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THIRD-ORDER SHEAR DEFORMATION THEORY FOR STRESS ANALYSIS
OF A THICK CONICAL SHELL UNDER PRESSURE

HAMID REZA EIPAKCHI

The stresses and displacements of a thick conical shell with varying thickness under nonuniform internal
pressure have been calculated analytically using third-order shear deformation theory. The governing
equations, which are a system of differential equations with variable coefficients, have been solved
analytically with the matched asymptotic expansion of the perturbation theory. The effects of higher-
order approximations on the radial and axial displacements, von Mises stress, and shear stress have been
studied. The results have been compared with the finite elements analysis.

1. Introduction

Shear deformation theory is a popular model in structural analysis. The displacement field is assumed
as a polynomial of the thickness variable (z), which results in a system of differential equations without
parameter z. By increasing the number of terms in the polynomial functions, it is possible to improve
the approximate solution. Obviously, this leads to systems of differential equations which are more
complex. The general form for displacement components in shear deformation theory is U (x, y, z)=∑n

i=0 ui (x, y)zi where U (x, y, z) is the displacement component and ui (x, y) are unknown functions of
the coordinates. For i = 1, one obtains first-order shear deformation theory (FSDT); i = 2 corresponds
to second-order shear deformation theory (SSDT), and i = 3 gives third-order shear deformation theory
(TSDT).

Although higher-order shear deformation theories can be used in the analysis of conical shells as well,
most reported studies in this field are based on the classical theory of shells or the three-dimensional the-
ory of elasticity and the governing equations have been solved numerically. Sundarasivarao and Ganesan
[1991] analyzed a conical shell subjected to uniform internal pressure and various boundary conditions
to find an optimum thickness variation by the finite element (FE) method. Sivadas and Ganesan [1991]
studied the effects of thickness variation on the natural frequencies of laminated conical shells using a
semianalytical FE method and Love’s first approximation thin shell theory.

Panferov [1992] used the method of successive approximations and a perturbation of the shape of
the boundary to determine the stress state of thick-walled conical isotropic shells with constant thickness
subjected to thermal loading. Thambiratnam and Zhuge [1993] presented a simple FE method for the axi-
symmetric free vibration analysis of conical shells with uniform or varying wall thickness. Tong [1994]
extracted equilibrium equations for the free vibration of composite laminated conical shells including
transverse shear deformation and extension-bending coupling using a particularly convenient coordinate
system. The solutions for the governing equations are in the form of a power series. Tavares [1996]
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determined the stresses, strains, and displacements of a thin conical shell with constant thickness and
axisymmetric load by the construction of a Green’s function for the homogeneous differential equation
based on bending theory. Buchanan and Wong [2001] employed FE analysis to study the vibration of
truncated thick hollow cones, using three-dimensional strain-displacement equations in a conical coordi-
nate system.

Cui et al. [2001] introduced a new variable transformation to solve the basic governing differential
equations for conical shells. By neglecting quantities with order of magnitude of h/R, the authors
transformed the basic governing differential equations for conical shells into a second-order differential
equation with complex coefficients. This equation has an accurate solution which is simpler than the exact
solution because it does not use Bessel functions. Wu and Chiu [2002] investigated thermally induced
dynamic instability of laminated composite conical shells subjected to static and periodic thermal loads
by means of the multiple scales method of perturbation theory. Correia et al. [2003] presented a numerical
method for the structural analysis of laminated conical shell panels using a quadrilateral isoparametric FE
based on higher-order shear deformation theory. The displacement expressions used for the longitudinal
and circumferential components of the displacement field were given by power series and a condition of
zero stress on the top and bottom surfaces of the shell was imposed.

Garg et al. [2006] presented a FE model based on a TSDT for free vibration analysis of laminates.
He concluded that applying the shear correction factor is not necessary. Ramesh et al. [2008] derived
a triangular plate element based on higher-order shear deformation theory with superior performance
through bending analysis of plates and examining the distribution of the stress resultants.

In this paper, displacements and stresses of a thick conical shell with varying thickness subjected
to nonuniform internal pressure have been calculated using a TSDT for the homogeneous, isotropic,
and axisymmetric cases. The governing equations, which are a system of differential equations with
variable coefficients, have been solved analytically using the matched asymptotic expansion (MAE) of
perturbation theory. The effects of different shear deformation theories on the displacements, von Mises
stress, and shear stress have been studied. The results have been compared with FE analysis.

2. Governing equations

The coordinates of a point on the longitudinal section of a conical shell can be defined by the two
parameters r and x , where x is the vertical coordinate, and r is the radius, which is perpendicular to
x and satisfies r = R(x)+ z. R(x) is the middle surface radius, and z is the thickness variable, which
is measured from the middle surface (see Figure 1). The displacement field in the axisymmetric case,
based on TSDT, is assumed as

Ux(x, z)=Ux3 = u0(x)+ zu1(x)+ z2u2(x)+ z3u3(x),

Uz(x, z)=Uz3 = w0(x)+ zw1(x)+ z2w2(x)+ z3w3(x).
(1)

Ux and Uz are the approximate axial and radial displacements, respectively, and u0, u1, u2, u3, w0, w1,
w2, and w3 are the unknown functions of x . According to (1), the displacements vary cubically with
respect to z and a cross section remains neither straight nor normal to the middle surface. The small-strain
components are
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ex =
dUx
dx
=

du0
dx
+ z du1

dx
+ z2 du2

dx
+ z3 du3

dx
,

ez =
dUz
dz
= w1+ 2zw2+ 3z2w3,

eθ =
Uz
r
=
w0+ zw1+ z2w2+ z3w3

R+ z
,

γxz =
dUx
dz
+

dUz
dx
= u1+

dw0
dx
+ z

(
2u2+

dw1
dx

)
+ z2

(
3u3+

dw2
dx

)
+ z3 dw3

dx
.

(2)

For an isotropic, homogeneous, linear elastic material, the stress-strain relations are

σx = Aex + λ(eθ + ez), σz = Aez + λ(eθ + ex),

σθ = Aeθ + λ(ex + ez), σxz = µγxz.
(3)

Here λ and µ are the Lamé’s constants and A = λ+ 2µ. The governing equations can be derived using
the principal of virtual work which states that δU = δW . U is the strain energy and W is the external
work. The variation of the strain energy for an axisymmetric elastic body is

δU =
∫

V
(σxxδex + σθθδeθθ + σzzδezz + σxzδγxz)dV , (4)

where V is the shell volume, dV = r dθ dx dz, 0≤ θ ≤ 2π , −h/2≤ z ≤ h/2, and 0≤ x ≤ L , with L the
shell length and h the thickness. The external work variation due to internal pressure is

δW =
∫∫

s
( fxδUx + fzδUz)ds. (5)

ds is a surface element and fx and fz are the vertical and horizontal components of the pressure. After
substituting (1)–(5) into the principal of virtual work and considering the coefficients of δu0, δu1, δu2,

Îø¨÷
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.667E+08 .100E+09 .133E+09.667E+08 .100E+09 .133E+09Figure 1. Shell geometry (left), loading (center), and deformation (right).
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δu3, δw0, δw1, δw2, and δw3, the results are

d
dx
(RNx)+ RFx0 = 0, d

dx
(RQx)− Nθ + RFz0 = 0,

d
dx
(RMx)− RQx + RFx1 = 0, d

dx
(RMxz)− (Mθ + RNz)+ RFz1 = 0,

d
dx
(R Px)− 2RMxz + RFx2 = 0, d

dx
(R Pxz)− (Pθ+2RMz)+ RFz2 = 0,

d
dx
(RSx)− 3R Pxz + RFx3 = 0, d

dx
(RSxz)− (Sθ + 3R Pz)+ RFz3 = 0,

(6)

where Fxn = fx zn
(

1+ z
R

)∣∣∣
z=± h

2

and Fzn = fzzn
(

1+ z
R

)∣∣∣
z=± h

2

for n = 0, 1, 2, 3, and the boundary con-
ditions are[

R(Nxδu0+Mxδu1+ Pxδu2+ Sxδu3+ Qxδw0+Mxzδw1+ Pxzδw2+ Sxzδw3)
]L

x=0 = 0. (7)

The first equation in (6) can be rewritten as RNx +
∫

RFx0dx +C0 = 0, and likewise the others.
The stress resultants are

Nx =

∫ h/2

−h/2
σx

(
1+ z

R

)
dz

= Ah du0
dx
+

Ah3

12R
du1
dx
+

Ah3

12
du2
dx
+

Ah5

80R
du3
dx
+
λh
R
w0+ λhw1+

3λh3

12R
w2+

3λh3

12
w3,

Mx =

∫ h/2

−h/2
σx z

(
1+ z

R

)
dz

=
Ah3

12R
du0
dx
+

Ah3

12
du1
dx
+

Ah5

80R
du2
dx
+

Ah5

80
du3
dx
+

2λh3

12R
w1+

2λh3

12
w2+

4λh5

80R
w3,

Px =

∫ h/2

−h/2
σx z2

(
1+ z

R

)
dz

=
Ah3

12
du0
dx
+

Ah5

80R
du1
dx
+

Ah5

80
du2
dx
+

Ah7

448R
du3
dx
+
λh3

12R
w0+

λh3

12
w1+

3λh5

80R
w2+

3λh5

80
w3,

Sx =

∫ h/2

−h/2
σx z3

(
1+ z

R

)
dz

=
Ah5

80R
du0
dx
+

Ah5

80
du1
dx
+

Ah7

448R
du2
dx
+

Ah7

448
du3
dx
+

2λh5

80R
w1+

2λh5

80
w2+

4λh7

448R
w3,

Nθ =
∫ h/2

−h/2
σθ dz = Aα0w0+ Aα1w1+ λhw1+ Aα2w2+ Aα3w3+

3λh3

12
w3+ λh du0

dx
+
λh3

12
du2
dx

,

Mθ =

∫ h/2

−h/2
σθ z dz = Aα1w0+ Aα2w1+ Aα3w2+ Aα4w3+

2λh3

12
w2+

λh3

12
du1
dx
+
λh5

80
du3
dx

,

Pθ =
∫ h/2

−h/2
σθ z2 dz = Aα2w0+ Aα3w1+ Aα4w2+ Aα5w3+

λh3

12
w1+

3λh5

80
w3+

λh3

12
du0
dx
+
λh5

80
du2
dx

,

Sθ =
∫ h/2

−h/2
σθ z3 dz = Aα3w0+ Aα4w1+ Aα5w2+ Aα6w3+

2λh5

80
w2+

λh5

80
du1
dx
+
λh7

488
du3
dx

,
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Nz =

∫ h/2

−h/2
σz

(
1+ z

R

)
dz

=
λh
R
w0+ Ahw1+

(2A+λ)h3

12R
w2+

3Ah3

12
w3+ λh du0

dx
+
λh3

12R
du1
dx
+
λh3

12
du2
dx

,

Mz =

∫ h/2

−h/2
σzz
(

1+ z
R

)
dz

=
(A+λ)h3

12R
w1+

2Ah3

12
w2+

(3A+λ)h5

80R
w3+

λh3

12R
du0
dx
+
λh3

12
du1
dx
+
λh5

80R
du2
dx
+
λh5

80
du3
dx

,

Pz =

∫ h/2

−h/2
σzz2

(
1+ z

R

)
dz

=
λh3

12R
w0+

Ah3

12
w1+

(2A+λ)h5

80R
w2+

3Ah5

80
w3+

λh3

12
du0
dx
+
λh5

80R
du1
dx
+
λh5

80
du2
dx
+
λh7

448R
du3
dx

,

Qx =

∫ h/2

−h/2
σxz

(
1+ z

R

)
dz

= µ
{

hu1+
2h3

12R
u2+

3h3

12
u3+ h dw0

dx
+

h3

12R
dw1
dx
+

h3

12
dw2
dx
+

h5

80R
dw3
dx

}
,

Mxz =

∫ h/2

−h/2
σxzz

(
1+ z

R

)
dz

= µ
{ h3

12R
u1+

2h3

12
u2+

3h5

80R
u3+

h3

12R
dw0
dx
+

h3

12
dw1
dx
+

h5

80R
dw2
dx
+

h5

80
dw3
dx

}
,

Pxz =

∫ h/2

−h/2
σxzz2

(
1+ z

R

)
dz

= µ
{h3

12
u1+

2h5

80R
u2+

3h5

80
u3+

h3

12
dw0
dx
+

h5

80R
dw1
dx
+

h5

80
dw2
dx
+

h7

448R
dw3
dx

}
,

Sxz =

∫ h/2

−h/2
σxzz3

(
1+ z

R

)
dz

= µ
{ h5

80R
u1+

2h5

80
u2+

3h7

448R
u3+

h5

80R
dw0
dx
+

h5

80
dw1
dx
+

h7

448R
dw2
dx
+

h7

448
dw3
dx

}
. (8)

By assuming v = du0/dx and using (6) and (8), we derive the governing equations in terms of the
displacement parameters:

d
dx

(
[A1]

d{Y }
dx

)
+

d
dx
(
[A2]{Y }

)
+ [A3]

d{Y }
dx
+ [A4]{Y }+ {Fp} = {0}8×1, (9a)

where
{Fp} = {RFx0 +C0, RFx1, RFx2, RFx3, RFz0, RFz1, RFz2, RFz3}

T ,

A1 =

[
[A11]4∗4 [0]4∗4
[0]4∗4 θ2[A14]4∗4

]
, A2 =

[
[0]4∗4 θ1[A22]4∗4

θ2[A23]4∗4 [0]4∗4

]
,

A3 =

[
[A31]4∗4 −θ2[A32]4∗4

−θ1[A33]4∗4 [0]4∗4

]
, A4 =

[
−θ2[A41]4∗4 θ1[A42]4∗4

−θ1[A42]
T
4∗4 −[A44]4∗4

]
,
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[A11]4∗4 =



0 0 0 0

0 Rh3

12
h5

80
Rh5

80

0 h5

80
Rh5

80
h7

448

0 Rh5

80
h7

448
Rh7

448


, [A14]4∗4 =



Rh h3

12
Rh3

12
h5

80
h3

12
Rh3

12
h5

80
Rh5

80
Rh3

12
h5

80
Rh5

80
h7

448
h5

80
Rh5

80
h7

448
Rh7

448


,

[A22]4∗4 =



0 0 0 0

0 2h3

12
2Rh3

12
4h5

80
h3

12
Rh3

12
3h5

80
3Rh5

80

0 2h5

80
2Rh5

80
4h7

448


, [A23]4∗4 =



0 Rh 2h3

12
3Rh3

12

0 h3

12
2Rh3

12
3h5

80

0 Rh3

12
2h5

80
3Rh5

80

0 h5

80
2Rh5

80
3h7

448


,

[A31]4∗4 =


0 h3

12
Rh3

12
h5

80
0 0 0 0
0 0 0 0
0 0 0 0

 , [A32]4∗4 =



0 0 0 0

Rh h3

12
Rh3

12
h5

80
2h3

12
2Rh3

12
2h5

80
2Rh5

80
3Rh3

12
3h5

80
3Rh5

80
3h7

448


,

[A33]4∗4 =



0 0 h3

12
0

0 2h3

12
Rh3

12
2h5

80

0 2Rh3

12
3h5

80
2Rh5

80

0 4h5

80
3Rh5

80
4h7

448


, [A41]4∗4 =



−Rh
θ2

0 0 0

0 Rh 2h3

12
3Rh3

12

0 2h3

12
4Rh3

12
6h5

80

0 3Rh3

12
6h5

80
9Rh5

80


,

[A42]4∗4 =


h Rh h3

4
Rh3

4
0 0 0 0
0 0 0 0
0 0 0 0

 , θ1 =
λ
A
, θ2 =

µ
A
, αn =

∫ h/2

−h/2

zndz
R+z

, n = 0, . . . , 6,

[A44]4∗4 =



α0 α1+ θ1h α2 α3+ θ1
3h3

12

α1+ θ1h α2+ Rh α3+ (3θ1+ 2)h3

12
α4+

3Rh3

12

α2 α3+ (3θ1+ 2)h3

12
α4+

4Rh3

12
α5+ (5θ1+ 6)h5

80

α3+ θ1
3h3

12
α4+

3Rh3

12
α5+ (5θ1+ 6)h5

80
α6+

9Rh5

80


. (9b)
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Equations (9a) and (9b) were derived by assuming (1) as the displacement field, but it is possible to
consider different theories of shear deformation, and in each case only the coefficient matrices Ai change.
In this paper the results of nine cases have been studied. By the definition of the functions, we have

Ux2 = u0(x)+ zu1(x)+ z2u2(x), Ux1 = u0(x)+ zu1(x),

Uz2 = w0(x)+ zw1(x)+ z2w2(x), Uz1 = w0(x)+ zw1(x).
(10)

These are the nine cases studied:

Case 1: Ux(x, z)=Ux3, Uz(x, z)=Uz3 → VMS33, Sxz33,

Case 2: Ux(x, z)=Ux3, Uz(x, z)=Uz2 → VMS32, Sxz32,

Case 3: Ux(x, z)=Ux3, Uz(x, z)=Uz1 → VMS31, Sxz31,

Case 4: Ux(x, z)=Ux2, Uz(x, z)=Uz3 → VMS23, Sxz23,

Case 5: Ux(x, z)=Ux2, Uz(x, z)=Uz2 → VMS22, Sxz22,

Case 6: Ux(x, z)=Ux2, Uz(x, z)=Uz1 → VMS21, Sxz21,

Case 7: Ux(x, z)=Ux1, Uz(x, z)=Uz3 → VMS13, Sxz13,

Case 8: Ux(x, z)=Ux1, Uz(x, z)=Uz2 → VMS12, Sxz12,

Case 9: Ux(x, z)=Ux1, Uz(x, z)=Uz1 → VMS11, Sxz11,

(11)

where VMS stands for the von Mises stress and Sxz is the shear stress due to the selected displacement
field. The governing equations for all nine cases are (9a) but the coefficient matrices Ai will change by
the removal of some entries. For example, by applying w3 = 0 to (9a), the equilibrium equations for case
2 are obtained. This corresponds to omitting the eighth column and row of the coefficient matrices and
neglecting the eighth element of the force and displacement vectors, or, for case 7, removing the third
and fourth rows and columns of the matrices and the third and fourth elements of the displacement and
force vectors. This is in agreement with the results obtained in [Eipakchi et al. 2008].

Equation (9a) is a system of ordinary differential equations with variable coefficients. Frobenius series
are the usual method for solving this kind of equations. This method has slow convergence and needs a
lot of calculations. Also, one must know the inner and outer profiles of the shell and loading distribution,
before formulation.

3. Analytical solution

In this paper, the MAE method has been used for solving the governing equations, which are a system
of differential equations with variable coefficients. This method does not require knowledge of the inner
and outer profiles of the shell and loading distribution before formulation, and can explain the behavior
of the shell successfully even near the boundaries. The convergence of the solution is quick. The method
involves solving a system of algebraic equations and two systems of differential equations with constant
coefficients. These systems of equations have closed-form solutions.

We start by making the governing equations dimensionless, using the following characteristic scales:

x∗ = x
L
, R∗ = R

h0
, h∗ = h

h0
, u∗2 = u2h0, u∗3 = u3h2

0, w
∗

0 =
w0

h0
, w∗2 = w2h0, w

∗

3 = w3h2
0, (12)
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where h0 is the thickness characteristic and u∗2, u∗3, w∗2 , and w∗3 are the unknown dimensionless func-
tions of x∗. By using these functions, the displacement field (1) converts to a nondimensional form as
U∗z =Uz/h0 and U∗x =Ux/h0. By substituting (12) into (9), the nondimensional form of (9) is obtained:

ε2 d
dx∗

(
[A∗1]

d{Y ∗}
dx∗

)
+ ε

(
d

dx∗
(
[A∗2]{Y

∗
}
)
+ [A∗3]

d{Y ∗}
dx∗

)
+ [A∗4]{Y

∗
}+

1
ε
{F∗1 }+ {F

∗

2 } = {0}. (13a)

Here ε = h0/L is assumed small and will be taken as the perturbation parameter; The matrices [A∗i ],
i = 1, . . . , 4, which are functions of x∗, are determined by replacing R with R∗ and h with h∗ in the
matrices [Ai ], i = 1, . . . , 4. The vectors {Y ∗}, {F∗1 }, and {F∗2 } are

{Y ∗} = {ν, u1, u∗2, u∗3, w
∗

0, w1, w
∗

2, w
∗

3}
T , {F∗1 } =

{∫
R∗

A
Fx0 dx∗, 0, 0, 0, 0, 0, 0, 0

}T

,

{F∗2 } = {C
∗

0 , F∗x1
, F∗x2

, F∗x3
, F∗z0

, F∗z1
, F∗z2

, F∗z3
}

T , F∗k =
R∗Fk

A
, k = x1, x2, x3, z0, z1, z2, z3,

(13b)

where C∗0 is a constant.
Equation (13a) suggest that there are two boundary layers, one at each end of the shell. So, the solution

of the problem contains an outer expansion away from the boundaries and two inner expansions near the
two boundaries [Nayfeh 1981, Chapter 12].

3.1. Outer expansion. This solution is considered as a uniform series of ε:

{Y ∗out} =
1
εν
(
{y0(x∗)}+ ε{y1(x∗)}+ ε2

{y2(x∗)}+ · · ·
)
. (14)

Substituting (14) into (13) and considering the dominant terms, one obtains ν = 1 (distinguished limit),
so the equations with the same orders are

O(ε−1) : [A∗4]{y0}+ {F∗1 } = {0}8∗1,

O(ε0) : [A∗4]{y1}+
d

dx∗
(
[A∗2]{y0}

)
+ [A∗3]

d{y0}

dx∗
+{F∗2 } = {0}8∗1, (15)

O(ε1) : [A∗4]{y2}+
d

dx∗
(
[A∗2]{y1}

)
+ [A∗3]

d{y1}

dx∗
+

d
dx∗

(
[A∗1]

d{y0}

dx∗

)
= {0}8∗1.

Equations (15) are systems of algebraic equations, which are responsible for the shell away from the
boundaries.

3.2. Inner expansion at x∗ = 0. The fast variable η = x∗/ε is taken as the new variable for this region.
The Taylor expansions of the coefficient matrices around ε = 0 are as follows:

[A∗i (x
∗)] = [A∗i (0)] + εη[ai ] + ε

2η2
[di ] + · · · , i = 1, . . . , 4,

{F∗j (x
∗)} = {F∗j (0)}+ εη

d{F∗j }

dx∗

∣∣∣∣
x∗=0
+

1
2
ε2η2

d2
{F∗j }

dx∗2

∣∣∣∣
x∗=0
+ · · · , j = 1, 2,

(16)

where

[ak] =
d[A∗k ]
dx∗

∣∣∣∣
x∗=0

, [dk] =
1
2

d2
[A∗k ]

dx∗2

∣∣∣∣
x∗=0

, k = 1, . . . , 4.
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The solution in this region is sought in the form

{Y ∗in} =
1
ε

(
{y0(η)}+ ε{y1(η)}+ ε

2
{y2(η)}+ · · ·

)
, (17)

and by substituting (16) and (17) into (13a), the terms of same order are collected as

O(ε−1) :
{

L1({y0},η,0)
}
+{F∗1 (0)} = {0}8∗1, (18a)

O(ε0) :
{

L1
(
{y1},η,0

)}
+
{

M1
(
{y0},η,[a1],[a2],[a3],[a4],0

)}
+ η

d{F∗1 }
dx∗

∣∣∣∣
x∗=0
+{F∗2 (0)}

= {0}8∗1, (18b)

O(ε1) :
{

L1
(
{y2},η,0

)}
+
{

M1
(
{y1},η,[a1],[a2],[a3],[a4],0

)}
+
{

M1
(
{y0},η,[d1],[d2],[d3],[d4],0

)}
+ η

d{F∗2 }
dx∗

∣∣∣∣
x∗=0
+

1
2
η2 d2
{F∗1 }

dx∗2

∣∣∣∣
x∗=0
= {0}8∗1, (18c)

where the differential operators {L1} and {M1} are given by{
M1
(
{y}, x, [a1], [a2], [a3], [a4], j

)}
= [a1]

d
dx

(
x d{y}

dx

)
+[a2]

d
dx
(
x{y}

)
+[a3]x

d{y}
dx
+[a4]x{y},{

L1
(
{y}, x, i

)}
= [A∗1(i)]

d2
{y}

dx2 +
(
[A∗2(i)] + [A

∗

3(i)]
)d{y}

dx
+ [A∗4(i)]{y};

(19)

Equations (18), which are systems of ordinary differential equations with constant coefficients, are
solved using the elementary theory of differential equations [Wylie 1979].

3.3. Inner expansion at x∗ = 1. The fast variable ξ = (x∗−1)/ε is taken as the new variable for this
region. The Taylor expansions of the coefficient matrices around ε = 0 are

[A∗i (x
∗)] = [A∗i (1)] + εξ [ai ] + ε

2ξ 2
[di ] + · · · , i = 1, . . . , 4,

{F∗j (x
∗)} = {F∗j (1)}+ εξ

d{F∗j }

dx∗

∣∣∣∣
x∗=1
+

1
2
ε2ξ 2

d2
{F∗j }

dx∗2

∣∣∣∣
x∗=1
+ · · · , j = 1, 2,

(20)

where

[ak] =
d[A∗k ]
dx∗

∣∣∣∣
x∗=1

, [dk] =
1
2

d2
[A∗k ]

dx∗2

∣∣∣∣
x∗=1

, k = 1, . . . , 4.

We consider the solution

{Y ∗I N } =
1
ε

(
{y0(ξ)}+ ε{y1(ξ)}+ ε

2
{y2(ξ)}+ · · ·

)
. (21)

By substituting (20) and (21) into (13a), the same-order terms are

O(ε−1) :
{

L1
(
{y0}, ξ, 1

)}
+{F∗1 (1)} = {0}8∗1, (22a)

O(ε0) :
{

L1
(
{y1}, ξ, 1

)}
+
{

M1
(
{y0}, ξ, [a1], [a2], [a3], [a4], 1

)}
+ ξ

d{F∗1 }
dx∗

∣∣∣∣
x∗=1
+{F∗2 (1)}

= {0}8∗1, (22b)
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O(ε1) :
{

L1
(
{y2}, ξ, 1

)}
+
{

M1
(
{y1}, ξ, [a1], [a2], [a3], [a4], 1

)}
+
{

M1
(
{y0}, ξ, [d1], [d2], [d3], [d4], 1

)}
+ ξ

d{F∗2 }
dx∗

∣∣∣∣
x∗=1
+

1
2ξ

2 d2
{F∗1 }

dx∗2

∣∣∣∣
x∗=1
= {0}8∗1. (22c)

Equations (22) forms a set of coupled ordinary differential equations with constant coefficients, and one
can solve these equations as in the last section.

3.4. Composite solution. In the MAE method, the composite solution is the summation of these three
calculated solutions minus the overlapping parts of them:

{Y ∗} = {Y ∗in}+ {Y
∗

IN}+ {Y
∗

out}−
(
{J0}+ {JL}

)
. (23)

{J0} and {JL} are the common parts of the inner and outer solutions at the two ends of the shell and can
be determined by van Dyke’s matching principle [Nayfeh 1981, pp. 282–283].

4. Case studies

A thick cylinder with constant thickness subjected to constant internal pressure. By solving this prob-
lem, it is possible to find a validation range of thickness to use the shear deformation theory in the stress
and displacement analysis of a thick cylinder. Away from the boundaries, the solution can be found with
Lamé’s formula, which is an exact solution. According to Lamé’s formula, the radial and hoop stresses
are σr = c1 + c2/r2 and σθ = c1 − c2/r2. The constants c1 and c2 are determined from the boundary
conditions: the inner wall is subjected to internal pressure and the outer wall is traction free. By using
Hooke’s law, the radial and axial displacements in the plane stress state are Uz = c3r+c4/r and Ux = c5x
where c3, c4, and c5 are constants that depend on the geometrical and material properties of the cylinder.
So, it is possible to estimate the von Mises stress easily. Away from the boundaries, the solution of this
problem can be obtained with (15), which is the solution of the algebraic equations [A4]{Y }+ {Fp} = {0}.
Thus the parameters in (1) are u1 = u2 = u3 = 0, u0 = c6x , and w0, w1, w2, and w3 are calculated. For
this problem, the nine cases in (11) reduce to just the three following cases:

Case 1: Ux(x, z)= c6x, Uz(x, z)=Uz3 → V M S33,

Case 2: Ux(x, z)= c6x, Uz(x, z)=Uz2 → V M S32,

Case 3: Ux(x, z)= c6x, Uz(x, z)=Uz1 → V M S31.

(24)

The axial displacement depends on the selected radial displacement field or it depends on z, implicitly.
By comparing these solutions, one can determine the relative difference between exact and approximate
solutions, that is, the quotient (qexact−qshear)/qexact (expressed as a percentage), where q is the quantity of
interest at the inner wall of the shell, and the subscripts “exact” and “shear” stand for the Lamé and shear
deformation solutions. Figure 2, top, plots the relative difference in radial displacement versus m = R/h
for the theories listed in (24). As the thickness decreases, so does the relative difference; for m > 4 there
is nearly no advantage to higher-order theories. For thick shells, TSDT shows a smaller difference.

Figure 2, bottom, shows the difference percentage of the von Mises stress for values of m. FSDT is
a poor approximation for the von Mises stress, and TSDT is very good for thick shells. For moderately
thick shells (for instance, m > 4), there is no difference between SSDT and TSDT.
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Figure 3 compares the quantity E ·Ux/(p · x) with respect to m with different theories where p is the
internal pressure. Approximately, TSDT and SSDT are the same for the axial displacement prediction.

A thick conical shell with varying thickness subjected to nonuniform internal pressure. Table 1, on
the next page, lists the geometrical and material properties of the shell. The variation of the pressure is
linear and the boundary conditions are clamped-free (see Figure 1). The MAE method has been used for
the stress analysis of this shell. The calculations were performed on Maple 10 software, and were based
on TSDT. From this solution, it is possible to extract the nine cases of (11).

(Radial Displacement)

0
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m
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Difference Percentage 
(Von-Mises Stress)

0

20

40

60

0 2 4 6 8 10

m

diff(% )-VMS

diff(VMS11) diff(VMS12) diff(VMS13)

Figure 2. Relative difference in the radial displacement (top) and the von Mises stress
(bottom) as a function of m. See (24) for the meaning of the three cases.
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0
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m
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{ } { }

 

 

Figure 3. Nondimensional axial displacement as a function of m. See (24).
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Shell length L = 50 cm
Inner radius at x = 0 Ri0 = 10 cm
Inner radius at x = L 7 cm
Outer radius at x = 0 15 cm
Outer radius at x = L 9 cm
Internal pressure at x = 0 P0 = 200 MPa
Internal pressure at x = L 50 MPa
Young’s modulus E = 210 GPa
Poisson’s ratio 0.3

Table 1. Shell properties.

Outer expansion. This is the solution of (15). Although the solution is straightforward, by increasing
the order of ε, calculation time increases due to enlarging the nonhomogeneous part of equations. It is
possible to decrease running time by special programming techniques.

Inner solution. At x∗ = 0, this is the solution of (18). It is in the form of systems of nonhomogeneous
ordinary differential equations with constant coefficients. The general solution is {y} = {V }eλiη, where
{V } is the eigenvector and λi is the eigenvalue. By substituting the general solution in the homogeneous
part of (18a), we find (

A∗1(0)λ
2
i +

[
A∗2(0)+ A∗3(0)

]
λi + A∗4(0)

)
{V } = {0}. (25)

λi is calculated from the determinant of the system matrix, that is,

det
(

A∗1(0)λ
2
i +

[
A∗2(0)+ A∗3(0)

]
λi + A∗4(0)

)
= 0.

This equation has 14 roots and for each root, an eigenvector can be calculated from (25). So the general
solution is

{y}g =
14∑

i=1

Ci {Vi }eλiη,

which is valid for (18). The particular solution of (18a) depends on the nonhomogeneous part, which is
a constant vector and can be considered as {y}p = {K0}. By substituting this solution into (18a), {K0}

is determined. The total solution is {y} = {y}g +{y}p. There are 14 constants. Seven constants, which
correspond to eigenvalues with positive real parts, are zero, because the solution is finite at η→∞. The
remaining constants are determined from the clamped boundary conditions at x∗ = 0 for this case study,
that is, u1 = u∗2 = u∗3 = w

∗

0 = w1 = w
∗

2 = w
∗

3 = 0. The condition u0 = 0 is applied, later. The particular
solution of (18b) is

{y}p =
7∑

i=1

(
{K0i }+ {K1i }η+{K2i }η

2)eλiη+{K1}η+{K0},

and by substituting this solution into (18b), the unknown vectors can be determined. The boundary
conditions are applied to the total solution of this order to determine seven constants. The particular
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solution of (18c) is

{y}p =
7∑

i=1

(
{K0i }+ {K1i }η+{K2i }η

2
+{K3i }η

3
+{K4i }η

4)eλiη+{K2}η
2
+{K1}η+{K0},

and by substituting into (18c), the coefficient vectors are determined. Seven constants are determined
from the clamped boundary conditions.

Inner solution. At x∗ = 1, this is the solution of (22), which are in the form of systems of nonhomoge-
neous ordinary differential equations with constant coefficients. The general solution for each system is

{y}g =
14∑

i=1

Ci {Vi }eλi ξ .

The eigenvalues λi are the roots of algebraic equation

det
(

A∗1(1)λ
2
i +

[
A∗2(1)+ A∗3(1)

]
λi + A∗4(1)

)
= 0,

and the eigenvectors {V } are determined from(
A∗1(1)λ

2
i +

[
A∗2(1)+ A∗3(1)

]
λi + A∗4(1)

)
{V } = {0}.

The particular solution of (22a) is {y}p = {K0} and the total solution is {y} = {y}g + {y}p. Seven
constants, which correspond to eigenvalues with negative real parts, are zero because the solution is
finite at ξ →−∞. The other constants are determined from the free boundary conditions at x∗ = 1 for
this case study, that is, Mx = Px = Sx = Qx = Mxz = Pxz = Sxz = 0. The condition Nx = 0 is applied
later. The particular solutions of (22b) and (22c) are similar to the case of the previous section, except
that the variable is ξ .

Composite solution. This solution is determined from (23) for each order of ε. The common parts were
specified by removing the exponential terms of the inner solutions for this case study. By integrating the
first element of (23), u0 is calculated and a new constant of integration is found. This constant and C∗0
are calculated from the clamped-free boundary conditions. At x = 0, u0 = 0, and at x = L , Nx = 0.

5. Numerical results

The ANSYS 5.4 FE package was used in the static analysis of this thick conical shell with varying
thickness. The PLANE82 element in axisymmetric mode, which is an element with eight nodes and
two translational degrees of freedom in the axial and radial directions per each node, was used for
discretization. The boundary conditions were considered clamped-free and the characteristics of the
shell have been listed in Table 1. Figure 1 shows the loading, mesh pattern, and deformation of the shell.

6. Comparison of results

Figure 4 shows the radial displacement of the inner wall for different orders of ε. It is seen that order (ε−1)

is not an acceptable solution, but orders (ε1, ε0) have a good convergence. There is not any noticeable
difference between these orders. This result is valid for the axial displacement and the von Mises stress.
So, the displacements and the von Mises stress have been calculated with the order (ε0) expansion for
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Figure 4. Convergence procedure for radial displacement by different expansions.
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Figure 5. Axial (left) and radial (right) displacement for various approximations. See (11).

the inner wall of the shell. x∗ = x/L in the graphs is the vertical position of each point on the inner wall
of the shell.

Figure 5 shows that, by using higher-order theories (Uz2, Uz3, Ux2, and Ux3), the displacements do
not change significantly. The maximum percentage of difference between the FE and shear deformation
results is 7% for Uz1, 5% for Uz2, and 4.8% for Uz3, which is in agreement with Figure 2, top, for this
case study (3< m < 4.5). In Figure 6, it is seen that by using Uz2 and Uz3, for the radial displacement,

0

2

4

6

0 0.2 0.4 0.6 0.8 1

x*

VMS/P0

VMS31* VMS32* VMS33* VMS*(FE)

Figure 6. Von Mises stress for different theories. See (11).
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Figure 7. Effect of various theories on von Mises Stress at x∗ = 0.08 (left) and x∗ = 0.4 (right).
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Figure 8. Comparison of different axial displacements for Uz1 (left) and radial displace-
ments for Ux3 (right) on von Mises stress.
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Figure 9. Comparison of different axial displacements on von Mises stress for Uz2 (left)
and Uz3 (right).

the von Mises stress will improve. This result has been shown in Figure 7 for the point x∗ = 0.08 (a
point on the inner wall, near the boundary, and so related to the inner solution) and at x∗ = 0.4 (a point
away from the boundaries, and so related to the outer solution). Also, the difference between the Uz2

and Uz3 approximations is not noticeable on the von Mises stress.
Figure 8, left, compares the von Mises stress for the cases 3, 6 and 9 listed in (11). The higher-

order theories in axial displacement (Ux2 and Ux3) do not affect the stress distribution except near the
boundaries. Figure 9 shows the effect of higher-order radial displacements on the von Mises stress
distribution. There is no significant difference between the Uz2 and Uz3 solutions but Uz2 and Uz3 are
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Figure 10. Comparison of different axial displacements on shear stress at x∗ = 0.08
(top) and x∗ = 0.4 (bottom), for Uz3 (left) and for Ux3 (right).

more accurate than Uz1 for calculating the von Mises stress. Figure 8, right, suggests that Uz3 is a very
good approximation with respect to the FE results.

Figure 10, top, compares different axial approximations on the shear stress distribution at the section
x∗ = 0.08 in terms of r∗ = r/Ri0 where Ri0 is the inner radius at x∗ = 0 (see Table 1). Ux3 improves
the shear stress distribution; the results using Ux1 and Ux2 are not suitable. According to Figure 10,
right, the higher-order approximations for radial displacement do not change significantly the shear
stress distribution at this section. Similar results can be found when one uses Ux1 or Ux2 as the axial
displacement.

The effect of different theories on the shear stress at section x∗ = 0.4 is shown in the bottom row of
Figure 10. The higher-order approximations are more important for the axial displacement than for the
radial displacement in the shear stress distribution at this section.

7. Conclusion

By dividing the solution region into three parts and finding a closed-form solution for each region using
the MAE method, it is possible to determine an analytical solution for the governing equations with fast
convergence and good accuracy.

The calculations show that the relative difference between the presented results and FE (or elasticity)
is not due to the MAE technique but it relates to the selected displacement field.
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The results show that FSDT is sufficient for determining the displacements, but that for calculating the
von Mises Stress it is necessary to use a higher-order approximation for the radial displacements. The
shear stress is small compared to the von Mises stress. The shear stress is sensitive to the selected axial
displacement, and Ux1 and Ux2 cannot predict its distribution as well, especially at the sections near the
boundaries.

As a result, TSDT for the axial and radial displacements is a good approximation for both von Mises
and shear stresses; see Equation (1).
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