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THEORETICAL AND EXPERIMENTAL STUDIES OF BEAM BIMORPH
PIEZOELECTRIC POWER HARVESTERS

SHUDONG YU, SIYUAN HE AND WEN LI

This paper presents a theoretical model for simulating a piezoelectric beam bimorph power harvester
consisting of a laminated piezoelectric beam, a proof mass, and an electrical load. The vertical offset
of the proof mass center from the beam centroid couples the bending and longitudinal motions, which
makes it necessary to consider both longitudinal and lateral vibrations simultaneously. Experiments
were carried out on a beam bimorph prototype mounted on a shaker to measure the electrical output.
Numerical results obtained using the proposed procedure for piezoelectric bimorph power harvesters are
in good agreement with the experimental data.

1. Introduction

Power harvesting devices scavenge energy from ambient mechanical vibrations. When a cantilever bi-
morph piezoelectric beam is attached to a vibrating base, electrical energy is produced continuously.
Devices of this kind are often used to replace or extend the life time of electrochemical batteries for
wireless sensors, implanted medical devices, handheld electronic devices, and other portable electronic
devices [Roundy et al. 2004; Yang 2006; Liao and Sodano 2008]. Compared with other energy scaveng-
ing methods such as electromagnetic [Glynne-Jones et al. 2004] and electrostatic methods [Mitcheson
et al. 2004], piezoelectric vibration based energy harvesting systems have been attracting a lot of at-
tention recently because of their simple structure, direct conversion of vibration energy into electrical
energy with a high voltage level, lower number of additional electrical components, and not requiring
an electric power source [Sodano et al. 2004; Anton and Sodano 2007]. The most popular structures
for vibration based piezoelectric power harvesting systems are piezoelectric cantilever (unimorph or
bimorph) beams, which are suitable for small amplitude ambient vibration. Most test results available in
the literature were obtained for sinusoidal mechanical motion. Cantilever-type energy harvesting devices
function most effectively when the excitation frequencies vary in the vicinity of the fundamental resonant
frequency of the electromechanical system.

Models of distributed-parameter energy harvesting systems were presented in [Erturk and Inman
2008b], and approaches based on modal analysis were proposed to solve the dynamical response of the
electromechanical system. An energy-based formulation of piezoelectric structures is given in [Dutoit
et al. 2005]. Some simplified analytical models for a cantilever piezoelectric beam energy harvester are
available in the literature. However, as pointed out in [Erturk and Inman 2008a], errors were unfortu-
nately present in deriving the simplified analytical solutions in several published papers. The authors of
the current paper also had the opportunity to examine the analytical results published in the literature,
and observed that errors and mistakes of a nontypographical nature indeed existed in the earlier works
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concerning the derivations of analytical solutions for bimorph piezoelectric structures. The timely paper
[Erturk and Inman 2009] deals with the analytical solution for a bimorph piezoelectric beam energy
harvester carrying a symmetrically placed proof mass.

In this paper, the finite element method is employed to obtain the governing equations of the electrome-
chanical system consisting of a piezoelectric beam, a proof mass, and a resistive load. The three-node
beam element [Yu and Cleghorn 2002], presented in this paper, is of a higher order type and is ideal for
dynamic problems. The authors anticipate that energy harvesting devices of this type can be modeled
accurately using the proposed method. Effects of mass, mass moment of inertia, and offsets of the mass
center with respect to the mass-beam interface can be studied for a proof mass of general configuration.

2. Formulation of mechanical and electrical energies

A piezoelectric power harvester consisting of a piezoelectric bimorph beam and a proof mass is sketched
in Figure 1. The piezoelectric beam is clamped onto a vibrating base. As the base vibrates, the mechanical
energy is converted into electrical energy through the piezoelectric power harvester. In this section, the
mechanical (kinetic, strain, and dissipative) energy, the electrical energy, and the electrical work done
on a power-consuming resistor are studied and related to a set of electromechanical variables.

Axial strain. The axial strain everywhere in the piezoelectric beam is induced by the axial and lateral
deformations in the x-z coordinate plane (see Figure 1). Within the context of classical beam theory, a
plane of a beam normal to its neutral axis before deformation remains a plane and normal to the deformed
neutral axis after deformation. The total axial displacement of a material point in the beam structure,

z y Mass
E'x Top and bottom PZT layers
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3 y.4 .'/ - \‘.
I ~ BN 1
Bimorph PZT Beam Structure \

Vibrating Base Shim

Detailed view

Figure 1. Illustration of a typical piezoelectric power generator.
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bounded by 0 <x <[, —b/2 <y <b/2,and —h/2 <z < h/2, may be written as
M(X, <, I)ZMO()C,I)—Q(X,I)Z, (1)

where ug(x, t) is the axial displacement due to uniform axial stretching, w(x, ) is the lateral displacement
of the centroid due to in-plane bending, z is the vertical distance of the material from the centroid, and
b is the beam width.
According to Euler—Bernoulli beam theory, the angle of rotation of a beam cross section, normal to
the centroid axis, is everywhere related to the slope of the deformed centroid axis as follows:
_ ow(x, 1)

Q(XJ)—T, O0<x<l ()

For small deformations, the axial strain everywhere in the beam is

duop(x, 1) *w(x, 1)
_ z.

S1(x,z,t) =
12,0 ox ox?

3)
Constitutive equations. The constitutive equation for the nonactive shim material, bounded by —h;/2 <
z < hy/2, may be written as

Ti,s =c11,651, “4)

where T, is the axial stress in the shim material and cj; s is the modulus of elasticity of the shim
material.

For the two piezoelectric layers, bounded by hs/2 <z < h/2 and —h/2 < z < —h,/2, the constitutive
equations may be written as [Roundy et al. 2004]

Ti,, =ci1,pS1 —e31,pE3 p, D3, =e31,,81 +¢€33,pE3 p, )

where 77, is the axial stress in the piezoelectric material, c11,, is the elastic constant of the piezoelectric
material, £33, 18 the permittivity in the thickness direction, d3;,, is the piezoelectric constant, E3 , is the
electric field in the thickness direction, and D3, is the electric displacement in the thickness direction.

A bimorph piezoelectric beam in the {3-1} mode is made of two identical piezoelectric layers at the
top and bottom and a shim in the middle, which makes the structure a symmetrically laminated beam.
In a symmetrically laminated beam, the axial stretching does not induce bending, and vice versa. For
a composite beam of very large length-to-thickness ratios, the dominating strains and stresses in each
constitutive layer are the axial strains and stresses due to the bending and axial stretching when it is
operated in the vicinity of the fundamental natural frequency of the in-plane bending. Other stress
components, for example the transverse shear stress, are negligible.

For piezoelectric composite beams of moderate or large thickness, the electrical field in a piezoelectric
layer may vary considerably in the thickness direction [Wang et al. 2007]. However, for a very thin
piezoelectric laminate, the electrical field across each piezoelectric layer may be considered constant in
the thickness direction. In this paper, the piezoelectric structure is thin and symmetric. The following sim-
plified relationship between the electric field and the voltage differential (v) across a single piezoelectric
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layer is employed:
—v/h, if hy <2z<h,
Esp=10 it —hy <2z <h,, (©)
v/h, if —h <2z<—h;,,
where £, is the thickness of the top or bottom piezoelectric layer and v is the voltage across one piezo-
electric layer.

Motion analysis. A rigid proof mass is commonly attached to the beam at the free end to enhance power
generation. When the beam-mass system is clamped to a rigid moving base, the beam-mass system
participates in two motions: the rigid body motion with the base and the elastic motion relative to the
base. The rigid reference motion is responsible for providing an excitation in the form of a distributed
inertial force field. The relative elastic motion is desired to yield necessary straining of materials for
producing electrical charges.

A beam-mass system is capable of various types of elastic deformations when the excitation fre-
quencies vary considerably. They include bending, axial stretching/compression, and torsion. However,
when the system is excited in the vicinity of the fundamental natural frequency, the beam motion is
predominantly bending in the x-z coordinate plane. The proof mass motion is of the type of general plane
motion. Since the lateral motion is coupled to the lateral bending motion for nonsymmetric attachments
of the proof mass, the longitudinal deformation and lateral bending are considered. Bending in the y-z
coordinate plane and torsion about the z axis are negligible.

To determine the deformations of a flexible beam at time ¢, a set of moving coordinates fixed to the
moving ground are employed. For translational base motion in the vertical direction, the base-fixed
coordinate translates with velocity ©;. A material point P, located a distance x from the reference point
on the neutral axis before deformations, as shown in Figure 2, moves to P’ after deformations. If the

Configuration at t = ¢
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Figure 2. Sketch of deformed piezoelectric structure with respect to the reference configuration.
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longitudinal and lateral displacements measured with respect to the body-fixed coordinate system x-z are
u(x, r) and w(x, t), respectively, the absolute position of P’ may be written in terms of the base-fixed

coordinates as -
X +up(x,t
R={e: e} [wb(,)w(x,t)}, (M
where R, is the rigid-body position vector of reference point o, and e, and e, are the two unit vectors
of the base-fixed coordinate system. For a nonrotating base motion, these two unit vectors are constant
and identical to the unit vectors in the space-fixed coordinates.
The velocity of point P’ may be written in the body-fixed coordinate system as

R:{ex ez}{d)b”_io_w}’ (8)

where w,, is the velocity of the vibrating base and it¢ and w are the time rates of longitudinal and lateral
deflections with respect to the moving coordinate system.

Kinetic energy. The kinetic energy of the dynamical system may be conveniently written as
T = Tveam + Trmass> )

where Tpheam 18 the kinetic energy of the beam and Ti,gs is the kinetic energy of the proof mass plus the
portion of the beam bonded to the mass.
The kinetic energy of the beam may be written as

[ I
Tbeamzl/ n‘szdx—i—l/ i,0%dx, (10)
2 0 2 0

translational rotational

where m is the mass of the beam per unit length, zTy is the mass moment of inertia of the beam about the
y-axis per unit length, and @ is the rate of the angle of rotation of a plane normal to the centroid. For a
symmetrically laminated beam of constant width b, we can compute 7 and i, by

A= pib, 0= 3Zpkb{ (9) — (2)%), (11)
k=1

(k (k)

where z; ) and z, ~ are the z-coordinates of the lower and upper faces of k-th layer, py is the density of
the material in k-th layer, and /A is the thickness of k-th layer. For large length-to-thickness ratios, the
rotary inertia of the beam bimorph is very small, and will be ignored in this paper.

The kinetic energy of the proof mass attached to the free end of the piezoelectric beam structure may
be written as . . .

Thnass = %m[xé+zé]+%~]@y9[2, (12)
where X and Zg are the velocities of the proof mass center along the x and z directions respectively,
Ji,y 1s the mass moment of inertia of the proof mass about the yg axis, m is the mass of the proof mass,
and 6 is the angle of rotation of the beam at x = [.

At a given instant, the proof mass center is related to the beam deflection as

X =up;+agcosth —cgsing, Y6 = wp +w; +agsinb; + cg cos b, (13)
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where ag and c¢ are the axial and lateral distances, respectively, of proof mass center (G) with reference
to the end point of the beam neutral axis at x =/, and u¢; and w; are the axial and lateral deformations
of the beam at x = /.

Finally, the kinetic energy of the proof mass may be written as

Tnass = sm(Xg + Y& + 3 Jg 07 (14)
Strain energy. The strain energy of the composite beam associated with the longitudinal and lateral

deformations is

V=l/ Tl,,,Slde—i-l/ Tl,SSlst

1 1 _ 1
:i/ Cll,p(Sl)Zde+§/ 631hp1051de+§/ ci,s(S1)*d Vs,
Vp \% Vs

P

15)

where V is the volume of the shim material and V), is the volume of the piezoelectric material.
Substituting (3) into (15), the strain energy for the symmetrically laminated composite beam may be
expressed in terms of a line integral as

I l 2,\2 N
_1 %)2 1 (5 w) _1 o"w
V_2/0 Ru(ax dxty [ Ro(Gz) dx—g | rgmede, (16)
where
Ru=2011,p2Ap+cll,sAs, Rw:Cll,pIp+C11,sISa y=2631Aprh;;1> Apzéb(h_hs),
Ay = bh,, I, =5bh’ —h), I, = 5bh?, Zp = 2(h+hy).

Electrical energy. The electrical energy in the two layers of piezoelectric material may be written as

1 1 22w 1 5
Wezz/vp E3D3dv=§/0 yvﬁdx+2(icov )1 17)

where ¢y = 833blh;1.

Energy dissipation. Energy loss in a vibrating piezoelectric structure can be handled mathematically if it
is in a form of proportionality damping. The proportionality damping accounts for both the environmental
damping due to the viscosity of the surrounding medium and the internal structural damping. Within the
context of Lagrange equations, the Rayleigh dissipation function is an effective way of bringing damping
into consideration. The energy loss function may be assumed as

! ! I . I .

1 _ 1 _ 1 diip\? 1 0%\
U= E/o aumu%dx+§/0 awmwzdx+§/0 ﬁuRu(a—xO) dx+§/0 ﬂwa(W) dx, (18)
where ay,, a, fu, and S, are proportionality constants. Their values are not determined individually.

Instead, a combined damping ratio associated with a particular mode is measured and used in simulations
for a specific setup.
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Work done on resistor. The rate of electrical work done by the resistor per unit voltage is

. —i  for piezoelectric layers in parallel,
Or = : . . o (19)
—2i for piezoelectric layers in series,
where i is the current passing through the resistor.
The work done by the resistor per unit voltage is then
— for piezoelectric layers in parallel,
Or=1{ 1 P o ayers I par (20)
—2q for piezoelectric layers in series,

where ¢g is the charge flowing through the resistor.

3. Governing equations of the electromechanical system

In this section, a finite element procedure for obtaining a set of ordinary differential equations for the
piezoelectric power harvesting system is presented.

Beam finite elements. The three-node beam element used in this paper has three axial nodal displace-
ments, u{, u5, and u, three lateral displacements, w{, w3, and w3, and three angles of rotation, 67, 67,
and 65. To facilitate the formation of element matrices, a local axial coordinate originating at the first
node of a beam element is used. For a straight beam, the local axial coordinate is related to the body-fixed
coordinates by { = x —x{ and 0 < ¢ </, where x{ is the axial coordinate of the first node of element
e and ¢ is the local coordinate for element e. The longitudinal and lateral displacements of a material
point within a beam finite element may be determined by the shape function and nodal variables from
the equations

ue = [N1(OIDHg,},  we =[N2)ID5Nq,,}- 2D

(see [Yu and Cleghorn 2002]). For convenience in assembly of component equations, the global nodal
displacement vector is rearranged in the following manner:

T
{r}={u1 wy 01 uy wy 6 ... uyy WNN 9NN} . (22)

The longitudinal and lateral nodal displacements are related to the global displacement vector through
transformation matrices [7,7] and [7;] as follows:

g} =1T;0r}, Aay} =[T5lr) (23)

Expressions for kinetic, strain, and dissipation and electric energies in nodal displacements. If N,
beam finite elements are used for the piezoelectric structure, the kinetic energy (excluding the rotary
inertia), the strain energy, the Rayleigh dissipation energy function, and the electrical energy for the
dynamical system may be written in terms of the nodal displacements and the voltage across a single
layer of piezoelectric material may be written as

T = L (i IMUF) + iy (7Y {B) + L lii}, 3 (P ICF),

U =
24
V=T IK1(r} - Lyo{riT{0), We = 50(r}" {0} +2(5c00%), =
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where
NE NE

(€1 =" (11 [l M1+ BLKENTE | + D (o1 [l M1+ Bul KETNITS,
e=1 e=1
NE NE

[M] =D [T IMTAHT ) IMT ]+ Mmase),  [K1=D [T KT T IK T,

e=1 e=1

NE NE
(B} =D [T {BE} + (Bmass), CIED N AMRCHE

e=1

l, ¢
[M¢]=[D)" [ / na[Nl]T[Nl]dé][De M¢]=[D5]" na[Nz]T[Nzldf][Dsl,
0

1
[
le ’ ’
(K] = [Df]T[ /0 R, [NI]T[Nl]df}[DT], [K¢]=[D5]
{ ]

l
iyl
0
Il B .
TU@ Rw[Nle[NZ]dﬁ][Dﬁl,
/
J
m

le ” e
{®}=[D§]T</ [NZ]Tdf}, B:}=[D51" n_l[Nz]Tdf],
0
o =g i =] 0w g
massl — 0 [Mmass] 5 massl — _G 5
—mcg mag Jy
{Bumass) ={0 0 ... 0 m mag}" Ty =ma% +mck + Jg.y.

Governing equations. The Lagrangian for the electromechanical system may now be written as
L=T—-V+W, =3 IMI{F} = g} K1} + 7 {r} {O}o +2(5 cov?). (25)

Two sets of governing equations for the electromechanical system can be derived from the following
Lagrange equations:

d OL oU oL d 6L oL

AT T o Y @ran o or 26)

Substituting (25) into (26), the equations of motion of the piezoelectric structure and the equation of the
electrical power generation are written as

[M]{F} + [CHr} + [K{r} — y[O]o = —{B}is, y[O17{r} +2cov = Qk. 27)

When the electrical output from the piezoelectric structure is connected to a resistor load and the two
piezoelectric layers are connected in parallel, the voltage is related to the rate of charge as v = Rgq.
Incorporating the above electrical boundary condition and the first relation in (20) into (27), the gov-
erning equations for the coupled electromechanical system may be rewritten in terms of the mechanical
displacements and the electric charge, for a sinusoidal base motion, w;, = A sin(wt + ¢), as follows:

. K 0
[M] O [C] —yR[® B
|: 0] O][{r}}—l-[ 0] yR[ ]] [{;}]-ﬁ- (o172 1 [{;}] Aw? sm(a)t—i-¢)[{ }}. (28)
2co 2co
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Equation (28) is valid for two piezoelectric layers connected in parallel. The voltages across the two
piezoelectric layers are each equal to the voltage across the resistor.

In the case where the two piezoelectric layers are connected in series, the voltage across the resistor
is twice the voltage across each piezoelectric layer, that is, v = Rqg /2. In the case of a series connection,
one obtains the following governing equations for the electromechanical system:

y B K 0
C R [T [ [T

¢ Co

Handling mechanical boundary conditions. 1If the base is considered rigid, the piezoelectric beam is
clamped to the base. The axial displacement, the lateral displacement, and the angle of rotation of the
beam with respect to the base are zero. The boundary conditions at the clamping end can be easily
handled using the elimination method or the penalty method [Bathe 1995]. In this paper, the elimination
method is employed. It is noted that other boundary conditions, such as elastically restrained edges
simulating less than rigid constraints between the base and the beam, can also be handled in the frame
work of the finite element formulation.

Deleting the first three equations and the first three nodal variables in the remaining equations in (28),
the governing equations for the electromechanical system, which satisfy all electrical and mechanical
boundary conditions for the parallel connection of the two piezoelectric layers, may now be written as

~ p = ~ 2 K 0 ~
[ e I A T PR
200 2C0
where matrices with a tilde on top are the result of their corresponding matrices with the first three rows
and columns deleted, and vectors with a tilde are the result of their corresponding vectors with the first
three elements deleted.

Similarly, Equation (29) for the series connection of the two piezoelectric layers can also be mod-
ified to satisfy the boundary condition at the clamped end. The governing equations for the coupled
electromechanical system may be written as

(A7) 0”{57'}]{[0] -16)” “{ }} K0 |{f}] [{B}]
.. =7y 2 Aw® sin(wt + ¢) . (3D
[0061 0 R g |ere e
Equation (30) for the coupled electromechanical system can be written in a unified manner as
[Mem{¥em} + [Ceml{¥em} + [Kem{Xem} = { Fem} sin(wr + ¢), (32)

where the subscript em in the above equations stands for electromechanical. Other quantities are defined
as follows for the two piezoelectric layers in parallel:

~ - ~ K 0 B ~

_|[[M]0 _|[C] —yR[O] _ NG _ 42 |{B}

[Mem]—|: 0 0i|;[cem]—|: 0 R ]a[Kem]— [@] y 1 :{xem}—[q ]a{Fem}—Aa) [ 0 }
2co 2co
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For the two piezoelectric layers in series, the electromechanical mass matrix and the load vector are iden-
tical to those given above. However, the electromechanical damping matrix and the electromechanical
stiffness matrix are different and are given as:

~ =~ 7R K 0
el —1e12* B

¢o Co
Steady-state solution. A steady-state solution to (32) may be sought in the following manner:
{Xem} = { X}, cos(wt + @) + { X} sin(wr + @), (33)

where {X}. and {X}; are constant vectors.

Substituting (33) into the governing differential equations and comparing the coefficients associated
with the cosine and sine harmonics, one obtains the following set of inhomogeneous algebraic equations
for the two unknown vectors:

[Kem] — [Mem]a)2 [Cemlo {X}e 0
, — . (34)
—[Cemlo [Kem] — [Mem]w {X}s {Fem}

Once {X}. and {X}; are determined, the amplitudes for the mechanical variables (nodal displacements)
and the electrical variable can be computed. A postprocessing scheme can be employed to obtain the
amplitudes for the current, voltage and power. It is noted that there are two ways to determine the power
output: the peak power and the average power. For the sinusoidally varying current and voltage across
an electrical load, the average power is one half of the peak power.

For a piezoelectric system under sinusoidal base motion, (34) can be used to obtain the mechanical
and electrical responses provided that the damping ratio accounts for the loss of energy in the form of
structural damping. For small scale vibration, the air resistance is negligible.

4. Validation of the proposed model

The model proposed in this paper is validated by comparing the simulation results obtained using the
model with the experimental results of two piezoelectric bimorph beam power harvesters. One design,
with the two piezoelectric layers connected in series and a proof mass simplified as a point mass, is
available in the literature. The other design, with the two piezoelectric layers connected in parallel and a
proof mass which cannot be simplified as a point mass, is built and tested in this paper for investigating
the effect of the mass moment of inertia and mass center offset.

A cantilever piezoceramic structure carrying a point mass. The first system, sketched in Figure 3, is a
piezoceramic harvester developed in [Erturk and Inman 2009]. The dimensions of the proof mass in the

Point Mass

D

Bimorph PZT Beam Structure

Figure 3. Sketch of the piezoelectric structure carrying a small point mass.
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plane of base motion are relatively small and thus it is treated as a point mass. The two piezoelectric
layers are connected in a series manner to power a resistive load.

To validate the finite element model described in this paper, simulations were conducted for four
different meshing schemes. The bimorph piezoelectric beam consists of a shim core of brass and two
layers of piezoceramic materials. Parameters for the piezoelectric power harvester are given in Table 1
for reference. The proof mass is treated as a point mass, that is, the effects of the mass moment of inertia
and the mass center offset are ignored in this paper and in [Erturk and Inman 2009]. An electrical load
of R =470k was used. The peak powers, peak voltages, and optimal frequencies, obtained using
one, two, four, and seven beam finite elements, are given in Table 2. Here the optimal frequencies
are the frequencies at which a maximum power (or voltage) is generated for a given resistive load and
base excitation amplitude. It can be seen that the results converge rapidly if four or more elements are

Parameters Symbol  Values

Piezoelectric structure

Length (mm) [ 50.8
Width (mm) b 31.8
Damping ratio I 0.027
Shim material (brass)
Thickness (mm) ts 0.14
Modulus of elasticity (GPa) E; 105
Shim density (kg/m?) Ps 9000
Piezoelectric material (PZT-5A)
Thickness of each piezoelectric layer (mm) 1, 0.26
Modulus of elasticity (GPa) E, 66
Density (kg/m?) Py 7800
Piezoelectric constant (pm/V) ds 190
Piezolayer permittivity (F/m) £33 15009
Proof mass
Mass (g) m 12.0
Mass moment of inertia (kg m?) Jo 0
Mass center x-location (mm) ag 0
Mass center z-location (mm) cG 0

Base motion (harmonic)
Acceleration magnitude (m/s?) A 1gor9.81
Frequency range for testing (Hz) wor f  30-70

Table 1. Parameters for a bimorph piezoelectric harvester carrying a small proof mass
[Erturk and Inman 2009]. The finite element model has N, = 7 elements, except for con-
vergence studies, where different numbers of finite elements were used. The resistance
R of the resistor is variable. The two piezoelectric layers are connected in series.
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Number of beam Peak power (mW) Peak voltage (V) Optimal frequency (Hz)
elements used

1 18.470 93.170 48.040
2 18.479 93.194 48.050
4 18.470 93.170 48.050
7 18.470 93.170 48.050

Table 2. Convergence studies for a bimorph beam of [Roundy et al. 2004] for R = 470 k€Q.

used. Based on this, seven beam finite elements are used for all simulations in this paper. Use of an
unnecessarily large number of elements is not desired for bimorph beams of small length-to-width ratios
(about 1.6 for the bimorph beam used in [Erturk and Inman 2009]).

For R = 470kQ, the experimental peak powers of [Erturk and Inman 2009] were digitized and plotted
against the simulation results obtained using the procedure proposed in this paper. It can be seen from
Figure 4 that the simulation results are in good agreement with the data of [Erturk and Inman 2009].

A cantilever piezoelectric power harvester with a nonpoint mass. The second power harvester, designed,
fabricated, and tested in this paper, is shown in Figure 5. In this design, the mass moment of inertia and
mass center offset of the proof mass contribute significantly to the structural natural frequencies and
the electrical power generation. Thus the mass cannot be treated as a point mass. The power harvester
is tested on a vibration shaker. The shaker is made to vibrate sinusoidally with a peak acceleration
amplitude of 0.5 g and adjustable excitation frequencies (20—120 Hz). The entire experimental setup,

100

Erturk and Inman's Experimental Data ©
Simulation (Point Mass Model)

Peak Power (mW)

0.01

Frequency [Hz]

Figure 4. Comparison of simulated peak power outputs with the experimental data in
[Erturk and Inman 2009] for R = 470kQ.
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Output Terminals

Shaker Head

Figure 5. Photograph of the piezoelectric structure carrying a large proof mass.

Processing

Figure 6. Photograph of the entire experimental setup.

consisting of the shaker, the piezoelectric harvester, a resistor load, a digital oscilloscope, and a data
acquisition system, is shown in Figure 6.

The average power outputs for frequencies between 20 Hz and 120 Hz were measured and computed
using the procedure described in the previous section for six different electric loads (20, 70, 150, 250, 350,
and 500 kQ). Two proof mass models, the comprehensive mass model and the point mass model, were
used in the simulations. The comprehensive model takes into consideration the mass, mass moment
of inertia, axial offset, and vertical offset of the mass center with respect to the bimorph beam and
mass interface. The point mass model takes into consideration only the mass concentrated at the beam-
mass interface. In an impact test, the damping ratio was found to be 0.024 for the experimental setup.
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This damping ratio is used for all simulations. According to Figure 7, for all six resistive loads, the
comprehensive model yields a good match with the experimental data while the point mass model leads

to significant discrepancy between the calculated results and the experimental data in terms of resonant
frequencies and the generated power.
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Figure 7. Comparisons of simulated average power outputs with experimental data for
ranges of excitation frequencies and electrical loads.
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5. Effects of the dimension and geometry of the proof mass on power output

To reduce the overall dimensions, heavy materials such as tungsten are commonly used to make the proof
mass for a cantilever-based bimorph piezoelectric structure. However, this reduction does not validate
the use of a point model. In this section, the effects on power generation when different proof masses
are attached are investigated for the piezoelectric system described in Table 3. The system is excited by
sinusoidal base motion with a 0.5 g acceleration magnitude and variable frequencies.

Four different configurations of proof masses of parallelepiped shapes, as shown in Figure 8, are
studied. These mass shapes and attachments are used in typical designs in the literature. All masses have
a dimension of 5 mm in the y-direction. The first three masses have their mass centers located at the
beam neutral axis. There is only a horizontal offset between the proof mass center and the structure-mass

Parameters Symbol  Values

Piezoelectric structure

Length (mm) l 21.85
Width (mm) 3.2
Damping ratio (1st mode) ¢ 0.024
Shim material (brass)
Thickness (mm) t 0.102
Modulus of elasticity (GPa) E 100
Shim density (kg/m?) s 8.4
Piezoelectric material (PZT-5E)
Thickness of each piezoelectric layer (mm) 7, 0.139
Modulus of elasticity (GPa) E, 62
Density (kg/m?) Py 7800
Piezoelectric constant (m/V) ds; 0.320 x 107°
Piezolayer permittivity (F/m) £33 3.364 x 1078
Proof mass
Mass (kg) m 0.975 x 1073
Mass moment of inertia (kg m?) Jg 0.406 x 1078
Length (mm) a 5
Width (mm) b 5
Height (mm) c 5
Base motion (harmonic)
Acceleration magnitude (m/s?) A 4.905
Frequency range for testing (Hz) wor f  20-120

Table 3. Parameters for an experimental bimorph piezoelectric harvester carrying a
large proof mass on top. The resistance R of the resistor is variable. The finite element
model has N, = 7 elements. The two piezoelectric layers are connected in parallel.
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Figure 8. Four different proof masses and configurations. All parallelepiped proof
masses have a thickness of 5 mm in the y-direction.

interface. The fourth mass is placed on top of the beam, and therefore has both a horizontal and a vertical
offset between the proof mass center and the structure-mass interface. From the mass matrix composition
in the governing equations, the vertical offset, cg, couples the axial deformation and vertical bending.
The presence of a nonzero vertical offset requires that the axial deformation be considered. Overall, the
point mass model, in which the mass moment of inertia and the mass center offset are ignored, tends to
overpredict the structural natural frequencies. As a result, when the piezoelectric structure is connected
to a resistive load, the resonant frequency of the electromechanical system is shifted upwards.

The results shown in Figure 9 indicate that the fundamental natural frequencies vary considerably
with the characteristic dimension of the four masses. The point mass model yields acceptable results
only when the overall dimensions of the proof mass in the x-z plane are small. This is especially
true for the third and fourth shapes, which have a square aspect ratio; the proof masses shrink to a
point if the characteristic dimensions (lengths and heights) reduce to zero. However, for the first shape,
the characteristic dimension of the proof mass is the length with a fixed height of 5 mm; the natural
frequencies do not quite converge to those for a point mass. For the second proof mass shape, the point
mass model does not yield satisfactory results even if the characteristic dimension (height) approaches
Zero.

Accurate predictions of power generation from a beam-mass cantilever piezoelectric system depend
strongly on the reliable prediction of the structural natural frequencies. Errors in predicting the structural
natural frequencies will result in errors in power generation. The simulated power outputs in the fre-
quency range 0-200 Hz are shown in Figure 10 for parallel connection and a resistive load of R = 70kQ
for the piezoelectric structure defined in Table 3. It can be seen clearly from the simulation results that
the proof mass dimension and geometry shift the occurrence of peak powers considerably. It is noted
that for the fourth shape, the second spike corresponding to the second resonant frequency appears at
180 Hz from the comprehensive model.

According to the above simulations and analysis, the mass moment of inertia, axial offset, and vertical
offset of the mass center due to the nonnegligible dimension and the geometry of the proof mass have
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Figure 9. Effects of proof masses and configurations on structural natural frequencies.

significant effects on the resonant frequency of the piezoelectric beam power harvesters and the output
power. The comprehensive finite element model presented in this paper can readily take the effects of
the proof mass dimension and geometry into consideration and thus is able to accurately predict the
performance of piezoelectric power harvesters. However, it can be very difficult to consider those effects
in analytical models or equivalent circuit models. As a result, the comprehensive finite element model is
more advantageous than the simplified analytical model in simulating piezoelectric power harvesters.

For the block type proof mass photographed in Figure 5, the resonant frequencies predicted by the
comprehensive model are in excellent agreement with the experimental resonant frequencies for a wide
range of resistive loads. However, the point mass model overpredicts the resonant frequencies by 18%.
As for the peak powers and voltages, the errors of predicted values using the point mass model vary with
the resistive loads. At 70k, the point mass model underpredicts the peak power by 9.5%. It should
be pointed out here that, for proof masses of complex configurations, the predictions of the point mass
model may be completely unacceptable.
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Figure 10. Effects of proof masses on output powers for R = 70kQ.

Conclusions

A comprehensive model, along with a point mass model, is developed in this paper to simulate the
mechanical motion and electrical power of piezoelectric bimorph energy harvesters. The mass moment of
inertia and bending-axial stretching coupling effects due to a nonsymmetric proof mass configuration are
considered in the comprehensive model. The simulation results from the point mass and comprehensive
models are compared with independent data available in the literature for a series connection between
the two PZT layers and newly obtained experimental data for a parallel connection. Excellent agreement
was achieved between the theoretical predictions from the comprehensive model and the measurements
for both sets of experiments. It is found that the point mass model produces significant errors for both
the resonant frequencies and electrical powers. Sensitivity studies conducted using the comprehensive
model show that the effects of mass, mass moment inertia, and mass center offset of a proof mass on the
electrical power harvesting are significant and must all be taken into consideration in simulations.
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