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BUCKLING OF STIFFENED COMPOSITE PANELS
WITH STRINGER TERMINATIONS

ENZO COSENTINO AND PAUL WEAVER

A meshless approach is developed and used to predict buckling of discretely assembled multibay com-
posite panels made from skin and stiffeners. The effect of eccentricity is included in the formulation.
Particular emphasis is given to stringer run-outs within a stiffened panel, where abrupt eccentricity
can trigger very large transverse displacements of the skin in front of the run-out tip. The model is
obtained by combining von Karman’s formulation for moderately large deflections in plates with an
extended Timoshenko approach for small initial perturbations. Solutions are calculated by means of a
Rayleigh–Ritz approach in conjunction with a Galerkin technique. Hilbert’s orthogonal eigenfunctions
are employed to obtain a generalized Fourier series expansion of the variables of interest. Limits of
applicability, convergence of results and further potential exploitations are discussed. Numerical results
obtained are compared with finite element analysis.

A list of symbols can be found on page 1532.

1. Introduction

It is becoming increasingly important to make further weight savings with composite cocured/cobonded
assemblies. With the new generation of integral composite assemblies, critical and sometimes unex-
pected failure modes are challenging the weight saving philosophy that is associated with the use of
carbon fibre reinforced composites. A major advantage of composites is their inherent ability to tailor
elastic properties for maximizing performance. A further advantage is that different components can be
assembled together without making use of fasteners, since the load transfer can be achieved through the
interlaminar shear stresses arising within the bond line of an adhesive. Unfortunately, laminated compos-
ites exhibit relatively poor response when the loads act perpendicular to the fibers’ plane. The weakest
areas are typically the bond lines. This weakness is sometimes exacerbated by the anisotropic response
of laminated composites, which could trigger out-of-plane displacements when panels undergo loads that
align with the fibers’ plane. Hence, premature failure is likely to happen in the bond line due to disbond
or delamination. This behavior is particularly critical in thick-sectioned composite laminates, where the
induced through-the-thickness stresses are comparable in magnitude to the main in-plane stresses. The
current level of confidence for the prediction of external loads that may cause delamination and/or disbond
often precludes those phenomena, such as buckling, which might trigger significant out-of-plane displace-
ments, leading to complex and potentially catastrophic failure modes. As a result, composite panels for
aerospace applications are often designed to minimize or eliminate such failure modes, and to allow for
redundant load paths, which are able to guarantee the fail safe requirements. “Chicken” fasteners are
extensively used in the majority of primary aerospace composite structure, thwarting potential weight
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Figure 1. Example of the skin/stringers/frame multibay assembly. Left: realized struc-
ture; right: in-plane projections.

saving associated with an “integral” design. Also, as a general design principle (commonly accepted by
many of the aerospace industries), the majority of thick-sectioned primary structures are designed not to
buckle, thus penalizing the final weight. It is evident that a precise calculation of the buckling loads is
vital in order to minimize the structural weight and reserve factors.

The present study is motivated by the need to develop a robust and reliable technique able to combine
acceptable accuracy with low computational expense. It is intended to provide aerospace designers with
a rapid method that can be used in the preliminary sizing phase, when the need for analyzing hundreds
of load cases within restricted time scales, requires very low computational expenses.

2. Field equations

The purpose of the present study is to establish a fast, robust, and sufficiently accurate methodology to
predict displacement and stress fields throughout the entire domain of composite skin/stiffeners assem-
blies in the prebuckling regime and then calculate buckling loads and mode shapes.

The buckling load calculation is done using the formulation developed in [Cosentino and Weaver 2008]
with modified eigenfunctions [Cosentino and Weaver 2009] to improve the accuracy of the solution. Two
different sets of eigenfunctions are employed to model the transverse displacement and the neutral plane,
so providing a more accurate description of the internal loads distribution, particularly near boundaries.
As a first approximation, a linear buckling analysis [Kollar and Springer 2003, Chapter 4], which neglects
the effect of in-plane loads eccentricities, is proposed.

The use of von Karman nonlinear field equations allows a single variable, that is, the transverse
deflection w, to be used. Following [Cosentino and Weaver 2008], the beam properties of the stiffen-
ers are locally homogenized over the plate as represented in Figure 1, right (calculations are shown in
Appendix A). The global domain is therefore partitioned into subdomains (fields).

The equivalent field properties are then smeared over the regions defined by the boundaries of the
stiffeners’ feet (areas in light gray in Figure 1). Abrupt discontinuities of the functions expressing the
neutral plane (loads eccentricity) and the structural properties (that is, A, B, and D matrices) occur at
the same boundaries.
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Membrane strains and the curvatures are expressed as functions of the transverse displacement as
follows:

ε0
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∂uo
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+

1
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)2
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∂u0
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+
∂v0
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(1)

kx =−
∂2w

∂x2 , kx =−
∂2w

∂y2 , kxy =−2
∂2w

∂x ∂y
. (2)

The constitutive equations of the laminate expressed in the partially inverted form are [Jones 1975;
Reddy 2004] [
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, (3)

where
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The rectangular panel sketched in Figure 1 is subjected to distributed external in-plane loads Nx0, Ny0,
and Nxy0 around the edges and to a transverse load q(x, y) defined over the rectangular domain. Follow-
ing, for example, [Mansfield 1989, pp. 85–90], the total strain energy U due to bending is

U = 1
2
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The potential �N of external in-plane forces is [Cosentino and Weaver 2008]
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∂(w+ e)
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]
dx dy, (6)

where e(x, y) is the neutral plane function which is treated as a moderately large initial perturbation and
expanded in generalized Fourier series by means of a Galerkin technique [Cosentino and Weaver 2008;
2009].

Similarly, the potential �Q of the transverse load is [Cosentino and Weaver 2008]

�Q =−

∫ lx

0

∫ ly

0
qwdx dy. (7)

The total linear potential energy 5L of the system is therefore

5L =U +�N ,L +�Q . (8)

In order to properly utilize the Rayleigh–Ritz method, approximate expressions for the unknown
variables w and for the eccentricity e in generalized coordinates are required, which satisfy the geometric



1508 ENZO COSENTINO AND PAUL WEAVER

boundary conditions. The following series expansions satisfy the above conditions:

w =

Mw∑
m=1

Nw∑
n=1

wmn Xm(x)Yn(y), e =
Mw∑

m=1

Nw∑
n=1

emn Xm(x)Y n(y), (9)

where Xm(x), Yn(y), Xm(x), and Y n(y) are continuous and indefinitely differentiable functions. Wher-
ever possible, it is recommended to use beam eigenfunctions that satisfy the orthogonality relations
[Cosentino and Weaver 2008; 2009] for both the transverse displacement and the neutral plane function.

To simplify software implementation the following vectors use only one index:

ϕ =
[
X1Y1 X1Y2 · · · X1YNw X2Y1 X2Y2 · · · X2YNw · · · X Mw Y1 X Mw Y2 X M YN

]T
, (10)

ϕ =
[
X1Y 1 X1Y 2 · · · X1Y Nw X2Y 1 X2Y 2 · · · X2Y Nw · · · X Mw Y 1 X Mw Y 2 X Mw Y Nw

]T
,

W =
[
w1 w2 · · · wM×N

]T
, E =

[
e1 e2 · · · eMw×Nw

]T
. (11)

Equations (9) can, therefore, be rewritten, more simply, as

w =

M×N∑
i=1

wiϕi (x, y), e =
M×N∑
j=1

e jϕ j (x, y), (12)

where it is straightforward to show that the functions ϕi and ϕ j satisfy the two-dimensional orthogonality
relations∫ lx

0

∫ ly

0
ϕp(x, y)ϕq(x)dx dy

{
= 0 p 6= q

6= 0 p = p
,

∫ lx

0

∫ ly

0
ϕl(x, y)ϕm(x)dx dy

{
= 0 l 6= m

6= 0 l = m
. (13)

Equations (12), combined with the definition of beam eigenfunctions, guarantee that every function
defined inside the considered domain and fulfilling the same essential boundary conditions as the panel
and the neutral plane, can be expressed as a linear combination of such eigenfunctions.

If M and N are reasonably large integers, then the error induced when truncating the summation is
negligible. Yet, generic functions defined with different boundary conditions inside the domain can be
expressed as truncated linear combinations by means of a Galerkin technique. This technique is used in
[Cosentino and Weaver 2008; 2009] to calculate the e j in (12).

Expressing the neutral plane as a linear combination of basis functions allows differentiation of the
total potential energy in a closed form, obtaining a final compact formulation, which is derived and
expressed in (19) and that is also readily implemented in software.

Substituting (12) into (5), (6), and (7) the total potential is expressed as a second order polynomial of
the M × N unknown coefficients wi . The expressions for U , �N , and �Q are

U = 1
2

∫ lx

0

∫ ly

0

M×N∑
i=1

M×N∑
j=1

(
D∗11ϕ,xx,i ϕ,xx, j +D∗22ϕ,yy,i ϕ,yy, j +4D∗66ϕ,xy,i ϕ,xy, j

+2D∗12ϕ,xx,i ϕ,yy, j +4D∗16ϕ,xx,i ϕ,xy, j +4D∗26ϕ,yy,i ϕ,xy, j

)
wiw j dx dy, (14)
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�Q =−
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(
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)
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+
1
2

∫ lx

0

∫ ly

0

M×N∑
i=1

M×N∑
j=1

(
Nxϕ,x,i ϕ,x, j +Nyϕ,y,i ϕ,y, j +2Nxyϕ,x,i ϕ,y, j

)
ei e j dx dy. (16)

Using the principle of stationary potential energy [Cosentino and Weaver 2008; 2009], we have

∂5L

∂wi
= 0, ∀i = 1, . . . ,Mw× Nw. (17)

Equations (14), (15), and (16) are now substituted into (17) with the result differentiated with respect
to wi . Algebraic manipulations result in the following linear system of M × N equations in the M × N
unknowns wi , i = 1, . . . , N :

(G+ H)W =−H E+ Q, (18)

where the vectors Q, E and the matrices G, H , H are defined as

Qi =

∫ lx

0

∫ ly

0
qφi dx dy, (19)

E = [e1 e2 · · · eM×N ]
T , (20)

Gi j =
1
2

∫ lx

0

∫ ly

0

[
2D∗11ϕ,xx,i ϕ,xx, j +2D∗22ϕ,yy,i ϕ,yy, j +8D∗66ϕ,xy,i ϕ,xy, j +2D∗12(ϕ,xx,i ϕ,yy, j

+ϕ,xx, j ϕ,yy,i )+ 4D∗16(ϕ,xx,i ϕ,xy, j +ϕ,xx, j φ,xy,i )+ 4D∗26(ϕ,yy,i ϕ,xy, j +ϕ,yy, j ϕ,xy,i )
]
dx dy, (21)

Hi j =
1
2
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0

∫ ly

0

[
2Nxϕ,x,i ϕ,x, j +2Nyϕ,y,i ϕ,y, j +2Nxy(ϕ,x,i ϕ,y, j +ϕ,x, j ϕ,y,i )

]
dx dy, (22)

Hi j =
1
2

∫ lx

0

∫ ly

0

[
2Nxϕ,x,i ϕ,x, j +2Nyϕ,y,i ϕ,y, j +2Nxy(ϕ,x,i ϕ,y, j +ϕ,x, j ϕ,y,i )

]
dx dy. (23)

For a linear buckling analysis, the external transverse load q(x, y) and the effect of the neutral plane
eccentricity are neglected. Only the magnitude of the in-plane loads is noteworthy for the onset of
buckling. It is assumed that the presence of transverse loads and/or eccentricity only influences the
deformed shape of the panel when the external load has reached the critical buckling level. The effect
of eccentricity is formally equivalent to a localized transverse bending moment, which does not affect
the membrane stretching in a linear calculation. The right-hand side of (18), the associated eigenvalues
problem is expressed by

(H−1G+ λI)W = 0, (24)
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Figure 2. Loads on reinforced panel. (A) Constant axial load at the free edge. (B) Gen-
eralized Fourier series components of loads. (C) Uniform loading. (D) Reinforcement
perturbation. The first component is shown for illustrative purposes only.

where I is the identity matrix. There are N ×M eigenvalues λi and associated eigenvectors Wcr,i . The
lowest eigenvalue λcr,min and its associated eigenvector Wcr,min are related to the buckling loads Ncr and
to the buckling mode shape wcr by

Ncr = λmin

 Nx0

Ny0

Nxy0

 , wcr =

Mw×Nw∑
j=1

ϕ j (Wcr,min) j . (25)

To solve the eigenvalues problem of (24), one must be able to integrate the expressions in (16), (22),
and (23). This can only be done if the internal in-plane loads distribution in known throughout the
domain. This load distribution is evaluated in the following section.

3. In-plane stress function

Consider the simple case, illustrated in Figure 2, of a composite assembly made of a skin (light gray
area) and a reinforcement patch (dark gray area).

The panel is loaded by a constant axial load Nx0,l acting upon the free edge (x = lx). If an axial
constraint acts on the opposite edge (x = 0), the axial load distribution (reaction) is not known a priori
on that edge. The curve depicted in Figure 2A shows a potential Nx0,0 distribution on the edge x = 0. A
peak in the region of the reinforced area is expected.

The magnitude of the peak load mostly depends on the axial stiffness ratio between the skin and the
patch, and on the dimensions of the patch. Typically, if the patch free tip is sufficiently far from the
constraint, we can assume that the local axial load transfer from the skin to the skin-patch region is
complete; therefore the load is introduced in the skin-patch section proportionally to the local-to-global
axial stiffness ratio. Assuming that the axial flow distribution Nx0 at the constrained edge is known, let
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us decompose the external edge loads by means of Fourier series:

Nxo
∣∣
x=0
∼=

N∑
n=1

An sin(αn y), Nxo
∣∣
x=lx
∼=

N∑
n=1

Bn sin(αn y). (26)

The two series expansions are generally different if compared term by term (Figure 2B), but since the
global equilibrium is satisfied

N∑
n=1

∫ ly

0
An sin(αn y)=

N∑
n=1

∫ ly

0
Bn sin(αn y). (27)

Using the principle of superposition, two stress fields are combined. These are:

(1) a constant axial stress field equal to the constant axial load Nx0,0 acting upon the free edge x = lx

(Figure 2C).

(2) a perturbation 1Nx = Nx0,l − Nx0,0 caused by the presence of the reinforcement (Figure 2C) and
acting as an external load on the constrained edge.

The first stress field is constant and represents a panel made of a skin only; therefore it is equilibrated
and compatible. The elastic problem is completely determined by introducing the stress function 9

9 = 0x Nx0,l +0xy Nxy0+0y Ny0, (28)

where 0x , 0xy , and 0y are the circulation functions [Jaunky et al. 1995] defined as

0x = (y− ly)
2, 0xy =−(x − lx)(y− ly), 0y = (x − lx)

2. (29)

The second stress field represents a perturbation introduced by the presence of the reinforcement. It
is equilibrated, according to (27), but, in general, is not compatible.

Introducing a perturbation stress function 19

1Nx =19,yy, 1Ny =19,xx , 1Nxy =−19,xy (30)

then if no body forces are acting, then overall equilibrium is represented by the biharmonic equation

∂419

∂y4 + 2
∂419

∂x2∂y2 +
∂419

∂x4 = 0 (31)

which is satisfied by

19n = sin
(

nπ
y
ly

)
fn(x). (32)

Substituting (31) into (30) and defining αn = nπy/ ly creates the following ordinary differential equa-
tion:

α4
n fn(x)− 2α2

n f I I
n (x)+ f I V

n (x)= 0 (33)

with the solution

fn(x)= c1n cosh(αnx)+ c2n sinh(αnx)+ c3nx cosh(αnx)+ c4nx sinh(αnx). (34)
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Hence, the stress function is

19n =
(
c1n cosh(αnx)+ c2n sinh(αnx)+ c3nx cosh(αnx)+ c4nx sinh(αnx)

)
sin(αnx). (35)

Constants cin are calculated by enforcing the boundary conditions. First, the distribution of 1Nx0

along the edge x = 0 must be determined. Rationales for calculation of piece-wise distribution of Nx0

are given in Appendix B. Knowing the axial flow piecewise distribution at the constrained edge (Figure
2A), and making use of a Galerkin technique [Cosentino and Weaver 2008], the external axial load
distributions can be expressed as a generalized Fourier series

1Nxo

∣∣∣
x=0x

∼=

N∑
n=1

(An − Bn) sin(αn y), 1Nxo

∣∣∣
x=lx

∼= 0. (36)

Using the principle of superposition, we assume that the solution, in terms of stress functions, is given
by the superposition of N basic stress functions 19n that are solutions of the elastic problem illustrated
in Figure 2D.

19 =

N∑
n=1

19n, (37)

where the 19n are given by (32) and the load amplitudes are given by (36). Following [Timoshenko and
Goodier 1982], the constants of integration in (35) are determined by enforcing the following boundary
conditions:

For x = 0:

1Nxy,n =−
∂219n

∂x ∂y
= 0, 1Nx,n =

∂219n

∂y2 = An − Bn. (38)

For x = lx :

1Nxy,n =−
∂219n

∂x ∂y
= 0, 1Nx,n =

∂219n

∂y2 = 0. (39)

After algebraic manipulations, coefficients of integration are obtained and expressed as

c1n = λ1n(An − Bn), c2n = λ2n(An − Bn), c3n = λ3n(An − Bn), c4n = λ4n(An − Bn),

where

λ1n =
1
α2

n
, λ2n =

1−ω1n sinh(αnlx)

lxα3
n

, λ3n =
1− (ω1n/ω21n) sinh(αnlx)

lxα2
n

, λ4n =−
sinh(αnlx)

lxαnω2n
(40)

and

ω1n =
cotαn

αn
+

1
lxα2

n
, ω2n =

(
sinαn − lxαn cosαn

)
ω1n + lx sinαn. (41)

It must be emphasized that solutions 19n do not identically satisfy term-by-term x-wise equilibrium
of the panels as, in general, An 6= Bn , but their summation does satisfy overall equilibrium. In fact,

N∑
n=1

(An − Bn) sin(αn y)∼= 0. (42)
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Also, these stress functions satisfy the natural boundary conditions, given in Figure 2A, that is, only
axial loads are acting. At the edges y = 0 and y = ly , Ny0 are zero and only shear forces Nxy are
present, arising from each term in (37), necessary to satisfy x-wise equilibrium. Note that (42) implies
that summation of shears due to its n components is zero [Timoshenko and Goodier 1982, pp. 53–56].

To account for the presence of external shears Nxy0 and y-wise loads Ny0, which were neglected so
far, the stress function 9 defined in (28) must be added. To this end, the resultant stress function 9e is

9e =9 +

N∑
n=1

19n. (43)

This function satisfies the biharmonic equilibrium equation

∂49e

∂y4 + 2
∂49e

∂x2∂y2 +
∂49e

∂x4 = 0. (44)

The resultant stress function 9e is determined once coefficients An and Bn are derived. It satisfies the
equilibrium equation (44) and the boundary conditions (38)–(39), but it does not satisfy the compatibility
condition. To enforce compatibility, a supplementary stress function 9c is superposed. This additional
stress function must satisfy the boundary conditions (38)–(39) and guarantee that the resultant stress
function �

�=9e+9c (45)

satisfies the compatibility equation.
The equilibrium and boundary conditions are fulfilled by choosing the supplementary stress function as

9c =

Mc×Nc∑
k=1

ηk(x, y)ξk, (46)

where ξk are unknown coefficients and ηk(x, y) are defined as

η =
[
Xc,1Yc,1 Xc,1Yc,2 · · · Xc,1Yc,Ncew

Xc,2Yc,1 Xc,2Yc,2 · · · Xc,2Yc,Ncw
· · · Xc,Mcw

Yc,1 · · · Xc,Mc Yc,Nc

]T
. (47)

If abrupt variations of cross section occur within the domain, the linearized compatibility condition is
expressed by [Ashton et al. 1969]

∂2

∂y2 (A
∗

11�,yy + A∗12�,xx − A∗16�,xy)+
∂2

∂x2 (A
∗

12�,yy + A∗22�,xx − A∗26�,xy)

+
∂2

∂x ∂y
(−A∗16�,yy − A∗26�,xx + A∗66�,xy)= 0. (48)

Differentiation and reordering gives

A∗11�,yyyy−2A∗26�,xyyy+(2A∗12+A∗66)�,xxyy−2A∗26�,xxxy+A∗22�,xxxx+(2A∗11,y−A∗16,x)�,yyy

+(2A∗12,x−3A∗16,y+A∗66,x)�,xyy+(2A∗12,y−3A∗26,x+A∗66,y)�,xxy+(2A∗22,x−A∗26,y)�,xxx

+(A∗11,yy+A∗12,xx−A∗16,xy)�,yy−(A∗16,yy+A∗26,xx−A∗66,xy)�,xy+(A∗12,yy+A∗22,xx−A∗26,xy)�,xx

= 0. (49)
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The coefficients ξk are determined by solving (46) by means of a Galerkin technique [Cosentino and
Weaver 2008]. The weight functions employed are

φn(x, y)=9e(x, y)+ ηn(x, y). (50)

Substituting (45) into (49) and carrying out the differentiations, then after algebraic manipulations we
obtain the compact form

4ξ = L, (51)

where
ξ = [ξ1ξ2, . . . , ξNc×Mc ]

T , (52)

(4)i j =

∫ lx

0

∫ ly

0

(
A∗11

∂49c, j

∂y4 − 2A∗26
∂49c, j

∂x ∂y3 + (2A∗12+ A∗66)
∂49c, j

∂x2∂y2 − 2A∗26
∂49c, j

∂x3∂y

+ A∗22
∂49c, j

∂x4 + (2A∗11,y − A∗16,x)
∂39c, j

∂y3 + (2A∗12,x − 3A∗16,y + A∗66,x)
∂39c, j

∂x ∂y2

+ (2A∗12,y − 3A∗26,x + A∗66,y)
∂39c, j

∂x2∂y
+ (2A∗22,x − A∗26,y)

∂39c, j

∂x3

+ (A∗11,yy + A∗12,xx − A∗16,xy)
∂29c, j

∂y2 − (A
∗

16,yy + A∗26,xx − A∗66,xy)
∂29c, j

∂x ∂y

+ (A∗12,yy + A∗22,xx − A∗26,xy)
∂29c, j

∂x2

)
φi dy dx, (53)

and

Li =−

∫ lx

0

∫ ly

0

(
A∗11

∂49e

∂y4 − 2A∗16
∂49e

∂x ∂y3 + (2A∗12+ A∗66)
∂49e

∂x2∂y2 − 2A∗26
∂49e

∂x3∂y

+ A∗22
∂49e

∂x4 + (2A∗11,y − A∗16,x)
∂39e

∂y3 + (2A∗12,x − 3A∗16,y + A∗66,x)
∂39e

∂x ∂y2

+ (2A∗12,y − 3A∗26,x + A∗66,y)
∂39e

∂x2∂y
+ (2A∗22,x − A∗26,y)

∂39e

∂x3

+ (A∗11,yy + A∗12,xx − A∗16,xy)
∂29e

∂y2 − (A
∗

16,yy + A∗26,xx − A∗66,xy)
∂29e

∂x ∂y

+ (A∗12,yy + A∗22,xx − A∗26,xy)
∂29e

∂x2 − (A
∗

16,yy + A∗26,xx − A∗66,xy)
∂29e

∂x ∂y

+ (A∗12,yy + A∗22,xx − A∗26,xy)
∂29e

∂y2

)
φi dx dy. (54)

The components of vector L are computed once the equilibrium stress function (43) is derived. They
are functions of the external loads Nx,0, Ny,0, and Nxy,0, and act as load terms in (49).

To calculate partial derivatives of the components A∗i j of the in-plane compliance matrix, a Galerkin
technique [Cosentino and Weaver 2008] is employed to express such components as generalized Fourier
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series

A∗i j =

M×N∑
k=1

ωi j,kϕk, (55)

where the same basis functions ϕk already used for the eccentricity are employed.

4. Model validation: in-plane stress field

A composite assembled panel (Figure 3) consisting of a square skin and a rectangular reinforcement
(patch) was analyzed to compare and validate our analysis against finite element models (FEM). The
in-plane stress field calculated by means of the proposed analytical solution was first compared with the
finite element response. In-plane normal forces arising along the sections indicated in Figure 3, right,
were compared for two different load cases. The finite element simulation was done using ABAQUS. The
domain was discretized using quadratic quadrilateral elements (S8R) in a regular array. Each square has
a 2.5 mm edge length. An offset was assigned to all the elements that represent the skin-reinforcement
overlap region. The offset equals the difference of the two x-wise neutral planes, overlap and skin regions,
respectively. The material properties of the lamina (patch and skin) are given by

EL = 150000 MPa, ET = 8800 MPa, GLT = 4800 MPa, νLT = 0.35 , thickness= 0.2 mm.

The geometrical parameters are

lx = 100 mm, ly = 100 mm, lP = 40 mm, b = 20 mm.

The stacking sequences are

patch: [0/90/45/−45]S , skin: [0/90]S

The enforced boundary conditions are summarized in Table 1. The following sets of functions were
employed to model the compatibility stress function 9c and the eccentricity e2:

Xc,i = sin
iπx
lx
, Yc, j = sin

jπy
ly
, X i = 1− cos

iπ(lx−x)
2lx

, Y j = sin
jπy
ly
. (56)

The same set of eigenfunctions is used to model both the eccentricity and the components of the
in-plane flexibility A∗i j . A total of 10 eigenfunctions for each coordinate were employed to expand the
supplementary stress function and A∗i j . Similarly, 10 functions were used to calculate and express the
equilibrium stress function 9e.

�

� �

� �
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�

�

�
�

� � � �

� � � �

� � � �

Figure 3. Reinforced panel: geometry (left) and plant view (right).
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Degrees of freedom
Edge ux u y ϕx ϕy w

Load case A

a restrained restrained free — restrained
b free free — free restrained
c free restrained free — restrained
d free free — free restrained

Load case B

a restrained restrained free — restrained
b free restrained — free restrained
c free restrained free — restrained
d free restrained — free restrained

Table 1. Boundary conditions for in-plane stress field experiments.

The first comparison was carried out by imposing a negative unitary axial displacement to the edge
c (Figure 4, left). Edges b and d are free to displace in the y-direction. Analytical and FEM results are
reported in Figure 5, top. Boundary conditions are indicated in Table 1. For the second load case, a
negative unit axial displacement was again enforced to edge b, but this time the y-wise displacements
were restrained along the edges b and d . Results are reported in Figure 5, bottom.

Correlation between FEM and the proposed analytical model is generally very good for both cases.
The overlap region is characterized by a considerable amount of in-plane axial load Nx , significantly
larger than the far field applied load. Conversely, a noteworthy decrease of the axial load is observed in
the portions of the skin that are adjacent to the reinforcement. This result is approximately predicted by
assuming that the axial strains and displacements do not vary y-wise Appendix A, and it is confirmed
by finite element results.

We stress that the predicted axial load transfer at the reinforcement tip is slightly smoother than the
transfer calculated by finite element analysis. This is mostly caused by the generalized Fourier series
expansion used to model both the compatibility stress function 9c and the components of the in-plane
flexibility A∗i j and their partial derivatives.

!

"

#

$

%

&

!

"

#

$

Figure 4. Load cases for in-plane stress field experiments: pure compression (left) and
biaxial compression (right).
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Figure 5. In-plane stress resultant correlation. Top, load case A; bottom, load case B.
Left: sections AA and BB; right, section CC.

5. Model validation: convergence study and buckling loads

In order to validate the analytical calculation of critical buckling loads, a series of comparisons with
finite element analysis were carried out for five different load cases. The reference structure is the same
composite assembly previously analyzed in Section 4. The load cases studied are shown in Figure 6, and
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Figure 6. Load cases for buckling load study. Top: pure compression (left); biaxial
compression (middle); combined shear-compression (right). Bottom: combined shear-
compression with reverted shear (left); pure shear (right).

can be described as follows:

A. axial compression;

B. biaxial compression;

C. combined shear and axial compression, shear/compression ratio equal to 1 ;

D. combined shear and axial compression, shear/compression ratio equal to −1;

E. pure shear.

For each load case analyzed, corresponding boundary conditions are reported in Table 2. The eigen-
functions used to model the compatibility stress function 9c are

Xc,i = sin
iπx
lx
, Yc, j = sin

jπy
ly
. (57)

Since the in-plane stress field cannot be assumed to be uniaxial, the same number of eigenfunctions
was used for both the x- and y-directions (M = N ).

Furthermore, to quantify the degree of accuracy provided by making use of the supplementary stress
function, two different buckling analyses were carried out and compared with finite element results. The
relative efficiencies of both solution techniques: the equilibrium solution (43) or the equilibrated and
compatible solution (45) were assessed. Two different analytical solutions were calculated and compared
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Degrees of freedom
Edge ux u y ϕx ϕy w

Load case A

a restrained restrained free — restrained
b free free — free restrained
c free restrained free — restrained
d free free — free restrained

Load case B

a restrained restrained free — restrained
b free restrained — free restrained
c free restrained free — restrained
d free restrained — free restrained

Load case C

a restrained restrained free — restrained
b free free — free restrained
c free free free — restrained
d free free — free restrained

Load case D

a restrained restrained free — restrained
b free free — free restrained
c free free free — restrained
d free free — free restrained

Load case E

a restrained restrained free — restrained
b free free — free restrained
c free free free — restrained
d free free — free restrained

Table 2. Boundary conditions for buckling load experiments.

with finite element response. It is noted that the use of solution (43) does not require the compatibility
equation (49) to be solved. Hence, it is significantly more efficient in terms of calculation time. Yet, the
resultant stress function (45) is expected to be appreciably more accurate.

The first buckling analysis is done by solving (24) and calculating the critical minimum eigenvalues.
Expressions for in-plane stress resultants are given by

Nx =�,yy, Ny =�,xx , Nxy =−�,xy . (58)

The second analytical calculation was carried out by neglecting the compatibility equation and arrest-
ing the in-plane stress field calculation to the determination of the equilibrium stress function only. In
this latter case, the in-plane stress resultants are

Nx =9e,yy, Ny =9e,xx , Nxy =−9e,xy . (59)

Both the equilibrated and the equilibrated and compatible solutions were compared with finite element
responses. The finite element model is the same as that employed in the previous section. The critical
minimum eigenvalues found analytically were divided by the critical eigenvalues calculated by means of
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Figure 7. Convergence study: equilibrated and compatible solution (left); equilibrated
solution (right).

FEM and results are reported in Figure 7. The sensitivity of both solutions to the total number of functions
used to expand the transverse displacement and the compatibility stress function was studied to verify the
convergence rate. Both solutions converge with five or more eigenfunctions, but the convergence rate and
the accuracy obtained by employing the combined equilibrated and compatible solution are improved.
However, the degree of accuracy is more than acceptable for both cases.

A further comparison between the two solutions is presented. The error discrepancy is plotted against
the total time required to complete the analysis and results are reported in Figure 8. The error is defined as

error=
λmin− λmin,FEM

λmin,FEM
× 100%. (60)

Despite guaranteeing better degree of accuracy and faster convergence rates, the use of the compatibil-
ity stress function implies calculation times that are between 80% and 90% greater than the calculation
times required by solving the buckling problem making use of the equilibrium equation (27) only to
determine the in-plane stress field. In the equilibrated and compatible case (Figure 8, left), the error
induced is between −2.5% and 1.5% after 10 seconds of computation. In contrast, for the equilibrated
case (Figure 8, right), the error is stably confined within a broader range (−4% to 2.5%), but after 4
seconds only. However, the computational effort required by either solution is negligible compared to
those required by FEM, which were of more than 80 seconds per load case. (Naturally, the computation
times reported do not include model set-up, which is also much larger in the case of FEM analysis.)
The use of either solution techniques is shown to perform better than FEM. Of course, the degree of
accuracy achievable is excellent if employed in a preliminary sizing phase of an aircraft design, when
hundreds of load cases need to be analyzed. In such cases, a relatively simple parametric model may be
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Figure 8. Calculation times: equilibrated and compatible solution (left); equilibrated
solution (right).

more suitable than highly detailed analyses. It must be noted that, for each solution, at least half of the
calculation time is utilized in computing the G matrix, as defined in (21). This matrix does not depend on
the in-plane stress function, but only on the boundary condition assumed for the transverse displacement
w. Therefore this calculation is only required once, and need not be repeated for different external loads.

6. Interaction curves and sensitivity analysis

To assess the sensitivity of buckling loads and mode shapes to the geometrical parameters and to the
boundary conditions, additional analyses were carried out and compared with FEM. A typical aeronau-
tical panel was taken as a baseline. A skin and a T-shaped stringer characterize the composite assembly.
The stringer is run out as illustrated in Figure 9.
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Figure 9. Panel geometry.
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Geometry Configuration a b c d

Baseline

B1 SS SS SS SS
B2 C C C C
B3 SS C SS C
B4 C SS C SS

Table 3. Boundary conditions: SS = simply supported, C = clamped. (See Figure 9 for
the edge labels a–d .)

The geometrical parameters of the baseline are

lx = 300 mm, ly = 200 mm, lfoot = 200 mm, wfoot = 40 mm, hweb = 20 mm.

The stacking sequences are as follows (ply thickness = 0.2 mm in all cases):

skin: [0/45/90/0/−45/0/90]2S; foot: [0/45/0/90/0/−45/0]S; web: [0/45/0/90/0/−45/0]2S .

For convenience, the same material properties as the ones were assumed as in Section 4; we list them
again for convenience:

EL = 150000 MPa, ET = 8800 MPa, GLT = 4800 MPa, νLT = 0.35 , thickness= 0.2 mm.

The first series of comparisons were carried out in order to assess the effect of several different bound-
ary conditions. Several edge support configurations were studied, are listed in Table 3.

To assess the effect of flexural/twist anisotropy on buckling loads, the nondimensional parameters

δ =
D26

4
√

D11 D3
22

, γ =
D16

4
√

D3
11 D22

, β =
D12+ 2D66
√

D11 D22
(61)

(see [Weaver and Nemeth 2007]) were calculated for each subdomain, with results shown in Table 4.
The values of δ and γ are much less than 0.1, indicating that flexural/twist anisotropy effects are small
[Weaver and Nemeth 2007]. Furthermore, a value of β < 1 indicates relatively poor buckling performance
compared with the quasiisotropic lay-up. As such, the lay-ups used are not highly efficient with respect
to buckling resistance but do have relatively good axial strength characteristics (due to the relatively large
percentage of 0◦ plies).

Subdomain δ γ β

skin 0.03 0.0247 0.616
skin/foot 0.0153 0.0112 0.623

skin/foot/web 0.00063 0.00034 0.28

mean value 0.0283 0.0232 0.612

Table 4. Nondimensional parameters.
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For each configuration, the smallest buckling loads were analytically calculated for a variety of
shear/compression ratios and interaction curves were calculated and compared with finite element re-
sponses. Results are reported in Figure 10. Superposed are the values obtained from the interaction
formula Rx + R1.9+0.1β

s ≤ 1, derived in [Weaver and Nemeth 2008] for long orthotropic plates under
combined loading. Here x and s refer to the axial and shear load, respectively, and R represents the ratio
of critical load for the combined-loading state to critical value of the corresponding load acting alone.
Although this formula was not derived for buckling of panels with stringer run-outs under combined
loading, the close match with the present analysis is notable.
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Figure 10. Interaction curves for configurations B1–B4 (top left to bottom right).
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Comparisons show excellent correlation with FEM. However, a decrease of accuracy is noted with
respect to the first simple configuration analyzed in Section 5. The analytical calculation shows an overall
conservatism if compared with FEM, in the buckling loads prediction for configuration B1 (Figure 10,
top left), where the induced error in the calculation of the buckling load under pure compression is
negligible, while the shear buckling load is underestimated. In contrast, configurations B2 and B4 (right
column in 10) show excellent correlation for the buckling loads under pure compression, but increasingly
overpredict as the shear/compression ratio tends to zero. Finally, configuration B3 (Figure 10, bottom
left) shows overestimated compression-buckling loads and slightly underestimated shear-buckling loads.
However, it must be emphasized that the induced error is constant within the range −8% to +10% for
all of the examined configurations and for all of the shear/compression rations. Calculation times were
negligible and also possess the advantage provided by a fully parametric model. Finally, it is noted that
the use of different sets of functions to model the out-of-plane displacement may reduce the induced
error, but this analysis is beyond the scope of the present research.

Examples of analytically calculated mode shapes are provided in Figures 11 and 12 for there different
loading and boundary conditions. Comparisons with FEM show that the shapes are adequately captured
by the analytical model.

To assess the sensitivity of the panel’s buckling loads to the geometrical parameters, additional sensi-
tivity analyses were performed. In the first set of analyses, the effect of the panel length lx was studied.
Configurations B1 and B2 were analyzed and buckling loads were calculated under pure compression
loading condition. Results are reported in Figure 13.

Comparisons show that the average trend is reasonably captured by the analytical approach. However,
the effect of the panel x-wise length appears to be smoother in the analytical predictions than in FEM.
For configuration B1, in the range of lx between 300 mm and 250 mm, the buckling loads decrease as the
total length decreases. The trend is then reversed in the lower range (lx between 250 mm and 200 mm).
With reference to Figure 9, mode shapes are plotted x-wise along the central Section AA. Results are
reported in Figure 14. A noticeable change in the mode shapes occurs when the length varies from
300 mm to 260 mm (first three parts of Figure 14). While for long panels a buckling mode could occur
which is localized in the skin in front of the run-out tip (Figure 14, top left), as the length decreases
the buckling of the panel alters from a more localized mode involving part of the panel only (the skin
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Figure 12. First buckling mode for configuration B2 under pure compression (top) and
under combined shear and compression, ratio = 1 (bottom). Left: model; right: FEM.
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beyond the stiffener tip), to a more global phenomenon involving the stiffener. In this phase, the effective
free x-wise length panel increases, hence a reduction of the buckling loads is observed. As the length
continues to decrease, the buckling modes remain self-similar (that is, a global buckling mode with a
single x-wise half wave) and the buckling loads increase (last three parts of Figure 14.) The buckling
localisation for larger length is also believed to cause the interaction curve to significantly deviate from
the formula proposed in [Weaver and Nemeth 2008], as seen in Figure 10, top left.
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Figure 14. Mode I shapes (section AA) for panel B1 of x-wise lengths equal to 300,
280, 260, 240, 220 and 200 mm.
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For configuration B2, the buckling loads increase almost linearly as the panel length decrease; the
deformations are shown in Figure 15. When the length varies from an initial value of 300 mm to 260 mm,
the buckling modes appear to be self-similar; therefore the buckling loads increase as the length decreases.
As the length continues to decrease, a change in the mode shape occurs. Again, the buckling of the panel
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Figure 15. Mode I shapes (section AA) for panel B2 of x-wise lengths equal to 300,
280, 260, 240, 220 and 200 mm.
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Figure 16. Buckling load sensitivity to web height.

alters from a two x-wise half waves phenomenon (more accentuated in the skin beyond the stiffener tip),
to a more global phenomenon also involving the stiffener. The buckling loads then increase as the length
decreases. The increase takes place at a smaller rate (Figure 13) as the amount of energy required to
include the effects of the stiffener in the global deformation increases.

In the second set of analyses, the effect of the web height hweb was studied. Configurations B1
was analyzed in a first step and buckling loads were calculated under pure compression and pure shear
loadings. Results are reported in Figure 16, left. A second set of analyses was carried out. The effect
of hweb was assessed in configuration B2 under pure compression and with two different panel lengths:
lx = 300 mm (baseline geometry) and lx = 200 mm. Results are reported in Figure 16, right. Comparison
with FE analyses show that the trend is well captured by the analytical approach. It must be emphasized
that, for configuration B2, short panels are significantly more sensitive to the web height than long panels
(Figure 16, right). In fact, as already seen in Figure 15, the buckling modes of panels with lengths between
300 mm and 250 mm are characterized by two half waves with an accentuated transverse displacement
that is localized in the free skin region in front of the stringer termination. For lengths that are below
250 mm, the panel buckles in to mode shapes, which are more global, that is, the web is characterized
by increased transverse displacements. Therefore short panels are more sensitive to the web height than
corresponding long configurations.

7. Discussion

The results presented in Section 6 generally show more than acceptable agreement between analysis
and FEM. As shown in Figures 10–12, the present analysis guarantees good level of accuracy both in
terms of buckling interaction curves and mode shape calculation. Although the method is in some cases
slightly nonconservative (if compared to FEM) with regards to the calculation of buckling loads in pure
compression, there is significant merit for the method in comparison with FEM.
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(1) In preliminary phases of aircraft design, there is an objective need for simple analytical solutions that
guarantee considerable reduction of computational effort. There are often many (often extending to
hundreds) of load cases to consider as well as optimisation studies to be done. Currently, FEM is
too computationally expensive to be employed for all load cases and optimisation studies, except
for particular exemplar cases. The slight nonconservative nature of some of the results does not
pose a significant problem for practical use by industry because predictions that are slightly non-
conservative are factored by subsequent introduction of statistical and environmental knockdown
factors.

(2) Despite the fact that FEM is able to provide realistic predictions, the large computational times
associated in conjunction with the rather significant sensitivity of the results to the mesh size dis-
courage its use as main tool for at least preliminary phases of aircraft design. In the present study no
sensitivity analyses were undertaken to show that FEM predictions had converged and the mesh size
was chosen based on the authors’ engineering judgment (ref. to Figures 11 and 12). The employed
mesh appears to be sufficiently refined to offer reasonably acceptable results within computational
times, which are suitable for the purpose of this study. It is realistic to expect the use of more
refined meshes for industrial purposes, which lead to much larger computational effort and time.
The present analysis shows that computational times are already more than 10 times smaller than
the ones associated with the use of coarse, two-dimensional FEM. This difference in analysis speed
would be exacerbated if a more refined mesh were used, especially in conjunction with a fully
three-dimensional model.

For the reasons described above, the present analysis is suitable for preliminary design calculations.
To the best of our knowledge there are no analytical methods available in the literature, which predict the
in-plane loads redistribution due to the presence of an incomplete stiffener terminated mid-bay along the
bay length—a problem of significant interest to aircraft designers. It is recognized that further potential
exploitations of the present analysis are also possible. For example, in cobonded and cocured composite
assemblies, interlaminar shear stresses arising within the bond-line enable in-plane load transfer from the
skin to the skin/stringer section. An extended model that also includes transverse shear stresses could
be implemented and employed in conjunction with the present approach in order to provide fast and
accurate calculation of interlaminar stresses.

8. Conclusions

A meshless approach was developed and used to predict local and global buckling of discretely assembled
multibay composite panels made from skin and stiffeners. Numerical results obtained are compared with
finite element analysis and show very good correlation in terms of in-plane loads distribution and buckling
loads calculation. The use of either solution (equilibrated, and equilibrated and compatible) found for
in-plane linear equilibrium appears to offer noteworthy level of accuracy and remarkable efficiency and
flexibility compared with complementary finite element calculations. A robust and efficient method for
quick evaluation of buckling loads of composite panels with stringer run-outs is presented. If used for
industrial purposes, the accuracy could be further improved by defining knockdown factors in order to
render conservative predictions.
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Appendix A. Condensation of stringer properties

Consider a composite I-beam is used as stiffener on a composite skin, as shown in the figure:
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As before, the width of the panel field equals the foot width. We need to assign an equivalent thickness
and an equivalent local lamina stiffness matrix Qeq to the equivalent layer that represents the stiffener.
Therefore, we need to properly assess five quantities: the equivalent thickness teq, the equivalent stiff-
nesses Eeq

x and Eeq
y in the x- and y-directions, the equivalent shear modulus Geq

xy in the y-direction, and
the equivalent Poisson’s ratio νeq

xy .
If x is the direction of the main stiffener dimension, Eeq

x and teqare calculated by deriving the global
axial (EAtot) and bending (E Itot) of the T-beam formed by the web and upper flange, and then imposing
the conditions

EAtot = Eeq
x bfootteq, E Itot = Eeq

x
1
12 bfoott3

eq. (A.1)

The equivalent elastic modulus in the y-direction, orthogonally to the direction of the main stiffener
dimension, can be set equal to zero. In fact, it is straightforward to demonstrate that, apart from the
lower flange, the remaining part of the stringer does not contribute significantly if in-plane y-loads or
transverse y bending moments are applied

Eeq
y
∼= 0. (A.2)

The equivalent shear modulus is calculated as

Geq
xy =

1
bfootteq

nflanges∑
k=1

Gxy,k Ak, (A.3)

where nflanges is the total number of flanges, Gxy,k is the shear modulus of the k-th flange, and Ak is the
area of k-th flange.

Note that formula (A.3) neglects the contribution of the vertical webs. Therefore the formula is appro-
priate if thin walled beams are used as stiffeners. The Poisson’s ratios are derived from the assumption
that the portion of the stiffener that lies on top of the skin but not directly in contact with it (namely the
web and upper flange, see figure) does not affect the effective structural Poisson’s ratio when axial loads
in x-direction are applied. Hence, the Poisson’s ratio νeq

xy equals the Poisson’s ratio of the lower flange.
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Appendix B. Derivation of the edge loads

To determine the expansion coefficients An and Bn , the in-plane unit width loads Nxi are assumed to
be constant within each subdomain, which may be represented as a spring with a concentrated stiffness.
The whole domain is schematized as a system of springs in series and in parallel (Figure A.1, right),
which can be reduced to a single equivalent spring constant:

keq =
k1(k2+ k3+ k4)

k1+ k2+ k3+ k4
. (B.1)

The axial flows Nxi are calculated throughout the domain under the assumption that every straight
line parallel to the y-axis remains straight after the deformation. This assumption does not represent the
real strain field throughout the panel’s domain. Nonetheless, since only the stress field at the boundary
is of interest at this stage, the assumption of discrete variation of Nx is not restrictive if stringer length
is sufficiently large. In such a case, the skin-to-stiffener load transfer is already completed far from
the boundary, and we can assume that the uniform axial (x-wise) strain condition is reestablished. An
example calculation is provided here.

For convenience, we consider a geometry formally identical to the skin-patch composite assembly of
Sections 4 and 5. We apply a constant axial flow Nx,1 on the free edge of the panel (Figure A.1, left).
The total force acting is therefore Ftot = Nx1ly . The total axial displacement is calculated as

δtot =
Ftot

keq
, (B.2)

where keq is as in (B.1), with spring constants given by

k1 =
ly

A′11,1

1
lx−lP

, k2 =
l2

A′11,2

1
lP
, k3 =

l3

A′11,3

1
lP
, k4 =

l4

A′11,4

1
lP
. (B.3)

To calculate how the total force distributes into the springs 1, 2, and 3, the axial displacement δ234

calculated at x = lP is first derived; it equals δ234 = δtot F1/k1, where F1 = Ftot. The force distribution is
now given by Fi = kiδP , for i = 2, 3, 4. The x-wise axial flows are given by

Nxi = Fi/li .
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Figure A.1. Domain schematisation and system reduction scheme.
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List of symbols

u0, v0 in-plane displacement of neutral plane in x and y directions
w out-of-plane displacement
εx , εy , εxy in-plane strains
ε0

x , ε0
y , ε0

xy in-plane strains at neutral plane level
e neutral plane function
lx , ly length and width of panel
N , M unit width stresses and bending moments vectors
A, D laminate in-plane and transverse stiffness matrices
B laminate coupling stiffness matrix
9 equilibrium stress function for uniform loading
19 equilibrium stress function for perturbation loading
9e equilibrium stress function
9c compatibility stress function for perturbation loading
� stress function
X , Y , X , Y beam eigenfunctions
ϕ j transverse displacement eigenfunctions
ϕ j transverse displacement eigenfunctions
9 j stress function eigenfunctions
Nx,o, Ny,o, Nxy,o external in-plane loads per unit width
Nx , Ny , Nxy internal in-plane loads per unit width
wi generalized coordinates of the displacement function
ei generalized coordinates of the neutral plane function
ξ j generalized coordinates of the Airy stress function
u generalized coordinates vector
U internal elastic potential energy
�N ,L linear component of the total potential of internal in-plane loads
�N ,N L nonlinear component of the total potential of internal in-plane loads
�N total potential of internal in-plane loads
5L linear component of total potential
5N L nonlinear component of total potential
5 total potential
�Q potential of external transverse loads
A∗, D∗ matrices of in-plane and flexural flexibility in partially inverted laminate

constitutive equations
B∗ coupling matrix in partially inverted laminate constitutive equations
Q vector defined in (19)
G, H , H matrices defined in (21), (22), and (23)
0x , 0y , 0xy circulation functions
φn weight functions
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