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YONGJIN YOON, SUNIL PURIA AND CHARLES R. STEELE

In our previous work, the basilar membrane velocity VBM for a gerbil cochlea was calculated and com-
pared with physiological measurements. The calculated VBM showed excessive phase excursion and, in
the active case, a best-frequency place shift of approximately two fifths of an octave higher. Here we
introduce a refined model that uses the time-averaged Lagrangian for the conservative system to resolve
the phase excursion issues. To improve the overestimated best-frequency place found in the previous
feed-forward active model, we implement in the new model a push-pull mechanism from the outer hair
cells and phalangeal process. Using this new model, the VBM for the gerbil cochlea was calculated and
compared with animal measurements, The results show excellent agreement for mapping the location of
the maximum response to frequency, while the agreement for the response at a fixed point as a function
of frequency is excellent for the amplitude and good for the phase.

A list of symbols can be found on page 985.

1. Introduction

The cochlea of the inner ear transforms the input sound into output neural excitation. The basic model
consists of a long, straight box of fluid with a flat lengthwise partition. The spiral coiling of the cochlea
is neglected, as it has been shown to have little effect on the model response [Loh 1983; Steele and Zais
1985]. The partition has an elastic portion called the basilar membrane (BM). Generally, this membrane
is narrow and thick, and therefore stiff, at the input end, where it connects with stapes, and wide and
thin, and consequently flexible, at the far end, the apex. From a sinusoidal pressure input, a traveling
fluid-elastic wave is generated on the BM.

For a fixed frequency of input, experiments show a traveling wave on the BM that builds to a peak at a
certain point and then rapidly decays as it moves further. The location of the peak depends on frequency;
thus each point has a “best frequency” (BF) that causes the maximum amplitude of the BM response.
In the actual cochlea, a sensory epithelium, called the organ of Corti, is attached to the BM. The organ
of Corti contains the sensory hair cells, which respond to the BM motion and initiate neural excitation.
However, three rows of outer hair cells (OHC) are piezoelectric and most likely provide an amplification
of the wave for low input amplitude; this is known as the active mechanism. Because of the geometry of
the outer hair cells, a feed-forward approximation can be used in the cochlear model. Two-dimensional
[Geisler and Sang 1995] and three-dimensional models with the active feed-forward mechanism have
been employed [Steele et al. 1993; Lim and Steele 2002; Yoon et al. 2007].

Keywords: cochlear active model, basilar membrane velocity, outer hair cell, push-pull mechanism, gerbil.
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In the present work, we improve on this previous feed-forward active model with further consideration
of the actual geometry. For the low amplitude of sound intensity, there is significant energy feedback that
enhances the wave. Located on the elastic region is the organ of Corti, which contains the sensory hair
cells in an interesting arrangement of structural elements. A possible explanation for the form is derived
from an analysis of the effect of the electromotile (piezoelectric) expansion and contraction of the outer
hair cells which is known as OHC motility. This motility causes a positive spatial “feed-forward” of
force on the basilar membrane (the “push”) as well as a negative “feed-backward” of force (the “pull”)
from the phalangeal process. These push and pull mechanism work together to provide a two order of
magnitude increase in the amplitude of the wave for the short wavelengths, but cancel each other out for
the long wavelengths. Thus, the significant enhancement occurs in a narrow band of spatial wavelengths,
without the need for special filtering or tuning. The calculations for the simple box model of the cochlea
with the push-pull mechanism and the “time-averaged Lagrangian” method [Steele and Taber 1979] yield
results very similar to gerbil measurements [Ren and Nuttall 2001].

2. Mathematical methods

Passive cochlear model. The physical cochlea is modeled as a straight-tapered fluid-filled chamber with
rigid walls. The chamber is divided longitudinally by the flexible orthotropic plate into two equal rect-
angular ducts, which represent the scala vestibuli and scala tympani. The two fluid ducts are joined at
the apical end of the chamber by a hole, representing the helicotrema. The flexible plate represents the
pectinate zone of the basilar membrane, which bends under the motion of the fluid driven by the stapes
motion. A schematic drawing of the model is shown in Figure 1.

The equations of the system are formulated in the frequency domain. Harmonic excitation is applied at
the stapes and the steady-state response of the system is considered. The equation for wave propagation
in the passive model is obtained by equating the time-averaged kinetic and potential energies of the
conservative system. The detailed derivations and features for the passive mechanics were described
in [Steele and Taber 1979]. Briefly, the three-dimensional fluid equations are integrated over the cross
section to obtain the relation between volume flow and fluid pressure, using a Fourier series expansion.
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Figure 1. Geometric layout of the passive cochlear model: from left to right, side view,
cross section (A-A), and top view. Distances are parameterized in cartesian coordinates,
x representing the distance from the stapes, y the distance across the scala width, and z
the height above the partition.
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The time-averaged kinetic energy of the fluid (T f ) and of the elastic basilar membrane (Tp) are then
obtained, as is the time-averaged potential energy of the plate (Vp). By equating the time-averaged
kinetic and potential energies of the system, the eikonal equation is obtained, which can be written as

L = T f + Tp − Vp = F(n, ω)W (x)2
(∫ b

0
η2(ξ)dξ

)
= 0. (1)

This gives the phase relation for the active case, F(n, ω)= 0, where b is the BM width, n is the wavenum-
ber, and ω is the frequency. Here, L is the time-averaged Lagrangian density of the system, W (x) the
amplitude of the wave envelope, and η(ξ)= sin(πξ/b) the shape function for simply-supported edges;
the coordinate ξ has its origin at one edge of the BM.

Active cochlear model: push-pull mechanism. For the push-pull active model, the arrangement of the
organ of Corti is indicated in Figure 2. If the OHCs expand, the Deiters rod at the horizontal distance
x +1x1 will be pushed down by the OHC with the apex at x , and pulled up by the phalangeal process
connected to the OHC with the apex at x +1x2. The force in an OHC is proportional to the shear force
on the cilia at the apex, which is approximately equal to the total force acting on the BM. This push-pull
mechanism is quantified by writing the total force on the BM as

FPZ = 2F f
BM+ FC

BM. (2)
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Figure 2. Schematic longitudinal view of the organ of Corti, showing the tilt of the
outer hair cells. For one hair cell with apex at the distance x , the base is at x +1x1; the
phalangeal process connected at the base attaches to the upper surface at x +1x2; the
OHC angle is θ1; and θ2 is the angle of the phalangeal process angle with the reticular
lamina. The force on the BM through the Deiters rod is Fc

BM, which consists of the
downward push from an expansion of the hair cell at x and an upward pull through the
phalangeal process from an expansion of the hair cell at x +1x2.
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in which FC
BM is the force due to the OHCs, and F f

BM is the force due to the fluid on one side. The force
acting through the Deiters rod at x +1x1 is

FC
BM(x +1x1)= α1

(
2F f

BM(x)+ FC
BM(x)

)
−α2

(
2F f

BM(x +1x2)+ FC
BM(x +1x2)

)
, (3)

in which the gains from the push and the pull are α1 and α2, respectively, while 1x1 is the longitudinal
distance between the apex and the base of the OHC, which depends on the length lOHC of the OHC and
its angle θ1 with respect to the longitudinal direction to the reticular lamina (see Figure 2):

1x1 = lOHC cos θ1. (4)

Moreover 1x2−1x1 is the longitudinal distance between the base and the apex of the phalangeal process,
which depends on the length lp of the phalangeal process and its angle θ2 with respect to the longitudinal
direction of the reticular lamina:

1x2−1x1 = lp cos θ2. (5)

Based on the geometric relationship between OHC and phalangeal process, lp can be expressed as

lp = lOHC
sin θ1

sin θ2
. (6)

By (5) and (6), 1x2−1x1 can be reduced without lp:

1x2−1x1 = lOHC sin θ1 cot θ2. (7)

From the phase integral, (3) reduces to

FC
BMein1x1 = α1(2F f

BM+ FC
BM)−α2(2F f

BM+ FC
BM)e

in1x2 . (8)

The force from the OHC motility is related to the fluid force:

FC
BM =

2(α101−α202)F
f

BM

1−α101+α202
, (9)

where
01 = e−in1x1 and 02 = ein(1x2−1x1).

Therefore, the total force on the BM from (2) is

FPZ = 2
(

1+
(α101−α202)

(1−α101+α202)

)
F f

BM =
2F f

BM

1−α101+α202
. (10)

Matching the force to the displacement of the fluid and the OHC to the BM stiffness yields the eikonal
(dispersion) relation of the active model. We consider a positive value of α2 to be a negative feedback
effect of the phalangeal processes. Because of the flexibility of the upper surface consisting of the tectorial
membrane and the reticular lamina in Figure 2, the upward and downward forces tend to cancel each other,
so that α1 = α2. Then, for the long wavelength, i.e., the small values of the wave number n, the push-pull
effect in (2) are negligible, while for very short wavelengths, the fluid viscosity dominates. Thus, the
push-pull is effective only in a band of wavelengths. It is assumed that OHC force production does not
roll off with frequency and thus α1 and α2 are constant with frequency. Although this is controversial,



A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM 981

there is evidence that suggests that OHCs can generate forces for frequencies up to 50 kHz [Rabbitt
2008].

Wave propagation of BM plate. An energy approach is used involving variational calculus which is
applied to the time-averaged Lagrangian density L of the system Equation (1). Independent variation of
n and W (x) yields the Euler–Lagrange equations

∂L
∂W
= 2F(n, ω)W (x)

(∫ b

0
η2(ξ)dξ

)
= 0, (11)

d
dx
∂L
∂n
=

d
dx

[
∂F(n, ω)
∂n

W 2(x)
(∫ b

0
η2(ξ)dξ

)]
= 0. (12)

The eikonal equation is obtained using (11):

F(n, ω)= 0. (13)

The amplitude function, W (x), which is the solution of the transport equation (12), is expressed as

W (x)= C
(
∂F(n, ω)
∂n

b
)−1/2

, (14)

where C is a constant determined from the boundary condition.
Hamilton’s principle is valid only for a conservative system; however, nonconservative terms can be

added to the Lagrange equations of motion. Thus, we extend Equation (11) and (12) to the push-pull
active model to obtain the eikonal and transport equation.

Ratio of the BM velocity to the stapes velocity. For a given harmonic excitation frequency ω, the eikonal
equations for the passive and active case are solved to give the wavenumber (n) by using Newton–
Raphson iterative scheme for each cross section along the cochlear duct. Once n is determined, the ratio
of the BM velocity VBM to the stapes velocity Vst is obtained. With the stapes motion defined as positive
outward, the ratio at x = x∗ is(VBM

Vst

)
x=x∗
=

2n Ast

bx=0

[ (b ∂F(n, ω)/∂n
)

x=0(
b ∂F(n, ω)/∂n

)
x=x∗

]
exp

(
π
2
−
∫

n dx
)
, (15)

where Ast is the stapes foot-plate area.

Modification for nonconservative system. An extension of the time-averaged Lagrangian method to
nonconservative systems is given in [Jimenez and Whitham 1976], in which the adjoint is considered.
An alternate approach is to consider the reciprocity principle. For a linear elastic system, consider
two independent solutions, denoted by superscript (1) and (2). The stress from (2) multiplied by the
displacement of (1) subtracted from the stress from (1) multiplied by the displacement from (2), integrated
over the entire surface, must be zero. In standard notation this is∫

n ·
(
σ (1) · u(2)− σ (2) · u(1)

)
d6 = 0. (16)

This depends on the symmetry of the tensor of elastic constants. The symmetry is preserved when dealing
with viscoelastic materials, including a viscous fluid, and working in the frequency domain, for which
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the coefficients are complex-valued. For a tube such as the cochlea, in which no work is done on the
side walls, the integral over one end is the negative of that over the other end. Since the sign change is
due to the change in the direction n, the integral itself must be constant with the distance along the tube.
So one solution is taken with a positive exponential,(

σ (1), u(1)
)
→ exp

∫
λ dx, (17)

while the other is taken with a negative exponential,(
σ (2), u(2)

)
→ exp

∫
−λ dx . (18)

One is a backward traveling wave, exponentially increasing, while the other is a forward traveling wave,
exponentially decreasing. For a conservative system, the condition (16) yields the same result for the
transport condition as (14). For a dissipative system with fluid viscosity, we find little difference, since
the wave number changes little. In addition, Equation (16) can be used for the case of feedback, when
the system is no longer self-adjoint. In this case the second solution in (16) must be taken as a solution
of the adjoint problem. Again we find little effect on the solutions for the cochlea, so (14) remains a
good approximation.

3. Results and discussion

The cochlear model is used to calculate the response of a gerbil cochlea. The material property values in
Table 1 were taken from [Smith 1968; Lim 1980; Steele et al. 1995; Karavitaki 2002], and the dimensions
in Table 2 from anatomical measurements for the gerbil cochlea [Sokolich et al. 1976; Greenwood 1990;
Dannhof et al. 1991; Cohen et al. 1992; Edge et al. 1998; Thorne et al. 1999; Naidu and Mountain 2007].

The model is meshed into 1200 sections along the 12 mm length of the cochlea. Forty terms are
used in the Fourier expansion across the width of the fluid duct. Calculation with eighty terms for the
Fourier expansion shows no difference with forty terms. Running on an Intel Pentium IX (3.40 GHz)
processor, the average time taken for a single harmonic excitation calculation is about one second. This
method provides a fast and efficient solution compared to a full-scale finite element model. Note that the
computation time indicated by [Parthasarathi et al. 2000] is measured in hours of computing time for the
linear solution for a single frequency.

The results include the BF-to-place map and the BM velocity frequency response. The modeling
results for the gerbil cochlea are compared with recent in vivo experiment measurements in the cochlea.

scala fluid

ρ f = 1.0× 103 kg/m3

µ= 0.7× 10−3 Pa s

basilar membrane

ρp = 1.0× 103 kg/m3

E11 = 1.0× 10−3 GPa
E22 = 1.0 GPa
E12 = 0.0 GPa
ν = 0.5

outer hair cell

θ1 = 85◦

θ2 = 25◦

α1 = 0.14
α2 = 0.14

Table 1. Gross properties in cochlear model.
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x (mm) b (mm) h (mm) f L2, L3 (mm) lOHC (µm)
0 0.0210 0.030 1.000 25.0
1.5 0.0175 0.707
2.9 0.162 0.387
3.5 0.0131
5.0 0.316
5.9 0.0088
7.2 0.190 0.0073 0.282
8.4
9.0 0.0055 0.316

10.2 0.205 0.0044
12.0 0.0031 0.007 0.245 65.0

Table 2. Property variations in gerbil cochlear model. Notation: b: width of plate; h:
plate thickness; h f : BM fluid thickness; L2, L3: width and height of fluid chamber;
lOHC: length of outer hair cell length.

CF-to-place map. CF versus distance from the stapes along the gerbil cochlear (CF range: 0.3 kHz–
50 kHz) is shown in Figure 3. The gerbil CF-to-place map [Sokolich et al. 1976; Greenwood 1990] was
measured with cochlear-microphonic recording. The maps from the passive model and measurement are
in excellent agreement (Figure 3).
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Figure 3. Characteristic frequency (CF) versus position for the passive cochlear model
compared to measurements. The present three-dimensional cochlear model represents
the gerbil cochlear CF-to-place map from 0.3 kHz to 50 kHz [Sokolich et al. 1976; Green-
wood 1990] over a length of 12 mm.
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BM velocity frequency response. The gerbil cochlear BM velocity magnitude and phase for 4.2 mm
from the base (BF = 10 kHz) relative to the stapes displacement were computed up to 20 kHz and are
compared with the gerbil experimental data from [Ren and Nuttall 2001] in Figure 4. The passive model
shows quantitatively very good agreement with data which are measured at a high stimulus level (100 dB
SPL at the ear canal).

Karavitaki [2002] gives the angle of tilt of gerbil OHC (θ1) as 84◦, closer to perpendicular to the BM
(Figure 2). The active model results are calculated with parameters; θ1 = 85◦ (OHC angle), θ2 = 25◦

(phalangeal process angle), α1 = α2 = 0.14 (feedforward and feedback gain factor). The active model
shows qualitatively and quantitatively good agreement with data at low stimulus level (30 dB SPL at the
ear canal) with 27 dB gain.

In the left half of Figure 4, showing the magnitude of the relative BM velocity, the calculated BF
place shifts from 10 kHz (passive model) to 13 kHz (active model), providing better agreement with
measurements. The BF place shift (two fifths of an octave upwards) observed in the earlier feed-forward
active model [Yoon et al. 2007] is resolved by using a push-pull mechanism in the active model. From
the parameter study, we find that the BF place shifts to the low frequency by using a small phalangeal
process angle in the active case.

The right half of Figure 4 shows that we obtain good agreement in the phase as well, at least in the
region below the BF place (that is, up to 10 kHz). Reduced phase excursion is one of the most impressive
improvements in the time-averaged Lagrangian model, compared to the 2.5 cycle phase difference near
BF region in the earlier model. However, past the BF, the phase of BM velocity from the model shows a
larger roll-off than the phase from the data, which represents over-fluctuation of the traveling wave after
10 kHz in the model.
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Figure 4. Basilar membrane (BM) velocity relative to the stapes: magnitude (left) and
phase (right) for the gerbil cochlea at 4.2 mm from the base (BF = 10 kHz). For the
active model, a value of 0.14 was used for the feed-forward and feedback gain factor.
Experimental data from [Ren and Nuttall 2001] are included for comparison. Results
from our earlier model [Yoon et al. 2007] are presented in dotted lines.
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4. Conclusions

We presented a refinement of an earlier physiologically based three-dimensional cochlear model [Yoon
et al. 2007] that resolved its two main deficiencies: a relatively large phase excursion near the best
frequency region, which was addressed using the time-averaged Lagrangian method, and an overesti-
mation of the best frequency (by about two fifths of an octave) observed in the earlier feed-forward
active model, which was ameliorated by the implementation of a push-pull mechanism in the active case.
Basilar membrane velocity simulation results for the gerbil cochlea now show excellent agreement in
magnitude and good agreement in phase relative to physiological measurements. However, past the best
frequency region, the phase in the current model still shows excessive roll-off. We hope that this can be
addressed by incorporating into the model a more detailed treatment of the organ of Corti [Steele and
Puria 2005].

List of symbols

BM basilar membrane
OHC outer hair cell
BF best frequency
n wave number
x , y, z Cartesian coordinates
ω angular velocity

L2, L3 width and height of fluid chamber
α1, α2 feed-forward and feedback gain factors
lOHC, lp length of OHC, length of phalangeal process
θ1, θ2 angle of tilt of OHC, phalangeal process
FPZ, F f

BM forces acting on the pectinate zone and fluid
FC

BM force exerted by OHC
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