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IOANNIS A. ANTONIADIS AND CHRISTOPHER G. PROVATIDIS

A two-step approach for crack detection in beam structures is presented. As a first step, a number
of proper orthogonal modes (POMs) of a beam are extracted, using proper orthogonal decomposition,
a powerful and elegant method (closely related to principal component analysis) aimed at obtaining
low-dimensional approximations of high-dimensional processes, taking into account nonlinearities and
minimizing noise effects.

Then, alternatively to other approaches, morphological processing is proposed for the further process-
ing of the POMs. The basic concept of morphological processing is to modify the shape of an object
by transforming it through its interaction with another object, called the structuring element. Using
an appropriate morphological processing procedure, the position and the depth of the cracks can be
estimated by isolating the sudden local change effect of the cracks on the spatial variation of the shape of
each POM. For this purpose, the four basic morphological operators (dilation, erosion, opening, closing)
are compared, using two different types of structuring elements. The erosion operator with a spline
structuring element is shown to present the best results.

Finally, the performance of the method is assessed on different beam structures affected by breathing
cracks, with respect to the influence of several factors, such as boundary conditions, crack location, crack
depth, crack distance, measurement noise level and space resolution of measurement points. In all cases,
the method presents a robust behavior.

1. Introduction

The presence of cracks in engineering structures, especially in aerospace, civil and mechanical engi-
neering infrastructures, may lead to catastrophic failures with serious results (loss of lives, extensive
downtimes, delays, etc). As a consequence, a plethora of analytical, numerical and experimental method-
ologies, approaches and techniques have been proposed for crack detection, focused on different types
of structures including aircraft, civil infrastructures such as bridges and buildings, as well as laboratory
specimens, such as beams and plates. Such work is reviewed, for example, in [Sohn et al. 2004; Doebling
et al. 1998; Dimarogonas 1996; Randall 2002].

Damage can be defined by comparing different responses of a system, as they result from changes into
its state, introduced as a result of the damage [Sohn et al. 2004]. A five-step damage state classification
system was proposed in [Rytter 1993], examining the existence, location, type and extent of the damage,
and lastly the possibility of a prognosis for the remaining useful life of the system. The presence of a
crack in a structure introduces local flexibility and as a result, provokes changes at the dynamic behavior

Keywords: vibration analysis, crack detection, proper orthogonal decomposition, morphological processing.

1063

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2009.4-6


1064 K. C. GRYLLIAS, I. N. KOUKOULIS, C. T. YIAKOPOULOS, I. A. ANTONIADIS AND C. G. PROVATIDIS

of the structure. Therefore, a large number of methodologies for crack detection have been developed,
based on detecting changes in various dynamic properties of the structure, such as natural frequencies,
modal damping, mode shapes, transfer functions etc., as those changes result as a consequence of the
damage.

The easiest, simplest and most popular method for damage detection is by identifying changes in
natural frequencies. In a relevant pioneer paper [Lifshitz and Rotem 1969], the use of vibration mea-
surements for damage detection is proposed. A methodology for damage detection, localization and
quantification based on natural frequency shifts is proposed in [Cawley and Adams 1979]. In order to
overcome difficulties related to natural-frequency-shifts-based crack detection, methodologies utilizing
changes in mode shapes have been also proposed. A very interesting comparison between a frequency-
based and a mode shape-based method for damage detection in beam like structures is presented in
[Kim et al. 2003]. Changes in mode shapes are much more sensitive, compared to changes in natural
frequencies. However, a crack may not influence the lower mode shapes, which are usually measured.
Operational and environmental conditions, such as temperature, humidity, loads and boundary conditions
may cause changes that hide those resulting from damage [Farrar et al. 1994; Cawley 1997].

In case of multiple cracks, additional issues are involved, such as orientation of cracks with respect to
each other, change in mode shapes and complexity. In [Ostachowicz and Krawczuk 1991] the effect of
positions and depths of two cracks on the natural frequency of cantilever beams is analyzed. The effect
of crack depth and location on the eigenfrequencies of a double-cracked beam is studied in [Ruotolo and
Surace 1997]. Among others, some very good reviews on analysis of structures under multiple cracks
are presented in [Ruotolo and Surace 1997; Sekhar 2008].

Most of these works concerning cracks include a combination of analytical or computational models
with experimental results [Alvandi and Cremona 2006; Wang and Deng 1999; Bamnios et al. 2002;
Chang and Chen 2005; Douka et al. 2003; Loutridis et al. 2004; Hadjileontiadis et al. 2005a; Sahin and
Shenoi 2003]. Among them [Alvandi and Cremona 2006] and [Sahin and Shenoi 2003] involve finite
element models. As a result of the advanced capabilities of modelling methods such as FEM, substitution
of the experimental procedure by appropriate FEM based computations and random noise addition has
been proposed to simulate the experimental procedure [Luzzato 2003; Andreaus et al. 2007; Zhong and
Oyadiji 2007; Galvanetto and Violaris 2007]. Additionally, in order to lead to a more reliable analysis,
the practice of adding artificial noise to the analytical or numerical results has been also used [Alvandi
and Cremona 2006; Hadjileontiadis et al. 2005b].

Concerning analytical models, as those are used particularly in beams with open cracks, the region of
the crack was initially modelled as an area characterized by a reduced flexural rigidity [Rytter 1993],
while later, the beam was simulated considering the area of the crack as a rotational spring [Wang
and Deng 1999], [Bamnios et al. 2002; Chang and Chen 2005; Douka et al. 2003; Loutridis et al.
2004; Hadjileontiadis et al. 2005a; Hadjileontiadis et al. 2005b]. Additionally, an analytical model has
been proposed [Douka et al. 2004] to model a plate with a transverse crack. However, considering the
most appropriate modelling approach for a crack in a structure such as a beam, the presence of a crack
causes the structure to exhibit a strongly nonlinear behavior, if the crack successively opens and closes
(“breathes”)@during the vibration. In order to take into account a breathing crack, beam models with
bilinear spring-mass system have been developed [Luzzato 2003; Cheng et al. 1999; Loutridis et al. 2005;
Douka and Hadjileontiadis 2005; Guo and Billings 2007]. These models mostly assume that the crack
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is either open or closed; however there is at least one implementation of a continuous breathing crack
model [Cheng et al. 1999]. Concerning the spectral effect of a breathing crack, it is generally considered
[Luzzato 2003; Cheng et al. 1999] that the use of the breathing crack model is necessary, because in this
case the natural frequency reduction is much smaller than that for an open crack case.

In this paper, an alternative approach for crack detection in structures is presented. As a first step,
the proper orthogonal decomposition (POD) method is used, in order to obtain a number of the proper
orthogonal modes (POMs) of a cracked cantilever beam. POD, closely related to principal component
analysis, is a powerful and elegant method of data analysis aimed at obtaining low-dimensional approxi-
mate descriptions of high-dimensional nonlinear processes and eliminating noise effects [Lumley 1967;
Azeez and Vakakis 1997; Lenaerts et al. 2001].

Then, alternatively to other approaches, morphological processing is proposed in this paper for ana-
lyzing the shape of the resulting POMs. The basic concept of morphological processing [Serra 1982;
Maragos and Schafer 1987] is to modify the shape of an object, equivalently considered as a set, by
transforming it through its interaction with another object, called the “structuring element”. Using ap-
propriate morphological processing, the position of the crack can be estimated by isolating the local
sudden change effect of the crack on the spatial variation of each POM.

The rest of the paper is organized as follows. The method of proper orthogonal decomposition of struc-
tures is reviewed in Section 2 and the basic concepts of morphological processing of one-dimensional
functions are reviewed in Section 3. A sensitivity analysis is performed is Section 4 between a 3D, a
plain stress 2D and a plain strain 2D finite element modeling approach for a cantilever beam and as a
result, the 2D plane stress model is shown to present the optimal behavior, providing the same actual level
of accuracy with far less needed computational time. The four basic morphological operators (dilation,
erosion, opening, closing) using two different types of structuring elements are compared in Section 5
and the erosion operator with a spline structuring element is shown to present the best results. Finally,
the performance of the method is assessed on a cantilever beam in Section 6 and on a simple beam in
Section 7, with respect to the influence of several factors, such as crack location, crack depth, crack
distance, measurement noise level and space resolution of measurement points. In all cases, the method
presents a robust behavior with respect to the determination of both the location and the depth of the
crack.

2. Proper orthogonal decomposition (POD)

Proper orthogonal decomposition (POD) was first applied to turbulence problems by [Lumley 1967].
It identifies a useful set of basis functions and the dimension of the subspace necessary to achieve a
satisfactory approximation of the system. It has been shown [Feeny 1997] that the application of POD
to measured displacements of a discrete structure with a known mass matrix can lead to an estimation of
the normal modes. The POD also facilitates the resolution of the partial differential equations through
their projection into a reduced-order model [Azeez and Vakakis 1997] and for this reason it has been
applied for vibro-impact systems.

2.1. Mathematical formulation of the POD. The POMs are shown here to be the eigenfunctions of the
space correlation tensor. The definitions and formulation presented here follow closely the ones used in
[Lenaerts et al. 2001]. Let u(x, t) be a random field on some domain �. Since the POD requires dealing
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with zero-mean signals, it is necessary to define v(x, t) by subtracting the mean U (x)= 〈u〉 from v(x, t):

u(x, t)=U (x)+ v(x, t). (1)

These fields are sampled at finite number of points in time. Then, at a fixed time tn the system displays
a snapshot vn(x), which is a continuous function on �. The aim of the POD is to find the most represen-
tative structure φ(x) of the ensemble of N snapshots. This is accomplished by minimizing the objective
function (OF) λ:

Minimize
{
λ=

N∑
n=1

(φ(x)− vn(x))2
}
, ∀x ∈�. (2)

Equation (2) means that the sum of the differences squared between vn(x) and φ(x) should be minimized
and can also be written in terms of a maximization problem:

Maximize

{
λ=

(1/N )
∑N

n=1
(∫
� φ(x)vn(x)d�

)2∫
� φ(x)φ(x)d�

}
, ∀x ∈�. (3)

In order to make the computation unique, we impose the orthonormality condition∫
�

ϕ(x)2dx = 1. (4)

Using the notation

( f, g)≡
∫
�

f (x)g(x)d�

for the inner product of f and g, and

〈vn〉 ≡
1
N

N∑
n=1

vn(x)

for an average of snapshots, it turns out that the ensemble average of the inner products between vn(x)
and φ(x) must be maximized:

Maximize
{
λ=
〈(φ, vn)

2
〉

(φ, φ)

}
, ∀x ∈�. (5)

The numerator can be expanded to

〈(ϕ, vn)
2
〉 =

1
N

N∑
n=1

{∫
�

ϕ(x)vn(x)dx
∫
�

ϕ(x ′)vn(x ′)dx ′
}

=

∫
�

{∫
�

(
1
N

N∑
n=1

vn(x)vn(x ′)
)
ϕ(x)dx

}
ϕ(x ′)dx ′.

(6)

The two-point correlation function K is defined as

K (x, x ′)=
1
N

N∑
n=1

vn(x)vn(x ′). (7)
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Hence, (6) becomes

〈(ϕ, vn)
2
〉 =

∫
�

{∫
�

(K (x, x ′))ϕ(x)dx
}
ϕ(x ′)dx ′. (8)

In view of (8) and (3), the optimization problem can be reduced to the integral eigenvalue problem∫
�

(K (x, x ′))φ(x ′)dx ′ = λφ(x). (9)

Equation (9) has a finite number of orthogonal solutions φi (x), called the POMs with corresponding
real and positive eigenvalues λi . The eigenvalue with the largest magnitude is the maximum which is
achieved in the maximization problem (5). The second largest eigenvalue is the maximum of the same
problem restricted to the space orthogonal to the first eigenfunction, and so forth. In order to make the
computation unique, the eigenfunctions are normalized. Therefore, the POMs can be used as a basis for
the decomposition of the field v(x, t):

v(x, t)=
N∑

i=1

αi (t)φi (x). (10)

Moreover, by construction, the POMs capture more energy than any other modes. It should also be noted
that the time-dependent coefficients αi (t) in Equation (10) are uncorrelated [Azeez and Vakakis 1997].

Thus, the POD can be viewed as a biorthogonal decomposition because of the space/time symmetry
of the decomposition. For an accurate approximation of the tensor (7) it is necessary to perform a long
and expensive simulation.

2.2. Discrete formulation. Suppose N linear snapshots vi of size M obtained for instance by measure-
ments of the acceleration at M locations. The M ×M covariance matrix C is defined as

C =
1
N

N−1∑
i=0

viv
T
i . (11)

Its eigensolutions (φk, λk), which satisfy

Cφk = λkφk, k = 0, . . . , N − 1, (12)

with

λ0 ≥ λ1 ≥ · · · ≥ λN−1 > 0, (13)

characterize the proper orthogonal decomposition. Each eigenvector φk is associated with an eigenvalue
λk . If the eigenvalues are normalized, they represent the relative energy captured by the corresponding
POM. This decomposition is the best basis in terms of decorrelation. The brute computation of the
eigensolutions of C is called the direct method. However, due to the space-time symmetry property, an
alternative method, called the method of snapshots, can be employed.

2.3. Computation of the POD using SVD. The complete biorthogonal decomposition of the data may
be obtained by the use of the SVD. Let xi (t) denote a response time history, where x is a vector containing
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the displacement, velocity or acceleration at M discrete locations. We form the discrete matrix

X =

 x1(t1) · · · x1(tN )
...

. . .
...

xM(t1) · · · xM(tN )

 . (14)

Thus, each row corresponds to a time history at one location and each column corresponds to a
snapshot of the system at a specific time. Now, the singular-value decomposition of matrix X can be
written as

X = U6V T (15)

with U denoting an orthonormal matrix (size M ×M) of eigenvectors of X XT and V an orthonormal
matrix (size N × N ) of eigenvectors of XT X . The size of the matrix 6 is M × N but only the main
diagonal has non-zero elements which are the singular values of X , sorted in descending order. If the
matrix X is rank deficient, i.e. some rows (or columns) can be generated by a linear superposition of the
others, a few singular values will be zero. The SVD has a lot of applications, e.g. the estimation of the
rank of a matrix, the filtering of measurement noise and so forth. In this paper, the aim of the SVD is to
compute the POMs and the normalized basic shapes including the response time histories.

3. Basic concepts of morphological processing of one-dimensional functions

Mathematical morphology (MM) was at first introduced as an image-processing method, based on set
theory [Serra 1982; Maragos and Schafer 1987]. Since the key element in MM is the set, MM uses
nonlinear set processing transformations, starting with two basic operations, Minkowski addition and
Minkowski subtraction, based on which a number of morphological operators can be constructed. The
basic concept of morphological processing is to use these operators in order to modify the shape of
an object, which is considered as a set, by transforming it through its interaction with a second object,
called the structuring element. The structuring element practically is compact and has a simpler shape
compared to the original object.

Limiting for simplicity purposes the application of MM in one-dimensional functions (signals), two
different and equivalent approaches in representing functions by sets can be used, in order to apply the
set based MM operations.

The first uses the concept of the cross-section of a function, defined as

X t( f )= {x ∈ D : f (x)≥ t}, t ∈ V, (16)

where f (x) is the function under consideration, D is the domain of definition of f (x) over the set Z of
integers or the set R of real numbers, V is the range space of f (x), and t is a specified threshold. A
graphical presentation of the cross section of a function is shown in Figure 1, left.

Provided practically that the function f (x) is continuous with some possible positive jumps (upper
semicontinuous function), then its cross-sections form a sequence of sets which allow the reconstruction
of the function as follows [Serra 1982]:

f (x)= sup{t ∈ R : x ∈ X t }. (17)
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x x

f(x)f(x)

t

Xt

U(f)

Figure 1. Graphical representation of the cross section X t( f ) and of the umbra U ( f )
of a function f (x).

The second approach uses the umbra U ( f ) of the function, represented in Figure 1, right. This is a
set U defined in the Cartesian plane by

U =
{
(x, t) : t ≤ f (x)

}
=
{
(x, t) : x ∈ X t( f )

}
=
{
(x, t) : w(x, α) ∈U, ∀α < t

}
. (18)

The function f (x) can be reconstructed from its umbra:

f (x)= sup{t ∈ R : (x, t) ∈U ( f )}. (19)

Since, according to these definitions, signals can be linked to sets, morphological filtering [Maragos
and Schafer 1987] proceeds to the modification of their geometrical characteristics by morphologically
processing the signal with another signal or function, called the structuring element, which in practice
is compact and of a simple shape. Thus a morphological filter is a set mapping operation, which must
satisfy four basic requirements: translation invariance, scale invariance, dependence only on the local
features of the signal, and upper semicontinuity (meaning that values for arguments near x cannot be far
above the value at x , though they can jump down).

Using the equivalent cross-section or umbra representation of a function by sets, Minkowski addition
and subtraction between two functions can be defined as

( f ⊕ g)(x)= sup
y∈D
{ f (y)+ g(x − y)}, ( f 	 g)(x)= sup

y∈D
{ f (y)− g(x − y)}. (20)

Here D can be arbitrary, but for practical applications we may assume that D is a compact subset of
the real line R or of the integers Z, containing the support of the function f (x). Using the operations in
(20), the four basic morphological operations are defined as

Dilation, dil( f, g) : ( f ⊕ gr )(x)= f (x)⊕ g(−x)= supy∈D{ f (y)+ g(y− x)}, (21)

Erosion, er( f, g) : ( f 	 gr )(x)= f (x)	 g(−x)= infy∈D{ f (y)− g(y− x)}, (22)

Closing, cl( f, g) : ( f • g)(x)= [( f ⊕ gr )	 g](x), (23)

Opening, op( f, g) : ( f ◦ g)(x)= [( f 	 gr )⊕ g](x), (24)
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where gr (x) denotes the reflected (symmetric) function of g(x) with respect to the origin of the x-axis.
These four operations are translation invariant. Opening and dilation are extensive, while erosion and
closing are nonextensive operations. Opening and closing are also idempotent operations. For further
properties of morphological operations, like distributivity, serial and parallel composition, separability,
existence of fixed points, and invertibility, see [Maragos and Schafer 1987].

Compared to the classical linear convolution f ∗ g operation between the two functions f (x) and
g(x), the Minkowski addition and subtraction operations of functions can be alternatively defined as
nonlinear morphological convolutions, in which the multiplication between the two functions is replaced
by summation or subtraction and the summation or integration of the result is replaced by the max or min
operations. A similar remark holds for linear correlation, if the reflected function gr (x) is used, instead
of g(x).

However, the nonlinearity of the dilation and the erosion operators results in important differences be-
tween these signal operations and the traditional linear convolutions; for instance, serial interconnections
of dilations and erosions lead to entirely different nonlinear systems. Thus, there is an infinite variety of
nonlinear operators created by cascading dilations and erosions via max, min, addition or subtraction. A
thorough treatment of the relations between linear and morphological filtering operations is developed in
[Maragos and Schafer 1987], leading to an equivalent representation of the morphological filters above
in terms of linear filters. Equations (21)–(24) can be significantly simplified if g(x) is an even function
and if sampled functions are used. For a signal f (k), defined over a domain D f , and for a function g(u)
of length L over a domain Dg, called the structuring element, the dilation and the erosion of the signal
f (k) by the element g(u) are defined as

dil(k)= ( f ⊕ g)(k)= max
y∈Dg
{ f (k+ u)+ g(u)}, (25)

er(k)= ( f 	 g)(k)= min
u∈Dg
{ f (k+ u)− g(u)}. (26)

Similarly, based on erosion and dilation, the closing and the opening operations of the signal f (k) by
the element g(u) are further defined as

cl(k)= ( f • g)(k)= er(dil(k)), (27)

op(k)= ( f ◦ g)(k)= dil(er(k)). (28)

The geometrical interpretation of these four basic morphological operations for functions can be di-
rectly derived by the one used for sets, if the umbra or the cross-section analysis of functions is used.
For example, the umbra of the opening is the union of all the translates of the umbra of the structuring
element, which can “fit inside” the umbra of the original function.

An example of the application of the four morphological operators to a signal is presented in Figure 2.
The erosion of the signal presents a tendency to smooth the abrupt variations of the signal by eliminating
the abrupt positive peaks of the signal and enlarging the area around the abrupt negative peaks. The
dilation operation leads again to a smoother form of the signal, however this time by “filling” or “dilating”
the signal in the areas around the positive peaks. The opening operator eliminates only the positive peaks,
while the closing operator eliminates only the negative peaks.
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Figure 2. Results of applying the four basic morphological operations to a function
(thick dotted line), using a flat structuring element. The thin continuous line is the signal
after the operation.

4. Finite element modelling procedure

In order to select an appropriate FEM model to be subsequently used, a comparison is performed between
a plane strain 2D model, a plane stress 2D model and a 3D model. The purpose of the analysis is to
estimate if the results obtained by an appropriate 2D model can reach the accuracy of a significantly more
CPU time consuming 3D model. The analysis includes (I) the healthy structures, (II) an open crack case,
(III) a breathing crack case. In the particular case of a breathing crack, contact analysis is performed.
All models have been developed in ANSYS 10.0 finite element code.

A clamped cantilever beam of length l = 300 mm, of uniform square cross-section w×w = 20×
20 mm2, with a breathing crack located at lc = 150 mm measured from the clamped end, is considered.
The crack has a uniform depth d = 4 mm (Relative crack depth α = d/w = 0.2 i.e. 20%). The material
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Figure 3. Top: full view of the 3D finite element model. Bottom: zoom of the model in
the area of the crack.

properties of a typical Plexiglas material have been considered. The beam is excited by a lateral impact
load of 2 MPa uniformly imposed along the vertical free edge, thus causing the crack to open and close.

The finite element mesh consists of 300 subdivisions along the length l and 10 along the other two
edges (w) of the cross-section, as shown in Figure 3. The 3D model is built of 8-node solid elements
(SOLID45), while on the area of crack surface contact elements were used. The 2D models are built of
4-node elements (PLANE42) in plane stress and plane strain mode. In the case of a breathing crack, line
contact elements are used.

First, the natural frequencies for the healthy structure and for the structure with the open crack are
calculated. The results are presented in Table 1. As can be noticed, the plane stress model presents an
excellent agreement with the 3D model, resulting in less than 0.5% underestimation. On the other hand,
the plane strain model results in a natural frequency overestimation of more than 8% with respect to the
3D model. These results do not change essentially when the mesh density is doubled.

In the case of a breathing crack, transient response analysis is performed. The sampling frequency
(inverse of the time step) is chosen as 10 KHz and the total time of the analysis as 0.1 s. No damping is

Beam without crack Beam with an open crack
mode 3D 2D plane stress 2D plane strain 3D 2D plane stress 2D plane strain

1st 51.92 51.69 56.49 51.29 51.02 55.75
2nd 318.59 317.22 345.70 303.40 300.89 327.87
3rd 864.20 860.65 934.26 863.94 860.38 933.96

Table 1. Natural frequencies (Hz) of a beam without a crack and for an open crack,
as calculated using a three-dimensional, a two-dimensional plane stress and a two-
dimensional plane strain finite element model.
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Figure 4. Transverse displacements at the free end of a cantilever beam presenting
a breathing crack, using three-dimensional, two-dimensional plane stress and two-
dimensional plane strain breathing crack finite element models.

used. The displacement responses over time, as obtained by the three models, are presented in Figure 4.
As shown, although the plane stress model has a hardly noticeable difference on the first eigenfrequency
than the 3D model, it represents an excellent agreement with the 3D model in terms of displacement
amplitude, verifying the corresponding results of Table 1. On the other hand, the plane strain model
results in a higher first eigenfrequency and in smaller amplitude compared to the 3D model.

These results show that the 2D plane stress model can be used to reliably describe the case of a beam
with a crack, regardless of the type of the crack (open, closed or breathing).

5. Selection of morphological operators and structuring elements

Cracks result in changes of mode shapes, which are much more sensitive to the presence and features
of the crack, compared to changes in natural frequencies. However, the presence of damage may not be
quite apparent in mode shapes of the lower modes usually measured. For example, the first three POMs
are presented in Figure 5 for the cracked beam, described in Section 4.
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Figure 5. Proper orthogonal modes for the cantilever beam with crack location at 60 mm
and relative crack depth 20%.



1074 K. C. GRYLLIAS, I. N. KOUKOULIS, C. T. YIAKOPOULOS, I. A. ANTONIADIS AND C. G. PROVATIDIS

 

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12
Crack Depth 60%

Crack Location (mm)

E
ro

si
o

n

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12
Crack Depth 60%

Crack Location (mm)

D
il

a
ti

o
n

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12
Crack Depth 60%

Crack Location (mm)

C
lo

si
n

g

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12
Crack Depth 60%

Crack Location (mm)

O
p

e
n

in
g

Figure 6. Morphological operators (opening, closing, dilation, erosion) using POM 1
and a flat structuring element.

For this reason, mathematical morphology is further used for processing the shape of the POMs. The
effect of each one of the four basic morphological operators of Section 3 (erosion, dilation, opening and
closing) are applied on the 3 first POMs in order to examine their ability for better determination of the
features of the crack. Furthermore, the choice of a proper structuring element is equally essential for the
success of morphological processing.

First a flat structuring element is used. Flat structuring elements are the simplest ones with a straight-
forward application, since the only parameter to be selected is their corresponding length L . The results
can be seen in Figure 6. Although a small change of the slope at the morphological operators can be
observed at the location of the crack, this change is not easily identifiable, in order to clearly reveal the
existence of the crack.

Then, a spline is used as the structuring element. This spline is created using the corresponding POM
of an uncracked beam. The length of the structuring element is selected equal to 1/60 times the length
of the beam. The resulting morphological operators are shown in Figure 7. A peak corresponding to the
location of the crack is clearly observed at the results of the erosion and of the opening operation, even
when the crack is at the first stages (relative crack depth 5%). As a result, both these two morphological
operators can be used in principle as crack indicators.
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Figure 7. Morphological operators (opening, closing, dilation, erosion) using POM 1
and a spline structuring element, for cantilever beam, crack location at 60 mm, 60%
relative crack depth and ANL= 0%.

In the remaining part of the paper, the erosion operator will be used, as it presents a wider peak than
opening, a feature which indicates increased robustness. In view of (26) and (28), the opening operator
requires more computation time, as its computation involves two steps.

6. Performance assessment in a cantilever beam

In order to assess the efficiency of the proposed approach, its performance with respect to a number of
features is been evaluated, such as ability to accurately identify the location and depth of the crack, the
identification and the distance of multiple cracks under different depths, the robustness to external noise
and the spatial resolution of measurement points.

In the subsequent analysis, the cantilever beam of Section 4 is further processed, using a 2D plane
stress model, according to the analysis of Section 4. Single or multiple cracks are introduced each time
at distances lc = 60 mm, lc = 150 mm, lc = 240 mm from the clamped end. The relative crack depths α
are typically chosen as 10%, 20%, 30%, 40% and 60%. The transverse displacement measurements are
obtained at spatial distances of 1 mm along the beam, resulting in a number of M = 301 points (spatial
locations) available. The erosion operator with a spline structuring element of a length equal to 1/60 of
the total beam length is used according to the results in Section 5.
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Figure 8. Morphological index using POM 1 with relative crack depth of 10%, ANL=
0%, cantilever beam and crack location at 60 mm (left) or 240 mm (right).

6.1. Determination of crack location and depth. As already shown in Section 5, the location of the
crack can be identified by the sudden change of the erosion morphological operation. The efficiency of
this observation is further evaluated under the different crack locations and sizes mentioned above. As
seen in Figure 8, the method gives very good results even in the worst case, when the crack is located
away from the clamped end at lc = 240 mm and the relative crack depth is only 10%.

In view of this good agreement concerning the crack location, we examine further in Figure 9 the
correlation of the evolution of the crack depth with the value of the erosion operator at the crack location.
We observe a monotonic increase of the morphological operator with the crack depth. This result can be
further exploited in order to use also the value of the morphological operator at the location of the crack
as an index (morphological index) to identify the depth of the crack.

However, as seen in Figure 9, left, the results become more clear when the crack is near the middle
of the beam. Crack location becomes more difficult when the crack is located near the free ends of the
beam.

Contrarily, comparison of just the singular values cannot lead to diagnostic information of the same
quality and reliability, as can be observed from Figure 9, right.
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Figure 9. Evolution with crack depth of the morphological index (left) and the first
singular value (right) at three locations (ANL= 0%, cantilever beam).
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 Figure 10. Morphological index using POM 1 with equal relative crack depth of 10%,

ANL= 0%, cantilever beam and crack locations at 50 mm and 60 mm (left) or 230 mm
and 240 mm (right).

6.2. Effects of multiple cracks. Two breathing cracks are then simultaneously introduced at different
locations of the beam. In view of Figure 10, a peak corresponding to the location of the cracks is again
clearly observed, even when the cracks are at the first stage (relative crack depth α = 10%). The method
is still able to provide reliable results, even at the worst case when the cracks are located away from the
clamped end and closely spaced at lc1 = 230 mm and lc2 = 240 mm.

6.3. Effects of noise. In order to examine the effect of noise or measurement errors on the sensitivity
of the method, artificial noise was added to the waveforms of the displacements, with an added noise
level ANL increased up to a significant amount of 30%. In the case of a single crack, satisfactory results
are obtained even for the smallest crack depth of 10% when the crack is located at lc = 60 mm and
lc = 150 mm (Figure 11).

In the case of a crack located at lc = 240 mm, the detection of the location is easier for big cracks
(greater than 40%) and somewhat obscured for smaller ones (less than 30%), as shown in Figure 12. The
results become more clear when the third POD is used instead of the first (Figure 13).

However, Figure 14 shows that the worst case, which corresponds to a crack location at lc = 240 mm,
a relative crack depth of 10% and an ANL of 30%, represents the limits of the detection capability of
the method.
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Figure 11. Morphological index using POM 1 with relative crack depth 10%, ANL=
30%, cantilever beam and crack location at 60 mm (left) or 150 mm (right).
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Figure 12. Morphological index using POM 1 with relative crack depth 20% (left) or
40% (right) ANL= 30%, cantilever beam and crack location at 240 mm,
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Figure 13. Morphological index using POM 3 for same configuration as in Figure 12.
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Figure 14. Morphological index using POM 1 (left) or POM 3 (right) with relative crack
depth 10%, and ANL= 30%, cantilever beam and crack location at 240 mm.

The evolution of the morphological index with crack depth is presented in Figure 15. Although the
method has reached its detection capability limits, the morphological index is still able to follow the
increase in crack depth.
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Figure 15. Evolution of the morphological index with crack depth at three locations
(ANL=30%, cantilever beam).
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Figure 16. Morphological index using POM 1 with relative crack depths of 5% and
10% (left) or 10% and 5% (right), ANL= 30%, cantilever beam, and crack locations at
60 mm and 120 mm.

In the case of multiple cracks, the crack localization is clear for cracks located at lc1 = 60 mm, and
lc2 = 120 even at the initial stages of the crack (relative crack depths equal or less than 10%) and for an
ANL up to 30% (Figure 16).

The worst case corresponds to crack locations at lc1 = 60 mm and lc2 = 240 mm. In the case of an
ANL equal to 20%, crack determination is still possible, even when the relative depth of one crack is
10% and of the other is only 5% (Figure 17).

When the ANL increases to 30%, the method reaches again its detection capability limits (Figure 18).

6.4. Effect of spatial resolution of measurement points. Finally, the effect of decreasing the number of
measurement points to the detection capabilities of the method has been evaluated. As a result, in the
cases where the two cracks are located far one from each other, the number of the required measurement
points can be reduced from M = 301 to less than M = 51 points, as can be observed in Figure 19.
However, as expected, in the cases where the two cracks are close to each other, the method might
identify them as a single. This problem can be overcome by increasing the special resolution of the
measurement points only locally in the areas of cracks.
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Figure 17. Morphological index using POM 1 with relative crack depths of 10% and
5% (left) or 5% and 10% (right), ANL= 20%, cantilever beam, and crack locations at
60 mm and 240 mm.
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Figure 18. Morphological index using POM 1 with relative crack depths of 10% and
5% (left) or 5% and 10% (right), ANL= 30%, cantilever beam, and crack locations at
60 mm and 240 mm.
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Figure 19. Morphological index using POM 1 with crack locations at 60 mm and
120 mm, equal relative crack depths of 10%, ANL = 0%, cantilever beam, length of
the structuring element equal to L/100 and number of spatial points M equal to 101
(left) or 51 (right).



MORPHOLOGICAL PROCESSING OF PROPER ORTHOGONAL MODES FOR CRACK DETECTION 1081

 

0 50 100 150 200 250 300
-8

-6

-4

-2

0

2
x 10

-5

Crack Location (mm)

M
.I

.

 Crack Depth 10%

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

1.5

2
x 10

-4

Crack Location (mm)

M
.I

.

 Crack Depth 10%

 

 Figure 20. Morphological index using POM 1 with relative crack depth of 10%, ANL=
0%, simply supported beam and crack location at 60 mm (left) or 150 mm (right).

7. Performance assessment in a simply supported beam

The beam of Section 4 is again considered, using a 2D plane stress model, according to the analysis
of Section 4. However, this time, the beam is simply supported at both its ends. Single or multiple
cracks are introduced each time at distances lc = 60 mm and lc = 150 mm from the beam end. The
relative crack depths α are typically chosen as 10%, 20%, 30%, 40%, 50% and 60%. The transverse
displacement measurements are obtained at spatial distances of 1 mm along the beam, resulting in a
number of M = 301 points (spatial locations) available. The erosion operator with a spline struc-
turing element of a length equal to 1/60 of the total beam length is used according to the results in
Section 5.

7.1. Determination of crack location and depth. As seen in Figure 20, the method gives again very
good results even when the relative crack depth is only 10%. Consequently, the evolution of the crack
depth with the value of the erosion operator at the crack location is again further examined. As shown
in Figure 21, a monotonic increase of the morphological operator is observed with the increase of the
crack depth.
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Figure 21. Evolution of morphological index with crack depth at two locations (ANL=
0%, simple beam).



1082 K. C. GRYLLIAS, I. N. KOUKOULIS, C. T. YIAKOPOULOS, I. A. ANTONIADIS AND C. G. PROVATIDIS

7.2. Effects of multiple cracks. Two breathing cracks are then simultaneously introduced at different
locations of the beam. In Figure 24 on the next page we again observe peaks corresponding to the location
of the cracks. These peaks are clearly visible in the case of equal crack depths with relative crack depths
as small as 10%. However, in the case of unequal crack depths, the method reaches its limits, with the
smaller crack depth being just visible.

7.3. Effects of noise. In order to examine the effect of noise or measurement errors on the sensitivity of
the method, artificial noise was added to the waveforms of the displacements, with an added noise level
ANL increased up to a significant amount of 30%. In the case of a single crack, satisfactory results are
obtained even for the smallest crack depth of 10%, when the crack is located at the middle of the beam
at lc = 150 mm (Figure 22).

In the case of a crack located at lc = 60 mm, the detection of the crack location is easier in case of big
cracks (greater than 20%), as shown in Figure 23. However, in view of Figure 22, it is evident that the
worst case, which corresponds to a crack location at lc = 60 mm, a relative crack depth of 10% and an
ANL of 30%, represents the limits of the detection capability of the method.
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 Figure 22. Morphological index using POM 1 with relative crack depth 10%,

ANL=30%, simply supported beam and crack location at 60 mm (left) or 150 mm (right).
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 Figure 23. Morphological index using POM 1 with relative crack depth 20% (left) or

40% (right), ANL=30%, simply supported beam and crack location at 60 mm.
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Figure 24. Morphological index using POM 1 for two cracks located at 50 mm and
60 mm (top two rows) or 140 mm and 150 mm (bottom rows), ANL= 0%, simply sup-
ported beam, with various relative crack depths.
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Figure 25. Evolution of the morphological index with crack depth at two locations for
(ANL=30%, simply supported beam).

The evolution of the morphological index with crack depth is shown in Figure 25. Although the
method has reached its detection capability limits, the morphological index is still able to follow the
increase of the depth of the crack.

In the case of multiple cracks, Figure 27 on the next page suggests that the effect of noise is marginal,
compared to the effect of unequal cracks (Section 7.2).

7.4. Effect of spatial resolution of measurement points. Finally, the effect of decreasing the number of
measurement points to the detection capabilities of the method is again evaluated, for a crack located at
lc = 60 mm. In view of Figure 26, the number of the required measurement points can be reduced from
M = 301 to less than M = 51 points. However, as again expected, in the cases where the two cracks
are close to each other, the method might identify them as a single. This problem can be overcome by
increasing the spatial resolution of the measurement points only locally in the areas of cracks.
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Figure 26. Morphological index using P.O.M. 1 with crack location at 60 mm for rela-
tive crack depth of 10%, ANL= 0%, simply supported beam, length of the structuring
element equal to L/100 and number of spatial points used as A) M = 101 points (Left),
B) M = 51 points (Right)
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Figure 27. Morphological index using POM 1 for two cracks located at 50 mm and
60 mm (top two rows) or 140 mm and 150 mm (bottom rows), ANL = 30%, simply
supported beam, with various relative crack depths.
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8. Conclusion

A comparison of different FEM models (2D plane stress, 2D plane strain, 3D) used to model a cantilever
beam with a crack indicates that the 2D plane stress model can accurately and reliably model the crack
effect, whether if the crack is of open, closed or breathing type. From the four basic morphological
operators (erosion, dilation, opening, and closing) used to process the proper orthogonal modes of the
cracked beam, the erosion operator using a spline structuring element presents the best behavior.

The proposed method, as assessed both in a cantilever and in a simply supported beam, can lead
to the efficient detection both of the crack location, as well as of the crack size. Due to the fact that
POMs are used instead of modes, nonlinear effects can be taken into account and noise effects can be
eliminated. The morphological index can follow the evolution of the crack depth, even when the signal
to noise ratio reaches 30%. The results become clearer when more than one POM is used. In the case of
double-cracked beam structures, the analysis of the effect of different crack depths, noise level and spatial
resolution of the measured points indicate that the proposed method can present also robust results.
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