, y)(x4,y − y4,x) d�. (36)

The integral term in (35) and (36) is called the torsional rigidity and is denoted by K ∗. Note that (36)
provides the net torque T supported by the prismatic beam when it is subjected to an angular twist about
its effective centroid.

The numerical implementation of this formulation can be downloaded from https://simtk.org/home/
va-batts.

3. Results

Validation examples. In the case of torsionless bending of a homogeneous body having an idealized
geometry (circle or rectangle), the new formulation in (26)–(27) reduces to the relations provided in
[Timoshenko and Goodier 1984], and a numerical comparison has been provided [Kourtis et al. 2008].
Similarly, in the case of pure torsion of a homogeneous body having those geometries, the new formula-
tion reduces to the relations provided in [Barber 1992]. In addition, we numerically compared the solution
to several problems of torsionless bending of homogeneous bodies having arbitrary geometries provided
in [Gruttmann et al. 1999] to the solutions obtained using the new formulation, obtaining excellent
agreement (results not shown).

Several representative cross sectional geometries are presented and analyzed in this section. We pro-
vide a verification of the new formulation by comparison to the three-dimensional elasticity solution,
for the homogeneous and inhomogeneous material property cases. Comparison of the 2D model using
the new formulation to a 3D elasticity model is the only way to validate models having arbitrary cross
sections and inhomogeneous material properties; in addition, the 3D model is generated by extruding the
2D mesh conveniently guaranteeing correspondence between node and integration point locations.

Example 1 (Homogeneous elliptic beam). A solid elliptical beam subjected to transverse loads and
to torsion was analyzed using the new formulation and the results compared to the three-dimensional
solution. The axis lengths were taken as a = 100 mm and b = 60 mm, and the elastic modulus as 1 MPa.
The cross section was meshed using 924 quadrilateral 4-node elements. The predicted shear stresses
τ from the new formulation were compared to the three-dimensional solution, τ3D (Figure 2). The
three-dimensional solution was found using an extruded model, that was composed of 19,404 elements,
analyzed with ABAQUS. The number of element layers in the out-of-plane (extruded) direction was
chosen in order to maintain an element aspect ratio of less than 10 to 1. The l2 error metric

l2
=

√
(τ − τ3D)2

τ 2
3D

(37)

was found to be 3.25× 10−4.

Example 2 (Homogeneous I-beam). A standard structural member, the steel I-beam, was subjected to
torsional and transverse shear loads, in the form of an about-the-centroid torsional displacement (angle
of twist) and a vertical transverse load. The dimensions of the cross section are given in Figure 3.
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2D Solution

3D Solution

x 10-4

5.0

4.5
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3.5
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2.5

2.0

1.5

1.0

0.5

a

b

Figure 2. Validation example 1: A homogeneous beam with an elliptic cross section
(axis lengths a = 100 mm and b = 60 mm), with an elastic modulus E = 1 MPa, is
subjected to a transverse force of 1 N acting in the vertical direction and applied through
the centroid, combined with an applied angular twist of 3.5× 10−7 degree/mm. The re-
sulting shear stresses [MPa] demonstrate minimal stress on the right side and maximum
stress on the left side; the transverse shear stresses are either decreased or increased by
the torsional shear stresses. Top: solution obtained with the new two-dimensional imple-
mentation (1,954 DOF). Bottom: representative cross section of the solution obtained
with a full, three-dimensional finite element analysis (61,551 DOF). The l2 error metric
is 3.25× 10−4.

Since analytical solutions for this cross section are only approximations of the elasticity solution, a full
three-dimensional model was created and analyzed. The cross section was meshed using 946 linear
quadrilateral 4-node elements and stresses were calculated using the proposed formulation. The same
two-dimensional mesh was extruded, yielding 23 element layers to produce a three-dimensional prismatic
beam composed of 21,758 linear 8-node hex elements, 2.5 times longer than the height of the I-beam. As
in Example 1, the number of element layers in the out-of-plane direction was chosen in order to maintain
an element aspect ratio of less than 10 to 1. The boundary conditions were applied to the prism by fully
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Figure 3. Validation example 2: A homogeneous I-beam (a = 100 mm, b = 60 mm,
t = 10 mm, r = 5 mm) with elastic modulus 100 MPa is subjected to a transverse force
of 100 N acting in the vertical direction and applied through the centroid. No torsion
or twist is applied. The resulting shear stresses (MPa) are shown for the new two-
dimensional implementation (left; 2,166 DOF) and for the full, three-dimensional finite
element analysis (right; 74,727 DOF). l2 error metric: 7.72× 10−4.

constraining the nodes of one end and by tying [ABAQUS 2002] the nodes of the other end to a reference
point, which was then subjected to the transverse force and the angular twist. Stresses calculated using
the two-dimensional model were compared to the three-dimensional solution (Figure 3). The location
for comparison within the three-dimensional model was chosen so as not to be influenced by any stress
concentrations associated with the imposed boundary conditions. In this case, the l2 error metric was
found to be 7.72× 10−4. One source of error using the proposed two-dimensional formulation is the
poor definition of the normals at the corner elements, which causes artifacts.

Example 3 (Inhomogeneous rectangle: steel reinforced concrete beam). A solid rectangular beam, sub-
jected to a transverse force and to a torsional twist around its centroid, was analyzed using the new
formulation. The results were then compared to the three-dimensional solution. The dimensions of the
beam and the rebar elements and the magnitudes of the applied loads are given in Figure 4. Steel was
modeled to be 7 times stiffer than concrete [Hendy and Johnson 2006]. No-slip conditions were assumed
between the steel rebar and the concrete. The cross section was meshed using 2,507 linear quadrilateral
4-node elements. As in the I-beam example, the two-dimensional mesh was extruded to produce a three-
dimensional prismatic beam composed of 67,689 linear 8-node hex elements and the boundary conditions
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a

b

c

dr

E
1

E
2

r'

Figure 4. Validation example 3: A rectangular beam made of concrete containing rebar
(the four circles), with dimensions a = 100 mm, b = 60 mm, c = 30 mm, d = 50 mm,
r = 6 mm, r ′ = 1 mm, is subjected to 50 kN of transverse force applied in the vertical
direction through the centroid along with 3.5× 10−7 degree/mm of angular twist about
its centroid. The rebar material (E2 = 200,000 MPa) is approximately seven times stiffer
than the concrete material (E1 = 29,000 MPa). The plot shows the shear stresses in the
two materials, along with the shear stress direction. The resulting shear stresses [MPa]
are shown both for the new two-dimensional implementation (left; 5,220 DOF) and for
the full, three-dimensional finite element analysis (right; 211,410 DOF). l2 error metric:
8.31× 10−3.

were applied respectively. The stress calculated using the proposed formulation is in good agreement
with that derived from the three-dimensional model (Figure 4), with an l2 error metric of 8.31× 10−3.

Application example: Inhomogeneous cross section of a bone instrumented with a cemented prosthe-
sis. We next considered an example involving a complex biomechanical application: a hip replacement
in which a metallic stem is inserted into the intramedullary canal of the femur and orthopaedic cement
fills the remaining space. Bone is by nature a highly inhomogeneous material; its density and its elastic
modulus vary from site to site. Using well established methods, tomographic X-ray images can provide
information on the local bone density and hence the elastic modulus at each location within the cross
section. After creating the finite element mesh to represent the bone cross section, each element was
assigned an individual set of material properties corresponding to the local (element) image properties
[Kourtis et al. 2008]. The longitudinal elastic modulus, E(x, y), was found to range from 2,000 MPa to
17,500 MPa throughout the cross section. The shear modulus of the bone was then calculated according to



670 LAMPROS C. KOURTIS, HANEESH KESARI, DENNIS R. CARTER AND GARY S. BEAUPRÉ

100

90

80

70

60

50

40

30

20

10

0
E(x,y) E2E1

a

Figure 5. Stresses (MPa) are shown for a model consisting of the shaft of the femur
(a ∼ 23 mm) with a titanium alloy prosthesis cemented within the intramedullary cavity.
The applied torsional and transverse shear loads were estimated for stair ascent. The
maximum shear stress within the bone was 52.64 MPa whereas the maximum shear
stress within the implant was 98.23 MPa. The highest PMMA cement shear stress close
to the metal implant was 2.17 MPa.

the relation G = 0.19E introduced in [Reilly and Burstein 1975]. An implant made of titanium Ti6Al4V
alloy (elastic modulus E2 = 114,000 MPa) was assumed to be inserted in the intramedullary canal, and
orthopedic cement (PMMA) with elastic modulus E1 = 2,350 MPa [Williams and Johnson 1989] fills
the remaining space between the bone and the implant. The model was subjected to torsional and peak
transverse loads (FM−L = 0.59 BW, FA−P = 0.61 BW, Tz = 2.24 BW m, where BW= 80 kg is the body
weight), corresponding to a stair climbing load case obtained from biomechanical studies [Bergmann
et al. 2001]. The problem was then solved using the new two-dimensional formulation (Figure 5). Since
this is a closed section that is approximately axisymmetric, we made the assumption that the center of
shear coincides with the effective centroid of the cross section [Tapley and Poston 1990]. The analysis
showed that the maximum shear stress within the bone was 52.64 MPa, while the maximum shear stress
within the implant was 98.23 MPa. Stresses in the PMMA cement were significantly lower, and went up
to 2.17 MPa near the metal implant interface. Studies have shown that the metal-cement interface shear
stress limit depends on the surface treatment (roughness) of the implant; for a grit-blasted metal surface
the interface shear stress limit is reported in the order of 7.8–8.61 MPa [Müller and Schürmann 1999].
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4. Discussion

The mathematical method presented in this article provides a straightforward means of accurately cal-
culating torsional and transverse shear stresses of a prismatic beam having inhomogeneous material
properties, and at low computational cost since no three-dimensional solution is needed. As seen from
the results, comparison to the “gold standard” three-dimensional solutions, shows extremely low l2 error
metrics. Depending on the needs, the new formulation can be either used to calculate pure torsional
shear, or pure transverse shear or combination thereof. The new formulation can also be used to analyze
beams with either homogeneous or inhomogeneous material properties.

Amongst other features, this formulation provides a chance to explore “torqueless” twisting during
which a beam will twist even though it is only subjected to transverse loads. This may occur because
of the geometry and/or inhomogeneity of the beam as well as the direction and location of the applied
transverse load. Torqueless twisting will occur if transverse forces are not applied through the center of
shear. In addition, a beam only subjected to an angular twist about an axis other than the center of shear
will undergo bending as if it were loaded by a transverse load. However, in closed solid sections, such
as the ones examined in this study, the center of shear is very close to the effective centroid [Tapley and
Poston 1990], therefore the assumption made in the torque calculation section that they coincide.

It is interesting to take a closer look at the terms in the strong form of the problem, Equations (26)–(27),
and quantify their contribution to the overall result. The function f (x, y) right-hand side of the domain
equation has three terms: the first and last represent the effects of the gradients of material properties on
the calculation of shear stresses created by the transverse load and the angular displacement, respectively.
In the transverse shear case, this gradient term is “activated” as a result of a Poisson effect. The Poisson
effect is also responsible for the second term in the boundary condition equation; without this, the trans-
verse shear stress distribution would vary in one direction only. In order to quantify the importance of
these terms we examined the case of an inhomogeneous square beam containing an insert that is one-third
as stiff as the rest of the beam. We calculated stresses using (26)–(27) and then recalculated stresses after
omitting the material property gradient terms (Figure 6). A qualitative inspection of the plots indicates
that both the absolute values of the stress as well as the stress distribution are affected by the presence of
these terms. More specifically, the highest stress for the torsion problem differed by −7.7% while for the
transverse shear problem the difference was −4.1%. These differences are expected to be even larger for
larger mismatches between the various properties of the beam; for example, if the shear moduli of the
two materials in this example had a tenfold difference, the maximum stresses would differ by −10.5%
and −5.9% for the torsion and the transverse shear problems, respectively.

One of the limitations of the new formulation is that unlike the elastic and shear moduli (E,G) that are
spatial functions across the domain �, Poisson’s ratio remains constant. Still, using this formulation, one
could vary Poisson’s ratio for each element according to some spatial function and obtain approximate
results; however (26) does not include terms that correspond to the spatial gradient of the Poisson’s
ratio. Another limitation of the formulation is that it can only be used with isotropic or transverse
isotropic materials; anisotropic and orthotropic material models inherently cannot be described by this
two-dimensional approach.

The new formulation offers an easier and faster method to determine shear stresses compared with a
full, three-dimensional approach. In terms of computational cost, in order to maintain the same element
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Solution with material gradient terms

Solution without material gradient terms

Torsional Stress Transverse Stress
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Figure 6. Importance of the material property gradient terms in Equations (26)–(27).
A square beam with an insert (right), one-third as stiff. Left: torsional stresses [MPa].
The absolute stress values are different and the overall distribution changes with the
incorporation of the material property gradient terms. Right: transverse stresses [MPa].
Here there is less difference between the solutions with and without the shear modulus
spatial gradient terms, but the latter solution underestimates shear stresses.

aspect ratio, it can be shown that the number of three-dimensional elements must increase as the number
of two-dimensional elements raised to the 1.5 power. In addition, the three-dimensional elements would
have an extra degree of freedom for each node, again rendering the two-dimensional solution more
attractive (see comparison of degrees of freedom for the 2D and 3D cases in captions of Figures 1–3).
Especially in cases where multiple analysis are needed, such as in plasticity or fatigue studies, the com-
putational cost benefit of the two-dimensional approach can be substantial. Second, a three-dimensional
model requires an extrusion meshing step after the original two-dimensional mesh creation, which along
with the material properties assignment can prove time consuming. Most commercial software mesh-
ing packages do not offer the option of “inheriting” material properties from a two-dimensional parent
mesh to its three-dimensional extruded mesh. In addition, coupling the torsion and the transverse shear
problems into one, further decreases the computational requirements. Also, the application of boundary
conditions in a three-dimensional model is not always trivial, as for example at least one end may need
to be constrained relative to a reference point to which the actual displacements or loads are applied.
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