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The design of elastic structures to optimize the stress state of flat plates with appropriately shaped
construction holes is a problem of considerable mathematical and industrial significance. This paper
continues the shape optimization study previously reported in this journal, 1:2 (2006), 307–406, for the
energy-minimizing single hole under remote shear, and in 3:7 (2008), 1341–1363 for two identical holes.
Here, a challenging and more practical three-hole arrangement is considered, where the central hole is
fixed, while the two identical side holes are varied not only in their shapes, but also in their areas.

This twofold novelty is resolved by enhancing a standard genetic algorithm combined with a general
method of shape parametrization for multiconnected regions. The method employs conformal mapping
of the outside of each optimized contour separately onto the outside of a unit circle, as was first proposed
in the 2008 paper. We show here that this approach has a significant computational advantage over the
common practice of mapping the entire domain under consideration. The numerical simulations present
in detail the influence of sizes, shapes, and relative positions of the openings on the induced energy
increment and, to a much smaller extent, on the local stresses. The main result is that, compared to
a single hole, interacting optimal openings induce up to 15%–19% less energy, depending on the hole
spacing and the central hole shape.

1. Introduction

In spite of intensive studies carried out over the last decades, the problem of diminishing the weakening
effect of construction holes in a flat elastic plate remains an object of much attention in engineering the
optimal design. Various strengthening technologies, such as auxiliary unloading holes, reinforcement
rings, and others are known so far, each posing its own elastostatic problem. Of particular assistance
here is proper shaping of holes, which may significantly improve the stress-strain state of perforated
plates. This optimization scheme is all the more promising, as the hole area is usually of much more
importance than its shape, which thus permits a certain design freedom.

In modelling the problem, the plate is infinite and linearly elastic. Furthermore, although the engi-
neering ideal is to minimize the maximum hoop stress occurring along the holes’ boundaries, we choose
here the weaker and numerically easier integral criterion of the energy increment brought by the holes in
the uniform stress state of an undamaged plate under the same load. Besides computational convenience,
this choice is advocated by two reasonings. First, a plate with several holes may be thought of as the
zeroth-order approximation to a regularly perforated plate, where the energy is directly associated with
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the physically measurable effective moduli of the structure. Second, our previous experience shows that
the energy minimization for a single hole [Vigdergauz 2006], and for two interacting holes [Vigdergauz
2008a], is not achieved at the expense of the boundary stresses. On the contrary, the energy-minimizing
holes maintain a rather favourable stress distribution, with no excessive peaks; we may cautiously con-
clude that this is also the case here.

For concreteness, the plate is taken to be loaded by pure shear at infinity. This is more challenging
than bulk load, which permits an analytical solution in many situations (the equistress contours, see, for
instance: [Vigdergauz 2008a] and references therein).

Geometrically, the plane contains the main hole and, equally spaced on both sides of it, two identical
unloading holes. The main hole is fixed as either a circle or as a slightly rounded square, which, in
absence of auxiliary holes, provides the minimally possible energy under remote shear [Vigdergauz and
Cherkaev 1986]. Our aim is, at a given inter-distance, to identify the shape and the area of the side holes
that will minimize the hole-induced energy increment. Determining the minimum for such a solid and
characterizing the associated extremal structures is an important problem, which arises in homogenization
of composites and in optimal design.

Compared to the earlier optimization problem for two identical holes, the arrangement at hand has
two complicating features. First, the boundary is partially fixed, since only the shapes of the side holes
are changing, and, second, the area of the holes is also optimized. Both features are in contrast to the
two-holes geometry fully described (up to scaling) by a single dimensionless parameter, which is the
ratio of the hole area to the squared distance between the holes. Nevertheless, both new properties are
treated here by enhancing the same numerical framework that was developed for the two holes case. The
essential points of this framework can be described in terms of a numerical optimization strategy, where
a direct problem solver is repeated many times in a searching space, until a pre-set convergence criterion
is reached.

Here, the solver uses complex-valued Kolosov–Muskhelishvili (KM) potentials [Muskhelishvili 1975],
which are obtained from a specially derived system of linear algebraic equations involving no singularities
and, hence, providing a fast and accurate assessment of each possible hole shape, as was shown previously
in a similar context [Vigdergauz 2008a]. A standardly configured genetic algorithm (GA) then employs
the above-described solver for fitness evaluation in a gradientless search of the global optimum. Of
importance here is the novel encoding scheme, where a shape is presented by a sequence of the first
N Laurent coefficients of the function, mapping it conformally onto a unit circle. By adding one more
design variable for the hole area, we transform each shape into a chromosome, concatenated of (N + 1)
genes in the (N + 1)-dimensional bounded searching space. The fixed central hole remains untouched,
while a given distance between the holes is preserved by simply displacing the side hole decoded from a
chromosome. This approach has proved to be rather advantageous for numerical solution of the problem
at hand, both for a circular and for a square-like central hole.

The paper is organized as follows. For reader convenience, Section 2 summarizes the analytical
basics required for further development. Section 3 presents, in terms of these tools, the exact problem
formulation and describes the fast and stable direct solver for evaluation of the energy criterion at fixed
holes’ shapes. Section 4 describes the efficient and adaptive shape parametrization. Together, these
three sections provide, to the maximum extent possible, the theoretical backbone for effective numerical
simulations. Section 5 describes the features of genetic algorithm, designed specifically for the current
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Figure 1. Problem schematic: an infinite plate with two identical holes under uniform
stresses, cases P = Q and P =−Q correspond to remote bulk and shear, respectively.
The piecewise smooth hole shape is symmetric about the x-axis and may have a finite
number of angular points.

purposes. The numerical results are given at length in Section 6. Finally, Section 7 concludes the paper
with a summary and remarks about future applications.

2. Analytical framework

Consider the setup in Figure 1, where a principal central hole T0 in a thin elastic infinite plate interacts
with two identical auxiliary holes T−1 and T1, located symmetrically at a distance λ on each side of T0.
The areas of the holes are f0 and f−1 = f1, respectively. To fix the scale factor, we set f0 = π .

For simplicity, the hole shapes L j , j =−1, 0, 1, are traction-free, while the plate is remotely loaded
by uniform nontangential stresses:

σ∞xx = P, σ∞yy = Q, σ∞xy = 0. (2-1)

The induced local stresses {σxx , σyy, σxy} at any point z = x + iy in the plate can be linearly expressed
through a pair of complex-valued functions 80(z) and 90(z), holomorphic in the material-filled un-
bounded region S [Muskhelishvili 1975]:

σxx(z)+ σyy(z)= 4 Re80(z),

σyy(z)− σxx(z)+ 2iσxy(z)= 2
(
z8′0(z)+90(z)

)
.

(2-2)

On account of symmetry, the potentials 80(z),90(z) [Muskhelishvili 1975] are even functions of z:

80(−z)=80(z), 90(−z)=90(z) for z ∈ S, (2-3)
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with the asymptotics

80(z)= B+8(z), 90(z)= 0+9(z) with
{
8(z),9(z)= O(|z|−2) as z→∞,
4B = P + Q, 20 = Q− P.

(2-4)

Hence, these potentials possess the following Laurent expansions [Alfors 1979], with purely real
coefficients:

80(z)− B =8(z)=
∞∑

k=2

(
a(k)0 ξk(z, 0)+ a(k)1 ξk(z, c)

)
, (2-5a)

90(z)−0 =9(z)=
∞∑

k=2

(
b(k)0 ξk(z, 0)+ b(k)1 ξk(z, c)

)
, (2-5b)

ξk(z, c)≡
1

(z− c)k
+

(−1)k

(z+ c)k
, ξk(z, c)= ξk(−z, c) for z ∈ S, (2-5c)

ξk(z, 0)= 2
zk for k = 2, 4, . . . , ξ2k+1(z, 0)= 0 for k = 3, 5, . . . , (2-5d)

where c is a fixed point on the X -axis inside the hole L1.
It should be noted that only the first coefficients in (2-5a) and (2-5b) define the stress energy increment

1w brought by the holes into a given outer stress field (2-1) [Muskhelishvili 1975]:

1w = 2π
(
200(a

(2)
0 + 2a(2)1 )+ B0(b

(2)
0 + 2b(2)1 )

)
E−1, (2-6)

where E is the Young modulus of the plate. This is in clear contrast to the local stresses (2-2), which
involve all the coefficients (2-5a). This difference provides a great computational advantage.

The increment is a strictly positive definite bilinear form of B, 0 [Muskhelishvili 1975]:

1w = B2ω11+ 2B0ω12+0
2ω22 > 0 H⇒ ω11, ω22 > 0, ω11ω22 > ω

2
12 (2-7)

and depends on all the parameters involved in the problem. For future convenience, we normalize 1w
by the total holes area (π + 2 f1) and by E ,

1w = E1w/(π + 2 f1)= B2w11+ 2B0w12+0
2w22, (2-8a)

wi j = wi j (L0, L1, λ, f1) for i, j = 1, 2, i ≤ j. (2-8b)

Finally, the traction-free condition links the potentials along the holes’ boundaries, in the following form:

2
∂t
∂t

Re8(t)+ t8′(t)+9(t)=−2B
∂t
∂t
−0, t ∈ L; L = L−1+ L0+ L1; (2-9)

see [Muskhelishvili 1975], observing that identity (2-9) is specifically rearranged for future use.
Though mathematically simple, the increment 1w can be obtained only by finding the stress state

in the plate at a given geometry. Using (2-2), this full-size direct elastostatic problem is equivalently
replaced by the uniquely solved boundary value problem (2-9)+(2-4)+(2-1) in 80(z) and 90(z); see again
[Muskhelishvili 1975]. It can be solved numerically, amongst many other possibilities, by substituting
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the expansions (2-5) into (2-9), to arrive at an infinite system of algebraic equations in vector {x} of the
unknown Laurent coefficients:

∞∑
j=1

pi j x j = qi for i = 1, 2, . . . . (2-10)

The system matrix, {pi j }, and the right hand side, {qi }, are obtained by integrating specific combinations
of the power terms and their conjugates in (2-5) over the boundaries of the holes. Analytically, this is a
difficult problem, highly dependent on specific geometry, because only a circle {t : |t − c| = r}, that is,

(t − c)= r2(t − c)−1, (2-11)

possesses the simple relations between shape points t and t used for reducing the integrals to a closed form.
Otherwise, numerical methods are called for. In a similar context we have proposed in [Vigdergauz 2006;
2008a] a fast and stable computational scheme employing the special parametric shape representation,
as detailed in the next section.

3. Problem formulation and fast direct solver

Our aim now is to use the scheme sketched above as an inner solver, within the following optimization
problem:

Given a central hole L0 at an inter-distance λ from its neighbors, and given a far stress field, B, 0,
find the shape L1 and the area f1 of the 1w-optimal auxiliary holes, on which

1w(B, 0, L0, L1, λ, f1)−−−−−−−−−−−−−−−−→
{L1}, f1≤ f

min(B, 0, L0, λ), (3-1)

where {L1} denotes the set of all closed curves with area less than a specified constant f . The curves are
to have no cusps and no self-intersections.

The variable hole area is a rather novel feature in shape optimization in elasticity. This additional
degree of freedom may provide certain advantages in minimizing the criterion (3-1). To be more specific,
we suppose that the auxiliary holes may not be larger than the principal one,

f1 ≤ f = f0 = π. (3-2)

Preparatory to solving the optimization problem (3-1), we prove the following elementary assertion:
Let the functions f1(z), f2(z) be holomorphic in the same domain D of the complex plane z. Also, let

them be equal in all their derivatives at some interior point z0 ∈ D:

f (k)1 (z0)= f (k)2 (z0) for k = 0, 1, . . . . (3-3)

Then both functions coincide identically throughout their common region of analyticity:

f1(z)= f2(z) for all z ∈ D. (3-4)

Indeed, a holomorphic function is represented in a sufficiently small neighborhood of any interior point
by a Taylor series [Alfors 1979]:

f j (z)= c j,0+ c j,1(z− z0)+ c j,2(z− z0)
2
+ · · · for z, z0 ∈ D with ‖z− z0‖ ≤ r j , (3-5)
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where j = 1, 2. Considering (3-5) in ‖z − z0‖ ≤ min(r1, r2), we conclude, in view of (3-3), that both
Taylor series are the same: c1,k = c2,k for k = 0, 1, . . . , and, hence,

f1(z)≡ f2(z) if ‖z− z0‖ ≤min(r1, r2). (3-6)

The extended identity (3-4) now follows from (3-6) by the principle of analytical continuation [Alfors
1979].

Next, as in [Vigdergauz 2008a], we specifically employ the loading boundary condition (2-9). Inte-
gration of the both sides with the Cauchy kernel dt/(t − z) over the holes’ boundaries L gives

2
∫

L

Re8(t) dt
t − z

+

∫
L

t8′(t) dt
t − z

+

∫
L

9(t) dt
t − z

=−2B
∫

L

dt
t − z

−0

∫
L

dt
t − z

. (3-7)

Inside either of the holes, each item in (3-7) represents a holomorphic function of z [Muskhelishvili 1975].
It is crucial for further derivations that the last left integral identically disappears, since its integrand 9(t)
is the boundary value of a holomorphic function outside the holes and vanishes at infinity [Alfors 1979].
In addition, the symmetry relations (2-3) allow for replacing the integral path L−1 with L1, while the
second right integral is simply 2π i0, by the residue theorem. By virtue of all of the above, (3-7) is
rewritten, after routine algebra, as

2
∫

L0

Re8(t) dt
t − z

+

∫
L0

t8′(t) dt
t − z

+ 2
∫

L1

Re8(t)η1(t, z) dt +
∫

L1

t8′(t)η1(t, z) dt

= 2B
∫

L0

dt
t − z

+

∫
L1

η1(t, z) dt + 2π i0, (3-8)

where η1(t, z) is defined similarly to (2-5c):

η1(t, z)≡
1

t − z
+

1
t + z

, η1(t,−z)= η1(t, z) for z ∈ L0, L1. (3-9)

The most common way of further transforming identity (3-7) is to obtain an equivalent singular integral
equation, where z tends from the inside of the holes to their boundary L0+ L1 [Muskhelishvili 1975].
Alternatively, we employ (3-3)+(3-4) to equivalently recast (3-8) into a set of regular identities at z0 = c:

2
∫

L0

Re8(t) dt
(t − c)k

+

∫
L0

t8′(t) dt
(t − c)k

+ 2
∫

L1

Re8(t)ηk(t, c) dt +
∫

L1

t8′(t)ηk(t, c) dt

= 2B
∫

L0

dt
(t − c)k

+ 2B
∫

L1

ηk(t, c) dt + 2π i0δk,1, (3-10)

and at z0 = 0:

2
∫

L0

Re8(t) dt
tk +

∫
L0

t8′(t) dt
tk + 2

∫
L1

Re8(t)ηk(t, 0) dt +
∫

L1

t8′(t)ηk(t, 0) dt

= 2B
∫

L0

dt
tk + 2B

∫
L1

ηk(t, 0) dt + 2π i0δk,1. (3-11)
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Here δk,1 is the Kronecker delta and we have set, for k = 0, 1, 2 . . . ,

ηk+1(t, c)≡
1
(k)!

∂kη1(t, z)
∂zk

∣∣∣∣
z=c
=

1
(t − c)k+1 +

(−1)k

(t + c)k+1 ; (3-12)

in particular, η2k+1(t, 0)= 2/t2k+1 and η2k+2(t, 0)= 0. As prescribed by the symmetry of the problem,
the kernels ξk and ηk+1 differ in the sign of their second term.

Finally, substitution of the Laurent expansion (2-5) transforms (3-10)+(3-11) into the linear system
(2-10) in the unknowns x2k−1 = a(k)1 , x2k = a(2k)

0 , k = 1, 2, . . .

p2k−1,2l−1 = 2
∫

L0+L1

Re ξl+1(t, c)ηk(t, c) dt +

∫
L0+L1

tξ ′l+1(t, c)ηk(t, c) dt,

p2k−1,2l = 2
∫

L0+L1

Re ξ2l−1(t, 0)ηk(t, c)(t, c) dt +
∫

L0+L1

tξ ′2l−1(t, 0)ηk(t, c) dt,

p2k,2l−1 = 2
∫

L0+L1

Re ξl+1(t, c)η2k−2(t, 0) dt +

∫
L0+L1

tξ ′l+1(t, c)η2k−2(t, 0) dt,

p2k,2l = 2
∫

L0+L1

Re ξ2l−1(t, 0)η2k−2(t, 0) dt +
∫

L0+L1

tξ ′2l−1(t, 0)η2k−2(t, 0) dt,

q2k−1 =−2B
∫

L0+L1

dtηk(t, c)+0δk,1,

q2k =−2B
∫

L0+L1

dtηeta2k−2(t, 0)+0δk,1.

(3-13)

The kernels ξk(t, c), ξk(t, c), ηk(t, c), ηk(t, 0) and, hence, the above integrals are regular. All entries in
(3-13) are divided by 2π i . Again, along circular shapes (2-11) they take a closed, though cumbersome,
typical form of binomial coefficients and powers of c.

Remarkably, the resolving system (3-13) involves no Laurent coefficients b(k)1 , b(2k)
0 of 9(z). Once

the system is solved, they can be found by directly integrating the boundary condition (2-9),

2π ib(k)1 =

∫
L1

(t − c)2k−1 Re8(t) dt +
∫

L1

(t − c)2k−1t8′(t) dt, (3-14a)

2π ib(2k)
0 =

∫
L0

t2k−1 Re8(t) dt +
∫

L0

t2k−1t8′(t) dt. (3-14b)

This halves the computational efforts compared to the commonly used approaches, where both potentials
are solved simultaneously rather than in tandem.

4. Shape parametrization scheme

We are now in a position to enhance the proposed sequential solution of KM potentials by a numerical
scheme for effectively evaluating the contour integrals (3-13). Within the optimization framework, this
raises the question of how to validly encode an arbitrary hole. The commonly used discretization with
nodal points is computationally expensive, due to their double use as design variables and as integration
points. For reasonably accurate results, one should keep a needlessly large number of nodes, thus causing
a dramatic slowdown of the optimization convergence.
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In a similar, though more simple, context of free-boundary problems for a single elastic inclusion
[Vigdergauz 2006], and for two identical holes [Vigdergauz 2008a], we devised an alternative shape
parametrization scheme, which can also be used for the current purposes. For reader’s convenience we
briefly summarize this latter paper’s approach, in which the design variables are separated from the
integration points.

For this purpose, we narrow our focus to smooth closed curves L1 that can be conformally mapped
onto the unit circle γ = {τ = eiθ

: 0 ≤ θ ≤ 2π}, by means of an analytic function �(t) with a small
number N of initial nonzero Laurent terms [Alfors 1979]:

t ≡�(τ)= τ +
N∑

j=1

d jτ
− j with t ∈ L1, τ ∈ γ (4-1)

(note that τ−1
= τ ). The area of the region enclosed by L1 is then

FN = π

(
1−

N∑
j=1

j |d j |
2
)
. (4-2)

Thus, the novel feature of varying the area is realized simply by scaling the hole with the factor

f1/FN , f1 ≤ f. (4-3)

It is quite significant that, in contrast to common practice, neither the elastic domain nor the stress-strain
equations are really transformed. The mapping is used for the purely geometrical purpose of effectively
presenting the searched shapes. Put otherwise, the novel shape representation involves a conformal
mapping of a single hole, rather than of all holes simultaneously. This feature is especially useful for the
partially fixed boundary, where the major hole simply remains unmapped.

Taken in this case as design variables, the mapping coefficients have the following substantial advan-
tages over the nodal points representation:

• They are naturally ordered, in the sense that the higher the coefficient, the smaller its global impact
on the inclusion shape. Indeed, geometrically, the high-order mapping coefficients are responsible
mainly for forming large curvature isolated shape points and, thus, have little effect on the integral-
type energy increment 1w. In practice, this provides a rapid convergence to the global optimum at
small values of N (typically, N ≤ 7, as shown in Section 6). This convenience disappears for the
problem of minimizing the local stresses, where N should be sufficiently large to accurately com-
pute possible stress concentration at large curvature points. For this reason, the stress optimization
remains beyond the current scope.

• They fall into the successfully narrowing intervals,

−
1
√

j
≤ d j ≤

1
√

j
for j = 1, 2, . . . , (4-4)

as a result of the uniqueness of conformal mapping [Alfors 1979]. This allows us to treat these
intervals and the two-sided inequality (3-2) for the noncentral hole area as linear constraints in the
optimization problem (3-1), which is reformulated in the following manner:
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For a given finite number N of mapping coefficients and fixing the other parameters involved in (3-1),
find the energy-minimizing shape and area of the auxiliary hole L1,

1ω(B, 0, L0, L1, λ, f1)−−−−−−−−−−−−−−−−−→
{L1}N , f1≤ f

min
N
(B, 0, L0, λ). (4-5)

Put differently, we simplify the initial shape optimization problem by replacing the comprehensive pool
{L1} of all admissible curves by its N -mapped subset{

{L1}N : {L1}N ⊂ {L1}, min
N
(B, 0, L0, λ)≥min(B, 0, L0, λ).

}
By taking the differential of (4-1) and its conjugate, and using the identity (2-11), we get

dt =�′(τ ) dτ = i
(
τ −

N∑
j=1

jd jτ
− j
)

dθ, dt =−i
(
τ−1
−

N∑
j=1

jd jτ
j
)

dθ. (4-6)

Any integration path L1 ∈ {L1}N in (3-13) is transformed to the unit circumference γ , independently
of the design variables {d1, d2, . . . , dN }. The resultant regular integrals along γ can be evaluated by
any appropriate numerical scheme. We employ the standard Gaussian quadrature rule with Np equally
spaced points. The design variables here are fully separated from the integration points.

Our experience suggests that the reformulation (4-5) of the optimization problem is well suited to be
solved by the genetic algorithm (GA).

5. GA scheme: related results and current specifics

Devised by Holland [1975], the genetic algorithm (GA) exploits the heuristic that simulates natural
evolution processes, such as selection and mutation. It evolves candidate solutions for problems that have
large solution space and are not amenable to exhaustive search or traditional optimization techniques.

Typically, GA starts with a random population of encoded candidate solutions, called chromosomes.
Then the fitness of each candidate solution in the current population is evaluated to select the fittest
candidate solutions as parents of the next generation of candidate solutions. After being selected for re-
production, parents are recombined (using a crossover operator) and mutated (using a mutation operator)
to generate offspring. The fittest parents and the new offsprings form a new population, for which the
process is repeated to create new populations.

As applied to the problem at hand, the GA operators are specified in the following way:
Each chromosome concatenates N+1 two-byte integers I j in the range −M ≤ I j ≤ M where M =

215
− 1 and j = 0, 1, . . . , N . In view of (3-2), (4-4), and (4-3) the chromosomes encode a possible shape

L1 ∈ {L1}N through its area and its Laurent coefficients:

f1 = (1+ I0/M) f/2, (5-1a)

d j = I j/M
/√

j for j = 1, 2 . . . , N . (5-1b)

Substitution of (5-1) into (4-1) decodes the corresponding shape. However, self-intersecting shapes may
appear, since the inequalities (4-4) are only necessary, not sufficient, to guarantee their absence. To our
knowledge, no conditions on the coefficients d j are known which trim out only self-intersecting curves.
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Therefore, we check each decoded curve for possibly breaking monotonicity, demanding that

d arg�(τ)
dθ

≥ 0 for 0≤ θ ≤ 2π; (5-2)

this corresponds to the more restrictive shape property of star-shapeness. Physically, it is clear anyway
that only star-shaped holes are promising for optimization. In the numerical simulations (Section 6) this
is attested to by the fact that the optimal values of d j , j = 1, 2, . . . , N , are rather distant from the limiting
values in (4-4).

Inequality (5-2) is verified at each integration point along the unit circle γ : |τ | = 1. Wherever (5-2)
is violated, the corresponding shape obtains a penalty as its fitness, and the GA process takes the next
candidate. The idea is to assign the penalty by measuring the squared violation and multiplying it by a
very large constant. A shape allowed by (5-2) is further scaled with respect to (5-1b) and is displaced
from the origin at the distance

c = λ+min
(
Re L0(x, y)−Re L1(x, y)

)
, (5-3)

to satisfy the given geometry. The displacement value c from (5-3) serves as the parameter in (3-13)
and in all the relative transformations. After that, the fitness of a feasible candidate is evaluated by (1)
solving first the system (3-13) truncated to size K × K ; (2) restoring the second potential 9(z) by use
of (3-14); and (3) substituting the first few Laurent coefficients into the resulting expression (2-6) for the
energy increment. Step (1) is the most time-consuming phase of GA; hence, all the economy reasoning
should be applied here. First, due to symmetry, the system is pure real. Second, the coefficients b(2)0 , b(2)1

GA parameter Parameter value(s)

Gene Integer in [−32767; 32767]
Individual Interface shape
Population size 1000–25000, depending on inter-distance
Number of genes, N + 1 up to 8
Initial population 1000–25000 random individuals
Selection Tournament
Elitism Four best individuals
Crossover 1-point
Crossover rate 0.99
Creep mutation By randomly changing a bit
Creep mutation rate 0.35
Jump mutation By adding a random integer,

typically in the range [−4; 4]
Jump mutation rate 0.35
Stopping criterion After M iterations, M in the range [100; 150]
Resolving system size K = 36
Number of integration points Np = 720 (in the interval [0, π])

Table 1. GA operator types, their probability rates and related parameters typically used
in further optimizations.
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of 9(z) disappear from the energy increment (2-6) when the remote load is pure shear (B = 0). This
allows for avoiding step (2) calculations and for truncating the system (3-13) at relatively moderate size,
since only the two first unknowns, a(2)0 and a(2)1 , define the increment (2-6). Namely, in such a way a
single energy minimizing hole [Vigdergauz 2006] and two interacting holes [Vigdergauz 2008a] were
identified earlier. In the first case, additionally, the unknowns partly vanish due to four-fold symmetry,
while the equations (3-13) acquire a finite-difference form [Levy and Lessman 1959] that is resolved
analytically, with no truncation.

The main result so obtained in [Vigdergauz 2006] is that the energy-minimizing singular hole under
remote shear L∗ looks like a square with slightly rounded corners, and provides the global increment
minimum

1w22(0, 1, λ, L∗)≈ 0.928623, (5-4)

which is somewhat less than the value for a circle γ [Muskhelishvili 1975],

1w22(0, 1, λ, γ )= 1.00. (5-5)

In what follows, we also suppose that the plate is subject to pure shear at infinity, using both values (5-4)
and (5-5) for future comparison. An immediate conclusion can be drawn here about the behavior of
the corresponding increment (2-8), when the inter-distance λ tends to infinity. In this case, the resultant
energy is simply a weighted sum of the energies (5-4) and (5-5) with the optimized side holes nearing
L∗. Therefore, we have

min
{L1}

lim
λ→∞

w22 = min
{ f1≤ f0}

w22(L0, L∗, f1)

=


min
{ f1≤ f0}

f0+2×0.928623 f1
f0+2 f1

= 0.952416 (achieved for f1 = f0) when L0 = γ,

min
{ f1≤ f0}

0.928623( f0+2 f1)

f0+2 f1
= 0.928623 (achieved for any f0, f1) when L0 = L∗.

(5-6)

It is worthy of note that, when f1 tends to infinity, the upper expression in (5-6) is a decreasing function
of f1 everywhere in the interval 0 ≤ f1 <∞, with the limit (5-4). Therefore, in the absence of the
inequality constraint (3-2), the optimized hole area grows infinitely large with the distance, as observed
in numerical simulations. The lower expression, naturally, is independent of the areas f0, f1, and assumes
the constant value (5-4).

Though many schemes are suggested to enhance GA, the relatively small number N of design variables
allows us to use a rather simple configuration, with a number of heuristic parameters. For achieving better
efficiency, these need to be adjusted by preliminary numerical tests for assessing the GA’s stability and
convergence speed. Table 1 on the previous page gives the chosen values of the parameters.

6. Numerical results

A wide set of GA-based simulations was performed to numerically solve the optimization problem (4-5)
in the representative inter-distance interval 0.2≤ λ≤ 5.0. To ensure the accuracy of the results, all output
data were computed several times, randomly starting each GA process and stopping it after a rather large
number M of iterations, when there is no more variation of the results. At a fixed inter-distance λ, the
computed minimum w22 depends on both N and M , and should converge separately with increase of
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Figure 2. Hole shape identification: progress of a typical genetic optimization run with
increasing M for the energy increment (left) and for the side hole area (right).

either of them. A typical iteration convergence for the GA scheme is shown in Figure 2. The convergence
to the global optimum with increasing number N of mapping terms was assessed by the relative proximity
of the optimal values for the first successive values of N , as shown in Table 2, at the hard-to-compute
value λ= 0.2. The evolution of the optimized shape with M and N is presented in Figure 3. The right part
of the figure illustrates the fact, already noted, that the higher mapping coefficients change the optimized
shape only locally.

The remaining results are displayed in parallel for the circular and the square-like central hole. The
most labor-intensive is Figure 4, which demonstrate the dependence of the energy increment minimum
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Figure 3. Hole shape identification: progress of a typical genetic optimization run at
λ= 0.2 with M (left) and with N (right). The dashed lines show the optimal shapes at
the fixed side hole area f1 = f0.
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N d1 d2 d3 d4 d5 d6 d7 f1/ f0 min δw22

1 −0.2039 0.3892 0.9367
2 −0.1843 −0.0804 0.5539 0.9204
3 −0.1686 −0.0902 −0.0144 0,5892 0.9200
4 −0.1804 −0.0412 −0.0118 −0.0343 0.5931 0.9113
5 −0.1863 −0.0627 −0.0484 −0.0284 0.0282 0.6990 0.8963
6 −0.1863 −0.0627 −0.0484 −0.0284 0.0282 0.0000 0.6990 0.8963
7 −0.1843 −0.0627 −0.0497 −0.0314 0.0282 0.0026 0.0022 0.6873 0.8955

Table 2. Circular central hole case: optimal mapping coefficients for the side hole and
the corresponding min 1w22 for different values of N .
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spaced holes is also added for comparison (straight line). Top: circular central hole case.
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w22 on the distance λ between the central and the side holes. Comparison to the limiting values (5-6)
of the widely spaced optimal holes (straight lines) shows that the interaction of the holes provides an
appreciable energy gain at any inter-distance λ, except at very small ones. Clear optima are observed in
both cases for λ in the range 1.05–1.10, with a relative decrease in the energy of ≈ 15%, as compared
to the values (5-6) for the corresponding case of the noninteracting holes. Compared to the increment
(5-5) of a single circular hole, the auxiliary holes raise the gain to ≈ 19%, while a pair of identical
interacting optimal holes conserves ≈ 12% of the energy [Vigdergauz 2008a]. We note that the pre-
optimization levels (5-4), (5-5), and, hence, the energy gain are both less for the square-like central hole.
The difference between the solid and the dashed lines reflects the contribution related solely to the hole
area variation in interval (5-1a), which remains small even near the global increment minimum. This
indicates that the potential of changing the area of the hole for energy optimization is rather limited at
the current geometry.

Figure 5 exhibits the shape evolution with the increasing distance λ. As expected, in both cases the
optimal shape grades into the square-like optimal hole of the area f1 = f0 = π , in accordance with (5-6)
and (3-2).

The dependence f1(λ) of the optimal hole area on the spacing between the holes is shown in Figure 6.
Finally, we try to qualitatively evaluate the hoop stresses induced along the energy optimal and the

fixed central hole. When L0 is a unit circle, the angular stress distribution obtained as a by-product of
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circular (top) and square-like (bottom) central hole.
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the energy optimization is shown in Figure 7. The nonphysical oscillations observed indicate that the
currently configured optimization scheme is not adequate for quantitative assessment of the stresses. On
the other hand, the oscillations occur well away from the global extrema, so the latter can be cautiously
used to conclude that, as N increases, the stresses maxima show a decrease (though not monotonic) in
parallel with the energy (Table 3).
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N 0 1 2 3 5 7

L0
maximum 14.0200 9.6408 8.6397 9.2894 8.4561 8.4309
minimum −3.1456 −3.6886 −3,4341 −3.4155 −3.3545 −3.3145

L1
maximum 11.0186 7.3296 6.6463 7.1169 5.6460 5.5241
minimum −6.2377 −3.9310 −4.2924 −4.2819 −3.9522 −3.9000

Table 3. Extremal values of the hoop stresses along the central circular and side energy-
minimizing holes at λ= 0.2 with increasing number N of the mapping terms from N = 0
(a circle) and on.

7. Closure and future applications

The paper presented a GA-based study of a rather difficult shape optimization problem in an infinite 2D
elastic region with partially fixed boundary. This was done by combining the complex variable technique
with a novel shape representation specially tailored for the current purposes. For clarity, we repeat here
the essential points of the approach.

First, the advanced direct solver is employed for a fast and stable fitness evaluation. The solver engine
is based on a standard numerical treatment of a specially derived system of linear algebraic equations in
Laurent coefficients for the first KM potential only. The system entries involve boundary integrals of a
regular, rather than a singular, type.

Second, an efficient shape encoding scheme is used within the GA framework. Based on a separate
conformal mapping of each free contour, it has a twofold benefit over the commonly used nodal points
representation. First, as design variables, the mapping coefficients drastically reduce the computational
size of the problem, because even a small number of them provides a representative pool of admissible
curves. Possible excessive smoothing of angular points through neglecting the high-order coefficients is
counteracted by the integral nature of the energy-related criterion. Second, any mutual arrangement of
the mapped shapes is straightforwardly met by displacing and scaling.

The approach described works well also when elastic inclusions are taken instead of holes [Vigdergauz
2008b], and may be applied to similar problems in other fields of continuum mechanics. In elastostatics,
it seems promising to use the proposed scheme for yet unsolved shape optimization problems in finite
domains. We are now pursuing this issue.
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