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DYNAMICS OF A LIGHT HOOP WITH AN ATTACHED HEAVY DISK:
INSIDE AN INTERACTION PULSE

VLADO A. LUBARDA

An analysis of motion of a light hoop with a heavy circular disk attached to the inner side of its rim over
a rough horizontal surface is presented. When the radius of the disk is small relative to the radius of the
hoop, the motion is characterized by the sequence of sharp interaction pulses between the hoop and the
horizontal surface, during which a complex transition between stick, slip, and reversed slip takes place.
This is accompanied by the corresponding changes in the frictional force, which include abrupt reversal
of its direction, and rapid increase and discontinuous changes of the normal component of the reactive
force. The intensity of the interaction rapidly diminishes with an increase of the radius of the disk or the
mass of the hoop. The effects of the coefficient of friction on the dynamic interactions, stick and slip
transitions, and the energy dissipation are discussed.

1. Introduction

This paper is an analysis of motion of a light hoop with a heavy circular disk attached to the inner side
of its rim released to move on a rough horizontal surface. This seemingly simple problem in dynamics
is characterized by a surprising complexity of the involved kinematics and kinetics of motion, which
reveals a variety of information of a possible interest for the mechanics of frictional impact. When
the radius of the disk is small relative to the radius of a light hoop, the motion is characterized by
the sequence of sharp interaction pulses between the hoop and the horizontal surface during which a
complex transition between stick, slip, and reversed slip takes place. The sharp interaction pulses arise
in response to large angular velocity and angular acceleration of the hoop built in a short interval of
time during which the disk passes above the horizontal surface. The motion is also characterized by the
corresponding sudden changes in the velocity components of the center of the disk. The intensity of
the sharp interactions between the hoop and the horizontal surface as well as the overall complexity of
motion (transitions from one type of motion to another) diminish with the increasing size of the disk
or the mass of the hoop. For sufficiently large disks, the rolling without transition to sliding prevails
throughout the motion. The analysis demonstrates that for light hoops and very small disks, the time
integral of the tangential component of the interaction pulse is in general different from the product of
the coefficient of kinetic friction and the time integral of the normal component of the interaction pulse
(referred to in the mechanics of frictional impact as the Whittaker [1961] or Kane and Levinson [1985]
assumption for the impulse components).

The presented analysis resulted from the study of a puzzling dynamics problem of motion of a massless
hoop with an attached point mass, which is mentioned in the books by Littlewood [1986] and Kilmister

Keywords: friction, interaction pulse, light hoop, rolling, sliding, stick-slip transition.
Research support from the Montenegrin Academy of Sciences and Arts is acknowledged.

1027



1028 VLADO A. LUBARDA

Figure 1. Rolling/sliding motion of a thin light hoop of mass mh with the inner and outer
radii R0 and R = r R0, respectively. The attached disk has radius ρ and mass m. The
mass center of the system is at the point G such that CG = ϑR0, where ϑ = (1−k)m/M ,
k = ρ/R0, and M = m+mh is the total mass of the system.

and Reeve [1966], and which has been a subject of several recent publications addressing the question of
whether the hoop lifts off the horizontal surface during its motion [Tokieda 1997; Butler 1999; Pritchett
1999; Theron 2000; 2002; Theron and du Plessis 2001; Liu and Yun 2004]. This hopping of the hoop
dilemma was associated with the uncertainties in the description of motion of a hypothetical dynamic
system which engages in rotation but does not possess any rotational inertia, which can become dynam-
ically indeterminate. In the process of elaborating on this dynamic indeterminacy, the analysis unveiled
another interesting aspect of the problem, namely the description of sharp interaction pulses between
the hoop and the horizontal surface as the disk passes just above the horizontal surface. This resembles
some features of the interactions occurring during the frictional impact of colliding bodies, which can
be treated only by additional considerations or assumptions about the deformation in the contact region
[Johnson 1985; Brogliato 1999; Stronge 2000]. The analysis presented in this paper may thus help to
better understand the impulsive interactions and the stick/slip transitions in the latter problems.

2. Motion of a light hoop with an attached circular disk

The dynamics of motion of a light hoop with an attached disk was studied in detail in [Pritchett 1999;
Theron 2000; Theron and du Plessis 2001], with the goal of addressing the question of possible hopping
of the hoop and the dynamic indeterminacy in some stages of motion of an idealized system of a massless
hoop with an attached point mass. In this and the subsequent section we extend this analysis to describe
the interaction pulses and the stick/slip transitions throughout the motion of the hoop, for various mass
ratios and the geometric and friction parameters. We adopt the model in which the mass m is uniformly
distributed within a circular disk of radius ρ, which is attached to the inner side of a thin hoop with inner
radius R0, outer radius R, and a uniformly distributed mass mh (Figure 1).

2.1. Rolling motion. If the coefficient of friction between the hoop and the horizontal surface is suf-
ficiently high, as specified in the sequel by (9), the hoop begins its motion by rolling, such that the
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coordinates of the mass center of the system are

x = xC +ϑR0 sinϕ, y = R+ϑR0 cosϕ. (1)

Here, xC = R(ϕ−ϕ0) is the horizontal coordinate of the center of the hoop, ϑ = (1− k)m/M , k = ρ/R0,
and M = m+mh is the mass of the moving system. With this notation, the distance between the center
of the hoop and the mass center of the system is CG = ϑR0. The corresponding equations of motion
(ignoring the coefficient of rolling resistance and the associated rolling resistance moment) are

Mẍ = F, M ÿ = N −Mg, J ϕ̈ = NϑR0 sinϕ− F(R+ϑR0 cosϕ). (2)

The moment of inertia of the hoop/disk system for its mass center G is

J = η2 M R2
0, η2

=
mh

2M
(1+ r2)+

mh

m
ϑ2
+

m
2M

k2, (3)

where r = R/R0 (so that ηR0 is the radius of gyration of the hoop/disk system). When (1) is substituted
into the first two equations of (2), the normal and friction force can be expressed as

N = M
[
g−ϑR0(cosϕϕ̇2

+ sinϕϕ̈)
]
, F = M

[
Rϕ̈−ϑR0(sinϕϕ̇2

− cosϕϕ̈)
]
. (4)

The differential equation for ϕ then follows from the third equation in (2) as

[ς + 2(1+ cosϕ)]ϕ̈− sinϕϕ̇2
=

g
R

sinϕ, (5)

with the initial conditions ϕ(0) = ϕ0 and ϕ̇(0) = 0 at time t = 0. The nondimensional parameter ς is
defined by

ς =
3k2
+ 4k(r − 1)+ 2(r − 1)2+ (1+ 3r2)mh/m

2r(1− k)
. (6)

Since 2ϕ̈ = d(ϕ̇2)/dϕ, (5) can be solved for ϕ̇2 to obtain

ϕ̇2
=

2g
R

cosϕ0− cosϕ
ς + 2(1+ cosϕ)

. (7)

Alternatively, the expression for the square of the angular velocity follows directly from the energy
conservation during the rolling motion, which requires that 2Mg(y0− y)= M(ẋ2

+ ẏ2)+ J ϕ̇2. Upon
the time-differentiation of (7), or by substituting (7) back into (5), the angular acceleration is found to
be

ϕ̈ =
g sinϕ

R
ς + 2(1+ cosϕ0)[
ς + 2(1+ cosϕ)

]2 . (8)

Having determined ϕ̇2 and ϕ̈ as the functions of ϕ, the normal and friction forces can be calculated
from (4). The rolling motion proceeds as long as |F | ≤ µs N and N > 0. The minimum coefficient of
static friction needed for rolling to begin at the inception of motion is

µmin
s =

F(ϕ0)

N (ϕ0)
=

[r +ϑ cosϕ0] sinϕ0

r
[
ς + 2(1+ cosϕ0)

]
−ϑ sin2 ϕ0

. (9)

The larger the disk radius, the smaller the minimum coefficient of static friction required for rolling.
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If k = 0, mh = 0, and r = 1 then µmin
s = tan(ϕ0/2). For µmin

s < tan(ϕ0/2), a massless hoop with
an attached point mass released from rest with a point mass at an angle ϕ0 skims the surface without
interaction with it (N = F = 0, ẍ = 0, ÿ=−g) until the impact of the point mass with the surface at ϕ=π
[Theron and du Plessis 2001]. For µmin

s > tan(ϕ0/2), the rolling stage of the motion of a massless hoop
with an attached point mass is specified by (5) with ς = 0, which has a closed form solution sin(ϕ/2)=
sin(ϕ0/2) cosh

[
(g/4R)1/2t

]
, with the corresponding normal force N = mg

[
2 cos2(ϕ/2)− cos2(ϕ0/2)

]
.

2.2. Combined rolling/sliding motion. If ϕ1 is the angle at which |F | = µs N , the hoop will engage
in a combined rolling/sliding motion, which continues in alternating cycles of decreasing amplitude,
until the hoop comes to rest with the disk at its bottom. The analysis has to be performed sequentially
following each stage of motion by checking the direction of the relative slip between the hoop and the
horizontal surface, which is forward or backward depending on the sign of (ẋC − Rϕ̇). During a forward
slip (ẋC − Rϕ̇ > 0), the velocity of the contact point of the hoop with the horizontal surface is directed
toward the right, and the friction force toward the left. The opposite is true in the case of backward slip
(ẋC − Rϕ̇ < 0). Theron [2000] refers to a forward slip as skidding and to a backward slip as spinning.
This terminology will be used for the rest of the paper. Each time the relative slip between the hoop and
the horizontal surface changes from spinning to skidding, or vice versa, the force of friction reverses its
direction. There could also be intervals of resumed rolling and depending on the ratios ρ/R0 and m/M
the hoop may settle in an oscillating rolling motion around ϕ = π .

Assuming that N ≥ 0 throughout the motion, so that there is no hopping of the hoop (yC = R), which
is verified and confirmed by calculations a posteriori, the coordinates of the center of the disk during the
rolling/sliding stage of motion are given by (1) with xC 6= R(ϕ−ϕ0). Denoting by µ<µs the coefficient
of kinetic friction, the frictional force is

F =−µ̂N , µ̂= µsign(ẋC − Rϕ̇), (10)

and the equations of motion become

ẍC +ϑR0(− sinϕϕ̇2
+ cosϕϕ̈)=−µ̂(N/M),

−ϑR0(cosϕϕ̇2
+ sinϕϕ̈)= (N/M)− g,

η2 R0ϕ̈ = [ϑ sinϕ+ µ̂(r +ϑ cosϕ)](N/M).

(11)

When the second equation in (11) is substituted into the third equation to eliminate N/M , the differential
equation for ϕ̇2 is found to be

1
2

[
sinϕ+αz(ϕ)

]dϕ̇2

dϕ
+ cosϕϕ̇2

=
g
ϑR0

, (12)

where

α =
η2

ϑ
=

mh

2m
r2
+ 1

1− k
+

mh

m+mh
(1− k)+

k2

2(1− k)
, (13)

and
z(ϕ)=

[
ϑ(sinϕ+ µ̂ cosϕ)+ rµ̂

]−1
. (14)

The associated initial condition is specified by the continuity of ϕ̇2 at the transition from rolling to
rolling/sliding at ϕ = ϕ1.
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Equation (12) does not have an explicit closed form solution but can be solved numerically. Once ϕ̇2

is determined, the angular acceleration follows from

ϕ̈ =
[
sinϕ+αz(ϕ)

]−1
(

g
ϑR0
− cosϕϕ̇2

)
. (15)

The force N is then calculated from the second equation in (11). The velocity of the center of the disk
ẋC is determined by integrating the first equation in (11). Since ẍC = ϕ̇dẋC/dϕ, this becomes

dẋC

dϕ
=

{
−gµ̂+ϑR0

[
(sinϕ+ µ̂ cosϕ)ϕ̇2

− (cosϕ− µ̂ sinϕ)ϕ̈
]}/

ϕ̇, (16)

with the initial condition ẋC(ϕ1)= Rϕ̇(ϕ1). The integration of the differential equations (12) and (16)
proceeds in parallel to check the nature of the relative slip determined by the sign(ẋC − Rϕ̇). Care must
also be taken to calculate ϕ̇ from the square root of ϕ̇2 with the appropriate sign before it is used in
(16) depending whether the rotation of the hoop is clockwise or counterclockwise. Furthermore, as the
small disk passes above the horizontal surface, the angular acceleration ϕ̈, and thus dϕ̇2/dϕ, experiences
a rapid (nearly discontinuous) change, while ϕ̇2 attains its maximum value. Hence there is a change of
the slip direction near ϕ = π (unless rolling takes the hoop through the state of the maximum angular
velocity).

2.3. Resumption of rolling. If the rolling resumes after the rolling/sliding phase of the motion then
|F |< µs N , N > 0, and Rϕ̇ = ẋC . Denote by ϕ3 the angle at the end of the rolling/sliding phase and let
ϕ̇3 and ẋC3 = Rϕ̇3 denote the corresponding angular velocity of the hoop and the velocity of its center.
During the subsequent pure rolling motion, one has

x = xC3 + R(ϕ−ϕ3)+ϑR0 sinϕ, y = R+ϑR0 cosϕ, (17)

and it readily follows that

ϕ̇2
=

2g
R

cosϕ3− cosϕ+ c3

ς + 2(1+ cosϕ)
, c3 =

R
2g

[
ς + 2(1+ cosϕ3)

]
ϕ̇2

3 . (18)

The angular acceleration is

ϕ̈ =
sinϕ

ς + 2(1+ cosϕ)

(
g
R
+ ϕ̇2

)
. (19)

The corresponding normal and friction force follow from (4). One must verify a posteriori that |F |<µs N
and N > 0. If the hoop came momentarily to rest at ϕ = ϕ3 so that ϕ̇3 = 0 and ẋC(ϕ3)= 0 then c3 = 0
in (18). If ϕ̇3 = 0 but ẋC(ϕ3) 6= 0 then the hoop slips back rather than role forward. In this case, the
equations from Section 2.2 hold with the negative values of ϕ̇ in (16).

2.4. The effects of the mass of the hoop. If γh is a uniform mass density of the hoop, its mass is
mh = (r2

− 1)πR2
0γh and its centroidal moment of inertia Jh = 0.5(1+ r2)mh R2

0 . If γm is the mass
density of the disk, its mass is m = k2πR2

0γm with its centroidal moment of inertia Jm = 0.5k2m R2
0 .

Thus, the mass and inertia ratios are

mh

m
=

r2
− 1

k2

γh

γm
,

Jh

Jm
=

r2
+ 1

k2

mh

m
. (20)
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The ratio of the contributions from the hoop and the disk to the moments of inertia with respect to the
mass center G of the hoop/disk system are

J G
h

J G
m
=

(r2
+ 1)(1+mh/m)2+ 2(r − 1)2

k2(1+mh/m)2+ 2(mh/m)2(r − 1)2
mh

m
. (21)

For a very thin hoop, the two inertia ratios are nearly the same, that is,

Jh

Jm
≈

J G
h

J G
m
≈

2
k2

mh

m
,

mh

m
≈

2(r − 1)
k2

γh

γm
. (22)

For a very low density of the hoop material and a high density of the disk material (such as a hoop of
some foamed plastic or a porous cellular material and a disk made of tungsten), the ratio γh/γm would be
of the order of 10−2. Then, if r = 1.02 and k = 0.1, the mass ratio is mh/m ≈ 0.04 while the moment of
inertia ratios are Jh/Jm ≈ J G

h /J G
m ≈ 8.24. This illustrates the importance of the rotational inertia of the

hoop even for very light hoops whenever the attached disk is sufficiently small. In order for Jh/Jm to be
equal to 1/10, which would imply that the rotational inertia of the hoop can be ignored, the thickness of
the hoop would have to be exceedingly small: r = 1.00025 in the case where k = 0.1 and γh/γm ≈ 10−2.
Consequently, in Section 3 we present the results of calculations for both vanishing and nonvanishing
mass ratios mh/m.

3. Numerical results

In Section 3.1 we present numerical results for infinitesimally thin massless hoops (r = 1,mh = 0) and a
small disk of mass m and radius ρ = 0.1R. The static and kinetic friction coefficients used are µs = 0.35
and µ= 0.3. In Section 3.2 we discuss the results for of a massless hoop with larger disks attached. The
effects of the nonvanishing mass of the hoop on the resulting motion of the system and the interaction
pulses are considered in Section 3.3, and the effects of the coefficient of friction are examined in Section
3.4. In all cases, the initial configuration of the hoop/disk system was specified to be ϕ0 = 10◦. A similar
analysis can be performed for other inclination angles.

3.1. Massless hoop and a disk with k = 0.1. Figure 2 shows the time variation of the horizontal velocity
component of the contact point of an infinitesimally thin massless hoop during its first three rotation
cycles, when the radius of the attached disk is ρ = 0.1R. The initial horizontal plateau corresponds to
rolling portion of the motion, from ϕ0 to ϕ1 = 0.71402 rad. This is followed by spinning from ϕ1 to
ϕ2 = 3.18085 rad, rolling from ϕ2 to ϕ3 = 3.20455 rad, and skidding from ϕ3 to ϕ4 = 4.54542 rad, which
is the end of the first clockwise rotation of the hoop. The high precision is needed in calculations to
accurately identify the small intervals of slip or stick near ϕ = π . The variation of the contact point
velocity during the first interaction pulse (at time t ∼= 5.74

√
R/g) is shown in Figure 2, right. The short

horizontal plateau corresponds to brief rolling of the hoop. The skidding continues by a counterclockwise
rotation from ϕ4 to ϕ5 = 2.49277 rad, which is the end of the first cycle of rotation of the hoop (at
t ∼= 8.84

√
R/g). The velocity of the contact point is positive during the entire second pulse. The other

cycles follow and are dominated by skidding with brief intermissions by spinning and rolling during the
pulses under clockwise rotation of the hoop (odd-numbered pulses). The time variations of the normal
and friction force during the first three rotation cycles are shown in the left halves of Figures 3 and 4.
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Figure 2. Left: Time variation of the velocity of the contact point of an infinitesimally
thin massless hoop (scaled by

√
Rg) in the case k = 0.1. Right: The same velocity around

the first interaction pulse indicating its rapid change, which includes a brief rolling period
(ẋc = Rϕ̇) in between spinning and skidding. The time scale is

√
R/g.

Figure 3. Left: Time variation of the normal force (scaled by mg) during the first three
cycles of rotation of an infinitesimally thin massless hoop in the case k = 0.1. Right:
The corresponding change during the first interaction pulse. The time scale is

√
R/g.

Figure 4. Left: Time variation of the friction force (scaled by mg) during the first three
cycles of rotation of an infinitesimally thin massless hoop in the case k = 0.1. Right:
The corresponding change during the first interaction pulse. The time scale is

√
R/g.
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Figure 5. Left: Time variation of the angular velocity (scaled by
√

g/R) during the first
three rotation cycles of an infinitesimally thin massless hoop in the case k = 0.1. Right:
Time variation of the angular acceleration (scaled by g/R). The time scale is

√
R/g.

The jumps in the normal and friction force due to transitions from spinning to rolling and from rolling
to skidding during the first pulse are shown in the right halves of Figures 3 and 4, consistent with the
variation of the contact point velocity shown in Figure 2, right.

The normal force is finite during the initial rolling interval and is almost equal to zero afterwards
except for its rapid buildup near ϕ = π when the small disk passes just above the horizontal surface. The
large values of N are due to large values of the angular velocity ϕ̇ near ϕ = π and correspondingly large
accelerations ẍ and ÿ of the center of the disk.1 Note a discontinuous change of the normal force at the
transition from rolling to spinning. The friction force around ϕ = π shows a rapid change from positive
values (spinning) to negative values (skidding) consistent with the variation of the contact point velocity,
shown in Figure 2. It is due to this change in the direction of the friction force during a brief period of the
sharp interaction pulse that the time integral of the friction force is not equal to µ times the time integral
of the normal force.2 The time variation of the angular velocity and the angular acceleration during the
first three rotation cycles of the hoop are shown in Figure 5.

3.2. Massless hoop and larger disks. As the radius of the disk increases, and with it its rotational inertia,
the intensity of the interaction pulse around ϕ = π decreases. This is illustrated by considering an
infinitesimally thin massless hoop with a disk of radius ρ = 0.25R. For brevity, only the first clockwise

1Under a large normal force, the hoop and the supporting surface would deform if their deformability was included in the
analysis, and the elastic energy stored during this deformation would provide a propulsion for a possible hopping of the hoop
at ϕ = π . The dynamics of an elastic hoop was studied by Theron [2002]. The inclusion of the mass of the hoop, which
significantly decreases Nmax, is considered in Section 3.3.

2A similar situation arises in the mechanics of frictional impact of colliding bodies. Modeling of such impacts was greatly
stimulated by Kane’s [1984] double pendulum dynamics puzzle where the frictional component of an impulse is assumed to be
equal to the normal component multiplied by the coefficient of kinetic friction. For some values of the coefficients of friction
and normal restitution and for some kinematic parameters, this leads to an increase of kinetic energy when the pendulum
impacts on a rough horizontal surface. Keller [1986] explained this by noting that there was a reversal of the slip direction
during the impact process, and thus the coefficient of proportionality between the tangential and normal impulse was not equal
to the coefficient of kinetic friction. Since then numerous papers has been published proposing different models of frictional
impact as evidenced by comprehensive treatments of the subject in [Brach 1991; Brogliato 1999; Stronge 2000; Stewart 2000].
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Figure 6. Left: Angle variation of the velocity of the contact point of the hoop (scaled
by
√

Rg) during the first clockwise rotation of the hoop in the case k = 0.25. Right: The
corresponding time variation of the same velocity. The time scale is

√
R/g.

rotation of the hoop is considered. Figure 6 shows the variation of the horizontal velocity component
of the contact point. The initial horizontal plateau corresponds to rolling portion of the motion, from
ϕ0 to ϕ1 = 0.80625 rad. This is followed by spinning from ϕ1 to ϕ2 = 3.21545 rad, rolling from ϕ2 to
ϕ3 = 3.37076 rad, and skidding from ϕ3 to ϕ4 = 4.61783 rad, which is the end of the first clockwise
rotation of the hoop. The normal and friction force are plotted versus the angle ϕ in Figure 7. The peak
values of both forces are greatly reduced from their values corresponding to small disks with k = 0.1.

If the hoop with an attached disk with radius ρ = 0.75R is released from rest at ϕ0 = 10◦, the rolling
mode prevails throughout the motion of the hoop (ẋC = Rϕ̇ and |F | < µs N ), which is described by
the closed form solution in Section 2.1. Here, the maximum normal force is Nmax = 1.3 mg, compared
with Nmax = 3.52 mg in the case where ρ = 0.5R, Nmax = 32.4 mg in the case where ρ = 0.25R, and
Nmax = 318 mg in the case where ρ = 0.1R. Numerical evaluations also reveal that for ϕ0 = 10◦, the
smallest radius of the disk for which the rolling prevails throughout the motion of the hoop is ρ= 0.5385R.
The corresponding maximum normal force is Nmax = 2.94 mg.

Figure 7. Left: Angle variation of the normal force (scaled by mg) during the first
clockwise rotation of the hoop, in the case k = 0.25. Right: The corresponding friction
force.
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3.3. The effects of the mass of the hoop. In this subsection we present the results of calculations with
the included mass of the hoop. The angle variation of the velocity of the contact point of the hoop and
the horizontal surface (scaled by

√
Rg) during the first clockwise rotation of the hoop is shown in Figure

8, left (in the case ϕ0 = 10◦, k = 0.1, and r = 1.02). The dotted curve is for mh/m = 0, the dashed curve
is for mh/m = 0.01, and the solid curve is for mh/m = 0.1. Figure 8, right, shows a dramatic reduction
of the magnitude of the corresponding normal force near ϕ = π as the mass ratio mh/m increases from
0 to 1/10. Similar decrease is observed for the friction component of the force.

With the increase of the size of the disk, the ratio Jh/Jm decreases. For example, if r = 1.02 and
γh/γm ≈ 10−2, one finds from (20) that for k = 0.25 the mass and inertia ratios are mh/m = 0.0064 and
Jh/Jm = 0.2048 while for k = 0.5 these ratios are mh/m = 0.0016 and Jh/Jm = 0.0128. In the latter case
the rotational inertia of a light thin hoop can be reasonably ignored. The results for an infinitesimally
thin massless hoop with a disk of radius ρ = 0.75R were discussed in Section 3.2.

The variations of the normal and friction force in the case of equal mass densities of the hoop and the
disk when r = 1.02 and k = 0.1 (giving rise to the mass ratio mh/m ≈ 4.04) are shown in Figure 9. In this
case, the rolling prevails throughout the motion. The interaction pulse is mild with the greatly reduced
magnitudes of the maximum normal and friction force (Nmax ≈ 5.425mg versus the static normal force
of 5.04mg).

3.4. The effects of the coefficient of friction. The coefficient of friction affects the extent of rolling
and rolling/sliding motion of the hoop as well as the magnitude of the reactions between the hoop and
the horizontal surface. Figure 10, left, shows the angle variation of the velocity of the contact point of
an infinitesimally thin massless hoop in the case ϕ0 = 10◦ and an exceedingly small disk (k = 10−5)
simulating a point mass. The dashed curve is for µs = 0.35 and µ = 0.3, while the solid curve is for
µs = 0.7 and µ= 0.6. The extent of the initial rolling increases with the increase of the coefficient of
friction. Figure 10, right, shows the behavior near ϕ = π . For µ = 0.3 and µs = 0.35 the interaction

Figure 8. Left: Angle variation of the velocity of the contact point of the hoop and
the horizontal surface (scaled by

√
Rg ) in the case ϕ0 = 10◦, k = 0.1, and r = 1.02,

during the first clockwise rotation of the hoop. The dotted curve is for mh/m = 0, the
dashed curve is for mh/m = 0.01, and the solid curve is for mh/m = 0.1. Right: The
corresponding variation of the normal force N (scaled by mg) indicating a dramatic
reduction of its magnitude near ϕ = π with the increase of the mass ratio mh/m.
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Figure 9. Left: Angle variation of the normal force (scaled by mg) during the first
clockwise rotation of the hoop in the case r = 1.02, k = 0.1 and the equal mass densities
so that the mass ratio mh/m = 4.04. Right: The corresponding friction force.

pulse is characterized by skidding to spinning to skidding transitions, while for µ= 0.6 and µs = 0.7 the
pulse is characterized by skidding to slipping to rolling to skidding transitions. The horizontal distance
traveled by the hoop before the sharp pulse and the final coordinates of the center of the disk at the
end of the first clockwise rotation of the hoop are greater for the higher coefficient of friction. The
mechanical energy at the end of the first clockwise rotation is also greater for the higher coefficient of
friction (E = 1.80266 mg for µ= 0.6 versus E = 1.38862 mg for µ= 0.3) thus illustrating that in the
two considered cases there is less dissipation due to friction in the case of a higher coefficient of friction.
This is because the higher coefficient of friction in general promotes more rolling, which is the energy
preserving motion in the absence of reactive rolling moment.

Figure 11 shows the variations of the normal and friction force during the first clockwise rotation
of the hoop, in the case r = 1.02, k = 0.1, and mh/m = 0.1, corresponding to four selected values of
the friction coefficient. The maximum normal force is greatest in the case of the frictionless spinning

Figure 10. Left: Angle variation of the velocity of the contact point of the hoop and
the horizontal surface (scaled by

√
Rg ) in the case k = 10−5. The dashed curve is for

µs = 0.35 and µ= 0.3 while the solid curve corresponds to µs = 0.7 and µ= 0.6. Right:
The same near ϕ = π .
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Figure 11. Angle variation of the normal force (left), and friction force (right), both
scaled by mg, during the first clockwise rotation of the hoop with k = 0.1, r = 1.02,
and mh/m = 0.1. The solid curve is for µ = 0, the dashed curve is for µs = 0.09 and
µ= 0.076, the dotted curve is for µs = 0.35 and µ= 0.3, and the dotted/dashed curve
is for µs = 1.2 and µ= 1.

(µ= 0, F = 0). The second selected value of the coefficient of static friction is twice greater than the
minimum coefficient of static friction required for rolling at the inception of motion, calculated from
(9). For the remaining two higher values of the coefficient of friction, it is found that the corresponding
Nmax is nearly the same, although for µs = 0.35 and µ= 0.3 the motion is characterized by the stages
of rolling and combined rolling/sliding, while for µs = 1.2 and µ= 1 pure rolling prevails throughout
the motion. The minimum coefficient of static friction required for the rolling to prevail throughout the
motion of the hoop is about 0.78.

Figure 12 shows the corresponding variations of the square of the angular velocity ϕ̇2 and the angular
acceleration ϕ̈ of the hoop, which explains the mild differences in the normal force for a sufficiently high
coefficient of friction (µ= 0.3 versus µ= 1). The angular velocities and the angular accelerations are
nearly the same in these two cases, and so are the corresponding normal forces. The friction forces are

Figure 12. Angle variation of the square of the angular velocity (left), and the angular
acceleration (right), both scaled by g/R, corresponding to Figure 11.
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different, because they are proportional to the coefficient of friction during the combined rolling/sliding
stages of motion.

There is an interval of rolling around ϕ = π during which the friction force is almost the same for
µs = 0.35 and µs = 1.2 being well below 0.35 N . This is because the angular velocities and the angular
accelerations are almost the same in these two cases as are the reactive forces N and F . Note that in
Figure 12, left, the angular velocity ϕ̇ does not depend on the coefficient of friction during the initial
rolling stage of motion; only the extent of this rolling depends on µs, so that the curves for ϕ̇2 depart
from each other at different angles ϕ = ϕ(µs). Further analysis of the effect of friction on the motion of
the loaded hoop can be found in [Theron and Maritz 2008].

4. Summary

In this paper we presented an analysis of motion of a light hoop with an attached heavy circular disk
released to move on a rough horizontal surface. This motion involves a complex kinematics and kinetics,
which reveal a variety of information of possible interest for the mechanics of frictional impact. When the
radius of the disk is small relative to the radius of a light hoop, the motion is characterized by the sequence
of sharp interaction pulses between the hoop and the horizontal surface during which several transitions
between the stick, slip, and reversed slip can take place. This is accompanied by the corresponding
changes in the friction force, which includes abrupt reversal of its direction, and rapid increase and
discontinuous change of the normal component of the reactive force. The energy dissipation takes place
predominantly during the short interaction pulses. The intensity of sharp interaction between the hoop
and the horizontal surface, as well as the complexity of stick/slip transitions, diminish with the increasing
size of the disk or the mass of the hoop. For sufficiently large disks, the rolling without transition to
sliding prevails throughout the motion. The effects of the coefficient of friction on dynamic interactions,
stick/slip transitions, and the energy dissipation are discussed. The analysis have demonstrated that the
time integral of the tangential component of the interaction pulse is in general different from the product
of the coefficient of kinetic friction and the time integral of the normal component of the interaction pulse,
which is analogous to the nonproportionality of the normal and tangential impulses most commonly found
in the mechanics of frictional impact. The obtained results may thus facilitate better understanding of
the involved kinematics and kinetics of the latter problems in which the time variation of the normal and
friction force during the impact process cannot be determined within the model of rigid body mechanics
[Seifried et al. 2005; Lubarda 2009].
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