[an error occurred while processing this directive]
A theoretical framework is
presented for analyzing the coupled nonlinear dynamic behavior of laminated
piezoelectric composite plates subject to high thermoelectromechanical loadings. It
incorporates coupling between mechanical, electric, and thermal governing equations
and encompass geometric nonlinearity effects due to large displacements and
rotations. The mixed-field shear-layerwise plate laminate theory formulation is
considered, thus degenerating the 3D electromechanical field to 2D nodal
variables, and an eight-node coupled nonlinear plate element is developed. The
discrete coupled nonlinear dynamic equations of motion are formulated,
linearized, and numerically solved at each time step using the implicit Newmark
scheme with a Newton–Raphson technique. Validation and evaluation cases on
active laminated beams demonstrate the accuracy of the method and its
robust capability to effectively predict the nonlinear dynamic response under
time-dependent combined mechanical, thermal, and piezoelectric actuator
loads. The results illustrate the capability of the method to simulate large
amplitude vibrations and dynamic buckling phenomena in active piezocomposite
plates. The influence of loading rates on the nonlinear dynamic structural
response is also quantified. Additional numerical cases demonstrate the complex
dynamic interactions between electrical, mechanical, and thermal buckling
loads.