
Journal of

Mechanics of
Materials and Structures

A CONSISTENT REFINEMENT OF FIRST-ORDER SHEAR DEFORMATION
THEORY FOR LAMINATED COMPOSITE AND SANDWICH PLATES USING

IMPROVED ZIGZAG KINEMATICS

Alexander Tessler, Marco Di Sciuva and Marco Gherlone

Volume 5, No. 2 February 2010

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 2, 2010

A CONSISTENT REFINEMENT OF FIRST-ORDER SHEAR DEFORMATION
THEORY FOR LAMINATED COMPOSITE AND SANDWICH PLATES USING

IMPROVED ZIGZAG KINEMATICS

ALEXANDER TESSLER, MARCO DI SCIUVA AND MARCO GHERLONE

A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the
kinematics of first-order shear deformation theory as its baseline. The theory is variationally consis-
tent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions are used,
providing a more realistic representation of the deformation states of transverse shear-flexible plates
than other similar theories. The formulation does not enforce full continuity of the transverse shear
stresses across the plate’s thickness, yet it is robust. Transverse shear correction factors are not required
to yield accurate results. The theory avoids the shortcomings of earlier zigzag theories (such as shear-
force inconsistency and difficulties in simulating clamped boundary conditions) which have limited their
accuracy. This new theory requires only C0-continuous kinematic approximations and is perfectly suited
for developing computationally efficient finite elements. It should be useful for obtaining relatively
efficient, accurate estimates of structural response, needed in designing high-performance load-bearing
aerospace structures.

A list of symbols can be found on page 363.

1. Introduction

The high-performance and lightweight characteristics of advanced composite materials have spurred
numerous applications of these materials in military and civilian aircraft, aerospace vehicles, and naval
and civil structures. To realize the full potential of composite structures, further advances in structural
design and analysis methods are necessary. In particular, development of cost-effective and reliable
laminated-composite structures as the primary load-bearing components of a vehicle requires further
advances in stress analysis and failure prediction methodologies.

A wide variety of modern civilian and military aircraft employ relatively thick laminated composites,
with one hundred or more layers, in the primary load-bearing structures. Such structures can exhibit
pronounced transverse shear deformation and, under certain conditions, design-critical thickness-stretch
deformations. Fail-safe design of these structures requires accurate stress-analysis methods, particu-
larly for regions of stress concentration. Computationally efficient analytical models based on beam,
plate, and shell assumptions that account for transverse shear and thickness-stretch deformations have
recently been addressed in [Tessler 1993; Cook and Tessler 1998; Barut et al. 2002]. To achieve accurate
computational models, three-dimensional finite element analyses are often preferred over beam, plate,
and shell models based on first-order shear deformation theories (FSDT). This preference is due to the
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latter having the tendency to underestimate the normal stresses, particularly in highly heterogeneous and
thick composite and sandwich laminates [Reissner 1985; Librescu et al. 1987; Noor and Burton 1989;
Liu and Li 1996]. For composite laminates with hundreds of layers, however, 3D modeling becomes
prohibitively expensive, especially for nonlinear and progressive failure analyses. To realize improved
response predictions based on beam, plate, and shell assumptions, numerous refined theories have been
developed [Ambartsumyan 1961; Sun and Whitney 1973; Lo et al. 1977a; 1977b; Reddy 1997]. Many
of these theories have significant flaws in their theoretical foundation and predictive capabilities and, for
these reasons, have not found general acceptance in practical applications.

One class of refined theories that has emerged as practical for engineering applications is known as
zigzag theories [Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987; 1990; 1992; Murakami 1986;
Toledano and Murakami 1987; Cho and Parmerter 1992; 1993; Di Sciuva et al. 2002]. This class of
theories employs a zigzag-like distribution for the in-plane displacements through the laminate thick-
ness, while ensuring a fixed number of kinematic variables regardless of the number of material layers
(or laminae). Using through-the-thickness linear in-plane kinematics with displacements and transverse
shearing angles as primary variables, [Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987] added a piece-
wise linear distribution known as the zigzag displacement. By explicitly enforcing a set of equilibrium
conditions along lamina interfaces, constant transverse shear stresses are developed across the laminate
thickness. These theories are often referred to as linear zigzag theories (or models) to delineate through-
the-thickness linear distributions of their baseline in-plane displacements. Di Sciuva [1990; 1992] and
Cho and Parmerter [1992; 1993] provided further enhancements to the zigzag theory by adding quadratic
and cubic power-series terms to the in-plane displacements. As in the previous efforts, the procedure
relies on the transverse shear stress equilibrium constraints. The resulting transverse shear stresses
are continuous across the laminate thickness, and vanish along the top and bottom laminate surfaces
(see also [Di Sciuva et al. 2002]). Murakami and coworkers developed another linear zigzag theory
[Murakami 1986] and a higher-order zigzag theory [Toledano and Murakami 1987] that also includes
transverse normal deformations. The governing equations are derived using Reissner’s mixed variational
theorem [Reissner 1984], and they include transverse shear and transverse normal stresses [Toledano and
Murakami 1987] as their primary unknowns.

Zigzag theories provide sufficiently accurate response predictions for relatively thick laminated-
composite and sandwich structures including those for normal strains and stresses [Di Sciuva 1984a;
1984b; 1985a; 1985b; 1986; 1987; 1990; 1992; Murakami 1986; Toledano and Murakami 1987; Cho
and Parmerter 1992; 1993; Di Sciuva et al. 2002]. Furthermore, these theories often yield response
predictions comparable to those of layer-wise and higher-order theories that are more computationally
intensive. To make a zigzag theory practical for large-scale analyses and engineering design, its ana-
lytic framework must be well suited for an efficient finite element approximation. While pursuing a
computationally desirable zigzag beam theory, Averill [1994; Averill and Yip 1996] recognized two
significant drawbacks that plague many previously mentioned zigzag theories, in particular those hav-
ing displacements as primary unknowns [Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987; 1990;
1992; Cho and Parmerter 1992; 1993]: Firstly, because the curvature is expressed as a second spatial
derivative of the deflection variable, C1 continuous functions are required to approximate the deflection
within the finite element framework. Due to their complexity and overly stiff response properties, such
approximations are especially undesirable for plate and shell finite elements. Secondly, transverse shear
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stresses calculated from constitutive equations vanish erroneously along the clamped boundaries, this
being a “physical inconsistency that plagues many popular shear deformation theories” [Averill 1994].
Averill resolved the first issue by adopting the kinematics of Timoshenko’s shear deformation theory
as a baseline; however, to resolve the second issue he proposed a boundary-condition compromise at
the expense of the variational consistency of the theory, in which a kinematic variable representing
the amplitude of the zigzag displacement is omitted from the variationally required set of boundary
conditions.

Tessler et al. [2007] presented a clearer insight into the existing flaws of the linear zigzag models
[Di Sciuva 1984a; 1984b; 1985a; 1985b; 1986; 1987]. In these earlier theories, the kinematic field is con-
structed by way of enforcing equilibrium of the transverse shear stresses along lamina interfaces, which
results in constant (uniform) transverse shear stresses across the laminate thickness. The consequence
of the transverse shear equilibrium constraints within a displacement-based theory is that they tend to
overconstrain the kinematic field. As delineated in [Tessler et al. 2007], the overconstraint is manifested
by a physical inconsistency (or anomaly) in the definition of the transverse shear forces. Consequently,
the cross-sectional integral of the transverse shear stress does not correspond to the transverse shear force
obtained from the bending equilibrium equation of the theory. A further byproduct of this anomaly is the
erroneous vanishing of the transverse shear strains, stresses, and forces along the clamped boundaries.
Averill [1994] pointed out the latter aspect; however, as previously discussed, he proposed only a varia-
tionally inconsistent strategy to circumvent the issue. It is also worth mentioning that the same transverse
shear stress anomaly exists in many other theories, for example, the cubic zigzag theories by Di Sciuva
[1990; 1992] and Cho and Parmerter [1992; 1993], and the smeared cubic theory by Reddy [1984; 1997;
2004]. Also note that almost exclusively, and this pertains to all of the aforementioned articles, the
proposed theories are assessed by solving example problems with simply supported boundaries, where
the solutions inherently do not exhibit transverse shear anomalies. Regrettably, the few contributions
that considered clamped boundary conditions, for example [Averill 1994; Umasree and Bhaskar 2006],
do not discuss shear stress distributions along the clamped boundary.

Yu [2005] proposed a variational asymptotic plate and shell analysis (VAPAS), and Kim and Cho
[2005; 2006] presented an enhanced first-order shear deformation theory (EFSDT). Both of these mod-
eling strategies use a three-step procedure [Yu et al. 2008]: (1) obtain a 2D Reissner–Mindlin type
constitutive model, (2) carry out the global plate analysis using the constitutive model from step (1),
and (3) recover through-the-thickness distributions of displacements and stresses from step (1). In the
framework of EFSDT, the recovery of through-the-thickness distributions is performed by means of the
cubic zigzag theory by Cho and Parmerter [1992; 1993]. A critical review and comparison of the two
approaches in [Yu et al. 2008] reveal that VAPAS requires high-order displacement derivatives to achieve
adequate predictions for the in-plane and transverse normal stresses, whereas EFSDT is somewhat in-
accurate in terms of the in-plane normal stresses and its extension to nonlinear problems may not be
straightforward. Furthermore, since the recovery of the 3D distributions is performed by means of the
cubic zigzag theory by Cho and Parmerter [1992; 1993], it is argued that EFSDT should be affected by
the aforementioned transverse shear stress anomaly. Unfortunately, Kim and Cho [2005; 2006] discuss
numerical results only for plates with simply supported boundary conditions.

To construct a computationally attractive theory suitable for FEM without the flaws of the previ-
ous zigzag models, Tessler et al. [2007] proposed a refined zigzag theory for laminated composite and
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sandwich beams. They derived a novel zigzag function without enforcing a full transverse shear stress
equilibrium along the lamina interfaces. The shear force definitions are fully consistent with respect to
the physical and variational requirements. The resulting theory is without the aforementioned flaws of
the previous zigzag theories and has been shown to demonstrate consistently superior results.

A successful extension of this new zigzag methodology to plate theory was advanced in [Tessler et al.
2009]; in the present we detail the theoretical foundation of the refined zigzag plate theory introduced
there. The theory’s applicability to laminated composite and sandwich plates is demonstrated by pre-
senting example problems with simply supported and clamped boundaries and which include relatively
thick laminates with a high degree of transverse shear flexibility, anisotropy, and heterogeneity. This
new formulation augments FSDT with an improved zigzag kinematic field that involves a novel C0-
continuous (across lamina interfaces) representation of the in-plane displacements. The kinematic field
is independent of the number of material layers and does not require enforcement of transverse shear
stress continuity to yield accurate results. Unlike other similar theories [Di Sciuva 1984a; Averill 1994],
the zigzag contribution to the in-plane displacement field is physically realistic, is zero-valued at the
top and bottom plate surfaces, and accounts for the shear deformation of every lamina in a consistent
way. As a result, transverse shear correction factors are not needed. Additionally, the plate equilibrium
equations, constitutive equations, boundary conditions, and strain-displacement relations are consistently
derived from the virtual work principle. Moreover, the analytical form of this new theory is ideally
suited for developing computationally efficient finite elements requiring only C0-continuity. This benefit
will enable an efficient use of accurate zigzag approximations in large-scale analyses to facilitate the
development of robust designs of high-performance aerospace vehicles.

In the remainder of the paper, the theoretical foundation of the new theory and its quantitative assess-
ment are detailed. The zigzag kinematic assumptions, strain-displacement equations, and constitutive
lamina relations are presented in Section 2. A set of unique zigzag functions is then introduced and their
mathematical structure is described in Section 3. The plate equilibrium equations and their associated
boundary conditions, derived from the virtual work principle, are presented in Section 4. In Section 5,
an extensive quantitative assessment of the theory is carried out, using closed-form solutions for simply
supported and cantilevered plates made of laminated-composite and sandwich material systems. Some
of the example problems represent significant challenges for any approximate theory. It is demonstrated
that this new zigzag theory eliminates a major flaw of other similar theories; that is, the theory enables
accurate modeling of the clamped boundary condition while adhering strictly to the variationally required
boundary conditions. Finally, in Section 6, several concluding remarks emphasizing the merits of the
new theory are highlighted.

2. Kinematics and formulation

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic layers (or
laminae) as shown in Figure 1. Points of the plate are located by the orthogonal Cartesian coordinates
(x1, x2, z). The ordered pair (x1, x2) ∈ Sm denotes the in-plane coordinates, where Sm represents the set
of points given by the intersection of the plate with the plane z = 0, referred to herein as the middle
reference plane (or mid-plane). The symbol z ∈ [−h, h] denotes the through-the-thickness coordinate,
with z= 0 identifying the plate’s mid-plane. The plate is subjected to a normal-pressure loading, q(x1, x2),
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Figure 1. General plate notation (left), and lamination notation (right).

attributed to the mid-plane, Sm , that is defined as positive in the positive z direction. In addition, a traction
vector, (T̄1, T̄2, T̄z), is prescribed on Sσ ⊂ S, where S denotes the total cylindrical-edge surface. On the
remaining part of the edge surface, Su ⊂ S, displacement restraints are imposed (or prescribed). The
sections of the plate edge are related by Sσ ∪ Su = S and Sσ ∩ Su =∅. Moreover, the curves Cσ = Sσ ∩ Sm

and Cu = Su ∩ Sm define the two parts of the total perimeter C = Cσ ∪Cu surrounding the mid-plane
region, Sm . Finally, it is presumed that the constitutive properties may differ appreciably from lamina to
lamina, the plate deformations result in small strains, and that body and inertial forces are negligible.

The orthogonal components of the displacement vector, corresponding to material points of the plate
(or laminate), are expressed as

u(k)1 (x1, x2, z)≡ u(x1, x2)+ zθ1(x1, x2)+φ
(k)
1 (z)ψ1(x1, x2),

u(k)2 (x1, x2, z)≡ v(x1, x2)+ zθ2(x1, x2)+φ
(k)
2 (z)ψ2(x1, x2),

uz(x1, x2, z)≡ w(x1, x2),

(1)

where the in-plane displacement components u(k)1 and u(k)2 are comprised of constant, linear, and zigzag
variations through the thickness. The zigzag variations are C0-continuous functions with discontinuous
thickness-direction derivatives along the lamina interfaces. The superscript (k) is used to indicate quan-
tities corresponding to the k-th lamina, whereas the subscript (k) defines quantities corresponding to
the interface between the k-th and (k+ 1)-th laminae. Thus, the k-th lamina thickness is defined in the
range z ∈ [z(k−1), z(k)] (k = 1, . . . , N ); see Figure 1. The transverse displacement uz is assumed to be
constant through the thickness and is independent of constitutive properties of the k-th lamina; hence the
superscript (k) does not appear in its definition.

The kinematic variables in (1) can be interpreted as follows. For homogeneous plates, the zigzag
functions φ(k)α (α= 1, 2) vanish identically and (1) yield the kinematics of FSDT. For this degenerate case,
u and v represent the mid-plane displacements along the coordinate directions x1 and x2, respectively;
θ1 and θ2 represent average bending rotations of the transverse normal about the positive x2 and the
negative x1 directions, respectively; and w is the transverse deflection. For more precise definitions of
the kinematic variables within FSDT refer, for example, to [Tessler 1993]. The symbols φ(k)α (α = 1, 2)
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denote through-the-thickness piecewise-linear zigzag functions associated with heterogeneous plates, yet
to be defined. The ψα = ψα(x1, x2) (α = 1, 2) functions represent the spatial amplitudes of the zigzag
displacements and, together with the other five kinematic variables, are the unknowns in the analysis. The
zigzag displacements φ(k)α ψα (α = 1, 2) may be regarded as corrections to the in-plane displacements
associated with laminate heterogeneity.

Consistent with the kinematic assumptions in (1), the theory accounts for transverse shear deforma-
tion. (Transverse normal deformations are neglected in the kinematics; however, their inclusion may
be possible following, for example, [Tessler 1993]). Correspondingly, the in-plane and transverse shear
strains are

ε
(k)
11 = u,1+ zθ1,1+φ

(k)
1 ψ1,1, (2a)

ε
(k)
22 = v,2+ zθ2,2+φ

(k)
2 ψ2,2, (2b)

γ
(k)
12 = u,2+ v,1+ z(θ1,2+ θ2,1)+φ

(k)
1 ψ1,2+φ

(k)
2 ψ2,1, (2c)

γ (k)αz = γα +β
(k)
α ψα (α = 1, 2), (2d)

where, henceforward, (•),α ≡ ∂(•)
∂xα

denotes a partial derivative with respect to the mid-plane coordinate,
xα (α = 1, 2). Also, the following notation is introduced

γα ≡ w,α + θα (α = 1, 2), (2e)

β(k)α ≡
∂
∂z
(φ(k)α ) (α = 1, 2), (2f)

where the shear angles γα are uniform through the total laminate thickness, and β(k)α are piecewise
constant functions that are uniform through the thickness of each individual lamina.

The generalized Hooke’s law for the k-th orthotropic lamina, whose principal material directions are
arbitrary with respect to the mid-plane reference coordinates, (x1, x2) ∈ Sm , is written as

σ11

σ22

τ12

τ2z

τ1z



(k)

=


C11 C12 C16 0 0
C12 C22 C26 0 0
C16 C26 C66 0 0
0 0 0 Q22 Q12

0 0 0 Q12 Q11


(k)

ε11

ε22

γ12

γ2z

γ1z



(k)

, (3)

where C (k)
i j (i, j = 1, 2, 6) and Q(k)

pq (p, q = 1, 2) are the transformed elastic stiffness coefficients referred
to the (x1, x2, z) coordinate system and relative to the plane-stress condition that ignores the transverse-
normal stress. The expressions for these coefficients in terms of the elastic moduli corresponding to the
material coordinates can be found, for example, in [Reddy 1997].

3. Refined zigzag functions and transverse shear constitutive relations

The refined zigzag functions (or zigzag displacements) of the present theory are defined by piecewise
linear, C0-continuous functions through the laminate thickness. For convenience, the zigzag functions
φ
(k)
1 and φ(k)2 , which have units of length, are defined in terms of their respective lamina-interface values

u(i) and v(i) (i = 0, 1, . . . , N ) (see Figure 2 depicting the notation for a three-layered laminate).
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Thus, for the k-th lamina located in the range [z(k−1), z(k)], φ
(k)
1 and φ(k)2 are given as

φ
(k)
1 ≡

1
2 (1− ξ

(k))u(k−1)+
1
2 (1+ ξ

(k))u(k), φ
(k)
2 ≡

1
2 (1− ξ

(k))v(k−1)+
1
2 (1+ ξ

(k))v(k), (4)

where

ξ (k) =

[
z− z(k−1)

h(k)
− 1

]
∈ [−1, 1] (k = 1, . . . , N ), (5)

with the first lamina beginning at z(0) = −h, the last (N -th) lamina ending at z(N ) = h, and the k-th
lamina ending at z(k) = z(k−1)+ 2h(k), where 2h(k) denotes the k-th lamina thickness.

Evaluating (4) at the laminae interfaces gives rise to the definitions of the interfacial displacements

u(k−1) = φ
(k)
1 (ξ (k) =−1), u(k) = φ

(k)
1 (ξ (k) = 1),

v(k−1) = φ
(k)
2 (ξ (k) =−1), v(k) = φ

(k)
2 (ξ (k) = 1) (k = 1, . . . , N ),

(6a)

where the interfacial displacements at the bottom and top plate surfaces are set herein to vanish identically,
that is,

u(0) = u(N ) = v(0) = v(N ) = 0. (6b)

Substituting (4) into (2f) results in the piecewise constant functions β(k)α given by{
β
(k)
1

β
(k)
2

}
=

1
2h(k)

{
u(k)− u(k−1)

v(k)− v(k−1)

}
. (7)

Because the zigzag functions are zero-valued on the top and bottom surfaces, as defined by Equations (6a)
and (6b), through-the-thickness integrals of the slope functions β(k)α (α = 1, 2) vanish identically, that is,

∫ h

−h

{
β
(k)
1

β
(k)
2

}
dz =


N∑

k=1
2h(k)β(k)1

N∑
k=1

2h(k)β(k)2

=
{

0
0

}
. (8)
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Figure 2. Notation for a three-layered laminate and φ(k)1 and φ(k)2 zigzag functions de-
fined in terms of interfacial values (displacements), u(i) and v(i) (i = 0, 1, . . . , N ).



348 ALEXANDER TESSLER, MARCO DI SCIUVA AND MARCO GHERLONE

Integrating (2d) across the laminate thickness and normalizing the result by the total laminate thickness
reveals that {

γ1

γ2

}
=

1
2h

∫ h

−h

{
γ
(k)
1z

γ
(k)
2z

}
dz. (9)

Thus, γα (α = 1, 2) represent the average transverse shear strains, coinciding with the common represen-
tation of the transverse shear strains used in FSDT. Also, (9) indicates that the zigzag amplitude variables,
ψα (α = 1, 2), do not contribute to the average transverse shear strains.

The u(k) and v(k) interfacial values of the zigzag functions are obtained from (7) in terms of β(k)α
(α = 1, 2; k = 1, . . . , N ), that is,{

u(k)
v(k)

}
= 2h(k)

{
β
(k)
1

β
(k)
2

}
+

{
u(k−1)

v(k−1)

}
(k = 1, . . . , N ), (10a)

or, alternatively,

{
u(k)
v(k)

}
=


k∑

i=1
2h(i)β(i)1

k∑
i=1

2h(i)β(i)2

 (k = 1, . . . , N ). (10b)

Following the approach in [Tessler et al. 2007], the β(k)α functions are determined by first casting the
transverse shear strains, (2d), in terms of the transverse shear strain measures, ηα ≡ γα −ψα (α = 1, 2),
and the zigzag amplitude functions, ψα (α = 1, 2), as{

γ1z

γ2z

}(k)
≡

{
η1

η2

}
+

[
1+β(k)1 0

0 1+β(k)2

]{
ψ1

ψ2

}
. (11)

The ηα strain measures are set to vanish explicitly in the theory of Di Sciuva [1984a] and enforced to
vanish by way of penalty constraints in the theory of Averill [1994], thus equating γα to ψα. Presently,
no such constraints are imposed on these strain measures.

The transverse shear stresses using Equations (3) and (11) are given as{
τ1z

τ2z

}(k)
≡

[
Q11 Q12

Q21 Q22

](k) ({
η1

η2

}
+

[
1+β(k)1 0

0 1+β(k)2

]{
ψ1

ψ2

})
, (12a)

or, alternatively, they can be expressed as{
τ1z

τ2z

}(k)
≡

[
Q11 Q12

Q21 Q22

](k) {
η1

η2

}
+ Q(k)

11 (1+β
(k)
1 )

{
1

Q(k)
12 /Q(k)

11

}
ψ1+ Q(k)

22 (1+β
(k)
2 )

{
Q(k)

12 /Q(k)
22

1

}
ψ2.

In this form of the transverse shear constitutive relations, the stress vector associated with the ηα strain
measures is independent of the zigzag functions. The second and third stress vectors include, as their
normalization factors, the coefficients Q(k)

αα(1+ β
(k)
α ) (α = 1, 2) that are dependent on the zigzag func-

tions through β(k)α . Herein, these normalization factors are set to be constant quantities, denoted as
Gα (α = 1, 2), thus imposing constraint conditions on the distribution of the zigzag functions.
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These constraints give rise to the expressions{
β
(k)
1

β
(k)
2

}
=

{
G1/Q(k)

11 − 1

G2/Q(k)
22 − 1

}
. (12b)

The G1 and G2 constants are obtained by integrating (12b) through the laminate thickness while making
use of (8), resulting in

{
G1

G2

}
≡



(
1

2h

∫ h

−h

dz
Q(k)

11

)−1

(
1

2h

∫ h

−h

dz
Q(k)

22

)−1

=


(
1
h

N∑
k=1

h(k)

Q(k)
11

)−1

(
1
h

N∑
k=1

h(k)

Q(k)
22

)−1

 , (12c)

where it is seen that G1 and G2 are weighted-average transverse shear stiffness coefficients of their
respective lamina-level coefficients, Q(k)

11 and Q(k)
22 .

Substituting (12b) into (12a) results in the transverse shear constitutive relations of the form{
τ1z

τ2z

}(k)
≡

[
Q11 Q12

Q21 Q22

](k) {γ1+ψ1
(
G1/Q(k)

11 − 1
)

γ2+ψ2
(
G2/Q(k)

22 − 1
)
}
, (13a)

where, with the use of (12c), the dimensionless stiffness ratios are given as

Gα

G(k)
αα

=

(
Q(k)
αα

2h

∫ h

−h

dz

Q(k)
αα

)−1

(α = 1, 2). (13b)

These ratios are, in general, piecewise constant through the laminate thickness; however, for homoge-
neous plates, they are unit-valued. Thus, for homogeneous plates, the zigzag transverse shear contribu-
tions vanish, in which case (13a) becomes identical to the corresponding relations of FSDT.

The φ(k)α (α = 1, 2) zigzag functions are determined by substituting (10b) and (12b) into (4), while
making use of (5), resulting in

φ(1)α = (z+ h)
(

Gα

Q(1)
αα

− 1
)

(k = 1),

φ(k)α = (z+ h)
(

Gα

Q(k)
αα

− 1
)
+

k∑
i=2

2h(i−1)
(

Gα

Q(i−1)
αα

−
Gα

Q(k)
αα

)
(k = 2, . . . , N ),

z ∈ [z(k−1), z(k)], z(0) =−h, z(k) = z(k−1)+ 2h(k) (k = 1, . . . , N ; α = 1, 2).

(13c)

It is seen that the zigzag functions are independent of the state of deformation and are represented
by C0-continuous, piecewise linear functions of the thickness coordinate. The zigzag amplitudes, ψα
(α = 1, 2), are vector functions of the actual response due to the applied loading, and they provide
the proper scaling of the zigzag functions, thus controlling the total zigzag contribution to the in-plane
displacements. The two zigzag amplitude functions and the remaining five kinematic variables constitute
a set of seven kinematic variables associated with this refined zigzag plate theory.
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4. Equilibrium equations, boundary conditions, and constitutive relations

The plate equilibrium equations and boundary conditions are derived from the virtual work principle
which, neglecting body forces and assuming zero shear tractions on the top and bottom bounding plate
surfaces, may be written as∫

Sm

∫ h

−h

(
σ
(k)
11 δε

(k)
11 + σ

(k)
22 δε

(k)
22 + τ

(k)
12 δγ

(k)
12 + τ

(k)
1z δγ

(k)
1z + τ

(k)
2z δγ

(k)
2z

)
dzd S

−

∫
Sm

(qδw)d S−
∫

cσ

∫ h

−h
[T̄1δu

(k)
1 + T̄2δu

(k)
2 + T̄zδu(k)z ]dsdz = 0, (14)

where δ is the variational operator; all other symbols have been defined in Section 2.
Substituting (1) and (2) into (14) and integrating across the plate thickness yields the 2D statement of

virtual work∫
Sm

(
N1δu,1+N2δv,2+N12(δu,2+δv,1)+M1δθ1,1+M2δθ2,2+M12(δθ1,2+δθ2,1)

+Q1(δw,1+δθ1)+Q2(δw,2+δθ2)−qδw
)

d S−
∫

Cσ
(N̄1nδu+ N̄2nδv+ Q̄znδw+M̄1nδθy+M̄2nδθx)ds

+

∫
Sm

(Mφ
1 δψ1,1+Mφ

2 δψ2,2+Mφ
12δψ1,2+Mφ

21δψ2,1+Qφ
1 δψ1+Qφ

2 δψ2)d S

−

∫
Cσ
(M̄φ

1nδψ1+M̄φ
2nδψ2)ds = 0, (15)

where the underlined terms correspond to the zigzag kinematics contributions. In Equation (15), the
membrane stress resultants and conjugate strain measures are

NT
m ≡ {N1, N2, N12} =

∫ h

−h

{
σ
(k)
11 , σ

(k)
22 , τ

(k)
12

}
dz, eT

m ≡ {u,1, v,2, u,2+ v,1}. (16)

Likewise, the bending stress resultants and conjugate strain measures are

MT
b ≡ {M1,Mφ

1 ,M2,Mφ
2 ,M12,Mφ

12,Mφ
21}

=

∫ h

−h

{
zσ (k)11 , φ

(k)
1 σ

(k)
11 , zσ (k)22 , φ

(k)
2 σ

(k)
22 , zτ (k)12 , φ

(k)
1 τ

(k)
12 , φ

(k)
2 τ

(k)
12

}
dz, (17a)

eT
b ≡ {θ1,1, ψ1,1, θ2,2, ψ2,2, θ1,2+ θ2,1, ψ1,2, ψ2,1}, (17b)

and the transverse shear stress resultants and conjugate strain measures are

QT
s ≡{Q2, Qφ

2 , Q1, Qφ
1 }=

∫ h

−h

{
τ
(k)
2z , β

(k)
2 τ

(k)
2z , τ

(k)
1z , β

(k)
1 τ

(k)
1z

}
dz, eT

s ≡{w,2+θ2, ψ2, w,1+θ1, ψ1}. (18)

The force and moment resultants due to the prescribed tractions have the form

{N̄1n, N̄2n, Q̄zn, M̄1n, M̄2n, M̄φ
1n, M̄φ

2n} =

∫ h

−h

{
T̄1, T̄2, T̄z, zT̄1, zT̄2, φ

(k)
1 T̄1, φ

(k)
2 T̄2

}
dz. (19)

Integrating (15) by parts results in seven equilibrium equations and associated boundary conditions.
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The equilibrium equations are

δu : N1,1+ N12,2 = 0, δv : N12,1+ N2,2 = 0, δw : Q1,1+ Q2,2+ q = 0,

δθ1 : M1,1+M12,2− Q1 = 0, δθ2 : M12,1+M2,2− Q2 = 0,

δψ1 : Mφ
1,1+Mφ

12,2− Qφ
1 = 0, δψ2 : Mφ

21,1+Mφ
2,2− Qφ

2 = 0.

(20)

The kinematic and force boundary conditions are given by

u = ū on Cu or N1n1+ N12n2 = N̄1n on Cσ ,

v = v̄ on Cu or N12n1+ N2n2 = N̄2n on Cσ ,

w = w̄ on Cu or Q1n1+ Q2n2 = Q̄zn on Cσ ,

θ1 = θ̄1 on Cu or M1n1+M12n2 = M̄1n on Cσ ,

θ2 = θ̄2 on Cu or M12n1+M2n2 = M̄2n on Cσ ,

ψ1 = ψ̄1 on Cu or Mφ
1 n1+Mφ

12n2 = M̄φ
1n on Cσ ,

ψ2 = ψ̄2 on Cu or Mφ
21n1+Mφ

2 n2 = M̄φ
2n on Cσ ,

(21)

where n1 = cos(x1, n) and n2 = cos(x2, n) are the components (direction cosines) of the unit outward
normal vector to the cylindrical plate edges.

The plate constitutive relations are derived by using Equations (2) and (3) with (16)–(18), and inte-
grating over the laminate thickness. The resulting constitutive relations of the new zigzag plate theory
are expressed in matrix form as 

Nm

Mb

Qs

=
 A B 0

BT D 0
0 0 G


em

eb

es

 . (22)

The expressions for the components of the stiffness matrices A ≡ [Ai j ] (i, j = 1, . . . , 3), B ≡ [Bi j ]

(i = 1, . . . , 3, j = 1, . . . , 7), D ≡ [Di j ] (i, j = 1, . . . , 7), and G ≡ [Gi j ] (i, j = 1, . . . , 4) are given in
the Appendix.

Introducing (22) into (20) results in seven second-order partial differential equilibrium equations in
terms of seven kinematic variables, giving rise to a 14th-order theory. The equilibrium equations can be
solved exactly or approximately depending on the complexity of the material lay-up, boundary conditions,
and loading. In addition, because the highest partial derivative appearing in the strain measures in (15) are
first-order, computationally efficient C0-continuous plate finite elements can be developed, thus enabling
application of this refined zigzag theory in large-scale analyses of complex aerospace structures.

5. Example problems and results

To determine the accuracy of the present zigzag plate theory, analytic solutions for simply supported and
cantilevered rectangular laminates are derived and detailed distributions of the displacements and stresses
are examined. The rectangular laminates are defined on the domain x1 ∈ [0, a], x2 ∈ [0, b], z ∈ [−h, h].
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Example 1. A simply supported rectangular plate is subjected to the sinusoidal transverse pressure
q(x1, x2) = q0 sin(πx1/a) sin(πx2/b). The simply supported boundary conditions are obtained from
(21). For cross-ply and uniaxial laminates, the kinematic and force boundary conditions along x1 ∈ [0, a]
are

v = w = θ2 = ψ2 = 0, N1 = M1 = Mφ
1 = 0, (23a)

and along x2 ∈ [0, b],
u = w = θ1 = ψ1 = 0, N2 = M2 = Mφ

2 = 0. (23b)

For this set of boundary conditions, the exact solutions are obtained by the trigonometric expansions

w=W sin πx1
a

sin πx2
b
,


u
θ1

ψ1

=


U
21

91

 cos πx1
a

sin πx2
b
,


v

θ2

ψ2

=


V
22

92

 sin πx1
a

cos πx2
b
, (24)

where {U, V,W,21,22, 91, 92} are the unknown amplitudes of the kinematic variables that are deter-
mined from satisfaction of the equilibrium equations.

For antisymmetric angle-ply laminates, the kinematic and force boundary conditions along x1 ∈ [0, a]
are

u = w = θ2 = ψ2 = 0, N12 = M1 = Mφ
1 = 0, (25a)

and along x2 ∈ [0, b]
v = w = θ1 = ψ1 = 0, N12 = M2 = Mφ

2 = 0. (25b)

Thus, the trigonometric expansions that satisfy (25a) and (25b) exactly differ from those in (24) only for
the u and v variables, and they are given by

u =U sin πx1
a

cos πx2
b
, v = V cos πx1

a
sin πx2

b
. (26)

Example 2. A cantilevered rectangular plate is clamped along a single edge (x1 = 0), free along the
other edges, and subjected to the uniform transverse pressure q(x1, x2) = q0. The clamped boundary
conditions along x1 = 0 are

u = v = w = θ1 = θ2 = ψ1 = ψ2 = 0. (27a)

Unlike the previous zigzag theories where the clamped boundary conditions result in erroneous solutions
for transverse shear stresses and forces that vanish along the clamped edges, the solutions of the present
theory do not possess such anomalies. For instance, along the clamped boundary at x1 = 0, the kinematic
constraints in (27a), with the use of (2e), (13b), and (18), give rise to the following transverse shear
stresses, τ (k)1z (0, x2, z), and force, Q1(0, x2):{

τ
(k)
1z

Q1

}
(x1=0)

=

{
Q(k)

11∫ h
−h Q(k)

11 dz

}
w,1(0, x2), (27b)

where, in general, w,1(0, x2) 6= 0.
The traction-free boundary conditions along the edge x1 = a are

N1 = N12 = M1 = M12 = Q1 = Mφ
1 = Mφ

12 = 0, (28a)
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Lamina material E (k)1 , E (k)2 , E (k)3 ν
(k)
12 , ν

(k)
13 , ν

(k)
23 G(k)

12 ,G(k)
13 ,G(k)

23

C
Carbon-epoxy
unidirectional composite

1.579×102

9.584
9.584

0.32
0.32
0.49

5.930
5.930
3.227

H Titanium honeycomb core
1.915×10−1

1.915×10−1

1.915

0.658×10−2

0.643×10−6

0.643×10−6

4.227×10−8

3.651×10−1

1.248

P PVC core E (k) = 1.040×10−1 ν(k) = 0.3

T Titanium E (k) = 1.041×102 ν(k) = 0.31

Table 1. Mechanical properties of orthotropic materials (C and H) and isotropic material
(P and T). The Young’s modulus E and shear modulus G are expressed in GPa.

Laminate Normalized lamina Lamina materials Lamina orientation [ ˚ ]
thickness, h(k)/h

A Cross-ply composite (0.5/0.5) (C/C) (0/90)
B Uniaxial sandwich (0.1/0.8/0.1) (C/P/C) (0/0/0)
F Uniaxial sandwich (0.1/0.8/0.1) (T/H/T) (0/0/0)
G Angle-ply sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (30/−45/0/45/−30)

Table 2. Laminate stacking sequences (lamina sequence is in the positive z direction).

and along the edge x1 ∈ [0, b]

N12 = N2 = M12 = M2 = Q2 = Mφ
12 = Mφ

2 = 0. (28b)

For both example problems, various laminates are considered with the emphasis on relatively thick
laminated composite and sandwich plates having span-to-thickness ratio a/2h = b/2h = 5. The me-
chanical material properties are listed in Table 1, and Table 2 summarizes the stacking sequences of the
laminates.

The example problems include: a two-layer, cross-ply carbon-epoxy laminate, labeled laminate A; a
three-layer sandwich laminate, laminate B, having uniaxial carbon-epoxy face sheets and a thick, closed-
cell polyvinyl chloride (PVC) core, where PVC is represented as an isotropic material; a sandwich
laminate with two-layered titanium face sheets and a thick titanium honeycomb core, laminate F ; and a
five-layer, angle-ply sandwich laminate with carbon-epoxy face sheets and a thick PVC core, laminate
G. Additional sandwich laminates that involve very thin face sheets have been studied in [Tessler et al.
2009].

For comparison purposes, several analytic and finite element solutions were also obtained for the cor-
responding boundary-value problems using 3D elasticity theory [Pagano 1969; Noor and Burton 1990],
FSDT, the theory of Di Sciuva [1984a], and MSC/MD-NASTRAN finite element code [MSC 2006]. Note
that application of FSDT generally requires the use of shear correction factors. For laminated composites,
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lamination-dependent shear correction factors have been shown to provide relatively accurate deflection
predictions (for examples, refer to [Vlachoutsis 1992; Reddy and Vijayakumar 1995]). Yet, such shear
corrections fail to furnish substantial improvements for the normal strain and stress predictions. Presently,
to establish a common framework reference for FSDT, a shear correction factor k2

=
5
6 , appropriate for

homogeneous plates, was used throughout.
For the simply supported cross-ply and uniaxial laminates, the exact solutions for the FSDT and Di

Sciuva zigzag theory were obtained using the trigonometric functions in (24) (excluding those functions
for ψα (α = 1, 2) which do not appear in FSDT). For the angle-ply antisymmetric laminates, Di Sciuva
theory permits only approximate solutions to be determined. Presently, the Rayleigh–Ritz method was
employed, where the kinematic variables were approximated with suitable Gram–Schmidt polynomials
[Arfken 1985] that satisfy the kinematic boundary conditions, (26), exactly (refer to [Tessler et al. 2009]
for the particular expressions of the Gram–Schmidt polynomials used). Furthermore, for the simply
supported cross-ply and angle-ply antisymmetric laminates, exact 3D elasticity solutions were obtained
using the solution procedures developed by Pagano [1969] and Noor and Burton [1990].

For the cantilevered laminates, approximate solutions corresponding to Di Sciuva and refined (present)
zigzag theories were developed using the Rayleigh–Ritz method. Here the displacement approximations
are based on the Gram–Schmidt polynomials, using seven functions along the x1 axis and five along the
x2 axis (for details, refer to [Tessler et al. 2009]). Furthermore, for the cantilevered plate (laminate B),
a high-fidelity 3D finite element solution was obtained by using MSC/MD-NASTRAN. The model is
regularly discretized and is comprised of three elements through the thickness for each face sheet, six
elements through the core thickness, and sixty subdivisions along each span direction, with a total of
43,200 HEXA20, linear-strain elements.

The numerical and graphical results that follow are labeled as:

• 3D Elasticity (3D elasticity solutions using procedures developed by Pagano [1969] for cross-ply
laminates and by Noor and Burton [1990] for angle-ply antisymmetric laminates).

• FSDT (first-order shear deformation theory, k2
=

5
6 ).

• Zigzag (D) [Di Sciuva 1984a].

• Zigzag (R) (present, refined zigzag theory).

• 3D FEM (3D FEM solution using MSC/MD-NASTRAN [MSC 2006]).

• Zigzag (R-E) (transverse shear stresses obtained by way of integrating 3D elasticity equilibrium
equations, using the normal and in-plane shear stresses derived from the refined zigzag theory).

Comparisons of the maximum deflection and maximum top-surface displacement are presented for
the simply supported square laminates (a/1h = b/2h = 5) in Tables 3 and 4. These results demonstrate
that both zigzag theories predict accurate plate displacements as compared to the 3D elasticity solution,
with the refined theory achieving slightly more accurate predictions. The laminate G case is somewhat
pathological for Zigzag (D), because the solution in this case is only approximate and has not converged.
The deflections predicted by FSDT are generally overly stiff; however, they are expected to improve
substantially with the use of lamination-dependent shear correction factors. In Table 5, the range of
applicability of the various theories is examined by comparing the maximum (central) plate deflection
for a simply supported sandwich laminate B, where the solutions correspond to a span-to-thickness
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Laminate Normalization factor 3D elasticity FSDT Zigzag (D) Zigzag (R)
(102 D11q0a4)

A 8.147× 10−2 1.228 1.278 1.170 1.219
B 7.502× 10−2 29.761 2.731 29.769 29.785
F 5.444× 10−2 1.331 0.389 1.332 1.333
G 3.551× 10−2 14.124 1.055 12.734 14.105

Table 3. Normalized maximum (central) deflection, w̄ = (102 D11/q0a4)w(a/2, b/2),
for simply supported laminates subjected to sinusoidal transverse pressure loading.

Laminate Normalization factor 3D Elasticity FSDT Zigzag (D) Zigzag (R)
(103 D11/qoa4)

A 8.147× 10−1 4.233 4.152 3.855 4.251
B 7.502× 10−1 9.977 2.156 9.945 9.897
F 5.444× 10−1 0.643 0.796 0.646 0.649
G 3.551× 10−1 3.908 0.704 1.295 3.845

Table 4. Normalized maximum (top surface) displacement along the x1 axis
ū1 = (103 D11/qoa4)× u(N )1 (a, b/2, h) of simply supported laminates subjected to sinu-
soidal transverse pressure loading.

Span-to-thickness Normalization factor 3D Elasticity FSDT Zigzag (D) Zigzag (R)
ratio (102 D11/q0a4)

4 1.832× 10−1 42.420 3.739 42.124 42.189
10 4.668× 10−3 9.734 1.321 9.738 9.739
20 2.931× 10−4 3.487 0.948 3.489 3.490
50 7.502× 10−6 1.305 0.841 1.305 1.305

100 4.688× 10−7 0.945 0.826 0.945 0.945
200 2.931× 10−8 0.852 0.822 0.852 0.852

Table 5. Normalized maximum (central) deflection, w̄ = (102 D11/q0a4)w(a/2, b/2),
for simply supported laminate B subjected to sinusoidal transverse pressure loading and
corresponding to various span-to-thickness ratios.

ratio in the range 4–200. These results are also plotted in Figure 3. It is observed that both zigzag
theories predict accurate deflections for all span-to-thickness ratios examined, whereas FSDT is overly
stiff, especially in the thick regime, as expected. Even for a relatively thin laminate B (a/2h = 50), FSDT
underestimates the maximum deflection by about 36%, which means that a much more significant shear
correction factor would be required for FSDT for this type of laminate.

For the simply supported laminates, normalized through-the-thickness distributions for the in-plane
displacement, ū1=(104 D11/q0a4)u(k)1 (0, a/2, z), the normal stress, σ̄11≡(4h2/q0a2)× σ

(k)
11 (a/2, a/2, z),

and the transverse shear stress, τ̄1z ≡ (2h/q0a)τ (k)1z (0, a/2, z), are depicted in Figures 4–11.
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Figure 3. Normalized central deflection versus span-to-thickness ratio for simply sup-
ported laminate B subjected to sinusoidal transverse pressure (left); zoomed view (right).

For laminate A — an asymmetric cross-ply carbon-epoxy composite — the values of ū1 and σ̄11 are
accurately modeled by FSDT and the two zigzag theories (Figures 4 and 5), with Zigzag (D) producing
slightly underestimated displacement near the top surface. The major differences in results for this lam-
inate correspond to the τ̄1z distribution (Figure 5), where both FSDT and Zigzag (R) produce piecewise
constant stresses, whereas Zigzag (D) gives a uniform distribution for τ̄1z significantly less accurate
than the predictions of the other two theories. In addition, Zigzag (R) theory provides a more accurate
evaluation of the average transverse shear stress within each lamina than does FSDT. Also, the τ̄1z stress,
obtained by an equilibrium-based method, Zigzag (R-E), is best correlated with the 3D elasticity solution.
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Figure 4. Normalized in-plane displacement (left) and normal stress (right) for simply
supported laminate A subjected to sinusoidal transverse pressure.
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Figure 5. Normalized transverse shear stress for simply supported laminate A subjected
to sinusoidal transverse pressure.

The ū1, σ̄11, and τ̄1z results for sandwich panel B, which has constant-thickness carbon-epoxy face
sheets and a PVC core, are provided in Figures 6 and 7. For laminate B, the top and bottom-surface
values of the ū1 displacement are significantly underestimated by FSDT which is only capable of a
linear (average) distribution. Also, as shown in Figure 7, left, FSDT grossly underestimates the normal
stress σ̄11 on the bounding surfaces where the greatest compression and tension occur. By contrast,
Zigzag (R) yields accurate solutions of all response quantities examined. When the transverse shear
stresses are evaluated from the constitutive relations, the theory provides the correct average values
in the face sheets and in the core. Moreover, the equilibrium-based method, Zigzag (R-E), furnishes
superior transverse shear stresses that are virtually indistinguishable from those of 3D elasticity. An
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Figure 6. Normalized in-plane displacement for simply supported laminate B subjected
to sinusoidal transverse pressure.
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Figure 7. Normalized normal stress (left) and transverse shear stress (right) for simply
supported laminate B subjected to sinusoidal transverse pressure.

additional study evaluating the effect of face-sheet thinness in sandwich laminates on the distribution of
displacements and stresses through the thickness can be found in [Tessler et al. 2009].

The displacement and stress results for laminate F — a cross-ply sandwich with a lower degree of
anisotropy than laminate B — are depicted in Figures 8 and 9. For this laminate, the zigzag effect of the
in-plane displacement is somewhat less pronounced than for laminate B. As in the previous example,
Zigzag (R) yields highly accurate predictions of all response quantities. It is seen that FSDT provides
overestimated values for the in-plane displacement on the bounding surfaces. Also, it is evident from
Figure 9, left, that the integral of the shear stress over the thickness computed using the Zigzag (D)
transverse shear stress would result in a significantly greater value than the exact shear force.

Figure 8. Normalized in-plane displacement (left) and normal stress (right) for simply
supported laminate F subjected to sinusoidal transverse pressure.
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(a) (b)

Figure 9. Left: Normalized transverse shear stress for simply supported laminate F
subjected to sinusoidal transverse pressure. Right: detail near the top layer.

Figures 10 and 11 demonstrate the results for laminate G — an angle-ply antisymmetric sandwich
plate with multilayered face sheets. This is a highly challenging test case for any lamination theory. For
this lamination, only an approximate solution can be obtained for Zigzag (D), requiring a large number of
suitable shape functions to achieve a converged solution. Using the Rayleigh–Ritz method with the Gram–
Schmidt polynomials approximating the kinematic variables (see the details in [Tessler et al. 2009]), a
relatively inaccurate solution was obtained. Consequently, the Zigzag (D) results for the in-plane dis-
placement and normal stress (Figure 10) are somewhat erroneous. On the other hand, Zigzag (R) enables
an exact solution to be obtained for this problem, once again yielding highly accurate predictions of the

Figure 10. Normalized in-plane displacement (left) and normal stress (right) for simply
supported laminate G subjected to sinusoidal transverse pressure.
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(a) (b)

Figure 11. (a) Normalized transverse shear stress for simply supported laminate G sub-
jected to sinusoidal transverse pressure; (b) near the top layer.

response quantities. As in the previous examples, FSDT models the in-plane displacement response only
in an average sense (a linear distribution through the thickness), leading to a significant underestimation
(a nonconservative prediction) of the normal stress in the face sheets. Figure 11 demonstrates the highly
accurate transverse shear stress obtained by the present theory, Zigzag (R), as compared to the other
plate-theory solutions.

To examine the effect of clamped boundary conditions, a square cantilevered laminate B under a
uniform transverse pressure was examined. Table 6 summarizes the maximum deflection calculated
using the three different theories and a 3D finite element solution that serves as a reference. The FSDT
deflection is underestimated by an order of magnitude. The two zigzag theories give accurate results,
with Zigzag (R) producing a somewhat superior deflection prediction.

For the cantilevered sandwich laminate B, normalized through-the-thickness distributions of the in-
plane displacement, ū1 = (104 D11/qoa4)u(k)1 (a, a/2, z), the normal stress,

σ̄11 = ((2h)2/q0a2)× σ
(k)
11 (a/5, a/2, z),

and the transverse shear stress, τ̄1z = (2h/q0a)× τ (k)1z (a/5, a/2, z), are provided in Figures 12 and 13.
The stresses were computed near the clamped edge (x1 = a/5, x2 = a/2) to allow for proper comparisons
with the accurate stresses obtained from the 3D FEM analysis. For this problem, both zigzag theories
produce accurate results; however, application of Zigzag (R) resulted in superior predictions of transverse

Normalization factor (102 D11/q0a4) 3D FEM FSDT Zigzag (D) Zigzag (R)

7.502× 10−2 246.778 25.351 244.077 245.615

Table 6. Normalized maximum (free-edge) deflection, w̄=(102 D11/q0a4)w(a/2, b/2),
for cantilevered laminate B subjected to uniform transverse pressure loading.
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Figure 12. Normalized in-plane displacement (left) and normal stress (right) for can-
tilevered laminate B subjected to uniform transverse pressure.

shear stresses. Finally, the normalized transverse shear force,

Q̄1 =
1

q0a

∫ h

−h
τ
(k)
1z dz,

evaluated at x2 = a/2, is plotted versus the normalized axial coordinate, x1/a, as shown in Figure 14.
For this problem, both FSDT and Zigzag (R) predict the correct linear distribution, yielding a maximum
value at the clamped edge and vanishing at the free edge. This contrasts with an erroneous Zigzag (D)
solution that varies in a nonlinear manner across the span and which vanishes at the clamped edge.

Figure 13. Normalized transverse shear stress for cantilevered laminate B subjected to
uniform transverse pressure.
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Figure 14. Normalized transverse shear force along centerline of cantilevered laminate
B subjected to uniform transverse pressure.

6. Conclusions

A variationally consistent and robust refined zigzag plate theory has been discussed and its predictive
capability examined on laminated-composite and sandwich plates that exhibit a high degree of transverse
shear flexibility, anisotropy, and heterogeneity. In this refined theory, a first-order shear deformation
theory is used as a baseline for the kinematic assumptions with a set of novel piecewise-continuous
zigzag displacements added to the in-plane displacement components. The resulting kinematic field is
independent of the number of material layers, and the zigzag displacements are defined by requiring
only partial lamina-interface continuity requirements of transverse shear stresses. The force equilibrium
equations, boundary conditions, and strain-displacement relations are completely consistent with respect
to the virtual work principle, and transverse shear correction factors are not required. The refined zigzag
theory is better suited for engineering practice than previous similar theories because of its relative
simplicity and its ability to model accurately the transverse shear and in-plane deformations of the indi-
vidual laminae in a physically realistic manner. Unlike other similar theories, meaningful in-plane and
transverse shear stresses are obtained directly from the constitutive equations, in a theoretically consistent
manner. The new theory is devoid of a major shortcoming of other similar theories; namely, the new
theory enables accurate modeling of clamped boundary conditions.

Results for several example problems were presented, highlighting the superior predictive capability
attainable with the present theory and its ability to model correctly clamped boundary conditions. The
critical quantitative assessment of the new theory, including analyses of highly heterogeneous sandwich
laminates in bending, revealed that this refined zigzag theory is more accurate than previous similar ones.

An additional and important benefit is that the new zigzag theory lends itself well to finite element
approximations. In particular, the theory is perfectly suited for the development of computationally
efficient, C0-continuous finite elements. Because of a wide applicability range that includes moderately
thick laminated-composite and sandwich structures, such finite elements would be highly desirable for
large-scale analyses and design studies of high-performance aerospace vehicles.
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Appendix: Plate stiffness coefficients

The stiffness coefficients in (22) are computed from the following expressions using the constitutive
coefficients given in (3):

• Matrix A≡
[
Ai j
]

(i, j = 1, . . . , 3), symmetric, 3× 3:

A≡
∫ h

−h
C dz.

• Matrix B ≡
[
Bi j
]

(i = 1, . . . , 3; j = 1, . . . , 7), nonsymmetric, 3× 7:

B ≡
∫ h

−h
C Bφ dz.

• Matrix D ≡
[
Di j
]

(i, j = 1, . . . , 7), symmetric, 7× 7:

D ≡
∫ h

−h
BT
φ C Bφ dz.

• Matrix G ≡
[
Gi j

]
(i, j = 1, . . . , 4), symmetric, 4× 4:

G ≡
∫ h

−h
BT
β Q Bβ dz,

where

C ≡

C11 C12 C16

C12 C22 C26

C16 C26 C66

(k), Bφ ≡

z φ
(k)
1 0 0 0 0 0

0 0 z φ
(k)
2 0 0 0

0 0 0 0 z φ
(k)
1 φ

(k)
2

 ,
Q ≡

[
Q22 Q12

Q12 Q11

](k)
, Bβ ≡

[
1 β

(k)
2 0 0

0 0 1 β
(k)
1

]
,

List of symbols

a, b Lateral dimensions of a rectangular plate.
2h Total plate (laminate) thickness.

2h(k) Thickness of the k-th material layer (lamina).
(x1, x2) Reference plate-coordinate axes positioned in the middle plane of the laminate.

z Thickness coordinate axis.
N Number of material layers (laminae) through the laminate thickness.

Sm Reference middle plane of the laminate.
Su , Sσ Parts of the cylindrical edge surface of the laminate where displacements and tractions are

prescribed, respectively.
C0 Denotes a continuous function whose first-order derivative is discontinuous.

Cu , Cσ Intersections of the cylindrical edge surfaces (Su , Sσ ) with the middle surface Sm where
displacements and traction resultants are prescribed, respectively.

s, n Unit outward tangential and normal vectors to the midplane boundary: see Figure 1.
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q Applied transverse pressure [force/length2]: see Figure 1.

T̄1, T̄2, T̄z Prescribed in-plane and transverse shear tractions: see (14).

u(k)1 , u(k)2 , uz In-plane and transverse components of the displacement vector in the k-th material layer:
see (1).

u, v, w,
θ1, θ2, ψ1, ψ2 Kinematic variables of the refined zigzag plate theory: see (1).

N1, N2, N12 Membrane stress resultants: see (16).

M1, M2, M12 Bending and twisting stress resultants: see (17).

Mφ
1 , Mφ

2 Bending stress resultants due to zigzag kinematics: see (17).

Mφ
12, Mφ

21 Twisting stress resultants due to zigzag kinematics: see (17).

Q1, Q2 Transverse shear stress resultants: see (18).

Qφ
1 , Qφ

2 Transverse shear stress resultants due to zigzag kinematics: see (18).

φ
(k)
1 , φ

(k)
2 Zigzag functions: see (1).

β
(k)
1 , β

(k)
2 Derivatives of zigzag functions with respect to the thickness coordinate: see (2b).

ξ (k) Dimensionless thickness coordinates of the k-th layer (lamina): see (5).

z(k) Thickness coordinate of the interface between the k-th and (k+1)-st layers: see Figure 1.

u(k), v(k) Dimensionless in-plane displacements along the interface between the k-th and (k+1)-th
layers: see Figure 2.

ε
(k)
11 , ε(k)22 In-plane in the k-th layer: see (3).

γ
(k)
12 , γ (k)2z , γ (k)1z Transverse strains in the k-th layer: see (3).

γ1, γ2 Average shear strains: see (2a) and (9).

η1, η2 Transverse shear strain measures: see (11).

ψ1, ψ2 Zigzag amplitude functions: see (1).

σ
(k)
11 , σ (k)22 Normal stresses in the k-th layer: see (3).

τ
(k)
12 , τ (k)2z , τ (k)1z Transverse stresses in the k-th layer: see (3).

E (k)i Young’s moduli of the k-th layer: see Table 1.

G(k)
i j Shear moduli of the k-th layer: see Table 1.

ν
(k)
i j Poisson’s ratios of the k-th layer: see Table 1.

Ai j , Bi j ,
Di j ,Gi j Constitutive stiffness coefficients: see (22).

C (k)
i j , Q(k)

pq In-plane and transverse shear elastic stiffness coefficients for the k-th layer: see (3).

G1,G2 Weighted-average, laminate-dependent transverse shear constants: see (12b).

δ Variational operator: see (9).
∂
∂xα

or ( · ),α Partial differentiation.

k2 Shear correction factor for FSDT.



ZIGZAG KINEMATICS IN SHEAR DEFORMATION THEORY FOR LAMINATED COMPOSITE PLATES 365

Acknowledgments

The authors thank Dr. Scott Burton of Avago Technologies for providing the research code that was
used to compute the 3D elasticity solutions for simply supported laminates. The first author is also very
thankful to Prof. James G. Simmonds of the University of Virginia for a number of valuable technical
discussions during the course of this research.

Di Sciuva and Gherlone acknowledge the Piedmont Region for the financial support of this research
in the framework of Contract E57 “Multidisciplinary optimization of aeromechanical structural systems.”
The third author also gratefully acknowledges Politecnico di Torino for supporting his research in the
framework of the Young Researchers Program (2007).

Finally, the authors thank the editorial committee of the Structural Mechanics and Concepts Branch of
the NASA Langley Research Center, chaired by Dr. Michael P. Nemeth, for many valuable suggestions.

References

[Ambartsumyan 1961] S. A. Ambartsumyan, Teori� anizotropnyh oboloqek, State Publishing House for Physical and
Mathematical Literature, Moscow, 1961. Translated in “Theory of anisotropic shells”, NASA Technical translation TT F-118,
1964, http://tinyurl.com/NASA-TT-F-118.

[Arfken 1985] G. Arfken, Mathematical methods for physicists, 3rd ed., Academic Press, Orlando, FL, 1985.

[Averill 1994] R. C. Averill, “Static and dynamic response of moderately thick laminated beams with damage”, Compos. Eng.
4:4 (1994), 381–395.

[Averill and Yip 1996] R. C. Averill and Y. C. Yip, “Development of simple, robust finite elements based on refined theories
for thick laminated beams”, Comput. Struct. 59:3 (1996), 529–546.

[Barut et al. 2002] A. Barut, E. Madenci, T. Anderson, and A. Tessler, “Equivalent single layer theory for a complete stress
field in sandwich panels under arbitrary distributed loading”, Compos. Struct. 58:4 (2002), 483–495.

[Cho and Parmerter 1992] M. Cho and R. R. Parmerter, “An efficient higher-order plate theory for laminated composites”,
Compos. Struct. 20:2 (1992), 113–123.

[Cho and Parmerter 1993] M. Cho and R. R. Parmerter, “Efficient higher order composite plate theory for general lamination
configurations”, AIAA J. 31:7 (1993), 1299–1306.

[Cook and Tessler 1998] G. M. Cook and A. Tessler, “A {3, 2}-order bending theory for laminated composite and sandwich
beams”, Compos. B Eng. 29:5 (1998), 565–576.

[Di Sciuva 1984a] M. Di Sciuva, “A refinement of the transverse shear deformation theory for multilayered orthotropic plates”,
in Atti del VII Congresso Nazionale AIDAA (Naples, 1983), edited by A. Marchese, ESA, Rome, 1984. Also in Aerotecnica
Missili e Spazio 63 (1984), 84–92.

[Di Sciuva 1984b] M. Di Sciuva, “A refined transverse shear deformation theory for multilayered anisotropic plates”, Atti
Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 279–295.

[Di Sciuva 1985a] M. Di Sciuva, “Development of an anisotropic, multilayered, shear-deformable rectangular plate element”,
Comput. Struct. 21:4 (1985), 789–796.

[Di Sciuva 1985b] M. Di Sciuva, “Evaluation of some multilayered, shear-deformable plate elements”, pp. 394–400 in A collec-
tion of technical papers: AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Materials Conference (Orlando,
FL, 1985), vol. 1, AIAA, New York, 1985. Paper 85-0717.

[Di Sciuva 1986] M. Di Sciuva, “Bending, vibration and buckling of simply supported thick multilayered orthotropic plates:
an evaluation of a new displacement model”, J. Sound Vib. 105:3 (1986), 425–442.

[Di Sciuva 1987] M. Di Sciuva, “An improved shear-deformation theory for moderately thick multilayered anisotropic shells
and plates”, J. Appl. Mech. (ASME) 54:3 (1987), 589–596.

[Di Sciuva 1990] M. Di Sciuva, “Further refinement in the transverse shear deformation theory for multilayered composite
plates”, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 124:5–6 (1990), 248–268.

http://tinyurl.com/NASA-TT-F-118
http://dx.doi.org/10.1016/S0961-9526(09)80013-0
http://dx.doi.org/10.1016/0045-7949(95)00269-3
http://dx.doi.org/10.1016/0045-7949(95)00269-3
http://dx.doi.org/10.1016/S0263-8223(02)00137-X
http://dx.doi.org/10.1016/S0263-8223(02)00137-X
http://dx.doi.org/10.1016/0263-8223(92)90067-M
http://dx.doi.org/10.2514/3.11767
http://dx.doi.org/10.2514/3.11767
http://dx.doi.org/10.1016/S1359-8368(98)00011-0
http://dx.doi.org/10.1016/S1359-8368(98)00011-0
http://dx.doi.org/10.1016/0045-7949(85)90155-5
http://dx.doi.org/10.1016/0022-460X(86)90169-0
http://dx.doi.org/10.1016/0022-460X(86)90169-0
http://dx.doi.org/10.1115/1.3173074
http://dx.doi.org/10.1115/1.3173074


366 ALEXANDER TESSLER, MARCO DI SCIUVA AND MARCO GHERLONE

[Di Sciuva 1992] M. Di Sciuva, “Multilayered anisotropic plate models with continuous interlaminar stresses”, Compos. Struct.
22:3 (1992), 149–168.

[Di Sciuva et al. 2002] M. Di Sciuva, M. Gherlone, and L. Librescu, “Implications of damaged interfaces and of other non-
classical effects on the load carrying capacity of multilayered composite shallow shells”, Int. J. Non-Linear Mech. 37:4–5
(2002), 851–867.

[Kim and Cho 2005] J.-S. Kim and M. Cho, “Enhanced first-order shear deformation theory for laminated and sandwich plates”,
J. Appl. Mech. (ASME) 72:6 (2005), 809–817.

[Kim and Cho 2006] J.-S. Kim and M. Cho, “Enhanced modeling of laminated and sandwich plates via strain energy transfor-
mation”, Compos. Sci. Technol. 66:11–12 (2006), 1575–1587.

[Librescu et al. 1987] L. Librescu, A. A. Khdeir, and J. N. Reddy, “A comprehensive analysis of the state of stress of elastic
anisotropic flat plates using refined theories”, Acta Mech. 70:1–4 (1987), 57–81.

[Liu and Li 1996] D. Liu and X. Li, “An overall view of laminate theories based on displacement hypothesis”, J. Compos.
Mater. 30:14 (1996), 1539–1561.

[Lo et al. 1977a] K. H. Lo, R. M. Christensen, and E. M. Wu, “A higher-order theory of plate deformation, 1: Homogeneous
plates”, J. Appl. Mech. (ASME) 44 (1977), 663–668.

[Lo et al. 1977b] K. H. Lo, R. M. Christensen, and E. M. Wu, “A higher-order theory of plate deformation, 2: Laminated
plates”, J. Appl. Mech. (ASME) 44 (1977), 669–676.

[MSC 2006] MD Nastran: reference guide, Version 2006.0, MSC Software Corporation, Santa Ana, CA, 2006.

[Murakami 1986] H. Murakami, “Laminated composite plate theory with improved in-plane responses”, J. Appl. Mech. (ASME)
53:3 (1986), 661–666.

[Noor and Burton 1989] A. K. Noor and W. S. Burton, “Assessment of shear deformable theories for multilayered composite
plates”, Appl. Mech. Rev. (ASME) 42:1 (1989), 1–12.

[Noor and Burton 1990] A. K. Noor and W. S. Burton, “Three-dimensional solutions for antisymmetrically laminated aniso-
tropic plates”, J. Appl. Mech. (ASME) 57:1 (1990), 182–188.

[Pagano 1969] N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending”, J. Compos. Mater. 3:3 (1969),
398–411.

[Reddy 1984] J. N. Reddy, “A simple higher-order theory for laminated composite plates”, J. Appl. Mech. (ASME) 51:4 (1984),
745–752.

[Reddy 1997] J. N. Reddy, Mechanics of laminated composite plates: theory and analysis, CRC Press, Boca Raton, FL, 1997.

[Reddy 2004] J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, 2nd ed., CRC Press,
Boca Raton, FL, 2004.

[Reddy and Vijayakumar 1995] K. J. Reddy and K. Vijayakumar, “Lamination-dependent shear deformation models for cylin-
drical bending of angle-ply laminates”, Comput. Struct. 55:4 (1995), 717–725.

[Reissner 1984] E. Reissner, “On a certain mixed variational theorem and a proposed application”, Int. J. Numer. Methods Eng.
20:7 (1984), 1366–1368.

[Reissner 1985] E. Reissner, “Reflections on the theory of elastic plates”, Appl. Mech. Rev. (ASME) 38:11 (1985), 1453–1464.

[Sun and Whitney 1973] C.-T. Sun and J. M. Whitney, “Theories for the dynamic response of laminated plates”, AIAA J. 11:2
(1973), 178–183.

[Tessler 1993] A. Tessler, “An improved plate theory of {1,2}-order for thick composite laminates”, Int. J. Solids Struct. 30:7
(1993), 981–1000.

[Tessler et al. 2007] A. Tessler, M. Di Sciuva, and M. Gherlone, “Refinement of Timoshenko beam theory for composite and
sandwich beams using zigzag kinematics”, Technical report TP-2007-215086, NASA Langley Research Center, Hampton, VA,
2007, Available at http://tinyurl.com/NASA-TP-2007-215086.

[Tessler et al. 2009] A. Tessler, M. Di Sciuva, and M. Gherlone, “Refined zigzag theory for laminated composite and sand-
wich plates”, Technical report TP-2009-215561, NASA Langley Research Center, Hampton, VA, 2009, Available at http://
tinyurl.com/NASA-TP-2009-215561.

http://dx.doi.org/10.1016/0263-8223(92)90003-U
http://dx.doi.org/10.1016/S0020-7462(01)00102-0
http://dx.doi.org/10.1016/S0020-7462(01)00102-0
http://dx.doi.org/10.1115/1.2041657
http://dx.doi.org/10.1016/j.compscitech.2005.11.018
http://dx.doi.org/10.1016/j.compscitech.2005.11.018
http://dx.doi.org/10.1007/BF01174647
http://dx.doi.org/10.1007/BF01174647
http://dx.doi.org/10.1177/002199839603001402
http://dx.doi.org/10.1115/1.3171828
http://dx.doi.org/10.1115/1.3152418
http://dx.doi.org/10.1115/1.3152418
http://dx.doi.org/10.1115/1.2888300
http://dx.doi.org/10.1115/1.2888300
http://dx.doi.org/10.1177/002199836900300304
http://dx.doi.org/10.1115/1.3167719
http://dx.doi.org/10.1016/0045-7949(94)E0273-5
http://dx.doi.org/10.1016/0045-7949(94)E0273-5
http://dx.doi.org/10.1002/nme.1620200714
http://dx.doi.org/10.1115/1.3143699
http://dx.doi.org/10.2514/3.50448
http://dx.doi.org/10.1016/0020-7683(93)90022-Y
http://tinyurl.com/NASA-TP-2007-215086
http://tinyurl.com/NASA-TP-2007-215086
http://tinyurl.com/NASA-TP-2009-215561
http://tinyurl.com/NASA-TP-2009-215561


ZIGZAG KINEMATICS IN SHEAR DEFORMATION THEORY FOR LAMINATED COMPOSITE PLATES 367

[Toledano and Murakami 1987] A. Toledano and H. Murakami, “A high-order laminated plate theory with improved in-plane
responses”, Int. J. Solids Struct. 23:1 (1987), 111–131.

[Umasree and Bhaskar 2006] P. Umasree and K. Bhaskar, “Analytical solutions for flexure of clamped rectangular cross-ply
plates using an accurate zig-zag type higher-order theory”, Compos. Struct. 74:4 (2006), 426–439.

[Vlachoutsis 1992] S. Vlachoutsis, “Shear correction factors for plates and shells”, Int. J. Numer. Methods Eng. 33:7 (1992),
1537–1552.

[Yu 2005] W. Yu, “Mathematical construction of a Reissner–Mindlin plate theory for composite laminates”, Int. J. Solids Struct.
42:26 (2005), 6680–6699.

[Yu et al. 2008] W. Yu, J.-S. Kim, D. H. Hodges, and M. Cho, “A critical evaluation of two Reissner–Mindlin type models for
composite laminated plates”, Aerosp. Sci. Technol. 12:5 (2008), 408–417.

Received 23 Mar 2009. Revised 7 Aug 2009. Accepted 13 Aug 2009.

ALEXANDER TESSLER: alexander.tessler-1@nasa.gov
Structural Mechanics and Concepts Branch, NASA Langley Research Center, Mail Stop 190, Hampton, VA 23681-2199,
United States

MARCO DI SCIUVA: marco.disciuva@polito.it
Department of Aeronautics and Space Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

MARCO GHERLONE: marco.gherlone@polito.it
Department of Aeronautics and Space Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

http://dx.doi.org/10.1016/0020-7683(87)90034-5
http://dx.doi.org/10.1016/0020-7683(87)90034-5
http://dx.doi.org/10.1016/j.compstruct.2005.04.023
http://dx.doi.org/10.1016/j.compstruct.2005.04.023
http://dx.doi.org/10.1002/nme.1620330712
http://dx.doi.org/10.1016/j.ijsolstr.2005.02.049
http://dx.doi.org/10.1016/j.ast.2007.09.005
http://dx.doi.org/10.1016/j.ast.2007.09.005
mailto:alexander.tessler-1@nasa.gov
mailto:marco.disciuva@polito.it
mailto:marco.gherlone@polito.it


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
http://www.jomms.org

Founded by Charles R. Steele and Marie-Louise Steele

EDITORS

CHARLES R. STEELE Stanford University, U.S.A.
DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, U.S.A.

YASUHIDE SHINDO Tohoku University, Japan

EDITORIAL BOARD
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