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FOR RHOMBIC SYSTEMS

FRANCESCA PASSARELLA, VINCENZO TIBULLO AND VITTORIO ZAMPOLI

In the present paper, we investigate the spatial behavior of transient and steady-state solutions for the
problem of bending applied to a linear Mindlin-type plate model; the plate is supposed to be made of
a material characterized by rhombic isotropy, with the elasticity tensor satisfying the strong ellipticity
condition. First, using an appropriate family of measures, we show that the transient solution vanishes
at distances greater than cT from the support of the given data on the time interval [0, T ], where c is a
characteristic material constant. For distances from the support less than cT , we obtain a spatial decay
estimate of Saint-Venant type. Then, for a plate whose middle section is modelled as a (bounded or
semiinfinite) strip, a family of measures is used to obtain an estimate describing the spatial behavior of
the amplitude of harmonic vibrations, provided that the frequency is lower than a critical value.

A list of symbols can be found on page 337.

1. Introduction

Mechanical structures involving elastic plates are useful in a wide range of technical applications and have
been the subject of many studies, such as [Green and Naghdi 1967; Naghdi 1971; Lagnese and Lions
1988]. Initially, authors considered the plate model based on Kirchhoff’s elastic strain-displacement
relations, completely neglecting the effects of transverse shear forces [Nowinski 1978; Lagnese and
Lions 1988]. Then, increasingly refined models were introduced, taking into account not only the
deflection of the middle section, but also transverse shear deformations. The theory of elastic plates
based on the Mindlin model has been developed by Constanda [1990] for the elastostatic bending of a
thin slab, including the effects of transverse shear deformation. Furthermore, a dynamic model for small
deformations of a thin thermoelastic plate was developed by Schiavone and Tait [1993].

The Reissner–Mindlin and Kirchhoff–Love models are the two most common models of a thin linear
elastic plate. It is often remarked in the engineering literature that the Reissner–Mindlin model is more
accurate, particularly for thin plates and when transverse shear strain plays a significant role [Hughes
1987]; in fact, both Mindlin [1951] and Reissner [1945; 1947] independently proposed theories which
also include the effects of transverse shear deformation. Arnold et al. [2002] showed that the Reissner–
Mindlin plate bending model has a wider range of applicability than the Kirchhoff–Love model. Under
the assumption of constant body force density in the transverse direction, they proved that the Reissner–
Mindlin model solution converges to the three-dimensional linearly elastic solution in the relative energy
norm for the full range of surface loads. Fabrizio and Chirit,ă [2004] studied the deformations of a linear
viscoelastic plate, including transverse shear deformations.

Keywords: plates, rhombic systems, strong ellipticity, transient and steady-state solutions.
The work in this paper was performed under the auspices of the GNFM of the Italian INdAM..
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The state of bending for a transversely isotropic plate of Mindlin-type has been analyzed by Passarella
and Zampoli [2009a; 2009b]. The first of these papers contains a uniqueness result and a Galerkin repre-
sentation of the solution, without positive definiteness assumptions on the elasticity tensor. Furthermore,
under the hypotheses of positive definiteness of the elasticity tensor, the authors prove a Gurtin type
variational theorem and a minimum principle. In [Passarella and Zampoli 2009b], previous hypotheses
are relaxed and, assuming strong ellipticity of the elasticity tensor, results about the spatial behavior of
transient and steady-state solutions are established.

With regard to the spatial behavior of solutions, Saint-Venant’s principle plays a central role in the
theory and applications of elasticity. A comprehensive review of research on the spatial behavior of
solutions is given by [Toupin 1965; Knowles 1966; Flavin 1974; Horgan and Knowles 1983; Gregory
and Wan 1985; Horgan 1989; 1996; Mielke 1988].

For genuine dynamic problems of elasticity, useful information on the spatial behavior of solutions can
be furnished by the well-known domain of influence theorem as presented by Gurtin [1972] and ascribed
to Wheeler and Sternberg [1968]. According to Gurtin the domain of influence of the given external
data at time T consists of the set DT of all points in the body that can be reached by signals propagating
from the support D̂T , on the time interval [0, T ], with speeds equal to or less than the maximum speed
of propagation c. Then the domain of influence theorem shows that on [0, T ] the externally given data
have no effect on points outside of DT .

In the present paper we study a bending state of a rhombic system modelled as a (either bounded
or unbounded) Mindlin-type plate, under a strong ellipticity condition on the elasticity tensor. In this
context, we use the properties of rhombic systems widely investigated by Gurtin [1972] and Chirit,ă
et al. [2007]. Such systems, together with transversely isotropic materials, show a good applicability to
mathematical models of plates that take into account transverse shear deformations (see [Paroni et al.
2006] for details). In particular, in the context of the linear theory, we investigate the spatial behavior of
transient and steady-state solutions. This investigation is concerned with some properties of the solutions
of the evolution equations ruling the displacement and rotation fields, supposing the plate to be initially
at rest. Moreover, time-dependent displacements and rotation fields are imposed on its boundary. These
fields on the boundary induce disturbances that propagate in the interior of the plate.

Outline of paper. In Section 2, we derive the evolution equations for the two-dimensional theory and
state assumptions concerning the strong ellipticity of the elasticity tensor.

In Section 3, considering the spatial support of data contained in a bounded domain D∗T , we define a
set of appropriate line-integral measures Iκ and establish some estimates in order to obtain the domain of
influence and the spatial decay of transient solutions away from D∗T . Using these estimates and following
the time-weighted power function method [Chirit,ă and Ciarletta 1999; 2003; Ciarletta et al. 2005], we
determine the speed of propagation of mechanical disturbances from D∗T , as well as the spatial decay of
solutions.

In Section 4, we treat a more specific mechanical problem, concerning the steady-state vibrations
of a (either bounded or semiinfinite) strip. Starting from an idea of Ciarletta et al. [2005] and Chirit,ă
[1995], we introduce a set of appropriate line-integral measures Jκ associated with the amplitude of time-
harmonic vibrations. We obtain a differential inequality describing the behavior of steady-state solutions
under the hypothesis that the frequency of harmonic vibrations is lower than a certain critical value.
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2. Formulation of the problem

In this paper, we study the behavior of a homogeneous body filled by a material that occupies at time
t = 0 a right cylinder B̄ of height 2h with (bounded or unbounded) cross-section 6̄ and smooth lateral
boundary 5. We call B and 6 the interiors of B̄ and 6̄; we choose the rectangular Cartesian coordinate
frame in such a way that Ox1x2 is the middle plane of the cylinder and thus its faces are located at
x3=±h. We also suppose that6 is a simply connected region, ∂6 is the boundary of6, and h� diam6.
Latin subscripts (unless otherwise specified) range over the integers {1, 2, 3}, whereas Greek subscripts
are confined to the range {1, 2}; summation over repeated subscripts is implied. Superposed dots, or
subscripts preceded by a comma, mean a partial derivative with respect to time or to the corresponding
Cartesian variables. When needed, vector fields are represented by bold-type letters. We will disregard
regularity questions, simply assuming a degree of smoothness sufficient to ensure analysis is valid.

For each point (x1, x2, x3) ∈ B̄ and t ∈ [0,∞), a bending state for such an elastic cylinder is charac-
terized by

uα(x1, x2, x3, t)=−uα(x1, x2,−x3, t) and u3(x1, x2, x3, t)= u3(x1, x2,−x3, t),

where ui are the components of the displacement vector that vary smoothly with respect to x3. Never-
theless, as with the study carried out in [Passarella and Zampoli 2009a; 2009b], we restrict our attention
to the bending state characterized by

uα(x1, x2, x3, t)= x3vα(x1, x2, t) and u3(x1, x2, x3, t)= w(x1, x2, t),

and we assume that the components fi of the body force vector obey the relations

fα(x1, x2, x3, t)=− fα(x1, x2,−x3, t), f3(x1, x2, x3, t)= f3(x1, x2,−x3, t).

The behavior of thin plates of uniform thickness is described by the equations of motion

1
3 h2 Mβα,β − τα3+ Hα = 1

3 h2%v̈α, τβ3,β + F = %ẅ, on 6× (0,∞) (2-1)

and the constitutive equations

Mi j (x1, x2, t)=
3

2h3

∫ h

−h
x3Ci jkluk,l(x1, x2, x3, t)dx3,

τi j (x1, x2, t)= 1
2h

∫ h

−h
Ci jkluk,l(x1, x2, x3, t)dx3,

(2-2)

where % is the reference mass density, Ci jkl are the components of the elasticity tensor obeying the usual
symmetry relations, and

F(x1, x2, t)= 1
2h

∫ h

−h
f3(x1, x2, x3, t)dx3+

1
h

C33kluk,l(x1, x2, h, t),

Hα(x1, x2, t)= 1
2h

∫ h

−h
x3 fα(x1, x2, x3, t)dx3+C3αkluk,l(x1, x2, h, t).

Suppose that
Hα = 0, F = 0, on 6̄×[0,∞). (2-3)
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In what follows, we consider a homogeneous rhombic elastic material, with the group C3 generated1 by
Rπe3

and Rπe2
characterized by (see, for example, [Gurtin 1972])

C1123 = C1131 = C1112 = C2223 = C2231 = C2212 = 0,

C3323 = C3331 = C3312 = C2331 = C2312 = C3112 = 0.
(2-4)

Using these equations and defining as usual

c11 = C1111, c22 = C2222, c33 = C3333, c44 = C2323, c55 = C1313,

c66 = C1212, c12 = C1122, c23 = C2233, c31 = C3311,

the constitutive equations (2-2) for rhombic materials become

M11 = c11v1,1+ c12v2,2, M22 = c12v1,1+ c22v2,2, M12 = M21 = c66(v1,2+ v2,1), (2-5)

τ13 = τ31 = c55(w,1+ v1), τ23 = τ32 = c44(w,2+ v2). (2-6)

Now, we restrict our attention to the class of rhombic materials having a strongly elliptic elasticity tensor,
that is,

Ci jklmi mkn j nl > 0 (2-7)

for all nonzero vectors (m1,m2,m3) and (n1, n2, n3). As it is possible to see in [Gurtin 1972], this
hypothesis on the elasticity tensor is weaker than positive definiteness. Chirit,ă et al. [2007] prove that
for rhombic systems the strong ellipticity condition (2-7) is equivalent to

c11n2
1m2

1+ c22n2
2m2

2+ c33n2
3m2

3+ c66(n1m2+ n2m1)
2
+ c44(n3m2+ n2m3)

2

+ c55(n1m3+ n3m1)
2
+ 2c12n1m1n2m2+ 2c23n2m2n3m3+ 2c31n3m3n1m1 > 0, (2-8)

and this relation implies the conditions

c11 > 0, c22 > 0, c33 > 0, c44 > 0, c55 > 0, c66 > 0,

|c12+ c66|< c66+
√

c11c22, |c13+ c55|< c55+
√

c11c33, |c23+ c44|< c44+
√

c22c33.

3. Transient solutions: decay estimate of Saint-Venant type

In this section, we establish results describing the spatial behavior of solutions of the given data on the
interval [0, T ] under the strong ellipticity condition on the elasticity tensor. To this end, we can rewrite
the system of (2-1), (2-3), (2-5), and (2-6) in terms of (vα, w) as

1
3 h2
[c11v1,11+ c66v1,22+ (c12+ c66)v2,12] − c55(w,1+ v1)=

1
3 h2%v̈1,

1
3 h2
[c66v2,11+ c22v2,22+ (c12+ c66)v1,12] − c44(w,2+ v2)=

1
3 h2%v̈2,

c55(w,11+ v1,1)+ c44(w,22+ v2,2)= %ẅ,

(3-1)

or, equivalently, as
1
3 h2 M̃βα,β − τα3 =

1
3%h2v̈α, τβ3,β = %ẅ, (3-2)

1 Rθu is the orthogonal tensor corresponding to a right-handed rotation through the angle θ about an axis of unit vector u.
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where M̃βα represents the family of tensors depending on the parameter κ through

M̃11 = c11v1,1+ (c66− κ)v2,2, M̃12 = (c12+ κ)v1,2+ c66v2,1,

M̃21 = c66v1,2+ (c12+ κ)v2,1, M̃22 = (c66− κ)v1,1+ c22v2,2,
(3-3)

and τβ3 is defined by Equation (2-6). The family of tensors M̃βα has a nonvanishing skew-symmetric
part, depending on the skew-symmetric part of vα,β .

Let P be the problem defined by (2-6), (3-2), (3-3) and the initial-boundary conditions

vα(x1, x2, 0)= 0, w(x1, x2, 0)= 0 on 6,

v̇α(x1, x2, 0)= 0, ẇ(x1, x2, 0)= 0 on 6,

vα = v̆α, w = w̆ on L × [0,+∞),

vα = 0, w = 0 on LC×[0,+∞),

where L and LC are disjoint and complementary nonempty subsets of ∂6 and D= (v̆α, w̆) is the set of
assigned fields representing the external data of the problem in question.

We define the support D̂T of external data D on the time interval [0, T ] as the set of points

x = (x1, x2) ∈ L

for which there exists τ ∈ [0, T ] such that v̆α(x, τ ) 6= 0 or w̆(x, τ ) 6= 0. In other words, for x ∈ ∂6\D̂T ,
we have

v̆α(x, t)= 0 and w̆(x, t)= 0 for all t ∈ [0, T ]. (3-4)

For convenience, we assume that D̂T is a nonempty bounded set and that D∗T is the smallest regular
subcurve of L including D̂T . We consider the sets

Dr =
{

x ∈6 : D∗T ∩ S(x, r) 6=∅
}
, 6r =6\Dr , 6(r1, r2)=6r2\6r1,

where r > 0, r2 ≤ r1, and S(x, r) is the closed ball with radius r and center at x, that is,

S(x, r)= { y ∈ R2
: | y− x| ≤ r}.

Then, Lr = ∂6r ∩6 is the subcurve of ∂6r that lies inside the inner part of 6, and whose unit normal
vector n is directed towards the interior of 6r (or, equivalently, towards the exterior of Dr ).

We also agree that, for r = 0, D0 and L0 coincide with D∗T , and the normal vector n to L0 is directed
towards the interior of 6.

For any positive parameter λ, we introduce the function

Iκ(r, t)=−
∫ t

0

∫
Lr

e−λs[τβ3(s)ẇ(s)+ 1
3 h2 M̃βα(s)v̇α(s)

]
nβ dl ds, r ≥ 0, t ∈ [0, T ]; (3-5)

for what follows, it is useful to remark that

Iκ(r, 0)= 0 for all r ≥ 0. (3-6)
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From direct differentiation of (3-5) with respect to the variable t , we get

∂Iκ
∂t
(r, t)=−

∫
Lr

e−λt[τβ3(t)ẇ(t)+ 1
3 h2 M̃βα(t)v̇α(t)

]
nβ dl. (3-7)

On the other hand, from the definition of 6r , from (3-4), and from the divergence theorem, we have

Iκ(r1, t)−Iκ(r2, t)=−
∫ t

0

∫
6(r1,r2)

e−λs[τβ3(s)ẇ(s)+ 1
3 h2 M̃βα(s)v̇α(s)

]
,β

dσ ds.

Using (2-6) and (3-2)–(3-5), we obtain, for r2 < r1,

Iκ(r1, t)−Iκ(r2, t)

=−
1
2

∫ t

0

∫
6(r1,r2)

e−λs ∂
∂s

{
%
[
ẇ2(s)+ 1

3 h2v̇α(s)v̇α(s)
]
+c55

(
w,1(s)+v1(s)

)2
+c44

(
w,2(s)+v2(s)

)2

+
1
3 h2[c11v

2
1,1(s)+c22v

2
2,2(s)+2(c66−κ)v1,1(s)v2,2(s)

+c66
(
v2

2,1(s)+v
2
1,2(s)

)
+2(c12+κ)v2,1(s)v1,2(s)

]}
dσ ds. (3-8)

Introducing
T= 1

2%
(
ẇ2
+

1
3 h2v̇α v̇α

)
, W= 1

2

(
W0+

1
3 h2W1+

1
3 h2W2

)
, (3-9)

and

W0 = c55(w,1+ v1)
2
+ c44(w,2+ v2)

2, W1 = c11v
2
1,1+ c22v

2
2,2+ 2(c66− κ)v1,1v2,2,

W2 = c66(v
2
2,1+ v

2
1,2)+ 2(c12+ κ)v2,1v1,2,

(3-10)

it follows from (3-8) that

Iκ(r1, t)−Iκ(r2, t)=−
∫ t

0

∫
6(r1,r2)

e−λs ∂
∂s
[T(s)+W(s)]dσ ds if r2 < r1. (3-11)

Now, it is possible to show that Iκ is continuously differentiable with respect to r ; in fact, considering

lim
r1→r2

Iκ(r1, t)−Iκ(r2, t)
r1− r2

=− lim
r1→r2

1
r1−r2

∫ t

0

∫
6(r1,r2)

e−λs ∂
∂s
[T(s)+W(s)]dσ ds

=−

∫ t

0

∫
Lr

e−λs ∂
∂s
[T(s)+W(s)]dσ ds,

and integrating by parts with respect to the time variable s, we arrive at

∂Iκ

∂r
(r, t)=−

∫
Lr

e−λt
[T(t)+W(t)]dl − λ

∫ t

0

∫
Lr

e−λs
[T(s)+W(s)]dl ds. (3-12)

Let A0, A1, and A2 be the matrices associated with the quadratic forms W0, W1, and W2, respectively.
When the strong ellipticity condition (2-8) is valid and κ satisfies the relation

max
{
−c66− c12, c66−

√
c11c22

}
< κ <min

{
c66− c12, c66+

√
c11c22

}
, (3-13)

the eigenvalues of A0, A1, and A2, which are

c55, c44,
1
2

[
c11+ c22±

√
(c11− c22)2+ 4(c66− κ)2

]
, c66± |c12+ κ|,



DECAY PROPERTIES OF SOLUTIONS OF A MINDLIN-TYPE PLATE MODEL FOR RHOMBIC SYSTEMS 329

are all strictly positive. In what follows, we denote with µκ and ηκ the smallest and largest eigenvalues
of A0, A1, and A2, respectively. These are

µκ =min
{

c44, c55,
1
2

[
c11+ c22−

√
(c11− c22)2+ 4(c66− κ)2

]
, c66− |c12+ κ|

}
,

ηκ =max
{

c44, c55,
1
2

[
c11+ c22+

√
(c11− c22)2+ 4(c66− κ)2

]
, c66+ |c12+ κ|

}
.

If % > 0 and (2-8) and (3-13) hold, then T and W are positive definite; thus, we show through (3-12) that
Iκ(r, t) is a nonincreasing function with respect to r , that is,

Iκ(r1, t)≤ Iκ(r2, t) if r2 < r1. (3-14)

If the plate is bounded and `=maxx∈6̄
{
min y∈D∗T

√
(x1− y1)2+ (x2− y2)2

}
, we obtain from the defini-

tion of Lr that L` =∅ and, consequently,

Iκ(`, t)= 0, t ∈ [0, T ]; (3-15)

moreover, (3-11), (3-14), and (3-15) imply that

0≤ Iκ(r, t)=
∫ t

0

∫
6(`,r)

e−λs ∂

∂s
[T(s)+W(s)]dσ ds for r ≤ `. (3-16)

In this case, it is obvious that 6(`, r) = 6r . It is possible to obtain a relation similar to (3-16) for an
unbounded plate. To this end, we estimate Iκ(r, t) and ∂Iκ(r, t)/∂t in terms of ∂Iκ(r, t)/∂r .

Theorem 3.1. Let % > 0 and suppose the hypotheses (2-8) and (3-13) hold. Let (vα, w) be a solution
of the initial-boundary value problem P and D̂T the bounded support of external data D on the time
interval [0, T ], then the function Iκ satisfies the first-order differential inequalities

|Iκ(r, t)| + cκ
λ
∂Iκ
∂r

(r, t)≤ 0,
∣∣∣∂Iκ
∂t
(r, t)

∣∣∣+ cκ
∂Iκ
∂r

(r, t)≤ 0, with cκ =
√
ηκ
%
. (3-17)

Proof. Under the hypotheses (2-8) and (3-13), we can observe that

0≤ k(α)m (γ2
1+ γ

2
2)≤ F[Aα; γ , γ ] ≤ k(α)M (γ2

1+ γ
2
2), (3-18)

where k(α)m and k(α)M are the smallest and largest eigenvalues of Wα, the functional F is given by

F[Aα;ϕ, γ ] := ϕ ·Aαγ ,

with the variables ϕ = (ϕ1, ϕ2) and γ = (γ1, γ2). In particular,

k(1)m =
1
2

[
c11+ c22−

√
(c11−c22)2+ 4(c66−κ)2

]
, k(2)m = c66− |c12+ κ|,

k(1)M =
1
2

[
c11+ c22+

√
(c11−c22)2+ 4(c66−κ)2

]
, k(2)M = c66+ |c12+ κ|.

Through the Schwarz inequality and Equations (3-3) and (3-10), we get

F[Aq;ϕ, γ ] ≤
[
F[Aq;ϕ,ϕ]

]1/2[
F[Aq; γ , γ ]

]1/2 (3-19)
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and
F
[
A1; γ̂

(1), γ̂ (1)
]
=W1, F

[
A1; M̃(1), γ̂ (1)

]
= M̃2

11+ M̃2
22,

F
[
A2; γ̂

(2), γ̂ (2)
]
=W2, F

[
A2; M̃(2), γ̂ (2)

]
= M̃2

21+ M̃2
12,

(3-20)

where

γ̂ (1) = (v1,1, v2,2), M̃(1)
= (M̃11, M̃22), γ̂ (2) = (v1,2, v2,1), M̃(2)

= (M̃21, M̃12).

Now, collecting (3-10) and (3-18)–(3-20), we deduce that

M̃2
11+ M̃2

22 ≤ F1/2[A1; M̃(1), M̃(1)]W1/2
1 ≤

[
k(1)M (M̃2

11+ M̃2
22)
]1/2

W
1/2
1 ,

M̃2
21+ M̃2

12 ≤ F1/2[A2; M̃(2), M̃(2)]W1/2
2 ≤

[
k(2)M (M̃2

21+ M̃2
12)
]1/2

W
1/2
2 .

(3-21)

On the other hand, from (2-6) and (3-10) it follows that

0≤ k(0)m W0 ≤ τβ3τβ3 ≤ k(0)M W0, (3-22)

where k(0)m =min{c44, c55} and k(0)M =max{c44, c55}. Equations (3-9), (3-21), and (3-22) allow us to show
easily that

τβ3τβ3+
1
3 h2 M̃βα M̃βα ≤ k(0)M W0+

1
3 h2k(1)M W1+

1
3 h2k(2)M W2 ≤ 2ηκW. (3-23)

Next, the Cauchy–Schwarz and arithmetic-geometric mean inequalities lead to∣∣∣(τβ3ẇ+
1
3 h2 M̃βα v̇α

)
nβ
∣∣∣≤ ε%2 (ẇ2

+
1
3 h2v̇α v̇α

)
+

1
2ε%

(
τβ3τβ3+

1
3 h2 M̃βα M̃βα

)
. (3-24)

Finally, we use the estimates (3-23) and (3-24) in (3-5) and (3-7) in order to obtain

|Iκ(r, t)| ≤ ε
∫ t

0

∫
Lr

e−λs
[
T(s)+

ηκ

ε2%
W(s)

]
dl ds, (3-25)∣∣∣∣∂Iκ

∂t
(r, t)

∣∣∣∣≤ ε ∫
Lr

e−λt
[
T(t)+

ηκ

ε2%
W(t)

]
dl. (3-26)

Recalling (3-12) and setting ε = cκ in (3-25) and (3-26), we derive the differential inequalities (3-17). �

Using Theorem 3.1, a result similar to (3-16) may be shown for an unbounded plate. In this case, the
variable r ranges in [0,∞). Thanks to (3-17)2 and for any pair (r0, t0) such that t0 ∈ [0, T ] and r0 ≥ cκ t0,
we can see that the functions Iκ(r, t0+ (r − r0)/cκ) and Iκ(r, t0− (r − r0)/cκ) are nonincreasing with
respect to r . This feature, together with (3-6), implies

Iκ(r0, t0)≤ Iκ(r0− cκ t0, 0)= 0, r0 ≥ r0− cκ t0,

Iκ(r0, t0)≥ Iκ(r0+ cκ t0, 0)= 0, r0+ cκ t0 ≥ r0,
H⇒ lim

r0→∞
Iκ(r0, t0)= 0. (3-27)

Taking into account (3-11), (3-14), and (3-27), it follows that

0≤ Iκ(r, t)= lim
r0→∞

∫ t

0

∫
6(r0,r)

e−λs ∂
∂s
[T(s)+W(s)]dσ ds, (3-28)

and it is obvious that limr0→∞6(r0, r)=6r .
With the help of (3-16) and (3-28), and integrating by parts with respect to s, it is possible to prove,

for bounded or unbounded plates, the following theorem.
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Theorem 3.2. Let the hypotheses of Theorem 3.1 be still valid. The function Iκ(r, t) is nonnegative and

0≤ Iκ(r, t)=
∫
6r

e−λt
[T(t)+W(t)]dσ + λ

∫ t

0

∫
6r

e−λs
[T(s)+W(s)]dσ ds. (3-29)

Now, since Iκ(r, t) is a nonnegative function, we can write from (3-17)1

∂
∂r

[
exp

(
λ
cκ

r
)

Iκ(r, t)
]
≤ 0 H⇒ Iκ(r, t)≤ exp

(
−
λ
cκ

r
)

Iκ(0, t).

On the other hand, (3-17)2 implies that the function Iκ(cκ t, t) is nonincreasing with respect to t . This
characteristic, together with (3-6), implies

Iκ(cκ t, t)≤ Iκ(0, 0)= 0, t ≥ 0. (3-30)

We deduce from (3-14) and (3-29) that

0≤ Iκ(r, t)≤ Iκ(cκ t, t), r ≥ cκ t. (3-31)

Thus, (3-29)–(3-31) imply∫
6r

e−λt
[T(t)+W(t)]dσ + λ

∫ t

0

∫
6r

e−λs
[T(s)+W(s)]dσ ds = 0 for r ≥ cκ t. (3-32)

When T and W are positive definite, (3-32) is valid if and only if T and W are null in 6r for any r ≥ cκ t .
The results obtained up to now lead us to formulate the following theorem about the spatial decay.

Theorem 3.3. Let the hypotheses of Theorem 3.1 be still valid; for each fixed t ∈ [0, T ], we have

Iκ(r, t)≤ exp
(
−
λ
cκ

r
)

Iκ(0, t) for 0≤ r < cκ t, Iκ(r, t)= 0 for r ≥ cκ t. (3-33)

It is easy to observe that, for t ∈ [0, T ] and for each r ≥ cκ t , (3-29) and (3-33)2 lead to∫
6r

e−λt
[T(t)+W(t)]dσ + λ

∫ t

0

∫
6r

e−λs
[T(s)+W(s)]dσ ds = 0.

Consequently, when % > 0 and W is positive definite, we obtain v̇α = ẇ = 0 on 6r ×[0, T ], and through
homogeneous initial conditions, we get

vα = w = 0 on 6r ×[0, T ]. (3-34)

Following [Gurtin 1972], we depict the domain of influence of the externally given data at time T as
the set of the points of 6̄ that can be reached by signals propagating from the support D̂T on the time
interval [0, T ], with speeds equal to or less than the maximum speed of propagation

c =
√
η
%

with η = inf
κ
ηκ ,

where κ satisfies the relation (3-13). In fact, for a bounded or unbounded plate, we can show by means
of (3-34) that on [0, T ] the externally given data have no effect on points outside of DcT .

Lemma 3.4 (domain of influence). Let the hypotheses of Theorem 3.1 be still valid and let (vα, w) be a
solution of initial-boundary value problem P. Then, vα = w = 0, on 6cT ×[0, T ].
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We can easily prove the following uniqueness result, valid for a bounded or unbounded plate.

Lemma 3.5 (uniqueness). Let the hypotheses of Theorem 3.1 hold. There exists at most one solution for
the initial-boundary value problem P.

Proof. Thanks to the linearity of the problem, we have only to show that the null data imply a null
solution. Let (ṽα, w̃) be a solution corresponding to the null data. If we choose T1 > 0, since the set
D̂T = ∅ for each T ∈ (0, T1) and the function Iκ(r, t) = 0, we can conclude that: vα = w = 0, on
6̄×[0, T1]. �

4. Steady-state solutions: decay estimate of Saint-Venant type

Throughout this section, the cross-section 6 is a rectangular strip, and the problem of steady-state vi-
brations is studied assuming that (vα, w) are separable with respect to space and time variables and that
the time dependence is periodic, that is vα = Re[ζα(x1, x2)eiωt

], w = Re[ψ(x1, x2)eiωt
], where Re[ f ]

represents the real part of f , ω ∈R+ is the prescribed frequency of oscillations, and ζα and ψ are complex
functions. We choose a Cartesian frame of reference such that the middle section of the plate is defined
by 6 = [0, `1]×[0, `2] ⊂R2, where `1 and `2 are some positive constants and `1 can also tend to infinity.
Moreover, we impose prescribed harmonic vibrations on the end of the strip located at x1 = 0.

Using the equations of motion (3-1), we conclude that the amplitude (ζα, ψ) satisfies

1
3 h2
[c11ζ1,11+ c66ζ1,22+ (c12+ c66)ζ2,12] − c55(ψ,1+ ζ1)+ %

1
3 h2ω2ζ1 = 0,

1
3 h2
[c66ζ2,11+ c22ζ2,22+ (c12+ c66)ζ1,12] − c44(ψ,2+ v2)+ %

1
3 h2ω2ζ2 = 0,

c55(ψ,11+ ζ1,1)+ c44(ψ,22+ ζ2,2)+ %ω
2ψ = 0,

or, equivalently, it satisfies the system

1
3 h20βα,β −χα + %

1
3 h2ω2ζα = 0, χβ,β + %ω

2ψ = 0, (4-1)

with
011 = c11ζ1,1+ (c66− κ)ζ2,2, 012 = (c12+ κ)ζ1,2+ c66ζ2,1,

021 = c66ζ1,2+ (c12+ κ)ζ2,1, 022 = (c66− κ)ζ1,1+ c22ζ2,2,
(4-2)

and
χ1 = c55(ψ,1+ ζ1), χ2 = c44(ψ,2+ ζ2). (4-3)

In particular, using (4-1) we can easily show that

1
3 h201α,1 =−

1
3 h202α,2+χα − %

1
3 h2ω2ζα, χ1,1 =−χ2,2− %ω

2ψ. (4-4)

Let P0 be the problem defined by (4-1)–(4-3) and by the boundary conditions

ζα(x1, 0)= 0, ψ(x1, 0)= 0, ζα(x1, `2)= 0, ψ(x1, `2)= 0, x1 ∈ [0, `1],

ζα(`1, x2)= 0, ψ(`1, x2)= 0, ζα(0, x2)= ζ̆α(x2), ψ(0, x2)= ψ̆(x2), x2 ∈ [0, `2],
(4-5)

where ζ̆α and ψ̆ are prescribed continuous functions such that

ζ̆α(0)= 0, ψ̆(0)= 0, ζ̆α(`2)= 0, ψ̆(`2)= 0.
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Using a superposed bar for complex conjugation and defining the segment L x1={(x1, x2) : x2∈[0, `2]},
we introduce the function

Jκ(x1)=

∫
Lx1

2 Re
[
χ1ψ +

1
3 h201αζα

]
dx2, x1 ∈ [0, `1]. (4-6)

Differentiating Jκ , we obtain

J′κ(x1)=

∫
Lx1

2 Re
[
χ1,1ψ +χ1ψ,1+

1
3 h2(01α,1ζα +01αζα,1)

]
dx2. (4-7)

Using integration by parts, boundary conditions (4-5), and Equations (4-3), (4-4), and (4-7), we arrive at

J′κ(x1)=

∫
Lx1

2
[
Ŵ− %ω2(ψ̄ψ + 1

3 h2ζ̄αζα
)]

dx2, (4-8)

where
Ŵ= Ŵ0+

1
3 h2Ŵ1+

1
3 h2Ŵ2,

Ŵ0 = c55(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ c44(ζ̄2+ ψ̄,2)(ζ2+ψ,2),

Ŵ1 = c11ζ̄1,1ζ1,1+ c22ζ̄2,2ζ2,2+ (c66− κ)(ζ̄1,1ζ2,2+ ζ1,1ζ̄2,2),

Ŵ2 = c66(ζ2,1ζ̄2,1+ ζ1,2ζ̄1,2)+ (c12+ κ)(ζ̄2,1ζ1,2+ ζ2,1ζ̄1,2).

Again, as in the previous section, the matrices associated with Ŵ0, Ŵ1, and Ŵ2 are A0, A1, and A2,
respectively. When the relations (2-8) and (3-13) are satisfied, we have

Ŵ≥ µκ
[
(ζ̄α + ψ̄,α)(ζα +ψ,α)+

1
3 h2ζ̄α,βζα,β

]
> 0. (4-9)

Taking into account the well-known membrane problem, we can write

π2

`2
2

∫
Lx1

ζ̄αζα dx2 ≤

∫
Lx1

ζ̄α,2ζα,2 dx2,
π2

`2
2

∫
Lx1

ψ̄ψ dx2 ≤

∫
Lx1

ψ̄,2ψ,2 dx2, (4-10)

and considering (4-8) and (4-9) we arrive at

J′κ(x1)≥

∫
Lx1

2µκ
[
(ζ̄α + ψ̄,α)(ζα +ψ,α)+

1
3 h2ζ̄α,βζα,β −

%ω2`2
2

µκπ2

(
ψ̄,2ψ,2+

1
3 h2ζ̄α,2ζα,2

)]
dx2. (4-11)

Using relations (4-10), we can observe that

6`2
2

π2h2

∫
Lx1

[
(ζ̄2+ ψ̄,2)(ζ2+ψ,2)+

1
6 h2ζ̄2,2ζ2,2

]
dx2 ≥

`2
2

π2

∫
Lx1

ζ2,2ζ̄2,2 dx2 ≥

∫
Lx1

ζ2ζ̄2 dx2. (4-12)

On the other side, Schwarz and arithmetic-geometric mean inequalities imply

(ζ̄2+ ψ̄,2)(ζ2+ψ,2)≥ (1− ε)ζ2ζ̄2+

(
1− 1

ε

)
ψ,2ψ̄,2 for every ε > 0,
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and in particular, for ε = 2, (ζ̄2+ ψ̄,2)(ζ2+ψ,2)≥−ζ2ζ̄2+
1
2ψ,2ψ̄,2; thus,∫

Lx1

[
(ζ̄2+ ψ̄,2)(ζ2+ψ,2)+

1
6 h2ζ̄2,2ζ2,2

]
dx2 ≥

∫
Lx1

(ζ̄2+ ψ̄,2)(ζ2+ψ,2)dx2

≥

∫
Lx1

(
−ζ̄2ζ2+

1
2 ψ̄,2ψ,2

)
dx2. (4-13)

Combining (4-12) and (4-13) we obtain∫
Lx1

[
(ζ̄2+ ψ̄,2)(ζ2+ψ,2)+

1
6 h2ζ̄2,2ζ2,2

]
dx2 ≥

h2π2

2(6`2
2+π

2h2)

∫
Lx1

ψ̄,2ψ,2 dx2. (4-14)

Moreover, (4-11) and (4-14) imply

J′κ(x1)≥

∫
Lx1

µκ

{
2(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+

h2π2

6`2
2+π

2h2

[
1−

2%`2
2ω

2

π2µκ

(
1+

6`2
2

π2h2

)]
ψ̄,2ψ,2

+
1
3 h2

[
2ζ̄1,1ζ1,1+ 2ζ̄2,1ζ2,1+ 2

(
1−

%`2
2ω

2

π2µκ

)
ζ̄1,2ζ1,2+

(
1−

2%`2
2ω

2

π2µκ

)
ζ̄2,2ζ2,2

]}
dx2. (4-15)

If % > 0, (2-8) and (3-13) hold and

ω < ωm with ωm =

[
2%`2

2

π2µκ

(
1+

6`2
2

π2h2

)]−1/2

. (4-16)

The frequency ωm depends on the geometrical properties of the plate, namely h and `2. We can see that
µκ is strictly positive and the critical frequency ωm is such that

0< 1−
ω2

ω2
m
=min

{
1−

2%`2
2ω

2

π2µκ

(
1+

6`2
2

π2h2

)
, 1−

%`2
2ω

2

π2µκ
, 1−

2%`2
2ω

2

π2µκ

}
. (4-17)

Then, (4-15) and (4-17) lead to

J′κ(x1)≥

∫
Lx1

µκ
[

p1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ p2ψ̄,2ψ,2

+
1
3 h2(p3ζ̄1,1ζ1,1+ p4ζ̄2,1ζ2,1+ p5ζ̄1,2ζ1,2+ p6ζ̄2,2ζ2,2)

]
dx2, (4-18)

where p1, . . . , p6 represent the following strictly positive coefficients:

p1 = p3 = p4 = 2, p2 =
h2π2

6`2
2+ h2π2

(
1−

ω2

ω2
m

)
, p5 = 2p6 = 2

(
1−

ω2

ω2
m

)
.

Under the above hypotheses, Jκ is a nondecreasing function and we can prove the following theorem.

Theorem 4.1. Let the hypotheses of Theorem 3.1 be still valid and let the frequency of harmonic vibra-
tions ω be lower than the critical value ωm , as in (4-16). The function Jκ is such that∣∣Jκ(x1)

∣∣≤ ∫
Lx1

`2
π

[
P1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ P2ψ̄,2ψ,2

+
1
3 h2(P3ζ̄1,1ζ1,1+ P4ζ̄2,1ζ2,1+ P5ζ̄1,2ζ1,2+ P6ζ̄2,2ζ2,2)

]
dx2, (4-19)



DECAY PROPERTIES OF SOLUTIONS OF A MINDLIN-TYPE PLATE MODEL FOR RHOMBIC SYSTEMS 335

where

P1 = c55, P2 = c55, P3 = c11, P4 = c66, P5 = (c11+ c66+ c12), P6 = (2c66+ c12). (4-20)

Furthermore, Jκ satisfies the inequality

µκ
∣∣Jk(x1)

∣∣≤ νJ′k(x1) with ν = max
i=1,...,6

`2 Pi
πpi

. (4-21)

We underline that, as with ωm , ν also depends on the geometrical properties of the plate.

Proof. Considering (4-2)–(4-6), we arrive at

Jκ(x1)=

∫
Lx1

2 Re
{
c55(ζ̄1+ ψ̄,1)ψ+

1
3 h2[c11ζ̄1,1ζ1+ (c66−κ)ζ̄2,2ζ1+ (c12+κ)ζ̄1,2ζ2+c66ζ̄2,1ζ2

]}
dx2.

(4-22)
Using the arithmetic-geometric and Schwarz inequalities and taking into account (4-10), we can show
that∫

Lx1
Re[(ζ̄1+ ψ̄,1)ψ]dx2 ≤

`2
π

(∫
Lx1
(ζ̄1+ ψ̄,1)(ζ1+ψ,1)dx2

)1/2(∫
Lx1
ψ̄,2ψ,2 dx2

)1/2
≤
`2
2π
[∫

Lx1
(ζ̄1+ ψ̄,1)(ζ1+ψ,1)dx2+

∫
Lx1
ψ,2ψ̄,2 dx2

]
,∫

Lx1
Re[ζ̄1,1ζ1]dx2 ≤

`2
π

(∫
Lx1
ζ̄1,1ζ1,1 dx2

)1/2(∫
Lx1
ζ̄1,2ζ1,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄1,αζ1,α dx2,∫

Lx1
Re[ζ̄2,2ζ1]dx2 ≤

`2
π

(∫
Lx1
ζ̄2,2ζ2,2 dx2

)1/2(∫
Lx1
ζ̄1,2ζ1,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄α,2ζα,2 dx2,∫

Lx1
Re[ζ̄1,2ζ2]dx2 ≤

`2
π

(∫
Lx1
ζ̄1,2ζ1,2 dx2

)1/2(∫
Lx1
ζ̄2,2ζ2,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄α,2ζα,2 dx2,∫

Lx1
Re[ζ̄2,1ζ2]dx2 ≤

`2
π

(∫
Lx1
ζ̄2,1ζ2,1 dx2

)1/2(∫
Lx1
ζ̄2,2ζ2,2 dx2

)1/2
≤
`2
2π

∫
Lx1
ζ̄2,αζ2,α dx2.

(4-23)

By means of (4-22) and (4-23), we obtain the inequality

∣∣Jκ(x1)
∣∣≤ ∫

Lx1

`2
π

{
c55(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ c55ψ̄,2ψ,2

+
1
3 h2[c11ζ̄1,αζ1,α + (c66− κ)ζ̄α,2ζα,2+ (c12+ κ)ζ̄α,2ζα,2+ c66ζ̄2,αζ2,α

]}
dx2,

which, through (4-20), leads to (4-19).
Since µκ and p1, . . . , p6 are strictly positive, the definition of νκ and (4-19) allow us to write

∣∣Jκ(x1)
∣∣≤ ∫

Lx1

ν
[

p1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ p2ψ̄,2ψ,2

+
1
3 h2(p3ζ̄1,1ζ1,1+ p4ζ̄2,1ζ2,1+ p5ζ̄1,2ζ1,2+ p6ζ̄2,2ζ2,2)

]
dx2. (4-24)

Finally, (4-18) and (4-24) prove that (4-21) is satisfied. �
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For what follows, it is useful to introduce the class of steady-state vibrations (ζα, ψ) for which

E(x1)=

∫
Sx1

`2
π

[
P1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ P2ψ,2ψ̄,2

+
1
3 h2(P3ζ1,1ζ̄1,1+ P4ζ̄2,1ζ2,1+ P5ζ̄1,2ζ1,2+ P6ζ̄2,2ζ2,2)

]
da <∞, (4-25)

where Sx1 =6 ∩ [x1,∞)×[0, `2]. From a direct differentiation of E(x1), we get

−E
′

(x1)=

∫
Lx1

`2
π

[
P1(ζ̄1+ ψ̄,1)(ζ1+ψ,1)+ P2ψ,2ψ̄,2

+
1
3 h2(P3ζ1,1ζ̄1,1+ P4ζ2,1ζ̄2,1+ P5ζ1,2ζ̄1,2+ P6ζ2,2ζ̄2,2)

]
dx2. (4-26)

As a consequence of (4-19) and (4-26), it follows that∣∣Jκ(x1)
∣∣≤−E

′

(x1), (4-27)

so E(x1) is a nonincreasing function.
When the strip 6 is bounded, the hypothesis (4-25) is trivially satisfied; Equations (4-5) and (4-27)

imply
E
′

(`1)= 0 ⇒ Jκ(`1)= 0. (4-28)

On the other side, if the strip 6 is semiinfinite and the hypothesis (4-25) is satisfied, then (4-26) and
(4-27) lead to

lim
x1→∞

E
′

(x1)= 0 ⇒ lim
x1→∞

Jκ(x1)= 0. (4-29)

Now, provided that the frequency of harmonic vibrations is lower than the critical value ωm , we can
establish the following theorem.

Theorem 4.2. Let the hypotheses of Theorem 4.1 be still valid and let {ζα, ψ} be the steady-state vibra-
tions for which (4-25) holds. Then, the function Jκ satisfies a decay estimate of Saint-Venant type:

0≤−Jκ(x1)≤−Jκ(0) exp
(
−
µκ
ν

x1

)
. (4-30)

Proof. Whether the considered strip is bounded or not, from hypothesis (4-16) on the frequency ω and
from the nondecreasing property of Jκ , (4-28) and (4-29) imply

Jκ(x1)≤ 0. (4-31)

We can also remark, from the definitions of coefficients P1, . . . , P6 and ν, that ν is strictly positive. Then,
(4-21) and (4-31) allow us to write

J′κ(x1)+
µκ
ν

Jκ(x1)≥ 0 ⇒
d

dx1

[
Jκ(x1) exp

(
µκ
ν

x1

)]
≥ 0. (4-32)

It is easy to observe that (4-32) leads to the estimate (4-30) with exponential decay factor µκ/ν. �

Remark. The investigation performed is based on an assumption concerning the strong ellipticity of the
elasticity tensor. The results obtained under such an hypothesis are thus valid also for classes of particular
materials characterized by special properties, like negative Poisson’s ratio and negative stiffness (auxetic
or antirubber materials). These particular structures (see, for example, [Park and Lakes 2007]) expand
laterally when stretched, in contrast to ordinary materials.
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[Chirit,ă 1995] S. Chirit,ă, “Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder”, J.
Therm. Stresses 18:4 (1995), 421–436.
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