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H. D. BUI École Polytechnique, France
J. P. CARTER University of Sydney, Australia

R. M. CHRISTENSEN Stanford University, U.S.A.
G. M. L. GLADWELL University of Waterloo, Canada

D. H. HODGES Georgia Institute of Technology, U.S.A.
J. HUTCHINSON Harvard University, U.S.A.

C. HWU National Cheng Kung University, R.O. China
B. L. KARIHALOO University of Wales, U.K.

Y. Y. KIM Seoul National University, Republic of Korea
Z. MROZ Academy of Science, Poland
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PREFACE

The Tenth Pan American Congress of Applied Mechanics (PACAM X) was held January 7–11, 2008
in Cancún, Mexico. Its aim, like that of its predecessors, was to promote progress in the broad field of
mechanics, including composite materials, computational mechanics, controls, dynamics, fluid mechan-
ics, sensors and monitoring, and solid and structural mechanics. Previous meetings have been held in Rio
de Janeiro, Brazil (1989), Valparaiso, Chile (1991), São Paulo, Brazil (1993), Buenos Aires, Argentina
(1995), San Juan, Puerto Rico (1997), Rio de Janeiro, Brazil (1999), Temuco, Chile (2002), Havana,
Cuba (2004), and Mérida, Mexico (2006). This Tenth PACAM, like the previous gatherings, remains the
only conference sponsored by the American Academy of Mechanics (AAM).

PACAM X lived up to its goal of exposing engineers, scientists, and advanced graduate students
to new research methods, developments, problems, and potential collaborative opportunities in all the
areas metnioned, and provided broad opportunities for personal interactions through means of formal
presentations and informal conversations. Participation was not limited to researchers in North, Central
and South America; in fact, the PACAM conferences enable individuals to engage with scholars from
all over the world during a time when there are few other competing conferences.

A sincere acknowledgment is extended to the National Science Foundation (NSF) for their support of
this conference and specifically to Ken Chong at NSF for helping to support several participants and to
AAM. Approximately 110 international participants were able to enjoy a very productive gathering in
Cancún. The gathering was held at the beautiful Grand Oasis Resort.

Following PACAM X, authors of selected talks were asked to submit extended full-length papers
related to their presentation at the conference. The selected papers were then subjected to the normal,
peer-review process, and the papers of the best quality were included in this special issue of the Journal
of Mechanics of Materials and Structures. I thank the Editor-in-Chief and Associate Editor of JoMMS,
Charles and Marie-Louise Steele, for the great opportunity to organize this special issue; the individual
authors for their excellent contributions; and the anonymous reviewers who put forth a fantastic and
detailed effort in helping to choose the best papers for this special issue.

Lastly, in this anxious time for my family, I wish to thank from the bottom of my heart my parents,
Constantine and Sofia Attard, for their unwavering support of my career and aspirations in life. Without
their unconditional love, nothing in my world would have been possible. S�agap¸, mpamp�.

September 2009

THOMAS ATTARD: tattard@utk.edu
Department of Civil and Environmental Engineering, The University of Tennessee, 113 Perkins Hall,
Knoxville, TN 37996-2010, United States
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FRACTAL ELEMENTS

SAMER ADEEB AND MARCELO EPSTEIN

Self-similar fractals are geometrically stable in the sense that, when generated by a recursive copying
process that starts from a basic building block, their final image depends only on the recursive generation
process rather than on the shape of the original building block. In this article we show that an analogous
stability property can also be applied to fractals as elastic structural elements and used in practice to
obtain the stiffnesses of these fractals by means of a rapidly converging numerical procedure. The relative
stiffness coefficients in the limit depend on the generation process rather than on their counterparts in the
starting unit. The stiffness matrices of the Koch curve, the Sierpiński triangle, and a two-dimensional
generalization of the Cantor set are derived and shown to abide by the aforementioned principle.

1. Introduction

It has been pointed out that many natural structures have a fractal-like composition. These structures
are subject to different kinds of loading. Trabecular bones, for instance, which are shown to possess
a fractal-like structure [Parkinson and Fazzalari 2000], are responsible for load bearing in vertebrates.
Collagen fibers, a major constituent of ligaments and cartilage, are responsible for carrying tensile forces
in those structures. The fibers themselves have the self similar fractal like composition; they are, in fact,
bundles of fibrils, which in turn are bundles of subfibrils. The subfibrils, under an electron microscope,
are seen to be bundles of microfibrils which are bundles of tropocollagen [Frank and Shrive 1999]. The
venous and arterial systems within an organism can also be seen as self similar fractals [Peitgen et al.
2004]. While most of the studies focusing on fractals discuss the shape and image properties of fractals
[Dyson 1978; Avnir et al. 1998], those studies fail to analyze their structural properties: how fractals
would behave under loading and how their behavior is affected by their fractal properties. There are
some attempts to analytically determine the deformation of fractals under load [Capitanelli and Lancia
2002; Carpinteri et al. 2001; 2004; Carpinteri and Cornetti 2002; Epstein and Śniatyscki 2006] however,
those attempts are based on advanced mathematical techniques beyond the scope of structural analysis.

The generation of a fractal image is geometrically stable as the final image of a fractal is independent of
the shape of the initial unit of generation. In the case of the Sierpiński gasket (often called the Sierpiński
triangle), for example, the shape of the fractal is recognized after a few iterations of the generation
process even if the initial generator is not a triangle. In this paper we report that an analogous behavior is
observed in the structural form of the stiffness matrix of an elastic fractal-like structure. The final form of
the stiffness matrix is, in a certain sense, independent of the stiffness properties of the unit of generation.
We also show that this final form can be obtained by applying the principle of structural self-similarity
defined previously in [Epstein and Adeeb 2008].

Keywords: fractals, finite element analysis, stiffness matrix, Koch curve, Sierpiński triangle, Cantor set.
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2. Generic stiffness matrices

A structural element is a load-carrying solid that can be connected to other elements at a finite number of
sites only. At these potential connection points (called nodes or joints) one or more degrees of freedom
(DOFs) — generally translations and/or rotations — are singled out. It is in correspondence with these
DOFs that forces and/or couples may be applied to the structural element either directly or via the
reactions arising from other elements or structural supports. The ordered set of the DOFs of a structural
element can be conceived as a vector U , called the vector of (element) DOFs. In the theory of linear
infinitesimal elasticity, to which we confine our analysis, the elastic energy W stored within an element
is given by the quadratic form

W = 1
2 U tr K U,

where K is a symmetric positive-definite matrix. The physical meaning of the entry ki j of the stiffness
matrix K is as follows. Assuming that all the DOFs have been constrained by means of appropriate
supports (one support per DOF), this entry represents the reaction in correspondence with the support
number i due to a unit displacement of the support number j . The terms stiffness matrix and stiffness
coefficient allude precisely to this physical interpretation.

A necessary condition for a solid to qualify as a structural element is that the stiffness coefficients
be bounded in absolute value. Although beyond this limitation and the symmetry of the stiffness matrix
(which is a direct consequence of the conservation of energy) it appears that the stiffness coefficients
could be arbitrary, it is not difficult to see that this is not the case. Indeed, the elements of each column
of the stiffness matrix, corresponding as they do to the complete set of reactions of a structure under
no external loads, must constitute a system of forces in equilibrium. Beyond the algebraic conditions
resulting from this fact, a structural element may enjoy geometric and material symmetry properties,
which may result in further restrictions. The purpose of the remainder of this section is to derive the
general reduced forms of the stiffness matrices of a few structural elements taking all these conditions
into consideration.

2.1. The stiffness matrix of an equilateral triangle. Our first example consists of an equilateral triangle
confined to deform in its plane. The nodes are identified with the vertices of the triangle and the DOFs con-
sist of the components of the nodal displacements of these nodes. These components may be expressed
either in terms of a global coordinate system, as shown in Figure 1, right, or in terms of conveniently
chosen local directions, as illustrated in the left half of the same figure. The internal constitution of the
element is not specified at this point, but it will be assumed that the material properties enjoy at least the
same symmetries as the geometry.

� �

1 

2 

3 

4 

5 

6 5

1 

2 

3 4 6

Figure 1. The equilateral triangular element, with local coordinates (left) and global
ones (right).
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To distinguish between the two options for the DOFs shown in Figure 1, we will denote the corre-
sponding 6× 6 stiffness matrices by K̂ T and K T , respectively. (The superscript indicates a triangle and
should not be confused with the matrix transposition symbol tr.) By the symmetry of the stiffness matrix,
each of these matrices has at most 21 independent coefficients. To implement the extra conditions due
to geometric and material symmetry, it is convenient to use the DOFs shown in Figure 1, left. Indeed, it
is not difficult to see that in terms of these DOFs the following conditions must hold (assuming that the
three axes of geometric symmetry are axes of material symmetry as well):

k̂T
11 = k̂T

33 = k̂T
55 = AT , k̂T

22 = k̂T
44 = k̂T

66 = BT , k̂T
12 = k̂T

34 = k̂T
56 = 0,

k̂T
13 = k̂T

35 = k̂T
51 = CT , k̂T

14 = k̂T
36 = k̂T

52 = DT , k̂T
23 = k̂T

45 = k̂T
61 = ET ,

k̂T
24 = k̂T

46 = k̂T
62 = FT .

(2-1)

Thus, due to geometrical and material symmetries, the total number of independent entries has been
reduced to just 6, indicated by the constants appearing on the right-hand sides of (2-1). Moreover, the
equilibrium conditions between the entries of each column ( j , say) of the stiffness matrix dictate that the
following conditions must hold:

k̂T
1 j −

1
2(k̂

T
3 j + k̂T

5 j )+
√

3 1
2(k̂

T
4 j − k̂T

6 j )= 0,

k̂T
2 j −

1
2(k̂

T
4 j + k̂T

6 j )−
√

3 1
2(k̂

T
3 j − k̂T

5 j )= 0,

k̂T
1 j + k̂T

3 j + k̂T
5 j = 0.

(2-2)

Using (2-2), four of the six coefficients appearing in (2-1) can be written in terms of the other two, say
At and B t . The final reduced stiffness matrix with respect to the global DOFs (Figure 1, right) has the
form

K T
=



AT
+3BT

4

√
3(AT
−BT )

4
−

AT

2

√
3(BT
−2AT )
2

AT
−3BT

4

√
3(3AT

−BT )
4

3AT
+BT

4

√
3AT

2
−

BT

2

√
3(BT
−3AT )
4

BT
−3AT

4

AT 0 −
AT

2
−

√
3AT

2

B
√

3(2AT
−BT )

2
−

BT

2

Symmetric AT
+3BT

4

√
3(BT
−AT )

4
3AT
+BT

4



. (2-3)

2.2. The stiffness matrix of a beam. The diagram on the right shows a

4 

5 

6 

2 

3 

1 

L 

beam element with one axis of (geometric and material) symmetry. To
take into consideration bending effects, each node is assigned an extra
rotational DOF. Thus, the stiffness matrix of the beam element has a
hybrid mixture of coefficients of forces and moments per unit displace-
ments and per unit rotations. Consequently, the length L of the beam
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plays a role in the relations between the stiffness coefficients. For convenience, we express the stiffness
coefficients k B

i j in terms of homogeneous independent constants. A practical choice of units for these
constants is that of the product E × I (Young’s modulus × moment of inertia ≡ force · length4/length2).

By the assumption of one axis of symmetry, the following nine conditions must be satisfied:

k B
11 = k B

44 = AB, k B
16 = k B

34 =−B B L , k B
22 = k B

55 = C B,

k B
33 = k B

66 = DB L2, k B
13 = k B

46, k B
12 =−k B

54,

k B
15 =−k B

24, k B
23 =−k B

56, k B
26 =−k B

35.

(2-4)

Moreover, equilibrium of every column of coefficients (equilibrium equations) dictates that, for each j ,

k B
1 j + k B

4 j = 0, k B
2 j + k B

5 j = 0, k B
3 j + k B

5 j L + k B
6 j = 0. (2-5)

Implementing all these conditions, the general stiffness matrix of a beam with one axis of symmetry
becomes

K B
=

1
L3



AB 0 B B L −AB 0 −B B L

C B C B L
2

0 −C B C B L
2

DB L2
−B B L −C B L

2

(C B

2
− DB

)
L2

AB 0 B B L

Symmetric C B
−

C B L
2

DB L2


. (2-6)

2.3. The stiffness matrix of a square element. Figure 2, left, shows a square element for which every
geometric symmetry is also a material symmetry. Each node is assigned two DOFs of displacement in
the plane of the square and one rotational DOF in the same plane. Just as in the case of the triangle, it
is convenient to implement these symmetries in an adapted coordinate system. The 144 entries of the
stiffness matrix K s are reduced to 78 by symmetry. Following the same procedure as for the previous
examples, the geometric and material symmetry translate into a further reduction to 14 independent
stiffness coefficients. The equations due to the four axes of symmetry of the square can be expressed as

K S
11 = K S

44 = K S
77 = K S

10 10 = AS, K S
22 = K S

55 = K S
88 = K S

11 11 = BS,

K S
33 = K S

66 = K S
99 = K S

12 12 = C S
× L2,

11 

4 

5 

7 

9 

12 
10 

1 2 

3 

6 

8

4 

5 

2 

7 

9 4 

2 1 

3 

6 

10 

8 

Figure 2. A square element.
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K S
12 = K S

13 = K S
45 = K S

46 = K S
78 = K S

79 = K S
10 11 = K S

10 12 = K S
18 = K S

19

= K S
4 11 = K S

4 12 = K S
27 = K S

37 = K S
6 10 = K S

5 10 = 0,

K S
14 = K S

1 10 = K S
47 = K S

7 10 = DS, K S
25 = K S

58 = K S
8 11 = K S

2 11 = E S,

K S
28 = K S

5 11 = F S,

K S
15 =−K S

1 11 = K S
48 =−K S

24 = K S
7 11 =−K S

57 = K S
2 10 =−K S

8 10 = GS,

K S
16 =−K S

1 12 = K S
49 =−K S

34 =−K S
76 = K S

7 12 =−K S
9 10 = K S

3 10 = H S
× L ,

K S
23 = K S

56 = K S
89 = K S

11 12 = I S
× L , K S

17 = K S
4 10 = J S,

K S
2 12 = K S

35 = K S
68 = K S

9 11 = K S
26 = K S

59 = K S
8 12 = K S

3 11 = K S
× L ,

K S
29 = K S

5 12 = K S
38 = K S

6 11 = L S
× L ,

K S
36 = K S

69 = K S
9 12 = K S

3 12 = N S
× L2, K S

39 = K S
6 12 = O S

× L2.

Finally, the columnwise equilibrium conditions effect a further and final reduction to just 9 independent
coefficients:

K S
2 j + K S

4 j − K S
8 j − K S

10 j = 0, K S
5 j + K S

7 j − K S
1 j − K S

11 j = 0,

L × (K S
5 j + K S

8 j + K S
11 j + K S

2 j )/
√

2+ K S
3 j + K S

6 j + K S
9 j + K S

12 j = 0.
(2-7)

Using the equilibrium equations, five coefficients can be written in terms of the remaining nine coeffi-
cients as follows:

GS
=

1
2(A

S
− J S), F S

= BS
− AS

+ J S, L S
= I S
− 2H S,

I S
= H S

− K S
−

1
4

√
2(−AS

+ 2BS
+ 2E S

+ J S),

N S
=−

1
2C S
−

1
2 O S
+

1
4(−AS

+ 2BS
+ 2E S

+ J S).

(2-8)

As in the case of the beam, the use of hybrid DOFs results in a lack of dimensional homogeneity of the
coefficients. For convenience, however, the stiffness coefficients are expressed in terms of 9 constants
having the same units and the length of the side, L , makes an explicit appearance wherever needed.

The final reduced stiffness matrix has the form

K S
=

1
L3



As 0 0 Ds Gs H s L J S 0 0 DS
−GS

−H S L
BS I S L −GS E S K S L 0 F S L S L GS E S K S L

C S L2
−H S L K S L N S L2 0 L S L O S L2 H S L K S L N S L2

AS 0 0 DS GS H S L J S 0 0
BS I S L −GS E S K S L 0 F S L S L

C S L2
−H S L K S L N S L2 0 L S L O S L2

AS 0 0 DS GS H S L
BS I S L −GS E S K S L

Symmetric C S L2
−H S L K S L N S L2

AS 0 0
BS I S L

C S L2



. (2-9)

(To avoid complicated expressions within this matrix, (2-8) has not been implemented explicitly.)
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2.4. Square element with inextensible diagonals. For a square with inextensible diagonals, the diag-
onal displacement of the two vertices across a diagonal are equal and are assigned a single DOF, as
seen in Figure 2, right. The stiffness matrix of such a square with respect to the DOFs shown there
has 55 coefficients after employing the symmetry of the matrix. The normalization due to the hybrid
combination of moments and forces is again utilized. The axes of symmetry can be used to reduce those
fifty five coefficients to twelve coefficients as follows:

K IS
22 = K IS

44 = AIS, K IS
11 = K IS

55 = K IS
77 = K IS

99 = B IS,

K IS
33 = K IS

66 = K IS
88 = K IS

10 10 = C IS
× L2,

K IS
12 = K IS

27 = K IS
28 = K IS

23 = K IS
46 = K IS

45 = K IS
4 10 = K IS

49 = K IS
24 = 0,

K IS
13 = K IS

56 =−K IS
78 =−K IS

9 10 = D IS
× L ,

K IS
15 =−K IS

57 = K IS
79 =−K IS

19 = E IS, K IS
47 = K IS

14 = K IS
29 = K IS

25 = F IS,

K IS
2 10 =−K IS

26 = K IS
48 =−K IS

34 = G IS
× L ,

K IS
16 = K IS

1 10 = K IS
58 = K IS

53 =−K IS
76

=−K IS
7 10 =−K IS

89 =−K IS
39 = H IS

× L ,

K IS
17 = K IS

59 = I IS, K IS
18 = K IS

5 10 =−K IS
37 =−K IS

69 = J IS
× L ,

K IS
36 = K IS

68 = K IS
8 10 = K IS

3 10 = N IS
× L2, K IS

38 = K IS
6 10 = O IS

× L2.

Equilibrium equations for the square in Figure 2, right, have the form

K IS
2 j + K IS

9 j + K IS
5 j = 0, K IS

1 j + K IS
7 j + K IS

4 j = 0,

L(K IS
1 j + K IS

5 j − K IS
7 j − K IS

9 j )/
√

2+ K IS
3 j + K IS

6 j + K IS
8 j + K IS

10 j = 0.
(2-10)

Using the equilibrium equations, five coefficients can be written in terms of the remaining seven coeffi-
cients as follows:

F IS
=−

1
2 AIS, I IS

=−B IS
− F IS, J IS

= D IS
−G IS,

H IS
=−D IS

+
1
2 G IS

+
1
8

√
2(AIS

− 4B IS
− 4E IS),

N IS
=−

1
2

( 1
4 AIS
− B IS

+C IS
− E IS

+ O IS). (2-11)

The final stiffness matrix has the form

K IS
=

1
L3



B IS 0 D IS L F IS E IS H IS L I IS J IS L −E IS H IS L
AIS 0 0 F IS

−G IS L 0 0 F IS G IS L
C IS L2

−G IS L H IS L N IS L2
−J IS L O IS L2

−H IS L N IS L2

AIS 0 0 F IS G IS L 0 0
B IS D IS L −E IS H IS L I IS J IS L

C IS L2
−H IS L N IS L2

−J IS L O IS L2

B IS
−D IS L E IS

−H IS L
Symmetric C IS L2

−H IS L N IS L2

B IS
−D IS L

−D IS L C IS L2


. (2-12)
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3. Structural analysis of generated fractals

3.1. Structural analysis of a Sierpiński gasket. The Sierpiński gasket is a fractal generated from an
equilateral triangle. The generation process starts by dividing the area inside the equilateral triangle into
four similar copies of the original triangle and removing the middle inverted one as shown in Figure
3a. Each of the remaining three copies is again divided into four copies and the middle inverted one is
removed and so on ad infinitum. The process is equivalent to starting with a triangle and making two extra
copies and placing them as shown in Figure 3b. The new generated structure is then replicated again and
the process is repeated ad infinitum. This process of generation is used to generate a Sierpiński gasket
from a triangular structural element. A finite element analysis package (ABAQUS 6.6) is utilized to
generate a three-node triangle using a plane stress element with a thickness of 1 unit and side dimensions
of 1 unit. The three-node triangle is regarded as a structural element rather than a finite element. The
stiffness matrix of the generated structure with respect to the three vertices is obtained in every step
during the generation process for the triangle by applying a unit deformation in the vertical direction
and obtaining the reactions in the corner nodes. Figure 4 shows the generated Sierpiński gasket at the
generation step n = 8. Since the generated structure obeys the symmetries described in Section 2.1, the
generated stiffness matrix has two independent coefficients, AT and BT, which can be calculated from
the obtained reactions, per (2-2).

As pointed out, the (isotropic) material properties of the originator (namely, the triangular building
block) do not affect the final ratios between the stiffness coefficients of the fractal obtained as limit. We
have referred to this property as stability. To check that this is indeed the case, we examine two cases
separately. In both cases the Young’s modulus of the originator triangle was assumed to be equal to 1 unit,
but the Poisson’s ratio was set to 0 for the first case and to 0.4999 for the second. The stiffness matrix
of the generated structure converges to one single form for both sets. The ratio BT/AT stabilizes and
reaches the value 3 after a few steps of the generation process indicating that the details of the stiffness
xxxx
xxxx
xxxx
xxxx

xxx
xxx

xx
xx

xx
xx

n = 0 n = 1 n = 2 

(a) 

(b) 

xx
xx

xx
xx

x
x

xx xx
xx
xx
xx
xxxx
xx

x
x
xxxx
x
x

n = 0 n = 1 n = 2 

x
x
xx
xx
xxx

x
xx
xx
xx

xx
xx

x
x
x

Figure 3. Generation of a Sierpiński gasket by division (a) and by copying (b).
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Figure 4. The generated Sierpiński gasket after applying an upward unit deformation
at the top vertex while restraining the remaining DOFs. The gasket is shown at the
generation step n = 8.

of the originator disappear after a few steps of the generation process (see Figure 5a). The generated
stiffness matrix for a Sierpiński gasket has only one independent coefficient, namely AT . The obtained
stiffness matrix throughout the generation process appears to be scaled down by the same scaling factor
from one step to the next. After a few generation steps, the value of AT at a generation step n approaches
half the value of AT at the generation step n− 1 (see Figure 5b).
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Figure 5. Stability of the stiffness form of a Sierpiński gasket for both sets of stiffness
for the originator triangle: (a) the ratio BT/AT stabilizes at a value of 3; (b) the ratio
AT(n)/AT(n− 1) stabilizes at a value of 0.5. Each part shows the result for two values
of the Poisson’s ratio ν.
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n = 0 n = 1 n = 2 

Figure 6. Generation of a Koch curve.

�

Unit Length  

Figure 7. The generated Koch beam at n = 5.

3.2. Structural analysis of a Koch beam. The Koch curve is generated by dividing a line segment into
three equal parts, removing the middle part, and replacing it by two copies of itself rotated by an angle
of sixty degrees. The process is then repeated for the generated four line segments ad infinitum (see
Figure 6). The six-DOF structure thus generated is called the Koch beam. ABAQUS 6.6 was used to
generate a Koch beam with unit length as a combination of Euler–Bernoulli elastic beams with a Young’s
modulus of 1 unit and a moment of inertia of 1 unit. The area of the beams was taken as an arbitrary large
number (10000 units) as the deformations are expected to be primarily due to bending. The generated
stiffness matrix has four independent coefficients as described in (2-6), namely AB , B B , C B , and DB . By
analyzing (2-6) it is obvious that rows 4 and 6 are sufficient to obtain the four independent coefficients
of the stiffness matrix of such a beam. Those independent coefficients can be obtained by applying a
unit deformation to DOF number 4 and a unit rotation to DOF number 6 shown (see figure at bottom of
page 783). Just as with the Sierpiński gasket, the stiffness form of the generated Koch beam stabilizes
after a few generation steps. Each of the ratios of B B , C B , and DB with respect to AB reaches a limit
(see Figure 8a) and the scaling factor (the ratio between the stiffness AB at a generation step n and the
stiffness AB at the generation step n− 1) stabilizes at a value of 3/4 (see Figure 8b). This factor of 3/4
is only attainable due to keeping the total length of the Koch beam at each generation step n equal to
the length at the previous generation step (n− 1). It should be noted here that the ratio between AB at a
generation step n and the value of aB (being the equivalent stiffness of one of the four legs of the Koch
beam during the same generation step) is equal to 1/36. The leg on its own is considered to be in the
generation step n−1, thus having a higher scaling stiffness, with value 4/3. The length of the leg is three
times less than the length of the whole Koch beam and thus the 1/L3 term in the stiffness matrix further
increases the stiffness of the leg by a value of 27. The total increase in stiffness of the leg compared to
that of the whole Koch beam is equal to 36.

3.3. Structural analysis of a two-dimensional modification of the Cantor set. An interesting structural
fractal, based on a square and reminiscent of the Cantor set, can be obtained as follows. At the generation
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Figure 8. Stability of the stiffness form of a Koch beam. (a) The ratio of each of B B , C B ,
and DB to AB stabilizes at a constant value. (b) The ratio AB(n)/AB(n− 1) stabilizes
at a value of 0.75.

step n = 1, the square is divided into nine equal squares, four of which are removed (see Figure 9). The
removed squares are those involving the middle third of each side of the original square. Taking a closer
look at the side, it can be noticed that at the first generation step, the open set ]1/3, 2/3[ of the line
segment [0, 1] representing each side has been removed. In the following generation steps, the process
is repeated for every remaining square. As far as the sides of the original square are concerned, this
process results in the generation of the Cantor set.

For this structure to be stable, each square should have a rotational DOF at the corner node; hence
the need for the stiffness matrix described in Section 2.3. Nine arbitrary values for the stiffness matrix
(2-9) were chosen, ensuring that the matrix is positive definite. The chosen stiffness matrix was rotated to
appropriate DOFs that can be implemented in a commercial finite element package using the relationship
K rotated

= Qtr K Q, where Q is the rotation matrix between the two sets of DOFs. ABAQUS 6.6 was used
to generate the model of this fractal at different generation steps. Step n = 0 represents a square of unit
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Figure 9. Two-dimensional modification of the Cantor set.

Figure 10. Deformation shape of the two-dimensional Cantor set at n = 5 when ap-
plying a unit rotation to DOF number 3 and restraining all remaining DOFs at the four
corner vertices.

side length with the specified stiffness matrix. Step n = 1 represents five squares, each of unit side length
and with the specified stiffness matrix. Thus, the total side length of the model grew with the generation
steps. The user element option was used to input the stiffness matrix for the square unit against the
DOFs in a Cartesian coordinate system. By close examination of (2-9), any three columns belonging
to the DOFs of one node are sufficient to reproduce the nine coefficients of the matrix. Thus, three
separate loading cases were applied on a chosen corner node; two perpendicular unit displacements and
a unit rotation. At each generation step and in each loading case, the resulting reactions at the remaining
three nodes were obtained and were used to regenerate the stiffness matrix in a Cartesian coordinate
system. The stiffness matrix generated was then rotated back to the DOFs shown in Figure 2 and the
nine stiffness coefficients of the generated structure were extracted according to (2-9). The ratios of
the coefficients with respect to AS obtained for the different generation steps reveal that seven of the
generated coefficients approached zero (see Figure 11). The ratio J S/AS on the other hand approached
unity. The stiffness entry AS represents the force needed to extend the diagonal a unit displacement while
the stiffness entry J S represents the reaction to the force AS on the opposite side of the diagonal. This
clearly indicates that the diagonals become infinitely stiff because of the way this fractal is generated;
material is always removed during the generation process except from the diagonals. Any force applied
in the diagonal direction is totally absorbed by the reaction on the opposite side of the diagonal and all the
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Figure 11. Ratios of stiffness coefficients obtained for the square with respect to the
stiffness coefficients AS .

other reactions to that force are relatively zero. In order to analyze different modes of deformation, the
stiffness matrix of a square with inextensible diagonals was introduced in Section 2.4. The new structure
with inextensible diagonals will be analyzed in Section 4.3 using the principle of self similarity stated in
Section 4.

4. Principle of stiffness self-similarity

It was shown in Section 3 that the stiffness form of fractal structures stabilizes after a few generation steps.
It will be shown here that this final form can be achieved by applying the principle of self-similarity to
the stiffness matrix of each of the fractals under consideration. A fractal is said to be self-similar if it is
an almost disjoint union of shapes that are a reduced copy of the fractal itself. The principle of structural
self-similarity was first introduced in [Epstein and Adeeb 2008] and states that for a self-similar fractal
the stiffness matrix of K f is proportional to the stiffness matrix K F of one of its reduced constituent
copies with respect to the corresponding DOFs, namely:

K f
= αK F , (4-1)

where α is a constant.
The n×n stiffness matrix K F with (where n is the number of DOFs chosen for the fractal) as described

in Section 3 contains m independent coefficients after employing all the symmetries and equilibrium
conditions. The stiffness matrix K f of the whole fractal can be constructed by structural analysis as-
sembly procedures of the different units, then condensation to the chosen DOFs of the whole fractal.
The assembled stiffness matrix K f also has n× n entries. Since the assembled structure has the same
symmetries and equilibrium conditions of its units, it will also have m independent entries. These entries
will be nonlinear equations of the m independent entries of the stiffness matrix K F . Equation (4-1)
can be considered as a system of m equations in m+ 1 unknowns after the introduction of the scaling
factor α. Its solution will, therefore, yield the value of α and of the m− 1 independent ratios between
the m independent stiffness values. In order to solve this system of equations, a numerical procedure
is employed. Starting with initial values for the m independent coefficients of the stiffness matrix K F ,
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Figure 12. Building up the stiffness of a Sierpiński gasket by assembling three scaled-
down copies of the whole structure.

the global stiffness matrix of the whole fractal K f is assembled. The new m independent coefficients
are then extracted from the global stiffness matrix K f and an average factor α is obtained by dividing
the new m independent coefficients of the matrix K f by the original m independent coefficients of the
matrix K F and averaging the resulting factors. The new independent coefficients divided by the obtained
average factor are then used as input for the next step. This process was applied to the fractals under
consideration and was shown to lead to the solution obtained in Section 3.

4.1. Stiffness self-similarity of the Sierpiński gasket. The numerical procedure described above was
applied to the Sierpiński gasket. As shown in Figure 12, the equilateral triangle abc is assumed to be
composed of three smaller equilateral triangles (aed, ebf , and dfc) with identical 6× 6 stiffness matrices
K T. Arbitrary positive values are assigned for the coefficients AT and BT in (2-3). The global stiffness
matrix has 12× 12 entries and can be assembled by combining the three smaller stiffness matrices
according to their nodal connectivity. The global stiffness matrix can be reduced to a 6× 6 matrix K t

by assuming that there are no external forces applied at nodes d, e or f . Thus, the stiffness matrix K t

of the condensed structure abc can be calculated as follows:

K111+ K212 = F, K tr
2 11+ K312 = 0, K t

= K1− K2 K−1
3 K tr

2 , (4-2)

where tr denotes the transpose, K1 is the first 6× 6 entries of the 12× 12 global stiffness matrix, 11 is
the array of DOFs 1 through 6, K2 is the submatrix containing the entries of rows 1 to 6 and columns
7 to 12 of the global stiffness matrix, 12 is the array of DOFs 7 through 12, F is the array of external
forces applied to DOFs 1 through 6, and K3 is the submatrix containing the entries of rows 7 to 12 and
columns 7 to 12 of the global stiffness matrix.

After the process of assembly and condensation, the entries kt
33 and kt

44 in the matrix K t are extracted
and are divided by the initial arbitrary values of AT and BT to obtain two values that are averaged to
obtain a coefficient α. The new values of AT and BT for the next iteration are then taken to be kt

33/α

and kt
44/α respectively. The process was repeated until the values of BT and α stabilized. The results

obtained are similar to those obtained in Section 3.1. The ratio of BT/AT stabilized at a value of 3 while
α converged to a value of 0.5.

4.2. Stiffness self-similarity of the Koch beam. The assembly of a Koch beam from four similar parts
follows the same procedure used for the Sierpiński gasket described in Section 4.1. The beam ab can be
assumed to be composed of the assembly of the four beams ac, cd, de, and eb, each having a stiffness
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Figure 13. Assembly of a Koch beam from four scaled down copies of the original.

matrix with four independent coefficients according to (2-6). The stiffness matrix K B for beams cd and
de, however, needs to be rotated to the global nodal directions shown in Figure 13. The global assembled
stiffness matrix has 15× 15 entries and can be reduced to a 6× 6 matrix K b by the equations

K111+ K212 = F, K tr
2 11+ K312 = 0, K b

= K1− K2 K−1
3 K tr

2 , (4-3)

where K1 is the first 6× 6 entries of the 15× 15 global stiffness matrix, 11 is the array of DOFs 1
through 6, K2 is the submatrix containing the entries of rows 1 to 6 and columns 7 to 15 of the global
stiffness matrix, 12 is the array of DOFs 7 through 15, F is the array of external forces applied to DOFs
1 through 6, and K3 is the submatrix containing the entries of rows 7 to 15 and columns 7 to 15 of the
global stiffness matrix.

In the first iteration four arbitrary positive values are assumed for the entries AB , B B , C B , and DB of
the stiffness matrix K B . After assembly of the matrix K b the entries k B

11 and k B
22 are extracted and are

multiplied by the cube of the length of the whole beam (3 units), then divided by AB and C B to obtain
two values of the scale factor α. The entry k B

13 is multiplied by the square of the length of the whole
beam and divided by the entry B B to obtain another value for the scale factor α. A fourth value for α
is then obtained by multiplying the entry k B

33 by the length of the whole beam and then dividing the
result by the entry DB . The four values of α are then averaged and the new values for AB , B B , C B , and
DB are used for the next iteration by using the following entries: k B

11/27α, k B
13/9α, k B

22/27α, and
k B

33/3α respectively. The results obtained are similar to those obtained in Section 2.2. The values of
B B/AB , C B/AB , DB/AB , and α stabilized at −0.09623, 0.1111, 0.0444 and 3/4 respectively.

4.3. Stiffness self-similarity of a two-dimensional modification of the Cantor set. The assembly of the
two-dimensional Cantor set (Section 3.3) as a union of five scaled copy of itself is shown in Figure 14.
The fractal structure abcd with supports on a, b, c, and d can be considered as a union of the fractal
structures aehg, fbji, himl, klod, and mncp which have stiffnesses that are a scaled copy of the stiffnesses
of the global structure. The principle of self-similarity stated can be applied to this fractal as follows:
Arbitrary values are given to the nine stiffness entries of the unit square in (2-9). The stiffness matrix
is then rotated to the global DOFs shown in Figure 14. After assembly, the global stiffness matrix had
48× 48 entries. The stiffness matrix was then reduced into a 12× 12 matrix by eliminating the DOFs
at nodes e, f , g, h, i , j , k, l, m, n, o, and p as described in Sections 4.1 and 4.2. After reduction, the
stiffness matrix was then rotated to the DOFs shown in Figure 14b. The new stiffness and the ratios were
then extracted as described in Sections 4.1 and 4.2. Results similar to those described in Section 3.3
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Figure 14. Assembly of the two-dimensional modification of the Cantor set fractal from
five scaled down copies of the original.

were obtained using the self-similarity principle. The fractal is infinitely stiff in the diagonal direction
with respect to the remaining DOFs. All the stiffness coefficients approached zero except AS and J S

which had equal values, indicating that the generation of this fractal causes the diagonals to be infinitely
stiff compared to other deformation shapes. The ratio between the input stiffness entry ks

11 of the unit
square and the output stiffness entry K S

11 was found to be 3, which is the ratio of the side length of the
output structure to the side length of the input unit square.

The stiffness form of the described fractal in modes of deformation other than along the diagonals
can be obtained by applying the principle of self-similarity to the assembled fractal structure in Figure
15. In this case, however, the deformations along the diagonals are considered to be single DOFs and
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Figure 15. Assembly of the two-dimensional modification of the Cantor set fractal from
five scaled down copies of the original, all having inextensible diagonals.
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thus the global stiffness matrix has 38× 38 entries. The same procedure used for the Koch beam and for
the Sierpiński gasket is employed to find the form of the stiffness matrix K IS shown in Equation (2-12)
and the ratios between the stiffness coefficients of the global structure and the stiffness coefficients of
the unit structure. The final converged ratios of the seven independent coefficients B IS , C IS , D IS , E IS ,
G IS , and O IS with respect to AIS were equal to 0.40625, 0.078125, −0.15468, −0.09375, −0.17678,
and −0.00521. The ratio between the stiffness entry k IS

22 of the initial unit square stiffness matrix K is

and the stiffness entry K IS
22 of the global stiffness matrix of the whole structure K IS after assembly

and reduction was equal to 27. As the global structure has a length that is 3 times higher than the unit
of generation, the length scaling described in Section 3.2 has to be taken into consideration. Thus, the
entry k IS

22 is multiplied by the cube of the length of the unit square to obtain a IS , while the entry K IS
22

is multiplied by the cube of the length of the global structure to obtain AIS:

k IS
22

K IS22
= 27,

a IS

L3
unit square

= k IS
22,

AIS

27L3
unit square

= K IS
22 =

k IS
22

27
=

a IS

27L3
unit square

. (4-4)

Thus, AIS is equal to a IS and the scaling factor α for this fractal is equal to unity.

5. Conclusions

The geometrical stability of self-similar fractals has been shown previously to be reflected in the fact that
the final image of a self-similar fractal is not dependent on the image of the building block but rather on
the generation procedure [Peitgen et al. 2004]. In this paper we showed that when we consider the fractals
as elastic structures, the stiffness form of such structures will also depend on the generation process rather
than on the numerical values of the stiffness coefficients of the building block, as long as it is isotropic.
This structural-form stability was shown in three fractal-like structures: the Sierpiński triangle the Koch
curve, and a two-dimensional generalization of the Cantor set. For each of those fractals, it was shown
that there is a final relationship between the independent entries of the stiffness matrix of the generated
fractal. This relationship is shown to be independent of the initial relationship among the entries of the
stiffness matrix of the building block and to depend only on the generation process and the geometric
and material symmetries of the fractal.

In order to find the relationship between the entries and/or the form of the stiffness matrix of a fractal,
the principle of structural self similarity has been previously introduced by Epstein and Adeeb [2008].
The structural self-similarity principle states that the stiffness matrix of a fractal is proportional to the
stiffness matrix of a reduced copy of that same fractal, thus a relationship between the entries can be
obtained. In this paper we show a numerical algorithm by which this structural self-similarity principle
can be applied to obtain those relationships among the stiffness matrix entries. The principle was applied
to the Koch curve, the Sierpiński triangle, and a two-dimensional generalization of the Cantor set. The
relationship between the stiffness matrix entries obtained for the three fractal structures using the self-
similarity principle exactly match the relationship obtained by the structural analysis of the generated
fractals.

The question that poses itself is that self-similar fractals in the strict sense as defined by Mandelbrot
[1982] are objects that replicate themselves at all scales, but many of the fractal-like objects found in
nature have only a finite range in which they are effectively self-similar [Avnir et al. 1998; Parkinson and
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Fazzalari 2000]. The results of our analysis show that the structural properties of a fractal as seen in this
work (see Figures 5, 8, and 11) reach a very close approximation to their final stabilized values at the
iteration step n = 4 or 5. It does not really take long for the originator structural properties to disappear
and for the fractal behavior to be dominant.
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APPLICATION AND DESIGN OF LEAD-CORE BASE ISOLATION
FOR REDUCING STRUCTURAL DEMANDS

IN SHORT STIFF AND TALL STEEL BUILDINGS AND HIGHWAY BRIDGES
SUBJECTED TO NEAR-FIELD GROUND MOTIONS

THOMAS L. ATTARD AND KITTINAN DHIRADHAMVIT

The performance of nonlinear lead-core-rubber base isolators (LCR) to passively control highly non-
linear vibrations in two steel buildings and a prestressed concrete bridge under various ground motion
inputs is evaluated. The Bouc and Wen model is used to predict the behavior of the lead-core component
of the LCR base isolator. Members of the steel buildings that may have yielded are analyzed according
to a highly nonlinear constitutive rule used to model the smooth stiffness degradation in the damaged
members. The previously developed constitutive rule analyzes kinematically strain-hardened materials
under cyclic conditions. The ability of the LCR to reduce displacement, velocity, and acceleration de-
mands is demonstrated numerically using an algorithm developed herein called BISON (base isolation
in nonlinear time history analysis). The performance of the LCR isolation is measured for a two story
isolated building excited by the El Centro ground motion, a nonstationary signal, and the Northridge
ground motion. An eight-story building exhibiting higher-mode influence is also analyzed, and finally
the overpass bridge on Highway 99 in Selma, CA is modeled, outfitted with LCR isolation, and also
analyzed. The hysteresis of the force-displacement relationships of the structures and the LCR isolators
are analyzed parametrically through two LCR design parameters. The results indicate that with an appro-
priate tuning of these parameters, which affect the inelastic stiffness of the LCR isolator, an appropriate
LCR system may be designed to behave with a stationary-like hysteresis and that can very adequately
reduce the structural demands under the various excitations.

1. Introduction

In large civil structures, including highway bridges and buildings, passive energy dissipation systems
are preferred over active control systems because of lower cost, less maintenance, and lower power
consumption. Seismic base isolation implementation remains one of the most widely used and accepted
passive methods used to protect buildings and bridges from potential earthquake hazards. The concept
of base isolation focuses on altering a structure’s natural frequency away from the dominant frequency
components of a seismic event [Kikuchi and Aiken 1997; Furukawa et al. 2005]. Base isolation systems
are also used to protect the nonstructural components in buildings, including pipes, electrical wires,
and various equipment, which may be found in hospitals and communication centers [Pozo et al. 2006;
Matsagar and Jangid 2004], by reducing interstory displacement demands and accelerations through
hysteretic energy dissipation [Matsagar and Jangid 2008; Dolce et al. 2007]. Some typical base isolators

Keywords: base isolation, passive control, bridge isolation, lead-core rubber base isolation, higher-mode effects, plastic
analysis, inelastic structures.
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include friction pendulums, rubber bearings, and lead-core-rubber base isolators (LCR) [Dimizas and
Koumousis 2005].

Disadvantages of base isolation systems include their vulnerability to strong pulse-type ground mo-
tions generated at near-fault zones [Kelly 1999]. The complementary damping provided by the base
isolation may in certain cases induce energy into the higher modes of vibration and increase member de-
formations and accelerations of an isolated structure resulting in subsequent structural and nonstructural
damages [Ramallo et al. 2002].

Examples of base isolated structures include the Los Angeles City Hall, Foothill Law, and the Justice
Center in Los Angeles, California [Hart and Wong 2000]. The Bai-Ho Bridge that spans across the Gia-
Nan canal in Taiwan utilizes an LCR isolation device [Shen et al. 2004], and the Yama-age Bridge in
Japan employs a high-damping-rubber bearing dissipation system [Chaudhary et al. 2001]. The Marga-
Marga Bridge in Vina del Mar, which is located in a high seismic risk area in Chile, is protected using
high-damping rubber bearings [Boroschek et al. 2003]. Following the Great Hanshin/Awaji earthquake
(also referred to as the Hyogo-Ken Nanbu, or Kobe earthquake) on January 17, 1995, the Benten Viaduct
Highway Bridge in Kobe City, Japan was rebuilt in 18 months using LCR isolation [Yoshikawa et al.
2000].

Such catastrophes have motivated researchers to develop effective damage mitigation systems to pro-
tect various types of structures [Jangid 2004]. Base isolation has become a conventional method for
protecting buildings and bridges from seismic events [Choi et al. 2006; Shen et al. 2004; Dicleli 2002].
Base isolation has been used to prevent brittle failure in piers [Hwang and Chiou 1996], to reduce the
spectral accelerations in stiff piers, and to reduce the shear force at the bases of bridges [Soneji and
Jangid 2006]. In short, it is generally considered a convenient alternative to typical bridge bearings
[Chaudhary et al. 2001]. Tsopelas and Constantinou [1997] experimentally studied the use of sliding
disc bearings and rubber restoring force devices to isolate bridge models under various types of ground
motion excitations. The results showed that these devices resulted in significantly smaller responses
than nonisolated bridges. Tsopelas et al. [1996] also performed analytical and experimental studies of
elastoplastic isolated systems and concluded that these systems are vulnerable to shock-type seismic
motions that result in large displacement demands. Over the last two decades, LCR isolators have been
integrated into various buildings and bridges because of their large energy dissipation capability (via
their large hysteresis region) and because of their attractive physical compactness [Choi et al. 2006].

In the current investigation, LCR isolators were applied in a benchmark study on the Highway 99
overpass at Second St. in Selma, CA in an effort to improve the performance of the overpass under
a ground motion excitation. There are two physical components of LCR isolation that define its con-
stituency. Several layers of rubber that help to support vertical loads while providing lateral flexibility,
and the lead core component, which may be represented using the Bouc and Wen model [Wen 1976;
Attard and Mignolet 2008], which has a significant physical advantage over bilinear models because of
the additional energy dissipation capability that it provides [Ramallo et al. 2002].

The investigation herein focuses on five components. First, dynamic responses of an isolated stiff
steel building are examined in order to validate the ability of the LCR isolator to protect structures
from far field ground motions. Secondly, the ability of LCR isolators to reduce vibrations in stiff steel
buildings subjected to near-field ground motions is analyzed. In this case, the near-field ground motion
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is modeled as a nonstationary signal generated as modulated white noise filtered through a Kanai–Tajimi-
like spectrum. Thirdly, the procedure is repeated by outfitting the LCR isolator in a building subjected
to a component of the 1994 Northridge earthquake. Fourthly, the ability of LCR isolators to control the
responses of an eight-story building responding at ‘higher-mode effects’ (HME) of vibration is analyzed
under the ground motion of the El Centro ground acceleration record (S00E component) of the 1940
Imperial Valley Earthquake. Finally, a two-span bridge is modeled and analyzed using the El Centro
motion.

Two parameters of the LCR isolator, which include the total yield force of the isolator and the pre-
yield to post-yield stiffness ratio of the lead-core component, are parametrically varied in order to reduce
the responses under the influence of HME or near-field or far-field ground motions and to determine
the appropriate design of the LCR isolator. The steel sections of the shear frame buildings are defined
using a highly nonlinear material model [Attard 2005], where the member stiffness is assumed to degrade
smoothly following a constitutive rule that was developed to assess the behavior of kinematically strain-
hardened materials under cyclic conditions. The results are compared to uncontrolled, or as-is, systems
that would otherwise degrade highly nonlinearly [Attard 2005]. The yield force of the LCR system was
represented using the Bouc and Wen model, whereas the bridge structure was linearly analyzed. The
bridge was numerically modeled using site-plan information, and a suitable LCR isolator was designed.
Responses of the isolated bridge subjected to the El Centro ground motion were evaluated and compared
to those of the nonisolated bridge.

2. Equation of motion and the LCR model

The equation of motion of a structure integrated with LCR isolators and excited by a ground motion
acceleration given as ẍg is

M ẍ +C ẋ + K x+ FR = 0 f −Mẍg. (1)

Here M and C are the mass and damping matrices, respectively, where the mass matrix of the structure
also includes a grade beam. The Caughey damping matrix [1960], C, is assembled using all structural
modal damping ratios. The displacement vector relative to the ground is defined as x(t). The stiffness
matrix, K , of the structure and the rubber component of the LCR isolator is elastic and provides a linear
nonhysteretic component to the structure-LCR system until yielding occurs. At the point of yielding,
the spring force in the post-yielded members remains constant (where xi (t)= xyield,i , where xi (t) is the
individual i-th member displacement, and xyield,i is the respective yield displacement), and the subsequent
hysteretic spring force, FR , is activated in those members where xi (t) > xyield,i , including the LCR
isolator. The nonlinear restoring force, FR , accounts for the material anisotropy in inelastic members
that undergo cyclic deformations and that may be assumed to kinematically strain harden [Wu 2005;
Elnashai and Izzuddin 1993]. The location vector 0 implies the position of the LCR isolator at the grade
beam level, and f is a complementary hysteretic force of the lead core component of the LCR isolator of
the form

f = Z Q y, (2)

where Q y is the yielding force of the lead core and Z is a hysteretic component of the lead core used to
smoothly transition the lead core’s response between the elastic and post-yielded states. Tan and Huang
[2000] used a bilinear hysteretic model to evaluate the behavior of LCR isolators in bridges, whereas in
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the current investigation, this hysteretic component is represented using the Bouc and Wen model [Bouc
1968; Wen 1976; Attard and Mignolet 2008], the results of which have been shown to consistently match
experimental data [Ramallo et al. 2002]. The Bouc and Wen model is given by

Ż =−α |ẋ | Zn
−β ẋ |Zn

| + Aẋ for odd values of n, (3)

where α, β, A, and n are shape parameters [Ramallo et al. 2002] and where

A =
Kinitial

Qtotal
, α = β, A = α+β. (4)

Here Kinitial is the initial stiffness of the LCR isolator and Qtotal is the yield force of the LCR isolator
which may be calculated as a percentage of a total weight of the structure. The equation of motion (1) is
solved herein by marching in time from zero initial conditions by the Newmark Beta scheme assuming
a linear change in the acceleration between time steps spread 0.02 s apart. The response simulations are
made using an algorithm that was developed as part of this study called BISON (base isolated nonlinear
time history analysis) that analyzes the local nonlinear plastic strain and global displacements of any
damaged structural members using a nonlinear rule of kinematic strain hardening and formulates the LCR
isolator force using the smooth Bouc and Wen model. Because the Bouc and Wen model is intrinsically
hysteretic, the parameter n is chosen as ‘one,’ which allows a purely plastic region to exist once the
lead core yields and enables a desirable smooth transition between the elastic and inelastic states. The
LCR isolator is phenomenologically modeled as shown in Figure 1 and includes a slider that will open
to indicate purely plastic behavior of the lead core after it yields (n = 1); the relative displacement of
the two sides of the closed slider remains zero prior to yielding. Further, the displacement time histories
of the lead core would ‘drift’ [Attard 2003; Attard and Mignolet 2005] using the Bouc and Wen model
without inclusion of the nonhysteretic rubber components, and thus, these are consequently defined as
kbx and cb ẋ and are included in the model of the LCR isolator as indicated by the equation

FLCR = Z Q y + kbx + cb ẋ . (5)

The total force provided by the LCR isolator is FLCR . The parameters kb and cb are the elastic stiffness
and damping parameters of the rubber component where the nonhysteretic term, kb, is included in the
build-up of the matrix K in Equation (1). Once the lead core yields, the inelastic stiffness of the LCR
isolator (lead core component + rubber component) is defined as kb while the Bouc and Wen component
of the LCR isolator provides a constant force equal to Q y that is calculated at xi (t)= xyield,i .

BISON calculates kb by determining the stiffness of an additional so-called fictitious bottom story (in
the case of a building) such that the fundamental period of the entire ‘building + additional fictitious
story’ system is equal to 2.5 seconds [Ramallo et al. 2002]. This fictitious bottom story represents the
LCR base isolator in the real structure. Caughey damping, which has been used in a previous study by
[Attard 2007], is assumed to be 5% in each mode of vibration. The value of Kinitial is calculated as

Kinitial = Bratio× kb, (6)

where the parameters Bratio and the LCR isolator yield force, Qtotal, are LCR isolator design parameters
that may be appropriately tuned to attain the desired response and controllability of the structure in
question. In this study, stiff structures, structures subjected to near-field earthquakes, structures with and
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kb

cb

m
F(t)

x(t)

BW

(n=1)

Figure 1. LCR isolator model assuming n = 1 in the Bouc and Wen model resulting in
a sliding effect (perfectly plastic) after the lead core yields.

without HME, and a 2-span bridge are analyzed parametrically for various values of Bratio and Qtotal. It
has been suggested, however, that the following values be used for the parameter Bratio depending on the
peak ground acceleration (PGA) of the ground motion [Spencer et al. 2000]:

Bratio =

{
6 if PGA ≤ 0.35 g,

10 if PGA > 0.35 g.
(7)

3. Numerical examples: Five case studies

3.1. Two-story steel building subjected to the El Centro ground motion. The responses of a two-story
steel building designed using LCR isolation were simulated using BISON. The building was excited
using the El Centro ground motion with a time-step of 0.02 seconds. The shear frame is supported with
a grade beam as shown in Figure 2, and the mass of each story, including the grade beam, is 0.5 kip·s2/in.
Each mode of vibration was assumed to have a damping ratio of 5% (assuming Caughey damping), and
rock-like soil conditions were considered at the foundation level.

12ft, 
typ. 

Grade Beam, M 

LCR LCR 

M = 0.5 k-s2/in., typ. 

W18x50, 
typ. 

M 

M 

M = 0.5 k-s2/in., typ. 

12ft, 
typ. W18x50, 

typ. 

Figure 2. Two story stiff steel building: (a) passively controlled using LCR isolation
supported under a grade beam; (b) uncontrolled (“as-is”).
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Figure 3. Hysteresis of a 2-story steel building subjected to the 1940 El Centro ground
motion: (a) as-is frame [Attard 2005]; (b) isolated frame.

The frame was constructed using W18×50 steel sections that were 12 ft tall. The necessary post-yield
stiffness of the LCR isolator (kb) was calculated as 9.87 kip/in, whereby the fundamental period of the
isolated structure equaled 2.5 seconds. The LCR isolator was designed to protect the building against
moderate ground motions [Ramallo et al. 2002], having a PGA under 0.35 g’s, with a corresponding
Bratio equal to 6; see (7). Skinner et al. [1993] and Spencer et al. [2000] suggest that the value of the
yield force of the LCR isolator (Qtotal) be 5% of the total weight of the structure.

The responses of the building in Figure 2 were marched in time from zero initial conditions using
BISON. The force-displacement hysteresis of the as-is, or uncontrolled, frame is shown in Figure 3a,
where the W18×50 members, especially those of the bottom story, experience significant damage. The
nonlinear stiffness degradation model that was embedded in BISON and used to simulate the response
time histories was derived following the one proposed by [Attard 2005]. The ability of the LCR isolator
to reduce the displacement and velocity time histories is shown in Figures 3b and 4.
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Figure 4. Velocity time histories of top and bottom stories of isolated and as-is frames
subjected to the El Centro ground motion.
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In Figure 3b, the maximum displacement of the frame with LCR isolation was reduced by over 50%
with respect to the maximum displacement of the as-is building, implying that the higher frequencies of
the ground motion were adequately filtered through the LCR isolator. Further, the structural members
of the isolated frame did not exceed their yield limit (i.e., they remained elastic.). The LCR isolator was
also able to significantly reduce the velocity time histories in the two-story building (Figure 4), which
indicates that a significant amount of the input earthquake energy was dissipated, and that the acceleration
responses were also reduced.

Finally, Figure 5a shows the smooth hysteresis of the LCR isolator, which was developed in BISON
using the smooth Bouc and Wen model with the following parameters determined for Equation (3): n = 1,
A = 3.06, γ = 1.53, β = 1.53.

The perfectly plastic hysteresis of the lead-core component is illustrated in Figure 5b, which shows
the smooth transition between the elastic and plastic states (n = 1). Finally, Figure 5c shows that the
rubber component remains elastic with a stiffness, kb, equal to 9.87 kip/in, which is also the post-elastic
stiffness of the LCR isolator shown in Figure 5a.
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Figure 5. Hysteresis relationships of the (a) LCR isolator, (b) lead-core component us-
ing the Bouc and Wen model, and (c) rubber component using kb = 9.87 kip/in.

3.2. Two-story building subjected to an artificial nonstationary excitation. In a second study, BISON
was used to simulate the responses of the same two-story building in Figure 2 using a near-field ground
excitation that was produced using a nonstationary signal generated as modulated Gaussian white noise
filtered through a Kanai–Tajimi-like spectrum, Sgg(ω) equal to

Sgg(ω)= Go
2π/1t

(ω2
g −ω

2)2+ (2ξgωgω)2
, (8)

where the ground intensity factor of the spectrum, Go, is 0.126, and the ground frequency and damping
terms, ωg and ξg, are 15.6 radians/second and 0.6 [Clough and Penzien 1993]. It is possible to obtain the
time histories of the ground motion (xg) [Attard and Mignolet 2008], as the solution response to Equation
(9) for a single-degree-of-freedom (single-DOF) ground system subjected to a white noise process, ẍgo,
that has a spectral density of Go(2π/1t), where

ẍg + 2ξgωg ẋg +ω
2
gxg =−ẍgo (9)

and

xg(t)=
∫ t

0
h(t − τ)F(τ )dτ (10)
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or

xg(n1t)=−
n∑

m=1

(ẍgo(m1t)+ ẍgo((m− 1)1t))
2

h((n−m)1t)1t, (11)

where h(t − τ) is the unit impulse response function, and n is the total number of time steps.
The kb parameter equals to 9.87 kip/in in order to produce a fundamental period of 2.5 seconds to the

isolated structure. The LCR isolator was redesigned with a new value of Qtotal [Inaudi and Kelly 1993],
following the ground excitation, ẍg. Park and Otsuka [1999] suggested that the optimal range of Qtotal be
between 14% to 18% of the total weight of the building in order to achieve adequate seismic isolation and
control building responses under severe ground motion. Spencer et al. [2000] further suggest that Qtotal

be selected between 13% to 17% of the total building weight and to select the stiffness ratio, Bratio, to be
approximately 10 in order to significantly reduce base drifts and moderate the acceleration responses for
buildings subjected to severe ground motions. In this light, the LCR yield force, Qtotal, was selected as
18% and Bratio = 10 with due respect of the severe excitation described by (8) and (9). Figure 6 shows
the force- displacement hysteresis of the as-is (uncontrolled) and LCR isolated buildings.

A comparison of the two figures indicates that the high energy content of the nonstationary excitation
was not adequately dissipated via the lead core component of the LCR isolator. While the displacements
of the top story were reduced as was the number of cycles, which indicated that the response remained
linear for a longer period of time, the bottom story displacements were only marginally reduced as the
structural member stiffness appears significantly nonlinear, which thus implies significant damage. An
observation of the velocity time histories in Figure 7a — calculated relative to the LCR isolator velocities,
which themselves are calculated relative to the ground — reveals that while the lead core component by
definition increases the energy-dissipation capability of the base isolation system, the large velocities
in particular indicate that LCR isolation is ineffective in reducing potential structural damages to the
W18×50 structural members under this nonstationary excitation. It is in fact observed that the relative
velocities of the bottom story of the LCR isolated frame exceed those of the as-is frame (red versus yellow
in Figure 7a). In Figure 7b, the LCR isolation appears to have little impact on reducing the displacement
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Figure 6. (a) As-is hysteresis. (b) LCR isolated hysteresis of 2-story steel building
subjected to a nonstationary ground excitation.
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Figure 7. (a) Velocity and (b) displacement time histories of the Figure 2 frame under a
nonstationary ground excitation having Kanai–Tajimi-like spectra.

time histories, but does appear to impose an out-of-phase component in the displacement time histories
starting at about 6.5 seconds where the frequency abruptly reduces by a factor of about 2.

3.3. Two-story frame subjected to the Northridge (Pacoima Dam) motion. In a third investigation, the
frame in Figure 2 was analyzed using the 1994 Northridge ground acceleration record (Pacoima Dam,
Upper Left Abutment), which was a near-field ground motion having a PGA of 1.58 g’s. According to (7),
Bratio should be equal to 10. Further, the value of Q y is selected as 0.18. The results are shown in Figures 8
and 9, which indicates that LCR isolation is actually effective in reducing damages under this near-
field excitation. Figure 8a shows the degree of structural damage to the W18×50 members in the as-is
frame, where the damage was significantly reduced (Figure 8b), when LCR base isolation was integrated
into the frame. The force-displacement hysteresis of the LCR isolation system is shown in Figure 8c,
and a comparison of Figures 5a and 8c demonstrates the potential influence that pulse-type, near-field
ground motions, such as the Northridge earthquake which was identifiable with historic structural and
nonstructural damage, may have on the ability of an LCR isolation system to reduce structural responses,
as indicated by the “nonstationary-like” hysteresis shown in Figure 8c. The comparison to Figure 5a,
which had been determined using the El Centro earthquake, which was a far-field ground motion, shows
that while the lead-core component is to some extent capable of dissipating the energy content of an
incoming earthquake, the effects of which may be manifested in the velocity and acceleration time
histories of the structural members, this may not necessarily be the case for pulse-type motions (9).
In Figure 9, the story-level velocities are calculated relative to the LCR velocities. In this case, LCR
isolation ineffectively attenuates the relative velocities, especially in the top story and especially later
in the response-history when the velocities are actually shown to increase. This may be correlated to
the ‘nonstationary-like’ nature of the LCR hysteresis, and in fact indicates that the velocities are most
significantly reduced in either story when the LCR system does not reverse direction which occurs from
4.56 seconds to 5.36 seconds. This would then suggest that LCR isolation in this case precludes a structure
from dissipating sufficient energy and reducing the structural velocities.
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Figure 8. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming Bratio = 10: (a) as-is force-displacement hysteresis; (b) LCR-controlled hys-
teresis; (c) LCR hysteresis.
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Figure 9. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming Bratio = 10: (a) top story velocity time histories; (b) bottom story velocity time
histories.
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Figure 10. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming Bratio = 6: (a) force-displacement hysteresis; (b) LCR hysteresis.

In a follow-up to this analysis, a value of Bratio = 6, while Q y was held at 0.18, was used to design
a new LCR system to try to mitigate the velocity differences between far-field and near-field excitations.
The results are shown in Figures 10 and 11.

While the displacements were again effectively reduced, the structural velocity time histories (Figure
11) calculated relative to the LCR system, are also significantly smaller than those corresponding to
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Figure 11. Responses of the LCR isolated 2-story steel frame (Northridge excitation)
assuming Bratio = 6: (c) top story velocity time histories; (d) bottom story velocity time
histories.

Figure 9, where Bratio = 10. What may be most telling in this comparison is the less nonstationary-like
appearance of the LCR hysteresis in Figure 10b.

Finally, Figure 12 shows that the absolute acceleration time histories (structure + LCR isolator +
ground accelerations) using a Bratio = 10 versus Bratio = 6. As was the case with the velocity time
histories — see Figure 9 versus Figure 11 — a significant disparity exists between top story absolute
accelerations for the suggested Bratio of (7), versus the suggested value herein (Bratio = 6). The current
findings reveal that at least for near-field motions having large PGAs, LCR isolation systems should
be designed using a softer elastic stiffness Kinitial (i.e., Bratio = 6), which affects energy dissipation of
the lead-core component (A)— see (4) and (5) — and which finally results in a more stationary-like
hysteresis (where the stiffness of the rubber component, kb, remains unchanged).

3.4. Eight-story steel building responding with HME. In order to study the influence of HME on the
design of an LCR isolation system, an eight story steel shear frame was designed having the properties as
shown in Table 1. Each story was designed using W18×50 steel cross sections having a yield stress, σyield,
of 36 ksi. The stiffness of the first story, k1, was 9.54 times that of k7; see Table 1. While the stiffness
distribution over the height of the building (see 3rd column, Table 1) does not necessarily represent that
of an actual building, it does ensure that the building will respond with HME in order to assess the
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Figure 12. Comparison of absolute accelerations using (a) Bratio = 10 and (b) Bratio = 6.
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mass
story (kip·s2/in) k1/ki modal mass ratio

8 0.5 8 1.1% (8th mode)
7 0.5 9.54 5.5% (7th mode)
6 0.5 8 0.7% (6th mode)
5 0.5 5.35 0.6% (5th mode)
4 0.5 9.54 8.0% (4th mode)
3 0.5 3.38 8.2% (3rd mode)
2 0.5 1 9.4% (2nd mode)
1 0.5 1 66.4% (1st mode)

Table 1. Property distribution of an eight story stiff steel building with HME.

applicability of LCR isolation in HME-type systems. The modal mass ratio was 66.4%, which was less
than 75% [Attard 2007], thus implying the presence of HME. If any of the W18×50 sections were to
begin yielding, a smooth nonlinear model previously proposed by [Attard 2005] was assumed to govern
the inelastic behavior, which was embedded in BISON. The damping ratio in each mode was assumed
to be 5% following the previously mentioned Caughey model for damping.

The elastic stiffness of the LCR rubber component and the post-yield stiffness of the LCR (i.e., kb)
are calculated as 49.5 kip/in by BISON. The eight-story building is subjected to the El Centro ground
motion. The value of Bratio is 6, and Qtotal is 5% of the total weight of the building as previously suggested
[Skinner et al. 1993; Spencer et al. 2000].

The responses of the as-is and LCR-controlled buildings are shown in Figure 13. A comparison of
the two figures reveals that LCR isolation significantly reduces the absolute maximum displacements
(measured relative to the story immediately below, i.e., interstory displacements) on each story in the
range of 7.29% to 33.06%, except for the 7th story which showed a slight increase of 0.23% in its
interstory displacement, possibly due to the HME.
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Figure 13. Eight-story steel building subjected to El Centro ground motion: (a) as-is
hysteresis; (b) controlled hysteresis.
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displacement pair per story.

The results are shown graphically in Figure 14, which display the percent error to the side of each
interstory displacement. The negative error on story 7 indicates that the interstory displacement increased
(0.23%) when LCR isolation was included. All other stories showed a substantial decrease. Note that the
stiffness of the 4th story abruptly decreases following the first three ‘stiff’ stories. This sudden difference
may be observed in Table 1 between k1/k3 and k1/k4, as the structure above the 3rd story in a sense
‘decouples’ from the first three stiff stories, thus enabling the first three stories to behave as a ‘fixed-
end’ where stories 4–8 act as a ‘cantilevered end.’ The implication of this is that some dominant lower
frequencies (HME exceeding 75%) remain unfiltered by the LCR isolator.

Bratio Qtotal 8 7 6 5 4 3 2 1 GB

6 5% −0.699 −1.501 −1.792 −1.558 3.837 1.016 −0.331 −0.413 −4.436
6 8% −0.819 −1.734 2.199 −1.352 3.280 0.978 −1.041 0.853 −4.861
6 10% −0.840 −1.875 −1.927 −1.522 −3.66 −1.078 −0.694 −0.537 −5.711
6 15% −0.851 1.906 2.905 1.843 5.915 1.590 3.809 −2.459 6.645
6 18% −0.897 2.696 2.870 1.587 3.388 1.650 1.450 1.355 3.541

10 5% −0.758 −1.395 1.638 1.027 2.266 −0.815 −1.037 0.689 −3.927
10 8% 0.754 1.378 2.465 1.679 4.388 1.044 0.436 0.474 −10.07
10 10% −0.891 1.511 2.874 2.168 5.345 1.332 9.817 −10.21 −10.28
10 15% −0.918 1.821 2.376 1.537 5.063 1.269 0.868 −0.582 10.63
10 18% −1.152 −2.384 2.210 −1.366 −3.028 3.077 −8.615 7.055 5.815

15 5% −0.729 −1.677 −2.485 −2.424 −6.414 −3.111 −8.036 9.565 −7.122
15 8% 0.664 1.464 2.478 1.672 4.393 2.694 −5.221 3.863 −5.559
15 10% −0.823 −1.736 1.741 1.156 −3.049 −1.291 0.642 −0.901 −8.254
15 18% 0.915 1.830 3.189 2.019 4.256 1.229 1.218 0.592 −29.762

Table 2. Maximum interstory displacement as a function of story number, pre-yield to
post-yield stiffness ratio, and yield force of the LCR. The last column corresponds to the
grade beam.
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Table 2 shows the results of a comparative investigation of the influence of parameters Bratio and Qtotal,
where the latter is the yield force of the LCR isolator and is given as a percentage of the total weight
of the building, to correlate these parameters to the HME-induced responses, in this case for the 8-story
building. The values of Bratio were chosen as 6, 10, and 15, and for each Bratio, the yield forces of
the LCR isolator, Qtotal, were varied between 0.05, 0.08, 0.10, 0.15, and 0.18 (except for Bratio = 15,
which did not include Qtotal = 0.15) as the percentage of the total weight of the building. The responses
were marched in BISON for 24 seconds (where the time between time steps, 1t , was assumed to be
0.02 seconds. The maximum displacements of each story in Table 2 include positive and negative signs
of the calculated values to indicate the drift direction (right or left) of the maximum absolute displacement.
The findings reveal that a combination of Bratio = 10 and Qtotal = 0.05 produces the smallest collection
of interstory displacements and grade beam displacement. To validate these results, the use of Bratio = 6
and Qtotal = 0.05 will also result in reasonable interstory displacement time histories, although not as
good as Bratio = 10 and Qtotal = 0.05, which is consistent with the findings of [Spencer et al. 2000].

A subsequent examination of the case where Bratio = 6 shows that while an increase in Qtotal will
generally decrease the maximum interstory displacement on the 4th story (except for Qtotal = 0.15) via a
larger dissipative LCR hysteresis and because of the abrupt stiffness change on this floor, the unfiltered
incoming lower frequencies tend to excite other pertinent HME resulting in an increase in the maximum
displacements of the other stories, including the grade beam. These effects are more apparent as Bratio

increases. While a value of Qtotal = 0.18 provides the best result for the grade beam displacement, this
design value typically increases the maximum interstory displacements of many of the other stories. In
the case of Bratio = 10, the maximum displacements of many stories increase with an increase in Qtotal,
especially for Qtotal = 0.10, where the maximum interstory displacements of the stiff 1st and 2nd stories
abruptly increase. In this case, the inelastic stiffness of the LCR isolator, kb, is relatively small and A in
(4) and FLCR in (5) are also small indicating that the “stiff” LCR isolator is unable to filter the ground
motion frequencies associated with the stiff lower stories of the structure that result in a resonating effect
in the response. In the case where Bratio = 15, a decrease in Qtotal (e.g., Qtotal = 0.05 or 0.08) needs to be
avoided in order to protect and not create a resonant-like response in the stiff lower stories. The results
are illustrated in Figure 15, where Qtotal as indicated is a percentage of the total weight of the building.
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Figure 15. Maximum interstory displacement distributions measuring the impact of
Qtotal (%) on the LCR isolator design, for various Bratio equal to 6 (left), 10 (middle)
and 15 (right). The values of Qtotal are 5 (thin black curve), 8 (magenta dashed curve),
10 (green dashed curve), 15 (red curve), 18 (thick black curve).



LEAD-CORE BASE ISOLATION IN SHORT STIFF AND TALL STEEL BUILDINGS AND HIGHWAY BRIDGES 813

 

156ft 

28ft 28ft44ft 56ft

15.1ft
Girders Girders

Columns Abutment Abutment

40.7ft 52.8ft

19.1in 

19.1in 

610 mm 24in 22.4 22.4 

Cap-beam 

Girders 
LCR 

Columns 

(a) (b)

(c) (d)

Figure 16. Elevation views of the two-span Highway 99 overpass used in the benchmark
and LCR analyses: (a) overpass in the E-W direction; (b) cap girder supporting the LCR
isolation pads; (c) 2-DOF model of the girder/cap-beam system; (d) overpass in the N-S
direction of traffic.

3.5. Highway bridge protection using LCR isolation. In a final investigation, the highway 99 overpass
across Second Street in Selma, CA was outfitted with LCR isolation using a lead core represented by the
Bouc and Wen model. The bridge was numerically modeled following specifications of the California
Department of Transportation. The LCR isolator was designed for the El Centro earthquake. Figure 16a
shows an elevation view of the bridge, which spans 156 ft across two abutments. The bottom flanges of
the supporting prestressed concrete girders are 15.1 ft above the ground and are supported by two center
columns. An elevation view of the cap-beam is shown in Figure 16b; a detail of the girder-cap connection
is shown in Figure 16c. Figure 16d shows the six-girder system together with the two columns aligned
perpendicular to the flow of traffic in the North–South direction.

Using a unit weight of concrete of 150 lbs/ft3 and a compressive concrete strength of 5,000 psi, the
modulus of elasticity was calculated as 4,287 ksi, and the weight of the cap-beam was calculated as
89.51 kips. Each of the two columns supports half the weight of each of the two spans, where there are
six girders per span; the weight of girders is 115.26 kips, and the diameter of each column is 3.74 ft.
To study the effects of LCR base isolation on this bridge, LCR isolators were placed between the cap-
beam and the girder to reduce the cap-beam displacement. The isolated bridge was modeled as a two-
DOF system composed of the superstructure girders and the substructure cap-beam [Chaudhary et al.
2000; 2001]. The LCR isolator is situated between the cap-beam and the girders; see Figure 16c. The
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Girder Cap-beam
Bratio Qtotal displ. accel. displ. accel.

(in) (in/s2) (in) (in/s2)

6 5% 3.405 161.2 0.0617 163.3
6 10% 3.452 173.4 0.0612 163.3
6 15% 3.643 180.0 0.0604 163.3

10 5% 3.253 156.6 0.0604 163.3
10 10% 2.923 166.3 0.0596 163.2
10 15% 3.057 177.7 0.0589 163.2

15 5% 3.375 151.8 0.0598 163.3
15 10% 2.473 164.7 0.0591 163.2
15 15% 2.520 178.0 0.0584 163.2

Table 3. Maximum absolute displacements and accelerations of the girders and cap-
beam (fixed-pin boundary conditions), for various values of Bratio.

as-is system (having no LCR isolation) is modeled as a singe-DOF system having mass equal to that of
the girders plus the cap-beam. Both systems were analyzed for a fixed-pinned boundary condition, per
Caltrans’ specs. The parameter Bratio was varied between 6, 10, and 15, and Qtotal was varied among
0.05, 0.10, 0.15 of the superstructure of the superstructure weight (girders) that was part of a parametric
study used to design the LCR isolator for this bridge. For the assumed fixed-pinned boundary conditions,
the post-yield stiffness of the LCR isolator was calculated as 1.89 kips/in using BISON that had resulted
in a natural period of vibration for the system equal to 2.5 seconds after the lead-core had yielded. The
maximum absolute displacements and accelerations of the girders and cap-beam are shown in Table 3,
where Qtotal is again given a percentage of the total weight of the bridge.

Table 3 shows that Bratio has virtually no impact on the cap-beam accelerations and tends to result
in a decrease in cap-beam displacements as it increases. The smallest absolute displacements of the
girders (2.473 in) and cap-beam (0.0584 in) occur using Qtotal = 0.10 and Bratio = 15, and Qtotal =

0.15 and Bratio = 15, respectively. The girder accelerations (164.7 in/s2) were smallest when Qtotal =

0.10 and Bratio = 15, and the cap-beam displacement (0.0591 in) was also adequately reduced using
this combination in an ideal LCR design for a fixed-pinned connection. A comparison of the time
history displacements and time history accelerations to those of the as-is case shows that the displacement
demands on the cap-beam were reduced by 50% using LCR isolation (Figure 17a), and many of the time
history accelerations of the cap-beam were also reduced, as indicated in Figure 17b. Figure 18 shows
the hysteresis of the LCR isolator that had been modeled using the Bouc and Wen equations where
Qtotal = 0.10 and Bratio = 15.

4. Conclusions

The ability of lead-core rubber base isolation (LCR) to reduce responses of buildings and bridges is
investigated. Five case studies, including parametric analyses, of a stiff two-story structural steel building
under (1) the El Centro (S00E component) ground motion, (2) a nonstationary signal, which was modeled
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Figure 17. Response of the overpass bridge in Selma, CA with Bratio = 15, Qtotal = 10.
Black curve: as-is response; superimposed lighter curve: LCR-isolated response.
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Figure 18. Response of the overpass bridge in Selma, CA with Bratio = 15, Qtotal = 10:
LCR isolator’s hysteresis.

as modulated Gaussian white noise passed through a Kanai–Tajimi filter, and (3) the Northridge (Pacoima
Dam component) ground motion were analyzed. In addition, an eight-story steel building (4) exhibiting
higher-mode effects was also studied, and a prestressed concrete bridge overpass (5) in Selma, CA were
also examined using an in-house developed algorithm, called BISON (base isolation in nonlinear time
history analysis). It appears that in all five cases, except under the action of the nonstationary signal input,
parameters used to design the LCR isolator may be selected to very adequately reduce displacements,
velocities, and accelerations by appropriately tuning the ratio of the LCR elastic-to-inelastic stiffness and
the LCR yield force. Both parameters affect the LCR hysteresis, which was modeled using the Bouc and
Wen model. In the cases where the LCR hysteresis had a stationary-like appearance, the responses were
very adequately controlled, which was not the case under the nonstationary signal, where the high energy
content associated with the low frequencies of the input appeared to not be adequately dissipated by the
LCR isolator. However, in the four other cases, LCR isolation appears to be a very effective means of
reducing seismic structural demands if appropriately tuned.
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HOMOGENIZATION AND EFFECTIVE PROPERTIES OF PERIODIC
THERMOMAGNETOELECTROELASTIC COMPOSITES

JULIAN BRAVO-CASTILLERO, REINALDO RODRÍGUEZ-RAMOS,
HOUARI MECHKOUR, JOSÉ A. OTERO, JOANKA HERNÁNDEZ CABANAS,

LAZARO MAYKEL SIXTO, RAUL GUINOVART-DÍAZ AND FEDERICO J. SABINA

Using asymptotic homogenization, we derive the local problems and the corresponding homogenized
coefficients of periodic thermomagnetoelectroelastic heterogeneous media. The theory is applied to
obtain analytical expressions for all effective properties of an important class of periodic multilaminated
composites. Universal relations involving homogenized thermal coefficients of two-phase laminated
and fibrous piezoelectric/piezomagnetic periodic composites, with transversely isotropic constituents,
are obtained. Theoretical evidence is shown for the existence of pyroelectric and pyromagnetic effects
even if neither phase exhibits them. Numerical calculations and comparisons with others theories are
included.

1. Introduction

A coupled effect is the capacity to convert system energy from one type to another (for instance, among
magnetic, electric, mechanical, and thermal effects). Composites made of thermopiezoelectric and
thermomagnetic components exhibit a magnetoelectric effect that is not present in their individual con-
stituents. The knowledge of the global properties of such composites allows us to address the control
of the response of smart structures whose phases are, in general, made of thermomagnetoelectroelastic
(TMEE) materials.

Different methods have been employed to estimate the overall properties of TMEE periodic compos-
ites. For instance, Li and Dunn [1998b] developed a micromechanical methodology based on the mean
field approach of Mori and Tanaka [1973] combined with the Eshelby tensor [Li and Dunn 1998a] to
derive explicit formulae for the effective coefficients of two-phase laminated and fibrous composites.
Aboudi [2001] employed a general micromechanical homogenization theory to investigate the global
behavior of multiphase TMEE materials. His results show good agreement with those he derived in
[Aboudi 1998], via the generalized method of cells, and those obtained in the work of Li and Dunn
[1998b]. Using the theory of uniform fields in TMEE heterogeneous media by proper boundary condi-
tions, universal relations between the effective properties of two-phase fibrous composites were derived
in [Benveniste 1995]. In all these works, like in the present paper, the fully coupled constitutive laws for
TMEE materials were used. Based on the asymptotic homogenization method, analytical expressions

Keywords: thermomagnetoelectroelastic composites, effective properties, universal relations, laminated, fibrous composites,
homogenization, periodic heterogeneous materials.
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for magnetoelectroelastic unidirectional two-phase fibrous composites with circular cross section fibers
and transversely isotropic constituents were derived in [Camacho-Montes et al. 2006].

In this paper, based on the asymptotic homogenization method, the general theory developed in
[Bravo-Castillero et al. 2008], for magnetoelectroelastic heterogeneous media, is applied to determine
analytical formulae for the effective properties of periodic multilaminated TMEE composites. The
formulae obtained generalize those that appear in [Castillero et al. 1998] and in [Galka et al. 1996],
where piezoelectric and thermopiezoelectric periodic composites, respectively, were studied. Here a
general formula is presented in a unified way which is more adequate for computational implementation.
This unified formula is specified for one example of multilayered composites with any finite number
of transversely isotropic TMEE constituents to obtain all their effective coefficients. For the particular
case of two-laminated media, such effective coefficients prove to satisfy the universal relations derived
by Benveniste and Dvorak [1992] for orthotropic fibrous composites. Finally, by using a link between
four local problems on the periodic cell for two-phase unidirectional fibrous TMEE composites with
transversely isotropic constituents and arbitrary smoothness shape of the fibre cross section, universal
relations involving pyromagnetic, pyroelectric, thermoelastic, elastic, piezoelectric, and piezomagnetic
effective coefficients are derived [Benveniste 1995]. In particular, a proportion relating the pyromagnetic
and pyroelectric components in the direction of the fibers is found. The constant of proportionality
involves information relative to the piezoelectric and piezomagnetic constants of both phases.

2. Constitutive laws and equilibrium equations of TMEE materials

Let � ⊂ R3 be open, bounded and sufficiently regular, with boundary ∂�. The properties of a three-
dimensional body, that is, �, made of a heterogeneous TMEE material are described by the elasticity four-
order tensor c, the piezoelectric coupling third-order tensor e, the piezomagnetic coupling third-order
tensor q, the electric permittivity second-order tensor κ , the magnetic permeability second-order tensor
µ, the magnetoelectric second-order tensor α, the thermoelastic second-order tensor λ, the pyroelectric
vector p, and the pyromagnetic vector m. Also, η stands for the heat conductivity second-order tensor,
and β=Ce/T0; Ce is the specific heat at constant strain per unit volume and T0 is the reference (absolute)
temperature. Thus, with Y the so-called unit periodic cell and the small parameter ε > 0, the material
functions just introduced are εY -periodic in the local variable y = x/ε, and for each x ∈� we write, for
instance,

ci jkl
ε (x)= ci jkl(x/ε), eikl

ε (x)= eikl(x/ε), q ikl
ε (x)= q ikl(x/ε), κ i j

ε (x)= κ
i j (x/ε),

µi j
ε (x)= µ

i j (x/ε), αi j
ε (x)= α

i j (x/ε), λi j
ε (x)= λ

i j (x/ε), pi
ε(x)= pi (x/ε),

mi
ε(x)= mi (x/ε), ηi j

ε (x)= η
i j (x/ε), βε(x)= β(x/ε).

Latin indices run over the set {1, 2, 3}. The Einstein summation convention will be used throughout. The
tensors of material functions satisfy the usual symmetry conditions:

ci jkl
ε = c j ikl

ε = ci jlk
ε = ckli j

ε , eikl
ε = eilk

ε , q ikl
ε = q ilk

ε , κ i j
ε = κ

j i
ε ,

µi j
ε = µ

j i
ε , αi j

ε = α
j i
ε , λi j

ε = λ
j i
ε , ηi j

ε = η
j i
ε .

We make the further assumption that there exists a constant δ > 0 such that, for any a ∈ R3 and any
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symmetric 3× 3 matrix X ,

ci jkl
ε (x)X i j Xkl ≥ δX i j X i j

κ i j
ε (x)ai a j ≥ δai ai

µi j
ε (x)ai a j ≥ δai ai

λi j
ε (x)ai a j ≥ δai ai

ηi j
ε (x)ai a j ≥ δai ai


for almost every x ∈�.

For a fixed ε > 0, the TMEE behavior of this body is given by the elastic displacement field uε = (ui
ε),

the electric potential ϕε, the magnetic potential ψε, and the entropy sε, which satisfy the equilibrium
equations

− div σε(uε, ϕε, ψε, sε)= f

− div Dε(uε, ϕε, ψε, sε)= 0

− div Bε(uε, ϕε, ψε, sε)= 0

− div Tε(uε, ϕε, ψε, sε)= 0

 in �, (2-1)

where σε = (σ
i j
ε ) is the stress tensor, Dε = (Di

ε) the electric displacement, Bε = (Bi
ε) the magnetic

displacement, and Tε = (η
i j
ε ∂ jθε) the flux of the temperature θε, Also ∂i = ∂/∂xi , (div σ ε)i = ∂ jσ

i j
ε ,

div Dε = ∂i Di
ε, div Bε = ∂i Bi

ε, and div Tε = ∂i (η
i j
ε ∂ jθε), x = (xi ) ∈ �. The constitutive equations are

given by
σ i j
ε (uε, ϕε, ψε, sε)= ci jkl

ε sk j (uε)+ emi j
ε ∂mϕε + qni j

ε ∂nψε − λ
i j
ε sε,

Di
ε(uε, ϕε, ψε, sε)= eikl

ε skl(uε)− κ im
ε ∂mϕε −α

in
ε ∂nψε + pi

εsε,

Bi
ε(uε, ϕε, ψε, sε)= q ikl

ε skl(uε)−αim
ε ∂mϕε −µ

in
ε ∂nψε +mi

εsε,

θε(uε, ϕε, ψε, sε)=−λkl
ε skl(uε)+ pm

ε ∂mϕε +mn
ε∂nψε +βεsε,

(2-2)

where skl(uε), ∂kϕε, and ∂kψε are, respectively, the linearized strain and the gradients of the electric and
magnetic potentials, and skl(uε)= 1

2(∂kul
ε + ∂luk

ε). In (2-1) we have a system of six partial differential
equations for finding uε, ϕε, ψε, and sε. It has to be completed by suitable boundary conditions. For
instance, we can assume homogeneous boundary conditions (uε = 0, ϕε = 0, ψε = 0, and sε = 0) on the
external boundary ∂�.

3. Homogenization

The method of two-scale asymptotic expansions will be applied in order to find the homogenized system.
The solution of (2-1)–(2-2) can be sought in the form

uε(x)= u0(x, y)+ εu1(x, y)+ . . . ,

ϕε(x)= ϕ0(x, y)+ εϕ1(x, y)+ . . . ,

ψε(x)= ψ0(x, y)+ εψ1(x, y)+ . . . ,

sε(x)= s0(x, y)+ εs1(x, y)+ . . . ,

(3-1)
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where u0(x, y), u1(x, y), . . . , ϕ0(x, y), ϕ1(x, y), . . . , ψ0(x, y), ψ1(x, y), . . . , s0(x, y), s1(x, y), . . . ,
are Y -periodic functions with respect to the second variable y = x/ε. Similarly, as in the linear ther-
mopiezolectric or magnetoelectroelastic problem (see, for instance, [Galka et al. 1996; Bravo-Castillero
et al. 2008]), the functions u0(x, y), ϕ0(x, y), and ψ0(x, y) do not depend on y. However, in general, s0

depends on both x and y. See [Galka et al. 1992] for a complete description in the thermopiezoelectric
case. Due to the linearity of this problem and assuming both regularity of the inclusions’ shapes and
smoothness in the variation of coefficients, we have

u1(x, y)= sr t,x(u0(x))wr t(y)+ ∂m,xϕ
0(x)gm(y)+ ∂n,xψ

0(x)hn(y)+ θh(x)0(y),

ϕ1(x, y)= sr t,x(u0(x))ζ r t(y)+ ∂m,xϕ
0(x)πm(y)+ ∂n,xψ

0(x)χn(y)+ θh(x)Q(y),

ψ1(x, y)= sr t,x(u0(x))ηr t(y)+ ∂m,xϕ
0(x)ξm(y)+ ∂n,xψ

0(x)γ n(y)+ θh(x)R(y),

(3-2)

where ∂m,xφ = ∂φ/∂xm and sr t,x(u) = 1
2(∂ur/∂xt + ∂ut/∂xr ). The functions u0(x), ϕ0(x), and ψ0(x)

are, respectively, the mechanical displacement field, the electric potential and the magnetic potential of
the effective (homogenized) TMEE body while its temperature field θh is given by

θh(x)=−〈λkl
〉(∂l,x u0

k + ∂k,yu1
k)+〈p

k
〉(∂k,xϕ

0
+ ∂k,yϕ

1)+〈mk
〉(∂k,xψ

0
+ ∂k,yψ

1)+〈β〉s0(x, y),

where 〈g〉 = |Y |−1 ∫
Y g(y)dy and the angle brackets denote averaging over the periodic cell Y . Note that

in general s0 depends not only on x but also on the microscopic variable y. The local functions wr t , ζ r t ,
ηr t ; gm , πm , ξm ; hm , χm , γ m ; and 0, Q, R are Y -periodic solutions of the following problems on the
cell Y :

• Problem Lr t
1 : Find the Y -periodic functions wr t , ζ r t , ηr t such that:

−∂ j,yσ
i j (wr t , ζ r t , ηr t , 0)= ∂ j,yci jr t

−∂i,y Di (wr t , ζ r t , ηr t , 0)= ∂i,yeir t

−∂i,y Bi (wr t , ζ r t , ηr t , 0)= ∂i,yq ir t

 on Y. (3-3)

• Problem Lm
2 : Find the Y -periodic functions gm , πm , ξm such that

−∂ j,yσ
i j (gm, πm, ξm, 0)= ∂ j,yemi j

−∂i,y Di (gm, πm, ξm, 0)=−∂i,yκ
im

−∂i,y Bi (gm, πm, ξm, 0)=−∂i,yα
im

 on Y. (3-4)

• Problem Lm
3 : Find the Y -periodic functions hm , χm , γ m such that

−∂ j,yσ
i j (hm, χm, γ m, 0)= ∂ j,yqmi j

−∂i,y Di (hm, χm, γ m, 0)=−∂i,yα
im

−∂i,y Bi (hm, χm, γ m, 0)=−∂i,yµ
im

 on Y. (3-5)
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• Problem L4: Find the Y -periodic functions 0, Q, R such that

−∂ j,yσ
i j (0, Q, R, 0)=−∂ j,yλ

i j

−∂i,y Di (0, Q, R, 0)=−∂i,y pi

−∂i,y Bi (0, Q, R, 0)=−∂i,ymi

 on Y. (3-6)

• Problem Lk
5: Find the Y -periodic function T k such that

−∂i,y(η
i j∂ j,yT k)= ∂i,yη

ik on Y. (3-7)

Here ∂m,yφ = ∂φ/∂ym . The homogenized problem can be written as

− div σ̄ (u0, ϕ0, ψ0, θh)= f

− div D(u0, ϕ0, ψ0, θh)= 0

− div B(u0, ϕ0, ψ0, θh)= 0

− div T (u0, ϕ0, ψ0, θh)= 0


on �, (3-8)

with the homogeneous boundary conditions u0
= 0, ϕ0

= 0, ψ0
= 0, and θh

= 0 on ∂�. The effective
constitutive laws are given by

σ̄ i j (u0, ϕ0, ψ0, θh)= c̄i jklsk j (u0)+ ēmi j∂mϕ
0
+ q̄ni j∂nψ

0
− λ̄i jθh,

Di (u0, ϕ0, ψ0, θh)= ēiklskl(u0)− κ̄ im∂mϕ
0
− ᾱin∂nψ

0
+ p̄iθh,

Bi (u0, ϕ0, ψ0, θh)= q̄ iklskl(u0)− ᾱim∂mϕ
0
− µ̄in∂nψ

0
+miθh,

θ̄ (u0, ϕ0, ψ0, θh)=−λ̄klskl(u0)+ p̄m∂mϕ
0
+mn∂nψ

0
+ β̄θh,

(3-9)

where the bar indicates an effective property. The local problems must be completed with additional con-
tact conditions on the interfaces between the constituents of the composite of interest. The homogenized
effective coefficients have the definitions

c̄i jr t
=
〈
ci jkl
[skl,y(w

r t)+ δr t
kl ] + eki j∂k,yζ

r t
+ qki j∂k,yη

r t 〉,
ēir t
=
〈
eikl
[skl,y(w

r t)+ δr t
kl ] − κ

ik∂k,yζ
r t
−αik∂k,yη

r t 〉,
q̄ ir t
=
〈
q ikl
[skl,y(w

r t)+ δr t
kl ] −α

ik∂k,yζ
r t
−µik∂k,yη

r t 〉,
ēmi j
=
〈
ci jklskl,y(gm)+ esi j

[∂s,yπ
m
+ δm

s ] + qsi j∂s,yξ
m 〉,

κ̄ im
=
〈
−eiklskl,y(gm)+ κ is

[∂s,yπ
m
+ δm

s ] +α
is∂s,yξ

m 〉,
ᾱim
=
〈
−q iklskl,y(gm)+αis

[∂s,yπ
m
+ δm

s ] +µ
is∂s,yξ

m 〉,
ᾱim
=
〈
−eiklskl,y(hm)+αik

[∂s,yγ
m
+ δm

k ] + κ
ik∂k,yχ

m 〉,
q̄mi j
=
〈
ci jklskl,y(hm)+ qsi j

[∂s,yγ
m
+ δm

s ] + esi j∂s,yχ
m 〉,

µ̄im
=
〈
−q iklskl,y(hm)+αik∂k,yχ

m
+µik

[∂k,yγ
m
+ δm

k ]
〉
,

λ̄i j
=
〈
λi j
−ci jklskl,y(0)−eki j∂k,y Q−q i jk∂k,y R

〉
, p̄i

=
〈
pi
+eiklskl,y(0)−κ

ik∂k,y Q−αik∂k,y R
〉
,

mi
=
〈
mi
+q iklskl,y(0)−α

ik∂k,y Q−µik∂k,y R
〉
, β̄ =

〈
β−λklskl,y(0)+ pk∂k,y Q+mk∂k,y R

〉
,

(3-10)
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and
η̄i j
=
〈
ηi j
+ ηil∂l,yT j 〉, (3-11)

where δkl
i j =

1
2(δ

i
jδ

k
l + δ

i
kδ

j
l ) and δ j

l is the Kronecker delta.

4. Closed-form expressions for effective coefficients of multilayered TMEE composites

The local problems above, with equations (3-3)–(3-6), can be written in a unified way as follows: Find
a Y -periodic W c′t

b′ such that

−∂m(Ca′mb′n∂nW c′t
b′ )= ∂m(Ca′mc′t), (4-1)

where

C imkn
≡ cimkn, C im44

≡−λim, C4mkn
≡ emkn, C4m4n

≡−κmn, C4m44
≡ pm,

C4444
≡ β, C5mnk

≡ qmnk, C5m4n
≡−αmn, C5 j44

≡ m j , C5m5n
≡−µmn,

W r t
k ≡ w

r t
k , W r t

4 ≡ ζ
r t , W r t

5 ≡ η
r t , W 4m

k ≡ gm
k , W 4m

4 ≡ π
m, W 4m

5 ≡ ξ
m,

W 5m
k ≡ f m

k , W 5m
4 ≡ ξ

m, W 5m
5 ≡ γ

m, W 44
k ≡ 0k, W 44

4 ≡ Q, W 44
5 ≡ R.

The primed Latin indices run from 1 to 5.
The homogenized effective coefficients given by all the Equations (3-10) can be expressed by

Ca′mb′t
= 〈Ca′mb′t

〉+ 〈Ca′mc′n∂nW b′t
c′ 〉. (4-2)

The unified formulation above is very convenient for some specific problems. For instance, let us consider
the particular case of a laminated TMEE composite, made of cells which are periodically distributed along
the axis y1. Each cell may be made of any finite number of homogeneous TMEE layers. The axes of
symmetry of each layer are parallel to each other and the y1-axis is perpendicular to the layering. In
this case, the material functions Ca′mb′t and the local functions W b′t depend only on the fast variable y1.
Consequently, expressions (4-1) and (4-2) take the form

D1(Ca′1b′1 D1W c′t
b′ )=−D1(Ca′1c′t), (4-3)

Ca′mb′t
= 〈Ca′mb′t

〉+ 〈Ca′mc′1 D1W b′t
c′ 〉, (4-4)

where D1 denotes the ordinary derivative in the generalized sense with respect to the y1 coordinate. The
angle brackets define the average per unit length of the relevant quantity over the periodic cell, that is,
〈F〉 = |Y |−1 ∫

Y F(y1)dy1, where |Y | denotes the length of Y . For simplicity, a periodic unit cell Y will be
considered. This is a one-dimensional homogenization problem which consists in finding the 1-periodic
solution of (4-3), with an average of zero on Y , and satisfying the usual contact interface conditions; see,
for instance, [Pobedrya 1984, Chapter 5].

Solving the system of ordinary differential equations defined by (4-3), taking into account perfect
bonding conditions at the interfaces, and using (4-4), it is possible to obtain a general closed-form formula
for all the TMEE effective coefficients:

Ca′mb′t
= 〈Cb′mb′t

〉+
〈
Cb′mc′1(Cc′1d ′1)−1Cd ′1b′t 〉

+
〈
Ca′mc′1(Cc′1d ′1)−1〉〈(Cd ′1e′1)−1〉−1〈

(Ce′1 f ′1)−1C f ′1b′t 〉. (4-5)
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Here (Ca′1b′1)−1 denotes the components of the inverse matrix of (Ca′1b′1). Equation (4-5) is a general-
ization of [Pobedrya 1984, Equation (1.11), p. 145] where the purely elastic case was investigated. From
(4-5), for the particular case of a two-laminated TMEE composite, the following was derived:

Ca′mb′t
= Ca′mb′t

ν − v1(1− v1)[[Ca′mc′1
]]B−1

c′d ′[[C
d ′1b′t
]], (4-6)

where v1 is the volume fraction of phase 1 (BaTiO3); the material coefficients of such composite are
piecewise constants, defined by

Ca′mb′t(y1)=

{
Ca′mb′t

1 for y1 ∈ (0, v1),

Ca′mb′t
2 for y1 ∈ (v1, 1),

and Ca′mb′t
ν = v1Ca′mb′t

1 + (1− v1)Ca′mb′t
2 , [[Ca′mc′1

]] = Ca′mc′1
1 − Ca′mc′1

2 , a row vector for a′m fixed,
[[Cd ′1b′t

]] = Cd ′1b′t
1 −Cd ′1b′t

2 , a column vector for b′t fixed, and [Bc′d ′] = [v1Cc′1d ′1
2 − (1− v1)Cc′1d ′1

1 ],
where B−1

c′d ′ is the inverse matrix of Bc′d ′ . Equation (4-6) is similar to [Galka et al. 1996, Equation (17),
p. 138] for laminated thermopiezoelectric composites.

4.1. Effective properties of a multilaminate with an orthotropic global behavior. We now specialize
formula (4-5) for the case of a multilaminated composite whose periodic unit cell can possess any finite
number of homogeneous TMEE materials with transversely isotropic properties. Each phase is charac-
terized by the following independent constants:

Five elastic constants:

C1111
= C2222(≡ c1111

= c2222), C1133
= C2233(≡ c1133

= c2233),

C1122(≡ c1122), C3333(≡ c3333), 2C1212
≡ 2c1212

= (c1111
− c1122).

Three piezoelectric constants:

C4311
= C4322(≡ e311

= e322), C4333(≡ e333), C4113
= C4223(≡ e113

= e223).

Three piezomagnetic constants:

C5311
= C5322(≡ q311

= q322), C5333(≡ q333), C5113
= C5223(≡ q113

= q223).

Two dielectric permittivity constants: C4141
= C4242(≡−κ11

=−κ22) and C4343(≡−κ33).

Two magnetoelectric constants: C5141
= C5242(≡−α11

=−α22) and C5343(≡−α33).

Two magnetic permeability constants: C5151
= C5252(≡−µ11

=−µ22) and C5353(≡−µ33).

Two thermal constants: C1144
= C2244(≡−λ11

=−λ22) and C3344(≡−λ33).

One pyroelectric constant: C4344(≡ p3).

One pyromagnetic constant: C5344(≡ m3).

The heat capacity: C4444(≡ β).

Using (4-5), the effective coefficients for this composite material are:
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Nine elastic effective constants:

c̄1111
= 1/〈1/c1111

〉, c̄1122
= 〈c1122/c1111

〉/〈1/c1111
〉, c̄1133

= 〈c1133/c1111
〉/〈1/c1111

〉,

c̄2222
= 〈c1111

〉− 〈(c1122)2/c1111
〉+ 〈c1122/c1111

〉
2/〈1/c1111

〉,

c̄2233
= 〈c1133

〉− 〈c1122c1133/c1111
〉+ 〈c1122/c1111

〉〈c1133/c1111
〉/〈1/c1111

〉,

c̄3333
= 〈c3333

〉− 〈(c1133)2/c1111
〉+ 〈c1133/c1111

〉
2/〈1/c1111

〉,

c̄2323
= 〈c1313

〉, c̄1313
= et

1〈M
−1
13 〉
−1e1, c̄1212

= 1/〈1/c1212
〉.

(4-7)

Five piezoelectric effective constants:

ē322
= 〈e311

〉+ 〈e311/c1111
〉〈c1122/c1111

〉/〈1/c1111
〉− 〈e311c1122/c1111

〉,

ē333
= 〈e333

〉+ 〈e311/c1111
〉〈c1133/c1111

〉/〈1/c1111
〉− 〈e311c1133/c1111

〉,

ē311
= 〈e311/c1111

〉/〈1/c1111
〉, ē113

= et
2〈M

−1
13 〉
−1e1, ē223

= 〈e113
〉.

(4-8)

Three dielectric permittivity effective constants:

κ̄11
=−et

2〈M
−1
13 〉
−1e2, κ̄22

= 〈κ11
〉,

κ̄33
= 〈κ33

〉+ 〈e311
〉

2/〈c1111
〉− 〈e311/c1111

〉
2/〈1/c1111

〉.
(4-9)

Five piezomagnetic effective constants:

q̄322
= 〈q311

〉+ 〈q311/c1111
〉〈c1122/c1111

〉/〈1/c1111
〉− 〈q311c1122/c1111

〉,

q̄333
= 〈q333

〉+ 〈q311/c1111
〉〈c1133/c1111

〉/〈1/c1111
〉− 〈q311c1133/c1111

〉,

q̄311
= 〈q311/c1111

〉/〈1/c1111
〉, q̄113

= et
3〈M

−1
13 〉
−1e1, q̄223

= 〈q113
〉.

(4-10)

Three magnetoelectric effective constants:

ᾱ11
=−et

3〈M
−1
13 〉
−1e2, ᾱ22

= 〈α11
〉,

ᾱ33
= 〈α33

〉+ 〈q311e311/c1111
〉− 〈q311/c1111

〉〈e311/c1111
〉/〈1/c1111

〉.
(4-11)

Three magnetic permeability effective constants:

µ̄11
=−et

3〈M
−1
13 〉
−1e3, µ̄22

= 〈µ11
〉,

µ̄33
= 〈µ33

〉+ 〈(q311)2/c1111
〉− 〈q311/c1111

〉
2/〈1/c1111

〉.
(4-12)

Three thermoelastic effective constants:

λ̄11
= 〈λ11/c1111

〉/〈1/c1111
〉,

λ̄22
= 〈λ11

〉− 〈c1122λ11/c1111
〉+ 〈c1122/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉,

λ̄33
= 〈λ33

〉− 〈c1133λ11/c1111
〉+ 〈c1133/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉.

(4-13)

One pyroelectric effective constant:

p̄3
= 〈p3

〉+ 〈e311λ11/c1111
〉− 〈e311/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉. (4-14)



HOMOGENIZATION OF PERIODIC THERMOMAGNETOELECTROELASTIC COMPOSITES 827

One pyromagnetic effective constant:

m̄3
= 〈m3

〉+ 〈q311λ11/c1111
〉− 〈q311/c1111

〉〈λ11/c1111
〉/〈1/c1111

〉. (4-15)

Effective heat capacity:

β̄ = 〈β〉− 〈(λ11)2/c1111
〉+ 〈λ11/c1111

〉
2/〈1/c1111

〉. (4-16)

where ei (i = 1, 2, 3) are the vectors of the standard orthonormal basis for the Euclidean space R3, and
M−1

13 is the inverse matrix of

M13 =

c1313 e113 q113

e113
−κ11

−α11

q113
−α11

−µ11

 .
As we can observe the corresponding homogenized material behaves as a TMEE material with orthorhom-
bic symmetry (2 mm). From the equations involving M−1

13 in (4-7), (4-8), (4-9), (4-10), (4-11), and (4-12),
we can find the expression

M13 = 〈M−1
13 〉
−1, M13 =

c̄1313 ē113 q̄113

ē113
−κ̄11

−ᾱ11

q̄113
−ᾱ11

−µ̄11

 .
Consequently,

c̄1313

111
=−

ē131

112
=−

κ̄11

122
=

q̄131

113
=
ᾱ11

123
=−

µ̄11

133
=

1
1
, (4-17)

where 1 is the determinant of the 〈M−1
13 〉 matrix, and 1i j is the minor obtained by excluding the i-th

row and j-th column. From (4-17), one can observe that if one of the six effective coefficients is known
then it is possible to calculate the other ones.

4.2. Two-laminated TMEE composites: Benveniste–Dvorak type relations. In this section we illustrate
how Equations (4-7)–(4-16), for the case of two-laminated composites, can be used to derive universal
relations of the type obtained in [Benveniste and Dvorak 1992]. In fact, from these formulae we can
obtain the following expressions for the effective coefficients:

c̄1111
−c1111

ν =−K [[c1111
]]

2, c̄1122
−c1122

ν =K [[c1111
]][[c1122

]], c̄2222
−c2222

ν =K [[c1122
]]

2, (4-18)

c̄1133
−c1133

ν =K [[c1111
]][[c1133

]], c̄2233
−c1133

ν =K [[c1122
]][[c1133

]], c̄3333
−c3333

ν =K [[c1133
]]

2, (4-19)

ē311
−e311

ν =K [[c1111
]][[e311

]], ē322
−e311

ν =K [[c1122
]][[e311

]], ē333
−e333

ν =K [[c1133
]][[e311

]], (4-20)

q̄311
−q311

ν =K [[c1111
]][[q311

]], q̄322
−q311

ν =K [[c1122
]][[q311

]], q̄333
−q333

ν =K [[c1133
]][[q311

]], (4-21)

κ̄33
−κ33

ν =−K [[e311
]]

2, ᾱ33
−α33

ν =−K [[e311
]][[q311

]], µ̄33
−µ33

ν =−K [[q311
]]

2, (4-22)

λ̄11
−λ11

ν =K [[c1111
]][[λ11

]], λ̄22
−λ11

ν =K [[c1122
]][[λ11

]], λ̄33
−λ33

ν =K [[c1133
]][[λ11

]], (4-23)

p̄3
−p3

ν=−K [[e311
]][[λ11

]], m̄3
−m3

ν=−K [[q311
]][[λ11

]], β̄−βν=K [[λ11
]]

2, (4-24)

where K = v1(1− v1)/(v1c1111
2 + (1− v1)c1111

1 ). Eliminating K from (4-18)2, (4-18)3, and (4-19)2,
and then again from (4-19)1,2,3, from (4-20)1,2,3, from (4-21)1,2,3, and from (4-23)1,2,3, we derive the
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universal relations

[[c1111
+ c1122

]]

[[c1133]]
=

c̄2222
+ c̄1122

− (c2222
ν + c1122

ν )

c̄2233− c1133
ν

=
c̄1133
+ c̄2233

− 2c1133
ν

c̄3333− c3333
ν

=
ē311
+ ē322

− 2e311
ν

ē333− e333
ν

=
q̄311
+ q̄322

− 2q311
ν

q̄333− q333
ν

=
λ̄11
+ λ̄22

− 2λ11
ν

λ̄33− λ33
ν

.

(4-25)

Analogously, from expressions (4-18)2,3, (4-19)2,3, (4-20)1,2, (4-21)2,3, (4-22)1,3, (4-23)1,2,3, one can
obtain the common constant [[e311

]]/[[c1133
]], and hence the following relations connecting the effective

properties:

[[e311
]]

[[c1133]]
=

ē311
−e311

ν

c̄1133−c1133
ν

=
ē322
−e311

ν

c̄2233−c1133
ν

=
ē333
−e333

ν

c̄3333−c3333
ν

=
κ33
ν −κ̄

33

ē333−e333
ν

=
α33
ν −ᾱ

33

q̄333−q333
ν

=
p3
ν− p̄3

λ̄33−λ33
ν

. (4-26)

The following relations are obtained by manipulating (4-18)2, (4-19)2, (4-20)1,3, (4-21)2, (4-22)1,2,
(4-23)2, (4-24)1:

[[q311
]]

[[c1133]]
=

q̄311
− q311

ν

c̄1133− c1133
ν

=
q̄333
− q333

ν

c̄3333− c3333
ν

=
µ33
ν − µ̄

33

q̄333− q333
ν

=
α33
ν − ᾱ

33

ē333− e333
ν

=
m3
ν − m̄3

λ̄33− λ33
ν

. (4-27)

The universal relations (28) and (29) of [Benveniste and Dvorak 1992] are contained respectively in
(4-25) and (4-26). Similarly (12) and (13) of [Benveniste 1995] are included in (4-27). On the other
hand these equations illustrate the interrelation between effective thermal terms with other individuals
and global elastic, piezoelectric, and piezomagnetic properties. From (4-26) and (4-27) the following
relation of proportionality among effective pyromagnetic and pyroelectric properties can be produced:

[[e311
]]

[[q311]]
=

p̄3
− p3

ν

m̄3−m3
ν

. (4-28)

This relation can also be obtained from the explicit expressions for the effective moduli p̄3 and m̄3 given
in [Li and Dunn 1998b, p. 409] for fibrous (circular cylinder) composites.

4.3. Two-phase TMEE fibrous composites: Benveniste type exact connections. Next we determine
exact relations (à la [Benveniste 1995]) between the elastic, piezoelectric, piezomagnetic, and thermal
effective moduli of two-phase periodic fibrous composite systems characterized by a cylindrical geometry
and consisting also of transversely isotropic TMEE constituents. The axis of the cylinder coincides with
the axis x3. Here such exact connections will be derived in a different way, without solving any local
problem, based on certain links among the solutions of the local problems L33

1 , L3
2, L3

3, and L4. In
order to show that, these local problems will be presented in a compact form as the problem L(q) with
q = 1, 2, 3, 4. The two-phase periodic cell is denoted by Y , while 6 represents the contact interface
between the matrix Y1 and the inclusion Y2 (see Figure 1).
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Y2

Y1

Y

S
W

y=x�Ε

Figure 1. A part of a periodic domain and the unit cell.

The cell problem L(q) consists in finding the Y -periodic functions w(q), ζ (q), and η(q), with an average
of zero on Y , satisfying the following equations and continuity conditions on Y :

∂ j,yσ
i j (w(q)α , ζ (q)α , η((q)α , 0)= 0

∂i,y Di (w(q)α , ζ (q)α , η(q)α , 0)= 0

∂i,y Bi (w(q)α , ζ (q)α , η(q)α , 0)= 0

 in Yα, (4-29)

[[w(q)]] = 0

[[ζ (q)]] = 0

[[η(q)]] = 0

[[σ 1δ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = κ(q)n1

[[σ 2δ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = κ(q)n2

[[σ 3δ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = 0

[[Dδ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = 0

[[Bδ(w(q)α , ζ (q)α , η(q)α , 0)nδ]] = 0



on 6, (4-30)

where w(1) ≡ w33, ζ (1) ≡ ζ 33, η(1) ≡ η33; w(2) ≡ g3, ζ (2) ≡ π3, η(2) ≡ χ3; w(3) ≡ h3, ζ (3) ≡ ξ 3,
η(3) ≡ γ 3; and w(4) ≡ 0, ζ (4) ≡ Q, η(4) ≡ R are, respectively, the solutions of the local problems L33

1 ,
L3

2, L3
3, and L4. The jump κ(p) on the interface 6 is defined for each local problem by the constants

κ(1)=−[[c3311
]], κ(2)=−[[e311

]], κ(3)=−[[q311
]], and κ(4)=[[λ11

]]. The structure of the problems (4-29)–
(4-30) is very similar to the corresponding ones for elastic [Guinovart-Dı́az et al. 2001; Rodrı́guez-Ramos
et al. 2001]) and piezoelectric [Bravo-Castillero et al. 2001; Sabina et al. 2001] unidirectional fibrous
composites. The unique nonzero solutions of these problems are the elastic plane-strain local functions
w
(q)
1 (y1, y2) and w(q)2 (y1, y2), for q = 1, 2, 3, 4, which are connected by

w(2)α =
[[e311
]]

[[c1133]]
w(1)α , w(3)α =

[[q311
]]

[[c1133]]
w(1)α , w(4)α =−

[[λ11
]]

[[c1133]]
w(1)α , (4-31)

Taking into account the above considerations and notations, and using (3-10), the following expressions
for effective properties can be obtained:
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• From the problem L33
1 (≡ L(1)):

c̄1133
=
〈
c1133〉

+
〈
c1111∂1,1w

(1)
1 + c1122∂2,2w

(1)
2

〉
,

c̄3333
=
〈
c3333〉

+
〈
c1133(∂1,1w

(1)
1 + ∂2,2w

(1)
2 )
〉
,

ē333
=
〈
e333〉
+
〈
e311(∂1,1w

(1)
1 + ∂2,2w

(1)
2 )
〉
,

q̄333
=
〈
q333〉
+
〈
q311(∂1,1w

(1)
1 + ∂2,2w

(1)
2 )
〉
.

(4-32)

• From the problem L3
2 (≡ L(2)):

κ̄33
=
〈
κ33〉
−
〈
e311(∂1,1w

(2)
1 + ∂2,2w

(2)
2 )
〉
,

ᾱ33
=
〈
α33〉
−
〈
q311(∂1,1w

(2)
1 + ∂2,2w

(2)
2 )
〉
,

ē311
=
〈
e311〉
+
〈
c1111∂1,1w

(2)
1 + c1122∂2,2w

(2)
2

〉
.

(4-33)

• From the problem L3
3 (≡ L(3)):

µ̄33
=
〈
µ33〉
−
〈
q311(∂1,1w

(3)
1 + ∂2,2w

(3)
2 )
〉
,

q̄311
=
〈
q311〉
+
〈
c1111∂1,1w

(3)
1 + c1122∂2,2w

(3)
2

〉
.

(4-34)

• From the problem L4 (≡ L(4)):

λ̄11
=
〈
λ11〉
−
〈
c1111∂1,1w

(4)
1 + c1122∂2,2w

(4)
2

〉
,

λ̄33
=
〈
λ33〉
−
〈
c1133(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
,

p̄3
=
〈
p3〉
+
〈
e311(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
,

m3
=
〈
m3〉
+
〈
q311(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
,

β̄ =
〈
β
〉
−
〈
λ11(∂1,1w

(4)
1 + ∂2,2w

(4)
2 )
〉
.

(4-35)

Now, combining (4-32) and (4-35) and making use of (4-31)3, the following universal relations can be
obtained:

[[c1133
]]

[[λ11]]
=

c̄1133
− c1133

ν

λ̄11− λ11
ν

=
c̄3333
− c3333

ν

λ̄33− λ33
ν

=
e333
ν − ē333

p̄3− p3
ν

=
q333
ν − q̄333

m̄3−m3
ν

. (4-36)

Note that Equations (4-36) involve all thermal global coefficients with the exception of β̄. However, if
the interface 6 is smooth enough so that Green’s formula can be applied, then, from (4-31)3, (4-32)3,
(4-32)4, and (4-35)3,4,5 one can obtain

ē333
− e333

ν =−[[e
311
]]5, q̄333

− q333
ν =−[[q

311
]]5, β̄ −βν =−

[[λ11
]]

2

[[c1133]]
5,

p̄3
− p3

ν =
[[λ11
]][[e311

]]

[[c1133]]
5, m̄3

−m3
ν =
[[λ11
]][[q311

]]

[[c1133]]
5,

(4-37)
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Parameters Units BaTiO3 CoFe2O4 epoxy

c1111 GPa 166. 286. 5.53
c1122 GPa 77. 173. 2.97
c1133 GPa 78. 170.5 2.97
c3333 GPa 162. 269.5 5.53
c1313 GPa 43. 45.3 0
e113 C/m2 11.6 0 0
e311 C/m2

−4.4 0 0
e333 C/m2 18.6 0 0
κ11 10−10 C2/Nm2 112. 0.8 1
κ33 10−10 C2/Nm2 126. 0.93 1
q113 N/Am 0 550. 0
q311 N/Am 0 580.3 0
q333 N/Am 0 699.7 0
µ11 10−6 Ns2/C2 5. −590. 1
µ33 10−6 Ns2/C2 10. 157. 1

Table 1. Material properties used in the calculations. Taken from [Lee et al. 2005].

where 5=
∫
6(w

(1)
1 dy2−w

(1)
2 dy1). Eliminating 5 from these equations, it is possible to obtain relations

involving β:
[[c1133

]]

[[λ11]]
=
[[λ11
]]

[[e311]]

e333
ν − ē333

β̄ −βν
=
[[λ11
]]

[[q311]]

q333
ν − q̄333

β̄ −βν
. (4-38)

In equations (4-36) and (4-38) nine effective properties are involved. The knowledge of one fixes the
values of the others eight. In a similar way, other relations can be derived. For instance, by manipulating
(4-37)3,4 we can derive (4-28). On the other hand, combining (4-31)1, (4-32)3, and (4-33)2, or again
(4-31)2, (4-32)4, and (4-34) one can find the relationships

[[c1133
]]

[[q311]]
=

ē333
− e333

ν

α33
ν − ᾱ

33 ,
[[c1133

]]

[[e311]]
=

q̄333
− q333

ν

α33
ν − ᾱ

33 . (4-39)

These equations coincide with (13) and (15) of [Benveniste 1995]. Finally, it is interesting to observe
that working with expressions (4-31)–(4-35) one can get relations (4-26) and (4-27). All these relations
are valid independently of the geometrical cross section of the fibers.

5. Numerical examples

The closed-form formulae for the effective properties of TMEE multilaminated composites, summarized
in Section 4.1, were analytically checked in Section 4.2 by means of the derivation (from such formulae)
of the universal relations of [Benveniste and Dvorak 1992] and [Benveniste 1995]. For the case of a
binary laminated composite, with transversely isotropic piezoelectric constituents, Equations (4-7)–(4-9)
yield [Benveniste and Dvorak 1992, (47), p. 1309].
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Since TMEE multilaminated composites could be considered as a limit case of unidirectional fibrous
composites, formulas of the type described can be useful for checking numerical codes.

To illustrate the performance of the formulae for three-phase magnetoelectroelastic composites, we
present the results for a three-phase laminate made of a piezoelectric phase (BaTiO3), a piezomagnetic
phase (CoFe2O4), and an isotropic linear elastic phase (epoxy). The material properties are given in
Table 1. The volume fraction v3 of the epoxy phase is fixed at 0.4.

In Figures 2 and 3, all effective properties (elastic, piezoelectric, piezomagnetic, electric permittivity,
magnetic permeability, and magnetoelectric) of these composites are plotted against the piezomagnetic
volume fraction. In Figure 2 we observe that the curves for c̄1111, c̄1133, c̄1313, c̄2323, and c̄3333 show
the same trend as those appearing in [Lee et al. 2005, Figure 17], where a three-phase fibrous magneto-
electroelastic composite was investigated via a finite element model. The same figure also shows that
the coefficient c̄1212 agrees better with the corresponding one from [Lee et al. 2005, Figure 18] than the
one derived from the Mori–Tanaka method of [Li and Dunn 1998b]. The rest of the elastic effective
properties c̄2222, c̄2233, and c̄1122 also have a linear behavior but cannot be compared because the global
behavior of the three-laminate (orthorhombic 2 mm) is different that of the three-phase fibrous composite
(tetragonal 4 mm) of [Lee et al. 2005].

A similar situation can be observed in Figure 3, which shows the effective piezoelectric (ē333, ē113 and
ē311), piezomagnetic (q̄333, q̄311 and q̄113), dielectric (κ̄33, κ̄11), and magnetic (µ̄33, µ̄11) constants to be
practically the same as those in [Lee et al. 2005, Figures 19–22, pp. 810–811]. Finally, the piezomagnetic
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Figure 2. Effective elastic properties of a three-phase magnetoelectroelastic laminated
composite versus volume fraction of piezomagnetic phase, for v3 = 0.4.
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laminated composite versus volume fraction of piezomagnetic phase, for v3 = 0.4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Ef
fe

ct
iv

e 
py

ro
el

ec
tri

c 
co

ns
ta

nt
 (C

 / 
m

 2  K
)

CoFe
2
O

4
 volume fraction

p
3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

CoFe
2
O

4
 volume fraction

Ef
fe

ct
iv

e 
py

ro
m

ag
ne

tic
 c

on
st

an
t (

N
 / 

A 
m

 K
)

m
3

Figure 5. Effective pyroelectric and pyromagnetic properties of a two-phase BaTiO3-
CoFe2O4 TMEE laminated composite versus volume fraction of piezomagnetic phase.

effective constants (ᾱ11 and ᾱ33) illustrated in Figure 4 have the same tendency (magnetoelectric effect)
as those in [Lee et al. 2005, Figures 23 and 24, p. 812].

Figure 5 illustrates the behavior of the pyroelectric and pyromagnetic effective constants of a two-phase
(BaTiO3-CoFe2O4) TMEE laminated composite against the piezomagnetic volume fraction. The data for
the thermal expansion constants of the constituents were taken from [Ootao and Tanigawa 2005, p. 476];
they are θ11

=θ22
=15.7×10−6 K−1, θ33

=6.4×10−6 K−1 (BaTiO3), and θ11
=θ22

=θ33
=10×10−6 K−1

(CoFe2O4) where λi j
= ci jklθ kl . In this figure, the existence of pyroelectric and pyromagnetic effects is

apparently, though neither phase by itself exhibits them.
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6. Concluding remarks

In this paper, based on the asymptotic homogenization method, a description of the derivation of the
local problems and the formulae to obtain all homogenized effective coefficients of a thermomagneto-
electroelastic (TMEE) periodic heterogeneous media are given. The general homogenization model is
applied to obtain closed-form formulae for effective (elastic, piezoelectric, piezomagnetic, dielectric,
magnetic, magnetoelectric, thermoelastic, pyroelectric, pyromagnetic, and heat capacity) coefficients of
periodic multilaminated composites with any finite number of transversely isotropic TMEE constituents.
Such formulae are specified for the case of a two-phase laminated composite with an orthotropic global
behavior which satisfies the universal relations of [Benveniste and Dvorak 1992]. These relations il-
lustrate the interrelation among magnetoelectroelastic and thermal effective properties. In particular,
(4-28) shows the proportionality connecting the pyroelectric and pyromagnetic effective coefficients
with the proportionality constant given by the ratio of the piezoelectric and piezomagnetic individual
properties. Another application of the general homogenization model is devoted to obtaining universal
relations (4-36) and (4-38)–(4-39) for two-phase periodic unidirectional fibrous composites with TMEE
transversely isotropic individual phases. The derivation of such universal relations does not require the
solution of any local problem, and is based on certain links, given by (4-31), among the solutions of
four local problems which are expressed in a compact form by (4-29)–(4-30). Several universal relations
reported in [Benveniste and Dvorak 1992; Benveniste 1995] are recovered here following a different
method. Some numerical calculations for three-phase laminated magnetoelectroelastic show a good
concordance with similar results obtained for three-phase fibrous composites in [Ootao and Tanigawa
2005]. The magnetoelectric effect expressed by (4-28) is illustrated in Figure 5. The analytical formulae
and universal relations of this work can be useful for checking numerical code.

References

[Aboudi 1998] J. Aboudi, “Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase com-
posites”, J. Intell. Mater. Syst. Struct. 9:9 (1998), 713–722.

[Aboudi 2001] J. Aboudi, “Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites”,
Smart Mater. Struct. 10:5 (2001), 867–877.

[Benveniste 1995] Y. Benveniste, “Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases”,
Phys. Rev. B 51:22 (1995), 16424–16427.

[Benveniste and Dvorak 1992] Y. Benveniste and G. J. Dvorak, “Uniform fields and universal relations in piezoelectric com-
posites”, J. Mech. Phys. Solids 40:6 (1992), 1295–1312.

[Bravo-Castillero et al. 2001] J. Bravo-Castillero, R. Guinovart-Díaz, F. J. Sabina, and R. Rodríguez-Ramos, “Closed-form ex-
pressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents, II: Piezoelectric
and square symmetry”, Mech. Mater. 33:4 (2001), 237–248.

[Bravo-Castillero et al. 2008] J. Bravo-Castillero, R. Rodríguez-Ramos, H. Mechkour, J. A. Otero, and F. J. Sabina, “Homoge-
nization of magneto-electro-elastic multilaminated materials”, Q. J. Mech. Appl. Math. 61:3 (2008), 311–332.

[Camacho-Montes et al. 2006] H. Camacho-Montes, R. Rodríguez-Ramos, J. Bravo-Castillero, R. Guinovart-Díaz, and F. J.
Sabina, “Effective coefficients for two phase magneto-electroelastic fibrous composite with square symmetry cell in-plane
mechanical displacement and out-of-plane electric and magnetic field case”, Integr. Ferroelectr. 83:1 (2006), 49–65.

[Castillero et al. 1998] J. B. Castillero, J. A. Otero, R. R. Ramos, and A. Bourgeat, “Asymptotic homogenization of laminated
piezocomposite materials”, Int. J. Solids Struct. 35:5–6 (1998), 527–541.

http://dx.doi.org/10.1177/1045389X9800900903
http://dx.doi.org/10.1177/1045389X9800900903
http://dx.doi.org/10.1088/0964-1726/10/5/303
http://dx.doi.org/10.1103/PhysRevB.51.16424
http://dx.doi.org/10.1016/0022-5096(92)90016-U
http://dx.doi.org/10.1016/0022-5096(92)90016-U
http://dx.doi.org/10.1016/S0167-6636(00)00060-0
http://dx.doi.org/10.1016/S0167-6636(00)00060-0
http://dx.doi.org/10.1016/S0167-6636(00)00060-0
http://dx.doi.org/10.1093/qjmam/hbn010
http://dx.doi.org/10.1093/qjmam/hbn010
http://dx.doi.org/10.1080/10584580600949071
http://dx.doi.org/10.1080/10584580600949071
http://dx.doi.org/10.1016/S0020-7683(97)00028-0
http://dx.doi.org/10.1016/S0020-7683(97)00028-0


836 CASTILLERO, RODRÍGUEZ, MECHKOUR, OTERO, CABANAS, SIXTO, GUINOVART-DÍAZ AND SABINA

[Galka et al. 1992] A. Galka, J. J. Telega, and R. Wojnar, “Homogenization and thermopiezoelectricity”, Mech. Res. Commun.
19:4 (1992), 315–324.

[Galka et al. 1996] A. Galka, J. J. Telega, and R. Wojnar, “Some computational aspects of homogenization of thermopiezoelec-
tric composites”, Comput. Assist. Mech. Eng. Sci. 3:2 (1996), 133–154.

[Guinovart-Díaz et al. 2001] R. Guinovart-Díaz, R. Bravo-Castillero, J. Rodríguez-Ramos, and F. J. Sabina, “Closed-form
expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents, I: Elastic and
hexagonal symmetry”, J. Mech. Phys. Solids 49:7 (2001), 1445–1462.

[Lee et al. 2005] J. Lee, J. G. Boyd, IV, and D. C. Lagoudas, “Effective properties of three-phase electro-magneto-elastic
composites”, Int. J. Eng. Sci. 43:10 (2005), 790–825.

[Li and Dunn 1998a] J. Y. Li and M. L. Dunn, “Anisotropic coupled-field inclusion and inhomogeneity problems”, Philos. Mag.
A 77:5 (1998), 1341–1350.

[Li and Dunn 1998b] J. Y. Li and M. L. Dunn, “Micromechanics of magnetoelectroelastic composite materials: average fields
and effective behavior”, J. Intell. Mater. Syst. Struct. 9:6 (1998), 404–416.

[Mori and Tanaka 1973] T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting
inclusions”, Acta Metall. Mater. 21:5 (1973), 571–574.

[Ootao and Tanigawa 2005] Y. Ootao and Y. Tanigawa, “Transient analysis of multilayered magneto-electro-thermoelastic strip
due to nonuniform heat supply”, Compos. Struct. 68:4 (2005), 471–480.

[Pobedrya 1984] B. E. Pobedrya, Mechanics of composite materials, Moscow State University Press, Moscow, 1984. In Rus-
sian.

[Rodríguez-Ramos et al. 2001] R. Rodríguez-Ramos, F. J. Sabina, R. Guinovart-Díaz, and J. Bravo-Castillero, “Closed-form
expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents, I: Elastic and
square symmetry”, Mech. Mater. 33:4 (2001), 223–235.

[Sabina et al. 2001] F. J. Sabina, R. Rodríguez-Ramos, J. Bravo-Castillero, and R. Guinovart-Díaz, “Closed-form expressions
for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents, II: Piezoelectric and
hexagonal symmetry”, J. Mech. Phys. Solids 49:7 (2001), 1463–1479.

Received 8 Mar 2009. Revised 15 May 2009. Accepted 17 May 2009.

JULIAN BRAVO-CASTILLERO: jbravo@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

REINALDO RODRÍGUEZ-RAMOS: reinaldo@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

HOUARI MECHKOUR: mechkour@cmapx.polytechnique.fr
École Centrale d’Electronique, Immeuble Pollux, 37 Quai de Grenelle- CS 71520, 75725 Paris Cedex 15, France

JOSÉ A. OTERO: jaotero@icmf.inf.cu
Instituto de Cibernética, Matemática y Física, 15 No. 551, Habana 4, CP 10400, Cuba

JOANKA HERNÁNDEZ CABANAS: joanka@icmf.inf.cu
Instituto de Cibernética, Matemática y Física, 15 No. 551, Habana 4, CP 10400, Cuba

LAZARO MAYKEL SIXTO: sixto@uci.cu
Universidad de Ciencias Informáticas, Departamento de Ciencias Básicas, Boyeros, CP 19370, Cuba

RAUL GUINOVART-DÍAZ: guino@matcom.uh.cu
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro esq. L, Vedado, Habana 4, CP 10400, Cuba

FEDERICO J. SABINA: fjs@mym.iimas.unam.mx
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México,
Delegación Álvaro Obregón, Apartado Postal 20-726, 01000 México, D.F., Mexico

http://dx.doi.org/10.1016/0093-6413(92)90050-K
http://dx.doi.org/10.1016/S0022-5096(01)00005-9
http://dx.doi.org/10.1016/S0022-5096(01)00005-9
http://dx.doi.org/10.1016/S0022-5096(01)00005-9
http://dx.doi.org/10.1016/j.ijengsci.2005.01.004
http://dx.doi.org/10.1016/j.ijengsci.2005.01.004
http://dx.doi.org/10.1080/01418619808214256
http://dx.doi.org/10.1177/1045389X9800900602
http://dx.doi.org/10.1177/1045389X9800900602
http://dx.doi.org/10.1016/0001-6160(73)90064-3
http://dx.doi.org/10.1016/0001-6160(73)90064-3
http://dx.doi.org/10.1016/j.compstruct.2004.04.013
http://dx.doi.org/10.1016/j.compstruct.2004.04.013
http://dx.doi.org/10.1016/S0167-6636(00)00059-4
http://dx.doi.org/10.1016/S0167-6636(00)00059-4
http://dx.doi.org/10.1016/S0167-6636(00)00059-4
http://dx.doi.org/10.1016/S0022-5096(01)00006-0
http://dx.doi.org/10.1016/S0022-5096(01)00006-0
http://dx.doi.org/10.1016/S0022-5096(01)00006-0
mailto:jbravo@matcom.uh.cu
mailto:reinaldo@matcom.uh.cu
mailto:mechkour@cmapx.polytechnique.fr
mailto:jaotero@icmf.inf.cu
mailto:joanka@icmf.inf.cu
mailto:sixto@uci.cu
mailto:guino@matcom.uh.cu
mailto:fjs@mym.iimas.unam.mx


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 5, 2009

DEPLOYMENT PROCEDURE FOR THE TETRAHEDRON CONSTELLATION

PEDRO A. CAPÓ-LUGO AND PETER M. BAINUM

The NASA Benchmark Tetrahedron Constellation is a four-satellite formation that requires a nominal
separation distance at every apogee point. The deployment procedure of a tetrahedron constellation is
complex and depends on the separation distance between any pair of satellites within the constellation.
In this paper, the deployment procedure of the tetrahedron constellation will be divided into two stages:
the deployment from a circular parking orbit to an elliptical orbit, and the correction of the separation
distance between pairs of satellites within the constellation. The solution of this problem will be imple-
mented with a combination of Hohmann transfer maneuvers and the digital linear quadratic regulator
control scheme showing a minimum consumption of fuel. In summary, the combination of these two
techniques will provide a different approach to the deployment procedure of the NASA benchmark
tetrahedron constellation.

1. Introduction

One concern in the NASA Benchmark Tetrahedron Constellation problem [Carpenter et al. 2003] is the
deployment and reconfiguration procedures. Some papers solved these procedures using different nu-
merical schemes based on pseudospectral methods [Williams and Trivailo 2006; Huntington et al. 2006;
Huntington and Rao 2006]. The pseudospectral method solves an optimal control problem by dividing the
highly elliptical orbit into sections. In these sections, a two-point boundary value problem will be solved
for coasting and thruster burning phases. To solve the pseudospectral method, the problem is transformed
into another domain that contains the desired solution of the optimal control problem. After every two-
point boundary value problem is solved in every section of the highly elliptical orbit, the control effort
and the time for the different coasting and burning phases are mapped into the actual problem to show the
solution. This numerical method may take a longer period of time to solve the optimal control problem. In
addition, the pseudospectral methods involve a complex mathematical development to include different
characteristics of the tetrahedron constellation. For these reasons, the objective of this paper is to present
a different solution to the deployment procedure of the NASA Benchmark Tetrahedron Constellation
without the use of complex mathematical models.

The satellites will be transferred from a circular orbit to an elliptical orbit with a Hohmann transfer
maneuver [Wertz and Larson 1999]. This transfer maneuver represents the most fuel efficient procedure
to obtain the desired elliptical orbit for the four satellites. The Hohmann transfer orbit has been used to
deploy a different tetrahedron constellation as shown in [Dow et al. 2004]. Also, Bainum et al. [2005]
have showed that, by using a modified Hohmann transfer, an along-track constellation can be launched

Keywords: discrete linear quadratic regulator, impulse maneuvers, deployment procedure, tetrahedron constellation.
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from a circular orbit to an elliptical orbit. With these maneuvers, the satellites in the along-track constel-
lation reach the required configuration at the final apogee point. A similar procedure can be used here to
achieve the final formation for the proposed tetrahedron constellation.

After the Hohmann transfer maneuver is used, the digital linear quadratic regulator (DLQR) will be
used to correct the drifts in the separation distance and the velocities between any pair of satellites within
the constellation. This DLQR control scheme can be used to provide a faster solution to the correction of
the separation distances and velocities between any pair of satellites within the proposed constellation. A
thrust requirement will be included into the formulation of the DLQR active control scheme to determine
the consumption of force during the drift correction.

The purpose of this research work is to present a combination of two techniques to finally deploy
the NASA Benchmark Tetrahedron Constellation from an along-track circular orbit to a highly elliptical
orbit. With this scheme, a different solution will be provided to obtain the deployment procedure without
the use of complex mathematical models and methods.

2. Desired conditions of the satellites in the proposed tetrahedron constellation

The tetrahedron constellation will be used to measure the components of the Earth’s magnetic field with
the critical data taken at the apogee point by magnetometers. In order to obtain a precise mapping of the
Earth’s magnetic field, it is important that the positions of all the instruments be accurately placed at or
near the apogee point.

According to the NASA Benchmark problem [Carpenter et al. 2003] definition for the tetrahedron
constellations, the nominal separation distance between any two of the satellites at apogee is 10 km, and
the separation error at subsequent apogees should be within 10%, giving an acceptable range between 9
and 11 km. At other points in the orbit, the minimum separation distance between any pair of satellites
should be 1 km. Figure 1 shows a representation of the tetrahedron constellation at the apogee point. SB
and SC are assumed to be located along the semimajor axis with a separation distance of 10 km. SA forms
the equilateral triangle and is orbiting around the centroid in the equilateral triangle. SH is the fourth
satellite located above the centroid of the equilateral triangle which forms the tetrahedron constellation.

Figure 1. Two dimensional view of the configuration at apogee point.
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SA SB SC SH

X (km) −8.6602 0 0 −2.8868
Y (km) −72582.4525 −72587.1941 −72577.7109 −72585.0433
Z (km) −24285.7489 −24287.3354 −24284.1624 −24278.0058

Vx (km/sec) 0.973083288 0.972733623 0.973432881 0.973083324
Vy, Vz (km/sec) 0 0 0 0

Table 1. Satellite initial positions and velocities for Phase I.

SA SB SC SH

a (km) 42095.7 42095.7 42095.7 42095.7
e 0.818182 0.818301 0.818064 0.818182

i (degrees) 18.5 18.5 18.5 18.494
� (degrees) 0 0 0 0
ω (degrees) 89.9921 90 90 89.9974

Table 2. Orbital elements for the four satellites within the constellation (Phase I).

Using the techniques explained in [Capó-Lugo and Bainum 2005; 2006b], the constellation has a similar
configuration at the perigee point, and the tetrahedral formation is obtained with the required separation
distance constraints at the apogee point. These techniques were based on the orbital elements of the
constellation and did not contain an active control scheme to satisfy the separation distance conditions
of the NASA Benchmark Tetrahedron Constellation.

For the first specific size (phase I) of the proposed constellation [Carpenter et al. 2003], the initial
positions and velocities for the four satellites are expressed in Table 1. These initial coordinates and
velocities are the required conditions such that the final tetrahedron constellation can be obtained at
the apogee point. Without perturbations [Capó-Lugo and Bainum 2005; 2006b], the satellites in the
constellation satisfied the separation distance constraints for a long period of time, and, with perturbation,
the constellation maintains the separation distance conditions for a limited number of complete orbits.
For phase I, Table 1 can be used to define the orbital elements for every satellite. Table 2 shows the
desired orbital elements at the final apogee point which will be used to calculate the Hohmann transfer
maneuvers. In Table 2, a is the semimajor axis, e is the eccentricity, i is the inclination angle, � is the
right ascension of the ascending node, and ω is the argument of perigee.

3. Transfer from a circular orbit to the elliptical orbit (Stage 1)

The transfer procedure from a circular orbit to an elliptical orbit is complex and may take a period of
time before it is achieved. Dow et al. [2004] used a modified Hohmann transfer maneuver to transfer
four satellites from a circular orbit to a final elliptical orbit. In their paper, a small consumption of fuel
was obtained because the tetrahedron constellation was deployed using intermediate elliptical orbits. If
the satellites are in a circular orbit and are transferred to an elliptical orbit with an eccentricity of 0.8, as
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an example, the intermediate elliptical orbit is defined as the chosen intermediate values of eccentricity
(between 0 and 0.8) used to perform the Hohmann transfer maneuvers.

On the contrary, [Bainum et al. 2005] show that a modified Hohmann transfer orbit can be used to
deploy an along-track constellation from a circular parking orbit to an elliptical orbit. In this technique,
the satellites are deployed with restrictions on the period of the transfer orbit; in this way, the satellites
can reach the apogee point at the same time in the along-track constellation. The required difference in
velocity (1V ) [Bainum et al. 2005] to transfer the satellites from the circular to the elliptical transfer orbit
is very similar for all of them which are a characteristic of the modified Hohmann transfer maneuvers.

This section will use similar modified Hohmann transfer maneuvers [Bainum et al. 2005] to transfer
the four satellites from a circular orbit into their respective elliptical orbits. After the satellites are
released from a rocket, the four satellites will be assumed to be in a circular orbit forming an along-track
configuration; also, the separation distance between any pair of satellite within the constellation will be
assumed constant. It will be also assumed that the circular orbit will have an inclination angle of 18.5◦

and a radius equal to 1.2ER, where ER means Earth radius. As shown in [Capó-Lugo and Bainum 2005;
2006b], this is the radius of perigee and inclination angle for phase I. Before the difference in velocity
for the Hohmann transfer maneuvers is calculated, the period of the transfer orbit for every satellite must
be studied to determine the order in which the satellites will be deployed. The period of a satellite is
defined as

T = 2π
√

a3

µ
. (1)

To calculate the semimajor axis (a), the radius of perigee (rp) for every satellite is set equal to 1.2ER,
and the radius of apogee will be defined for every satellite depending on the desired eccentricity and
semimajor axis as shown in Table 2. Table 3 illustrates the radius of apogee (ra), semimajor axis for the
transfer orbit (at), and the transfer period for every satellite (Tt).

It can be seen from Table 3 that SB and SC, respectively, has the highest and smallest period in
comparison with the satellites SA and SH. The period of the four satellites provides the order in which
the satellites will be departing from the circular orbit. The first satellite to depart is SB because it has
the highest period. The second satellite is SA because it must be ahead of SH to form the equilateral
triangle. The third satellite to depart from the circular orbit will be SH. This satellite will be in the same
plane as the other three satellites, but, after the transfer maneuvers, it will be corrected with the DLQR to
exhibit out-of-plane motion. The last satellite to depart in the circular orbit is SC which has the smallest
period. The separation distance between the satellites in the circular orbit will be considered because, at
the final apogee point, it will make a difference in the separation distance between any pair of satellites
within the constellation in the final elliptical orbit.

The deployment procedure from the circular orbit to the elliptical orbit is defined as follows:

SA SB SC SH

ra (km) 76537.64 76545.388 76532.638 76537.64
at (km) 42095.70 42099.58 42093.20 42095.70
Tt (sec) 85910.72 85922.59 85903.07 85910.72

Table 3. Radius of apogee, semimajor axis of the transfer orbit, and period for every satellite.
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1. After the four satellites are released from the rocket, these satellites are assumed to be traveling in
a circular orbit forming an along-track constellation. The circular orbit has a radius equal to 1.2ER,
and it is assumed that the orbit has an inclination angle equal to 18.5◦. Initially, the satellites are
assumed to be separated by 0.5◦ in the true anomaly angle. This difference in the true anomaly
angle between any pair of satellites can be changed to larger values, but, at the final apogee point of
the transfer ellipse, the separation distance between any pair of satellites will be higher. In addition,
the satellites may not reach the apogee point at the same time; for this reason, the separation in the
true anomaly angle between some of the pairs of satellites in the along track constellation will be
constrained to angles between 0 and 1 degree. Figure 2 shows the difference in the true anomaly
angle between the satellites in the along-track constellation in the circular orbit. In Figure 2, δ f is
the difference in the true anomaly angle, f is the true anomaly angle, and the center of the Earth is
denoted by the center of the Cartesian system X and Y . The difference in the true anomaly angle
is assumed equal to 0.5◦ and creates a separation distance of approximately 66.79 km between the
pairs SB-SA, SA-SH, and SH-SC in the along-track constellation. The four satellites have a velocity
in the circular orbit equal to 7.2166 km/sec. As said earlier, the first satellite to be deployed is SB.
The semimajor axis of the transfer orbit for SB is defined in Table 3, and the velocity at the perigee
point in the elliptical transfer orbit is equal to

Vp,SB =

√
µ
( 2

rp
−

1
at

)
= 9.73088 (km/sec). (2a)

The necessary 1V to transfer SB from the circular orbit to the elliptical transfer orbit is equal to

1VP,SB = 9.73088− 7.2166= 2.5148 (km/sec). (2b)

Figure 2. Location and separation of the four satellites in the circular orbit.
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This 1V maneuver is applied in the direction of the motion of the satellite to increase its velocity
such that the satellite can be transferred into the elliptical orbit. This 1V procedure will be per-
formed when the true anomaly angle is equal to 90◦ because, when the satellite is in the elliptical
transfer orbit, the angle at which the satellite departs will be its argument of perigee (ω).

2. 9.25 seconds after SB has departed, SA will be at the transfer point in the circular orbit ( f = 90◦).
From Table 3, the difference in the period of the transfer orbit between SB and SA is 11.87 seconds.
A correction to the period of the transfer orbit is not necessary because SA will be 2.62 seconds
ahead of SB. This difference in time will cause SA to reach the position of SB in a short period of
time. For this reason, a correction in the period of the elliptical transfer orbit for SA is not necessary.
The velocity and 1V to change SA from a circular orbit to the elliptical transfer orbit is

Vp,SA =

√
µ
( 2

rp
−

1
at,SA

)
= 9.7308 km/sec, 1Vp,SA = 9.73083− 7.2166= 2.5142 km/sec. (3)

3. 9.25 seconds after SA has departed, SH has reached the transfer point in the circular orbit. The
difference in the transfer period between SA and SH is zero (Table 3), but the time that SH takes
to reach the transfer point provides the required condition to avoid a collision between these two
satellites. For this reason, the transfer period for SH is not altered. The velocity and 1V to maneuver
SH into the elliptical transfer orbit are

Vp,SH =

√
µ
( 2

rp
−

1
at,SH

)
= 9.7307 km/sec, 1Vp,SH = 9.7307− 7.2166= 2.5141 km/sec. (4)

4. 9.25 seconds after SH has departed, SC will reach the transfer point ( f = 90◦). The difference in the
transfer period between SB and SC is 19.52 seconds. Once more, a correction to the period of the
elliptical transfer orbit is not necessary because the time that SC takes to reach the transfer point will
provide enough distance between the other three satellites to avoid a collision. The velocity and the
1V at the transfer point required to maneuver SC into the elliptical transfer orbit can be defined as

Vp,SC =

√
µ
( 2

rp
−

1
at,SC

)
= 9.7308 km/sec, 1Vp,SC = 9.7308− 7.2166= 2.5142 km/sec. (5)

5. Once the satellites have reached the apogee point, a second 1V maneuver will be performed to
correct the semimajor axis and the eccentricity of the final elliptical orbit. To perform this maneuver,
the velocity of the satellite at the apogee point in the elliptical transfer orbit is calculated and, then,
is subtracted from the velocity at the apogee point defined in Table 1. Table 4 shows the velocity
and 1V required for the four satellites in the constellation at the apogee point.

SB SA SH SC

Va (km/sec) 0.97299 0.9730833 0.973083 0.97343288
1Va (km/sec) −0.2888× 10−3 0 0 0.2828× 10−3

Table 4. Velocity at the apogee point in the transfer orbit and the 1V required to correct
the in-plane conditions of the final orbit.
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Figure 3. Diagram of the deployment procedure of the constellation.

At the apogee point, this 1V maneuver will be also applied along the positive or negative tan-
gential direction of the satellite. Figure 3 shows the 1V maneuvers and the different orbits that will
be obtained with these modified Hohmann transfer maneuvers. The Cartesian axis at the center of
the Earth is rotated because the elliptical orbit will be created over the X axis in which the true
anomaly angle is equal to 90◦. This angle will define the argument of perigee of the orbit of the
four satellites.

These five steps will define the elliptical orbit of the four satellites using Hohmann transfer maneuvers.
Observing the transfer period of the four satellites, these satellites will reach the apogee point at the same
time. The tetrahedron formation will not be obtained at the final apogee point; for this reason, a final
correction of the separation distance between the satellites is required. This correction can be performed
in two ways: solving a two-point boundary value problem (TPBVP) with the linearized Tschauner–
Hempel equations, or correcting the drifts in the separation distance between any pair of satellites within
the constellation with the DLQR controller [Capó-Lugo and Bainum 2006a].

The solution of a TPBVP is complicated because it involves the theory of primer vector defined in
[Lawden 1963]. The linearized Tschauner–Hempel (TH) equations defined by Carter and Humi [1987]
satisfy the primer vector relations, and the solution depends on the type of thrust arc. The solution of the
TPBVP can be preferred for the formation of the tetrahedron constellation at the apogee point, but there
are some other considerations related to the solution of this problem. For these reasons, the correction
of the separation distance constraints for the proposed tetrahedron constellation [Carpenter et al. 2003]
will be based on the DLQR control scheme [Capó-Lugo and Bainum 2006a]. With this DLQR control
scheme, the tetrahedron constellation can be formed with the required separation distance at the following
apogee point.
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4. Linearized Tschauner–Hempel (TH) equations and thrust capability

The linearized TH equations that define the motion of a pair of satellites in an elliptical orbit about the
Earth [Carter and Humi 1987] can be written as

y′( f )= [A( f )] y( f )+ [B( f )] Ea, (6a)

where

[A( f )] =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 2 0
0 3κ 0 2 0 0
0 0 −1 0 0 0


, [B( f )] =



0 0 0
0 0 0
0 0 0
κ3 0 0
0 κ3 0
0 0 κ3


, (6b)

y j = (1+ e cos f )x j , y′j = (1+ e cos f )x ′j − (e sin f )x j ,

y′′j = (1+ e cos f )x
′′

j − 2(e sin f )x ′j − (e cos f )x j ,

(6c)

y( f )=
[
y1( f ) y2( f ) y3( f ) y′1( f ) y′2( f ) y′3( f )

]T
, (6d)

Ea( f )=
[
a1( f ) a2( f ) a3( f )

]T
, (6e)

a j ( f )=
κ3h6

µ4

T j ( f )
m

( j = 1, 2, 3), κ =
1

1+ e cos f
. (6f)

The parameter κ is determined from the well known equation of a Keplerian orbit (or equation of a
conic section) where µ= G ME ; h is the angular momentum; f is the true anomaly angle; x1 is positive
against the motion of the spacecraft, x2 is positive along the radial direction, and x3 is positive when
the right handed system is completed. Equation (6c) is the mathematical transformation used to change
from the x j system to the y j system. The x j system contains the actual separation distance between the
maneuvering and the reference (or target) spacecraft, and the y j system has the same specified directions
as the x j system. The maneuvering spacecraft is assumed to have an applied thrust vector along the
reference coordinate system, and the reference (or target) spacecraft is initially assumed to be acted on
by a Newtonian gravitational force directed toward the center of the Earth.

It is known that the mass inside of the satellite will be changing with respect to the use of thrust for
the correction of the drifts between any pair of satellites. The exhaust velocity [Carter and Humi 1987]
is written as

m′ =−
h3

µ2

T ( f )
(1+ e cos f )2Cs

, (7)

where m is the mass of the satellite, T is the applied thrust for the maneuvering spacecraft and Cs is
the effective exhaust velocity. Concerning the present problem, the difference between the initial and
final true anomaly angle is assumed to be small enough such that the mass expended is much less in
comparison to the initial mass (m0) of the satellite during the correction of the drifts; hence, the actual
mass (m( f )) of the satellite can be approximated by its initial mass (m( f )≈ m0). Equation (6f) can be
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reduced to

a j =
h6

µ4

Tm

(1+ e cos f )3m0
u j ( f )= bu j ( f )κ3, (8)

where Tm is the maximum thrust, and,

b =
h6

µ4

Tm

m0
, u j ( f )=

T j ( f )
Tm

( j = 1, 2, 3).

Equation (8) will be used to define the transformed thrust accelerations in (6a). If the mass of the satellite
changes rapidly with respect to the correction of the drifts, (8) is not valid, and a minimization problem
for a varying mass must be solved. Equation (8) will be implemented with the DLQR to determine the
thrust consumption for the correction of the separation distance and the velocity drifts between any pair
of satellites within the constellation.

Substituting (8) into (6a), the discrete form [Capó-Lugo and Bainum 2006a] of the linearized TH
equations is expressed as

y(k+ 1)= Â(k)y(k)+ B̂(k)u(k), (9a)

where Â( f )= I +1 f A( f ) and B̂ =1 f B( f ) are given by

Â( f )=



1 0 0 1 f 0 0
0 1 0 0 1 f 0
0 0 1 0 0 1 f
0 0 0 1 21 f 0
0 31 f κ 0 −21 f 1 0
0 0 −1 f 0 0 1


, B̂ =



0 0 0
0 0 0
0 0 0

1 f κ3 0 0
0 1 f κ3 0
0 0 1 f κ3


, (9b)

and further

κ(k)=
1

1+ e cos( fL + k1 f )
, (9c)

y(k)=
[
y1(k) y2(k) y3(k) y′1(k) y′2(k) y′3(k)

]T
, f (k)= fL + k1 f. (9d)

Here I is the 6× 6 identity matrix, fL is the initial true anomaly angle, 1 f is the sampling in the true
anomaly angle, and k is an integer value representing the sample which is obtained at every sampling
interval in the true anomaly angle. The integer k ranges from 0 to N f − 1 where N f is the last sample
obtained in the solution of the linearized TH equations defined at the final true anomaly angle and is
expressed as

N f − 1=
fF − fL

1 f
,

where fF and fL , respectively, is the final and initial true anomaly angle in which the LQR will be used
to correct the drifts between a pair of satellites within the constellation.

5. Station-keeping procedure (Stage 2)

In [Capó-Lugo and Bainum 2007], the LQR approach based on the Carter–Humi (CH) control scheme
can be applied to every phase (size) of the tetrahedron constellation. In [Capó-Lugo and Bainum 2006a],
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the discrete cost function for the CH was defined and written as

J (k)=
1 f
2

N f−1∑
k=0

(y(k)− yD)
T Q̃(k)(y(k)− yD)+ (u(k))T R̃(k)(u(k)), (10)

where Q̃(k)= Qκ(k), R̃(k)= Rκ2(k), and y(k), yD are the state vector and the desired state vector of
the transformed system, respectively. The state and the desired state vector have dimensions of n× 1.

In this case, the system of discrete linear equations can be defined similarly from (9a) as follows:

y(k+ 1)= Â(k)y(k)+ B̂(k)u(k)+ψ(k). (11)

The system of linear equations in (9a) is expanded to include a perturbation vector, ψ(k), to take into
account outside forces due to the Earth, Moon, and/or Sun. The disturbance column vector in (11) is
used to define the J2 perturbation that explains the oblateness of the Earth and is expressed as in [Battin
1999] by

ψ(k)=



0
0
0

−
3
2

J2
µ
r2

( Re
r

)2
(1− 3 sin2 i sin2( fL + k1 f ))

−3J2
µ
r2

( Re
r

)2
(sin2 i sin( fL + k1 f ) cos( fL + k1 f ))

−3J2
µ
r2

( Re
r

)2
(sin i cos i sin( fL + k1 f ))


, (12)

where J2 is approximated [Wertz and Larson 1999] to 1.08263× 10−3, Re is the equatorial radius of the
Earth, and i is the inclination angle. Equation (12) will not require a transformation with (6c) because
ψ(k) is defined in terms of the mean orbital elements of the satellites in the proposed constellation
[Carpenter et al. 2003], as shown in Table 2.

In [Capó-Lugo and Bainum 2006a], the solution of the DLQR problem is obtained but is rewritten
here for the y j system as

K (k)=1 f Q̃(k)+ ÂT (k)K (k+1)[I+S(k)K (k+1)]−1 Â(k), (13a)

g(k)=−1 f Q̃(k)yD− ÂT (k)K (k+1)[I+S(k)K (k+1)]−1
[S(k)g(k+1)−ψ(k)]+ ÂT (k)g(k+1),

(13b)

y(k+1)= [I+S(k)K (k+1)]−1
[ Â(k)y(k)−S(k)g(k+1)+ψ(k)], (13c)

u(k)=−[1 f R̃(k)]−1 B̂T (k)[K (k+1)y(k+1)+g(k+1)], (13d)

where
S(k)= B̂(k)[1 f R̃(k)]−1 B̂T (k). (13e)

Equations (13a) and (13b) are the digital forms of the Riccati and adjoint Riccati equations. The solution
of the DLQR follows the same procedure as explained in [Capó-Lugo and Bainum 2006a]. With this
procedure, the satellites will be reconfigured to the proposed tetrahedron constellation at the following
apogee point.
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6. Results

The complete deployment and station-keeping procedure are defined in the following steps: (1) two 1V
procedures are used to transfer the satellites from a circular orbit to their respective elliptical orbits; (2)
then, the DLQR control scheme is used to correct the drifts in the separation distances and velocities
between any pair of satellites such that the proposed tetrahedron constellation is obtained at the following
apogee point.

Stage 1. The software package used in the simulation for the transfer from a circular to the elliptical orbit
is a released version 6.2 of the Satellite Tool Kit software package (STK) [STK 2003]. The company has
kindly provided an educational license to use many of the STK capabilities. The STK software is very
user friendly and allows simulation in real time. The STK package offers different options for different
sets of data input: one for the basic properties, one for the graphic visualization in two dimensions and
three dimensions, and other modules for the constraints imposed on the problem.

The STK has different orbit propagators to simulate the NASA Benchmark Tetrahedron Constellation.
These orbit propagators are the two body, J2 perturbation, High Precision Orbit Propagator (HPOP), and
the Astrogator. In [Capó-Lugo and Bainum 2005; 2006b], the STK was used with the two body, J2
perturbation, and the HPOP orbit propagators to simulate the tetrahedron constellation for a period of
time. The Astrogator orbit propagator is used here to input the impulse maneuvers detailed in Steps
1-5 in Section 3 to determine if the satellites reach the final elliptical orbit at the same time. This orbit
propagator provides different instructions to define the 1V maneuvers at the perigee and apogee point
for every satellite; in addition, the Astrogator has an instruction that defines the transfer point of the
four satellites. Using this instruction in the orbit propagator, the transfer point is defined when the true
anomaly angle is equal to 90◦; in this way, the desired argument of perigee for the elliptical orbit can be
obtained for every satellite.

In Section 3, the four satellites are located in a circular orbit in which its radius is equal to the radius of
perigee for phase I, and the inclination angle is equal to 18.5◦. The initial time [Carpenter et al. 2003] for
the simulation is June 21, 2009 at 00:00:00 UTCG. This initial date and time was defined in the NASA
Benchmark Tetrahedron Constellation problem [Carpenter et al. 2003]. The simulation is performed
without perturbations because the satellites will not be in the initial circular orbit for a long period of
time such that the perturbations due to the Earth can build up through time. Figure 4 shows the initial
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Figure 4. Initial satellite locations in the circular orbit.
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Figure 5. Satellites in the transfer elliptical orbit.

location of the four satellites in the circular orbit. The locations of the satellites are shown with a circle,
but the four satellites are not shown because of the vantage point of view used in the STK software. The
four satellites have the same separation distance as shown in Figure 2 and mentioned in Section 3. The
difference in the true anomaly angle (δ f ) is assumed to be equal to 0.5◦.

When every satellite reaches a true anomaly angle equal to 90◦, the first burn at the transfer point is
performed such that the satellites are maneuvered into the elliptical transfer orbit. As said earlier, the
Astrogator is instructed to perform a 1V maneuver for every satellite when the true anomaly angle is
90◦. Figure 5 shows the satellites in the elliptical transfer orbit. Once more, the position of the satellites
is shown with a circle in the elliptical transfer orbit, and, through the simulation, the satellites travel near
each other such that the four satellites will arrive at the apogee point at the same time. The STK provides
different tables to show various data points like the position, velocity, orbital elements, etc. for any satel-
lite used in the simulation. The data defining the separation distance between any pair of satellites is used
to determine if the satellites violate the separation distance constraints of the NASA Benchmark Tetrahe-
dron Constellation [Carpenter et al. 2003]. This constraint says that the satellites can not have a separation
distance less than 1 km at any other point in the orbit, excluding the apogee point. At the apogee point, the
nominal separation distance condition is 10± 1 km between any pair of satellites within the constellation.
With these data tables, it is found that the minimum separation distance in the transfer elliptical orbit
between any pair of satellites is greater than 13 km for a difference in the true anomaly angle of 0.5◦. This
shows that no pair of satellites violates the separation distance constraints in the elliptical transfer orbit.

Figure 6 shows the simulation after the satellites reach the apogee point in the elliptical transfer orbit
when the Astrogator is performing the last 1V maneuver explained in step 5 (page 842). In Figure 6, the
satellites arrive at the apogee point at the same time, but there are drifts in the separation distance between
any pair of satellites within the constellation: the separation distances range from 10 to 28 kilometers
(for δ f = 0.5◦). For this reason, the constellation will be corrected with the DLQR to obtain the proposed
tetrahedron constellation at the following apogee point; in addition, SH must be located in its out-of-plane
position to obtain the final formation.

The difference in the true anomaly angle (δ f ) can be analyzed with the STK to determine how δ f
affects the separation distances between any pair of the satellites at the final apogee point. The difference
in the true anomaly angle used in the previous simulations is 0.5◦, but this δ f will be increased to 1 degree
and decreased to 0.3◦ to determine the effects on the separation distance at the final apogee point.
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Figure 6. Satellites at the apogee point of the final elliptical orbit.

δ f SA-SB SA-SC SA-SH SB-SC SB-SH SC-SH

0.3◦ 15.276 10.696 5.406 14.459 13.875 5.290
0.5◦ 14.080 17.960 9.008 20.689 15.258 8.952
1◦ 15.196 35.958 18.018 44.465 27.970 17.940

Table 5. Separation distances (in km) between pairs of satellites for various δ f .

Table 5 shows the separation distance between any pair of satellites within the constellation for the
chosen values of δ f . In Table 5, δ f must be constrained between 0 and 1 degree such that a minimum
separation distance can be obtained at the apogee point. For the pair SA-SB, the separation distance does
not significantly diminish with a decrease in the δ f , but, for the other pairs of satellites, the separation
distance is decreased as δ f decreases. When δ f = 0.3, the separation distance between any pair of
satellites is near the 10 km range; in this way, the DLQR can be efficiently used to correct the drifts
between any pair of satellites to obtain the desired configuration at the final apogee point.

Table 6 shows the orbital elements and the position of the four satellites at the final apogee point. It
can be seen from Table 6 that the four satellites arrive at the apogee point at the same time. Comparing
Table 2 with Table 6, SB can be used as the reference satellite because it has similar orbital elements as
in Table 2. For this reason, SB will be used as the target spacecraft to correct the other three satellites
such that, at the following apogee point, the proposed tetrahedron constellation can be obtained.

SA SB SC SH

a (km) 42,091.02 42,095.44 42,093.47 42,091.02
e 0.818162 0.818359 0.818270 0.818124

i (degrees) 18.5 18.5 18.5 18.5
� (degrees) 0 0 0 0
ω (degrees) 90 90 90 90
f (degrees) 180.056 180.055 180.043 180.059

Table 6. Initial orbital elements for the four satellites within the constellation (Phase I).
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SA SB SC SH

X (km) 410.539171 404.465887 399.847473 405.135249
Y (km) −72567.835478 −72581.128031 −72568.133913 −72567.985691
Z (km) −24280.858097 −24285.305723 −24280.957952 −24280.908358

VX (km/sec) 0.973120 0.972665 0.973407 0.973122
VY (km/sec) 0.027229 0.026829 0.026512 0.026871
VZ (km/sec) 0.009111 0.008977 0.008871 0.008991

Table 7. Initial coordinates and velocities for the four satellites at the apogee point after
the transfer maneuver.

Stage 2. The initial positions and velocities at the apogee point for the four satellites are obtained from
the STK data tables to determine the initial conditions for the DLQR active control scheme. Table 7
shows the initial coordinates and velocities of the four satellites at the final apogee point after the final
transfer maneuver. The values shown in Table 7 are obtained for a difference in the true anomaly angle of
0.3◦ and are used to calculate the difference between the reference and the maneuvering satellites because
the separation distances are near the 10 km in comparison with the other values for the difference in the
true anomaly angle shown in Table 5.

It is known that the reference satellite is SB, and the maneuvering satellites are SA, SC, and SH. The
difference between the reference satellite and the maneuvering satellites for the nominal coordinates
are known as the nominal separation distance. This difference is obtained from Table 1 that defines
the desired coordinates and velocities for the four satellites. The same calculation is performed for the
initial coordinates and velocities shown in Table 7. This difference between the initial coordinates and
velocities is known as the initial separation distance.

In the DLQR control scheme [Capó-Lugo and Bainum 2006a], the initial conditions are defined from
the difference between the satellite initial and nominal coordinates and velocities for these three pairs of
satellites. These initial conditions are the drifts that must be corrected such that, at the following apogee
point, the NASA Benchmark Tetrahedron Constellation can be obtained with the required separation
distance conditions [Carpenter et al. 2003]. Table 8 shows the drifts for the separation distance and
velocities for these pairs of satellites.

SB-SA SB-SC SB-SH

x1( fL)= X S − X N (km) −14.7335 4.6184 −3.5561
x2( fL)= YS − YN (km) −8.5510 −2.7640 −10.2446
x3( fL)= ZS − Z N (km) −2.8611 −1.1748 4.9325

x ′1( fL)= X ′S − X ′N (m/sec) −0.3190 −0.4274 −0.1073
x ′2( fL)= Y ′S − Y ′N (m/sec) −0.4000 0.3170 −0.0420
x ′3( fL)= Z ′S − Z ′N (m/sec) −0.1340 0.1060 −0.0140

Table 8. Initial conditions for the digital LQR control scheme.
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The simulations with the DLQR will begin at the apogee point in which the four satellites arrive after
the second 1V maneuver (Figure 6) and will finish at the following apogee point. At this final apogee
point, the separation distance and velocities for the four satellites will be satisfied. In reference [Capó-
Lugo and Bainum 2006a], it is demonstrated that the DLQR is better approximated when the sampling
in the true anomaly angle is 0.1 radians. The Q and R matrices are 6× 6 positive definite and 3× 3
positive semidefinite diagonal matrices, respectively. The R matrix is chosen to maintain a minimum
consumption of fuel, and the Q matrix is obtained from different simulations to determine a minimum
time problem as shown in reference [Capó-Lugo and Bainum 2007]. In this simulation, the weights for
the Q and R matrices are diag[ 20 20 20 1 1 1 ] and diag[ 1 1 1 ], respectively. As explained in reference
[Capó-Lugo and Bainum 2006a], the positions are weighted more than the velocities because the DLQR
will compensate more the positions that are multiplied by the varying coefficient term, κ .

The thrust system assumed for this simulation is the ion thruster. The ion thruster has a maximum
thrust range between 5× 10−5 and 0.5 N [Wertz and Larson 1999]. In these simulations, it is assumed
that the maximum thrust is equal to 0.5 N. After the final Hohmann transfer maneuvers, the satellites will
be in the elliptical orbit defined by the orbital elements of phase I (Table 6). For all the simulations, yD

is set to zero.
Figure 7 shows the correction of the drifts in the separation distance and velocity for the X direction

for the three pairs of satellites. It can be seen that SB-SC requires less amount of thrust than SB-SH and
SB-SA. For the three cases, the maximum value of the optimal control is 10−3 N in which the DLQR
provides a very good response and optimal use of the thrust in the satellite. The assumption taken between
the initial and final mass in the satellite is approximately correct because of this small expenditure of
thrust. In addition, the maximum thrust for the ion propulsion can be reduced, or the R matrix can be
changed to a different weight forcing the maximum value of the thrust level in Figure 7 to decrease. For
this case, the correction of the drifts and the optimal control came to rest in less than half of an orbit.
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Figure 7. Correction of the separation distance and velocity for the satellites in the X direction.
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Figure 8. Correction of the separation distance and velocity for the satellites in the Y direction.

Figure 8 shows the correction for the separation distance and velocity for the three pairs of satellites
in the Y direction. In this case, SB-SH requires a higher amount of thrust in comparison to SB-SC and
SB-SA because SH is moving to its out-of-plane position to form the tetrahedron constellation. The
correction of the separation distance for the three cases happens near the apogee point because of the
weight chosen for the Q matrix. With this weight, the positions, which are multiplied by the varying
term (κ), are corrected faster than the velocities because, in the TH equations, the coefficients in the
velocity terms are multiplied by constants. The maximum value for the optimal control is 10−3 N, and
the optimal control comes into rest in less than 0.5 days; in other words, the controller comes to rest
before the satellites reaches the first perigee point after the correction begins.

Figure 9 shows the correction for the separation distance and the velocity for the satellites along the
Z direction. In this case, SB-SH also requires a higher consumption of thrust than SB-SC and SB-SA
because, as said earlier, SH will move into a different orbital plane to form the proposed tetrahedron
constellation [Carpenter et al. 2003]. It is also seen that the corrections of the separation distance, the
velocity, and the optimal control take less than half of an orbit. In addition, the maximum value of the
optimal control is approximately 10−3 N and comes to rest in less than half of an orbit.

In all the simulations, the correction for the separation distances and the velocities will be performed
before the satellites reach the first perigee point after the correction begins. In addition, the optimal
control shows a small consumption of fuel for the three pairs of satellites. The assumption made about
the mass inside of the satellite can be used in the DLQR active control scheme for the correction of the
separation distance and velocity drifts. Hence, the NASA Benchmark Tetrahedron Constellation will be
reconfigured at the following apogee point, and, in [Capó-Lugo and Bainum 2007], it was shown that
the satellites will maintain the separation distance constraints for a limited number of complete orbits
when the perturbations due to the Earth are acting on the satellites.



DEPLOYMENT PROCEDURE FOR THE TETRAHEDRON CONSTELLATION 853

0 0.5 1
−5

0

5

Time (days)

S
ep

ar
at

io
n 

D
is

ta
nc

e−
Z

 (
km

)

 

 

SB−SA
SB−SC
SB−SH

0 0.5 1
−5

0

5

Time (days)

V
el

oc
ity

−
V

z 
(k

m
/s

ec
)

 

 

SB−SA
SB−SC
SB−SH

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2
x 10

−3

Time (days)

O
pt

im
al

 C
on

tr
ol

−
T

z 
(N

)

 

 

SB−SA
SB−SC
SB−SH

Figure 9. Correction of the separation distance and velocity for the satellites in the Z direction.

7. Remarks

A different solution for the deployment of the NASA Benchmark Tetrahedron Constellation is provided.
The mathematical procedures are much simpler than in [Williams and Trivailo 2006; Huntington et al.
2006; Huntington and Rao 2006] that use the Pseudospectral methods. All the techniques used to obtain
the proposed tetrahedron constellation [Carpenter et al. 2003] are known and can be easily implemented
for this problem.

In the deployment from the circular orbit to the elliptical orbit, the difference in the true anomaly
angle between the satellites in the circular orbit must be less than 0.5◦ to obtain a minimum value in
the separation distance between any pair of satellites at the final apogee point of the transfer maneuver.
After the final Hohmann maneuver is performed, the satellites will reach the apogee point at the same
time.

After the transfer maneuver is finished, the digital linear quadratic regulator is used to finally correct
the drifts between the three pairs of satellites. It is shown that the satellites have a very small consumption
of energy in which the mass inside of the satellites will not be changing rapidly. The satellite in the out-
of-plane motion will require a higher thrust consumption to obtain the final tetrahedron constellation.

In conclusion, this work contributes, for the first time, a different solution for the deployment and
station-keeping of the NASA Benchmark Tetrahedron Constellation when Hohmann transfer maneuvers
and a digital linear quadratic regulator are combined to obtain the desired formation. Using both tech-
niques, a small consumption of fuel is obtained for the deployment procedure of the proposed tetrahedron
constellation.
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EVOLUTIONARY CONTROL OF STRUCTURALLY DAMAGED STEEL
BUILDINGS USING AN OPTIMAL STATE TRANSITION FORMULATION

THOMAS L. ATTARD AND ROBIN E. DANSBY

An evolutionary gain formulation is proposed for minimizing the performance damage index of steel
buildings subjected to earthquake forces. The gain formulation herein is used to develop the evolutionary
control law of a control algorithm applied to inelastic systems. The optimal evolutionary gain is subse-
quently used to control building damages by satisfying desired performance objectives per time step “as
needed”. The performance objectives are defined for various “damage-safe” and elastic demands. When
the structure responds in the post-yield (inelastic) state, the material is assumed to follow a kinematic
rule for strain hardening, which consequently may redefine the performance objective window at each
unload/reload response state (cyclic control).

A control nonlinear time-history analysis program, dubbed CONON, was developed to simulate the
stress-strain responses of structural members and to compute the optimal control forces per time step.
The minimization of the cost function is independent of weighing matrices, thus alleviating cumbersome
calculations that also lack physical description. Instead, an iterative Riccati matrix is computed per time
step and is used to generate the evolutionary gain for the system leading to an appropriate evolution of
the state transition between time steps. The calculated control responses are compared to uncontrolled
responses. The results are also compared using various methods of gain calculation by examining the
force-deflection hysteresis plots, the strain energy dissipation in the structural members, and the member
accelerations of a steel frame. The proposed optimal system shows an excellent capability to control the
desired target responses and meet acceptable performance objectives.

1. Introduction

Performance-based structural engineering may be defined according to allowable damage performance
levels (e.g., life safety or collapse prevention objectives [FEMA 2001]), or according to structural control
theory. Control devices may be manufactured to utilize this latter control-based formulation to enable
structures to respond elastically by providing damage-mitigation capability [Ohtori et al. 2004].

Structural control devices may be classified into three general categories: passive, active, and semiac-
tive [Christenson and Emmons 2005]. Passive control is characterized by nonadaptive behavior. Such
devices are typically designed for an expected earthquake and are unable to vary their resistance during
a seismic event [Hart and Wong 2000]. Active and semiactive control devices, however, have the ability
to adapt to the performance needs of a structure during an earthquake. Active control devices work by
applying counterforces to reduce structural responses. Semiactive control devices require less power to
operate [Christenson and Emmons 2005] and are able to apply resistive forces by effectively changing
the stiffness and/ or damping in a structure thus reducing the structural responses.

Keywords: evolutionary structural dynamics, optimal control, evolutionary gain, plastic analysis, inelastic structures.
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Passive base isolation and (passive) viscous damping as adopted by the Federal Emergency Manage-
ment Association [FEMA 2001] and the International Building Code [IBC 2003] may provide viable
and relatively inexpensive solutions toward mitigating seismic damages in buildings. However, certain
long-period displacement pulses (having low frequencies) that have been associated with near-field or
pulse-type ground motions [Makris 1997; Kelly 1999] in the direction of the fault-plane rupture have
shown large damage-inducing ability. This is due to the large amount of energy contained in such ground
motions that may be imparted to the structures through large velocity pulses [Howard et al. 2005; Zhang
and Iwan 2002]. Recent simulated stationary (random) plastic analyses of single- and multi-degree of
freedom buildings by [Attard and Mignolet 2005; Attard and Mignolet 2008] have verified this. The study
revealed that structural damage did not exceed certain thresholds even under near-resonant conditions
unless an increase in the amount of energy was supplied through the ground motion.

While the lateral force-resisting system in buildings may be significantly improved by implementing
semiactive devices or various energy-dissipating devices, inherent difficulties could include time-delays
and/ or the suddenness of the engaging/ disengaging behavior of these devices. [Nagarajaiah et al. 2000],
and [Varadarajan and Nagarajaiah 2004] developed a semiactive device to transition smoothly thus avoid-
ing high-frequency resonance. Variable damping devices have been developed and applied by [Symans
and Reigles 2004] and [Madden et al. 2002] as part of a “hybrid” system that uses passive base isolation
to avoid structural resonance and dissipate high-energy from near-field excitations. Magnetorheological
(MR) fluid dampers [Gavin et al. 2003b; Gavin et al. 2003c; Gavin et al. 2003a] have been used in variable
damping devices and also in combination with variable stiffness devices in smart base-isolated systems
[Nagarajaiah et al. 2004; Nagarajaiah and Mao 2004] to continuously vary their stiffness and damping
and remain in a low energy nonresonant state during an earthquake (through the feedback mechanism).

Control devices develop control forces using embedded control laws. Their effectiveness may be
verified through benchmark testing [Ohtori et al. 2004; Reynolds and Christenson 2006] or through
analytical software test beds [Caughey 1998]. Many control laws are developed assuming a linear elastic
response of the structure throughout the duration of loading. However, a seismic event may cause a
structure to yield and respond inelastically despite the use of a control device [Wong 2005a; Wong 2005b].
In another scenario, if the structure already contains some preexisting damage, a ground excitation,
for example, may cause the damaged structural members to respond nonlinearly. Because a nonlinear
response may produce a significantly different result than a linear approximation, it is important to
develop a control algorithm that can accommodate the inelastic behavior of a structure [Ohtori et al.
2004]. Such control algorithms have been proposed by [Wong 2005a; Wong 2005b; Ohtori et al. 2004],
and [Zhou et al. 2003]. The Predictive Optimal Linear Control (POLC) algorithm developed by [Wong
2005a; Wong 2005b] was later expanded to include inelastic structural responses using a force analogy
method (FAM). This algorithm developed by Wong reduces the time delay associated with the controller
unit by calculating the state space transition matrix used in the control law formulation only once rather
than at each time step. This is accomplished by varying the structural displacement field rather than
varying the stiffness. Because time delays can greatly reduce the efficiency of the control mechanism
[Yang et al. 1990], cutting the computational time is one way to improve the overall system response.
The study by [Wong 2005a; Wong 2005b] investigates the effectiveness of his algorithm in the control
of inelastic structures. The algorithm was tested using various magnitudes of time delay and various
control gains. The results showed that the algorithm was effective in controlling the response of various
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inelastic structures, but decreased in efficiency with increased time delay due to the control force being
applied out of phase with the structural displacement [Agrawal and Yang 2000].

The algorithm developed by [Ohtori et al. 2004] uses the Newmark-Beta method which is altered to
accommodate a nonlinear structural system. The purpose of the study was to test the efficiency of a
complete control mechanism (including structure, damper, controller, sensors, etc) using a benchmark
problem, not to present a competitive design. Nonetheless, this control mechanism did offer slight to
moderate improvements in the calculated structural drift and moderate to substantial improvements in the
calculated floor accelerations. Further investigations of control strategies were performed by [Christenson
and Emmons 2005], and [Reynolds and Christenson 2006]. Both employed a clipped-optimal H2/L Q R
controller. The study performed by [Christenson and Emmons 2005] was an analytical investigation
of the reliability of a semiactive control strategy. Results showed that the control strategy reduced
the maximum damage to the structure compared to the uncontrolled system [Christenson and Emmons
2005]. The study performed by [Reynolds and Christenson 2006] was an experimental verification of an
analytical benchmark problem. Experimental verification is important because it captures phenomena
that analytical methods may not, such as higher mode effects, sensor noise, and interaction between the
structure and damping device [Reynolds and Christenson 2006]. The results indicated that the control
mechanism was able to control structural damage and accelerations for moderate ground motions with
small amounts of nonlinear behavior but was limited when subjected to severe earthquakes that caused
the structure to exhibit more significant nonlinear behavior.

The fuzzy control algorithm developed by [Zhou et al. 2003] for the control of inelastic buildings used
an adaptation law to increase the robustness of the control device. The adaptation law was used to change
the parameters, specifically for an MR damper. By controlling the stiffness and damping through the MR
damper, the control device was able to vary its resistive force in real time to meet the current demands
of the system. This enabled the control device to be effectively incorporated into buildings without prior
knowledge of the building-damper interaction or the excitation it may encounter [Zhou et al. 2003].

In terms of reducing structural accelerations, the study performed by [Wong 2005a; Wong 2005b],
which employed a similar control strategy (POLC expanded for inelastic structures with FAM), the
acceleration response from the controlled system was higher than the response from the uncontrolled
system. Investigations of active variable stiffness systems performed by [Yang et al. 1996] showed that
while these types of systems are effective in minimizing interstory drifts, they may cause a significant
increase in floor accelerations [Ribakov 2004].

The investigation performed herein uses the Predictive Optimal Linear Control algorithm for inelastic
structures, but employs an evolutionary approach for calculating the gain in order to make the control
device adaptive to the needs of the structural system in real time by meeting performance objectives at
each time step. Convergence to the optimal gain value is achieved by satisfying performance objectives,
which are predefined either by assuming a maximum allowable inelastic deflection, or by a maximum
inelastic strain after yielding has occurred in a member, which is related to the amount of strain-energy
being dissipated. The latter is more conscientious of the amount of damage that a structure may incur
and also adapts to the inelasticity of the structure which is assumed to kinematically strain-harden in
order to model the anisotropy experienced by the material during cyclic unloading/ reloading. The
investigation formulates an optimal linear control law using an evolutionary state-transition to meet
various performance objectives at each time step in both elastic- and inelastic-responding structures.
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Two control algorithms are developed in this study: The first is predicated on the absolute responses
of the structure, and the second uses the changes in the responses per time step (“delta responses”).
It is determined that the optimal control law solution used to reduce structural damages in terms of
displacements, strain energy dissipation, and acceleration reduction needs to be formulated using the delta
responses using strain-based performance objectives. The procedure is entirely automated in a program
developed herein, CONON (for control nonlinear time-history analysis), which simulates the optimally
controlled responses of earthquake-excited systems through a feedback mechanism and evolutionary
gain.

2. Analysis of damaged systems

It is believed that the time-history responses of a controlled structure needs to be calculated using a con-
trols solution that is capable of analyzing systems that may have already yielded or have been damaged.
There are three justifications for developing an inelastic evolutionary control solution. The first reason is
that if a structure contains preexisting damage, then an elastic-based controls solution may not provide
accurate controllability during a subsequent external excitation because the structure had already been
damaged (and become inelastic), and in doing so, had lost some of its original strain energy. Secondly,
even if the structure shows no signs of exterior damage, not only may some internal damage exist, but a
strong unexpected earthquake may excite the structure enough to cause it to respond inelastically (beyond
its elastic yield limit) during loading. Thirdly, because there are physical limitations to using external
damping mechanisms, inevitable time delays due to (a) gathering sensor information/ noise interferences,
(b) control device reaction time, and (c) computational delays may significantly delay when a control
force is applied and preclude the structure from responding quickly enough to behave elastically and
thus resulting in damage. Further, it is shown that by forcing a system to yield by continuing to apply
a control force even after a performance objective has been met during unloading enables the system to
dissipate some energy input to the system via the control device or by the earthquake. This is shown
herein to reduce large accelerations that would otherwise occur in the structure.

The formulated controls solution generates and applies control forces on an as-needed basis during
an earthquake, as opposed to applying a force at each time step [Kim and Adeli 2004; Wong and Yang
2002]. Further, the gain formulation used in the proposed solution is optimally computed at each time
step as opposed to using a single gain that is only calculated initially [Franklin et al. 2002]. Also,
the performance objectives are defined as allowable inelastic demands – i.e., some acceptable level of
damage is permitted. In this light, control solutions based on performance objectives defined using
allowable post-yield displacements are compared to those based on allowable post-elastic strains. The
latter, strain-based, approach assumes an evolving window of acceptable inelastic strains depending on
the structure’s yield displacement during each cycle. Thus, the performance objective may be thought
of as an allowable moving range of post-yield strains for each cycle of response.

By analyzing the control of inelastic systems, the control force may be larger than that used to control
an elastic system since the damaged material would at this point provide inherently less resistance due
to its already-damaged state and subsequent reduced stiffness. The large control force may result in
large accelerations, which, as noted above, may then be controlled by forcing the system to yield after
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unloading. In other words, additional control force may help the structure rehabilitate itself through its
material hysteresis.

Controlling inelastic responses computationally prepares a controller for any potential damage that
may occur. By prescribing a moving performance window in terms of allowable inelastic strains past yield
(i.e., an allowable range of inelastic performances), then the control force may be significantly reduced,
thus making the control device more cost-effective. The inelastic behavior itself may be defined according
to the anisotropic nature of materials once they have been damaged, thus resulting in a kinematic strain
hardening of the material [Wu 2005]. Therefore, the structure may experience large, yet safe, lateral
deflections and more importantly safe inelastic strains during each cycle.

Displacement-based versus strain-based performance windows. The displacement-based performance-
window is defined globally where the range of allowable lateral displacements in each member is fixed
for each cycle and is measured with respect to the equilibrium position of the member (e.g., at the origin
in Figure 1).

However, the inelastic strains (defined here as the post-elastic strain after yielding has occurred in a
member on a given cycle) may fluctuate from cycle to cycle. Therefore, the strain-based performance
window uses a moving range of inelastic strains per cycle whenever control is used, and in this sense, it
may be defined as a local objective. This creates a flexible algorithm for controlling inelastic strains that
controls the amount of strain energy that is dissipated, which subsequently helps to reduce the amount
of permanent member damage.

In the strain-based control approach, the allowable inelastic strains are defined per cycle after a member
has yielded. In Figure 1, the material is shown to kinematically strain harden with yield strain 1.0× εyield,
which corresponds to a positive (right-side) lateral deflection of 1 in; the allowable performance objective
is 0.5εyield per cycle once the member has yielded; thus, the allowable right-side deflection is 1.5 in, and
the allowable lateral deflection left of the origin is 0.5 in. This is illustrated by the solid line after yielding
has occurred. In displacement-based control, however, the allowable lateral (global) deflection remains
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Figure 1. Illustration showing displacement control using a fixed performance window
and strain control using a changing performance window.
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fixed for any cycle and is independent of the hysteresis. In the Figure 1 example, the fixed global range
(displacement control) is +/− 1.5 in (shown by the dotted lines). Ultimately, the strain-based approach
enables a member to dissipate less energy per cycle, and, as it will be shown later, is a better strategy
for controlling inelastic damage. Further, the strain-based methodology utilizes a kinematical strain
hardening approach instead of an isotropic approach, where the former models the material anisotropy
in damaged systems more accurately.

Displacement-based control. A displacement-based performance objective is described as a predefined
allowable displacement measured from a member’s equilibrium, or undeformed, position; see Figure 2a.
The equation

(displacement-based control) |x |> |xperf| (1)

gives the condition for applying displacement-based control, where xperf is the performance objective (i.e.,
allowable displacement), and x is the calculated displacement that is measured at the tip of a member that
has been subjected to cyclic loading; x is measured relative to the undeformed position of the member
defined at the F = 0 axis (lateral force to the member) in Figure 2a.

By using this fixed-window approach to control displacements, the control of inelastic strains, which
are cyclic-dependent, is not addressed. In other words, inelastic strains are calculated based on each
new yield position of a member (and are not measured relative to the original undeformed position of
the member). For a given cycle, each yield position may be different from a previous yield position and
depends on the unloading/ reloading displacement (xunload) for that cycle. The inelastic strain on the i-th
half-cycle is proportional to the displacements (relative to the equilibrium position) as shown by (1):

εi ∝ |xunload| − 2|xyield| + |xperf|, (2)

F

x

yieldx

unloadx

yieldunload xx 2−

perfyieldunloadi xxx +−∝ 2ε

unloadperf xx =
perfx

F

perfx
perfx

F

x

Fixed Window

perfx
perfx

F

x

Fixed Window

Due to 

(a) (b)

Figure 2. Displacement-based control (fixed window; left diagram) where control is
called when x = xperf (ideal, no time-delays; right diagram).
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Figure 3. Displacement-based control where control is called when allowable inelastic
strain is larger than the ideal inelastic strain due to (a) time delay; (b) same-side reyield-
ing after load reversal.

where εi is the hysteretic half-cycle inelastic strain in the member, and xyield is the displacement when a
member had first yielded (i = 1). Figure 2b shows that xunload = xperf, which is an ideal scenario. In reality,
however, sensor or controller limitations, including time-delays, result in the performance objective being
exceeded before a control force is applied, where |x |> |xperf|; see Figure 3a. Another possibility is that
the control device is able to successfully unload the member (“first unload” in Figure 3b) and meet the
desired performance objective, but instead of eventually yielding along this same direction, the member
reverses direction and reyields at the point of first unload (the member “remembers” this most recent
unload point because of the presence of residual stresses that exist in damaged members.). The control
device is then required to unload the member again (“second unload” in Figure 3b). However, this second
control force is significantly larger than the previous force because of the increased level of damage and
accumulated strain in the member, and because of the previous injection of control force into the system.
This results in an energy surplus that the member was unable to initially dissipate (by having not yielded
earlier in the direction of first unload). This has several adverse repercussions, including costly control
devices (requiring larger force capacity) and large acceleration demands in damaged members. Hence,
load reversals may be quite harmful to a control system’s capability to adequately control damaged
systems; the issue is addressed later.

Strain-based control. Inelastic strain-based control enables a damaged member to dissipate less hys-
teretic energy than displacement-based control (Figure 1) by using a moving-window approach to satisfy
performance objectives. A post-yield member displacement on each half-cycle, c, corresponds to an
allowable post-yield strain measured from the point where the member yielded on that half-cycle, and
not from the equilibrium position as in displacement-based control:

(strain-based control) εi ≥ εperf, where εperf ∝ x̂perf,c. (3)
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Here εperf is the allowable strain following each yielding event and is proportional to a corresponding
allowable performance displacement x̂perf,c. By using such a flexible performance-window, the control
algorithm may accurately converge to the desired performance objectives while remaining stable and also
reducing member accelerations. Figure 4 illustrates the same scenarios as Figures 2 and 3 using strain-
based control where the inelastic strain remains the same as the ideal inelastic strain. The illustrations
show that strain-based control may limit the amount of inelastic strain that a member experiences, which
would in turn limit the amount of strain energy that is dissipated and control member damage.
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=Figure 4. (a) Strain-based control (moving window) where control is called when: (b)
x = x̂perf,c (allowable inelastic strain = ideal strain, no time-delays); (c) allowable in-
elastic strain equals the ideal inelastic strain even in the presence of time delay; and (d)
allowable inelastic strain equals the ideal inelastic strain even after same-side reyielding
occurs after load reversal.
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Rehabilitative control: forcing members to yield. Note that in order to facilitate all further discussions,
the performance objective will not be distinguished between xperf (displacement-based) and x̂perf,c (strain-
based); instead, xperf will be commonly used. When a performance objective is exceeded (displacement
xk+1 in Figure 5a), the “control unload” routine is called in CONON to attempt to unload the member
on the subsequent time step. If the algorithm is unsuccessful in unloading the member (possibly because
of the control-induced energy that had already been residing in the system), then the algorithm proceeds
to the next time step and calculates a new control force to again attempt to unload the member. This
enables the material to dissipate any residual (control) energy that may have been present, thus making the
member more receptive to the new imposed control. Figure 5a illustrates the application of an unloading
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Figure 5. Controlled unloading of a member: (a) meeting the performance objective in
a single time step after the member is unloaded; (b) meeting the performance objective
in multiple time steps; (c) rehabilitating a member by forcing it to yield; (d) same-side
reyielding after the performance objective has been satisfied.
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control force over time step, 1t ; the control algorithm will deactivate at the end of 1t if the performance
objective is satisfied. However, if the member unloads but does not satisfy the performance objective on
step k, then a new control force is calculated that is applied on the ensuing time step (k + 1) until the
objective is finally satisfied, for example on time step (k+ 2) as in Figure 5b.

As discussed in the preceding subsection (page 860), there are times when a performance objective may
be satisfied, yet the control algorithm commands additional force to be supplied to continue unloading
the member until it yields; see Figure 5c (time step k + 3). The reason for this is to prevent same-
side reyielding that would have otherwise induced additional strain hardening in the member; same-side
reyielding is defined as a reversal in the member displacement and subsequent reyielding on the same-
side that had originally unloaded; see Figure 5d. Thus, the forced yielding rehabilitates the structure by
allowing it to dissipate any surplus energy it may have absorbed earlier. This helps reduce the velocity
and acceleration of the member and maintains a stable system [Attard et al. 2009]. The time step over
which the member is being forced to yield is iterated (see Figure 5c, time step k+ 3) until the necessary
state-space transition matrix, Ss , and control force help the member yield. A new control force is then
applied over the remainder of the time step (1t −1t ′) using the appropriate reduction in the member
stiffness.

3. Optimal inelastic control for already-damaged structures

The control law herein is used to formulate an optimal, evolutionary gain and subsequent control force
for the purpose of reducing demands that may have exceeded prescribed performance objectives. The so-
lution is formulated in state-space. The energy-based cost function is minimized, and structural demands
may be controlled per time step. In this sense, the control device responds to each response in real-time
and employs a new gain formulation at each time step only as-needed for the purpose of generating
an appropriate counteracting force. This approach may be used in lieu of a constant or predetermined
gain formulation that is otherwise used throughout the response time history in calculating a continual
resistive control force. However, when a control device adds energy (either from an evolutionary gain
or a constant gain basis) into a damaged (inelastic) member, there needs to be a mechanism in place to
dissipate this additional energy since the damaged member has less resistance (i.e., less of its original
strain energy). Without such a mechanism, the control force may even be counterproductive and result
in increased damage and instability in the member response.

The algorithm in CONON is developed using an optimal linear centralized approach that is based
on linear quadratic theory [Franklin et al. 2002]. The evolutionary gain is calculated by adapting the
Riccati matrix per time step, where the damaged member may either be rehabilitated (see above), or
where smaller quantities of control energy are formulated and utilized per time step in the calculation
of the control force (discussed later). An allowable response window is used to represent the amount
of tolerable material damage in a structural member. The allowable window may remain either fixed
(displacement-based control) or flexible (strain-based control), where the latter accounts for the material
anisotropy in damaged members caused by the realignment of the material’s molecular structure.

The equation of motion for an multi-DOF shear-frame excited by horizontal base ground accelerations,
ẍg(t), is given by

Mẍ(t)+Cẋ(t)+ K x(t)=−Mẍg(t)− FR(t)+ D fc(t). (4)
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The location vector of the control devices having control force fc(t) is given as D. The mass and damping
matrices are defined as M and C , respectively. The displacement vector relative to the ground is defined
as x(t). The elastic stiffness is defined as K , which is a linear nonhysteretic spring that provides the only
restoring force to the frame until yielding occurs in the j-th member at which point the nonhysteretic
spring force remains constant, and x j (t)= xyield, j , where x j (t) is a component of x(t). The hysteretic
restoring force, FR , which includes the post-yield deflection, appears in those members that have started
to yield (i.e., x j (t) > xyield, j ).

FR(t)=
plex∑
i=1

αi j K xie,i j (t), (5)

where the proportionality factor, αi j , in (5) is the ratio of the inelastic stiffness to the elastic stiffness
of the j-th member in the shear-frame. The term plex is the number of plastic excursions that the j-
th member may ultimately experience during a given half-hysteretic cycle, where i represents the state
of damage in the j-th member. The separation of the elastic and inelastic stiffness components in (4)
facilitates the proposed inelastic control. The inelastic displacements, xie,i j , in (5) may be expressed as

xie,i j (t)=

{
xtot, j (t)− xyield, j −

i−1∑
m=1

xie,mj (t) if i ≥ 2,

xtot, j (t)− xyield, j if i = 1.
(6)

The displacement xtot, j (t) is calculated relative to when the now-yielded member started to unload or
reload on any given half-cycle. The degradation of the stiffness is developed by introducing a nonlinear
kinematic strain hardening in the material, where on a given half-cycle, a member will reyield at a
displacement equal to the most recent unloading displacement minus twice the initial yield displacement
[Ragab and Bayoumi 1999]. This permits each hysteresis loop to close and merge with each preceding
loop [Lemaitre and Chaboche 1990]. Additionally, the same set of αi j factors are used in calculating
the degraded member stiffness starting with each half-cycle. Finally, the most recent member stiffness
immediately before unloading is “remembered” to account for any residual stresses in the event that a
load reversal occurs and the member reyields.

Damaged (inelastic) members have less restoring force capability than undamaged (elastic) members,
thus requiring larger control forces that result in high manufacturing costs. In order to minimize the
requisite control force, an optimal Riccati matrix and a new (or evolutionary) gain are used during
each necessary time step to produce an optimal control force that will help satisfy elastic or inelastic
performance objectives. The procedure is entirely automated in CONON. The control force is calculated
using an optimal linear closed-loop control algorithm which relies on the velocity and displacement of
the structure. The control law may be expressed as

fc(t)= fc1(x(t))+ fc2(ẋ(t)), (7)

where fc(t) is the applied control force, and fc1 and fc2 are functions that govern the participation of the
structure’s displacement and velocity in the calculation of the control force. The objective is to determine
the forms of fc1 and fc2 that will produce a control force to satisfy the desired performance objectives.
Therefore, the cost function Jk in (8) is minimized subject to the constraint of the state-space response,
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zk+1, where

Jk =

∫ tk+1t

tk

1
2

(
zT

k (t)Qzk(t)+ f T
c,k(t)R fc,k(t)

)
dt . (8)

The Riccati matrix is determined iteratively and is used to relate the current state-space response of the
member, zk , to a Lagrange multiplier, where the latter is used to find an expression for zk+1 in terms of
zk and which also leads to the calculation of the control law of fc,k (where k is the time step over which
the control force is calculated). The cost function, Jk , is minimized per k-th time step over the time step
interval, 1t , and Q and R are weighing matrices that affect the controlled responses and applied control
force, respectively. The state-space response vector (for DOF degrees of freedom) is expressed as

z(t)=

{
x(t)
ẋ(t)

}
(2 DOF)×1

(9)

and after multiplying through with M−1, we may express (4) in state-space form as

ż(t)= Az(t)+ H ẍg(t)+
plex∑
i=1

Fc,iexie,i j (t)+ B fc(t), (10)

where we have introduced the following matrices:

A=
[

0 I
−M−1 K −M−1C

]
(2 DOF)×(2 DOF)

H =
{

0
−I

}
(2 DOF)×1

(11)

Fc,ie =

{
0

−αi j M−1 K

}
(2 DOF)×1

B =
{

0
M−1 D

}
(2 DOF)×1

(12)

Here I is the identity matrix, 0 is a zero vector, H is a location vector of the excited DOFs under action
of the ground accelerations, B is the location vector of the control forces, and Fc,ie characterizes the
inelastic state of the members using αi j . The minimization of the cost function in (8) is a recursive
procedure that may be made on any necessary time step over which a performance objective has been
exceeded, thus leading to the calculation of the state-space response zk+1 on time step k+ 1:

zk+1 = Ss,k+1zk +G B−1 H ẍg,k(t)+ G B−1
plex∑
i=1

Fc,iexie,i (t), (13)

where
G = A−1(eA1t

− I)B (14)

and
Ss,k+1 = I eA1t

+G[0ev
k+1]. (15)

The evolution of the state-space transition matrix, Ss , is a function of the gain (expressed by 0ev
k+1, the

evolutionary gain matrix), and transitions the response from time step k to step k+1, while enabling
zk+1 to converge to the predefined performance objective zperf. The evolutionary gain matrix, 0ev

k+1, is a
function of the Riccati matrix, Pk+1, which is calculated iteratively so that Pk+1 ∼ Pk :

Pk+1 = Q+ (eA1t)T Pk(I + G R−1GT Pk)
−1eA1t . (16)
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The evolutionary gain may be expressed as

0ev
k+1 =−(G

T Pk+1G+ R)−1GT Pk+1eA1t (17)

and the control force as

fc,k+1 = [0
ev
k+1]zk . (18)

The minimization of the total state-space response, z(t), over the entire time history may finally be
expressed as

J =
TimeCount∑

k=1

∫ tk+1t

tk

1
2

(
zT

k (t)QzT
k (t)+ f T

c,k(t)R f T
c.k(t)

)
dt, (19)

where TimeCount is the number of time steps in CONON’s numerical simulation algorithm.

4. Control force methodology: absolute-Z approach versus delta-Z approach

Two methods are used to calculate an optimal control force, fc,k+1. In the first, the gain is used in
conjunction with the absolute displacement of the structure while the second approach employs the gain
in conjunction with the absolute value of the difference between the exceeded displacement (xk+1) and
xperf, where xperf and ẋperf are the performance objectives for displacement and velocity, respectively.
The former approach is referred to herein as the absolute-Z approach, and we will refer to the latter as
the delta-Z approach. The absolute-Z approach uses the state-space response in (9) to minimize the cost
function in (19) over the time history. In the delta-Z approach, Equations (8) and (9) are modified to
include difference (or “delta”) components, 1zk , on each time step:

Jk =

∫ tk+1t

tk

1
2

(
1zT

k (t)Q1zk(t)+ f T
c,k(t)R fc,k(t)

)
dt, (20)

where

1zk =

{
|xk − xperf|

|ẋk − ẋperf|

}
. (21)

It is assumed that ẋperf is zero after applying the control force

fc,k+1 = [0
ev
k+1]1zk . (22)

If, after calculating fc,k+1 and solving for zk+1 in (13) via the minimization of (8), it is found that
xk+1 6= xperf, then a new control force fc,k+1,n is calculated on that same time step k+1, where n represents
the iteration number on time step k+1. The iteration continues until the performance objective is satisfied
using the same value of Pk+1; see (16), during that time step. New Qn and Rn values are calculated on
the n-th iteration by multiplying previous Qn−1 and Rn−1 by scale factors, βx,k+1,n , βẋ,k+1,n , and γk+1,n .
This results in a new 0ev

k+1,n , which is used to calculate a new force fc,k+1,n in (22). The factors βx,k+1,n ,
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βẋ,k+1,n , and γk+1,n are determined using the displacement xk+1,n−1:

βx,k+1,n =
|xk+1,n−1− xperf|

xperf
βx,k+1,n−1

βẋ,k+1,n =
|xk+1,n−1− xperf|

xperf
βẋ,k+1,n−1

γk+1,n =
|xk+1,n−1− xperf|

xperf
γk+1,n−1


for n ≥ 2, (23)

where xk+1,1 may be calculated using (13) and (9). Initially, Q and R (see [Hart and Wong 2000] and
[Conner 2003]) are defined as

Q =
[

K 0
0 M

]
, R = [I]. (24)

The scale factors are applied over each iteration; the parameter βx,k+1,n multiples K , βẋ,k+1,n multiplies
M, and γk+1,n multiplies R. The evolution of 0ev

k+1,n occurs iteratively on each time step whenever the
performance objective has been exceeded. This forces the damaged (inelastic) members to unload without
significantly overshooting the prescribed objective – either for an allowable displacement (displacement-
based control) or allowable inelastic strain (strain-based control). In addition, the velocity and acceler-
ation demands are reduced because ẋperf is assumed to be 0. In a “constant” gain formulation, Q and
R remain constant, which may hinder the inelastic structure from unloading even after the performance
objective has been exceeded. Further, a constant gain may potentially infuse a structure with too much
energy and make it unstable [Attard and Dansby 2008].

There are three advantages to using the delta-Z approach over the absolute-Z approach and thereby
working with smaller demands, xk − xperf:

(1) The control device needs to dissipate smaller quantities of energy during each time step and therefore
generate smaller control forces that result in smaller device costs.

(2) The convergence algorithm in CONON for meeting the performance objectives remains consistently
stable.

(3) The velocity and acceleration responses of the structure are significantly reduced.

Since the control algorithm uses a delta state response vector, 1zk , as input — see (21) — the solution
(i.e., the output) to (13) is also in “delta” form and is calculated as 1zk+1 in (25).

1zk+1 = Ss,k+1(1zk)+G B−1 H ẍg,k(t)+G B−1
plex∑
i=1

Fc,iexie,i (t). (25)

To convert 1zk+1 to the new state response (i.e., to the new delta displacement and velocity), 1zk+1 is
added to zperf, which results in the new state response

zk+1 =1zk+1+ zperf. (26)

The error between xk+1 and the performance displacement, xperf, on the (k+ 1)-th time step is

errk+1 =
|1xk+1|

|xperf|
, (27)
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Figure 6. Illustration of the delta-Z approach: 1xk+1 is measured from the performance
objective, or xperf with (a) 1xk+1 = 0, where the performance objective is satisfied ex-
actly, (b) 1xk+1 < 0, where the performance objective is over-shot, and (c) 1xk+1 > 0,
where the performance objective is under met and not satisfied.

where
1xk+1 = xk+1− xperf. (28)

If errk+1 does not exceed a predefined error, the performance objective was satisfied on time step (k+ 1);
see Figure 6a. However, if |xk+1| < |xperf|, the performance objective was met and exceeded (over-
shooting), and the algorithm proceeds to the next time step; see Figure 6b. |xk+1| > |xperf|, the target
displacement was not met; see Figure 6c. In this last case, a control force is calculated again using (22),
and the process repeats until the predefined error is not exceeded. This flowchart below illustrates the
delta-z approach:

 If No:

Calculate Gain(ev)k+1,n

Calculate fc,k+1,n , equation (22)

Recalculate          , equation (25)

→ →∆ →∆ → ++ 1
)26(

1
)25()21(

k
Equation

k
Equation

k
Equation

k zzzz ?1 kk xx ≤+

1+∆ kz

n1,kn1,k,xn1,kx,  and , , Calculate +++ γββ
&

If Yes:

Calculate the acceleration response

Store         as           1+kz kz

5. Numerical examples

In the following examples, CONON used the state-space formulation discussed above when it was neces-
sary to simulate the gain evolution and control responses (i.e., when the performance–objective had been
exceeded). During all other time steps (when control was not necessary), the response time histories
were marched by the Newmark Beta scheme assuming a linear change in the acceleration between time
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section W12×50 (W310×74)
mass m 0.5 kips-s2/in (87.5 kN-s2/m)
modulus E 29000 ksi (200 GPa)
length L 12 ft (3.66 m)
σyield 36 ksi (248 MPa)

Table 1. Single-DOF properties of the benchmark system.

steps. In either case, the time steps (1t) were separated 0.02 seconds apart until the final time of the input
earthquake starting from zero initial conditions. The properties of the single-DOF benchmark system
used in the following examples are shown in Table 1. The analyses assumed rock-like ground conditions
and 5% damping. The benchmark structure is modeled using two 3.65 m (12 ft) columns having total
elastic stiffness of 160.8 kN/cm and an elastic natural frequency of 2.15 Hz (for initially fixed-fixed
connections). The structural responses were simulated using the first 20 seconds of the El Centro ground
acceleration record (S00E component) of the 1940 Imperial Valley Earthquake. In the cases where the
calculated displacement at the tip of each column was not permitted to exceed the yield limit (e.g., to safe-
guard against potential time-delays), the prescribed performance objective was calculated as a percentage
(under 100%) of the yield deflection, xyield (which equaled 0.705 in), and the predefined error was taken
as 0.1%; see (27). When the displacement exceeded xyield, the post-yield stiffness degradation in each
member was calculated using α11 = 0.18 [Attard 2005] in (5) and (12); and a value of 1 was used for the
constant plex in (5).

The W12 × 50 sections are assumed to kinematically strain harden, which accounts for the material
anisotropy when the members unload/reload as shown in the main graph of Figure 7. The elastic (εe)
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Figure 7. Model of kinematic strain hardening (anisotropic hardening). The insets show
the elastic and plastic strain components (upper left) and through-thickness stress distri-
bution (lower right).
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and plastic (ε p) strain components are shown in the inset graph on the top left, and the bilinear stress
function (σx) used herein to calculate the post-yield stresses in the members once their cross-sections
have yielded is calculated according to (29), where y is the depth to σx , and e is the elastic depth in the
through-thickness of the cross-section; this is shown in the graph at the bottom right of the figure.

Embedding in CONON the model described by Figure 7 and the equation

σx = σy + σyα1

(
y
e
− 1

)
for y ≥ e. (29)

we obtain the benchmark responses of the single-DOF system (using no control) shown in Figure 8.

Constant gain. Two ways of applying a constant gain were investigated. First, a constant gain was
applied in an always-on condition every other time step (2x1t , or every 0.04 seconds) to build a conserva-
tive time delay into the response simulation. Secondly, a constant gain was applied after the performance
objective had been exceeded, thus enabling control to be used in an as-needed condition.

Always-on condition. In a simulation (noted as case 1) of the single-DOF system (see Table 1) using
the always-on condition, the following scale factors were determined using the absolute-Z approach
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Figure 8. Benchmark shear-frame simulation (as-is system using no control): (a) force-
displacement hysteresis; (b) displacement time histories; (c) velocity time histories; (d)
acceleration time histories.
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assuming a performance objective of 0 in measured at the tip of the column on the top story: βx = 0.32768,
βẋ = 0.0032768, and γ = 3.2×10−6. These values were calculated by minimizing J in (19) in individual
time-history simulations of the El Centro earthquake, where the least square error of the demands was
minimized over several simulations. The subsequently calculated optimal matrices Q and R were then
used to control the single-DOF displacements, which remained elastic, during the earthquake using a
constant gain in an always-on condition. The maximum calculated acceleration, 0.77 g’s, was actually
larger than the uncontrolled maximum acceleration, which was 0.73 g’s, and the maximum control force
that was required was 210 kips. By using an optimal always-on constant-gain control condition with
a 0 in performance objective, the member displacements, while elastic, were not insignificant not to
mention the relatively significant member accelerations that were found. The study implies the obvious
limitations of using a constant gain approach to control.

In a case 2 simulation, the same parameters were used but using a delta-Z approach, where the
system again responded elastically but incurred a maximum acceleration of 2.46 g’s and a maximum
control force of 495 kips at 2.3 seconds. The maximum displacement occurred one time step earlier at
2.28 seconds, which explains the large velocity and acceleration in response to the application of the
preceding large control force. An as-needed condition was again assumed, and in this case, the system
responded elastically only when the performance objective was defined not larger than 10% of yield, or
0.074 inches. This further illustrates the overall inefficiency of a constant gain formulation.

In a case 3 simulation, a more arbitrary selection of the scale factors in (23), where βx = 0.001,
βẋ = 0.00001, and γ = 0.01, shows the limitations of constant gain. In this case, the gain is applied
in the always-on state using the absolute-Z approach. The performance objective is again defined as
0 in and is measured at the top story of the steel frame. After simulating the response for two cycles,
the hysteresis showed that the control algorithm was unable to continue restraining the system, which
became unstable with uncontrollable increases in the member displacements.

In a case 4 simulation, the delta-Z approach was used to calculate a maximum single-DOF acceleration
of 0.49 g’s and a maximum control force of only 0.8 kips although the displacements are once again not
insignificant considering that a 0i performance objective was prescribed. The results (again using constant
gain) for this last case are shown in Figure 9, which illustrates a significant reduction in the acceleration
time histories compared to the uncontrolled system’s accelerations.

Evolutionary gain. The four simulation cases above emphasize the importance of needing an alternative
to a constant gain approach. The proposed evolutionary gain formulation is shown to desensitize the
member responses to the weighing matrices while adequately controlling displacements (where little
error is tolerated). The following six control scenarios were simulated using CONON:

1. absolute-Z approach, displacement-based, not forced to yield

2. absolute-Z approach, displacement-based, forced to yield

3. absolute-Z approach, strain-based, not forced to yield

4. absolute-Z approach, strain-based, forced to yield

5. delta-Z approach, displacement-based, not forced to yield

6. delta-Z approach, strain-based, not forced to yield
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In each case, the gain may be varied at necessary time steps in order to satisfy the performance objectives
of the single-DOF system.

In the delta-Z approach, it was found that forcing the system to yield was not necessary because of
the small quantities used to calculate the control forces; see (21). As such, the responses remained easily
controllable without needing to force additional energy to be dissipated through member yielding, where
same-side reyielding was not an issue.

Always-on condition. An evolutionary gain was calculated every other time step depending on the current
state of the system. The results are shown in Figure 10 using the absolute-Z approach.

The force-deflection hysteresis in Figure 10a shows that when control remains in an always-on state,
the system responded elastically — at about 20% of the yield displacement. The controlled displacements
were also significantly reduced compared to the uncontrolled displacement, as is seen from the time
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histories in Figure 10b. The velocity and acceleration time histories, shown in Figures 10c,d, were also
smaller, and the maximum calculated control force, shown in Figure 10e, was 59 kips. If to compare
these responses to those calculated in case 1 above (absolute-Z approach, always-on state) which had
used a constant gain formulation, the evolutionary-controlled displacements are smaller, the accelerations
are smaller (0.48 g’s versus 0.77 g’s), and the control force is significantly less (59 kips versus 210 kips).
By varying the gain, the spikes observed in the velocity and acceleration responses of the constant gain
system were alleviated since the infused earthquake energy was being dissipated from the structure in an
optimal sense with respect to the exact necessary amount of gain.

The results using the delta-Z approach are virtually identical to those using the absolute-Z approach,
where the responses are smaller than those of the uncontrolled system, and smaller than those using a
constant gain approach (see case 2 above).
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Figure 11. Force-deflection hysteresis using an evolutionary gain, and a performance
objective of 50% of deflection at yield. Note that the response becomes inelastic.

As-needed condition. It was next desired to apply a control force only when needed, i.e., when the
calculated displacement exceeded the allowable prescribed displacement. First, an elastic performance
objective was defined - in this case, 50% of the yield deflection, or 0.352 in. The force-deflection hystere-
sis in Figure 11 used the absolute-Z approach and reveals that even with an elastic performance objective
well below the yield deflection, the structure may still respond inelastically due to the inherent time-delay
in the controller. In this case, a maximum deflection of 1.06 in was calculated, which exceeded the target
displacement (50% of yield) by more than 3 times. As previously noted, the control of inelastic structures
is an important consideration because of time delays, possible preexisting damages that may have altered
the material constituency (e.g., the stress-strain curve), and because of unexpected earthquakes.

Next, focusing only on inelastic performance objectives, the differences between displacement-based
control and strain-based control and the advantages of using the delta-Z approach over the absolute-Z
approach are examined. In the strain-based control case, less energy is generally dissipated per cycle
through the material hysteresis (see Figure 1), which helps preserve the structural member’s resistance
and prevent further damage. Table 2 lists two evolutionary gain investigations consisting of displacement-
based and strain-based performance objectives for inelastic control.

performance
objective displacement-based strain-based

% of first allowable post-yield post-yield
yield deflection (in) strain deflection (in)

Investigation 1 125 1.25× 0.704= 0.881 0.25εyield 0.176 (= 0.881− 0.704)
Investigation 2 375 3.75× 0.704= 2.642 2.75εyield 1.937 (= 2.642− 0.704)

Table 2. Performance-objective criteria for two evolutionary-gain investigations.
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Investigation 1. A strain-based performance objective helps minimize structural damage by controlling
the amount of strain-energy that a member dissipates. The force-displacement hysteresis in this investiga-
tion is shown in Figure 12, which compares the simulated responses after 2.8 seconds using a strain-based
performance objective to those of a displacement-based performance objective. The former enables the
member to experience less inelastic displacement (and less strain energy dissipation) and consequently
less structural damage.

Figure 13 shows the system responses using a displacement-based performance objective, without
forcing the system to yield.

Referring to the force-deflection hysteresis in Figure 13a, the controlled structure’s maximum de-
flection is less than that of the uncontrolled structure; however, if the amount of damage is a direct
measure of the amount of dissipated strain energy, which is indicative of cyclic member behavior, then
the controlled system dissipates nearly 3.6 times the strain energy of the uncontrolled system. Further,
in this first investigation, the acceleration time histories reveal that the maximum acceleration for the
controlled structure is about 10 times larger that those of the uncontrolled structure and is unacceptable.

However, by forcing the system to yield after the performance objective is met, the energy that is put
into the system by the controller is reduced, and the controlled response remains stable. Figure 14a shows
that when the system is forced to yield, the maximum displacement decreases, and more importantly, the
strain energy dissipation reduces by 20% compared to the uncontrolled system and reduces by about
78% compared to the controlled system when it is not forced to yield. Therefore, forcing the system to
yield ultimately precludes the system from reyielding on the same-side, which means that less energy is
input into the system by the controller whereby the system remains stable and remains easier to control.
As a result, not only is the overall damage reduced, but smaller control forces are also required (Figure
14b), since response reversals (same-side reyielding) necessitate larger control forces in order to meet
performance objectives.

Figure 15 shows the system’s response when using a strain-based performance objective compared
against the uncontrolled responses. The force deflection hysteresis (Figure 15a) shows a significant
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a strain-based performance objective of 125% of the yield deflection (0.8805 in): (a)
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(d) acceleration time history.

reduction in deflection in addition to the amount of strain energy being dissipated, which is calculated
as 71% less for this controlled system than for the uncontrolled system. Although the system produces
dramatic improvement in the prevention of structural damage compared to the control system that uses
the displacement-based performance objective (Figure 13), the velocity and acceleration time histories
are greater than those for the uncontrolled system in the first few seconds of the response but are smaller
for the majority of the response history; see Figures 15c,d.

Figures 16a–e show the responses using a strain-based performance objective and forcing the system to
yield. Figure 16a shows the force-deflection hysteresis of the forced- and not forced-to yield responses,
where the former are visibly smaller. The strain energy dissipation when forcing the system to yield
dramatically reduces the amount of damage, if measured in terms of the dissipated strain energy, wherein
strain energy decreases by 95% compared to the uncontrolled system and by 82% when compared to the
system that is not forced to yield. Examining the time histories (parts b–e of Figure 16), it is again appar-
ent that forcing the system to yield decreases the velocity and acceleration, and decreases the amount of
control force required to manage the system. A comparison of Figures 13a, 14a, 15a, and 16a shows that
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for the absolute-Z approach, the most optimal control solution for minimizing inelastic damage includes
using a strain-based performance objective where the system is forced to yield in the as-needed condition
and using an evolutionary gain formulation.

Figure 17 shows the responses using a delta-Z approach and a displacement-based performance objec-
tive. In Figure 17a we see the force-deflection hysteresis versus that of the uncontrolled system, where
the controlled system does not even complete a full hysteresis loop during the tested duration of the
earthquake. This implies that there is no same-side reyielding and results in strain energy dissipation
that is 99% less than that of the uncontrolled system. The time histories in the remaining parts of Figure
17 reveal that the velocity and acceleration are also reduced, where the maximum acceleration is 34%
less than that of the uncontrolled system. The magnitude of the control force (Figure 17e) is only 58 kips,
but it is applied more frequently than in the displacement-based cases. This implies that smaller, more
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cost-effective devices may be used to control the system using this method of control, but physically,
they may be required to apply new control forces at each time step.

Using a strain-based performance objective, the force-deflection hysteresis is nearly the same as that
in Figure 17a. Further, the dissipated strain energy is nearly identical for both the displacement-based
and strain-based systems, as are the velocity and acceleration time histories, and as is the control force
time-history, which has a maximum of 60 kips in this case. Therefore, it is evident that the selection
of the performance objective (strain-based versus displacement-based), has virtually no influence when
using the delta-Z approach since, as mentioned earlier, that small quantities of energy are utilized in the
cost function minimization due to the delta formulation; see (21).
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Figure 18. Simulation results using an evolutionary
gain with the absolute-Z approach, a strain-based
performance objective of 1.937 in past the yield dis-
placement and forcing the system to yield: (a) force-
displacement hysteresis; (b) acceleration time histo-
ries; (c) control time histories.

Investigation 2. The next investigation allows significantly more damage to occur in members; that
is, a lower performance objective is demanded. Figure 18a shows the force-deflection hysteresis when
the absolute-Z approach is applied to a system that is forced to yield and used in conjunction with a
strain-based performance objective (set to 375% of the first-yield displacement in Investigation 2, or
1.937 inches past yield; see Table 2). The results are favorable; we see a considerable decrease in the
size of the hysteresis loops when the system is forced to yield (as opposed to not being forced to yield)
and a maximum displacement of 2.55 in. The maximum displacement of the uncontrolled system was
3.05 in. (Figure 8a) and the resulting strain energy dissipation is 46% less than that of the uncontrolled
system. However, the maximum acceleration (Figure 18b) was 2.46 g’s, which was approximately 10%
of the maximum acceleration in the unforced system, but still 3.37 times the maximum acceleration seen
in Figure 8d (page 871) for the uncontrolled system. Figure 18c compares the control force time histories
of the forced and unforced systems, where the former is clearly favorable.

The delta-Z approach was then applied to a not-forced-to-yield system in an effort to reduce the
necessary control force and subsequent energy input to the single-DOF system so that responses may be
minimized while the responses remained stable; Figure 19 shows the results for both the displacement-
based system (left column) and the strain-based system (right column). The delta-Z approach signifi-
cantly reduced the number of cycles in the force-deflection hysteresis (top row of Figure 19) compared
to that of the uncontrolled system (Figure 8a), resulting in a 79% decrease (displacement-based) and a
84% decrease (strain-based) in the dissipated strain energy. The maximum accelerations (middle row of
Figure 19) were found to be 0.84 g’s and 0.65 g’s for the displacement-based and strain-based systems,
respectively, whereas the uncontrolled system’s maximum acceleration was 0.73 g’s (Figure 8d). The
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Figure 19. Left column: force-deflection hysteresis, acceleration, and control force
obtained using evolutionary gain as part of the delta-Z approach with a displacement-
based performance objective of 375% of the yield deflection, or 2.64 in. Right column:
corresponding quantities obtained with a strain-based performance objective consisting
of a post-yield strain of 2.75 times εyield, or a post-yield deflection of 1.94 in.

abrupt changes in the accelerations after 2.4 seconds were caused by the sudden application of control
forces after 2.38 seconds — this in response to the system trying to reverse its direction after 2.38 seconds,
as shown by the same-side reyielding of the force-displacement hysteresis in quadrant 3 in both cases.

The bottom row of Figure 19 shows the control force distributions for the displacement-based and
strain-based systems; the maximum control forces are 298 kips and 190 kips, respectively. A comparison
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A D N 264% 3000 900% 1500 2536% 8000 2567% 3500
A D Y −20% 2000 567% 800 25% 800 167% 450
A S N −71% 1800 500% 900 207% 10000 3233% 5000
A S Y −95% 500 67% 100 −46% 950 217% 350
1 D N −99% 200 −33% 60 −76% 325 8% 300
1 S N −99% 200 −33% 60 −84% 250 −17% 190

Table 3. Summary of evolutionary gain results for controlling inelastic damage, with
percent changes relative to the uncontrolled situation. The first code under “Conditions”
indicates the approach (absolute-Z or delta-Z ), the second the type of performance ob-
jective (displacement-based or strain-based), and the third whether or not the member is
forced to yield. The best results are highlighted.

of the two indicates that the latter is clearly capable of controlling already-damaged systems while re-
ducing accelerations using a moderate level of control force.

Summary of as-needed approaches for inelastic control. A summary of the two investigations is shown
in Table 3 using the six combination of conditions listed on page 872. In each investigation, the delta-Z
approach proved to be more capable of controlling the amount of strain energy being dissipated (and
henceforth limit the amount of permanent damage) in the members and reduce the accelerations than the
absolute-Z approach.

Table 3 shows that by utilizing a strain-based performance objective, the delta-Z approach provides
the optimal evolutionary control strategy where there is 99% reduction in structural damage and a 33%
reduction in the maximum acceleration compared to the uncontrolled system in Investigation 1 while
requiring a maximum control force of only 60 kips. In Investigation 2, which employed a lower perfor-
mance objective (hence more allowable damage — damage of 2.75 times the yield response), there was
an 84% decrease in damage and a 17% decrease in the maximum acceleration, with a still-moderate
control force of 190 kips.

6. Conclusions

A linear optimal control solution for controlling inelastic and elastic systems using an evolutionary gain
and a state-space transition formulation is presented. Control forces may be generated and applied during
each time step in order to satisfy required performance objectives, which may be defined either globally
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with respect to the original equilibrium position of the member, or locally with respect to the current
yield position of the member during each cyclic response. The elastic and inelastic response components
of the simulated responses are separated based on the discretized plastic excursions of the degrading
system. A kinematically strain-hardening assumption is used to define the hysteresis of the material
as it unloads, reyields, and reloads. A computer program, CONON (for control nonlinear time-history
analysis) was developed herein to simulate and control the inelastic responses in shear frames using the
proposed evolutionary gain approach. The code uses an efficient subroutine to expeditiously converge to
the desired performance objectives. It was found that the procedure was able to adequately converge to
the desired performance objectives for an earthquake excitation using a minimal amount of control force
while alleviating the dependence on weighing matrices that might inconsistently satisfy or not satisfy
performance objectives and result in excessive and costly output control forces.

Further, the delta-Z approach used in conjunction with a strain-based performance objective was found
to be the optimal solution in effectively mitigating damage (measured in terms of strain energy dissipa-
tion), which was reduced by at least 84%, and in effectively reducing the overall maximum acceleration
by at least 17%. In addition, the delta-Z approach also required the smallest amount of control force,
which indicated that developing such an optimal evolutionary controller may also present the cheapest
solution. Nonetheless, the absolute-Z approach was also able to effectively reduce the strain energy
dissipation in the two investigations when used in conjunction with a strain-based performance objective
and when the system was forced to yield.
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EFFECTIVE ELASTIC PROPERTIES OF NANOTUBE REINFORCED
COMPOSITES WITH SLIGHTLY WEAKENED INTERFACES

MILTON ESTEVA AND POL D. SPANOS

In this paper a micromechanics approach is presented for determining the effective elastic properties of
single-walled carbon nanotube (SWCNT) reinforced composites, while accounting for imperfect bond-
ing in the matrix-inclusion interface. For this purpose, a linear spring layer of vanishing thickness is in-
troduced to represent the interface. Furthermore, the well known Mori–Tanaka (MT) method, in conjunc-
tion with the Eshelby’s tensor, is modified to determine the effective elastic properties. The inclusions
are considered to be either perfectly aligned infinite long cylinders or aligned ellipsoidal inclusions with
a given aspect ratio; cases of perfect alignment or of randomly oriented fibers are treated. The numerical
results show that the interface weakening influences the nanocomposite properties significantly only for
high values of SWCNT volume fraction. Since most of the currently conducted experiments involve
composites which contain small volume fractions, it is thus reasonable based on the findings of this
paper to assume perfect bonding for low nanotube volumetric contents.

1. Introduction

Since the discovery of carbon nanotubes [Iijima 1991], single-walled CNTs have attracted increasing
scientific interest because of their exceptional mechanical, electrical, and thermal properties. Experimen-
tal and theoretical results have shown that the Young’s moduli of SWCNTs are approximately 1 TPa
depending on diameter size and chirality [Popov et al. 2000; Yakobson et al. 1996; Pipes et al. 2003;
Saether et al. 2003]. Despite these properties, several researchers have reported experiments with modest
improvement in the strength and stiffness of polymer nanocomposites (PNC) [Qian et al. 2002; Ajayan
et al. 2000]. On the other hand, some others have obtained a substantial increase in the effective properties
as shown in Table 1 on the next page. Researchers claim that alignment, dispersion, geometry, and load
transfer properties are parameters that could significantly affect the final properties of PNCs [Chen and
Tao 2006; Namilae and Chandra 2005].

Several techniques for modeling PNCs have been reported in the open literature. Frankland et al.
[2003] have used molecular dynamics (MD) to obtain stress-strain curves of SWCNTs embedded in a
polyethylene matrix; the interface has been simulated by nonbonding van der Waals interactions using
the Lennard-Jones potential. Odegard et al. [2003] has presented an equivalent-continuum method to
obtain an effective continuum fiber that includes interface interaction. Seidel and Lagoudas [2006] have
obtained effective continuum fiber properties using a composite cylinder micromechanics approach that
can be applied to SWCNT or multiwalled carbon nanotubes (MWCNT). They have used these properties

Keywords: nanocomposites, carbon nanotubes, modeling, imperfect bonding, Mori–Tanaka.
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887

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2009.4-5


888 MILTON ESTEVA AND POL D. SPANOS

Young’s Tensile
Composite modulus strength Elongation (%) NT Orientation

(GPa) (MPa)

Neat epoxy 2.02± .078 83± 3.3 6.5± 0.17 —–
Epoxy + 1 wt.% Bucky Pearl SWNT 2.12± .093 80± 4.1 5.8± 0.33 random

Epoxy + 1 wt.% functionalized 2.65± .125 104± 3.7 8.5± 0.72 random
Epoxy + 4 wt.% functionalized 3.4± .253 102± 5.4 5.5± 0.21 random

TPU 7.7± 1 12.4± 4.5 852± 130 ——
TPU + 0.5 wt.% SWNT 14.5± 3.4 13.3± 4 709± 160 aligned

Table 1. Some experimental mechanical properties of polymer nanocomposites. See
[Zhu et al. 2004] for the first four rows and [Chen and Tao 2006] for the last two.

with the self consistent (SC), MT and finite element method (FEM) to determine the effective properties
for aligned and randomly oriented perfectly bonded inclusions. In that work, an attempt to account for
imperfect bonding has been made by using interphase regions involving a multilayer composite cylinder
approach requiring the specification of elastic properties and thickness for the interphase layer. Song
and Youn [2006] have investigated the effective properties using the asymptotic expansion homogeniza-
tion method where again perfect interfacial bonding has been assumed. Liu and Chen [2003] have
implemented a three dimensional representative volume element (RVE) and have used FEM to obtain
effective mechanical properties; in this work perfect bonding between matrix and inclusion has also
been assumed. Li and Chou [2003] have adopted a structural mechanics approach to obtain effective
properties of cylindrical nanocomposites RVEs in which they have used nonlinear trusses to simulate
nonbonding interactions along the interface. Namilae and Chandra [2005] have also discussed the prob-
lem of nonperfect bonding. They have developed a multiscale model introducing a constitutive behavior
to the interface by means of cohesive zone models. They have used MD to obtain traction-displacement
relations and have then implemented them in a numerical scheme using two dimensional axysymmetric
FEM and cohesive zone elements for the interface. Despite this sophisticated model, final effective
properties strongly depend on RVE dimensions for finite nanotube lengths.

In this paper, a micromechanics model for determining the effective properties of PNCs is presented.
The model accounts for imperfect bonding between the matrix and the fiber. For this purpose, a spring
layer of finite stiffness but of negligible thickness is introduced in the inclusion model. The layer produces
continuous interfacial tractions but discontinuous displacements. The introduction of imperfect interfaces
necessitates modified expressions for the Eshelby tensor [1957], which is used in conjunction with the
MT method for composites [Qiu and Weng 1990]. In this modified MT approach, the properties of the
fiber are derived using a composite cylinder concept [Seidel and Lagoudas 2006]. Results are presented
for composites with infinite cylinders and ellipsoidal shape fibers which are either aligned or randomly
oriented in the matrix.

2. The original Mori–Tanaka concept

Recently, the original MT approach has been used by several authors to estimate the mechanical prop-
erties of nanocomposites [Odegard et al. 2003; Seidel and Lagoudas 2006]. Specifically, interest has
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been focused on the calculation of the effective elastic properties of a two phase composite where the
inclusion phase is either aligned or randomly oriented. In this section, a review of the derivation of
the MT equations is presented first towards accounting for the effect of imperfect bonding between the
matrix and the inclusion; obviously this is done towards facilitating the elucidation of the herein adopted
procedure, without claiming conceptual novelty.

Assume that the analyzed composite comprises two phases. The matrix is considered to be isotropic
and linearly elastic with stiffness tensor L0 and volume fraction c0. Strictly speaking, the stiffness matrix
relates the strains with the stresses they produce by the generalized Hooke’s law

σi j = L i jklεkl .

In a similar way, the inclusion phase is assumed to have ellipsoidal shape and its material is considered
to be transversely isotropic with stiffness tensor L1 and volume fraction c1. Throughout this section
explicit tensor notation will be omitted for clarity unless needed.

Consider the two configurations shown in Figure 1. These represent the composite material and the
comparison material where the properties of the later are those of the matrix. If displacements are
specified at the boundary to produce a uniform strain in both materials (εa), the average stress of the
composite (σ̄ ) and that in the comparison material (σ̄0) are σ̄ = Lεa and σ̄0 = L0εa , where L is the
effective stiffness tensor of the composite and an overscore represents volume average.

The presence of the inclusions causes the strain field in the matrix to be nonuniform. Thus, the average
strain in the matrix is in this case represented by the equation ε̄0 = εa + ε̄

pt
0 . The same change happens

to the inclusion phase; the strain is perturbed from that of the matrix and is quantified as

ε̄1 = ε̄0+ ε
pt
1 . (1)

Using the equivalent inclusion method developed in [Eshelby 1957], a relation between the inhomoge-
neous inclusion problem (Figure 1, left) and the homogeneous inclusion problem (Figure 1, right) can
be pursuit. In other words, the properties of the inclusion can be related to the properties of the matrix
by the equation

σ̄1 = L1ε̄1 = L0(ε̄1− ε
∗), (2)

1

3

2
1

3

2

!
a!

L0!

!*!

L1!

"
1
!

(a)                                                           (b)!

Figure 1. Eshelby’s equivalent inclusion problem.
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where ε∗ is the inclusion eigenstrain. Eshelby [1957] demonstrated that this eigenstrain is related to the
inclusion perturbation strain by the equation

ε
pt
1 = Sε∗, (3)

where the tensor S is well known as the Eshelby’s tensor; expressions for cylindrical and ellipsoidal
inclusions used herein can be found in references such as [Qiu and Weng 1990; Nemat-Nasser and Hori
1998].

Next, solving for ε∗ in (2). The expression for the eigenstrain in terms of the average strain in the
inclusion is found to be

ε∗ =−L−1
0 (L1− L0)ε̄1. (4)

Substituting (4) into (1) and making use of (3), the dilute strain concentration tensor Adil is found. This
tensor relates the average strain in the inclusion with the average strain in the matrix and is given by

ε̄1 = Adilε̄0 = [I + SL−1
0 (L1− L0)]

−1ε̄0, (5)

where I is the fourth-order identity tensor.
The relationship between the fiber and matrix strain averages and the overall strain average (εa) can

be established by the use of the total volume average. That is,

c0ε̄0+ c1ε̄1 = εa. (6)

By substituting (5) into (6), the strain concentration tensor of the matrix (A0) is obtained. This quantity
relates the applied strain with the average strain in the matrix by the equation

ε̄0 = A0εa = [c0 I + c1 Adil
]
−1εa. (7)

To derive the expression for the effective elastic moduli, the key assumption in the MT method is in-
troduced. That is, when identical particles are introduced in the composite, the average strain in the
inclusion is related to the average strain in the matrix by the dilute strain concentration tensor

ε̄1 = Adilε̄0. (8)

This means, that to account for inclusion interaction, the applied strain that each inclusion feels is the
average strain in the matrix. Substituting (7) into (8), the nondilute strain concentration tensor is obtained
(Andil). This tensor relates the applied strain to the average strain in the inclusion by the equation

ε̄1 = Andilεa = Adil A0εa. (9)

Finally, to find the overall effective stiffness tensor for aligned inclusions, a similar expression as in (6)
is used but for the case of stresses this is

σ̄ = c0σ̄0+ c1σ̄1 = Lεa, (10)

where substitution of Hooke’s law in (10) gives

σ̄ = c0 L0ε̄0+ c1 L1ε̄1 = Lεa.
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Solving for L and using (7) and (9), the final expression for the effective stiffness tensor of the MT
estimate is obtained as

L = (c0 L0+ c1 L1 Adil)(c0 I + c1 Adil)−1. (11)

This is the equation to implement the MT method for an aligned two phase composite.
It is also of interest to derive a MT estimate when the inclusions are randomly oriented inside the matrix.

To this aim, the effective composite stiffness tensor will be determined using the orientational average
of the pertinent properties. The difference between the aligned and the randomly oriented inclusions lies
in that for the latter case the relation (6) becomes

c0ε̄0+ c1{Adilε̄0} = (c0 I + c1{Adil
})ε̄0 = εa, (12)

where the brackets {·} designate the average over all possible orientations [Qiu and Weng 1990]. Similarly,
(10) becomes

σ̄ = c0 L0ε̄0+ c1{L1ε̄1} = (c0 L0+ c1{L1 Adil
})ε̄0 = Lεa. (13)

Finally, combining (12) and (13), the expression for the MT estimate for the case of randomly oriented
inclusions is obtained as

L = (c0 L0+ c1{L1 Adil
})(c0 I + c1{Adil

})−1, (14)

which is similar to the expression for the case of aligned inclusions, except for those appropriate averaged
quantities. Clearly, the MT approach can be used as a tool for deriving an effective stiffness tensor for
the composite material. Specific studies regarding the MT method have been previously presented [Qiu
and Weng 1990; Tucker and Liang 1999; Schjødt-Thomsen and Pyrz 2001; Benveniste 1987; Wang and
Pyrz 2004].

3. Mori–Tanaka approach for composites with slightly weakened interfaces

In a model developed by Qu [1993] in conjunction with generic composite materials mechanics, imper-
fection in the interface can be introduced by using a layer of insignificant thickness in which tractions
remain continuous and displacements become discontinuous. The equations that model the interfacial
traction continuity and the displacement jump (1ui ) at the interface can be written as

1σi j n j ≡ [σi j (S+)− σi j (S−)]n j = 0, (15)

and
1ui ≡ [ui (S+)− ui (S−)] = ηi jσ jknk (16)

respectively. In (15) and (16), S and n represent the interface and its unit outward normal vector, respec-
tively. The terms u(S+) and u(S−) are the values of the displacements when approaching from outside
and inside of the inclusion respectively. The second order tensor, ηi j , accounts for the compliance of
the spring layer. It is obvious that when the tensor ηi j tends to zero (infinite stiffness), the displacement
jump is zero and continuity in displacements are recovered. This tensor is chosen to be symmetric and
positive definite and can be expressed in the form

ηi j = αδi j + (β −α)ni n j , (17)
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where ni is the normal outward vector and δi j is the Kronecker delta.
It is important to address the physical meaning of the parameters α and β. To define these terms

more completely, an example is presented. Consider a two dimensional plane where a horizontal surface
divides the matrix and the inclusion material (see Figure 2). The unit outward normal vector n is pointing
in the vertical direction. Performing summation over dummy indexes in (16), the displacement jumps in
direction 1 and 2 are

1u1 = η11σ11n1+ η11σ12n2+ η12σ21n1+ η12σ22n2,

1u2 = η21σ11n1+ η21σ12n2+ η22σ21n1+ η22σ22n2.
(18)

Because the outward normal vector is in the vertical direction, n1 = 0 and n2 = 1. Using these values,
(18) reduces to

1u1 = η11σ12n2+ η12σ22n2, 1u2 = η21σ12n2+ η22σ22n2. (19)

In a similar manner and also making use of the Kronecker delta properties, (17) is used to generate the
four required elements in (19). That is,

η11 = αδ11+ (β −α)n1n1 = α,

η21 = αδ21+ (β −α)n2n1 = 0,

η12 = αδ12+ (β −α)n1n2 = 0,

η22 = αδ22+ (β −α)n2n2 = β.
(20)

Substituting (20) into (19), the displacement jumps in direction 1 and 2 are

1u1 = ασ12 = ατ, 1u2 = βσ22 = βσ. (21)

It is clear in (21) that α and β are parameters that represent the compliance in the tangential and normal
directions respectively as shown in Figure 2. Furthermore, setting the parameter β to zero (infinite
stiffness in the normal direction) prevents material interpenetration.

After introducing the imperfect interface into the equivalent inclusion method, Qu found a modified ex-
pression for the Eshelby’s tensor, for the case of ellipsoidal inclusions with slightly weakened interfaces.
The new expression is written as

S̄M
i jkl = Si jkl + (Ii j pq − Si j pq)Hpqrs Lrsmn(Imnkl − Smnkl), (22)

where Si jkl is the original Eshelby’s tensor and L i jkl is the matrix stiffness tensor. The second term in the
right hand side of (22) is produced due to the introduction of the weakened interface, where the tensor

Figure 2. Physical meaning of parameters α and β in the compliance tensor ηi j .
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H is given by the equation
Hi jkl = αPi jkl + (β −α)Qi jkl;

expressions for tensor P and Q are given in the Appendix.
Once the modified Eshelby’s tensor has been included in the analysis, the modified MT estimate is

introduced. Following the same procedure to find (11) and using the result in [Qu 1993] for the average
strains, the expression for the modified MT estimate for a two phase aligned composite is obtained as

L =
(
co Lo+ c1 L1 Adil)(co I + c1[Adil

+ H L1 Adil
]
)−1
, (23)

where
Adil
= [I + S̄M L−1

0 (L1− L0)]
−1. (24)

In all this new expressions, if the parameters α and β are set to zero, the tensor H vanishes and equations
(22), (23), and (24) reduce to the original MT expression shown in (11). It is worth mentioning that the
expression for the effective elastic properties in (23) is length dependent, in contrast to the original MT
which is aspect ratio dependent.

When the inclusions are randomly oriented inside the matrix, determination of the effective elastic
properties can be obtained following the same procedure as in (14). Using the result found in [Qu 1993]
for the total average strain, the MT expression with slightly weakened interfaces for the case of randomly
oriented inclusions is

L =
(
c0 L0+ c1{L1 Adil

}
)(

c0 I + c1{Adil
}+ c1{H L1 Adil

}
)−1
. (25)

Likewise, if the parameters α and β are set to zero, the tensor H vanishes and (25) reduce to the original
MT expression shown in (14). Similar studies have been reported for the case of inclusions with specific
shape and material properties [Benveniste and Aboudi 1984; Benveniste 1985; Hashin 1991].

4. Implementation of the Mori–Tanaka estimate

As stated in the previous sections, to obtain effective elastic properties by means of the MT method it
is necessary to use fourth-order tensor operations. To avoid the complexity that this task involves, the
notation originally developed in [Walpole 1981] and used later in [Qiu and Weng 1990; Wang and Pyrz
2004] will be used. In this notation, a general symmetric fourth-order tensor can be represented by the
equation

L = (2k, l, l ′, n, 2m, 2p), (26)

where the quantities k, l, l ′, n,m and p are related to the fourth-order tensor elements by the equation

k = 1
2(L2222+ L2233), l = L1122, l ′ = L2211, n = L1111, m = 1

2(L2222− L2233), p = L1212,

in which for the case of a transversely isotropic stiffness tensor, the quantities l and l ′ are identical. An
isotropic stiffness tensor can also be represented using this notation and the aforementioned quantities
are defined as

k = K + 1
3µ, l = l ′ = K − 2

3µ, n = K + 4
3µ, m = p = µ, (27)
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where K and µ are the bulk modulus and the shear modulus, respectively. Thus, whenever a fourth-
order tensor is expressed using this notation, algebraic operations of this kind of tensor can be easily
performed.

The expression for the MT estimate requires the use of tensor inner products. The computation of
the inner product of the two tensors A= (c, g, h, d, e, f ) and B = (c′, g′, h′, d ′, e′, f ′) is given by the
equation

AB = (cc′+ 2hg′, gc′+ dg′, hd ′+ ch′, dd ′+ 2gh′, ee′, f f ′). (28)

Besides inner products, tensor inversion is also required by the MT estimate. The inverse operation of
tensor A, denoted by A−1, satisfies the equation

AA−1
= I, (29)

where I is the identity tensor. If this tensor is expressed as I = (1, 0, 0, 1, 1, 1), it follows from (28) and
(29) that

A−1
=

(
d

cd − 2gh
,−

g
cd − 2gh

,−
h

cd − 2gh
,

c
cd − 2gh

,
1
e
,

1
f

)
.

As shown in (14), when the inclusions in the composite are randomly oriented within the matrix, certain
quantities require to be averaged over all possible directions. The result of this operation is a naturally
isotropic tensor. Only two properties are required to fully define the tensor. For the case of tensor L in
(26), the isotropic bulk and shear modulus are calculated as

K = 1
9 [4k+ 2(l + l ′)+ n], µ= 1

15 [k− (l + l ′)+ n+ 6(m+ p)].

Once these two quantities are obtained, one can form the new isotropic tensor by using the expressions
in (27).

5. Estimation of nanocomposite effective elastic properties

The modified MT method is applied herein to obtain the effective elastic properties of the composite.
Fiber and matrix material properties (for all cases in this paper) are identical to those shown in Table 2.

The work done in [Namilae and Chandra 2005] was used to obtain reasonable values for the parameter
α, they used molecular dynamics to perform a fiber pull out test. Three values for the parameter α are
chosen for all cases in this section (0, 0.01, and 0.05 nm/GPa) and β is set to zero to prevent material
interpenetration. In this section, computations of composites with aligned inclusions and those with
randomly oriented fibers are presented.

Matrix: EPON 862
E = 2.026 v = 0.3

Effective carbon nanotubes
E11 = 704 GPa ν12 = 0.14
E22 = 345 GPa ν23 = 0.37
µ12 = 227 GPa φ = 1.7 nm

Table 2. Input data for effective properties computations. From [Seidel and Lagoudas 2006].
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Figure 3. Effective axial modulus for composites with cylindrical inclusions.

Aligned SWCNT composites. It is known that for the case of isotropic matrices and aligned transversely
isotropic inclusions, the resulting overall properties are also transversely isotropic. Five independent
elastic properties fully describe the behavior of this type of materials. The modified MT method is
applied and the computations assume aligned infinitely long nanotubes. The results shown in Figure 3
are for the effective axial modulus. No effect of weakened interfaces is observed as expected and the
behavior is that of the rule of mixtures.

Figure 4 shows how interface properties impact the transverse modulus; it is slightly affected for
almost the entire range of volume fractions but it is significantly reduced for values greater than 0.8. For
the axial and transverse shear moduli similar behavior is found (see Figure 5). An important result of
introducing imperfect interfaces in the model is that composite properties do not converge to nanotube
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Figure 4. Dependence of transverse modulus on parameter α for composites with cylin-
drical inclusions, d = 1.7 nm.
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Figure 5. Effective axial (left) and transversal (right) shear moduli versus parameter α
for composites with cylindrical inclusions, d = 1.7 nm.

properties when the volume fraction approaches 1, as can be seen in Figure 4 and Figure 5. This can be
expected as the fiber material is no longer homogeneous; it is affected by the presence of the negligible
layer with displacement discontinuities.

Another important aspect of the effective nanocomposite properties computation is to study the impact
of inclusion aspect ratio (length/diameter) when the fibers are not considered infinitely long. Calculations
of this type of composite can be conducted using the modified Eshelby’s tensor for ellipsoidal inclusions.
Expressions for the computation of required tensors are shown in the Appendix, in which numerical
integration is used due to the complex terms generated. Figure 6 captures the impact of the parameter
α on the calculation of the axial and transverse effective modulus. These results are for the specific
case of a nanotube diameter of 1.7 nm and an aspect ratio of 50. Similarly to the case of infinitely long
nanotubes, the transverse modulus is affected more than the axial modulus by the presence of imperfect
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bonding. And, in this case, aspect ratio starts to slightly affect the axial modulus as it does not follow
the rule of mixtures anymore.

Randomly oriented SWCNT composites. Next, the properties of SWCNT composites with randomly
oriented cylindrical and ellipsoidal fibers are calculated assuming nanotubes have good dispersion in
the matrix. The final elastic properties for both types of inclusions are fully isotropic because they
are obtained from an average over all possible orientations [Qiu and Weng 1990]. Figure 7 shows the
effective modulus of randomly oriented infinitely long cylinders and ellipsoids respectively. They both
have the same type of behavior, but the effective properties predicted for the ellipsoidal inclusions are less
than those for the cylindrical inclusions due to the aspect ratio dependence. The impact of introducing
imperfect bonding is still more evident for high volume fractions (more than 0.6) as noted in Figure 7.
Finally, Figure 8 provides the result on the effect of aspect ratio and volume fraction in the effective
properties of nanocomposites with ellipsoidal randomly oriented inclusions and slightly weakened inter-
faces (α = 0.05 nm/GPa). As expected, for high values of aspect ratio (more than 200) the behavior of
cylindrical inclusions is reached but for values less than 200, effective modulus is highly affected.

6. Concluding remarks

The effect of introducing imperfect bonding in the calculation of PNC effective properties has been
studied in this paper. Effective properties have been computed using a modified MT method to include the
effect of the weakened interface. The properties of the effective fiber have been obtained by a composite
cylinder method [Seidel and Lagoudas 2006]. Furthermore, three different configurations for the fibers
have been considered. First, nanotubes were treated as aligned infinitely long cylinders where bonding
imperfection affects only the transverse properties of the composite for high volume fractions values.
Second, the nanotubes were treated as ellipsoidal fibers with a given aspect ratio. In this case, both the
axial and the transverse properties were affected by the aspect ratio. Once more, the weakened interface
became important only for high volume fraction values. Lastly, the cylindrical and the ellipsoidal fibers
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Figure 7. Effective modulus dependence on parameter α for composites with either
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Figure 8. Effective modulus versus CNT volume fraction and aspect ratio for ellipsoidal
inclusions with α = 0.05 nm/GPa.

were treated as randomly oriented fibers. For the cylindrical fibers, the effective properties did not follow
the rule of mixtures as in the aligned case, and the weakened interface became significant only at high
volume fractions.

All of the numerical results reported have shown that interfacial weakening influences the effective
nanocomposite properties significantly for high values of SWCNT volume fractions. Since most of
the currently conducted experiments involve composites which contain small volume fractions, it is
reasonable to assume perfect bonding for low nanotube volumetric contents. Nonetheless, the developed
procedure is applicable for assessing the interfacial weakening effect for an arbitrary volume fraction.

The H tensor

The tensor H needed to compute the modified MT estimate can be written as follows with axis 1 as the
symmetry axis

Hi jkl = αPi jkl + (β −α)Qi jkl,

where the components of tensors P and Q depend on the inclusion shape and can be obtained using the
following expressions:
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For ellipsoids

Pi jkl =
3

16π

∫ π

0

[∫ 2π

0
(δik n̂ j n̂l + δ jk n̂i n̂l + δil n̂k n̂ j + δ jl n̂k n̂i )n−1dθ

]
sinφdφ,

Qi jkl =
3

4π

∫ π

0

[∫ 2π

0
n̂i n̂ j n̂k n̂ln−3dθ

]
sinφdφ, n =

√
n̂i n̂i ,

n̂ =
(

cosφ
a1

,
sinφ cos θ

a2
,

sinφ sin θ
a3

)T

.

For cylinders (a2 = a3 = a and a1→∞) so

P2222 = P3333 = 4P3131 = 4P2121 = 2P2323 =
3π
8a
,

Q2222 = Q3333 = 3Q2233 = 3Q3322 = 3Q2323 =
9π
32a

,

with all others being 0.
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CONTINUUM MECHANICS MODELS OF FRACTAL POROUS MEDIA:
INTEGRAL RELATIONS AND EXTREMUM PRINCIPLES

MARTIN OSTOJA-STARZEWSKI

This paper continues the extension of continuum mechanics and thermodynamics to fractal porous media
which are specified by a mass (or spatial) fractal dimension D, a surface fractal dimension d, and a
resolution length-scale R. The focus is on a theory based on dimensional regularization, in which D is
also the order of fractional integrals employed to state global balance laws. Thus, we first generalize
the main integral theorems of continuum mechanics to fractal media: Stokes, Reynolds, and Helmholtz–
Żórawski. Then, we review balance equations and recently obtained extensions of several subfields of
continuum mechanics to fractal media. This is followed by derivations of extremum and variational
principles of elasticity and Hamilton’s principle for fractal porous materials. In all the cases, we derive
relations which depend explicitly on D, d and R, and which, upon setting D = 3 and d = 2, reduce to
the conventional forms of governing equations for continuous media with Euclidean geometries.

1. Background and motivation

The term fractal was coined by Benoı̂t Mandelbrot in 1975 [Mandelbrot 1982] to denote an object that is
“broken” or “fractured” in space and/or time. Basically, a fractal object can be subdivided in parts, each
of which is in a deterministic or stochastic sense a reduced-size copy of the whole; this is the famous
self-similarity property (1). In general, a fractal also has these features: (2) fine structure at arbitrarily
small scales; (3) too irregular to be easily described in traditional Euclidean geometric language; (4)
Hausdorff dimension greater than the topological dimension; (5) a simple and recursive definition.1

Thus, “mathematical fractals” appear similar at all levels of magnification, and, roughly speaking, they
are infinitely complex. Focusing on fractals in space, as opposed to those in time (signals, processes),
many natural and man-made objects approximate fractals to a degree: coastlines, porous media, cracks,
turbulent flows, clouds, mountains, lightning bolts, brains, snow flakes, melting ice (and other systems at
phase transitions). The list is very long, and hence book titles like Fractals Everywhere [Barnsley 1993].
Mathematical fractals provide appropriate models for many media for some finite range of length scales,
with lower and upper cutoffs.

Concerning materials with fractal geometries, since the late eighties a lot of research has been carried
out primarily in condensed matter physics [Feder 1988]. That work has been focused on physics —
explaining physical phenomena and properties for materials whose fractal (non-Euclidean) geometry
plays a key role. However, a field theory, an analogue of continuum physics and mechanics, has sorely
been lacking. Some progress in that respect has recently been made by mathematicians [Kigami 2002;

Keywords: fractal, prefractal, continuum mechanics, thermomechanics, extremum principles.
1Self-similarity does not suffice to characterize fractals: a straight line is formally self-similar but has no other fractal

characteristics. On the other hand, space-filling curves such as the Hilbert curve do not satisfy (4).
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Figure 1. This fern, found on the seashore in Cancún, Mexico, just before PACAM X
(January 2008), represents an example of a prefractal. A coin is shown for reference.

Strichartz 2006; Epstein and Śniatycki 2006; Epstein and Adeeb 2008], who began to look at classical
problems, like Laplace’s or heat equation, on fractal (albeit nonrandom) sets. This approach, in fact
very technical from the mathematical analysis standpoint, only begins to offer an avenue to tackle simple
initial-boundary value (IBV) problems.

A very different step in the direction of a field theory and IBV problems has recently been taken
by Tarasov [2005a, 2005b, 2005c]. He developed continuum-type equations of conservation of mass,
linear and angular momenta, and energy for fractals, and, on that basis studied several fluid mechanics
and wave problems. The beauty and power of Tarasov’s approach relies on a generalization of the
Green–Gauss theorem to fractal objects through fractional integrals in Euclidean space, see Section 2.2
below. Another advantage of this approach is that it admits upper and lower cutoffs of fractal scaling,
so that one effectively deals with a physical “prefractal”, like the one in Figure 1, rather than a purely
mathematical fractal lacking cutoffs. It is in that sense that fractals are meant here. In principle, one can
then map a mechanics problem of a fractal [which is described by its mass (D) and surface (d) fractal
dimensions plus the spatial resolution (R)] onto a problem in Euclidean space in which this fractal is
embedded, while having to deal with coefficients explicitly involving D, d and R. Clearly, this has very
interesting ramifications for formulating continuum-type mechanics of fractal media, which need to be
further explored. The great promise stems from the fact that the conventional requirement of continuum
mechanics, the separation of scales, can be removed, yet the partial differential equations may still be
employed.

Working in the outlined setting, in this paper we examine the integral theorems of continuum me-
chanics in the setting of fractal media: Stokes, Reynolds, and Helmholtz–Żórawski. In fact, the second
of these leads us to modify Tarasov’s fractional material derivative back to a conventional material de-
rivative. As a result, the balance laws of mass, linear momentum, energy as well as the second law
of thermodynamics take simpler forms than using Tarasov’s interpretation. We also list generalizations
of: the Clausius-Duhem inequality, the linear thermoelasticity, the Maxwell–Betti reciprocity, the Hill
condition and energy principles, and the averaged equations of turbulence in fractal porous media [Ostoja-
Starzewski 2007a, 2007b, 2008a]. This is followed by derivations of extremum and variational principles
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of elasticity and the Hamilton’s principle for fractal porous materials. In all the cases, we obtain relations
which depend explicitly on D, d and R, and which, upon setting D = 3 and d = 2, reduce to conventional
(well known) forms of governing equations for continuous media with Euclidean geometries.

2. Continuum mechanics in the setting of fractal media

Integral theorems. We consider fractal porous media in which mass obeys a power law relation

m(R)= k RD, D < 3, (2-1)

where R is a box size (or a sphere radius, effectively a length scale of measurement), D is a fractal di-
mension of mass (based on, say, the box-counting method), and k is a proportionality constant. Equation
(2-1) implies that the conventional equation giving mass in a three-dimensional region W (of volume V
and boundary ∂W )

m(W )=

∫
W
ρ(r) d3r (2-2)

has to be generalized to

m3d(W )=
23−D0(3/2)
0(D/2)

∫
W
ρ(r)|r − r0|

D−3d3r. (2-3)

That is, the fractal medium with a noninteger mass dimension D is described using a fractional integral
of order D. This interpretation of the fractal (intrinsically discontinuous) medium as a continuum —
in the vein of dimensional regularization of quantum mechanics [Collins 1984] and involving a Riesz
fractional form — is based on a reformulation of the Green–Gauss (or divergence) Theorem∫

∂W
fknkd Ad =

∫
W

c−1
3 (D, R)∇k(c2(d, R) fk) dVD, (2-4)

where fk is a vector field (in subscript notation) and

d Ad = c2(d, R) d A2dVD = c3(D, R) dV3. (2-5)

Here d A2 and dV3 are, respectively, the conventional infinitesimal elements of surface and volume in
Euclidean space, while d A2 and dV3 are the corresponding elements of a fractal’s surface and vol-
ume. Note that the left-hand side in (2-4) is a fractional integral, equal to a conventional integral∫
∂W c2(d, R) fknkd A2, while the right-hand side is a fractional integral, equal to a conventional integral∫
W div(c2(d, R) fk) dV3. Thus, we can rewrite (2-4) as∫

∂W
c2(d, R) fknkd A2 =

∫
W
∇k(c2(d, R) fk) dV3, (2-6)

and, in fact, extend this theorem to the setting with a jump [ fk] on a surface S across W :∫
∂W

c2(d, R) fknkd A2 =

∫
W−S
∇k(c2(d, R) fk) dV3+

∫
S

c2(d, R)[ fk]nkd A2. (2-7)

The proof of (2-7) follows the same lines as that in conventional continuum mechanics; dividing the body
W into two parts separated by S, applying the Green–Gauss theorem to each part while accounting for
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the jump from either side, and combining both results. From (2-7) one obtains a special form, sometimes
simply called the Green’s (or gradient) Theorem,∫

∂W
c2(d, R) f nkd A2 =

∫
W−S
∇k(c2(d, R) f ) dV3+

∫
S

c2(d, R)[ f ]nkd A2. (2-8)

While (2-4) was derived by Tarasov [2005b], the following form of the Reynolds (transport) Theorem
was adopted in an ad hoc fashion without a derivation:

d
dt

∫
W

P(x, t) dVD =

∫
W

∂

∂t
PdVD +

∫
∂W

Pvkd Ad . (2-9)

Effectively, (2-4) and (2-9) have led Tarasov to introduce these conventional forms of two key differential
operators of continuum mechanics:

∇
D
k f = c−1

3 (D, R)
∂

∂xk
[c2(d, R) f ] ≡ c−1

3 (D, R)∇k[c2(d, R) f ]
( d

dt

)
D

f

=
∂ f
∂t
+ c(D, d, R)vk

∂ f
∂xk

, (2-10)

where

c(D, d, R)= |R|d+1−D 2D−d−10(D/2)
0(3/2)0(d/2)

= c−1
3 (D, R)c2(d, R),

c2(d, R)= |R|d−2 22−d

0(d/2)
, c3(D, R)= |R|D−3 23−D0(3/2)

0(D/2)
.

(2-11)

Now, proceeding in the same vein as with (2-7), we obtain an extension of the Stokes (curl) Theorem∫
∂W

n× f d Ad =

∫
W

c−1
3 (D, R) curl[c2(d, R) f ] dVD. (2-12)

To clarify, this involved the steps∫
∂W

ei jkn j fkd Ad =

∫
∂W

ei jkn j fkc2(d, R) d A2 =

∫
W
[ei jk fkc2(d, R)], j dV3

=

∫
W

c−1
3 (D, R)[c2(d, R)ei jk fk], j dVD.

(2-13)

This procedure may now be extended to derive the Reynolds (transport) Theorem for fractal media.
Similar to the case of nonfractal media, but focusing on a region W of mass fractal dimension D and
bounded by a surface of another fractal dimension d, in the following steps we obtain the time rate of
change of an integral involving a spatially distributed quantity f :

d
dt

∫
W

f (x, t) dVD =
d
dt

∫
W

f J dV 0
D =

∫
W

d
dt
[ f J ] dV 0

D =

∫
W
[ ḟ J + P J̇ ]dV 0

D

=

∫
W
[ ḟ J + f vk,k J ]dV 0

D =

∫
W
[ ḟ + f vk,k ]dV

=

∫
W

( ∂
∂t

f + f,k vk + f vk,k

)
dVD =

∫
W

( ∂
∂t

f + ( f vk),k

)
dVD.

(2-14)
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Here dV 0
D refers to the volume of a fractal object in the reference configuration, while J denotes a

Jacobian of motion defined in terms of material coordinates. Two observations are relevant at this point:

(i) The final result cannot be written as a sum of a volume integral and a surface integral, the way it is
done in (2-9). Nor is it possible to write d

dt

∫
W f (x, t) dVD as

∫
W

∂
∂t f dV3+

∫
∂W f vkd A2.

(ii) The third line in (2-14) dictates the conventional material derivative

d f
dt
=
∂ f
∂t
+ vk

∂ f
∂xk

. (2-15)

This is in contrast to (d/dt)D = ∂ f/∂t + c(D, d, R)vk f,k , with c(D, d, R) = c−1
3 (D, R)c2(d, R),

of Tarasov’s equation (2-9). In consequence, in all previous results in mechanics of fractal media,
(d/dt)D is to be simply replaced by the conventional material derivative d/dt , which leads to certain
simplifications.

Proceeding in a similar way for the time rate of change of a surface integral involving a quantity Q
distributed over a surface ∂W , we find

d
dt

∫
∂W

Q(x, t)n pd Ad =

∫
∂W

Q̇(x, t) n pd Ad +

∫
∂W

Q(x, t)
d
dt
(n pd Ad)

=

∫
∂W

Q̇(x, t) c2n pd A2+

∫
∂W

Q(x, t) (n pvk,k −nkvk,p )c2d A2

=

∫
∂W

(
[Q̇(x, t)+ vk,k Q(x, t)]δpq − Q(x, t)vq ,p

)
nqc2d A2

=

∫
∂W

(
[Q̇(x, t)+ vk,k Q(x, t)]δpq − Q(x, t)vq ,p

)
nqd Ad . (2-16)

This implies that the fractal structure of the medium does not affect the essential conclusion of the
Helmholtz–Żórawski lemma.

Balance equations. The results above lead to modified balance equations of fractal media [Tarasov
2005a, 2005b; Ostoja-Starzewski 2007a]:

• the fractional equation of continuity,

ρ̇ =−ρ∇D
k vk; (2-17)

• the fractional equation of balance of density of momentum,

ρv̇k = ρ fk +∇
D
k σkl; (2-18)

• the fractional equation of balance of density of energy,

ρu̇ = σkldkl −∇
D
i qi ; (2-19)

• the Clausius-Duhem inequality,

σ
(d)
i j di j +β

(d)
i j α̇i j −

θ,k qk

θ
≥ 0. (2-20)
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Here σkl is the Cauchy stress (symmetric according to the balance of angular momentum, employed just
like in nonfractal media), σ (d)i j and β(d)i j are the dissipative stresses, while αi j are the internal parameters
in the vein of thermomechanics with internal variables [Ziegler 1983]. One may argue, however, that a
complex microstructure of many fractal media, such as exemplified by lattices involving bending moment
interactions (see [Limat 1988], for instance), would imply micropolar effects. This subject will require
a separate treatment.

3. Some previous results

For completeness, we list several recently obtained generalizations of conventional continuum mechanics
results to the setting of fractal media. See [Ostoja-Starzewski 2007a, 2007b, 2008a] for details.

(i) The equation of Fourier-type heat conduction,

ρcp θ̇ =
∂

∂xi

(
ki j

∂θ

∂x j

)
, (3-1)

is generalized for fractal media to (with k being the thermal conductivity)

ρcp θ̇ =∇
D
i

(
ki j

∂θ

∂x j

)
. (3-2)

(ii) The Duhamel equation of linear thermoelasticity,

ρcp θ̇ =−(3λ+ 2µ)αθ0ε̇(1)+
∂

∂xi

(
ki j

∂θ

∂x j

)
,

is generalized for fractal media to

ρcp θ̇ =−(3λ+ 2µ)αθ0ε̇(1)+∇
D
i

(
ki j

∂θ

∂x j
.
)
.

Here λ and µ are the Lamé coefficients, α is the coefficient of thermal expansion and the subscript
(1) indicates the first basic invariant of strain.

(iii) The Maxwell–Betti reciprocity relation of linear elasticity,∫
∂W

t∗i ui d A2 =

∫
∂W

ti u∗i d A2. (3-3)

is generalized for fractal media to∫
∂W

t∗i ui d Ad =

∫
∂W

ti u∗i d Ad . (3-4)

(iv) The Hill condition, which in the classical case reads

σi jεi j = σ i jεi j , (3-5)

for a fractal medium becomes

c(D, d, R)σi jεi j = σ i jεi j . (3-6)
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(v) The local form of the balance of linear momentum of a turbulent flow, accounting for fluctuations
and after averaging is carried out,

ρ
( d

dt
vi + vi, jv j

)
=−ρ(v′iv

′

j ), j +ρ fk + σ i j , j , (3-7)

is modified for a fractal porous medium to

ρ
( d

dt
vi + vi, jv j

)
=−ρ∇D

j (v
′

iv
′

j )+ ρ fk +∇
D
j σ i j . (3-8)

This implies that the Reynolds stress σ ∗i j can no longer be simply written as σ ∗i j − ρ(v
′

iv
′

j ), but it is
a function of D, d, and R.

The same type of approach allows a generalization of a telegraph equation governing the propagation
of second sound in a rigid conductor with fractal geometry [Ignaczak and Ostoja-Starzewski 2009].

4. Extremum and variational principles in elasticity

Statically admissible fields. Consider a statically admissible field denoted by ∗ . We can then write∫
∂W
(t∗i − ti )ui d Ad =

∫
∂Wt

(t∗i − ti )ui d Ad . (4-1)

On account of (2-4) and the fractional equation of static equilibrium of a body without a body force
field — a special case of (2-18) — this becomes∫

W
c(D, d, R)(σ ∗i j − σi j )εi j dVD. (4-2)

Now, at every point in the fractal, strictly speaking prefractal, elastic body, just like in a nonfractal
elastic body, this inequality holds

(σ ∗i j − σi j )εi j <
1
2
(σ ∗i jε

∗

i j − σi jεi j ). (4-3)

Thus, (4-1) is written as

1
2

∫
W

c(D, d, R)σ ∗i jε
∗

i j dVD −

∫
∂Wu

t∗i ui d Ad >
1
2

∫
W

c(D, d, R)σi jεi j dVD −

∫
∂Wu

ti ui d Ad , (4-4)

or, equivalently,

1
2

∫
W

c(D, d, R)σ ∗i jε
∗

i j dVD −

∫
∂Wu

t∗i ui d Ad >
1
2

∫
∂Wt

ti ui d Ad −
1
2

∫
∂Wu

ti ui d Ad . (4-5)

On account of (2-5), (4-5) can be written as

1
2

∫
W

c2(d, R)σ ∗i jε
∗

i j dV3−

∫
∂Wu

c2(d, R)t∗i ui d A2

>
1
2

∫
∂Wt

c2(d, R)ti ui d A2−
1
2

∫
∂Wu

c2(d, R)ti ui d A2, (4-6)
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which means that the expression on the left-hand side takes an absolute minimum value in the actual
state.

Next, consider the expression∫
W

c(D, d, R)u∗(σ ∗i j )dVD −

∫
∂Wu

t∗i ui d Ad , (4-7)

where u∗ is the potential energy density, a functional of σ ∗i j , such that

∂

∂σ ∗i j
u∗(σ ∗i j )= ε

∗

i j . (4-8)

We inquire when the expression (4-7) assumes a stationary value with respect to σ ∗i j satisfying the equi-
librium condition. First, we can rewrite (4-7) as∫

W
c(D, d, R)U∗(σ ∗i j )dVD −

∫
∂W

t∗i ui d Ad +

∫
∂Wt

t∗i ui d Ad , (4-9)

which becomes ∫
W

c(D, d, R)[u∗(σ ∗i j )− σi jεi j ]dVD +

∫
∂Wt

t∗i ui d Ad . (4-10)

Since t∗i = ti on ∂Wt , this has a stationary value when

∂

∂σ ∗i j
u∗(σ ∗i j )= εi j . (4-11)

In view of (4-8), (4-7) has a stationary value when

ε∗i j = εi j , (4-12)

that is, in the actual state.

Kinematically admissible fields. Consider a kinematically admissible field denoted by ∗ . We can then
prove ∫

∂Wt

(u∗i − ui )ti d Ad =

∫
W

c(D, d, R)(ε∗i j − εi j )σi j dVD. (4-13)

Now, at every point in the prefractal elastic body, just as in a nonfractal elastic body, we have

1
2(σ
∗

i jε
∗

i j − σi jεi j ) > (ε
∗

i j − εi j )σi j , (4-14)

unless σ ∗i j = σi j , which leads to∫
∂Wt

(u∗i − ui )ti d Ad <
1
2

∫
W

c(D, d, R)(σ ∗i jε
∗

i j − σi jεi j ) dVD (4-15)

or∫
∂Wt

(u∗i − ui )ti d Ad −
1
2

∫
W

c(D, d, R)σ ∗i jε
∗

i j dVD <

∫
∂Wt

ui ti d Ad −
1
2

∫
W

c(D, d, R)σi jεi j dVD. (4-16)
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Equivalently, we can write∫
∂Wt

(u∗i −ui )ti d Ad−
1
2

∫
W

c(D, d, R)σ ∗i jε
∗

i j dVD <

∫
∂Wt

ui ti d Ad−
1
2

∫
W

c(D, d, R)σi jεi j dVD. (4-17)

Again on account of (2-5), this can be restated in terms of conventional integrals in Euclidean space:∫
∂Wt

c2(d, R)(u∗i − ui )ti d A2−
1
2

∫
W

c2(d, R)σ ∗i jε
∗

i j dV3

<

∫
∂Wt

c2(d, R)ui ti d A2−
1
2

∫
W

c2(d, R)σi jεi j dV3. (4-18)

This means that the expression on the left-hand side takes an absolute maximum value in the actual state.
The relations derived above imply that one can apply the extremum principles of elasticity to fractal

bodies, provided extra information is taken into account through D, d and R.

5. Hamilton’s principle for a fractal continuum

Just as in continuum mechanics of conventional media (see [Reddy 1984], for example), we begin with
the statement of work done on a fractal body at time t by the resultant force in moving through the virtual
displacement ∫

W
f · δu dVD +

∫
∂Wt

t · δu d Ad −

∫
W

c(D, d, R)σ : δε dVD (5-1)

(or equivalently
∫

W fiδui dVD +
∫
∂Wt

tiδui d Ad −
∫

W c(D, d, R)σi jδεi j dVD), where the third term is dic-
tated by (2-4) and the variation satisfies the conditions

δu = 0 on ∂Wu for all t, δu(x, t1)= δu(x, t2)= 0 for all x. (5-2)

At the same time, the work done by the inertia force ma in moving through the virtual displacement δu
is given by ∫

W
ρ
∂u2

∂t2 · δu dVD. (5-3)

Now Newton’s second law,
F−ma = 0, (5-4)

dictates that∫ t2

t1

(∫
W
ρ
∂u2

i

∂t2 δui dVD −

(∫
W

fiδui dVD +

∫
∂Wt

tiδui d Ad −

∫
W

c(D, d, R)σi jδεi j dVD

))
dt = 0. (5-5)

Upon integration of the first term by parts, this is transformed to a form of Hamilton’s principle for a
continuous medium (without a requirement of a conservative force system or elastic material behavior)

−

∫ t2

t1

(∫
W
ρ
∂ui

∂t
∂δui

∂t
dVD+

(∫
W

fiδui dVD+

∫
∂Wt

tiδui d Ad−

∫
W

c(D, d, R)σi jδεi j dVD

))
dt=0. (5-6)

In the special case of a conservative force system and an elastic body, a potential energy of external
forces and a strain energy density (dual by a Legendre transformation to u∗ of (4-11) and (4-12)) exist,
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such that

δV =−
∫

W
fiδui dVD −

∫
∂Wt

tiδui d Ad ,
∂

∂εi j
u = σi j , u = u(εi j ). (5-7)

Hence (5-6) becomes ∫ t2

t1
L dt = 0, L = K −5, (5-8)

where L is the Lagrangian and 5 is the total potential energy.
Finally, proceeding similarly to classical continuum mechanics albeit within the calculus pertinent to

fractional integrals, by using integration by parts, the Green–Gauss Theorem (2-4) and the conditions
(5-7), leads to

0= δ
∫ t2

t1
L(uk, u̇k) dt

=

∫ t2

t1
{

∫
W
[ρ

d
dt
vk − ρ fk +∇

D
l σkl]δui dVD +

∫
∂Wt

(tk − t∗k )δui d Ad}.

(5-9)

Given that δu is arbitrary for t ∈ (t1, t2) and x ∈ W , as well as on ∂Wt , we find the Euler–Lagrange
equations associated with L:

ρ
d
dt
vk = ρ fk +∇

D
l σkl in W, tk − t∗k = 0 on ∂W. (5-10)

In (5-10)1 we recognize Equation (2-18). Further results, in the setting of elastic and inelastic materials,
are given in [Ostoja-Starzewski 2009].

6. Conclusions

The continuum property is desired in providing mathematical descriptions of random heterogeneous
microstructures in terms of homogenizing fields. While a number of methods have been developed
over the past few decades to justify this in the setting of materials having Euclidean geometries for
deterministic as well as random fields (see a review in [Ostoja-Starzewski 2008b]), in the case of fractal
(i.e., almost everywhere nondifferentiable) media, novel methods outside classical continuum mechanics
have to be employed. As a result, new forms of governing (partial differential) equations are derived
where fractal dimensions and spatial resolution appear through explicit coefficients c(D, d, R), c2(d, R)
and c3(D, R). This indicates that very complex and multiscale materials of both elastic and inelastic
type − which have so far been the domain of condensed matter physics, geophysics and biophysics −
will soon be open to studies via initial-boundary value problems in the vein conventionally developed
for smooth materials. This is made possible thanks to the approach initiated by Tarasov [2005a, 2005b,
2005c], and, in fact, allows one to deal with prefractal media which are commonly seen in nature.

The resulting field equations are more general than those of nonfractal media encountered in con-
ventional continuum mechanics. In the latter case, D = 3, d = 2, whereby c(D, d, R) = c2(d, R) =
c3(D, R) = 1, so that one recovers conventional forms of transport equations, balance equations and
extremum principles of continuum mechanics. Thus, having to handle continuum mechanics of fractal
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media implies that one has to deal with partial differential equations and/or extremum principles in which
the coefficients c(D, d, R), c2(d, R) and c3(D, R) pertinent to a given microstructure are present.

The approach developed in this paper has its limitations: (i) spatial homogeneity, which actually allows
smoothing at some finite length scale corresponding to the upper cutoff of the prefractal, and (ii) use of
the Riesz form of fractional integrals for fractals in higher dimensional case using one integral variable,
the radial scalar r , thus restricting the problem to a spherically symmetric one [Roy 2007], which in turn
implies local isotropy of material response. The second limitation is removed with the help of a product
measure instead of a Riesz measure, and thereby also ensuring that the mechanical approach to continuum
mechanics is consistent with the energetic approach [Ostoja-Starzewski and Li 2009]. In that paper we
have also extended the fracture mechanics (in terms of the strain energy release rate approach) and the
elastodynamic equations of a Timoshenko beam to materials described by fractional integrals involving
D, d and R. That line of approach has then allowed us [Li and Ostoja-Starzewski 2009] to specify the
geometry configuration of continua via “fractal metric” coefficients, and therefore grasp the local material
anisotropy. This then allows development of wave equations in one-, two- and three-dimensional fractal
media or micropolar continuum models.
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AN ENDOSCOPIC GRASPER WITH CORRUGATED
PLATE-SHAPED TACTILE SENSORS

MOHAMMAD AMEEN QASAIMEH, MOHAMMADREZA RAMEZANIFARD AND JAVAD DARGAHI

One of the major weaknesses in current endoscopic surgery is the lack of tactile feedback. This paper re-
ports on the design, finite element modeling, and experimental testing of a corrugated tactile sensor. The
sensor, a miniaturized and modified form of our previously developed tactile sensor, consists of a 75µm
plate-shaped silicon layer and a 25µm polyvinylidene fluoride (PVDF) film, patterned on both sides
using photolithographic techniques to form three independent sensing elements. The sensor is 15 mm
long, 7.5 mm wide, and approximately 3 mm thick, which could make it versatile enough for integration
with current endoscopic and medical robotics manipulators. The silicon layer is micromachined in such
a way that a U-channel is formed. When a force is applied on the tactile sensor, output voltages from
the patterned PVDF-sensing elements are combined to obtain tactile information. Results show that the
sensor exhibits high sensitivity and can measure small dynamic loads, comparable to a human pulse, as
well as large grasping forces. In addition to measuring the magnitude and position of the applied load,
the sensor can determine the modulus of elasticity of the grasped object.

1. Introduction

Over a decade ago, surgical procedures called minimally invasive surgery (MIS) were introduced. Though
initially limited to specific kinds of operations, MIS has now become a standard and widely used surgical
procedure, replacing most of the traditional open-surgery procedures [Tendick et al. 1998]. MIS has
substantial benefits over traditional open surgeries, which require large incisions to allow the surgeon
access to perform procedures at the operation site [Carrozza et al. 2003].

Tactile sensing is defined as the continuous sensing of variable contacting forces, such as the sensing
ability of the human finger. One of the most exciting and rapidly emerging areas where tactile sensing
is making a significant impact is in robotic surgery, primarily because soft tissue can only be properly
recognized by evaluating its softness, viscosity, and elasticity properties [Rebello 2004]. In the decision-
making process during surgery, one of the most highly evaluated procedures is palpation of tissues [Howe
et al. 1995]. This is an essential step for any surgical process because palpation of the grasped tissue
gives some ideas about its properties.

To perform MIS more effectively, the surgeon should be able to feel the tissue and sense the pressure
of blood vessels and ducts during the surgical procedure [Howe et al. 1995; Rebello 2004]. This ability is
imperative during manipulation tasks such as grasping internal organs, gentle load transfer during lifting,
and suturing and removing tissues [Melzer et al. 1994]. Tactile sensors recommended for use during
MIS procedures should be small, highly sensitive, have low manufacturing and integration costs, and
should preferably be disposable [Carrozza et al. 2003; Rebello 2004; Qasaimeh et al. 2007]. Combining

Keywords: tactile sensor, endoscopic grasper, minimally invasive surgery, microfabricated sensor.
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all of these features in MIS is one of the leading aspects of research with regard to the integration of
microfabrication and microelectromechanical system (MEMS) technology in the field of tactile sensing
and MIS. MEMS have both electrical and mechanical parts. The sensor, or actuator, fabricated using this
technology, is micromachined to be relatively small in the macro world and includes microfabrications of
both electrical and mechanical components on one common substrate. MEMS technology can be applied
to the tactile-sensing field to produce tiny micro tactile sensors. These improved microfabricated tactile
sensors have made great strides recently in the field of MIS, and many more promising improvements
are in progress. Miniaturization of sensors improves dexterity and increases the sensing elements per
unit area. These sensors can be mass produced, resulting in low unit costs.

Endoscopic and laparoscopic tools are widely used in MIS operations. Endoscope graspers should
have teeth that are able to grasp slippery and soft tissues usually associated with endoscope operations
[Rebello 2004]. A currently available commercial endoscopic tool for laboratory use is shown in Figure 1
(Snowden–Pencer Graspers SP90-3104 type).

Few publications exist that deal with tactile sensor design, especially for use in MIS. Some currently
fabricated devices are able to find the force and compliance of sensed tissues but failed when it came to
detecting embedded lumps, and were limited to a force range in the milligrams [Dargahi et al. 2000; 2005].
Finite element methods were applied in parallel development works [Tanimoto et al. 1998; Najarian et al.
2006], but none of the proposed designs had the ability to measure the position of the applied forces
besides finding grasping forces. Narayanan et al. [2006] presented a tactile sensor for MIS operations,
but the sensor is active only on the teeth regions; the other regions are inactive and unable to sense the
properties of the contacting object. One of our developed sensors was presented in [Qasaimeh et al. 2007].
It was able to locate the applied force magnitude, pressure distributions on the organ, and embedded
lumps; however, primary results indicate that the design is somewhat deficient in finding and detecting
low-magnitude loads similar to the pulse in a blood vessel.

Based on our previous work [Qasaimeh et al. 2008a; 2008b; 2009], this paper presents a modified
and miniaturized tactile sensor (15 mm long and 7.5 mm wide) which could be incorporated on the tip of
MIS tools (such as an endoscopic tool or robotic manipulators). The presented sensor is able to measure
the magnitude and position of grasping forces and is therefore could be potentially able to estimate any
embedded lump or abnormality inside a grasped organ. In addition, the proposed sensor is able to detect
low mechanical forces and hence can potentially detect the pulse in a blood vessel. Also, this sensor can
estimate the softness of the object with which it comes into contact.

Figure 1. Commercial endoscopic graspers used for endoscopic surgeries (Snowden-Pencer SP90-3104).
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Figure 2. The silicon layer (first layer of the sensor assembly), comprising the teeth
shape, the middle base plate, the U-channel, and the two supports.

2. Design and structure of the sensor

The proposed sensor is assembled using three layers. The first layer is micromachined from a silicon
wafer. The second layer is the sensing element microfabricated by patterning a polyvinylidene fluoride
(PVDF) film. Finally, the entire structure is supported by and attached to a substrate (third layer) of
cage-shaped Plexiglas. The first layer is microfabricated to form the required teeth shapes of height
200µm on the top of a deformable base plate of thickness 75µm. The base plate stands on two supports,
200µm in height, to form a U-shaped channel. All of these features are microfabricated in one step
out of a single 475µm silicon layer. The designed teeth on the top are necessary for the purpose of
grasping. The microfabricated silicon layer design is shown in Figure 2, and a top view showing the
teeth arrangements and dimensions is shown in Figure 3. The middle base plate is designed to give a
deformation under grasping action, and the supports hold the base plate to provide a suitable gap which
is necessary for the plate deflection. The second layer within the sensor is microfabricated from PVDF
film to create sensing elements — specifically, from metalized and poled piezoelectric PVDF film, 25µm
thick [Qasaimeh et al. 2008a]. The third layer, or substrate, is machined out of Plexiglas to support the
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Figure 3. Top view of the sensor showing the teeth arrangement and dimensions. (The
thickness is 3 mm.)
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Figure 4. The proposed sensor after assembly and integration with an endoscopic MIS
tool. A single sensor may be integrated with one jaw, or each jaw may be provided with
its own sensor, allowing the combined signal to offer additional tactile information such
as the depth of embedded lumps.

first two layers and hold them in place during tissue manipulation and operations such as handling, lifting
and twisting. Plexiglas surrounds the first two layers on three sides (see Figures 10 and 11 on page 921)
to protect the sensor assembly against shear forces associated with tissue manipulation. The integration
between sensor and endoscopic grasper is schematically indicated in Figure 4.

The microfabricated prototype is 15 mm long and 7.5 mm wide. These dimensions are compatible
with available commercial laparoscopic tools and could be easily integrated with them.

The silicon layer of the sensor base plate has a thickness of 75µm. This thickness was chosen to
optimize the loading range of the grasping forces as well as to be sensitive to the small mechanical
forces which are equivalent to the pulse in a blood vessel. Moreover, after a study of various tooth-
like shapes, an irregular teeth arrangement was chosen (as shown in Figures 3 and 4). The orientations
of the attached PVDF were investigated and the drawn direction (d31) of the PVDF-sensing elements
was chosen to be parallel with the sensor width (Y -direction) [Qasaimeh et al. 2008b]. This proposed
sensor is the second generation of our previously invented sensor and is based on our continuing work
[Qasaimeh et al. 2008b; 2009]. The design of the sensing element has been modified to eliminate any
cross-talk between adjacent elements, and the supporting layer was customized to protect the sensor
assembly under shear stresses (during surgical manipulations) and eliminate the contribution of these
stresses to the output signal. The size was also reduced so the sensor can fit with current endoscopic
tools and medical robotic manipulators.

3. Principle of the sensor

There are two sensing layers in different locations. The first is the sensing layer at the supports, which
is sandwiched between the silicon supports and the Plexiglas supporting layer. The second is the middle
sensing layer which is glued to the back of the base plate. The sensing layer at the supports has two
functions: it determines the total grasping force magnitude, and it locates any concentric load application.
The middle sensing layer determines the grasped tissue softness and detects low magnitude forces.

While grasping internal organs, a compression force is transferred to the PVDF layers at the supports
via the silicon layer. These forces will actuate the PVDF layers to work on its thickness mode, resulting
in an output voltage on the electrodes. For greater compression loads, the PVDF layer will be compressed
more, resulting in a higher magnitude of voltage. Because the silicon layer has two supports, we can
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Figure 5. Reaction magnitudes as a function of the point load location. By comparing
both quantities, the exact position of the applied point load can be estimated.

predict the applied load carried by these two supports using simple principles of mechanics. Depending
on the pressure distributions and the concentric load location, the load will either be carried equally on
both supports, or one of the supports will carry more than the other. For simplicity, a fixed-fixed simple
beam with applied point load is considered. A point load P is applied at a distance x on the beam of
length L . Two reactions, R1 and R2, and two moments, M1 and M2, appear at the fixed points of the
beam. The magnitudes of both R1 and R2 are a function of x , and the summation of both is equal to the
load magnitude P . Because the system is in static equilibrium, by equating to zero the sum of forces
and the sum of moments, we obtain

R1 =
P(`3
− 3`x2

+ 2x3)

`3 , R2 =
P(3`x2

− 2x3)

`3 .

By plotting both equations versus the point load location, the relation between each reaction magnitude
and the point load location is shown clearly (see Figure 5). By comparing both curves (R1 and R2), the
exact position of the applied point load can be estimated.

The voltage generated at each sensing element beneath its support will depend on position with a
shape similar to the one in Figure 5. The amplitude of the variation has the functional form

V = F d
A×C

,

where F is the magnitude of the reaction forces, d is the piezoelectric coefficient of the sensing element
(PVDF) in compression mode, A is the surface area of the sensing element, and C is the capacitance of
the sensing element.

The middle sensing layer is a PVDF layer working on its extensional mode. Deflection of the base
silicon plate will cause the PVDF layer to stretch and supply an output voltage. This sensing layer is
responsible for determining tissue softness and for finding and responding to any low magnitude loading
comparable to the pulse in a blood vessel. The silicon layer deflection is related to the softness of the
contacting tissue. In the case of grasping a soft tissue, the silicon will yield to a large deflection (because
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the tissue itself does not resist the action of the distributed load and bend easily), in proportion to the large
stretching of the PVDF layer, and produce a high voltage. On the other hand, in the case of grasping
a hard tissue, the silicon layer will be only slightly deflected (because the tissue itself will resist the
bending action due to its rigidity) with correspondingly less stretching of the PVDF giving rise to only
a small voltage.

4. Sensor modeling

A complete physical model of the proposed sensor was modeled and analyzed using ANSYS 12 (see
Figure 6 for a top view of the mesh). This model is used to determine the deformation of the sensor and
the output voltage at the PVDF-sensing elements for different loading conditions. Silicon and Plexiglas
layers were modeled using the SOLID45 element, which possesses plasticity, creep, swelling, stress
stiffening, large deflection, and large strain capabilities for 3D modeling. The PVDF-sensing elements
were modeled using the SOLID227 element.

The linearized constitutive equations solved by the software are {σ }6×1 = [C]6×6{ε}6×1 and D6×1 =

[e]T6×6{ε}6×1, where σ is the stress vector, ε the strain vector, C the elasticity matrix, and D the electric
flux density vector. The piezoelectric matrix can be defined either in the [e] form (piezoelectric stress
matrix) or in the [d] form (piezoelectric strain matrix), the two being related by [e] = [C][d].

Figure 6. Top view of the meshed finite element model of the sensor.

5. Microfabrication and assembly

The silicon layer is microfabricated on both sides by employing anisotropic bulk etching using a tetram-
ethylammonium hydroxide (TMAH) bath. The sensing elements are prepared by selectively etching each
aluminum electrode covering the PVDF film on both sides. Each layer is prepared separately until the
sensor is assembled.

Silicon microfabrications. The wafer is cleaned using deionized (DI) water and a nitrogen gun. It is
then wet-oxidized in an oxidization furnace at 1100 ◦C for two hours to build a silicon oxide layer of
almost 1.2µm thickness. After oxidization, the silicon wafer is covered by a layer of Shipley S1813
positive photoresist (PR) by spin coating. It is then soft-baked on a hot plate at a temperature of 115 ◦C
for about one minute. After preparing the dark field mask (which outlines the teeth shapes), the mask is
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aligned to the flat edge of the wafer (100), using alignment marks, to have the {111} silicon planes on the
side walls of the silicon teeth. This is followed by exposure to ultraviolet light for fifteen seconds. The
PR is then developed, using an appropriate PR developer, and subsequently the sample is hard-baked on
a hot plate at a temperature of 115 ◦C for one minute. After the careful alignments under the EVG mask
aligner, the same procedure is repeated on the other surface of the silicon sample, using the second dark
field mask which represents the supports. The next step is the wet-etching of the silicon oxide to form a
hard mask for silicon bulk-etching. Oxide-etching begins by dipping the sample inside a buffered oxide
etchant (HF) for a few minutes until the oxide-etching on the PR-free regions is complete. The remaining
oxides act as the hard mask during the bulk silicon-etching process. The last step of the silicon layer
microfabrication is the silicon bulk-etching inside a 25% TMAH bath. The sample is kept inside this bath
for eleven hours to form teeth and supports with the desired heights and shapes. Finally, the remaining
PR and silicon oxide is removed and the silicon sample is rinsed with DI water for a few minutes and
dried using a nitrogen gun. The silicon microfabrication steps are shown in Figure 7.

PVDF fabrications. A sample of aluminum metalized PVDF film is prepared and cut with a rectangular
shape and suitable dimensions. Care is taken that the drawn direction (d31) of the PVDF strip is parallel
with the width of the sample. The sample has dimensions 18× 8 mm2, which is slightly wider and longer
than the silicon sample to provide the necessary margins during assembly. The PVDF-sensing elements
at both the middle and supports are microfabricated on single PVDF film. Therefore, both sides of the
film are patterned to fabricate the PVDF-sensing elements at the middle and at the supports, and to ensure
that all are electrically isolated from each other, thus eliminating cross-talk between elements.
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Figure 7. The silicon layer bulk etching process: (a) the silicon layer is thermally ox-
idized and photoresist is deposited on both surfaces; (b) the sample is soft-baked and
then exposed to UV through different masks for each side; (c) the sample is hard-baked
and then developed; (d) the developed photoresist is etched out; (e) unprotected silicon
oxide is etched out; (f) unprotected silicon is etched out; (g) the remaining photoresist is
removed, and then the silicon oxide is removed completely, resulting in the final micro-
fabricated silicon layer.
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Figure 8. PVDF film and sensing elements: (a) the microfabricated PVDF sensing
elements by patterning the PVDF film, and (b) designed PVDF sensing elements dis-
tribution on the PVDF film.

The three sensing elements are microfabricated using MEMS technology including the photolithogra-
phy steps. The process starts with the PR deposition, and then the sample is soft-baked. After preparing
the mask, the sample is exposed to UV light and the PR is hard-baked after developing. The same steps
are then repeated for the other side of the sample after the care alignments under the EVG mask aligner.
The aluminum cover is patterned using aluminum commercial etchant and then the remaining PR is
removed. The patterned PVDF film, which includes the sensing elements, is shown in Figure 8. Finally,
working under stereomicroscope, each aluminum electrode at each PVDF-sensing element is connected
to a copper electrode (which, in turn, is welded to a copper wire connected to the conditioning circuit to
provide the sensor’s output) using conductive silver epoxy (see Figure 11 on the next page).

Layer assembly. First, the PVDF-sensing elements are glued to the microfabricated silicon layer. A
nonconductive epoxy is distributed uniformly on the back of the middle silicon plate and on the bottom
of both silicon supports as well. Afterwards, the PVDF sensing elements are aligned under a stereomicro-
scope to ensure their proper location. After that, as shown in Figure 9, compression blocks are applied
for 24 hours to compress the sensing elements to the silicon layer to ensure secure and uniform adhesion.
Finally, the Plexiglas layer is integrated into the structure using the same procedure; see Figure 10. The
final assembled prototype sensor is shown in Figure 11.
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Figure 9. Assembly of the silicon and PVDF microfabricated sensor layers using non-
conductive epoxy, with the application of compression blocks for 24 hours.
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Figure 10. Final assembly of the sensor: the first two layers are fixed inside the Plexi-
glas cage with non-conductive epoxy, and compression is applied for 24 hours.
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Figure 11. Photograph of the microfabricated prototype sensor.

6. Finite elements and experimental results

We now report and compare the simulation and experimental results. The experimental setup is shown
in Figure 12. The sensor is fixed on an XYZ micropositioning stage and positioned under a cylindrical
probe, which is driven by a vibration unit (Ling dynamic model V203) and used to apply a sinusoidal
force of frequency 10 Hz, unless stated otherwise. The vibration unit is activated by a signal generator
(Agilent 33220A).

The magnitude of the applied force is determined by a force transducer (KISTLER, Type 9712B50)
inserted between the probe and the vibration unit. The force transducer output is connected to an amplifier
which, in turn, is connected to a computer via the data acquisition card to monitor the applied load.

In the same way, the PVDF sensing elements are connected by wires to the charge amplifiers, which,
in turn, are connected to a computer via the data acquisition card to measure output signals using the
LabVIEW program.
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Figure 12. Experimental setup diagram: (A) signal generator, (B) power amplifier, (C)
vibrator, (D) charge and voltage amplifiers, (E) A/D converter, (F) computer, (G) force
transducer, (H) probe, and (I) the proposed sensor under test.
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Figure 13. Left: calibration curve of the middle PVDF-sensing element. Right: calibra-
tion curve of each sensing element at the supports. For both curves, the experimental
applied point loads ranged from 1 mN to 3 N and were always applied at the center of
the sensor.

First, a point load is applied with a sharp head probe on the center point at the top of the sensor. This
kind of loading is carried out in order to find a correlation between the output voltages in the PVDF-
sensing elements with respect to the applied load magnitudes. Using this result, we obtained calibration
curves for the sensor prototype, from which we can determine the grasping forces actually applied during
surgery. The magnitudes of the forces applied ranged from 1 mN to 3 N. The output voltages with respect
to the applied load magnitude at the PVDF-sensing elements are shown in Figure 13.

To detect the precise location of the applied point load, as when locating embedded lumps during
surgery, a point load of 50 mN magnitude is applied on the silicon layer at different points. The point
load was applied along the center line (which divides the length into two equal halves) of the silicon at
different points in the Y -direction (crosswise). Output voltages from the middle PVDF-sensing element
versus the 50 mN point load location are shown in Figure 14. To detect load location lengthwise, an array
of sensing elements can be deployed along the sensor’s length, as shown in [Qasaimeh et al. 2008b].

The output voltages versus the 50 mN point load location from the PVDF-sensing element at the first
support (VS1) and at the second support (VS2) are shown in Figure 15. It can be seen from this figure
that when a load is applied exactly onto the first support, the corresponding sensing element generates
the maximum potential while the sensing element at the opposite support shows no output. Therefore,
when the point of application moves away (along the Y-direction), the output voltage of the first support
sensing element (VS1) decreases and that of the second support (VS2) increases. It is interesting to note
that the difference between the output voltages of the pair of sensing elements at the supports (VS1 and
VS2) is linear with respect to the location of the applied concentric load. As a result, the location of
applied load in the Y -direction can be calculated using this linear relationship.

Because the middle plate of silicon is thin (75µm), it is therefore deformable under any action of
forces. While contacting various tissues and objects, the plate will be deflected for small values if the
tissue itself is hard. The reason for this is that hard tissue will resist bending under the load action. On
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the other hand, where soft tissue is contacted, the plate will be deflected for larger values because soft
tissue cannot resist bending as much as hard tissue can. When the plate deflects, the glued middle PVDF-
sensing element at the back will be stretched and a voltage will be created. A larger deflection of the plate
means that the PVDF layer will stretch even more, creating a correspondingly larger amount of voltage.
Several simulations and experiments were carried out while considering different contacting objects with
different moduli of elasticity. With a distributed load of 5 N applied to the top of a contacting object,
theoretical and experimental results show that softer tissues cause a larger amount of created voltage, and
harder contacting tissues cause a smaller amount of created voltage, as shown by the blue curve and red
dots on Figure 16. In contrast, the output signals from the support sensing elements did not significantly
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Figure 14. Output voltages from the middle sensing element versus the Y-location of
the 50 mN point load. The maximum signal occurs when the force is applied exactly at
the center of the sensor.
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Figure 16. Theoretical and experimental values of the generated voltage on the sensing
elements versus different modulus of elasticity of the contacting tissue, under application
of a 5 N distributed uniform load. Left: middle sensing element. Right: support sensing
element.

change with respect to the different contacting objects, as shown by the black curve and green dots in
the same figure.

To test sensor response to an input comparable to the pulse of a blood vessel, a sinusoidal point
load of 10 mN maximum amplitude and approximately 2 Hz frequency was applied at the middle of the
sensor. The maximum response from the middle PVDF sensing element was found to be 2.2 mV, and
the one from the support sensing elements, 0.3 mV. The output signals can be seen in Figure 17. In
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Figure 17. Experimental values of generated voltage on the support and middle sensing
elements when a sinusoidal point load of amplitude 10 mN and frequency 2 Hz was
applied on the middle of the sensor.
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several experiments, we found that it is hard to see on the oscilloscope any response — especially from
the support sensing elements — when the applied sinusoidal load is less than 1 mN (data not shown). As
seen in the previous figure, the middle PVDF sensing element is more sensitive than the support sensing
elements and can detect small dynamic loads comparable to the pulse of a blood vessel.

7. Discussion and conclusion

As shown in Figure 13, linear relations exist between the output voltages from PVDF-sensing elements
and the magnitude of the applied loads. The voltage appearing in the middle of the PVDF-sensing
element is the most sensitive and can detect low-magnitude applied loads comparable to a blood vessel
pulse, as shown in Figure 17.

The summation of the two output voltages at the supports-sensing elements shows the total applied
forces on the grasped object. As shown in Figures 14 and 15, the precise location of any point load is
detectable by comparing the output voltage values of the PVDF-sensing elements. The detection of any
point load indicates the capability of the sensor to detect the presence of an embedded lump inside the
grasped tissue. As shown in Figure 16, the softness of the contacting object can be estimated using this
novel plate design.

Differences between the theoretical and experimental results are due to many factors, one example of
which is the electrical noise associated with the experimental setup. Another factor is the type of applied
load. In theory, the applied load is a point force, but in experiments it is a sharp probe covering a small
area. In addition, the contacting objects (tissues) used in the experiments are not ideal elastic objects; the
known modulus of elasticity for each is not accurate and can even vary with different load applications.
Also, the applied load in the simulations is static, but a low frequency dynamic sinusoidal load is applied
in the experiments (peak-to-peak results were considered).

In conclusion, the potential sensor performance in relation to detecting grasping forces, embedded
lumps, contacting tissues softness, and blood vessel pulse has been demonstrated. The sensor could be
integrated with the commercial endoscopic tool for safer surgical procedures. Also, since it is microma-
chined, it could potentially be mass-produced with low unit cost, and be disposable.

However, improvements may need to be made before moving to the next stage of clinical test and use.
One enhancement might be the use of an interface between the present sensor and graphical software,
to display the contacting forces and tissue softness (as is being developed currently in our lab), or by
integrating the sensor with a haptic interface to feel the contacting forces instead of monitoring them on
a computer display. From the microfabrication point of view, direct deposition of PVDF on silicon chips
as an alternative to gluing could make the sensor more precise. This might also help eliminate wiring
to the PVDF sensing elements, leading to higher precision. Finally, proper packaging and protection is
required for more effective functioning of the sensor.
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A NEW EARTHQUAKE-RESISTANT CONCRETE FRAME WITH
FIBER-REINFORCED PLASTIC FABRICS AND SHIFTED PLASTIC HINGES

M. SAIID SAIIDI, ERIK REINHARDT AND FARAMARZ GORDANINEJAD

An innovative structural pier employing concrete, steel, and carbon fiber composite sheets was developed
and implemented in a two-column bridge pier. The basic concept for the pier design is that the pier has
preassigned plastic hinges in the columns. Outside the plastic hinges, the pier is to remain elastic. The
innovative concept incorporated in the pier is that where plastic hinging and ductility is required, steel
reinforcement is used as longitudinal reinforcement, and where elastic behavior is required, carbon-
fiber-reinforced plastic (CFRP) sheets are used as longitudinal reinforcement. Confinement and shear
capacity are provided for by fiber-reinforced polymer sheets at all locations. The pier is detailed so that
the plastic hinges are shifted away from the column ends because shifted plastic hinges prevent damage
from penetrating into the joint area and are easier to repair. A quarter-scale, two-column pier with square
columns was designed and constructed based on the aforementioned concept. Ordinary concrete and
mild steel were used in the pier. A unidirectional carbon composite was placed on the pier. The pier
was studied using computer programs DRAIN 3-DX and RC-Shake and a shake table testing program
was developed. The pier was subjected to successive runs of the 1994 Northridge–Sylmar record with
increasing amplitudes until failure. The plastic hinges behaved as planned, and the failure occurred after
the rupture of the CFRP confinement sheets at one of the plastic hinges. There was no apparent damage
outside the plastic hinges. Extensive nonlinear analytical studies using multiple- and single-degree-of-
freedom modes were conducted and the results were compared with the measured response. It was found
that both models were generally capable of reproducing the experimental results.

1. Introduction

Applications of fiber-reinforced polymer (FRP) fabrics in civil infrastructure systems have been mainly
in retrofits or repairs of substandard or damaged reinforced concrete structures [Teng et al. 2001]. FRP
fabrics have rarely been used in new construction. In contrast, FRP members in the form of concrete
filled tubes or FRP beams attached to concrete slabs have been investigated for use in new construction
[Saiidi et al. 1994; Mirmiran et al. 2000]. The primary benefits of FRP materials are realized regardless
of whether FRP fabrics or members are used. The high strength and ease of installation are generally the
most important characteristics of FRPs. One characteristic of FRPs that could limit their application for
certain uses is the lack of ductility in FRP fabrics and members when used by themselves. However, the
linear behavior of FRP materials up to failure in combination with their high strength can be a feature
that can be taken advantage of in structures where nonlinear behavior is not desired.

Current seismic design provisions for standard (noncritical) structural systems envision significant
nonlinear deformations at preassigned locations in the structure. In building frames, the typical location
for plastic hinges is at beam ends, whereas in bridges plastic hinges are expected at column ends. The

Keywords: bridges, carbon fiber, earthquake, nonlinear analysis, offset hinges, piers, shake table testing.
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structure outside the plastic hinges is expected to remain elastic. This requirement can be satisfied by
FRPs. The study presented here is aimed at developing and investigating a novel construction method
for bridge piers in which FRP fabrics provide the primary longitudinal and transverse reinforcement in
all segments of the pier except for the column plastic hinges where energy dissipation is expected. At the
plastic hinges, conventional steel bars are used as longitudinal reinforcement and FRP fabrics are used as
transverse reinforcement. An added feature of the proposed construction is the shifting of plastic hinges
away from but close to the column ends, a concept that has been attempted in conventional reinforced
concrete buildings but not bridges [Galunic et al. 1977; Abdel-Fattah and Wight 1987]. This article
presents a summary of the concept, the design, construction, and shake table testing of a two-column
pier utilizing this concept, measured data, and analytical studies of the new pier. Details of the study are
presented in [Reinhardt et al. 2003].

2. Pier details

The proposed pier is a concrete structure with a very small amount of longitudinal and transverse steel
reinforcement in all locations except for the column plastic hinges. Consistent with the practice of strong
pier caps in bridge engineering, plastic hinging of the beams is precluded. In the column plastic hinges,
longitudinal steel reinforcement is provided to dissipate the earthquake energy. However, confinement
and shear capacity in the plastic hinges is provided by unidirectional FRP fabrics. The longitudinal
and transverse reinforcement in the beam and the elastic portions of the columns are also provided by
unidirectional FRP fabrics.

To evaluate the feasibility and seismic performance of the proposed structure, a two-column pier
was constructed, reinforced with very low steel reinforcement ratios and carbon-fiber-reinforced plastic
(CFRP) laminates, and tested to failure on a shake table. The test pier was a 1/4 scale model of a typical
reinforced concrete bridge pier. Figure 1 shows the pier dimensions and the composite layout. The lines

Figure 1. Dimensions of pier and arrangement of composites.
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Figure 2. Pier section details and composite layout.

within the elements show the direction of the carbon fibers. Figure 2 shows the bent cap and column
cross-sections. The design criterion for the steel reinforcement outside the plastic hinges was for the
concrete members to resist self weight. Other considerations were one bar at each corner and small
diameter tie and stirrups at a spacing of approximately the minimum member cross sectional dimension.

Another feature of the proposed pier is that the plastic hinges are offset relative to the ends of the
column. In a prototype, the shifting would facilitate repair and inspection of the plastic hinges after
strong earthquakes. To shift the plastic hinges, a relatively high amount of steel was used at the column
ends to ensure that they remained elastic (see Section B-B in Figure 2). Two horizontal and two vertical
layers of CFRPs were provided on each side of the joints as shear reinforcement. The joint shear design
was based on the ACI 352 provisions [Mirmiran et al. 2000].

Normal-weight concrete with a maximum aggregate size of 10 mm (3/8 in) was used. The target
concrete compressive strength was 5 ksi (34 MPa), while the actual strengths were 6.26 ksi (42.8 MPa) in
the columns and 5.29 ksi (36.1 MPa) in the bent cap on the day of testing. The concrete was air cured, and
subsequently the surface of the concrete was prepared for laminate application. The specified grade of
the steel reinforcement was 60. The measured yield stresses for the #3, #4, and #5 bars were, respectively,
66.3, 63.3, and 65.0 ksi (453, 432, and 444 MPa). The Mitsubishi CFRP product, Replark Type 30, was
used. First the surface was ground using a disk grinder, then putty (supplied by the manufacturer of
the composites) was applied to smooth out rough areas. Next, a layer of resin undercoat was applied
followed by a layer of carbon fiber sheet. This was repeated as needed, and the process was completed by
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application of a resin overcoat. Any air bubbles trapped beneath the laminate were repaired by injecting
epoxy into the voids.

Per the manufacturer the lamina elastic modulus was 33,400 ksi (228 GPa) and its tensile strength was
493 ksi (3.365 GPa) in the fiber direction. One inch (25.4 mm) coupons were tested as part of the study.
The measured lamina elastic modulus in the fiber direction was 38,400 ksi (262.3 GPa) and its tensile
strength was 379.8 ksi (2.593 GPa). The measured lamina elastic modulus was 509.6 ksi (3.48 GPa) and
its tensile strength was 1.76 ksi (12 MPa) perpendicular to the fiber direction.

Three configurations of the footings were used in the study: (1) as-built, flexible; (2) retrofitted,
flexible; and (3) fixed. The first and second configurations were necessary for low-amplitude studies of
the effect of footing flexibility in the linear range. The maximum longitudinal bar strains during that
part of the study were kept below two-thirds of the measured steel yield strain. The results of the low-
amplitude studies were presented elsewhere [Saiidi et al. 2002]. The subject of the present paper is the
fixed footing configuration. The pier model was designated as B2SF for bent with 2 square columns and
fixed footings. [Reinhardt et al. 2003] provides more details about the study.

3. Shake table tests

The test setup is shown in Figure 3. The footings were fixed to a 14.5 ft × 15 ft (4.42 m × 4.57 m) shake
table using steel brackets and threaded bars. The bent was extensively instrumented with strain gages,
displacement transducers (to measure displacements and curvatures), accelerometers, and a load cell (to
measure lateral load applied to the specimen).

The target column axial load index (ALI, defined as the percent ratio of the axial load and the product
of the gross area and the target concrete compressive strength) was 8%. The range of ALI in bridge
columns is typically 5 to 10%. The uniform vertical load on the cap beam to produce an ALI of 8% was

Figure 3. Shake table test setup for fixed-base model.
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6.1 kip/ft (88.6 kN/m). The vertical loading was accomplished using five pairs of threaded bars running
between the transfer beam and the footings each stressed to 6.4 kip (28.5 kN) using hydraulic rams (see
Figure 3). A system of accumulators was attached to the rams to minimize axial load fluctuation caused
by the extension of the threaded bars during earthquake simulations. To replicate the inertial effect of
the gravity loads, a mass rig was used, which consisted of a pinned steel frame mechanism supporting
concrete reaction blocks. The mass rig had an effective lateral inertial load of 64 kip (285 kN) and was
connected to the loading frame by a pinned rectangular steel tube.

The earthquake history used to drive the shake table was the January 17, 1994 Northridge earthquake
as measured at the Sylmar Hospital station. The peak ground acceleration of this record is 0.61 g. This
record was chosen due to its being representative of typical earthquakes in the Western United States.
Furthermore, preliminary analytical studies showed that this record would lead to high ductility demand
thus allowing for ultimate behavior testing. Since the test specimen was a scaled model of the prototype
column, the earthquake record time axis was scaled by a factor of 0.5 to create a response in the test
specimen that would represent the prototype response. The pier was subjected to scaled versions of the
Sylmar record in 13 simulations (runs), beginning with several preyield runs and continuing until pier
failure. Intermittent low-amplitude quick release tests were conducted to measure the effective period
and damping of the bent.

Table 1 shows the target peak table accelerations (PTAs) for different runs. The fine increments in
the first six runs were necessary for the evaluation of the footing flexibility effects reported in [Saiidi
et al. 2002]. The peak target accelerations were 0.36 g and 0.24 g in the as-built and retrofitted footing
configurations, respectively [Saiidi et al. 2002]. The actual peak accelerations were within 5% of the
target values. The increment in run 12 was small because failure appeared to be imminent. However, it
took an additional motion with a slightly higher PTA to cause the pier to fail. During the postyield runs
the actual PTAs were within 10% of the target values.

Run
number Motion Peak table

acceleration (g)

1 0.1 × Sylmar 0.06
2 0.2 × Sylmar 0.12
3 0.3 × Sylmar 0.18
4 0.4 × Sylmar 0.24
5 0.5 × Sylmar 0.30
6 0.6 × Sylmar 0.36
7 0.8 × Sylmar 0.48
8 1.0 × Sylmar 0.60
9 1.25 × Sylmar 0.75

10 1.50 × Sylmar 0.90
11 1.75 × Sylmar 1.05
12 1.90 × Sylmar 1.14
13 2.00 × Sylmar 1.20

Table 1. Earthquake simulation protocol for B2SF.
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4. Test results

The testing of the fixed footing configuration (3) was conducted after the pier had been subjected to low-
amplitude motions. The maximum measured longitudinal bar strains for configurations (1) and (2) were
67% and 60% of the yield strains, respectively. The initial stiffness data indicated some softening due to
minor cracking, but cracks were not visible and there were no signs of damage. The key response param-
eters that were evaluated to judge the performance of the pier were: observed damage, displacements,
curvatures, and strains.

Observed damage. During the first two runs (see Table 1), no damage was visible. Under run 3 (with
PTA of 0.18 g), horizontal cracks were seen in the transverse layer of composites at the bottom of the
columns. In subsequent runs these cracks widened slightly and new thin horizontal cracks in the epoxy
resin were visible. Multiple epoxy cracking noises could be heard in these runs. After run 11 (PTA
of 1.05 g), a crack in the concrete at the right beam-column joint was noted. The bent appeared to be
stable, but large and increasing movements were of concern. As a result the increment for the following
run (run 12) was reduced. More cracking of the epoxy was noted during this run without any notable
further damage. During the following run, with a peak acceleration of 1.2 g, a part of the confinement
composite layer failed near the bottom of the right column in the plastic hinge region (see Figure 4).
Also, the confinement composite jacket at the top of the right column delaminated from the concrete.
Testing was terminated after this run due to the failure of the composite jacket and a drop in the lateral
load capacity.

Lateral displacement response. Figure 5 shows the cumulative force-displacement hysteresis curve. The
first few input motions resulted in mostly linear response. At larger PTAs, nonlinear loops were devel-
oped. Run 7 with a target PTA of 0.48 g led to a maximum lateral displacement of 1.1 in (28 mm) or

Figure 4. Ruptured jacket at bottom plastic hinge of right column.
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Figure 5. Cumulative measured force-displacement relationship.

approximately 1.5% drift. Subsequent runs led to relatively large-amplitude hysteresis loops and exten-
sive nonlinear deformations. The hysteresis loops were relatively wide and indicative of large energy
dissipation. The shifted plastic hinges were effective in providing the mechanism for energy dissipation
and ductility.

The envelope of the measured force-displacement relationships for the primary direction of motion
(the positive displacement range in Figure 5) is shown in Figure 6. It can be seen that stiffness reduced
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Figure 7. Force-strain relationship outside (left graph) and inside (right graph) the lower
left column plastic hinge.

progressively with increasing level of acceleration, indicating gradual yielding at the hinges. Slight
nonlinearity was observed in the first 7 runs, corresponding to displacements up to 1.05 in (26.7 mm).
The source of the nonlinearity was primarily concrete deformation. The lateral load capacity did not
change significantly during Runs 10–13, corresponding to displacements of 2.2 in (56 mm) to failure.
During Run 13 when the FRP jacket failed the peak lateral force dropped by approximately 10%.

Based on an elastoplastic idealization of the measured envelope the measured effective yield displace-
ment was 0.7 in (17.8 mm). At the first sign of failure the ductility capacity was 5.6, which exceeds the
target ductility capacity of 4 or 5 used in practice. The drift capacity of the bent was 5.4%, which is also
indicative of ample deformability of the proposed bent. The ductility and drift capacity of the proposed
pier were close to the corresponding capacities of a conventional bridge bent with similar aspect ratio
that was tested in a previous study [Moustafa et al. 2004] and labeled “B2CM” there.

Strains. The maximum strains in the column plastic hinge steel bars were approximately 20,000 micro-
strains at about 8 in (200 mm) below the bottom of bent cap and 8 in (200 mm) above top of footings. The
peak strains in the column bars immediately below the bottom of the bent cap and immediately above
the footings were less than these values demonstrating that the plastic hinges were indeed formed away
from the ends as intended. Figure 7 shows sample strain data as a function of the pier lateral force for
column bars outside and inside the plastic hinge near the bottom of the left column. Note some yielding
of the longitudinal bars spread outside the plastic hinge. This is attributed to strain hardening of the
bars inside the plastic hinge. Peak strains in the bent cap bars were approximately 3000 microstrains,
indicating that the bent cap steel bars experienced limited yielding (the measured yield strain for the bars
was 2190 microstrains).

The maximum measured strain on the transverse FRP layers on the column plastic hinges was ap-
proximately 4000 microstrains and was far less than the design strain of 10800 microstrains. As stated
earlier, the transverse FRP layers eventually failed. However, there were no strain gages at the failure
location and the actual strain could not be measured. The tensile strains in the longitudinal FRP layers
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Figure 8. Force-transverse strain relationship on FRP at the lower left column plastic hinge.

parallel to the column axes were close to 4000 microstrains, well below the design strain of 10800 mi-
crostrains. Figure 8 shows a sample measured pier force-strain relationship for the transverse direction.
The maximum strain in the composite layers on the bent cap parallel to the bent cap axis was less than
3000 microstrains, implying that the bent cap composite fabrics did not suffer any damage, as intended.
Also, the maximum strain in the composite fabrics perpendicular to the bent cap, which were used for
shear reinforcement, was approximately 1500 microstrains, meaning that the bent cap shear design was
adequate. The maximum fabric strain in the joint region was close to 1000 microstrains. However, upon
removal of the composite layer after the final shake table test, cracks were seen in the joint indicating
that the joint design procedure may need to be reevaluated for possible increase in the number of fabric
layers.

The composite fabrics were removed after the test to survey the damage locations and evaluate crack
patterns. Horizontal cracks were noted at the plastic hinge region, which was to be expected because no
vertical composite fibers were present in this area (see Figure 9). However, a number of shear cracks at
approximately 40◦ to the horizontal were noted in the plastic hinges in the right column. These cracks
are believed to have formed after the confinement CFRP ruptured. Shear cracks were also visible in the
joint region, as shown in Figure 9, which suggests that additional CFRP layers may be necessary.

The composite layers in the bent cap and the portion of the columns in between plastic hinges did not
delaminate, indicating that these regions remained elastic as was intended.

5. Analytical studies

The analytical studies consisted of nonlinear dynamic analysis of the test model using a multiple-degree-
of-freedom (MDOF) and a single-degree-of-freedom (SDOF) model. The objective was to determine
the adequacy of the modeling techniques used in detailed MDOF models and in simplified global SDOF
models. More details of the analytical studies are presented in [Reinhardt et al. 2003].
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MDOF modeling. The computer program DRAIN-3DX was used for the detailed representation of the
test pier and for conducting nonlinear static and dynamic analyses of the test pier [Prakash et al. 1994].
Figure 10 shows the location of the nodes and elements in the analytical model. Linear beam-column
elements were used outside the plastic hinges, and cracked section properties were used for the linear
elements. A lumped plasticity moment rotation element was assigned to each plastic hinge. The hys-
teretic response of the plastic hinges was represented by the Takeda model. This model was developed
to represent the cyclic response of reinforced concrete elements confined with steel reinforcement and
accounts for the degradation of stiffness as cracking and yielding occurs. In the absence of a more
specific model, it was assumed that the Takeda model is applicable to the plastic hinges in the test pier,
even though the confinement in the test pier was provided by CFRP rather than steel reinforcement.

Figure 9. Postfailure crack patterns.

Plastic Hinge Locations
Rigid Elements
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7.5"

4"

8"

8"
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27"
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//////////////// ////////////////

Figure 10. DRAIN-3DX model of the pier.
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Results from MDOF analysis. The nonlinear static analysis of the test pier under lateral load was carried
out under increasing displacements up a lateral drift ratio of 6%. Figure 6 shows the results of the
analysis and comparison with experimental data. It is evident that the correlation between the measured
and calculated curves was close. The initial stiffness values from the two curves were within 2% of each
other. The calculated plastic hinging occurred at the same point marked A through D and presented a
clear, sharp yield point. The measured longitudinal bar strains in the plastic hinges showed a more gradual
yielding reflecting variation in the axial load between the two columns and perhaps material variability
and slight deviation from the planned location of the bars. The postyielding slope of the calculated curves
was close to the measured slope except at larger displacements. The difference is attributed to the fact
that the analytical model did not include strength degradation effects, whereas in the actual pier there
was some degradation of concrete strength at larger displacements. Altogether the correlation between
the calculated and measured static lateral load analysis results was close and satisfactory.

To evaluate the performance of the dynamic analytical model in duplicating the measured results, the
calculated and measured displacement histories for different shake table earthquake runs were compared.
The actual shake table acceleration records were used in the analysis. The input record used in the
analysis was the compilation of all the earthquake simulations that had been applied to the test model,
spliced to ensure that the accumulated damaging effects of different earthquakes were accounted for.
Intermittent free vibration tests of the pier were not included in the input motion because they are of very
small amplitudes having negligible effect. The free vibration tests had shown that the effective damping
ratio was 2%. However, the damping ratio typically assumed for reinforced concrete (RC) structures is
5%. The analysis of the pier was conducted for both 2% and 5% damping ratios and the results were
compared with the measured displacement histories.

Figures 11 and 12 show sample results comparing the calculated and measured displacement histories
for 1 × Sylmar and 1.75 × Sylmar motions, respectively. The former corresponds to a relatively small
level of nonlinearity at 2% maximum drift and the other is associated with a relatively high nonlinearity
at 4.4% maximum drift. A reasonably close agreement can be observed between the measured and
calculated results for both damping ratios in both figures in terms of the waveforms and amplitudes. For
both earthquakes the calculated results for 2% damping showed better correlation with the test data than
the results with 5% damping did. The damping ratio of the test pier was lower than the ratio normally
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Figure 11. Measured and DRAIN-3DX results for 2% and 5% damping under 1 × Sylmar.
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Figure 12. Measured and DRAIN-3DX results for 2% and 5% damping under 1.75 × Sylmar.

attributed to RC structures because the test pier did not include any nonstructural members that usually
add to the overall damping of structures. Under 1 × Sylmar the calculated peak displacements were lower
than the measured displacements by 6.9% and 8.4% for the 2% and 5% damping analyses, respectively.
The differences for the 1.75 × Sylmar motion were lower at 3.6% and 1.4% for the 2% and 5% damping
analyses, respectively.

SDOF modeling. The SDOF idealization of the test pier was carried out using the program RC-Shake
[Saiidi 1982]. This is a computer program that calculates the dynamic response of a structure modeled as
a SDOF nonlinear system, considering both hysteretic and viscous damping, as well as the loading setup
of the mass rig system used in shake table testing. A degrading stiffness hysteresis model, called Q-hyst,
characterizes the nonlinear load-deformation response [Saiidi 1982]. The input to the program requires
a bilinear load-displacement relationship. The calculated nonlinear static analysis results obtained from
DRAIN-3DX were used for this purpose. Because Q-hyst operates on a bilinear force-displacement
relationship, it assumes that the system is already cracked. As a result the results from RC-Shake do not
represent the low-amplitude, uncracked response of the structure. The output of the program provides
the force and displacement histories of the SDOF system.

Results from SDOF analysis. RC-Shake was used to analyze the pier subjected to the measured ac-
celeration histories collected during shake table tests. The acceleration records for all the earthquake
simulation runs were spliced and used in the analysis. Response histories were calculated for both 2%
and 5% damping. The results for 1 × Sylmar and 1.75 × Sylmar are shown in the next two figures. Figure
13 shows that the correlation between the measured and calculated results was excellent. The results for
the 2% damping ratio were slightly better in duplicating the amplitudes in the second half of the response
indicating that the 5% damping ratio overestimated the actual viscous damping. Under 1 × Sylmar the
calculated peak displacements were lower than the measured displacements by 8.1% and 7.1% for the
2% and 5% damping analyses, respectively. Comparing Figures 13 and 11 reveals that the correlation
between the RC-Shake results and the measured data was better than that between the DRAIN-3DX
results and the measured displacements. The correlation between the calculated and measured results for
1.75 × Sylmar was also close, although the peak displacements were overestimated by 26% and 13% for
the 2% and 5% damping, respectively (see Figure 14). In Figure 14 it can be observed that the calculated
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Figure 13. Measured and RC-shake results for 2% and 5% damping under 1 × Sylmar.
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Figure 14. Measured and RC-shake results for 2% and 5% damping under 1.75 × Sylmar.

results for the 5% damping correlated better with the measured data than those for the 2% damping did.
Review of Figures 14 and 12 shows that the performance of the SDOF model was comparable to that of
the MDOF model.

6. Conclusions

The exploratory study presented in this article showed the feasibility of using carbon fiber laminate in
combination with concrete for eventual application in highway bridge piers in which durability is of
concern, and where steel reinforcement congestion is a problem. The measured shake table test data
indicated that the target behavior was achieved with respect to shifting of the plastic hinge locations,
linear response of members outside the plastic hinges, and the effectiveness of CFRP fabrics in keeping
the bent cap and the joints damage free.

Comparison of the analytical and experimental results indicates that familiar constitutive relationships
may be used to estimate the strength of concrete-carbon fiber laminate sections. However it should
be noted that the computations are somewhat more involved than conventional structural engineering
analyses.
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Both the MDOF and the SDOF nonlinear response history analytical models with stiffness degradation
led to a reasonably close agreement with the test data particularly when 2% viscous damping ratio
was used. For the relatively simple, two-column test pier in which the fundamental mode essentially
controlled the response no particular improvement of the response was evident when the MDOF model
was used instead of the SDOF model.
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Grant CMS 980080. The support is gratefully acknowledged. The assistance of Dr. Nathan Johnson and
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NONLINEAR BENDING RESPONSE OF GIANT MAGNETOSTRICTIVE
LAMINATED ACTUATORS IN MAGNETIC FIELDS

YASUHIDE SHINDO, FUMIO NARITA, KOTARO MORI AND TASUKU NAKAMURA

We report numerical and experimental investigations into the nonlinear bending behavior of magne-
tostrictive laminated actuators under magnetic fields. Magnetostrictive actuators were fabricated from
thin layers of Terfenol-D and metal, and the magnetostriction of the devices was measured. A nonlinear
finite element analysis was employed to evaluate the contribution of magnetic domain switching to the
second-order magnetoelastic constants in the Terfenol-D layer. The effect of a magnetic field on the
nonlinear deflection and internal stress of magnetostrictive laminated actuators is discussed.

1. Introduction

Smart materials, such as piezoelectric, magnetostrictive, and electrostrictive structures, are currently
under intense investigation due to their ability to efficiently interconvert magnetic, electrical, and mechan-
ical energies. Terfenol-D (Tb0.3Dy0.7Fe1.9) is a highly magnetostrictive alloy of iron and the rare-earth
metals [Moffett et al. 1991] terbium and dysprosium that stands out among smart materials in its ability
to produce large actuation forces [Ryu et al. 2001]. An additional advantage of Terfenol-D over other
smart materials is that it can be easily deposited onto nonmagnetic substrates. Recent work [Jia et al.
2006] has investigated applications of magnetostrictive materials as active actuators in layered bimorph
structures. One limitation on the practical use of Terfenol-D is its nonlinear behavior [Wan et al. 2003].
Additionally, the tools available for modeling and design of magnetostrictive layered structures have not
been sufficiently developed. To optimize the performance of magnetostrictive actuators, a detailed study
into the nonlinear behavior of devices, especially under magnetic field driving, is necessary.

In this work, we report on the nonlinear bending behavior of magnetostrictive laminated actuators
under magnetic fields in a combined numerical and experimental investigation. The fabricated magne-
tostrictive actuators consist of thin Terfenol-D and metal layers, and the magnetostriction of specimen
devices was measured as a function of applied magnetic field strength. A nonlinear finite element analysis
was also performed, and the contribution of magnetic domain switching to the second-order magnetoe-
lastic constant in the Terfenol-D layer was evaluated. The effect of magnetic field strength on nonlinear
deflection and internal stress for the magnetostrictive laminated actuators is examined.

Keywords: finite element method, material testing, giant magnetostrictive material, nonlinear bending.
This work was partially supported by the Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
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2. Analysis

Basic equations. In the rectangular Cartesian coordinate system, x1, x2, x3, the equations for magnetoe-
lastic materials are

σ j i, j = 0, Hi = φ,i , εi j = si jklσkl + d ′ki j Hk,

Bi,i = 0, Bi = d ′iklσkl +µik Hk, εi j =
1
2(u j,i + ui, j ),

where σi j , Bi , εi j , and Hi are the stress tensor, magnetic induction vector, strain tensor, and magnetic
field intensity vector; ui and φ are the displacement and magnetic potential; and si jkl , d ′ki j , and µi j are
the elastic compliance, magnetoelastic constant and magnetic permittivity. A comma followed by an
index denotes partial differentiation with respect to the space coordinate xi . We invoke the summation
convention for repeated tensor indices. Valid symmetry conditions for the material constants are

si jkl = s j ikl = si jlk = skli j , d ′ki j = d ′k ji , µi j = µ j i .

For Terfenol-D, the constitutive relations can be written as

ε1

ε2

ε3

ε4

ε5

ε6


=



s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66





σ1

σ2

σ3

σ4

σ5

σ6


+



0 0 d ′31
0 0 d ′31
0 0 d ′33
0 d ′15 0

d ′15 0 0
0 0 0




H1

H2

H3

 ,


D1

D2

D3

=
 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0




σ1

σ2

σ3

σ4

σ5

σ6


+

 µ11 0 0
0 µ11 0
0 0 µ33

 
H1

H2

H3

 ,

where

σ1 = σ11, σ2 = σ22, σ3 = σ33

σ4 = σ23 = σ32, σ5 = σ31 = σ13, σ6 = σ12 = σ21,

ε1 = ε11, ε2 = ε22, ε3 = ε33,

ε4 = 2ε23 = 2ε32, ε5 = 2ε31 = 2ε13, ε6 = 2ε12 = 2ε21,

s11 = s1111 = s2222, s12 = s1122, s13 = s1133 = s2233,

s33 = s3333, s44 = 4s2323 = 4s3131, s66 = 4s1212 = 2(s11− s12),

d ′15 = 2d ′131 = 2d ′223, d ′31 = d ′311 = d ′322, d ′33 = d ′333.
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Figure 1. Magnetostrictive effect. (a) Mathematical relationships, (b) Various deforma-
tion modes.
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Figure 2. A magnetostrictive laminated actuator.

Figure 1(a) shows several physical effects related to the magnetostrictive effect [Yamamoto et al. 1999].
When a magnetic field is applied along the x3-direction (easy axis) of the magnetostrictive material, both
the longitudinal (33) and transverse (31) magnetostrictive deformation modes are excited, as shown in
Figure 1(b). When a magnetic field is applied along the x1-direction, the shear mode (15) is excited.

Finite element model. A magnetostrictive laminated plate is shown in Figure 2, in which a magnetostric-
tive layer of length l, width w, and thickness h is perfectly bonded on the top surface of a metal layer of
length le, width we = w, and thickness he. The subscript e corresponds to the elastic layer. Dimensions
h(he), w(we), and l(le) are measured along the x1 = x, x2 = y, and x3 = z axis, respectively. The
easy axis for magnetization of the magnetostrictive layer is the z-direction. The origin of the coordinate
system is located at bottom left side of the magnetostrictive layer. The laminated plate is cantilevered,
with z = 0 denoting the clamped end.

The laminated plate is subjected to a uniform magnetic field of magnetic induction Bx = B0 or Bz = B0.
The constitutive relations of Terfenol-D layer are

εxx = s11σxx + s12σyy + s13σzz + d ′31 Hz,

εyy = s12σxx + s11σyy + s13σzz + d ′31 Hz,

εzz = s13σxx + s13σyy + s33σzz + d ′33 Hz,

εyz = (s44/2)σyz + (d ′15/2)Hy,

εzx = (s44/2)σzx + (d ′15/2)Hx ,

εxy = (s66/2)σxy,

Bx = d ′15σzx +µ11 Hx , By = d ′15σyz +µ11 Hy, Bz = d ′31σxx + d ′31σyy + d ′33σzz +µ33 Hz.
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Figure 3. Schematic diagram of (a) strain versus magnetic field, and (b) domain structure.

Nonlinearity in the relationship between magnetostriction and magnetic field strength arises from move-
ment of magnetic domain walls. The constants d ′15, d ′31, and d ′33 for the Terfenol-D layer under Bx = B0

become

d ′15 = d15+m15 Hx , d ′31 = d31, d ′33 = d33, (1)

where d15, d31, d33 are the piezomagnetic constants and m15 is the second-order magnetoelastic constant.
The constants d ′15, d ′31, and d ′33 for the Terfenol-D layer under Bz = B0 are

d ′15 = d15, d ′31 = d31, d ′33 = d33+m33 Hz, (2)

where m33 is the second-order magnetoelastic constant. Figure 3 shows the relationship between magne-
tostriction (εzz) and magnetic field (Bz) strength along with the associated domain structure. A magnetic
domain switching associated with 90◦ domain wall rotation gives rise to the nonlinear changes in mag-
netoelastic constants.

We performed finite element calculations to obtain the strain, deflection, and internal stresses for the
magnetostrictive laminated plates. The equations describing magnetostrictive materials are mathemat-
ically equivalent to those describing piezoelectric materials [Tiersten 1969]. Therefore, coupled-field
solid elements in ANSYS were used for the analysis. From (1) and (2) we see that the magnetoelastic
constants d ′15, d ′33 vary with the magnetic field due to domain wall movement. Making use of magnetic
field-dependent material properties, the model calculated the nonlinear behavior.

Elastic stiffnesses Piezo-magnetic constants Magnetic permittivities
(×10−12m2/N) (×10−9m/A) (×10−6H/m)

s11 s33 s44 s12 s13 d31 d33 d15 µ11 µ33

17.9 17.9 26.3 −5.88 −5.88 −5.3 11 28 6.29 6.29

Table 1. Material properties of Terfenol-D.
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Figure 4. Experimental set-up of macroscopic strain measurement under magnetic
fields normal (left) and parallel (right) to the easy axis. The magnetic field is in the
vertical direction.

3. Experimental procedure

Magnetostrictive laminated actuators were prepared using Terfenol-D (ETREMA Products, Inc., USA)
of l =w= 10 mm and SUS316 of le = 40 mm, we = 10 mm, and he = 0.5 mm. The thickness of Terfenol-
D was h = 1, 3, and 5 mm. Table 1 shows the material properties of Terfenol-D [Engdahl 2000; Nan
et al. 2001]. The Young’s modulus E and Poisson’s ratio ν of SUS316 are E = 189 GPa and ν = 0.3,
respectively. We also consider the magnetostrictive laminated actuators (small size) using Terfenol-D of
l = w = 5 mm and metal layer (SUS316, Cu or Al) of le = 20 mm, we = 5 mm, and he = 0.5 mm. The
thickness of Terfenol-D is h = 0.5 mm. The Young’s modulus E and Poisson’s ratio ν of copper are
E = 130 GPa and ν = 0.34, while for aluminum they are E = 70.3 GPa and ν = 0.345.

A strain gage was placed at the surface (x = −h, y = 0, z = l/2) of Terfenol-D. The magnetic
field was then applied in the x- or z- direction, and the magnetostriction was evaluated. A cryocooler-
cooled superconducting magnet with a 100 mm diameter working bore was used to create a static uniform
magnetic field of magnetic induction B0. A schematic diagram of the experimental set-up used to measure
the macroscopic strain is shown in Figure 4. The magnetic field is applied vertically with respect to the
apparatus orientation shown in the figure.

4. Results and discussion

We first present results for the magnetostrictive laminated actuators using Terfenol-D (l = w = 10 mm)
and SUS316 (le = 40 mm, we = 10 mm, he = 0.5 mm). Figure 5 shows the strain εzz at x = −1 mm,
y = 0 mm, and z = 5 mm versus applied magnetic field Bz = B0 for the magnetostrictive laminated
actuator with h = 1 mm. Solid circles denote experimental data. The dashed line represents the values of
strain predicted by the linear finite element analysis (FEA) and the solid line represents the strain after
the second-order magnetoelastic constants have been considered. The constant m33 = 1.4× 10−11 m2/A2

is obtained, and agreement between nonlinear FEA and experiment is fair. Figure 6 shows similar results
for the magnetostrictive laminated actuators with h = 3 and 5 mm, respectively. The constants m33 of
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Terfenol-D layer with h = 3 and 5 mm are 4.4× 10−12 and 1.1× 10−12 m2/A2, respectively. The second-
order magnetoelastic constant m33 decreases as the thickness of the magnetostrictive layers increases.
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Figure 5. Strain versus magnetic field in the z-direction for h = 1 mm. Dashed line:
values of strain predicted by the linear finite element analysis. Solid line: strain after
second-order magnetoelastic constants have been considered.
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Figure 6. Strain versus magnetic field in the z-direction for h = 3 mm (left) and h =
5 mm (right).
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Figure 8. Left: normal stress distribution along the thickness direction at y, z = 0 for
h = 1, 3, 5 mm. Right: Strain versus magnetic field in the x-direction for h = 1,3,5 mm.

Figure 7 shows the tip deflection wtip at x = 0 mm, y = 0 mm, and z = 40 mm versus applied mag-
netic field Bz = B0 for the magnetostrictive laminated actuators with h = 1, 3, and 5 mm. A nonlinear
relationship between tip deflection and magnetic field is observed. The tip deflection increases as the
thickness of the magnetostrictive layers decreases.

The variations of normal stress σzz along the thickness direction are calculated for the magnetostrictive
laminated actuators at a chosen point (y= 0 mm and z= 0 mm here), and the results are shown in Figure 8,
left. All calculations were done at a fixed tip deflection of 10µm. The applied magnetic fields in the
z-direction of the Terfenol-D layer under wtip = 10µm are 0.074, 0.036, 0.014 T for h = 5, 3, 1 mm,
respectively. Some stress gaps are present at the interface between Terfenol-D and SUS316 layers, as is
expected. At smaller Terfenol-D thickness, lower normal stress is found for the same deflection. Also, a
10µm deflection is produced at lower magnetic field.

Figure 8, right, shows strain εzz at x = −h mm, y = 0 mm and z = 5 mm as a function of applied
magnetic field Bx = B0 for the magnetostrictive laminated actuators with h = 1, 3, 5 mm. The constants
m15 of Terfenol-D layer with h = 1, 3, and 5 mm are 1.5 ×10−10, 9.3 ×10−11, and 3.7 ×10−11 m2/A2,
respectively. The second-order magnetoelastic constant m15 decreases with an increase of the thickness
of the magnetostrictive layers. By increasing the magnetostrictive layer thickness, the compressive strain
of the Terfenol-D layer subjected to a magnetic field in the x-direction is raised. The tip deflection is
also raised by increasing the thickness of the magnetostrictive layers (no figure shown), in contrast to the
magnetostrictive laminated actuators subjected to a magnetic field in the z-direction. The tip deflection
of the magnetostrictive laminated actuators under Bz = B0 is much smaller than that under Bx = B0.

Next, the bending behavior of the magnetostrictive laminated actuators (small size) using Terfenol-D
(l = w = 5 mm, h = 0.5 mm) and a metal layer (le = 20 mm, we = 5 mm, he = 0.5 mm) is discussed.
Figure 9, left, shows the plots of the strain εzz at x =−0.5 mm, y = 0 mm, and z = 2.5 mm against the
applied magnetic field Bz = B0 for the magnetostrictive laminated actuators of different elastic layers.
Similar to the previous report [Jia et al. 2006], the second-order magnetoelastic constant depends on the
elastic layers, and m33 of the Terfenol-D layer with SUS316, Cu, and Al are 9.9 ×10−12, 1.7 ×10−11,
and 7.4 ×10−12 m2/A2, respectively. Figure 9, right, shows the corresponding tip deflection. The largest
tip deflection is noted for the magnetostrictive laminated actuator with Cu. Figure 10 plots the variations
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of normal stress σxx along the thickness direction at y = 0 mm and z = 0 mm for the magnetostrictive
laminated actuators of different elastic layers under a fixed tip deflection of 10µm. The applied magnetic
fields in the z-direction of the Terfenol-D layer under wtip = 10µm are 0.029, 0.022, 0.030 T for the
actuators with SUS316, Cu, and Al, respectively. The stress gap under a constant tip deflection depends
on the elastic layers.

5. Conclusions

Three-dimensional finite element analysis, in which the nonlinearity of Terfenol-D (the effect of magnetic
domain switching) is incorporated into the model, is presented for magnetostrictive laminated actuators.
The magnetostriction is also evaluated. We demonstrate that the mathematical procedure for this analysis
is straightforward, and yields accurate values for the strain, as a function of magnetic field strength,
present in the magnetostrictive laminated actuators. We find that the second-order magnetoelastic con-
stants depend on the magnetostrictive layer thickness and elastic substrates, and that when a magnetic
field is applied in the length direction, the tip deflection increases and the internal stress decreases with
decreasing magnetostrictive layer thickness.
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The present analysis can be applied to magnetostrictive laminated actuators with a wide range of mag-
netostrictive material and geometric properties. This study is also useful in designing magnetostrictive
laminated devices and in reducing the problem of delamination that frequently occurs during service.
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A DISPERSIVE NONLOCAL MODEL FOR WAVE PROPAGATION
IN PERIODIC COMPOSITES

JUAN MIGUEL VIVAR-PÉREZ, ULRICH GABBERT, HARALD BERGER,
REINALDO RODRÍGUEZ-RAMOS, JULIÁN BRAVO-CASTILLERO,

RAUL GUINOVART-DÍAZ AND FEDERICO J. SABINA

In this paper, the problem of wave propagation in periodic structured composites is studied, and a disper-
sive asymptotic method for the description of these dynamic processes is proposed. Assuming a single-
frequency dependence of the solution for the one dimensional wave equation in a periodic composite
material, higher-order terms in the asymptotic expansion for the displacement functions are studied.
Nonuniformity is eliminated by finding a suitable regular asymptotic expansion for the perturbation fre-
quency. Only two spatial scales are considered, and the equivalence of this method and the introduction
of multiple slow temporal scales is shown, in good agreement with previous approaches. For a selection
of boundary problems, analytic solutions are given and graphically illustrated. The problem of failures
is also discussed, and some illustrative calculations are presented.

1. Introduction

Due to their importance in industry and their wide range of applications, many attempts have been made
to describe the global behavior of composite materials. In elastodynamics, for example, if a traveling
signal has scale comparable to the size of the material’s heterogeneities, successive wave reflections and
refractions take place at the interfaces. Significant wave dispersion then results, leading to distortions of
the pulse shape and wave front.

The introduction of multiple scales and the methods of asymptotic homogenization [Bensoussan et al.
1978; Pobedria 1984; Bakhvalov and Panasenko 1989] has been helpful in treating a particularly im-
portant problem, the prediction of global or effective properties for composites which small-scale het-
erogeneities. Asymptotic analysis, as a powerful mathematical tool in dealing with problems involving
small parameters, plays a fundamental role in bridging the small and large scales relevant to models of
composite materials [Sánchez-Huber and Sánchez-Palencia 1992].

For a composite with periodic structure, these methods involve the dependence on two geometric
scales through the expansion of the fields in powers of a small parameter ε, the ratio between the micro
and macro scales. These techniques has been successful in providing effective quantities and methods

Keywords: composite materials, wave dispersion, asymptotics, homogenization, wave propagation, bilaminated composite,
dynamic asymptotic homogenization.
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for the solution of partial differential equations for static problems in structures such as laminated, fiber-
reinforced composites [Guinovart-Dı́az et al. 2005], laminated piezocomposites [Castillero et al. 1998],
and helical elastic and thermoelastic structures [Vivar-Pérez et al. 2005; 2006].

Approaches other than asymptotics are also available. Wang and Rokhlin [2002a; 2002b] developed
a dynamic homogenization method based on Floquet wave theory for treating laminated composites in
which the model was restricted to a homogenization domain consisting of frequencies and incident angles
below certain critical values that depended on the composite. The problem of wave propagation in elastic
fluid media with periodic structure is considered in [Santosa and Symes 1991] for cases in which the
ratio between cell size and the shortest wavelength of the initial disturbance is small. Within this regime,
an effective dispersive medium is obtained using the Bloch expansion. A similar analysis is made in
[Sjöberg et al. 2005], in which the solutions to Maxwell’s equations in periodic media are expanded in
Bloch waves under the limiting condition that the unit cell is small compared to the wavelength.

The classical method of asymptotic homogenization describes the effect of wave dispersion by ac-
counting for the influence of the first and second-order terms on the asymptotic expansion for relatively
long wavelengths in fiber reinforced composites [Parnell and Abrahams 2006]. This approach fails when
the observation time is relatively long or when the characteristic size of the perturbation is small, i.e.,
comparable to the representative volume element.

The classical method fails because of nonuniformity that results from the existence of unbounded
higher-order terms in the asymptotic expansion. It was shown in [Fish and Chen 2001] that in an initial
boundary value problem, whereas higher-order terms are capable of capturing dispersion effects, they
introduce secular terms which grow unboundedly with time. Chen and Fish [2001] reported a recent
attempt to solve this problem successfully by introducing one or more slow temporal scales, eliminating
the problem of nonuniformity that could not be addressed by classical homogenization.

The main objective of this paper is to describe the dispersive behavior of periodic composites by means
of time variable asymptotic rescaling, which is a necessary condition for the accurate description of a
composite’s global behavior. For this purpose, a reformulation of the problem is made in which the slow
temporal scale is replaced by a single-frequency time-dependence, and an asymptotic expansion for the
main frequencies is assumed to exist. This shows that the time rescaling needed to find the effective law
of movement in composites is strongly frequency dependent. As an advantage, there is no need to study
the selection of temporal scales, because the model only treats the fast spatial variable and yields closed
form general expressions for the coefficients in the global model.

This treatment shows good agreement with the model presented in [Chen and Fish 2001]. We also
present an analytical solution for the averaged problem for certain cases, including the situation in which
a failure (defect due to the presence of fissures, voids, cracks, etc.) is present in the composite. Results for
the asymptotic expansion of eigenfrequencies show that the range of validity of the method is restricted
to low frequency wave propagation. The effective model is therefore not accurate for cases in which the
initial disturbance has significant high frequency components. In asymptotic language, high frequencies
are of order O(1/ε), where ε is the ratio between the size of the periodic cell and characteristic length
of the composite.

This work is the start of a study of wave propagation in composite materials with applications to
damage detection and health monitoring for periodic laminated composites. The dispersive method is
only considered here for one spatial dimension.
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2. Statement of the problem

Our study reduces to a periodic laminated composite of length L , that is, a specimen consisting of a
linear periodic repetition of a representative volume element (RVE) (or periodic cell) with characteristic
length ε, Figure 1. Our analysis is independent of the number of phases embedded in the RVE, although
ε is required to be small compared to the composite length, ε� L .

Figure 1. A laminated two-phase periodic composite.

The direction of wave propagation is assumed to be parallel to the x axes, normal to the lamination.
If the laminate is considered to be isotropic, the elastodynamic equation is

(Eε(x)ux)x − ρε(x)ut t = 0. (2.1)

Here, u = u(x, t) gives the longitudinal displacement from the equilibrium position at point x and time
t , while Eε = Eε(x) and ρε = ρε(x) are the elastic modulus and the mass density at each position. The
subscript ε stands for the thickness of the RVE (implying that Eε and ρε are periodic with period ε), and
subscript x, t denote the respective partial derivatives.

If, for this laminated composite, we also consider a displacement µ(t) at one end x = 0, a load F(t) at
the other end x = L , an initial displacement U (x) from the equilibrium position, and an initial velocity
V (x) at each point x , then the initial and boundary conditions for (2.1) are

u(0, t)= µ(t), Eε(L)ux(L , t)= F(t), u(x, 0)=U (x), ut(x, 0)= V (x). (2.2)

Finally, it is necessary to include the contact conditions between the faces of the laminate components.
At such interfaces, the coupling conditions must be well determined. Here we will consider ideal contact
conditions, where there is no discontinuity in displacement or traction at the interface. If we introduce
the notation ‖ f‖ν = limx→ν+ f (x)− limx→ν− f (x), the ideal contact conditions are

‖u‖ν = 0, ‖Eεux‖ν = 0, (2.3)

for every point x = ν on the interface. Under these assumptions, we would like to obtain an effective
homogeneous model with constant coefficients that can approximate the response of the heterogeneous
material under study. This avoids the difficulties of treating rapid variation in the coefficients due to
heterogeneities and, at the same time, gives information about the dispersive nature of the laminated
composite. This is achieved by first considering a single arbitrary frequency-dependence and then apply-
ing asymptotic techniques for multiple scales, which allow us to find a regular asymptotic expansion for
the single arbitrary frequency and the displacement function.
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3. Frequency dependence and asymptotic analysis

Following the classical methods of separation of variables or Fourier’s method, a solution to (2.1) in the
form u(x, t)= X (x)T (t) is sought. After substitution of this product into (2.1), we obtain

(Eε(x)Xx(x))x
ρε(x)X (x)

=
Tt t(t)
T (t)

=−ω2
ε , (3.1)

where ωε is the circular frequency of the longitudinal wave. This is equivalent to a pair of ordinary
differential equations for X (x) and T (t) (Sturm–Liouville equations),

(EεXx)x +ω
2
ερεX = 0, Tt t +ω

2
εT = 0. (3.2)

X (x) inherits the interface conditions given in (2.3):

‖X‖ν = 0, ‖EεXx‖ν = 0. (3.3)

Initial and boundary conditions can be derived from (2.2). Having assumed the periodicity conditions on
Eε(x) and ρε(x) stated in the previous section, and considering that the size of the periodic cell ε is small
compared to the characteristic length of the composite L , it is convenient to introduce the dependence
on a new scale

ξ = x/ε. (3.4)

This is the “fast spatial scale”, widely used for asymptotic analysis in periodic structures [Bensoussan
et al. 1978].

We can now express the elastic modulus as E(ξ)= E(x/ε)= Eε(x) and the mass density as ρ(ξ)=
ρ(x/ε)= ρε(x). Note that E(ξ) and ρ(ξ) are 1-periodic (periodic with period 1), regardless of the value
of ε, due to the periodic structure of the composite under consideration. The dependence of X on ξ ,
X = X (x, ξ), now yields, from (3.2)1,

(E(ξ)Xx(x, ξ))x +ω2
ερ(ξ)X (x, ξ)= 0. (3.5)

Taking regular asymptotic expansions of the principal frequency of the perturbation and X (x, ξ) gives1

ωε = ω0+ εω1+ ε
2ω2+ · · · =

∑
n≥0

εnωn, (3.6)

X (x, ξ)= X0(x, ξ)+ εX1(x, ξ)+ ε2 X2(x, ξ)+ · · · =
∑
n≥0

εn Xn(x, ξ), (3.7)

where ωn are constant and Xn are 1-periodic with respect to the variable ξ . Introducing a comma notation
for the derivative with respect to the variable indicated, X,x = ∂X/∂x , the chain rule and (3.4) give
Xx = ε

−1 X,ξ +X,x . Then we have for X (x, ξ) and ωε:

(E Xx)x =
1
ε2 (E X,ξ ),ξ +

1
ε

[
(E X,ξ ),x +(E X,x ),ξ

]
+ (E X,x ), x , (3.8)

ω2
ε =

∑
n≥0

εnαn. (3.9)

1The equalities in (3.6) and (3.7) are defined in the asymptotic sense, and do not imply convergence of the series.
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The numbers αn are related to ωn through the chain of equations:

α0 = ω
2
0, α1 = 2ω1ω0, α2 = 2ω2ω0+ω

2
1, . . . αn =

n∑
k=0

ωkωn−k . (3.10)

With the aid of (3.8) and (3.9), it is possible to substitute the asymptotic expansions (3.6) and (3.7) into
(3.5) and reorder the result by powers of ε,∑

n≥−2

εn Hn(x, ξ)= 0. (3.11)

The coefficients Hn(x, ξ), for n ≥−2, are given by

H−2 = (E X0,ξ ),ξ , (3.12)

H−1 = (E X1,ξ ),ξ +(E X0,ξ ),x +(E X0,x ),ξ , (3.13)
...

Hn = (E Xn+2,ξ ),ξ +(E Xn+1,ξ ),x +(E Xn+1,x ),ξ +(E Xn,x ), x +ρ

n∑
k=0

αk Xn−k, (3.14)

The asymptotic sum in (3.11) vanishes, yielding

Hn(x, ξ)= 0. (3.15)

Bearing in mind (3.12)–(3.14), this constitutes a recurrent system of partial differential equations with
unknown functions Xn(x, ξ) in which the solutions Xn and Xn+1 for the n-th and (n+1)-th equations
are inserted into the next (n+2)-th equation. Once the functions Xn are found, they can be used in (3.7)
to approximate X (x, ξ). Observe that the numbers αn must also be found. This is accomplished by
imposing conditions of boundedness over the functions Xn discussed in the next section.

The substitution process for the asymptotic expansion (3.7) must be made in the expressions for the
interface coupling conditions, (3.3), to find the conditions that Xn should satisfy at the interfaces:

‖X0‖ν = 0, ‖E X0,ξ ‖ν = 0; ‖Xn+1‖ν = 0, ‖E Xn+1,ξ +E Xn,x ‖ν = 0 for n ≥ 0. (3.16)

4. Asymptotic homogenization up to O(ε0)

In this section, we describe a method for solving the system resulting from imposing (3.15) onto (3.12)–
(3.14), to find the approximating functions Xn(x, ξ) and the numbers αn for each power of ε in the
asymptotic expansion for X and the square of the frequency ωε, respectively. For this purpose it will be
helpful to state the following lemma.

Lemma 1. Consider positive functions E(ξ), f (ξ), and F(ξ), all periodic of period 1, defined over the
interval [0, 1], and continuously differentiable except, perhaps, at finitely many points 0 ≤ ν1 < ν2 <

· · ·< νm ≤ 1 where they might be discontinuous. The equation

(Ev,ξ ),ξ = f (4.1)

in the function v(ξ), defined for all points ξ ∈ (0, 1) apart from the νi and satisfying the conditions

‖v(ξ)‖νi = 0, ‖Ev,ξ +F‖νi = 0, (4.2)
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has a 1-periodic solution, unique up to an additive constant, if and only if 〈 f 〉 =
∑m

i=1 ‖F‖νi , where

〈 〉 =

∫ 1

0
dξ (4.3)

is the averaging operator over the RVE.

A proof can be found in the first chapter of [Bensoussan et al. 1978].
Considering (3.15) for n =−2 leads to the equation, of order O(ε−2),

(E X0,ξ ),ξ = 0. (4.4)

Here, X0 is restricted to 1-periodicity conditions, X0(x, 0) = X0(x, 1), and to the conditions given in
(3.16)1,2. Lemma 1 supports the conclusion that, since E is a positive function, the general solution for
X0 in (4.4) is

X0(x, ξ)= X̂0(x). (4.5)

Having solved the equation for the order corresponding to O(ε−2), the equation for next order O(ε−1)

is recalled by considering again (3.15), this time with n =−1,

(E X1,ξ ),ξ +(E X0,ξ ),x +(E X0,x ),ξ = 0, (4.6)

and the conditions (3.16)3,4 for n = 0,

‖X1‖ν = 0, ‖E X1,ξ +E X0,x ‖ν = 0. (4.7)

From (4.6) and the fact that X0 does not depend on the fast variable ξ , it follows that

(E X1,ξ ),ξ +E,ξ X̂0,x = 0. (4.8)

Due to the linear nature of this equation, its general solution is a sum of two terms,

X1(x, ξ)= N1(ξ)X̂0,x (x)+ X̂1(x). (4.9)

Here, X̂1(x) only depends on the slow scale x . By substituting (4.9) into (4.7)–(4.8), we find an expres-
sion for the 1-periodic function N1(ξ),

(EN1,ξ +E),ξ = 0, (4.10)

and the continuity conditions

‖N1‖ = 0, ‖EN1,ξ +E‖ = 0. (4.11)

This is the first local problem. Lemma 1 guarantees the existence of the local function N1 up to an
additive constant. To avoid nonuniqueness, we will take N1 so that 〈N1〉 = 0.

Before solving for X2, which corresponds to the next order in the asymptotic expansion of X , we note
that N1(ξ) does not need to be found explicitly to obtain a homogenized model. (4.10) and (4.11)2 imply
that it is sufficient that EN1,ξ +E = C , where C is a constant that does not depend on ξ . The average
〈N1,ξ 〉 = 0 vanishes because N1 is a 1-periodic continuous function. We have N1,ξ +1= C/E(ξ) and,
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applying the averaging operator 〈〉 to both sides of the equality, we obtain 1 = C〈1/E〉. Finally, the
equality C = 〈1/E〉−1 holds, and consequently

EN1,ξ +E =
〈 1

E

〉−1
= Ê . (4.12)

For the analysis of the O(ε0) equation, consider (3.15) and (3.14), for n = 0,

(E X2,ξ ),ξ +(E X1,ξ ),x +(E X1,x ),ξ +(E X0,x ), x +ρω
2
0 X0 = 0. (4.13)

Here, we substitute the expressions found for X0 and X1 into (4.5) and (4.9), respectively,

(E X2,ξ ),ξ +
[
(EN1),ξ +EN1,ξ +E

]
X̂0,xx +E,ξ X̂1,x +ρω

2
0 X̂0 = 0. (4.14)

Averaging both sides of the equation over one period and considering that E X2,ξ satisfies the condition
(3.16)3,4 and is therefore a 1-periodic continuous function in ξ , we have

〈EN1,ξ +E〉X̂0,xx +ω
2
0〈ρ〉X̂0 = 0. (4.15)

The coefficients 〈EN1,ξ +E〉 and 〈ρ〉 are the effective coefficients given in previous discussions of
homogenization [Pobedria 1984; Bakhvalov and Panasenko 1989]. They are well known, and for one-
dimensional periodic structured composites, they can be found explicitly. Finally, we write

Ê X̂0,xx +ω
2
0ρ̂ X̂0 = 0, (4.16)

where Ê is given in (4.12) and ρ̂ = 〈ρ〉.
As we can see, (4.16) contains X̂0 by itself, and does not show dispersive wave propagation behavior

in the composite. This result is obtained if we set ε = 0 in our model. In this case, the structure is
effectively homogeneous and nondispersive if the component materials are nondispersive. Applying the
normalization condition 〈N1〉 = 0, dropping the approximation 〈X〉 ≈ X̂0, and applying the principle of
superposition, we are led from (4.16) and (3.2)2 with ωε ≈ ω0 to the averaged model for the function
〈u〉 = û,

Ê û,xx −ρ̂ût t = 0. (4.17)

The classical method of asymptotic homogenization yields the same result, although this result is not
expected if the wavelength is comparable to the size of the periodic cell. To describe the dispersive
behavior, more terms must be considered in (3.15).

From (4.16), we have

X̂0 =−
1
ω2

0

Ê
ρ̂

X̂0,xx , (4.18)

which, in combination with (4.14), leads to

(E X2,ξ ),x +
[
(EN1),ξ +EN1,ξ +E −

ρ

ρ̂
〈EN1,ξ +E〉

]
X̂0,xx ++ E,ξ X̂1,x = 0. (4.19)

Because this equation is linear, the general solution, X2, is

X2(x, ξ)= N2(ξ)X̂0,xx +N1 X̂1,x +X̂2(x). (4.20)
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Analogously to previous cases, X̂2(x) only depends on x , and N2(ξ) is the 1-periodic function called the
second local function. This function yields a null average, 〈N2〉 = 0, and must satisfy the second local
problem,

(EN2,ξ +EN1),ξ +EN1,ξ +E −
ρ

ρ̂
〈EN1,ξ +E〉 = 0, (4.21)

with conditions
‖N2‖ = 0, ‖EN2,ξ +EN1‖ = 0. (4.22)

5. Higher-order homogenization

In this section, we continue with higher-order approximations in the asymptotic expansion, (3.11). The
objective is to relate the terms of the asymptotic expansions of ωε and X (x, ξ), given in (3.6) and (3.7),
to the periodicity of the composite laminated structure.

From the equation corresponding to O(ε), we have

(E X3,ξ ),ξ +(E X2,ξ ),x +(E X2,x ),ξ +(E X1,x ), x +ω
2
0ρX1+ 2ω1ω0ρX0 = 0. (5.1)

Combining the formulas for X0, X1, and X2 given in (4.5), (4.9), and (4.20), respectively, and taking
ĉ2
= Ê/ρ̂, we have

(E X3,ξ ),ξ +
[
(EN2),ξ +EN2,ξ +EN1− ĉ2ρN1

]
X̂0,xxx

+
[
(EN1),ξ +EN1,ξ +E

]
X̂1,xx +E,ξ X̂2,x ++ω

2
0ρ X̂1+ 2ω0ω1ρ X̂0 = 0. (5.2)

Averaging this equation, and using (4.12), we have

〈EN2,ξ +EN1− ĉ2ρN1〉X̂0,xxx +Ê X̂1,xx +ω
2
0ρ̂ X̂1+ 2ω0ω1ρ̂ X̂0 = 0. (5.3)

It can be shown that
〈EN2,ξ +EN1− ĉ2ρN1〉 = 0. (5.4)

The functions N1 and N2 are continuous because they satisfy (4.11) and (4.22)1. This is also true for the
functions EN1,ξ +E and EN2,ξ +EN1 due to (4.11)2 and (4.22)2. Then,〈[

N2(EN1,ξ +E)− N1(EN2,ξ +EN1)
]
,ξ
〉
= 0, (5.5)

because the bracketed function is continuous and 1-periodic. Applying the rule for the derivation of the
product, we have

〈N2,ξ (EN1,ξ +E)− N1,ξ (EN2,ξ +EN1)〉+ 〈N2(EN1,ξ +E),ξ −N1(EN2,ξ +EN1),ξ 〉 = 0. (5.6)

Substituting the first and second local problems (4.10) and (4.21) yields

〈N2,ξ (EN1,ξ +E)− N1,ξ (EN2,ξ +EN1)+ N1(EN1,ξ +E)− ĉ2ρN1〉 = 0. (5.7)

Finally, after eliminating parentheses and reducing terms, we obtain (5.4). Therefore, from (5.3), we
conclude that

Ê X̂1,xx +ω
2
0ρ̂ X̂1 =−2ω0ω1ρ̂ X̂0. (5.8)
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This equation is a second-order ordinary differential equation in X̂1 with constant coefficients. The
right-hand side satisfies the corresponding homogeneous second-order equation from (4.16). To obtain
bounded solutions for (5.8), we must set ω1 = 0 because ω0 and X̂0 are arbitrary. This yields

Ê X̂1,xx +ω
2
0ρ̂ X̂1 = 0, ω1 = 0. (5.9)

Combining (5.9) and (5.2), we have

(E X3,ξ ),ξ +
[
(EN2),ξ +EN2,ξ +EN1− ĉ2ρN1

]
X̂0,xxx

+
[
(EN1),ξ +EN1,ξ +E − ĉ2ρ

]
X̂1,xx +E,ξ X̂2,x = 0. (5.10)

The general solution, X3, to (5.10) is

X3(x, ξ)= N3(ξ)X̂0,xxx +N2 X̂1,xx +N1 X̂2,x +X̂3(x). (5.11)

The third 1-periodic local function N3, for which 〈N3〉 = 0, is the solution to the third local problem,

(EN3,ξ +EN2),ξ +EN2,ξ +EN1− ĉ2ρN1 = 0, (5.12)

with continuity conditions
‖N3‖ = 0, ‖EN3,ξ +EN2‖ = 0, (5.13)

obtained by substituting (5.11) and (4.20) into the ideal contact conditions given in (3.16)3,4 for n = 2.
ω1 does not change the result obtained thus far for ωε. Improvements on this value must be made at
subsequent levels of approximation.

Continuing with the term of order O(ε2), we have

(E X4,ξ ),ξ +(E X3,ξ ),x +(E X3,x ),ξ +(E X2,x ), x +ω
2
0ρX2+ 2ω2ω0ρX0 = 0. (5.14)

Substituting in (5.14) the values of X2 and X3 from (4.20) and (5.11), and the constraints (4.16) and
(5.9)1 satisfied by X̂0 and X̂1, we get

(E X4,ξ ),ξ +
[
(EN3),ξ+EN3,ξ+EN2−ĉ2ρN2

]
X̂0,xxxx +

[
(EN2),ξ+EN2,ξ+EN1−ĉ2ρN1

]
X̂1,xxx

+(EN1,ξ +E)X̂2,xx +ω
2
0ρ X̂2+2ω2ω0ρ X̂0 = 0. (5.15)

Averaging over this last equality yields

〈EN3,ξ +EN2− ĉ2ρN2〉X̂0,xxxx +Ê X̂2,xx +ω
2
0ρ̂ X̂2+ 2ω2ω0ρ̂ X̂0 = 0. (5.16)

Considering the second-order homogeneous equation (4.16), we have

X̂0 =−
ĉ2

ω2
0

X̂0,xx =
ĉ4

ω4
0

X̂0,xxxx . (5.17)

Consequently, we can rewrite (5.16) as

Ê X̂2,xx +ω
2
0ρ̂ X̂2 =−

[
〈EN3,ξ +EN2− ĉ2ρN2〉

ω4
0

ĉ4 + 2ω2ω0ρ̂
]

X̂0. (5.18)

Once again, we have obtained a second-order differential equation, this time for the function X̂2. Because
X̂0 satisfies the corresponding second order homogeneous equation, the right-hand side of (5.18) does
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also. To avoid unbounded solutions for X̂2, we must select ω2 so that the coefficient of X̂0 in the right-
hand side is equal to zero:

ω2 =−
ω3

0

2ĉ4ρ̂
〈EN3,ξ +EN2− ĉ2ρN2〉. (5.19)

The equation for X̂2 is
Ê X̂2,xx +ω

2
0ρ̂ X̂2 = 0. (5.20)

With this result, an averaged expression for (2.1), up to O(ε2), can be obtained. Combining

X̂ = X̂0+ ε X̂1+ ε
2 X̂2 (5.21)

and the normalization condition, 〈Nn〉 = 0 for n = 1, 2, . . . , it can be seen that 〈X〉 ≈ X̂ , and we have

Ê X̂ ,xx +ω
2
0ρ̂ X̂ = 0. (5.22)

If u = X (x, ξ)T (t), then û = 〈u〉 = 〈X (x, ξ)T (t)〉 ≈ X̂T , and

ρ̂ût t = ρ̂ X̂ Tt t =−ρ̂ω
2
ε X̂T, (5.23)

considering (3.2)2. Taking only the terms up to the second-order of approximation in the second equality
of (5.23), we obtain

ρ̂ω2
ε X̂T ≈ ρ̂(ω0+ ε

2ω2)
2 X̂ T = ρ̂ω2

0 X̂T + ε2ρ̂2ω0ω2 X̂T + ε4ρ̂ω2
2 X̂T

= ρ̂ω2
0 X̂T + ε22ρ̂ω2(ω0+ ε

22ω2)X̂T − ε4ρ̂3ω2
2 X̂T

= ρ̂ω2
0 X̂T + ε22ρ̂

ω2

ω0
ω2
ε X̂ T − ε4ρ̂3ω2

2 X̂T . (5.24)

Neglecting terms of order O(ε4) and substituting the value for ω2 from (5.19), this reduces to

ρ̂ X̂Tt t =−ρ̂ω
2
0 X̂ T − ε2ω

2
0

ĉ4 κω
2
ε X̂T, (5.25)

where we have set κ = 〈EN3,ξ +EN2− ĉ2ρN2〉. In view of (5.22) and (3.2)2, we can substitute
ω2

0

ĉ2 X̂ =
−X̂xx and ω2

εT =−Tt t to obtain

ρ̂ X̂Tt t = Ê X̂xx T −
ε2κ

ĉ2 X̂xx Tt t . (5.26)

Finally, we have, for û,

ρ̂ût t = Ê ûxx −
ε2κ

ĉ2 ûxxtt . (5.27)

Applying the principle of superposition, we find that this equation is valid for more general functions û
which are sums of stationary modes û(x, t)= X̂(x)T (t) multiplied by a constant amplitude. This result
demonstrates the dispersive nature of wave propagation in the composite under study.

One-dimensional homogenization yields a closed-form expression for κ , which depends on the coeffi-
cients in the original equation, E(ξ) and ρ(ξ). This procedure is presented in the Appendix. If we define

R =
∫ ξ

0

(ρ
ρ̂
− 1

)
ds, B =

∫ ξ

0

( Ê
E
− 1

)
ds, (5.28)
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then

κ = Ê
[〈( Ê

E
R− B

)(
R−

〈 Ê
E

R
〉)〉
+

〈(
ρ
ρ̂

B− R
)
(B−〈B〉)

〉]
. (5.29)

If E(ξ)ρ(ξ) is a constant, then κ = 0. Under such conditions, ρ(ξ)/ρ̂ = Ê/E(ξ), R = B, and

κ = Ê
[〈

2
( Ê

E
− 1

)
B2
〉
−

〈( Ê
E
+ 1

)
B
〉〈( Ê

E
− 1

)
B
〉]
. (5.30)

This expression vanishes if we consider d B/dξ = Ê/E − 1: indeed, this condition implies〈( Ê
E
− 1

)
Bn
〉
=

1
n+1

〈 d
dξ
(Bn+1)

〉
= 0, (5.31)

because Bn is a 1-periodic function. This fact can be used to verify that the quantity in brackets in (5.30)
is zero. From a physical standpoint, this demonstrates that for constant acoustic impedance Eρ in a
periodic composite, dispersion is not observed in the global model because that would imply that κ = 0.

6. Arbitrary orders of approximation

The results obtained in the last section can be extended to arbitrary orders of approximation for the
functions X (x, ξ) and the angular frequency ωε. To achieve this goal, we require the following result.

Lemma 2. For all n ≥ 0, we have

Xn(x, ξ)=
n∑

m=0

Nn−m(ξ)
dn−m X̂m

dxn−m (x), (6.1)

and the expressions for αn become

αn =−
1
ρ̂

(
−
ω2

0

ĉ2

)n/2+1
〈

ENn+1,ξ +ENn +

n/2−1∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn−2k

〉
, (6.2)

for n even, or
αn = 0, (6.3)

otherwise. By convention, we take N0 ≡ 1, and d0/dx0 is the identity operator. The local functions Nn

are 1-periodic, of null average, and must satisfy the recurrent set of local problems given by

(ENn+2,ξ +ENn+1),ξ +ENn+1,ξ +ENn +

[n/2]∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn−2k = 0. (6.4)

[n/2] is the largest integer less than or equal to n/2, and the 1-periodic solution Nn+2 to this equation is
restricted to the continuity conditions

‖Nn+2‖ = 0, ‖ENn+2,ξ +ENn+1‖ = 0. (6.5)

All functions X̂n satisfy the equation

ĉ2 X̂n,xx +ω
2
0 X̂n = 0. (6.6)
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Proof. (The reader may prefer to skip to the end of the proof, on page 964.) We proceed by induction. Suppose
n0 is even, (6.1)–(6.3) are valid for n < n0+ 2, and (6.4)–(6.6) hold for every n < n0. From the expression for the
order O(εn0), we have

(E Xn0+2,ξ ),ξ +(E Xn0+1,ξ ),x +(E Xn0+1,x ),ξ +(E Xn0 ,x ), x +ρ
n0/2∑
k=0

αk Xn0−k = 0. (6.7)

A necessary and sufficient condition for the existence of a 1-periodic solution Xn0+2 for this equation is〈
(E Xn0+1,x ),ξ +(E Xn0 ,x ), x +ρ

n0∑
k=0

αk Xn0−k

〉
= 0. (6.8)

Once the expressions for Xn0 and Xn0+1 from (6.3) are substituted into this equality, we have

n0−1∑
m=0

〈
ENn0−m+1,ξ +ENn0−m +

[ n0−m
2

]∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−m−2k

〉dn0−m+2 X̂m

dxn0−m+2

+〈EN1, ξ + E〉
d2 X̂n0

dx2 +ω
2
0〈ρ〉X̂n0 = 0. (6.9)

As long as (6.5)1 is valid for n < n0, we have〈
ENn+1,ξ +ENn +

[n/2]∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn−2k

〉
= 0, (6.10)

for n < n0. All terms in the sum from m = 0 to m = n0− 1 in (6.9) vanish except for the one corresponding to
m = 0, and (6.9) is equivalent to

〈EN1, ξ + E〉
d2 X̂n0

dx2 +ω
2
0〈ρ〉X̂n0 =−

〈
ENn0+1,ξ +ENn0 +

n0
2∑

k=0
α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k

〉dn0+2 X̂0

dxn0+2 . (6.11)

At the same time, we have
dn0+2 X̂0

dxn0+2 =

(
−
ω2

0

ĉ2

)n0/2+1
X̂0. (6.12)

(6.11) is a second-order differential equation, with constant coefficients, in the unknown functions X̂n0+1. To
obtain a bounded solution, we must set the right-hand side equal to zero because X̂0 satisfies the corresponding
homogeneous equation. Then,〈

ENn0+1,ξ +ENn0 +

n0/2∑
k=0

α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k

〉
= 0, (6.13)

and solving for αn0 , we obtain precisely (6.2), for n = n0, and for X̂n0 , we get (6.6). This yields

X̂n0 =−
ĉ2

ω2
0

d2 X̂n0

dx2 . (6.14)

We can use this fact and (6.2) to obtain, from (6.7)

(E Xn0+2,ξ ),ξ +
n0+1∑
m=0

[
(ENn0−m+1),ξ +ENn0−m+1,ξ +ENn0−m +

[ n0−m
2

]∑
k=0

α2kρNn0−m−2k

]
dn0−m+2 X̂m

dxn0−m+2 = 0.

Because this equation is linear, the general solution Xn0+2, for (6.15), is the expression given in (6.1) for n = n0+ 2,
where the local functions Nn0+2(ξ) satisfy (6.4)–(6.5) when n = n0.

Next, we consider the equation corresponding to the order O(εn0+1):

(E Xn0+3,ξ ),ξ +(E Xn0+2,ξ ),x +(E Xn0+2,x ),ξ +(E Xn0+1,x ), x +ρ
n0/2∑
k=0

αk Xn0−k+1 = 0. (6.15)
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If we average over a period, we have〈
(E Xn0+2,x ),ξ +(E Xn0+1,x ), x +ρ

n0/2∑
k=0

αk Xn0−k+1

〉
= 0. (6.16)

Analogously to the previous case, this is equivalent to

〈EN1, ξ + E〉
d2 X̂n0+1

dx2 +ω2
0〈ρ〉X̂n0+1 =

−

〈
ENn0+2,ξ +ENn0+1+

n0
2∑

k=0
α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k+1

〉dn0+3 X̂0

dxn0+3 −αn0+1〈ρ〉X̂0.

(6.17)

Here it can be proved that 〈
ENn0+2,ξ +ENn0+1+

n0
2∑

k=0
α2k

(
−

ĉ2

ω2
0

)k+1
ρNn0−2k+1

〉
= 0. (6.18)

Consider, for that purpose, the identity〈 n0+1∑
n=0

(−1)n
[
Nn0−n+2(ENn+1,ξ +ENn)

]
,ξ

〉
= 0. (6.19)

Applying here the rule for the derivative of the product, we arrive at〈 n0+1∑
n=0

(−1)n Nn0−n+2,ξ (ENn+1,ξ +ENn)
〉
+

〈 n0+1∑
n=0

(−1)n Nn0−n+2(ENn+1,ξ +ENn),ξ

〉
= 0. (6.20)

We can substitute the expressions for the local problems in (6.4) into the second term of the left-hand side of (6.20)
to obtain, after some algebra,〈 n0+1∑

n=0
(−1)n ENn0−n+2,ξ Nn+1,ξ

〉
+〈ENn0+2,ξ 〉+

〈 n0+1∑
n=1

(−1)n ENn0−n+2,ξ Nn

〉
+

〈 n0+1∑
n=1

(−1)n+1 ENn0−n+2 Nn,ξ

〉
+〈ENn0+1〉+

〈 n0+1∑
n=2

(−1)n+1 ENn0−n+2 Nn,ξ

〉
+

〈 n0/2∑
q=0

α2q

(
−

ĉ
ω2

0

)q+1
ρNn0−2q+1

〉
+

〈 n0+1∑
n=2

(−1)n+1 Nn0−n+2

[n/2−1]∑
k=0

α2k

(
−

ĉ
ω2

0

)k+1
ρNn−2k+1

〉
= 0. (6.21)

The first term in this expression is equal to zero. To verify this, is sufficient to change the summation index to
n = n0−m+ 1. Recalling that n0 is an even number, we have
n0+1∑
n=0

(−1)n ENn0−n+2,ξ Nn+1,ξ =
n0−m+1=n0+1∑

n0−m+1=0
(−1)n0−m+1 ENm+1,ξ Nn0−m+2,ξ =−

n0+1∑
m=0

(−1)m ENm+1,ξ Nn0−m+2,ξ ,

That is, the sum is equal to its negative and hence vanishes. A similar procedure can be used to verify that the third
and fourth terms in left-hand side of (6.21) cancel, the sixth and eighth terms are zero as well, and (6.21) gives
(6.18). Finally, (6.17) reduces to〈

EN1, ξ + E
〉d2 X̂n0+1

dx2 +ω2
0〈ρ〉X̂n0+1 =−αn0+1〈ρ〉X̂0. (6.22)

Here, we must take αn0+1 = 0 to obtain bounded solutions for the unknown X̂n0+1 in (6.22), consistent with (6.3),
which is the goal of this proof. This leaves, for X̂n0+1, the equation given in (6.6) for n = n0+ 1. This can be used
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to restate (6.15):

(E Xn0+3,ξ ),ξ

+

n0+2∑
m=0

[
(ENn0−m+2),ξ +ENn0−m+2,ξ +ENn0−m+1+

[ n0−m+1
2

]∑
k=0

α2kρNn0−m−2k+1

]dn0−m+3 X̂m

dxn0−m+3 = 0. (6.23)

Then, the general solution, Xn0+3, to this equation is given by (6.1), for n = n0+ 3, and by substitution it can be
seen that the local function Nn0+3 must satisfy (6.4)–(6.5) for n = n0+ 1 which is the goal of the proof.

Finally, the expressions for X0 and X1 become

X0(x, ξ)= X̂0(x), X1(x, ξ)= N1(ξ)
d X̂0

dx
(x)+ X̂1(x),

from Section 4. Combining this with the first local problem, (4.10)–(4.11), and the relation α0 = ω
2
0 we conclude

the proof for the lemma. �

The equality (6.1) gives the following asymptotic expansion for the function X (x, ξ),

X (x, ξ)=
∑
n≥0

εn
n∑

m=0

Nn−m(ξ)
dn−m X̂m

dxn−m (x). (6.24)

As a consequence, if we take
X̂(x)=

∑
n≥0

εn X̂n(x), (6.25)

then (6.24) and the normalization condition 〈Nn〉 = 0 yield

X (x, ξ)=
∑
n≥0

εn Nn(ξ)
dn X̂
dxn , 〈X〉 = X̂ , Ê X̂xx +ω

2
0ρ̂ X̂ = 0. (6.26)

Because we now have an explicit expression for X̂ and have solved the local problems, X can be suc-
cessfully approximated. The condition that αn = 0 if n is odd implies that ωn = 0 if n is odd, and

ωε =
∑
n≥0

ε2nω2n. (6.27)

Note that all ω2n satisfy the recurrence condition in (6.3) and can therefore be found for arbitrary n once
ω0 is obtained. Then, for the function T (t),

Tt t + (ω0+ ε
2ω2+ ε

4ω4+ · · · )
2T = 0. (6.28)

This allows us to define û. The boundary conditions allow calculation of the eigenfunctions X̂ (n) and the
eigenfrequencies ω(n)0 from (6.26). The formula (6.2) for αn tell us that all quantities αn and ωn depend
recurrently on ω0. Once ω0 and the local functions Nn are determined up to a certain order, ωn can be
obtained which define a suitable approximation for ωε. Substituting ωε into the equation for T (t) in (3.2)2

and defining initial conditions, the functions T (n)(t) can be calculated to give û =
∑
∞

n X̂ (n)T (n). This
result will be described in the next section, in which an analytic solution for û is obtained for select cases.
It should be emphasized that the procedure followed so far is equivalent to the one introduce in the original
problem, (2.1)–(2.2). This procedure depends on a rescaled temporal variable τ = (1+εr1+ε

2r2+· · · )t ,
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following the method of strained coordinates or the method of Linsted-Poincaré [Sánchez-Huber and
Sánchez-Palencia 1992].

Note that rn = ωn/ω0 depend on ω0. From (6.2) and (6.3), we can deduce a general expression for ωε
that depends on ω0. Considering the expressions given in (3.10) and using induction, one obtains

ωε = ω0

(
1− ε2ω2

0
K1

ĉ2 + · · ·+ (−1)nε2nω2n
0

Kn

ĉ2n + · · ·

)
, (6.29)

where Kn depend only on the local functions Ni , for i = 1, 2, . . . , 2n + 1, and the coefficients in the
original equation.

7. Solution for the averaged model

We next consider wave propagation problems under various initial and boundary conditions. We present
analytical solutions to the propagation equations and an explicit expression for the averaged model.

7A. Perturbation from the steady state. First, consider the one-dimensional problem of wave propa-
gation given by (2.1), with boundary conditions given in (2.2)1,2, with µ(t) = 0 and F(t) = 0. The
initial conditions are given by (2.2)3,4 with U (x)= f (x) and V (x)= 0. This corresponds to an initial
disturbance from the equilibrium position.

From (6.26) and the homogeneous boundary conditions introduced, we have the following equation
and boundary conditions for X̂ :

Ê X̂ ,xx +ω
2
0ρ̂ X̂ = 0, X̂(0)= 0, X̂ ,x (L)= 0. (7.1)

This is a second-order linear differential equation with constant coefficients, and the solution can be
explicitly determined as X̂ (n)(x)= sin (ω(n)0 /ĉ)x , where

ω
(n)
0 =

(2n− 1)π ĉ
2L

, (7.2)

for n = 1, 2, 3, . . . , yielding

X̂ (n)(x)= sin
(2n− 1)πx

2L
. (7.3)

Next, the functions T (n)(t), corresponding to each value of ω(n)0 , are solved as follows:

T (n)
t t + (ω

(n)
ε )2T (n)

= 0, T (n)(0)= f (n), T (n)
t (0)= 0. (7.4)

Here the ω(n)ε , with n = 1, 2, 3, . . . , can be found from ω
(n)
0 using (6.29), and the f (n) are the coefficients

of the Fourier expansion of the initial condition f (x), relative to the orthogonal basis X̂ (n):

f (n) =

∫ L
0 f (x)X̂ (n)(x) dx∫ L

0 [X̂
(n)(x)]2 dx

. (7.5)

The approximation for ω(n)ε is easily calculated to second order. Using the expression for ω2 in (5.19)
and the expansion for ωε in (6.29), we derive

ω
(n)
(2) = ω

(n)
0

(
1−

(εω
(n)
0 )2

ĉ2

K
2

)
, (7.6)
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where K = κ/Ê is a material constant based on the parameter κ of (5.29). The f (n) are then given by

f (n) =
2
L

∫ L

0
f (x) sin

(2n− 1)πx
2L

dx, (7.7)

for n = 1, 2, 3, . . . . The solution to (7.4) is given by T (n)
(2) (t)= f (n) cosω(n)(2) t , where

T (n)
(2) (t)= f (n) cos

(2n− 1)π ĉ
2L

(
1−

[ε(2n− 1)π
2L

]2 K
2

)
t . (7.8)

Having found the expressions for X̂ (n) and T (n), with n = 1, 2, 3, . . . , û is given analytically as

û(x, t)=
∞∑

n=1

f (n) sin
(2n− 1)πx

2L
cos

(2n− 1)π ĉ
2L

(
1−

[ε(2n− 1)π
2L

]2 K
2

)
t . (7.9)

Note that the same analytical solution is obtained using the classical asymptotic homogenization
method, setting ε = 0 in (7.9). The qualitative differences between our approach and the classical
asymptotic homogenization approach become evident upon inspection of (7.9). The difference between
these two approaches arises when

(
ε(2n− 1)π/(2L)

)2
(K/2)t is comparable to unity, that is, when t is

of the order ( 2L
ε(2n− 1)π

)2 2
K
.

7B. One moving boundary. Next, we evaluate the problem of wave propagation in (2.1) setting F(t)=
U (x) = V (x) = 0 in (2.2). These conditions correspond to a regime of movement on one boundary
with a free load on the other border, starting from the equilibrium position. For homogeneous boundary
conditions, we consider the auxiliary function v(x, t)= u(x, t)−µ(t), which satisfies

(Evx)x − ρvt t = ρµ
′′(t), v(0, t)= 0, vx(L , t)= 0, v(x, 0)=−µ(0), vt(x, 0)=−µ′(0).

The total derivative of µ is denoted by a prime. Following the procedure in the previous section, we find
that ω(n)0 and X̂ (n) are as in (7.2) and (7.3). Then,

T (n)
t t + (ω

(n)
ε )2T (n)

=−k̂(n)µ′′(t), T (n)(0)=−k̂(n)µ(0), T (n)
t (0)=−k̂(n)µ′(0), (7.10)

where

k̂(n) =

∫ L
0 X̂ (n)(x) dx∫ L

0 [X̂
(n)(x)]2 dx

=
4

(2n− 1)π
. (7.11)

This nonhomogeneous second-order equation with constant coefficients can be solved the theory of dis-
tributions; see [Schwartz 1966] for details. We obtain

T (n)(t)=−k̂(n)µ(t)+ω(n)ε k̂(n)
∫ t

0
µ(s) sinω(n)ε (t − s)ds. (7.12)

This gives an analytic expression for v̂(x, t)= 〈v〉,

v̂(x, t)=−µ(t)+
∞∑

n=1

ω(n)ε k̂(n) X̂ (n)(x)
∫ t

0
µ(s) sinω(n)ε (t − s)ds. (7.13)
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Considering approximations only up to the second power of ε, that is, ω(n)ε ≈ ω
(n)
(2) , we get

û(x, t)=
2ĉ
L

∞∑
n=1

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
sin

(2n− 1)πx
2L

×

∫ t

0
µ(s) sin

(2n− 1)π ĉ
2L

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
(t − s)ds. (7.14)

7C. Modeling failures. Next we consider the problem described in Section 7B with the added presence
of a failure in the composite at x = θL , where 0< θ < 1. The failure will be described mathematically as
a dimensionless spring at x = θL in the domain [0, L]. In addition to satisfying (2.1) and the boundary
and initial conditions given in Section 7B, F(t)=U (x)= V (x)= 0 in (2.2), the displacement functions
must satisfy

q‖u‖x=θL = E
du
dx

∣∣∣∣
x=θL

,

∥∥∥∥E
du
dx

∥∥∥∥
x=θL
= 0, (7.15)

where q is the elastic coefficient for the dimensionless spring. In the limit as q approaches infinity,
the right-hand side of (7.15) approaches zero (division by q), which corresponds to the case when no
failure is present. When q approaches zero, the left-hand side of the equality approaches zero, which
corresponds to the case when two faces at x = θL are under free stress conditions, that is, the material
consists of two separate pieces. The methodology used for the standard case is applied again, with the
same auxiliary function v(x, t)= u(x, t)−µ(t). Thus, we are looking for an expression for X̂ , satisfying
(7.1) and the conditions

‖X̂‖x=θL =
Ê
q

d X̂
dx

∣∣∣∣
x=θL

,
∥∥∥d X̂

dx

∥∥∥
x=θL
= 0. (7.16)

In this case, the function X̂ defined by

X̂(x)=
{

A sin (ω0x/ĉ) for 0< x < θL ,
B cos (ω0(L − x)/ĉ) for θL < x < L ,

(7.17)

automatically satisfies the conditions (7.1). Substituting (7.17) into (7.16) and introducing the quantity
φ = ω0L/ĉ for convenience, we obtain a system of linear equations in A and B:{

B cos
(
(1− θ)ϕ

)
− A

(
sin(θϕ)+ ϕ Ê

q L
cos(θϕ)

)
= 0,

B sin
(
(1− θ)ϕ

)
− A cos (θϕ) = 0.

(7.18)

The only solution is A = 0 and B = 0 unless the determinant vanishes, leading after simplification to the
condition

cosϕ−
Ê

q L
ϕ cosϕθ sinϕ(1− θ)= 0. (7.19)
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Once the solutions ϕ(n) to this equation are found, we can take

A = sinϕ(n)(1− θ), B = cosϕ(n)θ if ϕ(n) 6=
2n− 1

2
π,

A = 1, B = 1 if ϕ(n) =
2n− 1

2
π,

from which we finally determine the functions X̂ (n):

X̂ (n)(x)=
{

sinϕ(n)(1− θ) sinϕ(n)x/L if 0< x/L < θ,
cosϕ(n)θ cosϕ(n)(1− x/L) if θ < x/L < 1.

(7.20)

This expression holds if ϕ(n) is not a half-integer multiple of π ; otherwise X̂ (n) takes the form given in
equation (7.3). The steps for finding T (n) are analogous to those in Section 7B. Since T (n) satisfies (7.10)
we write it in the for (7.12). Again, for k̂(n) we have

k̂(n) =

∫ L
0 X̂ (n)(x) dx∫ L

0 [X̂
(n)(x)]2 dx

. (7.21)

This finally gives

k̂(n) =
2
ϕ(n)

sinϕ(n)(1− θ)

θ sin2 ϕ(n)(1− θ)+ (1− θ) cos2 ϕ(n)θ + (Ê/q L) sin2 ϕ(n)(1− θ) cos2 ϕ(n)θ
, (7.22)

except when ϕ(n) is a half-integer multiple of π , in which case k̂(n) is as in (7.11). The expression for
v̂ is exactly the same we found in (7.13), except that X̂ (n) and k̂(n) have the values in (7.20) and (7.22).
For ωε we have

ω(n)ε ≈ ω
(n)
(2) =

ĉϕ(n)

L

[
1−

(εϕ(n)
L

)2 K
2

]
. (7.23)

We have now arrived at the final analytic expression for û(x, t),

û(x, t)= 2
ĉ
L

∞∑
n=1

rn

[
1−

(εϕ(n)
L

)2 K
2

]
X̂n(x)

∫ t

0
µ(s) sin

ĉϕ(n)

L

[
1−

(εϕ(n)
L

)2 K
2

]
(t − s)ds, (7.24)

where the rn , for n = 1, 2, . . . , are given by

rn =


sinϕ(n)(1−θ)

θ sin2 ϕ(n)(1−θ)+(1−θ) cos2 ϕ(n)θ+ Ê
q L sin2 ϕ(n)(1−θ) cos2 ϕ(n)θ

if ϕ(n) 6= 2n−1
2

π,

1, if ϕ(n) = 2n−1
2

π.

(7.25)

8. Numerical results

We performed several numerical computations in order to illustrate these results. For this purpose, we
used the example of the composite described in [Chen and Fish 2001]. For all calculations, L = 40 m and
ε = 0.2 m. The periodic cell is composed of two homogeneous materials with properties E1 = 120 GPa,
E2 = 6 GPa, ρ1 = 8000 kg/m3, and ρ2 = 3000 kg/m3, distributed on the periodic cell with a volume ratio
of ν = 0.5. This gives ĉ = (Ê/ρ̂)1/2 = 1441.5 m/s and K = 0.03849 m2.
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8A. Propagation of an initial disturbance. To verify the efficacy of the results obtained, we compared
our formulation to the method proposed in [Chen and Fish 2001]. Consider the problem of an initial
disturbance from the steady state with homogeneous boundary conditions at points x = 0 and x = L ,

(Eεux)x − ρεut t = 0, u(0, t)= 0, Eε(L)ux(L , t)= 0, u(x, 0)= f (x), ut(x, 0)= 0.

The method proposed here yields an analytic solution for û = 〈u〉 (to a second-order approximation), as
described in Section 7A,

û(x, t)=
∞∑

n=0

f (n) sin (2n−1)πx
2L

cos
[
(2n− 1)π ĉ

2L

(
1−

[
(2n−1)πε

2L

]2 K
2

)
t
]
, (8.1)

where

f (n) =
2
L

∫ L

0
f (x) sin

2n− 1
2

πx
L

dx, K =
κ

Ê
=

1

Ê
〈EN3,ξ +EN2− ĉ2ρN2〉.

To reproduce the conditions given in [Chen and Fish 2001], we worked with following class of initial
disturbances:

f (x)=
f0

δ8

(
x − (x0− δ)

)4(x − (x0+ δ)
)4(1− H(x − x0− δ)

)(
1− H(x0− δ− x)

)
, (8.2)

where H(x) is the Heaviside step function, and f0, δ, and x0 are the magnitude, half-width, and center
coordinate of the pulse. For calculations, we only considered pulses of magnitude f0 = 1 centered at
x0 = 20 m with different values for the half-width δ = 1.4 m, δ = 0.8 m, and δ = 0.6 m, illustrated in
Figure 2. These values were selected to evaluate the effect of the typical width of the disturbance and
the size of the RVE.

The results of the comparison are shown in Figure 3. They agree well with those given in [Chen and
Fish 2001] and corroborate the conclusion that asymptotic homogenization does not give good results if
the characteristic size of the initial perturbation is comparable to the size of the periodic cell. According
to the method of Chen and Fish, this discrepancy can be seen for long observation times. Our model
demonstrates that this discrepancy should appear if the length traveled by the initial perturbation is

1

0.8

0.6

0.4

0.2

0

18 19 20 21 22

u(x, 0)/m

x /m

Figure 2. Shape and position of the initial pulses used for numerical illustration.
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Figure 3. Value of the solution at x = 30 m for δ= 1.4 m (left column) and for δ= 0.6 m
(right column) as a function of time.

relatively large (of order O(1/ε)). In the left column of the figure, it is apparent that classical asymptotic
homogenization can be applied provided that the distance traveled by the wave front is not too large.
The same is not true when the width of the perturbation is 4 times the size of the periodic cell and the
distance traveled is larger than 20 m, as shown in the right column.

8B. Traveling pulse. We next illustrate the results of the proposed method by describing the behavior
of a traveling pulse under the dispersion effect induced by the heterogeneous periodic structure of the
composite material. We consider the case of a pulse applied to one end, x = 0, with free load conditions
on the other end, x = L . If the process starts from static equilibrium, the problem is described by

(Eεux)x−ρεut t =0, u(0, t)=µ(t), Eε(L)ux(L , t)=0, u(x, 0)=0, ut(x, 0)=0. (8.3)

The proposed method gives the following analytic solution (up to second order) for û = 〈u〉, as seen in
Section 7B:
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Figure 4. Different pulses used for numerical illustration.

û(x, t)=
2ĉ
L

∞∑
n=1

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
sin

(2n− 1)πx
2L

×

∫ t

0
µ(s) sin

(2n− 1)π ĉ
2L

[
1−

(ε(2n− 1)π
2L

)2 K
2

]
(t − s)ds. (8.4)

The following type of pulses will be considered:

µ(t)=
A
2

(
1− cos

2π t
d

)
sin

2πωt
d

H
(

1−
t2

d2

)
, (8.5)

where H(x) is the Heaviside step function, and A, d, and ω are the magnitude, duration, and number
of oscillations. The shapes of these pulses for A = 1 m, d = 0.001 s, and ω = 1

2 , 1, 2 are illustrated in
Figure 4. For numerical experimentation we considered only these values of A, d and ω.

The results for ω = 1
2 are shown in Figure 5, left. The pulse shapes as a function of t are indicated by

a dashed line for the classical asymptotic homogenization and by a solid line for the dispersive model. A
decrease of the pulse amplitude due to the dispersion effect and wiggles behind the wave front predicted
by the dispersive model are apparent. For greater distances traveled by the pulse, the dispersive effect
becomes more pronounced. At larger values of ω, the effect appears earlier, at smaller distances. The
explanation for this is that for larger values of ω the characteristic size of pulse shape variation becomes

Figure 5. Prediction of the evolution of the pulse shape for ω= 1
2 (left) and ω= 1 (right),

and for times t = 0.004 s and t = 0.012 s, using standard asymptotic homogenization
(dashed line) and the proposed dispersive model (solid line).
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smaller and approaches the size of the periodic cell, producing more reflections and refractions at the
interfaces separating component materials. This effect is also observed in Figure 5, right, for the evolution
of the pulse shape when ω = 1.

8C. Interaction with failures. Next we consider numerical descriptions of the behavior of a traveling
pulse when a failure in the periodic structure composite is present. A failure in the material is modeled
by a dimensionless spring with elasticity constant q. The boundary conditions and equation of motion
describing wave propagation under these assumptions are given in (8.3). The failure is accounted for
mathematically by including conditions (7.15) on the displacements functions u(x, t) at a point θL ,
0< θ < 1, belonging to the interval [0, L].

Using the proposed method as in Section 7C, the expression for û = 〈u〉 becomes

û(x, t)= 2
ĉ
L

∞∑
n=1

rn

[
1−

(εϕ(n)
L

)2 K
2

]
X̂n(x)

∫ t

0
µ(s) sin

ĉϕ(n)

L

[
1−

(εϕ(n)
L

)2 K
2

]
(t − s) ds, (8.6)

where K and ĉ = (Ê/ρ̂)1/2 are material constants, the ϕ(n), for n = 1, 2, . . . , are the roots of

cosϕ−
Ê

q L
ϕ cosϕθ sinϕ(1− θ)= 0, (8.7)

the values of rn are given in (7.25), and the functions X̂n , in this case, are piecewise defined as in (7.20)
for ϕ(n) 6= (n− 1

2)π , and

X̂n(x)= sin
(2n− 1)πx

2L
for ϕ(n) = (n− 1

2)π .

We will work with the same type of pulses as in (8.5), again with A = 1 m, d = 0.001 s and ω = 1
2 , 1.

The n-th root ϕ(n) of (8.7) lies in the interval (0, π/2] for n = 1 and in
(
(2n− 3)π/2, (2n− 1)π/2

]
for n > 1. A variant of Newton’s method was used to find the roots numerically. Figure 6 shows the

0 5 10 15 20 25 30
−10

−5

0

5

10

φ (radians)

f (φ)

Figure 6. Plots of the function f (ϕ) = cosϕ − (Ê/q L)ϕ cosϕθ sinϕ(1− θ) against
ϕ over the interval [0, 9π ] for θ = 1/4 and different choices of q. Thicker lines and
wider variations correspond to low q; in order, q = 2× 108 N/m2 (Ê/q L = 1.429),
2× 109 N/m2 (0.143), 2× 1010 N/m2 (0.014), and∞ (0).
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distribution of roots on the real axis for f (ϕ)= cosϕ− (Ê/q L)ϕ cosϕθ sinϕ(1− θ), θ = 1
4 , and several

values of q . Solutions to (8.7) are given by the intersections of f (ϕ) with the ϕ-axis.
Once the quantities ϕ(n) and the roots of (8.7) are found, (8.6) can be evaluated. presented in the

following examples. The results are illustrated in Figures 7 and 8 for ω= 1
2 and ω=1, and q=2·108 N/m3,

q = 2 · 109 N/m3, and q = 2 · 1010 N/m3. We also set θ = 1
4 ; that is, the failure occurs at x = 10 m.

The pulse shapes for different values of t are shown for the classical asymptotic homogenization
(dashed line) and for the dispersive model (solid line). In these figures, the evolution of the pulse shape
after reaching the point of failure x = 10 m is illustrated for two values of the constant q (recall that low
q means severe debonding). For q = 2 · 108 N/m3, the reflection of the pulse at the point of failure is
almost complete for both cases. In contrast, for the larger value q = 2 ·1010 N/m3, the pulse splits and two
traveling perturbations emanate from the point of failure, instead of one. Also, in contrast to the classical

Figure 7. Prediction of the evolution of the pulse shape for ω = 1
2 and q = 2 · 108 N/m3

(left) or q = 2 ·1010 N/m3 (right), at times t = 0.008 s, t = 0.010 s and t = 0.012 s after the
pulse reaches the point of failure, x = 10 m, using standard asymptotic homogenization
(dashed line) and the proposed dispersive model (solid line).
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Figure 8. Prediction of the evolution of the pulse shape for ω = 1 and q = 2 · 108 N/m3

(left) or q = 2 ·1010 N/m3 (right), at times t = 0.008 s, t = 0.010 s and t = 0.012 s after the
pulse reaches the point of failure, x = 10 m, using standard asymptotic homogenization
(dashed line) and the proposed dispersive model (solid line).

asymptotic homogenization, the pulse shape described by the dispersive model becomes distorted. Thus
the dynamical responses, translated by the reflected and transmitted perturbations after interaction with
the failure, are different for each approach, and more noticeably so for larger ω.

Conclusions

In this work, an asymptotic model for describing wave propagation in periodic composites was proposed.
In this approach, the heterogeneous nature of the composite introduces a perturbation in the principal
frequencies relative to the homogenized problem. As a result, no new temporal scales need be consid-
ered. Instead, a regular aymptotic expansion for the eigenfrequencies is obtained from the condition
of boundedness for the solution. The results are graphically illustrated for different types of boundary
problems. The model is asymptotically valid for low frequency wave propagation.
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This approach describes the dispersion effects in periodic composites, and we have discussed the dif-
ferences between this model and the classical asymptotic homogenization. This model provides a starting
point for the study of frequency perturbations in laminated composites when the angle of incidence is
not perpendicular to the laminates, and the periodicity take place at small scales.

Appendix: Closed form expression of κ

We present the calculation of the constant κ = 〈EN3,ξ +EN2− ĉ2ρN2〉. First, (4.12) is solved to find

d N1

dξ
=

Ê
E
− 1, (A.1)

and consequently,
N1 = B−〈B〉, (A.2)

where B is given in (5.28). Considering the second local problem described in (4.21) and (4.12), we
have (EN2,ξ +EN1),ξ = Ê(ρ/ρ̂− 1). Because N1 has a null average, it can be deduced that

EN2,ξ +EN1 = Ê
(

R−
〈 Ê

E
R
〉)
, (A.3)

and R is given in (5.28). Substituting the formula for N1 gives

N2,ξ =
Ê
E

(
R−

〈 Ê
E

R
〉)
− B+〈B〉. (A.4)

Now, the equation (5.12) of the third local problem is multiplied by N1 and averaged over the period to
obtain 〈

N1(EN3,ξ +EN2),ξ
〉
=−

〈
N1(EN2,ξ +EN1− ĉ2ρN1)

〉
. (A.5)

Integrating the left-hand side by parts and using (A.1) and the equality 〈N2〉 = 0, we find that

〈N1(EN3,ξ +EN2),ξ 〉 = −〈N1,ξ (EN3,ξ +EN2)〉 = −
〈( Ê

E
− 1

)
(EN3,ξ +EN2)

〉
= 〈EN3,ξ +EN2〉.

On the other hand, −〈ρĉ2 N2〉 = −Ê
〈ρ
ρ̂

N2

〉
= Ê

〈
R

d N2

dξ

〉
. Together with (A.5), this leads to

〈EN3,ξ +EN2− ĉ2ρN2〉 =

〈
Ê R

d N2

dξ
− N1(EN2,ξ +EN1− ĉ2ρN1)

〉
. (A.6)

Substituting equations (A.2) and (A.3), we obtain (5.29).
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A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE
PUSH-PULL MECHANISM IN THE ORGAN OF CORTI

YONGJIN YOON, SUNIL PURIA AND CHARLES R. STEELE

In our previous work, the basilar membrane velocity VBM for a gerbil cochlea was calculated and com-
pared with physiological measurements. The calculated VBM showed excessive phase excursion and, in
the active case, a best-frequency place shift of approximately two fifths of an octave higher. Here we
introduce a refined model that uses the time-averaged Lagrangian for the conservative system to resolve
the phase excursion issues. To improve the overestimated best-frequency place found in the previous
feed-forward active model, we implement in the new model a push-pull mechanism from the outer hair
cells and phalangeal process. Using this new model, the VBM for the gerbil cochlea was calculated and
compared with animal measurements, The results show excellent agreement for mapping the location of
the maximum response to frequency, while the agreement for the response at a fixed point as a function
of frequency is excellent for the amplitude and good for the phase.

A list of symbols can be found on page 985.

1. Introduction

The cochlea of the inner ear transforms the input sound into output neural excitation. The basic model
consists of a long, straight box of fluid with a flat lengthwise partition. The spiral coiling of the cochlea
is neglected, as it has been shown to have little effect on the model response [Loh 1983; Steele and Zais
1985]. The partition has an elastic portion called the basilar membrane (BM). Generally, this membrane
is narrow and thick, and therefore stiff, at the input end, where it connects with stapes, and wide and
thin, and consequently flexible, at the far end, the apex. From a sinusoidal pressure input, a traveling
fluid-elastic wave is generated on the BM.

For a fixed frequency of input, experiments show a traveling wave on the BM that builds to a peak at a
certain point and then rapidly decays as it moves further. The location of the peak depends on frequency;
thus each point has a “best frequency” (BF) that causes the maximum amplitude of the BM response.
In the actual cochlea, a sensory epithelium, called the organ of Corti, is attached to the BM. The organ
of Corti contains the sensory hair cells, which respond to the BM motion and initiate neural excitation.
However, three rows of outer hair cells (OHC) are piezoelectric and most likely provide an amplification
of the wave for low input amplitude; this is known as the active mechanism. Because of the geometry of
the outer hair cells, a feed-forward approximation can be used in the cochlear model. Two-dimensional
[Geisler and Sang 1995] and three-dimensional models with the active feed-forward mechanism have
been employed [Steele et al. 1993; Lim and Steele 2002; Yoon et al. 2007].

Keywords: cochlear active model, basilar membrane velocity, outer hair cell, push-pull mechanism, gerbil.
Work supported by the NIDCD of the National Institutes of Health through grant no. R01-DC007910.
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In the present work, we improve on this previous feed-forward active model with further consideration
of the actual geometry. For the low amplitude of sound intensity, there is significant energy feedback that
enhances the wave. Located on the elastic region is the organ of Corti, which contains the sensory hair
cells in an interesting arrangement of structural elements. A possible explanation for the form is derived
from an analysis of the effect of the electromotile (piezoelectric) expansion and contraction of the outer
hair cells which is known as OHC motility. This motility causes a positive spatial “feed-forward” of
force on the basilar membrane (the “push”) as well as a negative “feed-backward” of force (the “pull”)
from the phalangeal process. These push and pull mechanism work together to provide a two order of
magnitude increase in the amplitude of the wave for the short wavelengths, but cancel each other out for
the long wavelengths. Thus, the significant enhancement occurs in a narrow band of spatial wavelengths,
without the need for special filtering or tuning. The calculations for the simple box model of the cochlea
with the push-pull mechanism and the “time-averaged Lagrangian” method [Steele and Taber 1979] yield
results very similar to gerbil measurements [Ren and Nuttall 2001].

2. Mathematical methods

Passive cochlear model. The physical cochlea is modeled as a straight-tapered fluid-filled chamber with
rigid walls. The chamber is divided longitudinally by the flexible orthotropic plate into two equal rect-
angular ducts, which represent the scala vestibuli and scala tympani. The two fluid ducts are joined at
the apical end of the chamber by a hole, representing the helicotrema. The flexible plate represents the
pectinate zone of the basilar membrane, which bends under the motion of the fluid driven by the stapes
motion. A schematic drawing of the model is shown in Figure 1.

The equations of the system are formulated in the frequency domain. Harmonic excitation is applied at
the stapes and the steady-state response of the system is considered. The equation for wave propagation
in the passive model is obtained by equating the time-averaged kinetic and potential energies of the
conservative system. The detailed derivations and features for the passive mechanics were described
in [Steele and Taber 1979]. Briefly, the three-dimensional fluid equations are integrated over the cross
section to obtain the relation between volume flow and fluid pressure, using a Fourier series expansion.
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Figure 1. Geometric layout of the passive cochlear model: from left to right, side view,
cross section (A-A), and top view. Distances are parameterized in cartesian coordinates,
x representing the distance from the stapes, y the distance across the scala width, and z
the height above the partition.



A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM 979

The time-averaged kinetic energy of the fluid (T f ) and of the elastic basilar membrane (Tp) are then
obtained, as is the time-averaged potential energy of the plate (Vp). By equating the time-averaged
kinetic and potential energies of the system, the eikonal equation is obtained, which can be written as

L = T f + Tp − Vp = F(n, ω)W (x)2
(∫ b

0
η2(ξ)dξ

)
= 0. (1)

This gives the phase relation for the active case, F(n, ω)= 0, where b is the BM width, n is the wavenum-
ber, and ω is the frequency. Here, L is the time-averaged Lagrangian density of the system, W (x) the
amplitude of the wave envelope, and η(ξ)= sin(πξ/b) the shape function for simply-supported edges;
the coordinate ξ has its origin at one edge of the BM.

Active cochlear model: push-pull mechanism. For the push-pull active model, the arrangement of the
organ of Corti is indicated in Figure 2. If the OHCs expand, the Deiters rod at the horizontal distance
x +1x1 will be pushed down by the OHC with the apex at x , and pulled up by the phalangeal process
connected to the OHC with the apex at x +1x2. The force in an OHC is proportional to the shear force
on the cilia at the apex, which is approximately equal to the total force acting on the BM. This push-pull
mechanism is quantified by writing the total force on the BM as

FPZ = 2F f
BM+ FC

BM. (2)
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Figure 2. Schematic longitudinal view of the organ of Corti, showing the tilt of the
outer hair cells. For one hair cell with apex at the distance x , the base is at x +1x1; the
phalangeal process connected at the base attaches to the upper surface at x +1x2; the
OHC angle is θ1; and θ2 is the angle of the phalangeal process angle with the reticular
lamina. The force on the BM through the Deiters rod is Fc

BM, which consists of the
downward push from an expansion of the hair cell at x and an upward pull through the
phalangeal process from an expansion of the hair cell at x +1x2.



980 YONGJIN YOON, SUNIL PURIA AND CHARLES R. STEELE

in which FC
BM is the force due to the OHCs, and F f

BM is the force due to the fluid on one side. The force
acting through the Deiters rod at x +1x1 is

FC
BM(x +1x1)= α1

(
2F f

BM(x)+ FC
BM(x)

)
−α2

(
2F f

BM(x +1x2)+ FC
BM(x +1x2)

)
, (3)

in which the gains from the push and the pull are α1 and α2, respectively, while 1x1 is the longitudinal
distance between the apex and the base of the OHC, which depends on the length lOHC of the OHC and
its angle θ1 with respect to the longitudinal direction to the reticular lamina (see Figure 2):

1x1 = lOHC cos θ1. (4)

Moreover 1x2−1x1 is the longitudinal distance between the base and the apex of the phalangeal process,
which depends on the length lp of the phalangeal process and its angle θ2 with respect to the longitudinal
direction of the reticular lamina:

1x2−1x1 = lp cos θ2. (5)

Based on the geometric relationship between OHC and phalangeal process, lp can be expressed as

lp = lOHC
sin θ1

sin θ2
. (6)

By (5) and (6), 1x2−1x1 can be reduced without lp:

1x2−1x1 = lOHC sin θ1 cot θ2. (7)

From the phase integral, (3) reduces to

FC
BMein1x1 = α1(2F f

BM+ FC
BM)−α2(2F f

BM+ FC
BM)e

in1x2 . (8)

The force from the OHC motility is related to the fluid force:

FC
BM =

2(α101−α202)F
f

BM

1−α101+α202
, (9)

where
01 = e−in1x1 and 02 = ein(1x2−1x1).

Therefore, the total force on the BM from (2) is

FPZ = 2
(

1+
(α101−α202)

(1−α101+α202)

)
F f

BM =
2F f

BM

1−α101+α202
. (10)

Matching the force to the displacement of the fluid and the OHC to the BM stiffness yields the eikonal
(dispersion) relation of the active model. We consider a positive value of α2 to be a negative feedback
effect of the phalangeal processes. Because of the flexibility of the upper surface consisting of the tectorial
membrane and the reticular lamina in Figure 2, the upward and downward forces tend to cancel each other,
so that α1 = α2. Then, for the long wavelength, i.e., the small values of the wave number n, the push-pull
effect in (2) are negligible, while for very short wavelengths, the fluid viscosity dominates. Thus, the
push-pull is effective only in a band of wavelengths. It is assumed that OHC force production does not
roll off with frequency and thus α1 and α2 are constant with frequency. Although this is controversial,



A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM 981

there is evidence that suggests that OHCs can generate forces for frequencies up to 50 kHz [Rabbitt
2008].

Wave propagation of BM plate. An energy approach is used involving variational calculus which is
applied to the time-averaged Lagrangian density L of the system Equation (1). Independent variation of
n and W (x) yields the Euler–Lagrange equations

∂L
∂W
= 2F(n, ω)W (x)

(∫ b

0
η2(ξ)dξ

)
= 0, (11)

d
dx
∂L
∂n
=

d
dx

[
∂F(n, ω)
∂n

W 2(x)
(∫ b

0
η2(ξ)dξ

)]
= 0. (12)

The eikonal equation is obtained using (11):

F(n, ω)= 0. (13)

The amplitude function, W (x), which is the solution of the transport equation (12), is expressed as

W (x)= C
(
∂F(n, ω)
∂n

b
)−1/2

, (14)

where C is a constant determined from the boundary condition.
Hamilton’s principle is valid only for a conservative system; however, nonconservative terms can be

added to the Lagrange equations of motion. Thus, we extend Equation (11) and (12) to the push-pull
active model to obtain the eikonal and transport equation.

Ratio of the BM velocity to the stapes velocity. For a given harmonic excitation frequency ω, the eikonal
equations for the passive and active case are solved to give the wavenumber (n) by using Newton–
Raphson iterative scheme for each cross section along the cochlear duct. Once n is determined, the ratio
of the BM velocity VBM to the stapes velocity Vst is obtained. With the stapes motion defined as positive
outward, the ratio at x = x∗ is(VBM

Vst

)
x=x∗
=

2n Ast

bx=0

[ (b ∂F(n, ω)/∂n
)

x=0(
b ∂F(n, ω)/∂n

)
x=x∗

]
exp

(
π
2
−
∫

n dx
)
, (15)

where Ast is the stapes foot-plate area.

Modification for nonconservative system. An extension of the time-averaged Lagrangian method to
nonconservative systems is given in [Jimenez and Whitham 1976], in which the adjoint is considered.
An alternate approach is to consider the reciprocity principle. For a linear elastic system, consider
two independent solutions, denoted by superscript (1) and (2). The stress from (2) multiplied by the
displacement of (1) subtracted from the stress from (1) multiplied by the displacement from (2), integrated
over the entire surface, must be zero. In standard notation this is∫

n ·
(
σ (1) · u(2)− σ (2) · u(1)

)
d6 = 0. (16)

This depends on the symmetry of the tensor of elastic constants. The symmetry is preserved when dealing
with viscoelastic materials, including a viscous fluid, and working in the frequency domain, for which
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the coefficients are complex-valued. For a tube such as the cochlea, in which no work is done on the
side walls, the integral over one end is the negative of that over the other end. Since the sign change is
due to the change in the direction n, the integral itself must be constant with the distance along the tube.
So one solution is taken with a positive exponential,(

σ (1), u(1)
)
→ exp

∫
λ dx, (17)

while the other is taken with a negative exponential,(
σ (2), u(2)

)
→ exp

∫
−λ dx . (18)

One is a backward traveling wave, exponentially increasing, while the other is a forward traveling wave,
exponentially decreasing. For a conservative system, the condition (16) yields the same result for the
transport condition as (14). For a dissipative system with fluid viscosity, we find little difference, since
the wave number changes little. In addition, Equation (16) can be used for the case of feedback, when
the system is no longer self-adjoint. In this case the second solution in (16) must be taken as a solution
of the adjoint problem. Again we find little effect on the solutions for the cochlea, so (14) remains a
good approximation.

3. Results and discussion

The cochlear model is used to calculate the response of a gerbil cochlea. The material property values in
Table 1 were taken from [Smith 1968; Lim 1980; Steele et al. 1995; Karavitaki 2002], and the dimensions
in Table 2 from anatomical measurements for the gerbil cochlea [Sokolich et al. 1976; Greenwood 1990;
Dannhof et al. 1991; Cohen et al. 1992; Edge et al. 1998; Thorne et al. 1999; Naidu and Mountain 2007].

The model is meshed into 1200 sections along the 12 mm length of the cochlea. Forty terms are
used in the Fourier expansion across the width of the fluid duct. Calculation with eighty terms for the
Fourier expansion shows no difference with forty terms. Running on an Intel Pentium IX (3.40 GHz)
processor, the average time taken for a single harmonic excitation calculation is about one second. This
method provides a fast and efficient solution compared to a full-scale finite element model. Note that the
computation time indicated by [Parthasarathi et al. 2000] is measured in hours of computing time for the
linear solution for a single frequency.

The results include the BF-to-place map and the BM velocity frequency response. The modeling
results for the gerbil cochlea are compared with recent in vivo experiment measurements in the cochlea.

scala fluid

ρ f = 1.0× 103 kg/m3

µ= 0.7× 10−3 Pa s

basilar membrane

ρp = 1.0× 103 kg/m3

E11 = 1.0× 10−3 GPa
E22 = 1.0 GPa
E12 = 0.0 GPa
ν = 0.5

outer hair cell

θ1 = 85◦

θ2 = 25◦

α1 = 0.14
α2 = 0.14

Table 1. Gross properties in cochlear model.
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x (mm) b (mm) h (mm) f L2, L3 (mm) lOHC (µm)
0 0.0210 0.030 1.000 25.0
1.5 0.0175 0.707
2.9 0.162 0.387
3.5 0.0131
5.0 0.316
5.9 0.0088
7.2 0.190 0.0073 0.282
8.4
9.0 0.0055 0.316

10.2 0.205 0.0044
12.0 0.0031 0.007 0.245 65.0

Table 2. Property variations in gerbil cochlear model. Notation: b: width of plate; h:
plate thickness; h f : BM fluid thickness; L2, L3: width and height of fluid chamber;
lOHC: length of outer hair cell length.

CF-to-place map. CF versus distance from the stapes along the gerbil cochlear (CF range: 0.3 kHz–
50 kHz) is shown in Figure 3. The gerbil CF-to-place map [Sokolich et al. 1976; Greenwood 1990] was
measured with cochlear-microphonic recording. The maps from the passive model and measurement are
in excellent agreement (Figure 3).
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Figure 3. Characteristic frequency (CF) versus position for the passive cochlear model
compared to measurements. The present three-dimensional cochlear model represents
the gerbil cochlear CF-to-place map from 0.3 kHz to 50 kHz [Sokolich et al. 1976; Green-
wood 1990] over a length of 12 mm.
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BM velocity frequency response. The gerbil cochlear BM velocity magnitude and phase for 4.2 mm
from the base (BF = 10 kHz) relative to the stapes displacement were computed up to 20 kHz and are
compared with the gerbil experimental data from [Ren and Nuttall 2001] in Figure 4. The passive model
shows quantitatively very good agreement with data which are measured at a high stimulus level (100 dB
SPL at the ear canal).

Karavitaki [2002] gives the angle of tilt of gerbil OHC (θ1) as 84◦, closer to perpendicular to the BM
(Figure 2). The active model results are calculated with parameters; θ1 = 85◦ (OHC angle), θ2 = 25◦

(phalangeal process angle), α1 = α2 = 0.14 (feedforward and feedback gain factor). The active model
shows qualitatively and quantitatively good agreement with data at low stimulus level (30 dB SPL at the
ear canal) with 27 dB gain.

In the left half of Figure 4, showing the magnitude of the relative BM velocity, the calculated BF
place shifts from 10 kHz (passive model) to 13 kHz (active model), providing better agreement with
measurements. The BF place shift (two fifths of an octave upwards) observed in the earlier feed-forward
active model [Yoon et al. 2007] is resolved by using a push-pull mechanism in the active model. From
the parameter study, we find that the BF place shifts to the low frequency by using a small phalangeal
process angle in the active case.

The right half of Figure 4 shows that we obtain good agreement in the phase as well, at least in the
region below the BF place (that is, up to 10 kHz). Reduced phase excursion is one of the most impressive
improvements in the time-averaged Lagrangian model, compared to the 2.5 cycle phase difference near
BF region in the earlier model. However, past the BF, the phase of BM velocity from the model shows a
larger roll-off than the phase from the data, which represents over-fluctuation of the traveling wave after
10 kHz in the model.

1 10 20
10

−1

10
0

10
1

10
2

10
3

10
4

Frequency (kHz)

|V
b

m
/V

s
t|

Expt. (Ren & Nuttall, 2001; 100 dB)   
Expt. (Ren & Nuttall, 2001; 30 dB)    
Active (α=0.14, θ

1
 = 85, θ

2
 = 25  )         

Passive         
Yoon et al., 2007 (Active case)

(a) 

0 5 10 15 20
−2000

−1500

−1000

−500

0

500

1000

Frequency (kHz)

P
h

a
s

e
 (

d
e

g
re

e
s

)

Expt. (Ren & Nuttall, 2001; 100 dB)   
Expt. (Ren & Nuttall, 2001; 30 dB)    
Active (α=0.14, θ

1
 = 85, θ

2
 = 25  )         

Passive         
Yoon et al., 2007 (Active case)

(b) 

Figure 4. Basilar membrane (BM) velocity relative to the stapes: magnitude (left) and
phase (right) for the gerbil cochlea at 4.2 mm from the base (BF = 10 kHz). For the
active model, a value of 0.14 was used for the feed-forward and feedback gain factor.
Experimental data from [Ren and Nuttall 2001] are included for comparison. Results
from our earlier model [Yoon et al. 2007] are presented in dotted lines.
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4. Conclusions

We presented a refinement of an earlier physiologically based three-dimensional cochlear model [Yoon
et al. 2007] that resolved its two main deficiencies: a relatively large phase excursion near the best
frequency region, which was addressed using the time-averaged Lagrangian method, and an overesti-
mation of the best frequency (by about two fifths of an octave) observed in the earlier feed-forward
active model, which was ameliorated by the implementation of a push-pull mechanism in the active case.
Basilar membrane velocity simulation results for the gerbil cochlea now show excellent agreement in
magnitude and good agreement in phase relative to physiological measurements. However, past the best
frequency region, the phase in the current model still shows excessive roll-off. We hope that this can be
addressed by incorporating into the model a more detailed treatment of the organ of Corti [Steele and
Puria 2005].

List of symbols

BM basilar membrane
OHC outer hair cell
BF best frequency
n wave number
x , y, z Cartesian coordinates
ω angular velocity

L2, L3 width and height of fluid chamber
α1, α2 feed-forward and feedback gain factors
lOHC, lp length of OHC, length of phalangeal process
θ1, θ2 angle of tilt of OHC, phalangeal process
FPZ, F f

BM forces acting on the pectinate zone and fluid
FC

BM force exerted by OHC
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