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This paper presents a study on the uncertainty in material parameters of wave propagation responses
in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave
propagation responses at high frequencies. Both the modulus of elasticity and the density are considered
uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite
element method (SEM). The randomness in the material properties is characterized by three different
distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in
beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about
48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz
loading. The numerical results presented investigate effects of material uncertainties on high frequency
modes. A study is performed on the usage of different beam theories and their uncertain responses due
to dynamic impulse load. These studies show that even for a small coefficient of variation, significant
changes in the above parameters are noticed. A number of interesting results are presented, showing the
true effects of uncertainty response due to dynamic impulse load.

1. Introduction

In the last few years, we have witnessed great improvement in the area of new material research. As a
result there is a rapid growth in the use of lighter materials in aerospace and other major industries. These
materials show significant variation in material properties and as a result, create a variety of structural
problems in which the uncertainties in these properties play a major part in design. Uncertainties may
exist in the characteristics of the structure itself and in the environment to which the structure is exposed
[Vinckenroy and De Wilde 1995]. The lack of knowledge of material properties and their behaviors
can be categorized as the first type of uncertainty. The other type of uncertainty is due to the change
in the load and support condition with the change in environmental variables such as temperature and
pressure. Another important aspect, when considering the sources of uncertainties, is the modeling
technique. In this context, when the variability is large, we can find in the literature that the probabilistic
models are more advantageous than the deterministic ones. In probabilistic methods, uncertainty in the
parameters is considered and is represented by a random variable or random field. Development in the
field of computers has revolutionized the status of research in this area [Li and Chen 2006]. In many
cases of structural design, with the availability of computational tools such as Monte Carlo simulations,
uncertainty analysis is incorporated in the design phase of the structures.
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One of the major divisions in the field of probabilistic methods in mechanics is between statistical
and nonstatistical approaches [Liu et al. 1986a]. Direct Monte Carlo simulation (MCS), which involves
sampling and estimation, is an example of a frequently used statistical approach; the theory of MCS
is explained in [James 1980; Decker 1991; Schueller 2001]. Techniques like the random perturbation
method, orthogonal polynomial expansion methods, and numerical integration come under the category
of nonstatistical schemes [Li and Chen 2006]. Nonstatistical methods do not need prior knowledge about
the multivariate distribution of the stochastic parameters. Because of their simplicity and low computa-
tional effort, perturbation techniques are used along with the stochastic finite element method (PSFEM)
in many problems in static and dynamic elastic analysis, composite ply failure problems, inelastic defor-
mation studies, analysis of free vibration of composite cantilevers, and nonlinear dynamics [Kleiber and
Hien 1992]. The simplicity and low computational cost makes PSFEM advantageous. However, in this
approach, because of the use of Taylor series expansion for the approximation of the structural response,
accurate results are expected only for the case of low variability of the parameters and for nearly linear
problems. The method of orthogonal expansion is also used widely for a variety of structural problems
[Ghanem and Spanos 2003]. In this method, the accuracy is highly influenced by the variability of
parameters and the linearity of the problem. From the literature [Liu et al. 1986a; Liu et al. 1986b; Li and
Chen 2006], we see the inability of the nonstatistical approaches to handle large variances of the random
variables when compared with their mean values. Usually, the maximum bound set for the coefficient of
variation (COV) is 10%. However, some researchers [Ang and Tang 1975; Liu et al. 1986b] have shown
that acceptable results can be obtained even if the COV is as high as 20%. The Monte Carlo method is a
versatile approach, which can be applied easily to any complex problem whose deterministic solution is
known [Shinozuka 1972; Spanos and Zeldin 1998; Lepage 2006]. This method is commonly used for the
prediction of the eigenvalues of structures [Lepage 2006]. The Monte Carlo method can be coupled with
the finite element method with only slight modification in the parent code. Here the results converge to the
correct solution as the number of simulations becomes large and hence the method becomes computation-
ally expensive. Monte Carlo solutions are usually used as reference solutions on account of the absence
of inherent assumptions [Cecchi and Sab 2009]. In some literature the Monte Carlo method is used along
with other methods to reduce computational time. A compatible blend of the Neumann expansion with
MCS has been found to work efficiently for computation of stochastic structural response [Bhattacharyya
and Chakraborty 2002]. There are also many methods of sampling available in the literature to improve
the accuracy and the efficiency of Monte Carlo methods [Lepage 2006; Stefanou 2009].

In the area of structural health monitoring, wave propagation responses, which are very sensitive to
small stiffness changes, are used effectively to detect small defects, such as delamination, cracks, et cetera,
in structures [Nag et al. 2003; Ostachowicz 2005; Gopalakrishnan et al. 2008]. However, structures made
from common structural materials exhibit large variation in material properties. The response to dynamic
loading shows significant changes in responses compared to the deterministic value. The presence of
damage causes stiffness reduction, which causes a shift in the natural frequencies, especially at high
frequencies [Pardoen 1989]. Variation in the material properties also shifts the natural frequencies and
the modal amplitudes. Without a proper uncertain dynamic analysis, these shifts in natural frequencies
can be misunderstood as being caused by the presence of structural damage. The deterministic wave
propagation analysis in such cases will give results which may be misleading. Hence, a detailed study
on the effect of variation in the different structural parameters on the structural response, for a high
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frequency impact load, is required to bring greater clarity to the interpretation of the obtained results.
However, to the author’s best knowledge not much work has been done in the area of uncertainties in
wave propagation in structures. Also, high frequency response analysis using the conventional finite
element method is computationally expensive since the maximum possible size of the finite element
depends on the wavelength of the propagating wave [Horr and Safi 2003; Gopalakrishnan et al. 2008].
Consequently, some of the current literature on the high frequency analysis of structural response uses
the spectral finite element method (SEM) [Gopalakrishnan et al. 2008], which combines the accuracy
of conventional spectral methods and the geometric flexibility of finite element methods. Unlike the
spectral methods in PSFEM, the solution from SEM is exact in most of the deterministic case [Doyle
1997; Gopalakrishnan et al. 2008]. Also SEM, due to its ability to model the inertial distribution of
the structure accurately, requires a very small system size to model and obtain deterministic responses,
especially for high frequency content loads. The speed of wave analysis using SEM depends on the
total time window required to avoid the problems due to enforced periodicity; the time window can be
adjusted by changing the time sampling rate or the number of FFT points. The increase in the group
speed with frequency reduces the total time window needed for the analysis, which further reduces
the computational time. However, in conventional FEM, the requirement that the size of the element
be comparable with the wavelength makes the problem size so large that it becomes computationally
prohibitive, especially in the context of uncertainty analysis. Large computational times are the major
restricting factor for researchers in performing high frequency wave propagation analysis in an uncertain
environment. In this context the reduction in computational time of SEM and the large increase in its
computational efficiency over conventional FEM with increase in frequency is a very relevant fact, and
still an unexplored area of research. Incorporating MCS under SEM is straightforward. Due to its very
small size, incorporation of MCS under SEM, unlike conventional FEM, can no longer be considered a
luxury from the computational viewpoint. MCS under SEM can be part of the design. The versatility of
the Monte Carlo approach and the time aspect of SEM are the major factors which paved the way for the
union of these two approaches. This will help researchers to save an immense amount of computational
time, especially in the field of uncertain wave propagation analysis.

The paper is organized as follows. In Section 2, a brief description of conventional SEM is given,
which is followed by the brief description of MCS and the implementation of SEM under MCS. Section 3
details numerical examples. First we conduct a study on the effects of uncertainties on the time domain
responses. Then the computational superiority of SEM under MCS, as opposed to conventional FEM
under MCS, is established. Then uncertainty analysis is performed for the frequency response functions.
In Section 4A we analyze the variation of time of arrival of first reflection with uncertainty, which
is followed by a study of the effect of loading frequency (for a tone-burst signal) on the uncertain
responses and a detailed study on spectrum relations. It is well known that the inclusion of higher-
order effects dramatically changes the deterministic response in an elementary beam and rod. Hence, a
small subsection is included on the effects of different beam and rod theories on the uncertain responses.
In all cases, both the Young’s modulus and density of structure are considered as uncertain, with their
statistical distributions assumed as normal, Weibull, and extreme value distributions. In addition, in most
cases both axial and bending responses are considered to study the effects of uncertainties, where the load
histories considered are broad-band triangular loading and narrow-band, modulated tone-burst loading.
We present some interesting results on the input and output distributions of these parameters.
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2. The spectral finite element method

In the spectral element approach, the actual response is synthesized by a prudent combination of many
infinitely long wave trains of different periods (or frequencies). Thus the governing equations are first
converted to the frequency domain using discrete Fourier transforms and solved. The last step of the
analysis involves performing an inverse Fourier transform to reconstruct the signal to obtain the time
domain responses. In SEM, the stiffness matrix is established in the frequency domain, which is the
main difference between it and conventional FEM. Also in contrast to conventional FEM, the spectral
elements can span all the way from one joint. Hence, SEM yields system sizes many orders smaller than
for conventional FEM. More details of this approach are given in [Gopalakrishnan et al. 2008]. In this
section, we briefly discuss the formulation of spectral rod and beam element formulation. In the case of
beams, we provide the formulation of both Euler–Bernoulli and Timoshenko beam, although only the
Timoshenko beam model is used in all simulations.

For a rod [Gopalakrishnan et al. 2008], the governing partial differential equation is

E A∂
2u
∂x2 − ρA∂

2u
∂t2 = 0, (2-1)

where u(x, t) is the axial displacement, ρ the density, E the Young’s modulus, and A the cross sectional
area. In SEM the common procedure is to convert this governing partial differential equation to the
frequency domain and to solve the ordinary differential equations so obtained. This is a discrete Fourier
transform (DFT) based analysis of wave propagation, where the DFT is performed by a FFT algorithm,
popularly known as a Cooley–Tukey algorithm [Doyle 1997; Gopalakrishnan et al. 2008]. The DFT of
u is given as a solution in exponential form:

u(x, t)=
N∑

n=1

ûn(x, ωn)eiωn t , (2-2)

where ûn(x, ωn) is the transform of u(x, t), N is the number of FFT points, and ωn is the frequency at
the n-th sampling point.

Substitution of (2-2) in (2-1) converts the governing PDE to an ODE:

∂2ûn

∂x2 + k2
n ûn = 0, (2-3)

where kn is the wavenumber, which is given by

kn = ωn

√
ρA
E A

. (2-4)

The nature of the wavenumber depends on the frequency, and tells about the type of wave generated by
the medium. In the present case, the wavenumber varies linearly with the frequency and hence the waves
are nondispersive, that is, they retain their shape as they propagate. The group speed of propagation is
obtained from

Cg =
dω
dk
=

√
E
ρ
. (2-5)



A SPECTRAL ELEMENT APPROACH TO WAVE PROPAGATION IN UNCERTAIN BEAM STRUCTURES 641

The solution of (2-3) is given by

u(x, t)=
N∑

n=1

[Ae−ikn x
+ Be+ikn(L−x)

]eiωn t . (2-6)

SEM uses (2-6) as an interpolating function for finite element formulation. The procedure for element
formulation, assembly, and solution is similar to that for finite elements and hence is not reported here.

In the case of beams we derive the spectral solution for Euler–Bernoulli beams. The governing equa-
tion is given by

E I ∂
4w

∂x4 = ρA∂
2w

∂t2 , (2-7)

where w(x, t) is the transverse displacement, E I is the flexural rigidity, ρ is the density, and A is the
cross sectional area. Transforming (2-7) into the frequency domain using a DFT, we get

w(x, t)=
N∑

n=1

ŵn(x, ωn)eiωn t ,
d4ŵn

dx4 + k4
n = 0, k2

n =

√
ω2

nρA
E I

. (2-8)

ŵ(x, ωn) is the transform of w(x, t). We see that the wavenumber is a nonlinear function of frequency
and hence the waves are highly dispersive. Hence the group speed Cg in the case of beams, unlike the
case of rods, is a function of frequency, which is a characteristic of the most dispersive waves:

Cg =
dω
dk
= 2
√
ωn

( E I
ρA

)1/4
. (2-9)

Similarly, in Timoshenko beam theory the value of the wavenumber can be calculated from the trans-
formed homogeneous differential equation in the frequency domain [Gopalakrishnan et al. 2008]:

G AK
(d2ŵ

dx2 −
dφ̂
dx

)
+ ρAω2

nŵ = 0, E I d2φ̂

dx2 +G AK
(d2ŵ

dx2 − φ̂
)
+ ρ Iω2

nφ̂ = 0, (2-10)

and the boundary conditions

(ŵ) or
(

V̂ = G AK
(
∂ŵ

∂x
− φ̂

))
, (φ̂) or

(
M̂ = E I ∂φ̂

∂x

)
, (2-11)

where ŵ(x, ωn) is the transform of transverse displacement, φ̂(x, ωn) is the transform of slope, G is the
modulus of rigidity, A is the cross sectional area, I is the moment of inertia, ωn is the frequency at the
n-th sampling point, ρ is the density, E is the Young’s modulus, V̂ (x, ωn) is the transform of shear force,
M̂(x, ωn) is the transform of the bending moment, and K is the shear correction factor (K is assumed to
have value 0.86 as in [Gopalakrishnan et al. 2008]. Thus from the homogeneous differential equations
and the boundary condition we arrive at the characteristic equation for wavenumber computation:

[G AK E I ]k4
− [G AKρ Iω2

n + E IρAω2
n]k

2
+ [ρ Iω2

n −G AK ]ρAω2
n = 0. (2-12)

Since the equation is of fourth order, we have four solutions for the wavenumber. The second
wavenumber, which is associated with shear deformation, is evanescent to start with and becomes prop-
agating at some high frequencies. The frequency at which this happens is called the cutoff frequency,
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which is obtained by setting the last term in (2-12) to zero:

ωc =

√
G AK
ρ I

. (2-13)

Elementary beam equations can be obtained by setting G AK to infinity and ρ I to zero. Then the complete
solution can be written in the form

v(x, t)=
∑(

R1e−ik1x
+ R2e−ik2x

− R1e−ik1(L−x)
− R2e−ik2(L−x))eiωn t , (2-14)

φ(x, t)=
∑(

Ae−ik1x
+ Be−ik2x

+Ce−ik1(L−x)
+ De−ik2(L−x))eiωn t . (2-15)

A, B, C , and D are coefficients determined from the boundary conditions and the Ri are the amplitude
ratios given in [Gopalakrishnan et al. 2008]:

Ri =
iki G AK

G AK k2
i − ρAω2

n
. (2-16)

Note that the Euler–Bernoulli beam predicts unrealistic speeds at higher frequencies. When the beams
are thick, the effects of shear are significant, converting the evanescent mode of the Euler–Bernoulli beam
to a shear propagating at high frequency. If this mode is not represented properly, then it will lead to
erroneous description of the dynamics of the beam. Hence all simulations in the paper are carried out
using the Timoshenko beam model.

In the case of the higher-order rod model, in addition to axial deformation, we add the lateral motion
through a term associated with the Poisson’s contraction. This theory, called Mindlin–Hermann theory,
was first formulated for circular cross sections in Mindlin and Herrmann [1952] and later extended to
rectangular cross sections in Martin et al. [1994], for metallic structures. The details of the element
formulation, wavenumber, and the group speed computation are given in [Martin et al. 1994]. Here, for
the sake of completeness, we provide the characteristic equation for computation of the wavenumber:(
2G(1+ ν̄)K1G I

)
k4
−
(
(2G A)2(1+ 2ν̄)− 2G A(1+ ν̄)K2ρ Iω2

n − K1G IρAω2
n
)
k2

+
(
ρ I K2ρ Iω4

n − 2G A(1+ ν̄)K2ρ Iω2
n
)
= 0, (2-17)

where ν̄ is the effective Poisson’s ratio,
ν̄ =

ν

1− ν
(2-18)

for plane stress problems and
ν̄ =

ν

1− ν2 (2-19)

for plane strain problems, where ν is the Poisson’s ratio. K1 and K2 are correction factors intended to
compensate for the approximate form of the displacement field. In this study K1 and K2 are assumed to
have values 1.2 and 1.75 as in [Martin et al. 1994].

Unlike the elementary rod, the wavenumber is highly dispersive, especially at high frequencies. The
lateral contraction mode becomes propagating only at high frequencies. The cutoff frequency occurs at

ωc =

√
2G A(1+ ν̄)
ρ I K2

. (2-20)
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3. MCS under SEM

MCS is capable of giving accurate solutions for any problems whose deterministic solution is known,
since it statistically converges to the correct solution provided that a large number of simulations are
employed. In direct MCS, the procedure starts with the generation of sampling of the input parameters
according to their probability distributions and correlations. For each input sample, a deterministic
spectral finite element analysis is performed, giving an output sample. Finally, a response sampling is
obtained, from which the mean and the standard deviation of the response can be obtained.

The estimator of the response ȳ is defined in [Lepage 2006]:

ȳ = 1
n

n∑
i=1

yi , (3-1)

where n is the number of samples and yi is the response corresponding to the i-th input sample.

E[ȳ] = µy (3-2)

and

var(ȳ)= E[(ȳ− E[ȳ])2] =
σ 2

y

n
, (3-3)

where E[ȳ] and var(ȳ) are the expected value (first moment) and variance (second moment) of the random
variable and µy = E[y] and σ 2

y = E[(y−µy)
2
] denote the unknown mean and variance of the response.

In most of the uncertainty analysis the scatter of the distribution is measured in terms of a parameter, the
coefficient of variation (COV), which is the ratio of the square root of the variance of the samples to the
mean of the samples. The square root of the variance is also called the standard deviation. In this study,
we use the COV as a measure of the scatter of the distribution, is COV. COV of an output parameter
can also be used to measure the sensitivity of the input parameter by computing the ratio of output COV
to input COV. Many such studies are carried out in this paper by considering wave parameters such as
wavenumber, speed, cutoff frequency, et cetera, as output parameters and then investigating sensitivity
to the material properties.

In wave propagation analysis, this y can be the transform of the time response of axial and transverse
velocity, frequency response functions (FRF), wavenumber, group speed, et cetera. Each value of yi is
obtained using deterministic spectral finite element code or by conventional finite element code (for the
comparative study) each time.

4. Numerical results and discussions

There are many factors that govern the wave propagation response in a structure. Some of the key factors
are the wavenumber, the group speeds, and the natural frequency of vibration and phase information. All
the factors depend on the material properties of the medium in which these waves propagate. Since
the material properties in this study are considered uncertain, one can expect substantial changes in the
wave responses as compared to the deterministic responses. Hence, the aim of this section is to bring
in the effects of uncertainty in the material properties on the wavenumbers, group speeds, and natural
frequency of the system. The uncertain responses are shown in the form of time histories of velocities,
the FRF, or the probability density distribution, in order to bring out clearly the effect of uncertainty in



644 V. AJITH AND S. GOPALAKRISHNAN

these parameters. Both broad-band and modulated high frequency tone-burst loading is considered in
this study. In particular, the effect of loading frequency on the uncertain response is investigated.

Last but not least, the effect of using higher-order theories on the uncertain response is investigated.
It is quite well known [Gopalakrishnan et al. 2008] that higher-order effects in rods and beams manifest
themselves in such a manner that introduces the cutoff frequency in the higher-order wave modes, which
propagates beyond the cutoff frequency. The cutoff frequency depends on the material properties and
geometric properties and occurs at high frequencies. If this cutoff frequency occurs at a frequency which
is beyond the point of interest, one can still use the elementary beam model for the analysis. Uncertainty
in material properties, geometric properties, or both, can affect its value. Hence, a detailed uncertainty
analysis is required, which is undertaken in this section. Here, each result is obtained by the method of
MCS coupled with SEM, as discussed in the previous section. In this work the uncertainty is modeled
by representing the uncertain parameters by a random variable and by different probability distribution
functions to compare the pattern of distribution of the output parameters. Here, the input random variables
are created using MATLAB expressions for creating random variables. The spectral elements used for
the metallic beams and rods are similar to the type found in [Gopalakrishnan et al. 2008].

First a study of the effect of axial and transverse response of the metallic beam is performed, comparing
between conventional FEM and SEM, for a normal distribution and for different COVs of the Young’s
modulus and the density. Then, variation in the frequency responses, speed, and wavenumber are also
analyzed to investigate the variation of these output parameters as discussed previously.

4A. Effect of uncertainty on velocity time histories. In this study, we consider a cantilever metallic
beam 1 m in length with a rectangular cross section of 10 mm×10 mm. The beam is modeled using a
single Timoshenko beam and elementary rod in the SEM case, while 200 one-dimensional beam and rod
elements are used in the case of conventional FEM. The deterministic values of the Young’s modulus and
density are 70 GPa and 2700 kg/m3 respectively. The objective here is twofold: first we will compare the
axial and flexural responses predicted by conventional FEM and SEM to validate the latter; second, we
will quantify the responses’ changes due to material uncertainties. For the FEM and SEM comparison,
we assume only the Young’s modulus as uncertain, with a normal distribution. Ten thousand randomly
generated samples of the Young’s modulus are used in the simulation. In most of the uncertainty analysis,
the mean of a parameter obtained from the simulated data should converge to a constant value. This
requires a large number of samples; from our study we found that 10,000 samples are required to satisfy
this condition. For comparison of the SEM and FEM solutions, two different inputs are used: Figure 1a
shows a broad-band loading situation, whose FFT gives a frequency content of 20 kHz. This pulse is
used in the case of axial wave propagation. Flexural waves are highly dispersive in nature. This is due
to the dependence of the group speeds of the waves on the frequency. One of the ways to make a signal
travel nondispersively in a beam is to use a tone-burst modulated pulse, shown in Figure 1b, modulated
at a 5 kHz frequency. The FFT of the pulse, shown in the inset of the figure, has significant energy only at
5 kHz, and hence the waves travel at a speed corresponding to 5 kHz. We use this pulse for flexural wave
propagation. First we consider the Young’s modulus as a random variable and MCS is performed both
under conventional FEM and SEM environments using 10,000 samples. Here, in each figure, “min” and
“max” signify the minimum and maximum values of the time of arrival of the first reflection obtained
through MCS and “det” the value when the material properties are deterministic. Figures 2a and 2b
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Figure 1. Input force used in simulation: (a) broad-band pulse and (b) narrow band
modulated (at 5 kHz) pulse.
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Figure 2. Axial velocity responses: (a) uncertain Young’s modulus with COV 1%,
(b) uncertain Young’s modulus with COV 10%, and (c) uncertain Young’s modulus and
density with COV 10%.

show the axial velocity histories obtained with input parameters COV 1% and 10% respectively. Two
things are quite apparent from the figure. First the predictions made by MCS under FEM and SEM
match very well. The second is that if the COV is small, the uncertain response does not deviate much
compared to the deterministic response. Since the group speed of the medium depends on the material
properties, uncertainty in material properties can cause changes in the predicted group speeds, which can
be quantified by looking at the time of arrival of the first reflection. From Figure 2b, it is clear that the
total scatter in the time of arrival of the first reflection is 15%, compared to its value in the deterministic
case, for a COV of 10%, which in terms of speed will be around 2000 m/s. There is a significant increase
in group speed introduced by uncertainties in material properties.

Figures 3a and 3b show the flexural responses obtained through MCS under FEM and SEM as a
function of COV. As in the case of axial waves, the FEM and SEM predictions match well. Unlike in
the case of axial wave propagation, for larger COVs the scatters induced in the flexural group speeds
are not that significant. Next, both Young’s modulus and density are made uncertain and we assume
a normal distribution for both these parameters. Figures 2c and 3d show, respectively, the axial and
transverse velocity histories for the case of 10% COV, obtained through SEM. From these figures, it
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Figure 3. Transverse velocity responses: (a) uncertain Young’s modulus with COV 1%,
(b) uncertain Young’s modulus with COV 10%, (c) uncertain Young’s modulus and den-
sity with COV 1%, and (d) uncertain Young’s modulus and density with COV 10%.

is clear that significant changes in the group speeds are introduced both in the axial and flexural cases,
where the total scatters in axial and flexural speeds are about 25% and 20%, respectively when compared
to the deterministic responses. In terms of speed, this change amounts to changes in group speeds of
3450 m/s and 350 m/s for the axial and flexural cases, respectively. Figure 3c is the flexural response
for a case of COV 1%, from which it can be concluded that the variation in the time responses with the
change in the number of input random variables from one to two is significantly less when the COVs of
the input parameters are less. In summary, uncertainty in material parameters increases the total scatter
in the group speeds. If the modulus alone is uncertain, then the flexural group speeds do not change
significantly. However, when both the density and modulus are uncertain, flexural group speeds show a
total scatter of nearly 20% with 10% COV in the input parameters. The variation in the time responses
with the change in the number of input random variables from one to two is significantly less when the
COVs of the input parameters are less.

4B. Comparison of efficiency of FEM and SEM using MCS. Here, to determine the efficiency of SEM
under MCS, the same cantilever beam of the previous example is considered. The beam is modeled as a
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single Timoshenko beam. Two different tone-burst loadings, one which samples at 5 kHz and the other
at 50 kHz, are used for the study. Figure 4a shows the bending wave speed superimposed on the FFT
spectrum of 5 kHz and 50 kHz loading. The 5 kHz load will travel at 1400 m/s while the 50 kHz pulse will
travel at 1900 m/s, according to the figure. This means the 50 kHz pulse will travel faster than the 5 kHz
loading. Hence, the reflection will arrive earlier under 50 kHz loading, which manifests itself in having
a smaller time window compared to the 5 kHz loading. In other words, 50 kHz tone-burst loading needs
a smaller time window, which means a smaller number of FFT points, compared to 5 kHz tone-burst
loading. Hence, we can expect faster SEM solutions for 50 kHz loading than for 5 kHz loading.

In conventional FEM, when the frequency increases, the wavelength decreases; conventional FEM
mandates that the element length should be comparable to its wavelength [Chakraborty and Gopalakrish-
nan 2004], and typically 6–10 elements should span a wavelength. Hence, increase in loading frequency,
increases the problem size in conventional FEM, which will certainly increase the analysis time. This is
quite different than the SEM solution. In the present case, increase in the frequency from 5 kHz to 50 kHz
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Figure 4. (a) Dispersion plot (bending group speed) of the beam, where the spectral
amplitudes (amplitudes are amplified) of 5 kHz and 50 kHz tone-burst signals are super-
imposed onto it; CPU time as a function of the number of samples for different tone-burst
signal frequencies (5 kHz and 50 kHz) with (b) FEM (c) SEM and (d) SEM for different
numbers of FFT points for 100 samples.
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increases the number of conventional elements required from 200 to 600 elements. Figures 4b and 4c
compare the time taken by the MCS under FEM and SEM as a function of number of samples, for the
transverse velocity response of a cantilever beam, using two different tone-burst signals. In SEM, a time
sampling rate of 5µs with 1024 FFT points is used for a 5 kHz signal loading; only 512 FFT samples
are used for a 50 kHz load. For the conventional FEM we use 200 one-dimensional beam elements for
a tone-burst pulse of modulated frequency 5 kHz, and 600 elements for a tone-burst pulse of frequency
50 kHz. Only the Young’s modulus is assumed as a random variable; the randomness is modeled as
normal distribution. From these figures, we can clearly see that SEM is faster than conventional FEM for
both loadings. SEM is 8 times faster for 5 kHz loading and takes less than 200 seconds to compute the
responses. The factor increases from 8 to 48 when the frequency content of the load is 50 kHz. Hence,
using MCS under SEM cannot be thought of as a luxury.

One of the problems associated with SEM is that it cannot handle finite small dimension structures,
which is due to enforced periodicity in the frequency domain used in the DFT. The enforced periodicity
causes the responses to wrap around due to its inability to damp out all the responses within the chosen
time window. To overcome this, we need to enlarge the time window, which can be done by increasing
the time sampling rate, increasing the number of FFT points, or both. In the present case, for a 100
sample MCS simulation, the time taken by SEM as a function of the number of FFT points is shown in
Figure 4d. The CPU time variation is linear and quite small. In summary SEM performs the simulations
faster than conventional FEM, increasing with the increase in the frequency content of the load.

4C. Effect of variation on natural frequencies and modal amplitudes. Natural frequencies are func-
tions of the material properties. If these properties are uncertain, then we will see significant variation
in the responses predicted by the analysis. In particular, the shift in the natural frequency is used as a
way to assess the presence of damage in the structure. There is difficulty in distinguishing the shift in the
natural frequency due to damage with the shift in frequency due to material uncertainties, which makes it
necessary to perform a detailed uncertainty analysis. SEM directly gives the FRF as a by-product, a plot
of which will provide us with insight on how the frequencies are shifting due to material uncertainties.

We first consider a single elementary rod SEM model, fixed at one end. In the first case we consider
the Young’s modulus alone as uncertain, with its mean value at 70 GPa, and more than 10,000 samples
are used in the MCS. In this study we assume only a normal distribution for all the input random variables.
Figure 5a shows the FRF for a rod for 1% and 10% COV in the input parameter, the Young’s modulus.
For 1% COV the shifts in the first three modes are very small; thereafter, there is some increase in the
shift. All modes exhibit negligible change in their modal amplitudes. This is also typical behavior of a
metallic beam with small cracks. If the COV is increased to 10%, then the fundamental axial modes also
change and the shifts in the second and higher frequencies are quite substantial. The changes in modal
amplitudes are also significant.

Next, we plot the FRF for axial loading, when both the Young’s modulus and density are considered
random, as a function of increasing percentage of COV. This is shown in Figure 5b. The notable feature
here is that even though the shift in the natural frequency increases drastically the modal amplitudes
change little from their deterministic values.

Figures 6a and 6b show the beam FRF, which is modeled as a single Timoshenko beam for the cases of
the Young’s modulus being random and both the Young’s modulus and density being random, respectively.
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Figure 5. FRF of axial modes for 1% and 10% COV: (a) the Young’s modulus is uncer-
tain and (b) both the Young’s modulus and density are uncertain (COV 10%).

2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

 

 

2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

Frequency (Hz)

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e
 F

u
n
c
ti
o
n
 (

F
R

F
)

 

 

min

max

det

min

max

det

COV 1%

COV 10%

1000 2000 3000 4000 5000 6000
0

20

40

60
Young’s modulus varies as a normal random variable

1000 2000 3000 4000 5000 6000
0

20

40

60

Frequency (Hz)

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e
 F

u
n
c
ti
o
n
 (

F
R

F
)

Young’s modulus and density varies as normal random variables

Deterministic

Determinstic

(a) (b)

Figure 6. FRF of flexural modes for 1% and 10% COV: (a) the Young’s modulus is
uncertain and (b) both the Young’s modulus and the density are uncertain (COV 10%).

For the case of a random Young’s modulus, with 1% COV, as in the case of the rods, there is not much
shift in the lower modes. Here, in the case of a beam model, the changes in the fundamental modes and
the modal amplitude with the increase in COV to 10% is observed, as in the case of a rod. Figure 6b
shows the FRF when both the Young’s modulus and density are uncertain for a COV of 10%. When
compared to the FRF with only the Young’s modulus uncertain, significant shifts are visible for the
natural frequencies. However, the modal amplitudes nearly double for most of the modes.

In summary, the frequency shifts for a small COV for both the axial and flexural modes are very small
for lower-order modes, while the higher modes exhibit significant shifts. A higher COV not only shows
a higher shift for the entire natural frequency spectrum, but also shows higher modal amplitudes.

4D. Distribution of time of arrival of first reflection. In Section 4A, we showed that the material uncer-
tainties significantly changed the group speeds, where the group speed effects are quantified by computing
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the speeds using the time of arrival of the first reflection. In this section, we would like to quantify the
group speed changes in terms of the distribution of the time of arrival of the first reflection for two
different input material property distributions, namely the normal and extreme value distributions. The
extreme value type I distribution based on the smallest extreme values is used in this study, also referred
to as the Gumbel distribution. In this case, only a flexural response is considered, where the cantilever
beam is modeled as a single Timoshenko element subjected to a point impact load (see Figure 1). As
before, 10,000 samples are used in the MCS. The objective here is, for an input COV of material variation,
to determine the COV of time of arrival of first reflection.

In each figure, the label “Monte” means that the actual histogram from MCS, while “Normal” and
“Extreme” indicate the ideal normal and extreme value distributions with the sample mean and standard
deviations obtained from the simulated data. Figure 7 shows the distribution of the time of arrival of the
first reflection for two different distributions of the Young’s modulus with a COV of 10%. Here, density
is assumed to be deterministic. The different input distributions predict similar COVs (about 2.9%) for
the output. Next, we assume both the density and Young’s modulus as uncertain; these distributions are
modeled by normal and extreme value distributions with a COV of 10%. As in the previous case, the COV
remains constant (around 3.9%) for the different distributions (Figure 8). For the different distributions,
we see that the maximum and minimum limits of the output distribution are not significantly different.
In summary, different distribution of material uncertainty does not significantly alter the total bound of
variation of the group speed.

4E. Effect of loading frequency in time responses with uncertain material properties. A tone-burst
modulated signal (Figure 1b) is normally used in structural health monitoring studies to detect the pres-
ence of cracks in structures since it travels nondispersively. These signals are modulated at certain
frequencies, which depend on size of cracks, that is, the smaller the damage, the larger the value of the
modulated frequency. The aim of this subsection is to understand and estimate the extend of the shift
in the arrival of first reflection that is caused by material uncertainty for an increasing value of loading
frequency. In health monitoring studies, this aspect is very critical in order to distinguish clearly the shift
in the arrival of first reflection caused by the damage with that caused by the material uncertainties.
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Figure 7. Histogram of distribution of time of arrival of first reflection, Young’s modu-
lus with an input COV 10% for different distributions: (a) normal and (b) extreme value.
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Figure 8. Histogram of distribution of time of arrival for first reflection with uncertain
Young’s modulus and density with a COV of 10% for different distributions: (a) normal
and (b) extreme value.

We again model the same cantilever beam of the previous section with a single Timoshenko beam
model and subject this beam to a tone-burst signal (Figure 1b), whose modulated frequencies are varied
from 5 kHz to 50 kHz. In each case, results were obtained considering the Young’s modulus as uncertain
and both the Young’s modulus and density as uncertain. In both these cases the COV was fixed at 10%.
Figures 9a and 9b show the velocity history responses for frequencies of 20 kHz and 50 kHz, respectively.
As in the earlier studies, in both cases the shift in the arrival of the first reflection is maximum when
both the Young’s modulus and density are uncertain. For 20 kHz loading, the variation in the group
speed is about 720 m/s. This variation decreased to 660 m/s for 50 kHz loading. When we quantify these
variations in group speed in terms of the percentage of its deterministic value, we can see an increase
in the variation of group speed from 27% to 35.5% with the increase in the loading from 5 kHz to
20 kHz. However, for loading with a frequency of 50 kHz, the variation in group speed is about 35.5%.
Beyond 50 kHz, we notice no further appreciable change in the group speed. Hence, in health monitoring
studies, it is always necessary to use signals modulated at frequencies beyond 50 kHz, if the structure
is uncertain, so that the shift in the reflected pulse due to material uncertainties can be factored into the
damage location computation.

4F. Wavenumber COV for different material property distributions. Generally in wave analysis, the
wavenumber, which acts as a scale factor on the position variable in the same way that the frequency acts
on the time (Equations (2-6), (2-14), and (2-15)), and its variation with frequency are a major areas of
study. Uncertainty in the material parameters scatters waves that are very different from the deterministic
beam. This scatter will be quite different in the presence of flaws such as cracks, especially when the
parameters are uncertain. Two parameters that will help us to differentiate the scattering of waves due
to material uncertainties and damage are the wavenumber and group speed of waves. In the application
of wave propagation analysis for structural health monitoring, the time of arrival of the first reflection
is an important parameter, which directly depends on the group speed of the structure. However, we
know that there is a direct relation between wavenumber and group speed, given in (2-5). It is essential
to study the variation of wavenumber with the variability of the material properties, which will actually
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Figure 9. Transverse velocity variation with change in the modulation frequency for
(a) 20 kHz loading and (b) 50 kHz loading.

help us in structural health monitoring by giving us insight into the type of variation of group speed
and its dependence on the wavenumber. In this study, we try to quantify the variation of COV of the
wavenumber with the variation of COV of the input parameters.

Here, we have assumed the material properties (modulus and density) to vary as normal, Weibull, and
extreme value distributions. The wave number for the beam is calculated by solving the characteristic
equation, (2-12), while for a rod (2-4) is used. As before, 10,000 randomly generated samples are used
in the analysis. Figure 10 shows COV plots as a function of a few discrete frequencies for a normal
distribution of the material property. From the figure, the following observation can be made. When
the Young’s modulus alone is uncertain (Figure 10a), the wavenumber COV variation decreases with the
increase in frequency; on the other hand, if the density alone is uncertain (Figure 10b), the wavenumber
COV variation is just the reverse of the previous case. Figures 11a and 11b show the flexural wavenumber
COV variation for a Weibull distribution. These variation patterns follow that of the normally distributed
wavenumber COV. No effect of frequency on the COV of wavenumber is noticed in a simple rod and
beam model, where the term containing frequency, present in both the denominator and numerator of the
expression for the COV, will cancel out. However, in a Timoshenko beam model the frequency has an
effect on the variability of the wavenumber, which is explicit from the constant term (the third term) of
the characteristic equation (Equation (2-12)). From the above two cases and also from the extreme value
distribution of the input parameter, when both the Young’s modulus and density are uncertain (Figures
10c, 11b, and 11c), the wavenumber COV is not heavily influenced by the frequency. In fact, compared
to the case of a single uncertain input variable, in all these cases the variability in the wavenumber is
very high even in the low frequency range, when the Young’s modulus and density are uncertain. Figure
12 shows the wavenumber COV for an axial wavenumber. The figures show that the axial wavenumber
COV is more than that of a flexural wavenumber COV for a given material distribution and, in contrast
to the flexural case, the wavenumber COV does not show any variation with frequency.

4G. Distribution of wavenumber, for different types of input distributions. In the next few plots, the
variation of the wavenumber by taking different probability density functions for the input parameters
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Figure 10. Variation of COV of wavenumber (flexural) with frequency where input
parameters vary as normal random variables: (a) Young’s modulus, (b) density, and
(c) Young’s modulus and density.
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Figure 11. Variation of COV of wavenumber (flexural) with frequency where input pa-
rameters are taken as Weibull and extreme value random variables: (a) Young’s modulus
(Weibull), (b) Young’s modulus and density (Weibull), and (c) Young’s modulus and
density (extreme value distribution).
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is shown to quantify the effects of material uncertainty. Here we are only studying the variation in the
flexural wavenumber and the uncertain input parameters considered are the Young’s modulus and density.
Figures 13a and 13b show the change in the variation distribution of the flexural wavenumber at 10 kHz
and 25 kHz, taking the input parameters as normal random variables with COV 7%. MCS is performed
using 10,000 samples and the corresponding normal distributions of the output samples are obtained using
the estimates of the MCS, for purposes of comparison. In Figure 14 the input parameters are taken as
Weibull distributions and in Figure 15 the input parameter uncertainty is represented as an extreme value
distribution. Here, the different discrete frequencies, where the wavenumber is calculated, are 25 kHz
and 200 kHz. Similar to the previous case, the corresponding Weibull and extreme value distributions
of the output are obtained using the estimates of the MCS. The results show that the distribution of the
variation of the wavenumber at a particular frequency does not vary much with the change in the type
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Figure 13. Histogram of distribution of wavenumber (flexural) at different frequencies,
with both uncertain density and Young’s modulus modeled as normal random variables
with COV 7%: (a) 10 kHz and (b) 25 kHz.
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Figure 14. Histogram of distribution of wavenumber (flexural) at different frequencies,
with both uncertain density and Young’s modulus modeled as Weibull random variables
with COV 7%: (a) 25 kHz and (b) 200 kHz.
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Figure 15. Histogram of distribution of wavenumber (flexural) at different frequencies,
with both uncertain density and Young’s modulus modeled as extreme value random
variables with COV 7%: (a) 25 kHz and (b) 200 kHz.

of probability distribution function. The minimum and maximum limits obtained are similar in all cases,
regardless of the type of distribution considered. Moreover, it can be seen that the COV of the variation
of the wavenumber does not vary much with the increase in the corresponding frequency.

4H. Effect of uncertainty on wavenumber due to higher-order effects in metallic rods and beams. In
Section 2 we have discussed in detail the computation of the wavenumber. In an elementary rod, there
is only one mode due to axial deformation, which is propagating. The wavenumber varies linearly as
frequency and hence is nondispersive. This model was used in all earlier simulations. An elementary
beam, on the other hand, has a wavenumber which is a nonlinear function of frequency and hence
dispersive. It has two modes, one of which is propagating and the other evanescent. Introducing higher-
order effects to this elementary model completely alters the wave mechanics. The lateral higher-order
effects in rods are introduced by adding an additional lateral motion attributed to the Poisson’s ratio.
The wavenumber computation for the model is given in Section 2. Higher-order effects introduce an
additional propagating mode beyond a certain frequency called the cutoff frequency, which occurs at
very high frequencies. In fact, the existence of a cutoff frequency determines the usage of a particular
rod model, either an elementary or higher-order model. That is, if the frequency of interest falls be-
low the cutoff frequency, one can still use an elementary model for analysis. Similarly, higher-order
effects in beams can be introduced through the introduction of shear deformation, which makes the
evanescent mode propagating after a certain cutoff frequency. The cutoff frequency is governed by the
material and geometric properties of the structure. In light of the fact that the uncertainties involved in
the determination of material properties of a real structure are greater, first we focus our study on the
variation of the cutoff frequency of the structure with the variability in the material properties. Here, the
geometric properties of the system are considered deterministic, and never initiate higher-order effects
in the system. However, if the material properties are uncertain, the predicted cutoff frequencies may be
quite misleading in deciding the type of analysis to be used. The aim of this section is to determine the
range of shift in the cutoff frequencies due to material uncertainties so that proper theories can be used
in the simulation process.
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Figure 16. Variation of cutoff frequency of the shear mode of a Timoshenko beam,
with both uncertain rigidity modulus and density normal with COV 20%: (a) variation
of COV and (b) maximum and minimum bounds of cutoff frequency.

Figure 16a shows the variation of the cutoff frequency with the change in COV of the input parameters
(density and G). When the number of random variables used increases from one (density or G) to two
(both density and G), we can see that the COV of the cutoff frequency increases. The variation of the
COV of the cutoff frequency is greater when the input random variable is density, especially when the
COV of the input is high. Figure 16b shows the upper and lower bounds of the shear mode when the COV
of the input random variable is 20% and the number of random variables is two (density and G). There
is a variation from the deterministic value or 161 kHz to 78 kHz in the lower limit and 271 kHz in the
upper limit. The lower limit of this result suggests that, when there is such a large variation in the input
parameters, there is a chance for the shear mode to propagate at a lower frequency (here it is 78 kHz) than
the expected frequency (161 kHz), which cannot be traced by a simple Euler–Bernoulli theory even for
a thin beam. The distributions of the cutoff frequency for different distributions are shown in Figure 17.
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Figure 17. Histogram of the distribution of cutoff frequency of the shear mode of a
Timoshenko beam, with both density and rigidity modulus uncertain using different
input distributions with COV 20%: (a) normal and (b) Weibull input distribution.
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Figure 18. Variation of cutoff frequency for a higher-order rod for uncertain density and
rigidity modulus, with COV 20% for different distributions: (a) maximum and minimum
limit for normal; histograms of distribution of cutoff frequency for input distributions
(b) normal and (c) Weibull.

Normal Weibull
COV (%) maximum minimum maximum minimum

1 165.74 157.25 158.44 149.02
5 185.48 141.32 173.07 134.35

10 216.86 126.11 198.22 112.34
15 246.62 98.58 223.69 85.24
20 271.24 78.12 245.54 67.33

Table 1. Total bounds on variation of cutoff frequency (kHz) with different input COVs,
when both the Young’s modulus and density are uncertain, for a Timoshenko beam.

We can see the output distribution variation is almost the same for the two distributions considered and
differs from the corresponding input distribution pattern in both cases, where the input parameters are
taken as normal distributions and as Weibull distributions.

Figure 18a shows the variation in the contraction mode of a higher-order rod. From this figure, we
can see the deterministic value of cutoff frequency for a higher-order rod is very much higher than that
for the previous case of a higher-order beam. The uncertain response has the same impact as in the case
of the beam in the maximum limit (here, 123 kHz) of frequency of the load, which can be used with
the simple elementary rod model. The distribution of the cutoff frequency shows the same pattern of
distribution as that of the beam model (Figures 18b and 18c). Finally, Tables 1 and 2 give us an idea of
the total bounds on variation of the cutoff frequencies of a Timoshenko beam and a higher-order rod, as
a function of the COV of the input parameter, when both the Young’s modulus and density are uncertain.

5. Conclusions

Monte Carlo simulation coupled with the spectral finite element method (SEM) is applied to study the
variation in the high frequency response of a metallic beam and rod with the variation in the material
properties. It can be seen that the method using SEM is efficient and takes much less time than taken by
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Normal Weibull
COV (%) maximum minimum maximum minimum

1 278.66 262.82 280.74 260.47
5 314.21 233.04 327.71 229.84

10 364.65 201.93 395.65 191.93
15 398.69 168.42 423.69 152.42
20 455.38 123.46 495.53 98.34

Table 2. Total bounds on variation of cutoff frequency (kHz) with different input COVs,
when both the Young’s modulus and density are uncertain, for a higher-order rod.

the method using conventional FEM. The ratio between the CPU time taken for conventional FEM and
SEM increases with the loading frequency (here, it increases from 8 to 48 as the frequency content of
the load increases from 5 kHz to 50 kHz). Increase in the number of random variables used affects the
responses considerably, but only when the coefficient of variation is large. The change in the variation
of the time response and the dispersion relations with the increase in the frequency only depends on the
uncertain input parameters considered. Regardless of the input parameter distributions considered, the
maximum and minimum bounds on the time of first reflection and the wavenumber variation distributions
almost match in all the cases. The variation of the shear mode in the beam and the contraction mode
in the higher order rod suggest that the uncertainty enforces the use of higher-order theories at lower
frequencies than the expected frequency, even for thin structures.

Finally, at this stage, it is very difficult to determine the reason for the shift in the arrival of the first
reflection. For understanding the shift due to damage, uncertainties in damage location, size, and type
of damage also need to be introduced into the formulation. This is indeed an open area of research and
the authors are working towards their next article focusing on this very concept.
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