
Journal of

Mechanics of
Materials and Structures

A TWO-TEMPERATURE GENERALIZED THERMOELASTIC
MEDIUM SUBJECTED TO A MOVING HEAT SOURCE AND

RAMP-TYPE HEATING:
A STATE-SPACE APPROACH

Hamdy M. Youssef

Volume 4, Nº 9 November 2009

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 4, No. 9, 2009

A TWO-TEMPERATURE GENERALIZED THERMOELASTIC MEDIUM
SUBJECTED TO A MOVING HEAT SOURCE AND RAMP-TYPE HEATING:

A STATE-SPACE APPROACH

HAMDY M. YOUSSEF

We construct a model of two-temperature generalized thermoelasticity for an elastic half-space with
constant elastic parameters. The Laplace transform and state-space techniques are used to obtain the
general solution for any set of boundary conditions. The general solution obtained is applied to the
specific problem of a half-space subjected to a moving heat source with constant velocity and ramp-type
heating. The inverse Laplace transforms are computed numerically. The effects of different values of the
heat source velocity, the two-temperature parameter, and the ramping time parameter are compared.

A list of symbols can be found on page 1648.

1. Introduction

P. J. Chen and collaborators [Chen and Gurtin 1968; Chen and Williams 1968; Chen et al. 1969] formu-
lated a theory of heat conduction in deformable bodies, which depends upon two temperatures: the con-
ductive temperature ϕ and the dynamical temperature T . For time-independent situations, the difference
between these two temperatures is proportional to the heat supply. In the absence of any heat supply, the
two temperatures are identical [Chen and Gurtin 1968]. For time-dependent problems, however, and for
wave propagation problems in particular, the two temperatures can be different regardless of the presence
of a heat supply. The two temperatures, T and ϕ, and the strain are found to have representations in the
form of a traveling wave plus a response, which occurs instantaneously throughout the body [Boley and
Tolins 1962].

Warren and Chen [1973] investigated the wave propagation in the two-temperature theory of ther-
moelasticity. In [Youssef 2006b] we investigated this theory in the context of the generalized theory of
thermoelasticity.

In most earlier studies, mechanical or thermal loading on the bounding surface is considered to be in
the form of a shock. However, the sudden jump in the load is merely an idealized situation, because it is
impossible to realize a pulse described mathematically by a step function; even a very rapid rise time (on
the order of 10−9 s) may be slow in terms of the continuum. This is particularly true in the case of second
sound effects when the thermal relaxation times for typical metals are less than 10−9 s. It is thus felt that
a finite rise time of the external load (mechanical or thermal) applied on the surface should be considered
while studying a practical problem of this nature. Considering this aspect of rise time, Misra et al. [1991a;
1991b; 1992] solved some problems involving ramp-type heating. In [Youssef 2005] we used the state-
space approach to solve the generalized thermoelasticity problem of an infinite material with a spherical

Keywords: generalized thermoelasticity, two-temperature, heat source, ramp type.

1637

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2009.4-9


1638 HAMDY M. YOUSSEF

cavity and variable thermal conductivity subjected to ramp-type heating. Later we found the solutions of
the problem of a generalized thermoelastic infinite medium with a cylindrical cavity subjected to a ramp-
type heating and loading [2006a] and the two-dimensional generalized thermoelasticity problem for a
half-space subjected to ramp-type heating [2006c]. In [Youssef and Al-Lehaibi 2007] we used the state-
space approach in the problem of two-temperature generalized thermoelasticity while in [Bassiouny and
Youssef 2008] we solved the two-temperature generalized thermopiezoelasticity problem of a finite rod
subjected to different types of thermal loading. In [Youssef 2008] solved the two-dimensional problem
of a two-temperature generalized thermoelastic half-space subjected to ramp-type heating. Al-Huniti
et al. [2001] discussed the dynamic response of a rod due to a moving heat source under the hyperbolic
heat conduction model.

Here we consider a half-space filled with an elastic material with constant elastic parameters. The
governing equations are written in the context of two-temperature generalized thermoelasticity theory.
A moving heat source with constant velocity is applied to the medium. Laplace transforms and state-
space techniques are used to obtain the general solution for any set of boundary conditions. The general
solution obtained is applied to a half-space subjected to ramp-type heating with a traction-free bounding
plane. The inverse Laplace transforms are computed numerically using the Riemann sum approximation
method. The effects of the heat source velocity, the two-temperature parameter, and the ramping time
parameter are estimated.

1.1. Formulation of the problem. According to our model, the heat conduction equation takes the form
[Youssef 2006b]

Kϕ,i i =
(
∂
∂t
+ τ0

∂2

∂t2

)
(ρCEθ + γT0e)−

(
1+ τ0

∂
∂t

)
Q, i = 1, 2, 3. (1)

The constitutive equations take the form

σi j = 2µei j + λekkδi j − γθδi j , i = 1, 2, 3, (2)

where δi j is the Kronecker delta function
The equations of motion without body forces take the form

σi j , j = ρüi , i = 1, 2, 3. (3)

The relation between the heat conduction and the thermodynamic heat takes the form

ϕ− T = aϕ,i i , i = 1, 2, 3, (4)

where a is a nonnegative parameter called the two-temperature parameter [Youssef 2006b].
Now, we will suppose an elastic and homogeneous half-space x ≥ 0 which obeys Equations (1)–(4)

and is initially quiescent, where all the state functions depend only on the dimension x and the time t .
The displacement components for a one-dimensional medium have the form

ux = u(x, t), u y = uz = 0. (5)

The strain component takes the form

e = exx =
∂u
∂x
. (6)
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The heat conduction equation takes the form

K ∂
2ϕ
∂x2 =

(
∂
∂t
+ τ0

∂2

∂t2

)
(ρCE T + γT0e)−

(
1+ τ0

∂
∂t

)
Q. (7)

The constitutive equation takes the form

σxx = σ = (2µ+ λ)e− γ(T − T0). (8)

The equation of motion takes the form
∂2σ
∂x2 = ρ

∂2e
∂t2 . (9)

The relation between the heat conduction and the thermodynamic heat takes the form

ϕ− T = a ∂
2ϕ
∂x2 . (10)

For simplicity, we will use the nondimensional variables

x← c0ηx, ι← c2
0ηι, τ0← c2

0ητ0, θ←
θ
T0
, ϕ←

ϕ
T0
, σ ←

σ
2µ+λ

, Q← Q
K0c2

0η
2T0

,

where
c2

0 =
2µ+λ
ρ

, η =
ρCE

K
.

Hence, we have the system of equations

∂2ϕ
∂x2 =

(
∂
∂t
+ τ0

∂2

∂t2

)
(θ + εe)−

(
1+ τ0

∂
∂t

)
Q, σ = e− bθ,

∂2σ

∂x2 =
∂2e
∂t2 , ϕ− θ = β

∂2ϕ

∂x2 , (11)

where
ε =

γ
ρCE

, b = γT0
λ+2µ

, β = ac2
0η

2.

Applying the Laplace transform

f̄ (s)=
∫
∞

0
f (t)e−st dt

to the equations in (11), we obtain

d2ϕ̄

dx2 = (s+ τ0s2)θ̄ + (s+ τ0s2)εē− (1+ τ0s)Q̄. (12)

We consider that the medium is subjected to a moving heat source of constant strength releasing its
energy continuously while moving along the x-axis in the positive direction with a constant velocity v.
This moving heat source is assumed to be of the nondimensional form [Al-Huniti et al. 2001]

Q = Q0δ(x − vt), (13)

where Q0 is the constant heat source strength and δ is the delta function.
After using a Laplace transformation, we get

Q̄ = ` exp
( s
v

x
)
, `=

Q0

v
. (14)
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To simplify the notation we set h = s
v

. Then we have

d2ϕ̄

dx2 = (s+ τ0s2)θ̄ + (s+ τ0s2)εē− (1+ τ0s)`e−hx , (15)

σ̄ = ē− bθ̄ ,
d2σ̄

dx2 = s2ē, θ̄ = ϕ̄−β
d2ϕ̄

dx2 , (16)

where all the initial state functions are equal to zero.
Eliminating ē and θ̄ from these equations, we obtain

d2ϕ̄

dx2 = (1+ εb)sα1ϕ̄+ sεα1σ̄ − `α1e−hx , where α1 =
1+ τ0s

1+β(s+ τ0s2)(1+ bε)
, (17)

and
d2σ̄

dx2 = α2σ̄ +α3ϕ̄+α4`e−hx , (18)

where
α2 = s2(1−βεsbα1), α3 = s2b

(
1−βsα1(1+ bε)

)
, α4 = s2bβα1.

Then, we have
θ̄ =

(
1−βsα1(1+ bε)

)
ϕ̄−βεsα1σ̄ +βα1`e−hx . (19)

2. State-space approach

Choosing as state variables the temperature of heat conduction ϕ̄ and the stress component σ̄ in the
x-direction, equations (18) and (19) can be written in matrix form as

d2V (x, s)
dx2 = A(s)V (x, s)+ F(s)e−hx , (20)

where

V (x, s)=
[
ϕ̄(x, s)
σ̄ (x, s)

]
, A(s)=

[
s(1+ bε)α1 sεα1

α3 α2

]
, F(s)=

[
−`α1

`α4

]
.

Solutions of (20) that remain bounded for large x (that is, not involving diverging exponentials) can be
written as

V (x, s)= exp
(
−

√
A(s) x

)
C(s)+ D(s)e−hx , (21)

where C(s)=
[

C1(s)
C2(s)

]
is to be determined, and D(s)=

[
D1

D2

]
=
(
h2 I − A(s)

)−1 F(s), with I =
[

1 0
0 1

]
.

We will use the Cayley–Hamilton theorem to find the matrix exp
(
−
√

A(s) x
)
. The characteristic

equation of A(s) is

k2
− k

(
s(1+ bε)α1+α2

)
+α1s

(
(1+ bε)α2− εα3

)
= 0; (22)

that is, the characteristic roots k1 and k2 satisfy

k1+ k2 = s(1+ bε)α1+α2, k1k2 = s(1+ bε)α1α2− sεα1α3. (23)
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Next we write the spectral decomposition of A(s) in terms of the projectors E1 and E2 of A(s) (see
[Cullen 1972] for details):

A(s)= k1 E1+ k2 E2 (24)

By definition, the projectors satisfy E1+ E2 = I , E1 E2 = E2 E1 = 0, and E2
i = Ei for i = 1, 2. Thus

AE1 = k1 E2
1 + k2 E2 E1 = k1 E1. (25)

Similarly, AE2 = k2 E2, so A(I − E1) = k2 I − k2 E1. Adding this latter equation to (25) we obtain
A = k2 I + (k1− k2)E1, which is to say, E1 = (A− k2 I )/(k1− k2). Taking into account (23) to achieve
simplifications, and following a similar reasoning for E2, we reach the explicit form of the projectors:

E1 =
1

k1−k2

 k1−α2 sεα1

(α2−k2)(k1−α2)
sεα1

α2−k2

 , E2 =
1

k1−k2

 α2− k2 −sεα1

(α2−k2)(α2−k1)
sεα1

k1−α2

 . (26)

The matrix
√

A(s) has the same projectors as A(s) and its characteristic roots p1, p2 are given by
p1 =
√

k1 and p2 =
√

k2. That is,

B(s) :=
√

A(s)=
√

k1 E1+
√

k2 E2 =
A+
√

k1k2 I
√

k1+
√

k2
=

1
√

k1+
√

k2

[√
k1k2+ s(1+bε)α1 sεα1

α3
√

k1k2+α2

]
.

Thus the matrix exponential in (21) is given by

exp
(
−

√
A(s) x

)
= exp

(
−B(s) x

)
=

∞∑
n=0

(
−B(s)x

)n

n!
. (27)

By the Cayley–Hamilton theorem, the positive powers of B are linear combinations of I and B. Thus,
the infinite series in (27) is of the form

exp
(
−B(s)

)
= b0(x, s) I + b1(x, s)B(s), (28)

where b0 and b1 are coefficients depending on s and x . To find these coefficients, note that the charac-
teristic roots p1 and p2 of B satisfy

e−p1x
= b0+ b1 p1, e−p2x

= b0+ b1 p2. (29)

Solving this linear system, we get b0 =
1

p1− p2

(
p1e−p2x

− k2e−p1x
)

and b1 =
1

p1− p2

(
e−p1x

− e−p2x
)
.

Hence the entries of the matrix

exp
(
−B(s) x

)
= L i j (x, s) i, j = 1, 2,

are given by

L11 =
(k1−α2)e−

√
k1 x
− (k2−α2)e−

√
k2 x

k1− k2
, L12 =

sεα1(e−
√

k1 x
− e−

√
k2 x)

k1− k2
,

L22 =
e−
√

k1 x(α2− k2)− e−
√

k2 x(α2− k1)

k1− k2
, L21 =

α3(e−
√

k1 x
− e−

√
k2 x)

k1− k2
.
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Similarly,

D1 =
`α1(α2+ sεα4− h2)

(h2− k1)(h2− k2)
, D2 =

`
(
h2α4−α1α3−α1α4s(1+ bε)

)
(h2− k1)(h2− k2)

.

We can write the solution (21) in the form[
ϕ̄(x, s)
σ̄ (x, s)

]
=

[
L11(x, s) L12(x, s)
L21(x, s) L22(x, s)

][
C1(s)
C2(s)

]
+

[
D1(s)
D2(s)

]
e−hx . (30)

To get C1 and C2 we set x = 0 on the last equation, and we get[
ϕ̄(0, s)
σ̄ (0, s)

]
=

[
L11(0, s) L12(0, s)
L21(0, s) L22(0, s)

][
C1(s)
C2(s)

]
+

[
D1(s)
D2(s)

]
,

which gives [
C1(s)
C2(s)

]
=

[
ϕ̄(0, s)
σ̄ (0, s)

]
−

[
D1(s)
D2(s)

]
. (31)

Hence, for any set of boundary conditions, we have

ϕ̄(x, s)=
(
ϕ̄(0, s)− D1

)
L11(x, s)+

(
σ̄ (0, s)− D2

)
L12(x, s)+ D1e−hx ,

σ̄ (x, s)=
(
ϕ̄(0, s)− D1

)
L21(x, s)+

(
σ̄ (0, s)− D2

)
L22(x, s)+ D2e−hx .

(32)

3. Application

We now consider the boundary conditions on the boundary plane x = 0, which are of two forms:

(1) Thermal boundary condition. We suppose that the boundary plane x = 0 is subjected to ramp-type
heating as follows [Youssef 2005]:

ϕ(0, t)=


0 if t ≤ 0,

ϕ0
t
t0

if 0< t < t0,

ϕ0 if t ≥ t0,

(33)

where t0 is called the ramping parameter and ϕ0 is constant. After Laplace transformation, we get

ϕ̄(0, s)=
ϕ0(1− e−st0)

s2t0
. (34)

(2) Mechanical boundary condition. We consider the boundary plane x = 0 traction-free, so σ(0, t)= 0,
which gives, after Laplace transformation,

σ̄ (0, s)= 0. (35)

Applying (34) and (35) to (32) we get the solution for the heat conduction and stress x-component in
the Laplace transform domain:

ϕ̄(x, s)= ϕ1(s)e−
√

k1 x
−ϕ2(s)e−

√
k2 x
+ D1(s)e−hx ,

σ̄ (x, s)= σ1(s)e−
√

k1 x
− σ2(s)e−

√
k2 x
+ D2(s)e−hx ,

(36)
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where

ϕ1(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
(k1−α2)− sεα1 D2

]
,

ϕ2(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
(k2−α2)− sεα1 D2

]
,

σ1(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
α3− D2(α2− k2)

]
,

σ2(s)=
1

k1− k2

[(ϕ0(1− e−st0)

s2t0
− D1

)
α3− D2(α2− k1)

]
.

By substituting the expressions (36) into (19), we obtain

θ̄ (x, s)= (1−βk1)ϕ1(s)e−
√

k1 x
− (1−βk2)ϕ2(s)e−

√
k2 x
+ (1−βh2)D1(s)e−hx . (37)

From (16)2 and by using (36)2, we obtain the displacement:

ū(x, s)=−
1
s2

(
σ1(s)

√
k1e−

√
k1 x
− σ2(s)

√
k2e−

√
k2 x
+ D2(s)he−hx). (38)

This completes the solution in the Laplace transform domain.

4. Numerical inversion of the Laplace transform

To determine numerically the conductive and thermal temperature, displacement, and stress distributions
in the time domain, we used the Riemann sum approximation method. In this method, a function in the
Laplace domain is inverted to the time domain through the sum

f (t)= eκt

t

[
1
2

f̄ (κ)+Re
N∑

n=1

(−1)n f̄
(
κ +

inπ
t

)]
, (39)

where Re is the real part and i is the imaginary number unit. For faster convergence, numerical experi-
ments have shown that the value of κ should satisfy the relation κt ≈ 4.7 [Tzou 1997].

5. Numerical results and discussion

Copper was chosen as the material for the numerical evaluations. The constants of the problem (see
[Bassiouny and Youssef 2008]) were as follows:

K = 386 N/K sec, αT = 1.78× 10−5 K−1, CE = 383.1 m2/K, η = 8886.73 m/sec2,

µ= 3.86× 1010 N/m2, λ= 7.76× 1010 N/m2, ρ = 8954 kg/m3, τ0 = 0.02 sec,

T0 = 293 K, ε = 1.618, β = 0.01, b = 0.01041.

The computations were carried out for t = 0.2 and ϕ0= 1.0. The conductive temperature, the dynamical
temperature, the stress and the displacement distributions are represented graphically with respect to x .
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Figure 1. The conductive heat distribution at different values of the heat source velocity.
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Figure 2. The thermodynamic heat distribution at different values of the heat source velocity.
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Figure 3. The displacement distribution at different values of the heat source velocity.
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Figure 4. The stress distribution at different values of the heat source velocity.
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Figure 5. The conductive heat distribution at different values of the ramp time parameter.
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Figure 6. The thermodynamic heat distribution at different values of the ramp time parameter.
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Figure 7. The displacement distribution at different values of the ramp time parameter.
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Figure 8. The stress distribution at different values of the ramp time parameter.
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Figure 9. The conductive heat distribution for the L–S and Youssef models.
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Figure 10. The thermodynamic heat distribution for the L–S and Youssef models.
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Figure 11. The displacement distribution for the L–S and Youssef models.
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Figure 12. The stress distribution for the L–S and Youssef models.
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Figures 1–4 display the conductive heat, the thermodynamic heat, the displacement, and the stress
distributions at different values of heat source velocity v (v = 2.0, v = 3.0 and v = 4.0) to show its
effect, where we have noticed that the heat source velocity parameter v has a significant effect on all the
fields. The peak values of the conductive heat, the thermodynamic heat, and the stress are found at the
points when x = vt (x = 4.0, x = 6.0 and x = 8.0) which mean that the heat source releases its maximum
energy at the point x = vt and just after this point the values of that fields decrease with high speed.

Figures 5–8 display the conductive heat, the thermodynamic heat, the displacement, and the stress
distributions at constant velocity of heat source v= 3.0 and different values of the ramping time parameter
t0 (t0 = 0.1, t0 = 0.2, and t0 = 0.3). The figures show that this parameter has significant effect on all
the fields. The conductive heat and the thermodynamic heat decrease when the value of t0 increases and
the absolute values of the displacement and the stress also decrease when the value of t0 increases. This
gives this type of heating real character, more than the thermal shocks in previous works.

Figures 9–12 display the conductive heat, the thermodynamic heat, the displacement, and the stress
distributions at constant velocity of heat source v = 3.0 and constant value of the ramping time parameter
t0 = 0.1 but with different values of the nondimensional two-temperature parameter β (β = 0.0 and
β = 0.01). This shows the difference between the one temperature generalized thermoelasticity of Lord
and Shulman (L–S) and the two-temperature generalized thermoelasticity of Youssef. We can see the
significant effect of that parameter on all the fields.

The phenomenon of finite speeds of propagation is manifest in all these figures. This is expected,
since the thermal wave travels with a finite velocity. It should be mentioned that in Figures 1, 2, 5, 6, 9
and 10 the effects of the ramp-type heating on x = 0 of the half-space remain in a bounded region of
space in the two generalized theories (Youssef and L–S) and do not reach infinity instantaneously.

Nomenclature

λ,µ Lamé constants K thermal conductivity
ρ density τ0 relaxation times
CE specific heat at constant strain c0 longitudinal wave speed ( =

√
(λ+ 2µ)/ρ)

t time η thermal viscosity, = ρCE/K
T dynamical temperature ε dimensionless thermoelastic coupling constant
T0 reference temperature ( = γ/(ρCE))
θ dynamical temperature increment ( = T− T0) a two-temperature parameter, a > 0
ϕ conductive temperature β dimensionless two-temperature parameter
αT coefficient of linear thermal expansion ( = ac2

0η
2)

γ equal to αT (3λ+ 2µ) b dimensionless mechanical coupling constant
σi j components of stress tensor ( = γT0/(λ+ 2µ))
ei j components of strain tensor t0 ramping parameter
ui components of displacement vector v heat source velocity
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