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The objective of this work was the finite element implementation of constitutive material models for
piezoceramic materials. A phenomenological material model was implemented by means of a cus-
tomized radial return mapping algorithm into an open source finite element program, and the problem
was reduced to the solution of a single nonlinear algebraic equation. This led to a significant reduction in
computation time for simulations compared to an implementation by means of an explicit higher order
integration scheme for the constitutive differential equations. Furthermore, a microscopically motivated
material model was implemented by means of a radial return mapping algorithm based on the backward
Euler scheme.

Apart from simulations of the principal behavior of the material models and their finite element im-
plementations, simulations of applied examples are discussed which demonstrate the properties of the
models and the performance of the implementations.

1. Introduction

The piezoelectric effect describes a linear relationship between strain and polarization on the one hand,
and electric field and stress on the other. Nowadays, this effect is commonly utilized by a class of
ferroelectric ceramics, also called piezoceramics for short. The electromechanical coupling properties of
these polycrystalline materials are caused by distinct features of their perovskite microstructure. Below
the Curie temperature, each grain possesses a substructure of domains, these being regions of uniform
orientation of the microdipoles of the crystallographic unit cells. Upon application of electric fields and
mechanical stresses of sufficient magnitude, the domains can be reoriented. The macroscopic hystere-
sis properties resulting from microscopic domain switching processes under a cyclic electric field and
mechanical stress loading in such a ferroelectric material are called ferroelectricity and ferroelasticity,
respectively. In particular, the so-called poling process caused by strong electric fields leads to the
orientation of the domains in the direction of the field resulting in a macroscopic piezoelectric effect
from the microscopic piezoelectric contributions of the domains.

Piezoceramic materials are used for actuation in various technical fields requiring challenging proper-
ties. They facilitate highly accurate positioning, show fast response times, and allow for large actuation
forces. Examples of technical applications are diesel injection valves (which in 2005 won the Deutscher
Zukunftspreis awarded by the President of the Federal Republic of Germany1), as well as positioners in
nano- and microtechnology.

Keywords: ferroelectrics, constitutive modeling, finite element analysis.
The financial support of Deutsche Forschungsgemeinschaft is gratefully acknowledged.
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The composition of piezoceramic materials is subject to constant improvement in optimizing the piezo-
electric properties. On the other hand, with respect to modeling, in commercial finite element codes only a
linear relationship between the quantities is taken into account for simulation of the electromechanical be-
havior. As an important example, the above mentioned poling process and the resulting residual stresses
after poling as part of manufacturing piezoelectric devices made of ferroelectrics cannot be simulated.
Furthermore, mechanical depolarization cannot be taken into account in computations based on linear
piezoelectric behavior. This lack of capability to represent the electromechanical fields correctly leads
to increasing difficulties in predicting malfunctions and failures of devices in complex applications. The
current paper deals with providing such finite element tools taking into account the complete spectrum
of electromechanically coupled large signal hysteresis behavior of ferroelectrics. Such tools are needed
as basis for the assessment of the reliability of piezoceramic devices, for example.

This paper is organized as follows: In Section 2, the literature regarding constitutive modeling of
piezoceramic materials and finite element implementations will be reviewed. At the beginning of Section
3, the phenomenological constitutive model developed earlier will be described [Kamlah and Tsakmakis
1999; Kamlah 2001; Kamlah and Boehle 2001]. The finite element tool described in these papers is
among the very earliest capable of taking into account the complete coupled ferroelectric and ferroelastic
large signal hysteresis properties of piezoceramics. On the other hand, the implementation algorithm,
based on a higher order explicit integration scheme for the constitutive differential equations, lacked
computational efficiency.

In the first main section (Section 3) we present a significantly improved integration algorithm for the
phenomenological constitutive model in the open source finite element code PSU [PSU 2000]. This
implementation is verified by comparing simulated curves to experimentally measured behavior. In
addition, the poling of a stack actuator is discussed as a simulation example.

In the second main section (Section 4), we introduce a microscopically motivated material model
[Kamlah and Jiang 1999; Kamlah and Wang 2003]. This model operates at the same length scale as
the previously mentioned phenomenological model. However, it is based on the orientation distribution
function of ferroelectric domains, and its evolution due to domain switching. Thus, it possesses a clear
micromechanical foundation. The finite element implementation of this model is based on a backward
Euler scheme. Verification examples and an example simulation demonstrate the capability of the ob-
tained computation tool. The computation time is longer due to the complexity of the model and the
integration algorithm, but, on the other hand, it can describe poling processes more realistically than the
phenomenological model. This leads to a better understanding of the behavior of ferroelectric materials.

2. Constitutive modeling of ferroelectrics

2.1. Phenomenological approach. The phenomenological approach is an efficient way to describe the
complex behavior of piezoceramic materials. The disadvantages of this approach result from the fact
that the material behavior is described phenomenologically which means in general that a calibration is
necessary. Outside of the range of loadings considered in developing such a model, there is always the
danger that it may be inaccurate or even qualitatively wrong. In the field of phenomenological models
some significant improvements have been made since the work of Chen [1980] which will be described
subsequently.
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McMeeking and Landis [2002] proposed a phenomenological model for ferroelectric switching pro-
cesses subject to multiaxial mechanical and electrical loadings. It is based on a kinematic hardening
theory with a switching surface in the space of stress and electric field. McMeeking and Landis [2002]
express the remanent strain by means of a function of remanent polarization. This approach simplifies
the model significantly, but excludes purely ferroelastic hysteretic behavior.

Such an restriction does not apply to the model of Landis [2002]. It is based on the Helmholtz free
energy of the material. A domain switching surface and flow rules for the internal variables in the space
of stress and electric field are introduced. The derived constitutive law has a symmetric material tangent.
This leads to faster computation time and lower memory demand for the finite element implementation
compared to models which rely on asymmetric tangents.

Huber and Fleck [2001] proposed — in addition to their crystal plasticity type theory [Huber et al.
1998; Huber and Fleck 2004], see Section 2.2 — a phenomenological model. The computation time for
this model is short, but it is specialized to nearly uniaxial cyclic loadings.

Kessler and Balke [2001] derived an expression for the local and average energy release rate during po-
larization orientation processes. On this basis, they developed a repolarization model which can describe
pure rotation of the polarization at a fixed magnitude.

Schroeder and Gross [2004] developed a fully coupled electromechanical formulation for transversally
isotropic materials for reversible material behavior. A variational and finite element formulation for fully
coupled problems with small deformations is presented. Schroeder and Romanowski [2005] enhanced
the model with consideration of domain switching to be able to describe fundamental hysteresis effects.
However, only the magnitude of polarization can change while its direction is fixed in space, and strain
is just a function of polarization.

Belov and Kreher [2005] proposed two viscoplasticity type models without loading conditions for the
onset of switching. The evolution of the structure of domains is described by means of rate-dependent
equations of the volume fractions of orientation variants. The first model offers six different domain
orientations and is proposed for uniaxial loadings. The second model has 42 possible domain orientations
and can be applied to multiaxial simulations.

Elhadrouz et al. [2005a; 2005b] used the material law of Kamlah and Boehle [Boehle 1999; Kamlah
and Tsakmakis 1999; Kamlah 2001; Kamlah and Boehle 2001]. They coded an element for the finite
element implementation of the model in a commercially available finite element code.

Klinkel [2006] has developed on the basis of a thermodynamically consistent approach a 1D model
for ferroelastic and ferroelectric hysteresis effects of piezoceramics. He made use of the Helmholtz free
energy and a domain switching surface for the thermodynamical framework of his work. As a specific
feature, he introduced, besides irreversible strain, an irreversible electric field as a state variable. This
simplifies the finite element implementation, but doesn’t have an immediate physical interpretation.

2.2. Micromechanical modeling. Many available theoretical studies are based on micromechanical ma-
terial models [Hwang et al. 1995; 1998; Chen et al. 1997; Chen and Lynch 1998; Huber et al. 1998;
Hwang 2000; Smith et al. 2003; Huber and Fleck 2004; Seemann et al. 2004; Delibas et al. 2005;
Kamlah et al. 2005; Semenov et al. 2006] which have led to a better understanding of the behavior of
ferroelectrics. In general an application of micromechanical models to common engineering problems
is difficult because the models are mostly very complex and computationally expensive. But, they have
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significant advantages compared to phenomenological models because the range of validity of microme-
chanical models is mostly more general as basic mechanisms on the microscopic level are taken into
consideration.

On the basis of the constitutive behavior of single crystals Chen and Lynch [1998] have developed a
micromechanical model for polycrystalline, ferroelectric ceramics. The model simulates tetragonal and
rhombohedral crystal structures in which a saturation of the linear piezoelectric effect is implemented.
Furthermore the interaction between the different grains of the polycrystal is considered. A switching
criterion was developed which takes into consideration the domain switching processes of the tetragonal
and rhombohedric crystal structure.

Huber et al. [1998] and Huber and Fleck [2004] describe a micromechanical model based on crystal
plasticity theory. A grain is a mixture of variants, a variant representing all domains of equal orientation
of the spontaneous polarization inside a grain. Switching processes transform a variant into another
variant. The polycrystalline properties are then obtained by a self-consistent scheme to yield irreversible
polarization and irreversible strain, as well as the average linear electromechanical properties. In [Kamlah
et al. 2005], grain to grain interaction is modeled explicitly by means of the finite element method.

Seemann et al. [2004] and Delibas et al. [2005] have derived a model on the level of the grains of a
polycrystal in which they assume that after poling the domains in a grain have the same orientation. The
basis of the model is an energetic approach from [Hwang et al. 1998] in which the potential energy of a
single domain is taken into consideration. If the potential energy rises beyond a certain limit, the domain
switches. The response of the polycrystal is the average of all domain processes. Mutual interaction of
domain processes is accounted for by some probabilistic functions.

Smith et al. [2003] developed a micromechanical model on the basis of the Helmholtz and Gibbs free
energy at the lattice level of the crystal structure of a single crystal. The embedding in polycrystalline
structures is carried out by means of a stochastic homogenization to include the inhomogeneous structure
of polycrystals. This model provides an excellent thermodynamical basis to simulate the macroscopic
behavior of ferroelectric polycrystals.

3. Phenomenological material model and its finite element implementation

The phenomenological material model used in this work was developed in [Kamlah and Tsakmakis
1999; Kamlah and Boehle 2001; Kamlah 2001]. Here, we will give only an outline of the basic fea-
tures. The model can describe ferroelectric and ferroelastic hysteresis behavior including mechanical
depolarization and polarization rotation. The finite element implementation reported in [Kamlah and
Boehle 2001] is computationally expensive since it relies on the solution of a system of nine ordinary
differential equations by means of an explicit Runge–Kutta algorithm. Therefore, a customized radial
return mapping algorithm was developed where computing the constitutive model was reduced to solving
a single nonlinear algebraic equation (see also [Laskewitz and Kamlah 2004]). This new implementation
reduced the computation time significantly and made it possible to simulate the poling processes of
structures consisting of tens of thousands of elements.

3.1. Formulation of the phenomenological material model. A constitutive model for ferroelectric ma-
terials relates strain Si j and polarization Pi to the histories of stress Ti j and electric field Ei [Kamlah
2001]. Analogously to plasticity theory the hysteretic behavior of piezoceramic materials motivates a
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decomposition of strain Si j and polarization Pi into reversible and irreversible parts [Zhou et al. 2005a;
2005b]:

Si j = Sr
i j + Si

i j , Pi = P r
i + P i

i . (1)

The irreversible parts represent volume averages of spontaneous strain and polarization, respectively,
over some representative volume element. The reversible parts are related to the stress tensor Ti j and the
electric field vector Ei by

Sr
i j = C−1

i jkl Tkl + dki j Ek, P r
i = di jk T jk + κi j E j , (2)

with Ci jkl as the tensor of elasticity, di jk as the tensor of piezoelectricity and κi j as the tensor of sus-
ceptibility. These equations possess the structure of linear piezoelectricity theory, in which the tensor of
piezoelectricity is anisotropic and depends on the loading history in terms of the irreversible polarization
P i

i :

dki j =
‖P i

i ‖

Psat

{
d‖ei e j ek + d⊥(δi j − ei e j )ek+d= 1

2
[(δki − ekei )e j + (δk j − eke j )ei ]

}
. (3)

Here, ‖P i
i ‖ =

√
P i

i P i
i and

ei =
P i

i

‖P i
i ‖

(4)

is the unit vector in the direction of irreversible polarization, while the piezoelectric constants can be
identified as d‖ = d33, d⊥ = d31, d= = 1

2 d15, and Psat is the saturation value of irreversible polarization.
We adopt the common simplification of assuming Ci jkl and κi j to be isotropic.

The loading history is represented in terms of irreversible strain Si
i j and irreversible polarization P i

i

as internal variables. Irreversible strain Si
i j is divided according to

Si
i j = Sie

i j + Sim
i j (5)

into electrically and mechanically induced parts. The electrically induced part is given as a function of
irreversible polarization as

Sie
i j =

3
2

Ssat ‖P
i
i ‖

Psat

(
ei e j −

1
3
δi j

)
. (6)

As will be sketched in the following, irreversible mechanically induced strain Sim
i j and irreversible polar-

ization P i
i are computed from evolution equations derived from switching criteria and saturation criteria.

The electrical switching function is expressed by

f e(Ei , P i
i )= ‖Ei − ce P i

i ‖− Ec, (7)

in which Ec and ce are nonnegative material parameters. Condition f e
= 0 defines the point where

the coercive field is reached and domains begin to switch in the direction of the electric field, that is,
irreversible polarization P i

i starts to evolve. The evolution is limited such that the magnitude stays below
the saturation polarization P̂sat with the help of the electrical saturation function

he(Ei , P i
i , Ti j )= ‖P i

i ‖− P̂sat(Ei , P i
i , Ti j ), (8)
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in accordance with the condition he
= 0. Here, the saturation polarization is defined by

P̂sat(Ti j , Ei , P i
i )= (P

sat
− Pδ)

〈
1− 1

m
〈
−

3
2 ei T D

i j e j − T̂ c〉〉
+ Pδ, (9)

with the constant Pδ ≥ 0 being the part of the remanent polarization which remains after the maximum
mechanical depolarization and m a positive material constant. Furthermore, AD

i j is the deviator of tensor
Ai j , while 〈x〉 = 0 for x ≤ 0 and 〈x〉 = x for x ≥ 0.

The mechanical switching function,

f m(Ei , P i
i , Ti j , Sim

i j )= ‖(Ti j − cmSim
i j )

D
‖− T̂ c(Ei , P i

i ), (10)

is used to define at f m
= 0 the point where the coercive stress T̂ c is reached and the evolution of the

mechanically induced irreversible strain Sim
i j is initiated. Here cm is a nonnegative material parameter

and ‖Ai j‖ =
√

Ai j Ai j . The coercive stress depends on the superposed electric field according to

T̂ c(Ei , P i
i )=

〈
T c
+ n

Ei

Ec ei

〉
(11)

with n as a nonnegative material constant. The mechanical saturation function,

hm(P i
i , Sim

i j )=

√
2
3 ‖S

im
i j ‖−

(
Ssat
−

√
2
3 ‖S

ie
i j‖

)
, (12)

is used to limit by the condition hm
= 0 the evolution of the total irreversible strain Si

i j to the saturation
strain Ssat.

The irreversible polarization and the irreversible strain are computed by evolution equations which
are derived from the normality rule and the consistency condition for the respective active switching or
saturation condition. By introducing the notation

bxe =

{
1, x ≥ 0,

0, x < 0,
dxc =

{
1, x > 0,

0, x ≤ 0,
(13)

and
∗

f e
=

d
dt

f e
∣∣∣

Ṗ i
i=0
,

∗

he
=

d
dt

he
∣∣∣

Ṗ i
i=b f eeb

∗

f eeλe
f
∂ f e
∂Ei

,

∗

f m
=

d
dt

f m
∣∣∣
Ṡi

i j=0
,

∗

hm
=

d
dt

hm
∣∣∣
ĖSi

i j=b f meb
∗

f meλm
f
∂ f m
∂Ti j

,

(14)

as well as

Fk
= b f i

eb
∗

f k
e, H k

=

⌈
bhk
ed
∗

hk
c+ d f k

c

⌋
, k= e,m, (15)

and finally

ne
i =

∂he/∂P i
i

‖∂he/∂P i
i ‖
, N m

i j =
∂hm/∂Si

i j

‖∂hm/∂Si
i j‖
, (16)

the evolution equations for the state variables can be written as

Ṗ i
i = (δi j − H ene

i ne
j )
(

Feλe
f
∂ f e

∂Ei

)
+ H eλe

h
∂he

∂P i
i
, (17)
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and

Ṡim
i j = (δikδ jl − H m N m

i j N m
kl )
(

Fmλm
f
∂ f m

∂Ti j

)
+ H mλm

h
∂hm

∂Sim
i j
. (18)

The factors of proportionality λe
f , λe

h , λm
f , and λm

h are defined by the consistency conditions ḟ e
= 0,

ḣe
= 0, ḟ m

= 0, and ḣm
= 0, respectively. For further details on this model, the reader is referred to

[Kamlah and Tsakmakis 1999; Kamlah and Boehle 2001; Kamlah 2001].

3.2. Finite element implementation. In [Kamlah and Boehle 2001], a finite element implementation of
the phenomenological constitutive model sketched in the previous section is presented, where the system
(17), (18) is solved by an explicit higher order integration scheme considering all combinations of cases
that may occur. This scheme turned out to be too slow and not very reliable. In the following, we
will describe a customized radial return mapping algorithm exploiting the hierarchy of switching and
saturation criteria.

The electromechanical finite element formulation of Allik and Hughes [1970], which employs dis-
placement and electric potential as primary nodal variables, is used. In the nonlinear finite element
method, the loading history is divided into increments. In the following, the indices n and n+ 1 describe
the states at the beginning and end of the current increment, respectively. At the beginning of increment
n, the state of all variables is known. We assume that trial values n+1Si j and n+1E i for strain and electric
field, respectively, have been computed by the global Newton method. The irreversible polarization
n+1P i

i and mechanically induced strain n+1Sim
i j corresponding to the trial values have to be calculated.

Once all state variables at the end of the increment are known, n+1T i j and n+1Di can be computed to
check equilibrium, Ti j, j = 0, and Gauss’ law, Di,i = 0. Here, Di = ε0 Ei + Pi is the electric displacement
and ε0 is the dielectric constant of vacuum.

In this work, the irreversible polarization and the irreversible strain at the end of the increment are
obtained from a two step corrector scheme by

n+1P i
i =

nP i
i +1P i,f

i +1P i,h
i , n+1Sim

i j =
nSim

i j +1Sim,f
i j +1Sim,h

i j . (19)

The correctors 1P i,f
i , 1P i,h

i , 1Sim,f
i j , and 1Sim,h

i j of irreversible polarization and mechanically induced
irreversible strain in the radial return mapping algorithm are obtained from the corresponding electric
and mechanical switching and saturation criteria, respectively. The calculation of the correctors for the
example of irreversible polarization is explained with the help of Table 1 and Figure 1.

First, the criterion for the onset of electrically induced domain switching according to Equation (7)
is checked. For f e(n+1E i ,

nP i
i )≤ 0, no switching occurs and, thus, there is no evolution of irreversible

polarization in the current load step, that is, 1P i,f
i = 0. For f e(n+1E i ,

nP i
i ) > 0, the trial value n+1E i

for the electric field violates the electric switching criterion, and a nontrivial corrector 1P i,f
i needs to

be calculated such that f e(n+1E i ,
nP i

i +1P i,f
i )= 0 is satisfied. According to the first term in (17), we

make the ansatz that the corrector 1P i,f
i is in the direction normal to the electric switching criterion. The

normal is calculated on the basis of the trial value for the electric field and irreversible polarization from
the last load step,

1P i,f
i = α

e ∂ f e(n+1E i ,
nP i

i )

∂Ei
, (20)
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Criterion Ansatz for corrector Condition for magnitude

Onset of switching

f e(n+1E i ,
nP i

i )≤ 0 1P i,f
i = 0

f e(n+1E i ,
nP i

i ) > 0 1P i,f
i = α

e ∂ f e(n+1E i ,
nP i

i )

∂Ei
f e(n+1E i ,

nP i
i +1P i,f

i )= 0

Saturation

he(n+1Si j ,
n+1E i ,

nP i
i +1P i,f

i )≤0 1P i,h
i = 0

he(n+1Si j ,
n+1E i ,

nP i
i +1P i,f

i )>0 1P i,h
i =β

e ∂he(n+1Si j ,
n+1E i ,

nP i
i +1P i,f

i )

∂P i
i

he(n+1Si j ,
n+1E i ,

nP i
i +1P i,f

i +1P i,h
i )=0

Table 1. Conditions for the calculation of the correctors for irreversible polarization.
Condition f e

= 0 can be solved analytically for αe, while he
= 0 has to be solved

numerically for βe.

where the factor of proportionality αe gives the magnitude of the corrector. Plugging this into the condi-
tion f e(n+1E i ,

nP i
i +1P i,f

i )= 0 leads to a nonlinear equation which can be solved analytically to yield

αe
=

1
ce f e(n+1E i ,

nP i
i ), (21)

and, thus, the corrector 1P i,f
i is completely determined.

Next, the criterion for the saturation of irreversible polarization according to (8) has to be checked.
For this, the stresses have to be eliminated by the trial strains with the help of (1)1, (2), and (5). For
he(n+1Si j ,

n+1E i ,
nP i

i +1P i,f
i )≤ 0, saturation polarization has not yet been reached in the current load

step, and, consequently, 1P i,h
i = 0. On the other hand, for he(n+1Si j ,

n+1E i ,
nP i

i +1P i,f
i ) > 0, the mag-

nitude of the possibly once corrected polarization vector nP i
i +1P i,f

i calculated from the trial strain and
trial electric field is beyond its stress dependent saturation value. A corresponding corrector 1P i,h

i is
calculated from the condition he(n+1Si j ,

n+1E i ,
nP i

i +1P i,f
i +1P i,h

i )= 0. For this, we obtain from the
second term in evolution (17) the ansatz for corrector 1P i,h

i to be normal to the saturation criterion
he(n+1Si j ,

n+1E i ,
nP i

i +1P i,f
i )= 0 given by the trial values for strain and electric field and the once

corrected irreversible polarization vector:

1P i,h
i = β

e ∂he(n+1Si j ,
n+1E i ,

nP i
i +1P i,f

i )

∂P i
i

. (22)

Requiring the saturation criterion to be satisfied yields the nonlinear algebraic equation

he
(

n+1Si j ,
n+1E i ,

nP i
i +1P i,f

i +β
e ∂he(n+1Si j ,

n+1E i ,
nP i

i +1P i,f
i )

∂P i
i

)
= 0, (23)

which needs to be solved numerically for the only unknown scalar parameter βe.
In a similar way as just described, correctors 1Sim,f

i j and 1Sim,h
i j are computed for the irreversible

strain. The corresponding conditions f m
= 0 and hm

= 0 for αm and βm, respectively, can both be solved
analytically. Special care has to be taken, as the two saturation criteria are electromechanically coupled,
such that, depending on the loading, they might be considered separately or have to be considered together.
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e
0f =

i

n1
P
r

c

e

E

c

n1

e

E

c

r

i

n
P

r

i

h
PD
r

i

f
PD

r

e
0h =

i

2
P

i

1
P

sat
P

Figure 1. The radial return mapping algorithm used for the finite element implementa-
tion of the phenomenological material model for the dielectric hysteresis: In case the
predictor n+1E i/ce violates the electrical switching condition f e (the solid circle with
irreversible polarization nP i

i of the last increment as its center), the corrector 1P i,f
i is

found. In the situation where all domains are switched into the direction of the electric
field, the electrical saturation condition he (the dashed circle) becomes active meaning
the new predictor nP i

i +1P i,f
i has to be checked. If it is outside the saturation condition,

an additional corrector 1P i,h
i has to be computed which lies on the line of action of

nP i
i +1P i,f

i .

Nevertheless, in any case the problem can be reduced to solving numerically at most a single nonlinear
scalar algebraic equation for a single scalar parameter. For the numerical solution, Newton’s method
and the regula falsi method are used. For the full set of equations including all details on the solution
algorithm the reader is referred to [Laskewitz 2007].

3.3. Verification of the finite element implementation. This section describes the verification of the
material model and its finite element implementation. Simple experiments were carried out [Laskewitz
2007] and compared to simulation results. Table 2 shows the values of the material parameters. Because
of the usually ill conditioned electromechanical stiffness matrix, the material parameters are recalculated
in units which lead to a better conditioned matrix.

Figure 2 shows the dielectric and the butterfly hysteresis of the simulations and experiments. The
corner points of the simulation results represent the electrical switching and saturation conditions of the
phenomenological model. A good agreement is observed between the simulation and the experimental
results.

3.4. Simulation example: stack actuator. To demonstrate the capability of the presented finite element
tool a simulation example is presented in this section. It deals with the poling process of a common stack
actuator (see Figure 3) which consists of many thin layers with inner electrodes. The basic idea of a stack
actuator is to provide large longitudinal displacements at moderate voltages. To reduce the danger of
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Ec (MV/mm) 1.0× 103

Psat (kN/(MVmm)) 310× 10−3

σ c (kN/mm2) 40.0× 10−3

Ssat 0.00225
Y (kN/mm2) 60.0
ν 0.37
d‖ (mm/MV) 6.75× 10−1

d⊥ (mm/MV) −3.15× 10−1

d= (mm/MV) 4.35× 10−1

ce (MV2/kN) 1.0× 10−3

cm (kN/mm2) 20.0
Pδ (kN/(MVmm)) 100× 10−3

n (kN/mm2) 20.0× 10−3

m (kN/mm2) 150× 10−3

Table 2. Material parameters used in simulations.
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Figure 2. Comparison of simulation results with experiments: (a) dielectric hysteresis
and (b) butterfly hysteresis.

electrical arcing and to eliminate the need for a high voltage source, the actuator is composed of a large
number of thin piezoceramic layers (< 100µm) sandwiched between alternately contacted electrodes.
The inner electrodes end at a certain distance from the side opposite to the so-called termination electrode
by which they are connected to the voltage source. Common usages of stack actuators are diesel injection
valves or positioners because of the short response time and the ability for very accurate positioning.

We consider a 2D finite element model representing half of a piezoceramic layer. Figure 3 also shows
a sketch of the electric field lines to be expected. The finite element discretization and the geometry
are depicted in Figure 4. The model consists of approximately 1000 elements (plane strain). The nodes
at the top of the model are coupled to have equal displacement in the vertical direction as a symmetry
condition. On the left hand side of the model, we use fixed horizontal displacements as an approximation
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U

Figure 3. Simplified sketch of a stack actuator.

Figure 4. Finite element discretization of a part of the layer of a stack actuator.

of the antisymmetry along this line. This seems to be satisfied as the distance to the field intensification
at the electrode tip is much larger than the thickness of the layer. The electrode at the bottom ends at
a distance of 200µm from the right border. To simulate the poling process of such devices, an electric
potential is applied to the top line of the model to reach a maximum voltage of 150 V (an average electric
field of 3 kV/mm). Afterwards the actuator is electrically unloaded.

Figure 5 shows the simulation results of the electric potential at maximum load and after unloading.
For linear simulations with commercial finite element codes, usually a homogeneous polarization

state in the vertical direction is assumed. In contrast to this, the poling state in the nonlinear ferroelectric
simulations is computed here and not assumed. There is no evolution of irreversible polarization in
the region to the right of the tip of the lower electrode, because there is a nearly homogeneous electric
potential (see Figure 5a) and, consequently, the tensor of piezoelectricity is still zero (see Equation (4)).
After unloading (see Figure 5b) there remains a significant electric potential around the electrode tip
which can be explained by the divergence of the irreversible polarization vector in the neighborhood of
the tip. Figure 6 shows the irreversible polarization at maximum load around the electrode tip.

Figure 7 shows the distribution of the normal stress in the vertical direction plotted along the bottom
line of the model at maximum load and after unloading. At the electrode tip, there is a stress intensi-
fication. More importantly, the level of tensile stress in the unpoled area even after unloading remains
at 40 MPa. This tensile stress is caused by the vertical extension of the active region to the left of the
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Figure 5. Distribution of the electric potential of a part of a layer of a stack actuator: (a)
ferroelectric simulation at maximum voltage and (b) ferroelectric simulation after un-
loading.

[C/m²]

Figure 6. Vector plot of the irreversible polarization around the electrode tip.

electrode tip during poling. By equilibrium, these tensile stresses give rise to compressive stresses along
the lower electrode to the left of its tip. For wider actuators with a larger active region of the layer
between the electrodes this compressive stress would be smaller. The tensile stresses are in the range of
the tensile strength of the material and can lead to cracks while poling the device. Moreover, after poling
there is cyclic loading which increases the danger of fatigue because of the residual tensile stress in the
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Figure 7. Stress distribution in the vertical direction at the bottom line of the finite
element model at maximum load and after unloading.

passive region to the right to the electrode tip. In practice the actuators are prestressed in applications to
avoid cracking. By using our finite element tool the magnitude of the prestress and the geometries of the
devices may be optimized. On the one hand, the tensile stresses have to be minimized by means of the
prestress. On the other hand, too large a prestress has to be avoided, so no mechanical depolarization can
occur, which would reduce the performance of the actuator. An optimum between minimal depolarization
and minimal tensile stress has to be found.

Further simulation examples from experimental practice can be found in [Laskewitz et al. 2006] (piezo-
ceramic thin walled tubes) and [Westram et al. 2007] (electrically driven crack growth).

4. Microscopically motivated material model and its finite element implementation

4.1. Formulation of the microscopically motivated material model. In this section, we present a micro-
scopically motivated constitutive model for ferroelectrics, the development of which started with [Kamlah
and Jiang 1999; Kamlah and Wang 2003]. Just as with the model introduced in the previous section, this
model is applied at macroscopic length scales, that is, at the level of engineering components. In contrast
to the previous model which is formulated by methods of classical phenomenological modeling, the
model in this section relies on quantities of clear micromechanical meaning. For a tetragonal structure of
the unit cells, the microscopically motivated model is based on the orientation distribution of lattice axes
and spontaneous polarization. A tetragonal unit cell possesses two distinct lattice constants, the c-axis
which is up to 1% larger than the other axis, called the a-axis. For each orientation of the c-axis, there
are still two possible orientations of the spontaneous polarization, and regions in a grain which have the
same orientation of c-axes and spontaneous polarizations are called domains.

As with the phenomenological model, the current model relies on an additive decomposition. However,
for the microscopically motivated constitutive model, irreversible strain and polarization themselves are
not taken as internal or state variables. Rather, they are assumed to be functions of some microstructural
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parameters q1, . . . , qn , which represent the microscopic domain state at the macroscopic level, and in
this way act as the state variables:

Si
i j = Si

i j (q
1, . . . , qn), P i

i = P i
i (q

1, . . . , qn). (24)

The model is based on the Gibbs free energy

g = 1
2 Ti j C−1

i jkl Tkl + Ei di jk T jk +
1
2 Eiκi j E j + gi(q1, . . . , qn). (25)

By exploiting the Clausius–Duhem inequality, this leads to relations (2) with the definition of the material
tensors as before, in particular (3). Furthermore, we obtain the driving forces

φα = Ei
∂P i

i

∂qα
+ Ti j

∂Si
i j

∂qα
+ ρ

∂g
∂qα

, α = 1, . . . , n, (26)

being thermodynamically conjugate to the corresponding state variable qα. Further details on the ther-
modynamical framework can be found in [Kamlah and Wang 2003].

By means of a convex switching function f = f (φ1, . . . , φn), which includes the origin, the normality
rule

q̇α = λ
∂ f
∂φα

(27)

leads to evolution equations for the state variables which satisfy the dissipation inequality in a sufficient
manner. Here, for a rate independent theory, the irreversible multiplier λ can be determined by means of
the consistency condition:

λ

 solves ḟ =
∑n

α=1
∂ f
∂φα

∂φα

∂qβ
q̇β = 0 for f (φ1, . . . , φn)= 0 and ḟ

∣∣
q̇1,...,q̇n=0 > 0,

= 0 else.
(28)

4.1.1. 1D approach. For a better understanding, the choice of internal state variables of the model is
motivated by means of a 1D approach. Figure 8 shows a projection of a unit sphere with two inner
cones, where the cones axes are parallel to the loading direction (x3) and the cones have an opening
angle θ e. The continuous straight lines represent the orientation of selected c-axes and the direction
of the spontaneous polarization is indicated by the arrow tips. The sphere represents the distribution
of the orientation of c-axes and spontaneous polarization in some representative volume element in the
neighborhood of a point in a macrocontinuum. Figure 8b symbolizes the thermally depolarized initial
state where the distribution c-axes and spontaneous polarization is uniform over the sphere. For this
initial state, the average macroscopic irreversible polarization and strain are zero.

The first state variable to be identified is q1
= β, which is the fraction of c-axes within the cones. The

range of β is β ∈ [0; 1], in which zero is the case where no c-axes are inside the cones. For β = 1, all
c-axes are within the cones in which case the irreversible strain reaches its saturation value Si

33 = Ssat.
For the initial state of random distribution of the c-axes β assumes its reference value βref. The opening
angle θ e of the cones and the state variable β can also be interpreted as parameters of a step function
approximation of the orientation distribution function (ODF) of the c-axes. This distribution would be
transversely isotropic meaning that it is invariant for arbitrary rotations about the axis of loading. The



FE IMPLEMENTATION OF NONLINEAR CONSTITUTIVE MODELS FOR PIEZOCERAMIC MATERIALS 33

poloidal variation of this approximate ODF can be written as

p(θ)=


β

4π(1− cos θ e)
for 0≤ θ ≤ θ e and π − θ e

≤ θ ≤ π,

1−β
4π cos θ e for θ e < θ < π − θ e,

0≤ β ≤ 1. (29)

For the initial random state, that is, a uniform distribution of the c-axes, β assumes its reference value
βref
= 1− cos θ e. A graphical representation of the ODF is shown in Figure 9 for the range 0≤ θ ≤ π

2 .
By integration over the approximate ODF [Kamlah and Wang 2003], we obtain immediately

Si
33(β)= Ssatβ −β

ref

1−βref (30)

for the dependence of irreversible strain on the microstructural parameter β.
For each fixed orientation of the c-axes of a domain, there are still two possible directions for the

corresponding spontaneous polarization. From this it is quite obvious, that variable β is not sufficient
to describe the macroscopic state within the unit sphere, see Figure 8. Rather, a second state variable
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Figure 8. Projection of a sphere with two inner cones around the loading axis x3.
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Figure 9. Transversally isotropic ODF p(θ) for the domain density. The dashed line
represents the real function, while the solid line is the simplification used in the material
model.
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q2
= γ needs to be introduced, describing the relative macroscopic polarization:

γ =
‖P i

i ‖

Psat . (31)

Of course, γ = 0 holds for the thermally depolarized initial state, as there is no polarization at the macro-
scopic level. It has to be noted that state variable γ is not completely independent of β. Integration over
the approximate ODF [Kamlah and Wang 2003] yields the maximum irreversible polarization belonging
to a given orientation state of the c-axes. One obtains

γmax,‖(β)=
β + cos θ e

1+ cos θ e =
β −βref

+ 1
2−βref (32)

for the maximum relative irreversible polarization in the loading direction that can be attained for a given
orientation state of the c-axes characterized by β. The maximum or minimum (γ = ±1) can only be
reached if all c-axes are within the cones, that is, β = 1. If all c-axes are outside of the cones, a maximum
polarization magnitude of γmax,‖(0) is still possible. For 0≤ β ≤ 1 the maximum irreversible polarization
is a function of β:

|γ | ≤ γmax,‖(β). (33)

Thus, β and γ may assume values only from a range of admissible values defined by

G =
{
(β, γ )

∣∣ |γ | ≤ γmax,‖(β), 0≤ β ≤ 1
}
. (34)

Figure 10 shows region G with border ∂G which β and γ are not allowed to leave. To compare both,
the phenomenological and the microscopically motivated constitutive models, we consider the simple
simulation in Figure 11, showing dielectric and butterfly hysteresis, respectively. It clearly can be seen
that the evolution of the state variables initiates at reaching the coercive field. After this, the plots of
the curves differ significantly. In the microscopically motivated material model, 90 and 180 switching
processes and saturation are taken into account more realistically. After reaching the saturation both
models follow the linear piezoelectric behavior.

4.1.2. 3D generalization of the material model. In the following, the material model will be generalized
for 3D loadings. Therefore, two additional state variables are introduced. The first one q3

= eβi is a unit

b

g

1

1

b ref

G

()max,||
0g

Figure 10. Range G of admissible values for the state variables β and γ .
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vector representing the direction of the axis of the transversely isotropic ODF in 3D space. This direction
depends on the loading history. Then, the irreversible strain is written as

Si
i j =

3
2

Ssatβ −β
ref

1−βref

(
eβi eβj −

1
3
δi j

)
, (35)

where δi j is the Kronecker symbol. This tensor represents an irreversible strain state with a normal strain
according to Equation (30) in the direction of unit vector eβi . The normal strains perpendicular to eβi then
follow from the requirement that the total irreversible strain tensor must be isochoric. This requirement
is motivated by switching processes being the underlying mechanism.

Depending on the loading history, the direction of the ODF and the direction of the irreversible polar-
ization need not be the same. Therefore, another unit vectorial state variable q4

= eγi is introduced by
which the irreversible polarization vector is expressed as P i

i = γ Psateγi .
Since in general eβi and eγi include an angle resulting in |eβi eγi |< 1, the region G of admissible values

for our internal variables has to be reformulated. If eβi = eγi , we have |γ | ≤ γmax,‖(β). If eβi and eγi are
perpendicular to each other, one finds |γ | ≤ γmax,⊥(β), where γmax,⊥ is obtained from integration over
the ODF [Kamlah and Wang 2003] yielding

γmax,⊥(β)=
π − 2θ e

+ sin 2θ e

π cos θ e(1+ cos θ e)
+

(
2θ e
− sin 2θ e

π(1− cos2 θ e)
−

π − 2θ e
+ sin 2θ e

π cos θ e(1+ cos θ e)

)
β. (36)

For an arbitrary angle with 0≤ cos|eβi eγi | ≤ 1, the linear interpolation,

γmax(β, eβi , eγi )= γ
max,⊥(β)+

(
γmax,‖(β)− γmax,⊥(β)

)
|eβi eγi |, (37)

is used for the maximum magnitude of relative irreversible polarization. In summary, the region of
admissible values for the set {β, γ, eβi , eγi } of internal state variables in 3D reads as

G =
{
(β, γ, eβi , eγi )

∣∣ |γ | ≤ γmax(β, eβi , eγi ), 0≤ β ≤ 1
}
. (38)
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4.1.3. 3D formulation of the evolution equations. As a hardening parameter, an energy barrier function
is introduced which satisfies the conditions

FG
→∞ for (β, γ, eβi , eγi )→ ∂G,

FG
= 0,

∂FG

∂β
= 0, and

∂FG

∂γ
= 0 for (β, γ )= (βref, 0) and all (eβi , eγi ).

(39)

While the first condition implies that the region of admissible values is surrounded by an energy wall of
infinite height, the second condition ensures that there is no effect from the energy barrier function FG

in the unpoled initial state. The energy barrier function was chosen as

FG
= A

(
b(β)

(
β−N
+ (1−β)−N )

+ g(γ )
(
γmax
− |γ |

)−N
)
, (40)

in which A und N are positive constants and, for example, b(β)= (β −βref)4 and g(γ )= γ 4 to enforce
the second set of conditions (39).

By means of the Gibbs free energy, the driving forces for the internal variables can be obtained from
expression (26) as

φβ =
3
2

Ssat

1−βref

(
eβi eβj −

1
3
δi j

)
Ti j +

1
2
∂C−1

jklm

∂β
T jk Tlm +

1
2
∂κ jk

∂β
E j Ek − cβ(β −βref)−

∂FG

∂β
,

φγ = Psat Ei e
γ
i +

∂dki j

∂γ
Ek Ti j − cγ γ − ∂FG

∂γ
,

φEe
β

i = 3Ssatβ −β
ref

1−βref Ti j e
β
j +

1
2
∂C−1

jklm

∂eβi
T jk Tlm +

1
2
∂κ jk

∂eβi
E j Ek −

∂FG

∂eβi
,

φEe
γ

i = Psatγ Ei + γ
∂dsat

krs

∂eγi
Ek Trs −

∂FG

∂eγi
.

(41)

Since eβi and eγi have to remain unit vectors, only the component of the driving force perpendicular
to the corresponding unit vector must be taken into account for the respective evolution equation:

φEe
β ,⊥

i = (δi j − eβi eβj )φ
Eeβ
j , φEe

γ ,⊥
i = (δi j − eγi eγj )φ

Eeγ
j . (42)

This is by analogy to incremental plasticity, where only the stress deviator contributes to the evolution
of volume preserving plastic strain.

As a simple choice, the convex switching function is then given by

f =

√(
φβ

φβ,0

)2

+

(
φγ

φγ,0

)2

+

(
| EφEe

β,⊥
|

φEe
β,0

)2

+

(
| EφEe

γ,⊥
|

φEe
γ,0

)2

− 1, (43)

in which

φβ,0 =
Ssatσ c

1−βref , φγ,0 = Psat Ec, φEe
β,0
=
√

3σ cSsatβ −β
ref

1−βref , φEe
γ,0
= γ Psat Ec. (44)
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For pure electric loadings, this criterion is satisfied (that is, f = 0) if the magnitude of the electric field
vector Ei is equal to the coercive field strength Ec. For pure mechanical loadings, this switching function
is equivalent to a von Mises type criterion.

By the normality rule (27), the evolution equations for the internal variables are obtained as

β̇ = λ
∂ f
∂φβ
=

λ
1+ f

(
1
φβ,0

)2

φβ, γ̇ = λ
∂ f
∂φγ
=

λ
1+ f

(
1
φγ,0

)2

φγ ,

Ėeβ = λ
∂ f
∂φEe

β
=

λ
1+ f

(
1

φEe
β ,0

)2
EφEe

β,⊥

, Ėeγ = λ
∂ f
∂φEe

γ =
λ

1+ f

(
1

φEe
γ ,0

)2
EφEe

γ,⊥

.

(45)

This system of eight ordinary differential equations has to be solved in the finite element implementation.
To remove redundant equations, the formulation of the material law was rewritten in generalized variables,
where the unit vectors are represented by two polar variables instead of three cartesian components
[Laskewitz 2007].

4.2. Finite element implementation. First of all, coming from the elastic region, initial values for the
state variables eβi and eγi have to be found before switching starts for the first time. Several cases have
to be taken into consideration, which are presented in Table 3.

Due to the nonlinearity of the problem, the loading history is subdivided into increments. In the
following, we consider the general case of a computation for some time instant n+1t = t +1t . We depart
from some known state at time nt = t (the last increment), meaning the state variables nqα are known
(besides strain nSi j and electric field nE i , of course). Furthermore, trial values n+1Si j and n+1E i for
strain and electric field, respectively, are given from the global Newton iteration. The task is to find the
state variables n+1qα from which the stress n+1T i j and the electric displacement n+1Di can be computed.
Furthermore, the algorithmic consistent tangents

n+1(∂Di

∂E j

)
,

n+1(∂Ti j

∂Ek

)
,

n+1( ∂Di

∂S jk

)
,

n+1(∂Ti j

∂Skl

)
,

have to be provided to guarantee quadratic convergence of the global Newton iteration.

Case Initial value

‖
n+1T rev

i j ‖ = 0 and ‖n+1E i‖ = 0 Undefined

‖
n+1T rev

i j ‖ = 0 and ‖n+1E i‖> 0 eβi =
n+1E i

‖n+1E i‖
eγi =

n+1E i

‖n+1E i‖

‖
n+1T rev

i j ‖> 0 and ‖n+1E i‖ = 0 eβi , eγi : eigenvector of n+1T rev
i j belonging to largest eigenvalue

‖
n+1T rev

i j ‖> 0 and ‖n+1E i‖> 0 eβi : eigenvector of n+1T rev
i j eγi =

n+1E i

‖n+1E i‖

Table 3. Initial values for eβi and eγi (n+1T rev
i j is the elastic stress tensor (trial stress) at

the end of the increment).
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The bases for this computation are the evolution equations (27) which are solved by a backward Euler
scheme yielding

n+1qα(t +1t)= nqα(t)+1t · n+1λ(t +1t)
n+1( ∂ f

∂φα

(
qβ(t +1t), t +1t

))
. (46)

By means of the notation n+1qα = qα(t +1t) and n+1λ= λ(t +1t) for the state variables and the so-
called irreversible multiplier, (46) can be rewritten as

Fα = qα(t +1t)− qα(t)−1tλ(t +1t)
∂ f
∂φα

(
qβ(t +1t), t +1t

)
= 0. (47)

The switching condition
f
(
qα(t +1t), t +1t

)
= 0. (48)

completes the system of equations.
From Taylor series expansion and linearization of functions Fα and f , the iteration scheme

j+1Fα = jFα +
j(∂Fα

∂qβ
)
·

j+1δqβ +
j(∂Fα

∂λ

)
·

j+1δλ= 0,

j+1f = jf +
j( ∂ f
∂qα

)
·

j+1δqα = 0,
(49)

can be found in which

jFα = jqα − qα(t)−1t · jλ
∂ f
∂φα

( jqβ, t +1t), jf = f ( jqα, t +1t). (50)

This procedure is equivalent to the Newton–Kantorovich method. As a consequence, a second local
Newton iteration has been established to solve the constitutive law at each integration station in each
load step.

To achieve quadratic convergence in the global Newton iteration during nonlinear computation of
switching processes, it is necessary to employ the so-called algorithmic consistent tangent moduli. For
such a complex constitutive model as the one considered in this paper, it is not possible to derive these
moduli in closed form. Approximations may be used, such as the material tensors from the linear con-
stitutive law, yielding a quasi-Newton method with only linear convergence guaranteed. Otherwise,
numerical differentiation may be employed:

n+1(∂Di

∂E j

)
=

Di (E j + h)− Di (E j )

h
,

n+1(∂Ti j

∂Ek

)
=

Ti j (Ek + h)− Ti j (Ek)

h
,

n+1( ∂Di

∂S jk

)
=

Di (Sik + h)− Di (Sik)

h
,

n+1(∂Ti j

∂Skl

)
=

Ti j (Skl + h)− Ti j (Skl)

h
,

(51)

in which h =
√

eps ≈ 1, 5 · 10−8 should be chosen, where eps is the accuracy of the computer.

4.2.1. Methods to improve convergence. In the finite element solution, occasional convergence problems
occurred. This section describes some methods to enhance the convergence of the finite element imple-
mentation. The convergence problems occur mainly because of the form of the energy barrier function
which is a hyperbola. There is a possibility for the state variables to take values outside the region of
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admissible values because of inaccuracies during the iteration procedures. In this case, a physically
incorrect solution is obtained. Therefore, it should be ensured that the state variables cannot leave the
region of admissible values. The Newton method needs a start vector which is sufficiently close to the
solution for an accurate convergence to the physically correct roots of the system (47)–(48). To improve
convergence, several methods have been studied and tested. An overview of the most important methods
is given in Table 4. It has to be mentioned that sometimes convergence still could not be achieved.

4.2.2. Verification of the implementation of the microscopically motivated material model. Based on the
material parameters in Table 5, the microscopically motivated constitutive model and its finite element
implementation are verified in comparison to experimental results.

Figure 12 shows the dielectric and the butterfly hysteresis from experiments and simulations. The
microscopically motivated model can represent the material behavior very well.

4.3. Simulation example: hollow cylinder. In experiments, hollow cylinders are often used to investi-
gate multiaxial loading states. Figure 13a shows a piezoceramic circular ring which is poled in the radial
direction. The axisymmetric finite element model shown in Figure 13b represents a cylinder of infinite
axial length, since all vertical displacements at the top of the model are forced to be equal. The maximum
electric potential loading is equivalent to an average electric field of 3Ec. Following poling, the cylinder
is unloaded again. The material parameters are adjusted to a soft lead-zirconate-titanate (soft PZT) and
are presented in Table 6.

Figure 14 presents the deformed and undeformed finite element mesh. The electrical loading induces
a decrease of the inner radius accompanied by a shortening in the vertical direction in comparison to the

Method to improve convergence Advantages and disadvantages

Consistent tangent moduli + Improvement of global convergence
+ In general local convergence better
− Computationally expensive

Enforcing admissible range for β and γ + Improvement of convergence
− Limitation in finding suitable start vectors

Damped Newton method for local Newton it-
eration

+ Significant improvement of convergence
+ Computationally inexpensive
− Strong dependence on the maximum num-
ber of iterations for the damped local Newton
method (different roots can be found for dif-
ferent maximum numbers of iterations)

Systematic search for suitable start vector (Eu-
ler forward, linear interpolation)

+ Improvement of convergence
− Can be computationally expensive

Subincrementing the time step, solution with
backward Euler method or forward Euler
method

+ Significant improvement of convergence
− Computationally very expensive

Table 4. Methods to improve convergence of the Newton method.
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Ec (MV/mm) 1.0× 103

Psat (kN/(MVmm)) 310× 10−3

σ c (kN/mm2) 40.0× 10−3

Ssat 0.00225
Y (kN/mm2) 60.0
ν 0.37
d‖ (mm/MV) 6.75× 10−1

d⊥ (mm/MV) −3.15× 10−1

d= (mm/MV) 4.35× 10−1

cγ (kN/mm2) 3.0× 10−5

cβ (kN/mm2) 1.0× 10−4

N 2.0
A (kN/mm2) 5.0× 10−11

Table 5. Material parameters for the microscopically motivated material model.
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Figure 12. Dielectric (left) and butterfly hysteresis (right) from experiments and simulations.
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Figure 13. (a) Radial poled circular cylinder, top view, and (b) axisymmetric finite ele-
ment model.
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Y (GPa) 60.0
ν 0.396
σ c (MPa) 40.0
Ssat 0.002
Ec (kV/mm) 1.0
Psat (C/m2) 0.29
d33 (mm/MV) 4.5× 10−1

d31 (mm/MV) −2.1× 10−1

d15 (mm/MV) 5.8× 10−1

Table 6. Material parameters used in the simulations.
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Figure 14. Undeformed and deformed finite element mesh (scale factor 5.27).
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Figure 15. Electric field in the radial direction at maximum load and after unloading
over the wall thickness.

initial state. In Figure 15, the electric field versus the wall thickness at the maximum electric potential
and after unloading is depicted. At the inner surface of the cylinder the local electric field reaches
approximately −5 kV/mm, while at the outer surface, it is just above the coercive field at maximum load.
After unloading, there remains a local electric field at the inner surface of approximately −1.5 kV/mm.
In contrast to this, the local electric field at the outer surface changes sign and is just below the initial
critical field strength for the onset of switching, that is, Ec.

In Figure 16 the axial stress over the wall thickness is presented. The distribution of the axial stress is
almost linear at maximum voltage. At the inner surface of the cylinder, there are tensile stresses, while at
the outer surface there are compressive stresses. The tensile stress is in the range of the tensile strength
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Figure 16. Axial stress over the wall thickness at maximum load and after unloading.
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Figure 17. Irreversible polarization over wall thickness at maximum load and after unloading.

of the material and may lead to cracks. After unloading, there remain stresses in the cylinder. At the
inner surface there is almost no reduction of the stresses, but at the outer surface, there is a decrease in
the axial stresses observed. Because of the inhomogeneous distribution of the electric field, the coercive
field is reached earlier in regions near the inner surface initiating domain switching in the radial direction
while at the outer surface the coercive field has not yet been reached. This leads to compressive axial
stresses close to the outer surface and, as a consequence of equilibrium, to tensile axial stresses near the
inner surface. The circumferential stresses (not shown) exhibit a nonlinear distribution as well and do
not vanish after unloading. The radial stresses are approximately zero.

Figure 17 shows the irreversible polarization at maximum voltage and after unloading. At maximum
load, the saturation polarization is almost reached in all regions of the cylinder. Only at the outer surface,
there is a small decrease observed. During unloading the irreversible polarization is decreasing especially
at the outer surface. While the stresses in the cylinder wall are significant, they can not explain this effect
by means of some mechanical depolarization. As they are compressive, these stresses rather would
stabilize the poled state close to the outer surface. To have a closer look at the depolarization effect, the
local electric displacement over the local electric field is depicted in Figure 18 for two elements. Element
11 is approximately at the position where the electric field is zero after unloading. Element 25 is at the
outer surface of the cylinder (see Figure 17).
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Figure 18. Local electric displacement over local electric field for two positions in the
cylinder wall.

In element 11, saturation of the local irreversible polarization is clearly reached, while for element
25 the saturation level is just touched. After unloading, the local electric field in element 11 is reduced
to nearly zero, while the local electric displacement approaches Psat as the linear dielectric contribution
vanishes. In contrast to this, the local electric field in element 25 changes sign and takes significant values
in the opposite direction of the initial poling. As a matter of fact, it reaches the critical electric field for
the onset of electrically induced repoling in opposite direction. Around this critical field strength, small
changes of the electric field lead to significant changes in the irreversible polarization. Due to the large
slope of the polarization changing parts of the hysteresis electrical depolarization takes place. Because
of that, after unloading, an obvious reduction of the irreversible polarization is observed near the outer
surface of the cylinder, though the electric field is nearly constant with respect to position in this region.
The actual critical field strength for the repoling process is dependent on the previous loading history. In
particular, it has been reduced close to the outer surface compared to the initial coercive field strength
Ec due to what we may call a ferroelectric Bauschinger effect. As a consequence, even an arbitrarily
high electric voltage during poling is not able to ensure fully saturated polarization over the whole wall
thickness after unloading.

By means of this simulation example it could be shown that the implementation of the microscopically
motivated material model is very powerful. It can describe the polarization behavior of piezoceramic
materials in more detail than the phenomenological model. This statement results from a comparison to
simulations in [Laskewitz et al. 2006], where the finite element analysis of piezoceramic hollow cylinders
based on the phenomenological model is presented.

5. Conclusion

After motivating this work and giving an overview of the state of the art in the literature, a phenomeno-
logical constitutive model for ferroelectrics and its finite element implementation was described. A
customized, computationally time efficient integration algorithm (radial return mapping method) was
introduced. The model and its finite element implementation was verified by simulation examples and
comparison to experiments. As a simulation example, poling of a stack actuator was considered showing
the capability of the finite element tool.
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Next, a microscopically motivated constitutive model and its finite element implementation by a more
complex radial return mapping algorithm was described and verifications by means of experimental data
were performed. Lastly, a simulation example using a hollow cylinder showed the applicability of the
this finite element tool for practical problems.

In summary, the phenomenological material model is well suited to simulate realistically the overall
behavior of large systems. The microscopically motivated material model has its field of application in
simulating the detailed electromechanically fields of smaller piezoceramic (sub)systems, because of the
higher computation time consumed by the more complex integration algorithm.
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