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WITH SYMMETRIC DOUBLE EDGE DEFECTS

XIANGQIAO YAN, BAOLIANG LIU AND ZHAOHUI HU

Tensile sheets with symmetrically placed cracks on opposite edges are studied using the displacement
discontinuity method with crack-tip elements. Three cases are considered: a rectangular sheet, one with
half-circle indentations on the cracked edges, and one with notch indentations. Solutions for the stress
intensity factors (SIFs) of the three problems are given, revealing the effect of the geometric parameters.
By comparing the three cases, one observes that the indentations have a shielding effect.

1. Introduction

In plates with holes under the action of fatigue loading, crack initiation is most likely at the hole edges
due to stress concentration around the hole. Consequently, a number of papers have dealt with hole
edge crack problems. Bowie [1956] gave solutions for a circular hole with a single edge crack and a
pair of symmetrical edge cracks in a plate under tension. Newman [1971], using the boundary collo-
cation method, and Murakami [1978], using the body force method, analyzed the tension problem for
an elliptical hole with symmetrical edge cracks. Tweed and Rooke [1973] used the Mellin transform
technique to make analyses of biaxial tensions for a branching crack emanating from a circle hole. Isida
and Nakamura [1980] made an analysis of a slant crack emanating from an elliptical hole under uniaxial
tension and shear at infinity by using the body force method.

Here we consider the related problem of rectangular tensile sheets with symmetric double edge defects,
in the shapes illustrated in Figure 1. In [Yan 2003a] we proposed a method, based on the displacement

1 

H 

2W 

a 

H 

a 

1 

 

a 

1 

1 

H

a 

R R 

2W 

H

 

a 

1 

1 

H

a 

c 
c 

2W 

H

c 

Figure 1. Rectangular tensile sheet with symmetric cracks emanating from straight
edges (left), from half-circle indentations (middle), and from half-square notches (right).
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discontinuity method with crack-tip elements, for the analysis of general plane elastic crack problems.
It was found in that paper, as well as in subsequent ones such as [Yan 2003b; 2006a; 2006b], that this
method is accurate and effective for analyzing such problems.

We therefore use this method to perform a numerical analysis of the problem involving the shapes in
Figure 1, focusing specifically on the stress intensity factors (SIFs). Murakami [1987] reported the SIFs
for the plane elastic crack problems shown in the first two cases (simple crack and crack in semicircle
indentation) when the aspect ratio H/W is large (narrow strip); but to our knowledge, detailed solutions
to the SIFs for this geometry have not been obtained when H/W is less than 2. The same reference also
reports the solutions to the SIFs of cracks emanating from a square hole in infinite plate in tension.

The effect of the geometric parameters of the cracked bodies on the SIFs is discussed for all three
cases, and it is found that the half-circle and notch indentations have a shielding effect on the SIFs. The
study illustrates the use of the boundary element method, which proves to be simply and accurate for
calculating the SIFs of complex crack problems in a finite plate.

2. Brief description of the boundary element method

We briefly review the method introduced in [Yan 2003a], which in turn is based on [Crouch and Starfield
1983]. In this latter reference, the displacement discontinuity

Dx = ux(x, 0−)− ux(x, 0+), Dy = u y(x, 0−)− u y(x, 0+), (1)

defined as the difference in displacement between the two sides of the segment, is used to solve for the
displacements, which take on the values

ux = Dx
(
2(1− ν)F3(x, y)− yF5(x, y)

)
+ Dy

(
−(1− 2ν)F2(x, y)− yF4(x, y)

)
,

u y = Dx
(
(1− 2ν)F2(x, y)− yF4(x, y)

)
+ Dy

(
2(1− ν)F3(x, y)+ yF5(x, y)

)
,

(2)

and the stresses, whose values are

σxx = 2G Dx
(
2F4(x, y)+ yF6(x, y)

)
+ 2G Dy

(
−F5(x, y)+ yF7(x, y)

)
,

σyy = 2G Dx
(
−yF6(x, y)

)
+ 2G Dy

(
−F5(x, y)− yF7(x, y)

)
,

σxy = 2G Dx
(
−F5(x, y)+ yF7(x, y)

)
+ 2G Dy

(
−yF6(x, y)

)
,

(3)

In these equations, G is the shear modulus and ν the Poisson’s ratio; the functions F2 through F7 are
described in [Crouch and Starfield 1983].

By using (2) and (3), we gave formulas in [Yan 2003a] for the left and right crack-tip displacement
discontinuity elements. For the left crack-tip, the displacement discontinuity functions are chosen as

Dx = Hs

(
atip+ ξ

atip

)1/2

, Dy = Hn

(
atip+ ξ

atip

)1/2

, (4)

where Hs and Hn are the tangential and normal displacement discontinuities at the center of the element,
and atip is half the length of crack-tip element. Note that the element has the same unknowns as the
two-dimensional constant displacement discontinuity element. We have shown that the displacement
discontinuity functions in (4) can model the displacement fields around the crack tip. The stress field
determined by the displacement discontinuity functions (4) has an r−1/2 singularity around the crack tip.
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Based on (2) and (3), the displacements at a point (x, y) due to the left crack-tip displacement discon-
tinuity element can be obtained as

ux = Hs
(
2(1− ν)B3(x, y)− y B5(x, y)

)
+ Hn

(
−(1− 2ν)B2(x, y)− y B4(x, y)

)
,

u y = Hs
(
(1− 2ν)B2(x, y)− y B4(x, y)

)
+ Hn

(
2(1− ν)B3(x, y)+ y B5(x, y)

)
,

(5)

and the stresses as

σxx = 2G Hs
(
2B4(x, y)+ y B6(x, y)

)
+ 2G Hn

(
−B5(x, y)+ y B7(x, y)

)
,

σyy = 2G Hs
(
−y B6(x, y)

)
+ 2G Hn

(
−B5(x, y)− y B7(x, y)

)
,

σxy = 2G Hs
(
−B5(x, y)+ y B7(x, y)

)
+ 2G Hn

(
−y B6(x, y)

)
,

(6)

where the functions B2 through B7 are described in [Yan 2003a].

Implementation of the numerical approach. The objective of many analyses of linear elastic crack
problems is to obtain the stress intensity factors K I and KII . Crouch and Starfield [1983] used relations (2)
and (3) to set up the constant displacement discontinuity boundary element method. Similarly, we can use
(5) and (6) to set up boundary element equations associated with the crack-tip elements. The constant
displacement discontinuity element together with the crack-tip elements is combined to form a very
effective numerical approach for calculating the SIFs of general plane cracks. In the boundary element
implementation, the left or the right crack-tip element is placed locally at the corresponding left or right
crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface
and the other boundaries. This is called the displacement discontinuity method with crack-tip elements.
Based on the displacement field around the crack tip, we can write

K I =−

√
2πG Hn

4(1− ν)
√

atip
, KII =−

√
2πG Hs

4(1− ν)
√

atip
, (7)

3. Numerical results and discussion

We report here the results of SIF calculations for the plane elastic crack problems of Figure 1. We start
with the simple rectangular plate (left in the figure), taking the following ratios:

a/W = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

H/W = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 2.0

Regarding discretization, 30 boundary elements with of equal size, a/30, on the right edge crack are
discretized and the other boundaries are discretized according to the limitation that all boundary elements
have approximately the same length [Yan 2003a]. The calculated SIFs normalized by σ

√
πa are given

in Table 1. For comparison, the table also lists the numerical results reported in [Murakami 1987], with
which our numerical results are in good agreement.

Table 1 makes it clear that one must consider the effect of H/W on the SIF:

(1) For a shallow defect (a/W = 0.1) the SIF with a H/W = 0.4 (low aspect ratio) is 16% lager than
that when H/W = 2.
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H/W
a/W 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5 2.0 liter.

0.1 1.2902 1.2344 1.2007 1.1773 1.1596 1.1459 1.1356 1.1228 1.1154 1.1129 –
0.2 1.6499 1.4900 1.3879 1.3139 1.2576 1.2142 1.1820 1.1425 1.1193 1.1123 1.118
0.3 2.0845 1.8093 1.6213 1.4813 1.3750 1.2959 1.2386 1.1700 1.1305 1.1183 1.120
0.4 2.5464 2.1422 1.8537 1.6393 1.4834 1.3719 1.2943 1.2045 1.1536 1.1377 1.132
0.5 2.9943 2.4333 2.0329 1.7521 1.5611 1.4315 1.3449 1.2478 1.1937 1.1765 1.163
0.6 3.3400 2.5980 2.1104 1.8006 1.6046 1.4792 1.3979 1.3090 1.2603 1.2446 1.226
0.7 3.3959 2.5553 2.0776 1.8032 1.6406 1.5410 1.4782 1.4107 1.3739 1.3618 1.343

Table 1. Normalized SIFs for the rectangular plate in Figure 1, left. Literature values
on the last column, taken from [Murakami 1987], refer to a high value of H/W .

(2) As a/W increases, this effect becomes more obvious. For a/W = 0.6, for example, the SIF when
H/W = 0.4 is 2.68 times the one when H/W = 2.0. But when H/W is larger than 2 this effect
is negligible regardless of the size of a/W , which perhaps is the reason for taking H/W = 2 in
calculating the SIFs of crack problems in finite width plates [Newman 1971].

Cracks emanating from half-circle indentations. Two sorts of experiments are reported for the geom-
etry shown in Figure 1, middle. First, we consider a crack that is much larger than the corresponding
indentation, to approximate the situation just discussed, where the crack emanates from a straight edge.
For example, if we take

H/W = 1, a/R = 7, a/W = 0.5,

we expect that the effect of the half-circle indentation on the SIFs will be negligible. For the discretiza-
tion, the number of boundary elements on a quarter-circle is taken as 50 and the other boundaries are
discretized according to the limitation that all boundary elements have approximately the same length.
The calculated SIF normalized by σ

√
πa is 1.3200, which is indeed close to the corresponding value

(1.3449) listed in Table 1.
Secondly, we systematically vary the three relevant ratios to study their effect on the SIF. The following

cases are considered:

a/R = 1.02, 1.04, 1.06, 1.08, 1.1, 1.15, 1.2, 1.5, 2.0

H/W = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0

a/W = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

For the discretization, the number of boundary elements on a quarter-circle is chosen according to a/R
as follows:

a/R 1.02 1.04 1.06 1.08 1.1 1.15 1.2 1.5 2.0
# elements 250 200 167 175 160 133 100 100 50

The other boundaries are discretized so that all boundary elements have approximately the same length.
The calculated SIFs normalized by σ

√
πa are given in Table 2.

To study the effect of the half-circle indentations on the SIF, we compare the numbers in Table 2 with
those in Table 1. Recall that Table 1 corresponds to a ratio a/R =∞. We find that, as a/R increases
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a/R
H/W 1.02 1.04 1.06 1.08 1.1 1.15 1.2 1.5 2.0

0.5 0.5949 0.8122 0.9541 1.0511 1.1284 1.2528 1.3298 1.4469 1.4701
0.6 0.5526 0.7558 0.8883 0.9796 1.0523 1.1700 1.2413 1.3525 1.3719
0.7 0.5211 0.7141 0.8402 0.9270 0.9969 1.1093 1.1774 1.2835 1.3008

a/
W
=

0.
2

0.8 0.4969 0.6822 0.8029 0.8866 0.9532 1.0620 1.1282 1.2304 1.2469
0.9 0.4782 0.6575 0.7743 0.8555 0.9204 1.0263 1.0905 1.1899 1.2053
1.0 0.4645 0.6394 0.7533 0.8327 0.8959 0.9994 1.0625 1.1599 1.1745

0.5 0.7321 0.9937 1.1663 1.2812 1.3765 1.5247 1.6161 1.7600 1.7909
0.6 0.6507 0.8856 1.0396 1.1452 1.2298 1.3648 1.4478 1.5776 1.6036
0.7 0.5903 0.8048 0.9449 1.0430 1.1202 1.2453 1.3231 1.4440 1.4669
0.8 0.5446 0.7441 0.8747 0.9664 1.0393 1.1566 1.2291 1.3437 1.3628

a/
W
=

0.
3

0.9 0.5113 0.7000 0.8233 0.9107 0.9793 1.0915 1.1598 1.2689 1.2859
1.0 0.4879 0.6688 0.7870 0.8707 0.9366 1.0447 1.1102 1.2150 1.2303
1.5 0.4460 0.6128 0.7214 0.7987 0.8593 0.9589 1.0192 1.1146 1.1264
2.0 0.4410 0.6063 0.7139 0.7903 0.8505 0.9491 1.0088 1.1028 1.1147

0.5 0.8732 1.1806 1.3870 1.5282 1.6393 1.8193 1.9272 2.0990 2.1327
0.6 0.7429 1.0081 1.1843 1.3076 1.4034 1.5606 1.6565 1.8100 1.8400
0.7 0.6459 0.8792 1.0362 1.1444 1.2318 1.3731 1.4594 1.5988 1.6266
0.8 0.5782 0.7898 0.9309 1.0307 1.1089 1.2385 1.3178 1.4467 1.4704

a/
W
=

0.
4

0.9 0.5334 0.7293 0.8591 0.9525 1.0249 1.1454 1.2195 1.3405 1.3614
1.0 0.5038 0.6896 0.8125 0.9006 0.9692 1.0834 1.1531 1.2672 1.2852
1.5 0.4567 0.6254 0.7358 0.8151 0.8762 0.9779 1.0388 1.1373 1.1491
2.0 0.4518 0.6189 0.7280 0.8060 0.8664 0.9665 1.0267 1.1224 1.1338

0.5 0.9212 1.2521 1.4940 1.6714 1.8128 2.0510 2.1822 2.4130 2.4433
0.6 0.7921 1.0827 1.2809 1.4204 1.5301 1.7130 1.8200 1.9978 2.0276
0.7 0.6683 0.9162 1.0847 1.2040 1.2989 1.4577 1.5532 1.7128 1.7420
0.8 0.5889 0.8088 0.9573 1.0637 1.1479 1.2893 1.3763 1.5232 1.5500

a/
W
=

0.
5

0.9 0.5413 0.7428 0.8787 0.9759 1.0531 1.1827 1.2618 1.3967 1.4212
1.0 0.5123 0.7029 0.8301 0.9218 0.9933 1.1144 1.1879 1.3134 1.3351
1.5 0.4748 0.6489 0.7625 0.8441 0.9066 1.0110 1.0731 1.1755 1.1887
2.0 0.4721 0.6449 0.7573 0.8374 0.8990 1.0013 1.0619 1.1603 1.1723

0.6 0.7403 1.0268 1.2295 1.3895 1.5211 1.7382 1.8682 2.0894 2.1171
0.7 0.6480 0.8978 1.0726 1.2013 1.3038 1.4778 1.5852 1.7667 1.7958
0.8 0.5810 0.8028 0.9553 1.0669 1.1560 1.3078 1.4028 1.5664 1.5955

a/
W
=

0.
6

0.9 0.5455 0.7505 0.8889 0.9905 1.0703 1.2066 1.2921 1.4419 1.4694
1.0 0.5273 0.7226 0.8535 0.9476 1.0225 1.1478 1.2262 1.3632 1.3887
1.5 0.5124 0.6964 0.8150 0.8993 0.9638 1.0695 1.1335 1.2391 1.2549
2.0 0.5132 0.6965 0.8143 0.8974 0.9606 1.0642 1.1260 1.2261 1.2401

0.7 0.6090 0.8397 1.0073 1.1430 1.2497 1.4436 1.5626 1.7776 1.8041
0.8 0.5915 0.8125 0.9648 1.0772 1.1676 1.3259 1.4251 1.6063 1.6353
0.9 0.5851 0.7958 0.9366 1.0383 1.1182 1.2570 1.3442 1.5041 1.5331

a/
W
=

0.
7

1.0 0.5849 0.7905 0.9246 1.0198 1.0938 1.2200 1.2984 1.4429 1.4701
1.5 0.5961 0.7983 0.9248 1.0115 1.0768 1.1824 1.2450 1.3507 1.3686
2.0 0.5990 0.8022 0.9283 1.0147 1.0791 1.1821 1.2428 1.3413 1.3568

Table 2. Normalized SIFs for rectangular plate with semicircle cutout (Figure 1, middle).
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from 1.02 to 2, the SIF increases monotonously regardless of the value of a/W . When a/R reaches 2,
the SIF almost equals its asymptotic value in Table 1. This suggests the following observations:

(1) The half-circle indentations have a shielding effect on the edge cracks.

(2) The closer the depth of the indentations is to the overall defect size (that is, the lower a/R is), the
larger the shielding effect.

(3) When a/R is more than 2, meaning that the crack itself is longer than the characteristic size of the
indentation, the shielding effect can be neglected.

Cracks emanating from half-square notches. We next turn to the geometry in Figure 1, right, varying
the three relevant ratios to study their effect on the SIF. The following cases are considered:

a/c = 1.02, 1.04, 1.06, 1.08, 1.1, 1.15, 1.2, 1.5, 2.0

H/W = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0

a/W = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

For the discretization, the number of boundary elements on a side of the notch is chosen according to
a/c as follows:

a/c 1.02 1.04 1.06 1.08 1.1 1.15 1.2 1.5 2.0
# elements 250 200 167 175 160 133 100 100 50

The other boundaries are discretized so that all boundary elements have approximately the same length.
The calculated SIFs normalized by σ

√
πa are given in Table 3.

As in the previous subsection, we compare these numbers with those on Table 1, and see that as a/c
increases from 1.02 to 2, the SIF increases monotonously regardless of the value of a/W . When a/c
reaches 2, the SIF almost equals its asymptotic value in Table 1. To summarize:

(1) The half-square notches have a shielding effect on the edge cracks.

(2) The closer the notch depth is to the overall defect size (that is, the lower a/c is), the larger the
shielding effect.

(3) When a/c is more than 2, meaning that the crack itself is longer than the characteristic size of the
notch, the shielding effect can be neglected.

Comparison between effects of half-circle and half-square indentations. We briefly compare the results
for the two indented geometries: half-circle indentations versus half-square notches. Figure 2 shows the
evolution of the SIF with the size of the indentation relative to the crack size, for both geometries, in two
particular cases: when case a/W = 0.2 and H/W = 0.5, and when a/W = 0.5 and H/W = 1.0. We
see that the shielding effect of the half-circle indentations is much stronger effect than for the notches,
in agreement with the expectation that a geometry with a sharp concave angle is more vulnerable to the
stress concentration effect.
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a/R
H/W 1.02 1.04 1.06 1.08 1.1 1.15 1.2 1.5 2.0

0.5 1.3537 1.3919 1.4164 1.4240 1.4356 1.4479 1.4582 1.4595 1.4667
0.6 1.2663 1.3018 1.3240 1.3313 1.3417 1.3530 1.3614 1.3631 1.3683
0.7 1.2023 1.2360 1.2570 1.2636 1.2742 1.2844 1.2918 1.2928 1.2975

a/
W
=

0.
2

0.8 1.1533 1.1858 1.2054 1.2119 1.2209 1.2312 1.2386 1.2389 1.2435
0.9 1.1156 1.1471 1.1659 1.1721 1.1811 1.1910 1.1977 1.1979 1.2021
1.0 1.0878 1.1184 1.1368 1.1429 1.1512 1.1607 1.1674 1.1675 1.1713

0.5 1.6376 1.6881 1.7173 1.7270 1.7428 1.7583 1.7707 1.7759 1.7842
0.6 1.4729 1.5157 1.5407 1.5503 1.5634 1.5777 1.5879 1.5924 1.5987
0.7 1.3503 1.3905 1.4125 1.4216 1.4326 1.4442 1.4542 1.4571 1.4630
0.8 1.2577 1.2942 1.3146 1.3227 1.3335 1.3439 1.3521 1.3552 1.3594

a/
W
=

0.
3

0.9 1.1892 1.2237 1.2426 1.2507 1.2598 1.2698 1.2768 1.2792 1.2826
1.0 1.1399 1.1725 1.1905 1.1980 1.2065 1.2161 1.2223 1.2243 1.2274
1.5 1.0478 1.0773 1.0934 1.1000 1.1075 1.1155 1.1209 1.1218 1.1236
2.0 1.0364 1.0656 1.0818 1.0880 1.0958 1.1037 1.1090 1.1096 1.1117

0.5 1.9434 2.0042 2.0405 2.0545 2.0723 2.0924 2.1037 2.1141 2.1182
0.6 1.6795 1.7304 1.7633 1.7720 1.7900 1.8074 1.8180 1.8266 1.8320
0.7 1.4872 1.5329 1.5595 1.5700 1.5829 1.5980 1.6088 1.6149 1.6216
0.8 1.3501 1.3898 1.4125 1.4224 1.4332 1.4473 1.4563 1.4619 1.4667

a/
W
=

0.
4

0.9 1.2533 1.2905 1.3107 1.3202 1.3298 1.3418 1.3500 1.3544 1.3587
1.0 1.1868 1.2212 1.2402 1.2487 1.2577 1.2689 1.2757 1.2795 1.2828
1.5 1.0700 1.0999 1.1158 1.1231 1.1299 1.1386 1.1436 1.1453 1.1466
2.0 1.0561 1.0856 1.1014 1.1081 1.1152 1.1237 1.1287 1.1296 1.1312

0.5 2.2054 2.2793 2.3213 2.3445 2.3649 2.3896 2.3990 2.4169 2.4140
0.6 1.8419 1.9018 1.9372 1.9535 1.9698 1.9895 2.0001 2.0111 2.0128
0.7 1.5843 1.6354 1.6656 1.6776 1.6933 1.7106 1.7211 1.7305 1.7344
0.8 1.4123 1.4567 1.4827 1.4938 1.5068 1.5226 1.5329 1.5406 1.5459

a/
W
=

0.
5

0.9 1.2998 1.3394 1.3619 1.3728 1.3836 1.3976 1.4068 1.4139 1.4183
1.0 1.2265 1.2628 1.2830 1.2931 1.3024 1.3149 1.3232 1.3292 1.3331
1.5 1.1061 1.1368 1.1532 1.1611 1.1682 1.1772 1.1825 1.1850 1.1864
2.0 1.0925 1.1227 1.1387 1.1460 1.1530 1.1618 1.1668 1.1683 1.1698

0.6 1.8981 1.9675 2.0061 2.0293 2.0482 2.0720 2.0819 2.0961 2.0928
0.7 1.6192 1.6749 1.7088 1.7256 1.7413 1.7612 1.7715 1.7827 1.7838
0.8 1.4430 1.4910 1.5201 1.5334 1.5477 1.5655 1.5761 1.5866 1.5897

a/
W
=

0.
6

0.9 1.3339 1.3770 1.4028 1.4141 1.4271 1.4431 1.4526 1.4623 1.4664
1.0 1.2674 1.3068 1.3293 1.3402 1.3510 1.3651 1.3744 1.3825 1.3866
1.5 1.1659 1.1983 1.2155 1.2239 1.2317 1.2416 1.2473 1.2509 1.2529
2.0 1.1553 1.1867 1.2039 1.2116 1.2189 1.2281 1.2338 1.2358 1.2375

0.7 1.6035 1.6654 1.7015 1.7240 1.7415 1.7652 1.7765 1.7901 1.7886
0.8 1.4669 1.5193 1.5506 1.5668 1.5825 1.6026 1.6135 1.6262 1.6277
0.9 1.3856 1.4320 1.4589 1.4734 1.4863 1.5041 1.5146 1.5265 1.5295

a/
W
=

0.
7

1.0 1.3371 1.3804 1.4045 1.4168 1.4285 1.4444 1.4539 1.4646 1.4679
1.5 1.2720 1.3065 1.3247 1.3339 1.3422 1.3525 1.3598 1.3641 1.3667
2.0 1.2654 1.2990 1.3168 1.3253 1.3332 1.3431 1.3493 1.3524 1.3548

Table 3. Normalized SIFs for Double Edge Half-Square-Hole Cracks (a/W = 0.7)
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a/W = 0.2, H/W = 0.5 a/W = 0.5, H/W = 1.0
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Figure 2. Effect of half-circle and half-square indentations on the SIF, for representative
choices of the parameters a/W and H/W .

4. Conclusions

A numerical analysis of double edge defects in rectangular plates in tension (Figure 1) was performed, and
the stress intensity factors calculated for a variety of values of the geometric parameters. By comparing
the calculated SIFs for the three geometries, it was found that the presence of an indentation at the base
of the crack has a shielding effect, lowering the SIF. The effect is more pronounced when the indentation
is a half-circle than when it is a half-square notch. The shielding effect gradually decreases with the size
of the indentation; When the characteristic size (depth) of the indentation is less than the length of the
crack proper (that is, the ratio a/R or a/c in Figure 1 exceeds 2), the effect becomes negligible.

This study illustrates how the displacement discontinuity method with crack-tip elements can be of
value in calculating SIFs for complex crack problems involving a finite plate.
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