jou;nal‘of

Mecham&?ﬁf

" - [
~3 r. < f-:l’ ,
4 = E S T J
; ’ A it P
_ e : — - '
» —— B . e ¢ L
N * PR : % i'; -
r“ ”..i - . = o
- : 3 ﬁ # &Ew . ~ -
- " U?ﬁ f’l “_ - - " e ¥
e !’ ——— 'a .""‘" “ - Figft p— ‘ ﬂ _,:.-J ¢
— == 7 . r},. a = 9
TN . v i *"‘-3‘-‘*" - 4 et
| - E s - e PF‘,,;“-"‘ e o 5T
A COUPLED I-l’ONEYCOMB COMPOSITE SANDWIC}, BRIDGE-VEHICLE
- ' INTERACTION MODEL Ja p-q
5 Mijia Yang and A. T. Papagwannakn‘ i
: ! o _ P
- 2 P -
; J g v 4 .
P

.",., o WSy LS
' Volume 5, No. 4 ’ 1 April 2010
iy § i ¢
’ ® ® B 3 .
s 9 :l mathematical sciences publishers

© € a

W



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 4, 2010

A COUPLED HONEYCOMB COMPOSITE SANDWICH BRIDGE-VEHICLE
INTERACTION MODEL

MIJTA YANG AND A. T. PAPAGIANNAKIS

This paper presents a coupled, dynamic vehicle and honeycomb composite sandwich bridge deck interac-
tion model. The composite sandwich deck consists of E-glass fibers and polyester resin. Its core consists
of corrugated cells in a sinusoidal configuration along the travel direction. First, analytical predictions of
the effective flexural and transverse shear stiffness properties of the sandwich deck were obtained in the
longitudinal and transverse directions. These were based on the modeling of equivalent properties for the
face laminates and core elements. Using the first order shear sandwich theory, the dynamic response of
the sandwich deck was analyzed under moving dynamic loads. A dynamic vehicle simulation model was
used for the latter, assuming that the deck response is the only source of excitation (i.e., its roughness
was assumed to be negligible). Subsequently, the dynamic load factors of the sandwich bridge deck
were calculated for different traveling velocities. The results suggest that the dynamic load factors
vary with the traveling speed and increase significantly with decreasing deck stiffness. Considering
multiple degrees of freedom for the vehicle further amplifies the dynamic loading factor and increases
the vibration generated by vehicles.

Introduction

Sandwich elements are commonly used in aerospace and automobile structures since they offer great
energy absorption and higher moment of inertia without imposing a significant weight penalty. Recently,
growing civil engineering infrastructure rehabilitation needs suggest that innovative deck materials such
as fiber-reinforced polymer (FRP) composite sandwich structures may be suitable for bridge decks [Plun-
kett 1997; Davalos et al. 2001]. These structures typically consist of a corrugated or closed- cell core
encased between two face sheets. Such systems are lightweight while providing high strength. Keller
[2001] also conducted a series of laboratory and field experiments of FRP bridges and verified that the
sandwich elements, if well designed, can be implemented as bridge decks.

However, the performance of sandwich decks for different core configurations and loading cases is
not fully understood. Davalos et al. [2001] conducted a performance evaluation of the FRP sandwich
panels with a sinusoidal honeycomb core. Xu et al. [2001] proposed an analytical method to estimate the
core transverse shear stiffness. Librescu and Hause [2000] reported their research in the modeling of the
advanced sandwich structures, especially the study of stability behavior of sandwich panels. Analysis
of modern sandwich panels was done in [Frostig 2003; Frostig and Thomsen 2004] using both classical
and high-order models. This work studied in-plane and out-of-plane displacement patterns and stress
distributions in the sandwich panels under various boundaries and loading conditions.

Keywords: Vehicle-bridge interaction, dynamic loading factor, sandwich structures, stiffness.

617


http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2010.5-4

618 MIJIA YANG AND A. T. PAPAGIANNAKIS

There is considerably less literature on the dynamic response of sandwich structures, especially under
forced vibrations. Most recently, dynamic response models of higher-order sandwich panels with flexible
core were developed in [Yang and Qiao 2005a]. These were used to study free vibration, impact behavior,
and stress wave propagation in a sandwich beam. However, in order to safely design and implement
sandwich panels as bridge decks, the dynamic response and its dynamic load factor of a sandwich deck
under moving forces need to be studied.

This paper describes a comprehensive approach to predicting the dynamic response of thick sandwich
bridge deck. In addition, it compares their dynamic loading factors to those of conventional concrete
decks. First, the analytical stiffness properties of the face sheets and the core of the sandwich structures
are estimated using the micro/macromechanics method [Davalos et al. 1996]. The stiffness properties of
whole sandwich panel are then evaluated by modeling the sandwich panel as a three-layer laminated struc-
ture, and the estimated stiffness properties are subsequently used for predicting the dynamic responses
of FRP sandwich bridge decks. A semi-analytical relationship between the mechanical properties and
the dynamic response of the sandwich deck is finally developed. Based on this relationship, the dynamic
loading factor impacted by traveling vehicles is evaluated and used in analyzing composite sandwich
bridge decks.

1. Effective flexural and shear stiffness of sandwich decks

The first step in designing a composite sandwich deck is the estimation of the equivalent stiffness proper-
ties of the face sheets, the core elements, and the sandwich deck. The configuration of the face laminate,
sinusoidal core, and sandwich panels are summarized in Figure 1.

Figure 1. Configuration of sandwich panel.

1.1. Modeling of face laminates. The engineering properties of laminated panels can be predicted by a
combined micro/macromechanics approach [Davalos et al. 1996]. The prediction of the ply properties
using the micromechanics approach is well defined [Chamis 1984]. The stiffness properties of each layer
can be computed from existing micromechanics models, such as rule of mixtures (ROM) [Jones 1999],
periodic microstructure (PM) [Luciano and Barbero 1994] and composite cylinders (CC) [Hashin and
Rosen 1964], wherein each layer is modeled as a homogeneous, linearly elastic, and generally orthotropic
material. As in [Davalos et al. 2001], a typical face laminate may include the following four types of
fiber layers:
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Ply name Orientation E{(GPa) E;(GPa) G2(GPa) G3(GPa) vpp V23
bond layer = random 9.72 9.72 3.50 2.12 0.394 0.401
0° or 90° 27.72 8.00 3.08 2.88 0.295 0.390
CM3205 random 11.79 11.79 4.21 2.36 0.402 0.400
UMI810 0° 30.06 8.55 3.30 3.08 0.293 0.386
random 15.93 15.93 5.65 2.96 0.409 0.388
core mat random 11.79 11.79 4.21 2.97 0.402 0.388

Table 1. Ply stiffness properties obtained from micromechanics model.

(1) Chopped strand mat (ChopSM), which is made of short fibers randomly oriented, resulting in nearly
isotropic in-plane properties.

(2) Continuous strand mat (ContSM) which consists of continuous randomly oriented fibers; this prod-
uct is commonly used as backing material for non-woven fabrics and can be modeled as an isotropic
layer.

(3) Bidirectional stitched fabrics (SF) with balanced off-angle unidirectional fibers (e.g., 0°/90° or
+45°).

(4) Unidirectional layer of fiber bundles or rovings.

The stiffness of each ply can be predicted from micromechanics models. In this study, a microme-
chanics model for composites with periodic microstructure [Luciano and Barbero 1994] is used to obtain
the elastic constants for each individual layer (Table 1).

After the elastic properties of each ply are obtained from micromechanics, the equivalent stiffness
properties of the face laminate are computed from classical lamination theory [Jones 1999]. A set
of equivalent laminate stiffness properties can be defined for approximately balanced symmetric face
laminates [Davalos et al. 1996] and are given in Table 2. These elastic constants (e.g., E ,{ , E{, G,{y, and
v{ y) represent the stiffness of an equivalent orthotropic plate that behaves like the actual laminate under
out-of-plane and in-plane loads.

1.2. Modeling of honeycomb core. Unlike traditional honeycomb sandwich structures, the shape of the
corrugated cell wall in the sandwich is defined by a sinusoidal function (Figure 1).

An example of a honeycomb core manufactured by Kansas Structural Composites, Inc. (KSCI, Russell,
Kansas) is shown in Figure 2, and the dimensions of the sinusoidal core are 2 = 25.4 mm (1.01in) and
b =50.8mm (2.0in). In the coordinate system shown in Figure 2, the wave function of a corrugated

El E] vl Gl G, G
19.62 GPa 1276GPa ) 10, 3.76 GPa 3.75GPa 3.68 GPa
2.85x 10%psi 1.85x10%psi 0.55 x10%psi  0.54 x 10psi  0.53 x 10° psi

Table 2. Material properties of face laminates.
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Figure 2. A unit cell of sinusoidal core.

core wall can be described as
y=h(1—cosnb—x). (D

The microstructure of core walls, either flat or corrugated, includes a continuous strand mat (ContSM)
consisting of continuous randomly oriented fibers. This layer can be modeled as an isotropic layer and
its properties, predicted by the micromechanics model [Luciano and Barbero 1994], are given in Table 1.

An improved mechanics approach recently developed by [Qiao and Wang 2005] is used to evaluate
the effective in-plane Young’s moduli of sinusoidal cores. For the transverse shear moduli, the formulas
for general core configuration obtained from homogenization theory [Xu et al. 2001] are applied for the
case of sinusoidal core.

To obtain the core effective transverse Young’s modulus (EY), a macroscopic stress oy is applied to
the unit cell in the y direction (Figure 2). Due to the symmetry of the unit cell, only a quarter of it
is considered, as shown in Figure 3, left. The free body diagram of a half-wave curved core wall is
presented in Figure 3, right, where P, F, and My are the resultant forces and a moment of curved wall
from macroscopic stress o,. Based on the equilibrium condition, the internal forces and moment (M, N,
and V in Figure 3, right) of the curved wall beam element are

M:—P(b—x)+Fh(1+cos”b—x)+Mo, @)

!%F
M,

P

X

/2 CF X /N

Figure 3. Modeling of the core effective transverse Young’s modulus, EY: loading con-
figuration (left) and internal force analysis (right).
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_ Fb+ Phm sin(wx/b) 3)
by/1+ (hm/b)?sin?(mx/b)
_ Fhr sin(mx/b) — Pb @
by/1+ (hm/b)?sin®(mx/b)
The elastic strain energy of the curved wall in Figure 3 is expressed as
s 2 2 2
O[MM OlNN ay \%
U= ds, 5
fo ( Ll ) ; s)
where
12 1 1 ©)
oy=—, ON=—\, Qay= .
M Eqty N En v kG3tp
Castigliano’s theorem gives
aU aU aU
—:O’ —ZA},, —ZAX. (7)
M opP oF
It is noted that
A — 2Fb @)
T E '

Combining (7) and (8) gives the expression of Ay in term of P. Therefore, the core effective transverse
Young’s modulus (EY) is obtained as

oy P/b _ 2Ph

E¢=— = =
YT ey Ay2h bA,

©)
Similarly, a macroscopic stress o is applied to the unit cell to compute the core effective longitudinal
Young’s modulus in the x direction (Figure 4). Again, due to the symmetry of the unit cell, only a quarter
of it is modeled (Figure 4, left). Its internal forces and moment can be obtained with the aid of Figure 4,
right.
The strain energy of the quarter representative volumetric element (RVE) is given as

S 2 2 2 2 2
O[MM OtNN aVV Flb F3b
U= d _ =, 10
/0 ( 2 > T ) St e TEn (10)
N — D F—»
_» i
—— t | t,
] i ,
i M
S L ] |
o~ 42 1B *x Bt /y o

Figure 4. Modeling of the core effective longitudinal Young’s modulus, EY: loading
configuration (left) and internal force analysis (right).
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2h

Figure 5. Unit cell of sinusoidal core for out-of-plane shear moduli.

where M is the internal moment and N, and V are the internal forces of the half curve waved wall and
are calculated by using (2)—(4) with P =0.
Again, invoking Castigliano’s theorem results in

Gl ou v oU

oMy aF, 7 AR, Y R
where Fy, F», and F3 correspond to the forces on the top flat, curved, and bottom flat walls, respectively
(see Figure 4, right), and can be expressed in term of A,. Hence, the core effective longitudinal Young’s
modulus (EY) is obtained as

= Ay, an

El

Ee — (F1+F+ F3)
X Ax .
The solutions for the core effective transverse shear moduli (G;Z and G¢,) are obtained based on a
homogenization method [Xu et al. 2001] and are given as

(12)

n bt s 2hty s
G = <ﬂ * %) e Gy =750 (1
where G, is the shear modulus of solid walls (Table 1), and S is the length for the curved segment,
B .
S = [, ds (Figure 5).
Based on the above formulas for both the Young moduli and transverse shear moduli, the equivalent

material properties of the sinusoidal core in the longitudinal and transverse directions are provided in
Table 3.

1.3. Effective stiffness properties of honeycomb sandwich beams. Next we find the stiffness coefficients
of a sandwich panel by modeling the sandwich as a three-layer laminated plate (top and bottom face sheets

E{ Ey G, Gy
0.531 GPa 0.0449 GPa 0.292 GPa 0.119 GPa
7.702x10% psi 0.651x10%psi  4.235x10%psi  1.726 x 10* psi

Table 3. Equivalent material properties of sinusoidal honeycomb core.
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and core). Then the constitutive relations for the sandwich deck including the transverse shear deforma-
tion are obtained. The in-plane stress-strain relation of a general orthotropic lamina is expressed as

{o} =[0Ne), (14)

where, {0} = {0y, 0y, 04y}, {6} = {&x, €y, &1y}, and [Q] is the matrix of reduced stiffness coefficient Qij.
Integration of (14) through the thickness of the beam results in the relation between the resultant forces
and moments and the strains and curvatures:

FNWZ[M]wq{M} as)
{M} [B] [D1] |{x}

where [A] is the 3 x 3 extensional stiffness sub-matrix, [B] is the 3 x 3 bending-extension coupling
stiffness sub-matrix, [D] is the 3 x 3 bending stiffness sub-matrix [Jones 1999]. The sandwich beam

is symmetric with respect to the middle surface; hence the bending-extension coupling coefficients are
zero. The compliance equations are obtained by inverting the matrices in (15):

{e}y] _[la (N}
{{K}}_[[O] [3]} {{M}}' (16)

To obtain the beam stiffness coefficients from (16), in accordance with Whitney’s assumption [1987],
only N, and M, are retained. Hence, the compliance coefficients for the sandwich beam can be simplified

to o
[ . 11 0 Nx
=L d

Inverting (17) leads to the expression for the force resultant of the sandwich beam as

Ny A0 82
= e 18
it =[o o] 1) ®
where A and D are the extensional and bending stiffnesses of the sandwich beam, and they are defined
as A =1/a11 = (A11A2a — A3,)/Ax and D = 1/81; = (D11 D22 — D3,)/ Day.

Subsequently, the transverse shear stress resultant is derived by considering the constitutive relations
for transverse shear stresses in an orthotropic lamina:

Oxz| _ QSS _0 Vxz
{Uyz} B [ 0 Q44] {Vyz} ' (19

Following a similar procedure for the extensional and bending stiffnesses and considering only the
resultant component in the x-direction (Q,) and assuming a constant transverse shear strain through the
beam thickness, the constitutive relation for the transverse shear resultant is

Q)C :kFVXZ7 (20)

where k is the shear correction factor and F is the transverse shear stiffness.



624 MIJIA YANG AND A. T. PAPAGIANNAKIS

Thus, from (18) and (20), the constitutive relations of the sandwich beam are expressed as

N, A0 07 (&
Mc}=|0D 0|4k t. (21
O 0 0 kF] Ve

In the following, the shear correction factor of a three-layer sandwich beam is derived using the energy
equivalence principle. Using two-dimensional equilibrium equations, the shear strain energy is calculated
and equated to the shear strain energy obtained from the constitutive relations of (20).

Using the equilibrium equation for the stresses on the xz plane in the absence of body forces and after
integrating through the thickness of the section, the shear stress expression becomes

Z
Oyx; = —/ Oy xdz. (22)
—h)2

Substitution of (14) into (22), use of the expression of strains and curvatures in (16), and consideration
of the equilibrium equation of a beam (i.e., Ny y =0 and M, , = —Q,) yields

Z
Oxz = — 0:2(Q11811 + Q12é12)dz. (23)
—h/2
Equation (23) expresses the variation of the transverse shear stress through the thickness of the section.
Employing the constitutive relation for the transverse shear given in (19) and assuming o, as negligible,
the shear strain energy per unit length is obtained as follows:

1 "% (0y,)?
U=— = dz. (24)
2Jnp2 Qss
Then
1 [h2 Q2 z _ _ 2
U= —f == (/ 2(Qu1dn1 + Q12512)d2) dz. (25)
2J w2 Oss \Jonp

Similarly, the constitutive relation of (20), which assumes that the average transverse shear strain is
constant through the thickness, results in the shear strain energy per unit length as

2
U=%kQ—;. (26)

Equating both strain energies given by (25) and (26), the expression of the effective transverse shear
stiffness of the sandwich beams including the shear correction factor is given by

h/2 q z _ _ 2 -1
kF =(kGA),, = |:f ——(/ 2(Q11611 + Q12512)d2> dZ:| . (27)
—h/2 QOss \J—n/2

For the sandwich beam application, which consists of three layers (two face sheet layers and one core
layer), the effective transverse shear stiffness of the sandwich beam is computed, based on (27), as
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—hc/2 1 z _ —_ 2
(kGA),, = b|:2/ — (/ 2(Qnfén + Q12f512)d2> dz
—h/2 Qssp \J—n/2

he/2 z _ _ z _ _ 2 -1
+/ (f 2(Q11r011 + Q12f512)dz+f 2(Q11c011 + Q12c512)dz> dz] , (28)
—h)2

—hc/2 QSSC —h/2

and the bending stiffness is computed using (18) as

(D11Dy — DY)
D)
where h is the thickness of the sandwich; /. is the thickness of the core; b is the width of the beam;
the subscripts f and c stand for the face sheet and the core, respectively; and the other parameters are
as explained earlier. Based on (14) and (15) and the equivalent properties of face laminates and cores
given in Tables 2 and 3, the beam stiffness properties along the longitudinal and transverse directions are

(Ey,=bD =0 , (29)

reported in Table 4. These properties, which are shown as plate stiffness in Table 5, are later used for
the dynamic response analysis and dynamic impact factor calculations.

Beam width b  depth d El kGA

0334m 0.105m 0.4965 x 10° N-m?  12.323 x 10°N
13.125in  4.125in  172.883 x 10°1b-in2  2.7706 x 10°1b

0.203m 0.105m 0.1900 x 10° N-m2  3.0945 x 10°N
8.000in  4.125in  66.2012 x 10°1b-in?  0.695 x 10°1Ib

Longitudinal

Transverse

Table 4. Analytical bending and transverse shear stiffness coefficients of sandwich beams.

Ann Ap Ay Aes Dy Dy Dp Deg Agg Ass
in units of 10° N/m in units of 10° Nm in units of 10° N/m
1.62 031 1.02 0.0206 1.65 0.31 1.03 0.0508 22.9 55.3

Table 5. Axial, bending and shear stiffnesses of the sandwich panel.

2. Dynamics of sandwich bridge decks

The bridge-vehicle interaction involves dynamics of bridge decks and vehicles. Ignoring the roughness
of the deck, the governing equations for sandwich bridge deck dynamics consider the total bending
deflection (including shear deformation), w, and the bending slope, ¥, ¥, and they can be written as
follows [Dobyns 1981; Ip and Tse 2001]:

A 32M0 LA 321/!() +(A LA )32110 _ _821/!0
11 952 66 9,2 12 66 9xdy =p 912 00
a

(A LA )3214() LA 82U0 LA 82U0 . _82U0

12 66 8x8y 66 9x2 22 8y2 =p 912
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"y 9 0%y dw 3y
Dy zx + De6—— +(D12+D66) —kAss(Yy + ) =1 zx’
ox 9y xdy ox ot
D D x + Deg y D kA dw _ v ’
et 66) e (wy " 8y> 212
81;0)6 31/@ _32w
k|:A55( ax + ax 2)+A (W—i_ﬁ —|—q=pm’ (30c)

where A;; (i, j =1, 2, or 6) are the extensional stiffness of the face sheet; A44 and Ass are the transverse
shear stiffnesses of the face sheet, and k is the shear correction factor; D;; (i, j = 1,2, or 6) is the
bending stiffness of face sheet; ug, vy, and w are the mid-surface displacements of the face sheet in the

x, y, and z directions, respectively; v, and v, are the rotations of the face sheet; and p = [~ ;l/ 32 pdz
and [ = [~ h‘h/ 22 pz%dz (r is the individual layer density in the face sheet laminate).
The loadlng function resulting from a group of moving loads can be written as
NP
q=Y_ pisx—x(1)8(y — (1)), (31)
=1
where {p;(t),l =1,2,..., N,} are the moving loads which are moving as a group at a fixed spacing;
x;(t), y;(¢) is the position of the moving load p;(¢); 8(x) is the Dirac function.
By modal superposition, the displacement of the orthotropic plate can be written as
n MTX .| NIy
uo(x, 3,00 =) ) Amn(t) cos —=sin ==,
m=1 n=1
nmwy
v, y. 1) = ZIZIBWU) sin - cos =
M X mmx , nmwy
wx,y,0) =Y _ > Cun(t) sin ——sin ==, (32)
m=1 n=1
. mimXx nmy
Ye(x,y, 1) = Z Z D, (t) cos , sin ——,
m=1 n=1
nmwy
Yy(x, y, 1) = le ; E,..(t) s1n co aat

where A, (1), Bun(t), Copun(t), Dy (t) and E,y, (¢) are the time-dependent unknown coefficients to be
determined; and M and N are the number of the terms used in the series.

x) sin(?). 33)

The impact load from the truck can also be represented as

M N ot
qx,y, 1) = Z Z Omn(t) Sin(

m=1 n=1

(See Figure 6.)
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Figure 6. Model of a continuous bridge deck.

In this study, the effects of rotational inertia are neglected (I = 0). By considering (30) and (32), an
independent set of five equations for each pair (m, n) of Fourier coefficients is obtained,

Ly L 0 0 0 Amn(t) 0
L Ly 0 0 O Binn (1) 0
0 0 Lsz Lag Lss | { Con(®) ¢ = Qun(®) — phConn(0) ¢ (34)
O O L34 Lag Lss | | Dun(2) 0
0 0 L3s Lss Lss| \ Emn(2) 0

where the coefficients in the matrix are expressed as
mi\ 2 niw\ 2
Ly = A11<—> +A66(—) ;
a b

mit ni
Lip=(A11+Asg)——,
a b

nmw\2 mi\2
L22=A22<—> +A66<7) ,

b
mi\2 nim\2
L33=kA55<—) +kA44(—) ,
a b (35)
mm nmw
L3y =kAss—, L3s=kAgu—,
a b
mi\2 nmw\2
L4y = Dy <7) + D66<7) +kAss,
mm nw
L4s = (D11 + Dgg) — —,
a b
mi\2 nmw\2
L55:D66<7> +D22<7> +kAyy.

Following [Yang and Qiao 2005b], one can reduce (34) to a single differential equation by the trans-
formation

Amn(t):KAlcmn(t)7 an(t):KBlcmn(t)v Dmn(t):KAZCmn(t)’ Emn(t):KBZCmn(t)’ (36)

where K 41, Kp1, K42, Kpo are the system constants that transform (34) into a single differential equation,

. L3aKso+ LisKpy) + L mn (t
&0+ 34K a2+ L3sKpr + L33 Coo (1) = Omn( )' 37)
oh oh
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Figure 7. Idealization of two-axle vehicle.

3. Dynamics of vehicles

The mathematical model for the H20-44 truck is shown in Figure 7. The model is similar to that employed
in [Zhu and Law 2002].

The vehicle body is assigned three degrees of freedom, corresponding to the vertical displacement
(bounce or y), rotation about the transverse axis (pitch or 6,), and the rotation about the longitudinal
axis (roll or 6,). Each wheel/axle set is described with two additional degrees of freedom in the vertical
and roll directions (y41, Va2, a1, 842). Therefore, the total number of independent degrees of freedom is
seven. The equations of motion of the vehicle are derived using Lagrange’s formulation as follows:

MyY +CyY + KyY = Fint, (38)

where F, ‘i,m is the interaction force vector applied on the vehicle, My, Cy and Ky are, respectively, the
mass, damping and stiffness matrices of the vehicle system and Y is the vector of the vehicle degrees of
freedom.

4. The vehicle-bridge interaction

The vehicle-bridge interaction forces for a single vehicle can be written as

Fii = Kiy1 (Ya1 — 2Sa10a1 — w1 —d1) + Ciy1 (Fa1 — 3Sa16a1 — iy —di),
Fi2 = Kiyo (a1 + 2Sa16a1 — w2 — d2) + Ciy2 (Fa1 + 5 Sa16a1 — 2 — da),
Fi3 = Kiy3(Ya2 — 2Sa20a2 — w3 — d3) + Ciy3 (Fa2 — 3 Sa2bar — i3 — d3), %
Fis = Kiya(ya2 + %SdZQaZ — w4 — ds) + Crya(Ya2 + %Sdzéaz — Wy — 61?4),

where {K;;,i =1, 2, 3, 4} are the stiffnesses of the tires; {C;y;,i =1, 2, 3, 4} are the friction coefficients
of the tires; Sy1, Sq2 are the wheel spacings of the front and rear axles respectively, and
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Wi :w(xi(t)syi(t)’t)’ (40)
di = d(xi(1), yi(2), 1), 41)

where d(x, y) is the surface roughness of the bridge deck (here we assume d(x, y) = 0, that is, the
surface is smooth), and (x;(¢), y;(¢)) is the location of the i-th tire at time . As the vehicle moves along

one lane, we have
yi() =yo+S8a1/2, y200) =yo—Sa1/2, y3(t) =yo+Sa2/2, ya(t) = yo— Sa2/2, (42)

where yj is the transverse coordinate of the centerline of the vehicle.

5. Dynamic responses and dynamic loading factor of different bridge decks

5.1. Vehicle approximated with one degree of freedom. Based on the simply supported boundary con-
ditions we have assumed, the bridge-vehicle interaction model is formulated using (37)—(39) and solved
using Newmark-8 method [Zhu and Law 2002]. The vehicle body is rigid and subjected to bounce, pitch,
and roll motions. The parameters of the vehicle-bridge system for a typical concrete deck are as follows:

/ b h E v P me Ky
264m 10.7m 0.95m 14.54x10'°N/m?> 0.3 2375kg/m® 18600kg 7.85 x 10° N/m

Table 6. Calculation parameters for the concrete deck-vehicle system (where [ is the
span length, b the bridge width, & the deck thickness, p, E and v the density, Young’s
modulus and Poisson’s ratio of the deck material, m. the mass of the vehicle, and K;,
the contact stiffness of tire with the bridge).

The vehicle simulation started from the location of (0, 5.35) and the deflection generated at the center
point of the simply supported plate is calculated as shown in Figure 8. The number of Fourier series
terms used are 50 x 50, which grantees its convergence as shown in the sandwich deck case.

4.0E-05

—— Static solution

3.5E-05 1

—— Dynamic solution

3.0E-05

2.5E-05 1

2.0E-05 1

Deflection (m)

1.5E-05 -

1.0E-05 -

5.0E-06

0.0E+00 T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

Figure 8. Comparison of the static and dynamic deflection generated by a passing vehicle.
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Figure 9. Reference node on the bridge deck.

First the dynamic simulated results are compared with the static results. From Figure 8, we see that
the model captures the static and dynamic effect very well. And the peak result is also very close to the
numerical result 3.29 x 107> m calculated by ABAQUS when the load is applied at the center point.

5.2. Vehicle approximated with seven degrees of freedom. The bridge is still simplified as a simply
supported plate. However the vehicle body is approximated as a seven-degree-freedom rigid body and
subjected to bounce, pitch and roll motions. The parameters of the vehicle-bridge system are listed in
Tables 7 and 8.

The dynamic displacement responses of the symbol + on the bridge deck (Figure 9) under the moving
vehicle at speed of 32.5 m/s and 37.5 m/s are shown in Figure 10.

Figure 10 suggests that higher traveling velocities will shorten the time to reach the maximal deflection.
Comparing the seven-degree vehicle model with the one-degree vehicle model, it is evident that the seven-
degree vehicle model introduces larger vibrations compared to the one-degree model and accurately
captures the wheel loads. The wheel loads for v = 37.5m/s are shown in Figure 11. For the given
vehicle, the load on the front wheels will be higher, since the gravity center of the vehicle is closer to the
front wheels.

l b h E % 0 Sy ap a Sa1 S
264m 10.7m 0.95m 14.54x10'"°N/m?> 0.3 2375kg/m® 4.73 0.67 033 2.05 2.05

me Mgl mea2 I I Ia1 14%) Syl Sy2
17000kg 600kg 1000kg 9x10*kgm? 1.3x10*kgm? 550kgm? 600kgm? 1.41m 1.4Im

Table 7. Geometric parameters (top row) and mass and inertial parameters (bottom row)
for the composite sandwich deck-vehicle system.

nyl KsyZ Ksy3 Ksy4
1.16 x 10°N/m 1.16 x10°N/m 3.73x10°N/m 3.73x 10° N/m

Csyl CsyZ Csy3 Csy4 Ctyl Csy2 Cty3 Cty4
2.5%10* 2.5x10* 3.5x10* 3.5x10* 100 100 200 200

Table 8. Spring stiffness in N/m (top row) and damping parameters in Ns/m (bottom
rwo) for the HS20-44 truck.
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Figure 10. Dynamic displacement time history of the marked position on the composite

bridge deck.
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Figure 11. Front wheel (top) and back wheel (bottom) loads of the vehicle.
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Figure 12. Dynamic load factors of the bridge under given vehicle.

Different dynamic responses will cause different effects on bridge response and need to be considered
in design. In order to consider the vehicle-bridge interaction, dynamic loading factor is introduced in
many design codes, such as ASSHTO 2002 and ACI 318-05. The dynamic loading factor is defined as
the ratio of the maximal dynamic deflection to the maximal static deflection. It is shown in Figure 12
for the center point of the bridge deck considered, taking into account only bridge displacement and
ignoring surface roughness.

5.3. Effect of deck stiffness. Using the given sandwich deck as shown in Table 5, the bridge-truck
simulation is conducted at a speed v = 37.5 m/s. Since the sandwich panel has relatively low stiffness, it
is worth verifying the convergence of the solution as a function of the number of terms used. As shown
in Figure 13, when the number of terms in each direction reaches 40, the solution convergences. Using
50terms of series in each direction, the center point deflection of the sandwich deck under the given
vehicle is shown on Figure 14 with its static maximal deflection as 0.385 m, while the maximal wheel
deflection is 0.576 m. From this figure and Figure 15, it is evident that the dynamic load factor (DLF) is
1.50 for the given composite sandwich deck, which is much larger than the design dynamic load factor

1 o & Q
0.9 4
0.8 4
0.7 4
0.6
0.5
0.4
0.3 4
0.2 4
0.1 4

0 T T T g
20 25 30 35 40 45 5C

Number of terms in each direction

Relative error

»

Figure 13. Convergence of the solution.
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Figure 14. Center deflection history of the sandwich deck panel under the given vehicle.
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Figure 15. Front wheel deflection of the vehicle considering the sandwich bridge deck

and vehicle interaction.

(1.25) for concrete type bridge decks. The reason behind the large deflection and dynamic load factor
is that the lower stiffness of the sandwich plays a large role in the bridge-vehicle interaction and needs

more attention. Since the maximum dynamic load factor is 1.5, it means that in a linear analysis as

used in many codes the maximum stresses in the bridge deck are also 1.5 times those calculated by only
considering static loading (neglecting its dynamic effect). Therefore, it is absolutely vital to use dynamic
equations when analyzing or designing bridge decks made of composite materials. At the same time,
due to large deflections of the composite deck, wheel loads (Figure 16) on the deck are also increased
about three times compared to the concrete bridge deck as shown earlier in Figure 11.
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Figure 16. Front wheel (left) and back wheel (right) load of the vehicle.



634 MIJIA YANG AND A. T. PAPAGIANNAKIS

6. Conclusions

A coupled generalized composite sandwich bridge-vehicle interaction model was introduced capable of
capturing the interaction between vehicles and bridge deck systems. The results demonstrate that the
proposed dynamic bridge-vehicle interaction procedure using modified Timoshenko plate models can be
used to evaluate the dynamic response and the dynamic loading factors of sandwich bridge deck systems.
The results suggest that the dynamic load factors vary with traveling speed and increase significantly
with decreasing deck stiffness. The proposed model also predicts the increased vibration generated by
vehicles. The vehicle simulation model has multi-degrees of freedom and provides estimates of the
amplified dynamic loading factor. The procedure described here has potential practical application in the
design of sandwich bridge decks.
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