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We generalize the traditional Hamilton principle and give a complete nonlinear mathematical model
of thermoelastic beams with voids based on this generalization, including the influences of the axial
force, neutral layer inertia and rotation inertia. The differential quadrature method is used to discrete
the nonlinear system on the spatial domain, and the Newton–Raphson method and Runge–Kutta method
are adopted to solve the static and dynamical behaviors of the beam, respectively. The influences of the
parameters on the nonlinear mechanical behavior of beam are studied in detail. The results show that the
presence of voids enlarges beam deflection. And also one can see that the DQM has advantages of fewer
workload, higher precision, better convergence, and so on.

1. Introduction

Thermoelastic materials with voids, which are common in various types of geological, biological and
synthetic materials, are of practical utility in both structural and functional forms. Porous materials have
extensive applications in aerospace, electronic communications, construction, metallurgy, nuclear energy,
petrochemical, mechanical, medical and environmental protection due to their advantageous properties,
such as low relative density, high specific strength and surface area, light weight, thermal and acoustical
insulation and good permeability [Xi 2007].

Cowin and Nunziato [1983] proposed a linear theory of elastic materials with voids, which has prac-
tical utility for investigating various types of porous materials. Their theory is concerned with elastic
materials consisting of a distribution of small voids, in which the void volume is included among the
kinematic variables, and the theory reduces to the classical theory of elasticity in the limit case of the
volume tending to zero. Iesan [1986] developed a linear theory of thermoelastic materials with voids.
Puri and Cowin [1985] studied the behavior of plane waves in linear elastic materials with voids. Chirit,ă
and Scalia [2001] considered the spatial and temporal behaviors in linear thermoelasticity of materials
with voids. Scalia et al. [2004] studied the steady time-harmonic oscillation in thermoelastic materials
with voids. Chirit,ă and Ciarletta [2008] discussed the structural stability of thermoelastic model of porous
media. Cicco and Diaco [2002] developed a theory of thermoelastic materials with voids without energy
dissipation. Ciarletta et al. [2007] studied thermoporoacoustic acceleration waves in elastic materials
with voids without energy dissipation. Singh [2007] studied the wave propagation in a generalized
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thermoelastic material with voids. Kumar and Rani [2005] investigated the dynamic response of a ho-
mogeneous, isotropic, thermoelastic half-space with voids subjected to time harmonic normal force and
thermal source.

In [Sheng and Cheng 2004; Cheng et al. 2006], the Gurtin-type variational principles of viscoelastic
Timoshenko beams and thick plates with damage were established, damage being regarded as voids in
materials. These works also studied quasistatic problems of viscoelastic beams and dynamical behaviors
of viscoelastic plates. Bı̂rsan [2003] presented a bending theory of porous thermoelastic plates. Sharma
et al. [2008] investigated the three-dimensional vibration of a thermoelastic cylindrical panel with voids.

As one kind of the most basic structural components, beams are widely applied to engineering and
science, for example, bridges and beam-column systems of constructions, nanoscale bioprobes and piezo-
electric devices, heat exchanger tubes in production equipment, titanium alloy artificial bones. Besides,
rockets, missiles and other flying slender cylindrical structures can be approximated as a free-free beam
to study the dynamical response and failure analysis under transient dynamical loads [Yu et al. 1996].
The structural elements mentioned above, which may be thermoelastic materials with voids, might be
subject to a variety of static loads and external excitations, such as mechanical forces, seismic waves,
shock waves, aerodynamic forces, thermal and nonthermal loads, etc. Therefore, it is very important to
present a suitable nonlinear mathematical model of thermoelastic beams with voids.

For the linear thermoelastodynamics, there exist plenty of papers for variational principles and solving
methods. Zhang [2007] presented a Gurtin-type variational formulation for functionally graded ther-
moviscoelastic beams by using the convolution bilinear form and the classical cartesian bilinear form.
But for the thermoelastic problems with geometric nonlinearity, there are two difficulties to set up the
corresponding Hamilton variational principles:

(1) The terms with the first-order time-derivative in the equation for the balance of entropy are not
potential operators.

(2) The traditional Hamilton principle is used to characterize dynamical problems at the initial and final
time.

Luo et al. [2002] presented unconventional Hamilton-type variational principles for nonlinear ther-
moelastodynamics, which can characterize this kind of the initial-boundary-value problems. However,
there are seldom reports for the variational principles and numerical methods of thermoelastic beams
with both voids and geometric nonlinearity.

In this paper, the traditional Hamilton principle is first generalized, a complete finite deformation
theory of thermoelastic beams with voids is presented from the generalized Hamilton principle, in which,
the influences of the axial force, neutral layer and rotation inertia are all considered. The theory exhibits
a set of nonlinear equations about three displacements, one void moment and one thermal moment.
As application, the plane bending of beams is studied. To improve the computational efficiency and
accuracy, the differential quadrature method (DQM) is used to discrete the nonlinear system on the
spatial domain, then the Newton–Raphson method and Runge–Kutta method are adopted to calculate
and analyze the static and dynamical response of nonlinear systems of thermoelastic beams with voids,
respectively. The mechanical behavior of beams is investigated under four cases, that is, thermoelastic
materials with/without voids and elastic materials with/without voids. The influences of the parameters
are studied in detail.
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Figure 1. Model of a beam.

2. Basic equations of thermoelastic beams with voids

Consider a beam subjected to distributed transverse loads, as in Figure 1. Assume the beam’s cross-
section is uniform, the length is l, the width is b, and the thickness is h. Choose the x1-axis so it contains
the center of the section, the x2- and x3-axes as the orthogonal principal axes of the cross-section. Assume
the displacements of the neutral axis are ui (x1, t), for i = 1, 2, 3; we call u3(x1, t) the deflection. Based on
the Kirchhoff–Love hypothesis and finite deformation theory, we have the nonlinear geometry relations

ε11 = ε
0
11− x2u2,11− x3u3,11, ε0

11 = u1,1+ (u2,1)
2/2+ (u3,1)

2/2, (1)

where ε11 is the total strain component and ε0
11 is the strain component along the neutral axis.

Following the theory presented in [Iesan 1986], the basic equations for thermoelastic materials with
voids are given tensorially as follows:

ρüi = σ j i, j + ρ fi and ρχϕ̈ = hi,i + g+ ρl (2)

are the equations of balance of linear momentum and equilibrated force, where σi j is the symmetric stress
tensor, fi is the body force vector, ρ is the density in the reference configuration, ϕ is the change in the
volume fraction field, χ is the equilibrated inertia, hi is the equilibrated stress vector, g is the intrinsic
equilibrated body force, and ρl is the extrinsic equilibrated body force;

ρT0η̇ = qi,i + ρS (3)

is the equation for the balance of entropy, where S and η are the entropy and the external heat supply
per unit initial mass, while qi and T0 are the heat flux and the absolute temperature in the reference
configuration; and

σ11 = D0ε11+ bvϕ−βθ, g =−bvε11− ξvϕ+mvθ,

hi = αvϕ,i , ρη = βε11+mvϕ+ (ρce/T0)θ, qi = K θ,i
(4)

are the constitutive relations of isotropic thermoelastic beams with voids, where K the thermal conduc-
tivity, ce the specific heat at the constant strain, σ11 be the beam’s bending stress, αv, bv, ξv, mv are
parameters of the voids, θ denotes the absolute temperature with T0 subtracted, D0 is given by

D0 =
E(1− ν)

(1+ ν)(1− 2ν)
, (5)

in which E, ν are the elastic modulus and Poisson’s ratio, and finally β = αt E/(1− 2ν), where αt is the
linear expansion coefficient.
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3. The Hamilton principle and mathematical model of thermoelastic beams with voids

In order to present the nonlinear mathematical model of the problem, we first derive a generalized Hamil-
ton principle for thermoelastic beams with voids under geometric nonlinearity.

Let

Mϕ =

∫∫
A
ϕ(xi , t)x2x3 dA and Mθ =

∫∫
A
θ(xi , t)x2x3 dA (6)

be the moments caused by the change of the volume fraction ϕ(xi , t) and temperature θ(xi , t), respec-
tively. Set

qϕ = αv

∫∫
A

x2x3(ϕ,22+ϕ,33) dA

= αv

(∫ b/2

−b/2

(
(x3ϕ,3)|

h/2
−h/2−ϕ|

h/2
−h/2

)
x2 dx2+

∫ h/2

−h/2

(
(x2ϕ,2)|

b/2
−b/2−ϕ|

b/2
−b/2

)
x3 dx3

)
,

qθ =
K
T0

∫∫
A

x2x3(θ,22+ θ,33) dA

=
K
T0

(∫ b/2

−b/2

(
(x3θ,3)|

h/2
−h/2− θ |

h/2
−h/2

)
x2 dx2+

∫ h/2

−h/2

(
(x2θ,2)|

b/2
−b/2− θ |

b/2
−b/2

)
x3 dx3

)
.

(7)

According to [Cowin and Nunziato 1983], on the surfaces of the beam, ϕ(xi , t) needs to satisfy the
conditions ϕ,2|x2=±b/2 = 0 and ϕ,3|x3=±h/2 = 0, so the expression for qϕ simplifies to

qϕ =−αv

(∫ b/2

−b/2
(ϕ|

h/2
−h/2)x2 dx2+

∫ h/2

−h/2
(ϕ|

b/2
−b/2)x3 dx3

)
(8)

The thermal boundary conditions of the beam may be given as

K θ,2|x2=b/2 = h̄(T∞− θb/2), K θ,2|x2=−b/2 =−h̄(T∞− θ−b/2),

K θ,3|x3=h/2 = h̄(T∞− θh/2), K θ,3|x3=−h/2 =−h̄(T∞− θ−h/2),
(9)

where h̄ is the heat transfer coefficient, θb/2, θ−b/2, θh/2, and θ−h/2 denote the temperatures on the
surfaces x2 =±b/2 and x3 =±h/2, and T∞ is the temperature of surrounding medium. If we assume
that T∞ = 0, the absolute temperature is equal to the reference temperature. The second expression of
(7) then simplifies to

qθ =−
(

hh̄/2+ K
T0

∫ b/2

−b/2
(θ |

h/2
−h/2)x2 dx2+

bh̄/2+ K
T0

∫ h/2

−h/2
(θ |

b/2
−b/2)x3 dx3

)
. (10)

To evaluate (8) and (10), we express the change of the volume fraction and temperature as the series

ϕ(xi , t)=
∞∑

m=0

∞∑
n=0

ϕmn(x1, t)xm
2 xn

3 ,θ(xi , t)=
∞∑

m=0

∞∑
n=0

ϑmn(x1, t)xm
2 xn

3 (11)

Substituting (11) into (6) yields

Mϕ = Aϕ11(x1, t)+ o(b3h3) , Mθ = Aϑ11(x1, t)+ o(b3h3), (12)
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where ϕ11(x1, t) and ϑ11(x1, t) are the terms of (11) when m = n = 1. The term o(b3h3), indicating
higher-order quantities than b3h3, can be omitted in the calculation.

From (8), (10), (11), (12), we have

qϕ ≈−
(Iy + Iz)αv

A
Mϕ, qθ ≈−

(
(hh̄/2)+ K

T0

Iz

A
+
(bh̄/2)+ K

T0

Iy

A

)
Mθ , (13)

where A =
∫∫

A(x2x3)
2 dA = (b3/12)(h3/12), Iy =

∫∫
A x2

3 dA = h3b/12, and Iz =
∫∫

A x2
2 dA = b3h/12.

According to the theory of beams, the strain energy of a beam in terms of displacements, void moment
and thermal moment may be expressed as

U =
1
2

∫ l

0

∫∫
A

D0ε11ε11 dA dx1+
1

2(Iy + Iz)

∫ l

0
(αvMϕ,1 Mϕ,1+ξvM2

ϕ − qϕMϕ −
ρce

T0
M2
θ ) dx1

−
1

Iy + Iz

∫ l

0
(bvMϕ −βMθ )(Izu2,11+ Iyu3,11) dx1−

1
Iy + Iz

∫ l

0
mvMϕMθ dx1. (14)

Assume that the total kinetic energy of the beam is T = T1+T2, in which T1 is caused by displacements
and void moment, T2 is caused by rotation; these terms are given as

T1 =
ρhb

2

∫ l

0
(u̇2

1+ u̇2
2+ u̇2

3) dx1+
1

2(Iy + Iz)

∫ l

0
ρχ Ṁϕ Ṁϕ dx1,

T2 =
ρ

2

∫ l

0

∫∫
A

(
(x2u̇2,1)

2
+ (x3u̇3,1)

2) dA dx1 =
ρ

2

∫ l

0

(
Iz(u̇2,1)

2
+ Iy(u̇3,1)

2) dx1.

(15)

Define the symbol

D(Mθ )=
1

2(Iy + Iz)

∫ l

0

∫ t1

0

( K
T0

Mθ,1 Mθ,1− qθMθ

)
dt1 dx1. (16)

Assume that the beam is subjected to an arbitrary transverse distributed load qi in the xi -direction, that
the two ends are subjected to an axial force N0, and that all the forces are conservative. In the absence
of external equilibrated force and heat source, the external work may be given as

W =
∫ l

0
qi ui dx1+

N0

2

∫ l

0
(u2

2,1+ u2
3,1) dx1+ N0u1(0)− N0u1(a) (17)

Let

5B =

∫ l

0
ρhb

(
(u1|t=0− u0

1)u̇1− u̇0
1u1+ (u3|t=0− u0

3)u̇3− u̇0
3u3
)

dx1

+

∫ l

0

ρχ

Iy + Iz

(
(Mϕ|t=0−M0

ϕ)Ṁϕ−Ṁ0
ϕMϕ

)
dx1+

∫ l

0

1
Iy + Iz

(∫ t1

0

ρce

T0
(Mθ |t=0−M0

θ )Mθ dt
)

dx1. (18)

Generalized Hamilton principle for thermoelastic beams with voids. In all possible displacement fields
ui (x1, t), volume fraction field ϕ(xi , t)and temperature field θ(xi , t) satisfying the geometric constraint
conditions and having the appointed motions at the initial and final time, the actual displacements
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ui (x1, t), volume fraction ϕ(xi , t) and temperature θ(xi , t) make the following functional arrive at the
stationary value

5(ui , ϕ, θ)=

∫ t

0
(T +W + D−U ) dt +5B, (19)

where H = T +W + D−U is a generalized Hamilton function.
Applying a variational calculation to (19) (whose detailed formulas are given in the Appendix) and

substituting the results obtained into the variational equation of (19), that is, δ5 = 0, then integrating
(19) with regard to time from 0 to the final time t , and observing the beam has the appointed motions at
the initial and final time, as well as the arbitrariness of the variables δui , δMϕ , δMθ on the interval [0, l],
we obtain the differential equations of motion in terms of ui ,Mϕ,Mθ , in which the balance of entropy
has been differentiated relative to t1:

D0hb
(

u1,1+
(u2,1)

2
+(u3,1)

2

2

)
,1
+ q1 = ρhbü1,

D0hb
((

u1,1+
(u2,1)

2
+(u3,1)

2

2

)
u2,1

)
,1
− D0 Izu2,1111

+
Iz

Iy + Iz
(bvMϕ −βMθ ),11+ q2− N0u2,11 = ρhbü2− ρ Iz ü2,11,

D0hb
((

u1,1+
(u2,1)

2
+ (u3,1)

2

2

)
u3,1

)
,1
− D0 Iyu3,1111

+
Iy

Iy + Iz
(bvMϕ −βMθ ),11+ q3− N0u3,11 = ρhbü3− ρ Iy ü3,11,

αvMϕ,11+ bv(Izu2,11+ Iyu3,11)− ξvMϕ + qϕ +mvMθ = ρχ M̈ϕ,

K Mθ,11+βT0(Iz u̇2,11+ Iy u̇3,11)−mvT0 Ṁϕ + qθ = ρce Ṁθ .

(20)

This is a set of coupled nonlinear equations for ui , Mϕ and Mθ , in which the effects of the axial forces
N0, the neutral layer inertia ρhbü1, and the rotation inertias ρ Iz ü2,11 and ρ Iy ü3,11 are included.

It can be also seen that the boundary conditions at the end designated forces may be derived from the
boundary virtual work equation in the variational equation δ5= 0. If we only consider a clamped-beam
without axial forces, the boundary conditions at the ends (x1 = 0, l) are

ui = 0, u2,1 = 0, u3,1 = 0, Mϕ,1 = 0, Mθ = 0. (21)

Observing that formula (18) is included in (19), the initial conditions at the initial time are given as

ui = u0
i , Mϕ = M0

ϕ, Mθ = M0
θ , u̇i = u̇0

i , Ṁϕ = Ṁ0
ϕ, (22)

in which u0
i ,M0

ϕ,M0
θ , u̇0

i , Ṁ0
ϕ are the known functions of x1. Especially, if the beam is at rest at the

initial time, these functions are equal to zeros.

4. Solution method

As application of the mathematical model above, the nonlinear mechanical characteristics of a two end
fixed beam without the axial force are investigated, and the influences of parameters are considered. For
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convenience, we here study the plane bending of the beam only, that is, u2(x1, t)≡ 0. As it is difficult
to obtain the solution of the problem directly, we will apply the differential quadrature method (DQM)
to discretize the nonlinear system on the spatial domain.

The DQM is a numerical technique for solving boundary-valued problems. It was developed in [Bell-
man and Casti 1971], and since then it has been successfully employed to solve all kinds of problems in
engineering and science due to the DQM owns the advantages of little amount of nodes and computation,
high precision and good convergence and so on.

The DQM approximates the derivative of a function, with respect to the independent variable at a given
discrete point, as a weighted linear sum of the values of the function at all the discrete points chosen in
the solution domain of the independent variable, in which the weighting coefficients are only associated
with the given discrete points in the solution domain and independent of a certain problem. Therefore,
any differential equations can be transformed into a set of the corresponding algebraic equations.

Introduce the nondimensional variables and parameters

X =
x1

h
, U =

u1

h
, W =

u3

h
, β1 =

h
l
, τ = t

V1

l
, ψ = 12

Mϕ

h2 , 2= 12
Mθ

T0h2 , (23)

a1 =
bv
D0
, a2 =

βT0

D0
, a3 =

bvh2

αv
, a4 =

ξvh2

αv
, a5 =

mvT0h2

αv
, a6 =

(V1

V3

)2
, a8 =

β

ρce
,

a9 =
mv

ρce
, a10 =

h̄
2ρceV1

, a11 =
ρceV1h

K
, p̄ =

q3

D0
, V1 =

√
D0
ρ
, V3 =

√
αv

ρχ
. (24)

From (24), one sees that the coefficients a1 and a3 are the coupling deformation-void parameters,
which represent the coupling degree of the deformation and volume fraction field. The coefficient a6 is
the ratio of the longitudinal wave velocity to the volume fraction wave velocity, which represents the ratio
of the elastic constant to the void constant. The coefficient a4 is a void parameter. The coefficients a2 and
a8 are the coupling deformation-heat parameters, which represent the coupling degree of the deformation
and temperature field. The coefficient a10 is a convection heat transfer parameter, and a11 is the ratio of
dilational wave velocity to thermal conductive coefficient. The coefficients a5 and a9 are the coupling
void-heat parameters, which represent the coupling degree of the volume fraction and temperature field.

The differential quadrature discretization forms of the nondimensional differential equations are

N∑
k=1

A(2)ik Uk +β1

N∑
k=1

A(1)ik Wk ·
N∑

l=1
A(2)il Wl = Üi ,

β1

(
N∑

k=1
A(2)ik Uk ·

N∑
l=1

A(1)il Wl +
N∑

k=1
A(1)ik Uk ·

N∑
l=1

A(2)il Wl

)
+

3
2
β2

1

( N∑
k=1

A(1)ik Wk

)2 N∑
l=1

A(2)il Wl

−
β2

1

12

N∑
k=1

A(4)ik Wk +
a1

12

N∑
k=1

A(2)ik ψk −
a2

12

N∑
k=1

A(2)ik 2k +
p̄
β2

1
= Ẅi −

β2
1

12

N∑
k=1

A(2)ik Ẅk,

N∑
k=1

A(2)ik ψk + a3

N∑
k=1

A(2)ik Wk −
a4+ 12
β2

1
ψi +

a5

β2
1
2i = a6ψ̈i ,

β1

a11

N∑
k=1

A(2)ik 2k + a8β
2
1

N∑
k=1

A(2)ik Ẇk − a9ψ̇i −

(
a10+

1
a11

)12
β1

θ+− θ−

T0
= 2̇i ,

(25)
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where i ranges from 1 to N , the number of discrete points, and A( j)
ik is the weighting coefficient of

the j-th partial derivative of the function with respect to the independent variable X . In this paper, the
polynomial function is adopted as the test function to obtain the weighting coefficient, and the zeros of
the Chebyshev–Lobatto polynomial are adopted as the coordinates of the grid points [Bellman and Casti
1971].

The DQ discretization forms of the nondimensional boundary conditions can be expressed as

U1 =UN = 0, W1 =WN = 0, 21 =2N = 0,
N∑

k=1

A(1)1k ψk =

N∑
k=1

A(1)Nkψk = 0,
N∑

k=1

A(1)1k Wk =

N∑
k=1

A(1)Nk Wk = 0.
(26)

If the initial values of variables are all zero, we have the initial conditions of nondimensional forms

U (0)= U̇ (0)=W (0)= Ẇ (0)= ψ(0)= ψ̇(0)=2(0)= 0 (27)

Assuming that the temperature distribution is given by θ(x1, x3)= θ0(1/2+ x3/h), we have θ+ = θ0,
θ− = 0.

Hence, the static problem is converted to solving the nonlinear algebraic equations (25) under the
boundary conditions (26); while the dynamical problem is converted to solving the nonlinear ordinary
differential equations (25) under the boundary conditions (26) and initial condition (27). The Newton–
Raphson and Runge–Kutta methods are adopted in the calculation of the static and dynamical problems,
respectively.

To illustrate the correctness of the theory and method in this paper, a simply supported elastic beam
subjected to a uniformly distributed load p̄ is considered. The analytic solution is available in the case
of small deformation. Figure 2a shows the comparison between the analytic solution and the numerical
result obtained from the theory and method of this paper when p̄ = 10−5 and 7 nodes are collocated. It
can be seen that the results are accordant. Figure 2b shows the comparison between the analytic solution
and the numerical results when p̄ = 10−4 and 7 and 9 nodes are collocated, respectively. It is seen
that the solutions of linear elastic beam under small deformation and the nonlinear theory are no longer
consistent. The DQ solution is slightly less than the analytical solution due to the nonlinear effect. From
Figure 2b, one can see that the DQ solution has good convergence also.

Figure 2. Comparison of the DQ solution with the analytic solution.
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5. Nonlinear mechanical characteristics of thermoelastic beam with voids

Nonlinear static behavior of thermoelastic beams with voids. The Newton–Raphson method is used to
solve the static system (25)–(26) numerically. In this situation, the thermal moment, which is independent
of the deflection and void moment but just dependent of the lower and upper surface temperature, can be
solved directly from (25)4. In Table 1 we give the effects of the node distribution on the DQ solution of
the dimensionless deflection and void moment at the middle point of the beam for four different materials.
The parameters are chosen as follows (see [Puri and Cowin 1985; Kumar and Rani 2005]):

β1= 0.1, a1= 0.33, a2= 0.027, a3= 5, a4= 6, a11= 4.56×106, θ0= 10, p̄= 0.0001.

One can see that satisfactory results can be obtained when 9 nodes are collocated on the physical
interval [0, 1] for elastic beams (EB) and thermoelastic beams (TEB), while 15 nodes are needed for
elastic beams with voids (EVB) and thermoelastic beams with voids (TEVB). Hence, we set N = 15
in the calculation. When θ0 > 0, this means that the beam is subjected to a thermal moment, which is
just opposite to the bending moment of external force. From the comparison of the deflections of EB
and EVB, we see that the deflections of EVB are larger than the ones of EB. We can conclude that the
presence of voids enlarges the deflection.

Effect of a1. It can be observed from Figure 3 that the deflection and void moment of EVB increase
with a1. From Figure 4 it is seen that the deflection of TEVB decreases as a1 increases, while the
corresponding void moment increases.

Effect of a3. As for EVB, the results are similar to Figure 3, that is to say, the deflection and void moment
of EVB increases with a3. From Figure 5, one can see that the deflection of TEVB increases with an
increase in a3, while the void moment decreases.

Effect of a4. Figure 6 shows that the deflection and void moment of EVB decrease with an increase in a4.
Figure 7 suggests that the deflection of TEVB increases with an increase in a4, while the corresponding
void moment decreases.

Effect of a2. As for TEB and TEVB, the temperature can be solved directly because the energy equation
is an ordinary differential equation about X . So, the parameter a2 has no effect on the temperature. The

EB TEB EVB TEVB
nodes W W W ψ W ψ

7 0.031232 −0.25341 0.034650 −0.0015148 −0.20074 −0.095229
9 0.031228 −0.25123 0.034422 −0.0015084 −0.20265 −0.095241

11 0.031228 −0.25123 0.034351 −0.0015074 −0.20373 −0.095229
13 0.031228 −0.25123 0.034330 −0.0015066 −0.20406 −0.095216
15 0.031228 −0.25123 0.034323 −0.0015065 −0.20416 −0.095216
17 0.031228 −0.25123 0.034322 −0.0015065 −0.20419 −0.095215
19 0.031228 −0.25123 0.034322 −0.0015065 −0.20420 −0.095215
21 0.031228 −0.25123 0.034322 −0.0015065 −0.20420 −0.095215

Table 1. Effect of the node distribution on the DQ solutions for static system.
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Figure 3. Variation of deflection W and void moment ψ of EVB with X , for various a1.

Figure 4. Variation of deflection W and void moment ψ of TEVB with X , for various a1.

Figure 5. Variation of deflection W and void moment ψ of TEVB with X , for various a3.

Figure 6. Variation of deflection W and void moment ψ of EVB with X , for various a4.
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Figure 7. Variation of deflection W and void moment ψ of TEVB with X , for various a4.

Figure 8. Variation of deflection W of EVB and void moment ψ of TEVB with X , for
various a2.

Figure 9. Variation of deflection W and void moment ψ of TEVB with X , for various a5.

deflection of TEB increases with an increase in a2, as seen in Figure 8a, and so does the deflection of
TEVB. In contrast, the void moment of TEVB decreases with an increase in a2, as seen in Figure 8b.

Effect of a5. The parameter a5 is a coupling one of volume fraction and temperature field. Figure 9
shows that the deflection of TEVB varies from negative to positive with an increase in a5, while the void
moment varies from positive to negative.

Effect of a10 and a11. When a10 = 0, the boundary of the beam is adiabatic, meanwhile, the temperature
is independent of a11 but just dependent of the thickness-length ratio of the beam. When a10→∞, the
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Figure 10. Time-history curves of the beams deflection W and thermal moment 2.

boundary of beam is isothermal. The numerical calculation shows that the deflection, void moment and
thermal moment all increase with an increase in a10and a11, respectively.

To summarize, we can see that the effect of the parameters a1, a2, a3, a4, a5 on the deflection and the
void moment is significant for the static problem.

Nonlinear dynamical behavior of thermoelastic beams with voids. The Runge–Kutta method of fourth
order is used to solve the nonlinear dynamical system (25)–(27) numerically, to obtain time-history
curves of the corresponding variables at the middle point of the beam. In computation, setting N = 15,
the parameters are given as follows (see [Puri and Cowin 1985; Kumar and Rani 2005]):

β1 = 0.1, p̄ = 0.005 sin(2πτ), h = 0.1, θ0 = 100, a1 = 1.0, a2 = 0.05, a3 = 5.0,

a4 = 6.0, a5 = 0.36, a6 = 0.6, a8 = 10.0, a9 = 8.0, a10 = 1.0× 10−8, a11 = 4.56× 106.

For comparison, the time-history curves of the deflection for four beams (EB, TEB, EVB, TEVB) are
presented in Figure 10a, and those of the thermal moment for TEB and TEVB are shown in Figure 10b.
It can be observed that the presence of voids enlarges beam deflection, while the thermal effect is the
opposite: maybe the external work is partially transformed to thermal energy and dissipated. It is also
seen that the thermal moment increases due to the presence of voids. Comparing the time-history curves
of the void moment of TEVB and EVB, one can see that void moment of TEVB is slightly larger.

Next, the effect of parameters will be investigated. For the static problem, the parameters a6, a8, a9

are absent. For the dynamical problem, the parameter a6 has no influence on the dynamical behavior;
one only has to study the effects of a8 and a9.

Effect of a8. Figure 11 depicts the time-history curves of thermal moment of TEVB and TEB. It can
be observed that thermal moment decreases sharply then increases with the decrease of a8 for TEVB,
from Figure 11a; while the thermal moment just decreases sharply with the decrease of a8 for TEB, from
Figure 11b. Meanwhile, the deflection of these beams increases with the decrease of a8, and the void
moment has barely changes.

Effect of a9. The effect of the parameter a9 on the deflection and void moment of TEVB is negligible,
but Figure 12a shows that the thermal moment of TEVB increases with the decrease of a9.
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Figure 11. Time-history curves of the thermal moment of TEVB and TEB, for various
values of a8.

Effect of other parameters. For EVB and TEVB, the deflection and void moment all decrease with the
decrease of the parameters a1, a3, a5, respectively, while increase with the decrease of a4. Similarly to
the static results, the effect of the parameters a3 and a4 on the void moment of EVB is prominent, at the
same time, the effect of the parameters a3, a4 and a5 on the void moment of TEVB is significant, but on
the corresponding thermal moment may be negligible.

For TEVB, the deflection, void moment and thermal moment all increase with the decrease of a2, and
the latter two vary more obviously. As for TEB, the deflection and thermal moment also increase with
the decrease of a2.

For TEVB and TEB, the effect of the parameter a10 on the deflection is negligible. The thermal
moment no longer vibrates with the X -axis but gradually deviated from the X -axis downward with time
with an increase in a10, this means that the boundary of beam varies from adiabatic to isothermal. Figure
12b shows the time-history curves of the thermal moment of TEVB for different a10. Besides, the curves
of the void moment are similar to the thermal moment, but the value changes slightly.

Figure 12. Time-history curves of thermal moment of TEVB, for various values of a9

(left) and a10 (right).
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For TEVB and TEB, the amplitudes of deflection all decrease slightly with time as the parameter a11

increases. Besides, the variations of the void moment and thermal moment with a11 are similar to a10.

6. Conclusion

In this paper, the equation for the balance of entropy is firstly converted to an equivalent form without
the first-order time-derivative by integral, and introducing the moments caused by the change of the void
volume fraction and temperature, the Hamilton variational principle is extended to the three-dimensional
thermoelastic beams with voids under finite deformations. A nonlinear theory of thermoelastic beams
with voids is established based on the Kirchhoff–Love hypothesis, in which the influences of the axial
forces, neutral layer inertia and rotation inertia are considered. The theory presents a set of coupling
nonlinear differential equations of three displacements, one void moment and one thermal moment, in
which not only the accelerations of the deflection and void moment are included, but also the effects of
the neutral layer inertia and rotation inertia. So the theory is a complete nonlinear mathematical model
of thermoelastic beams with voids under the Kirchhoff–Love hypothesis.

To illustrate the correctness of the theory and method of this paper, the plane bending problem of a
simply supported elastic beam with small deformations is first studied, and the results are compared with
the analytic solution. One can see that the numerical solution obtained from the DQM is accordant with
the analytic solution, and the DQ solution has good convergence also.

As application, the static and dynamic responses of the plane bending of a fixed-fixed beam are studied.
It is difficult to obtain the analytic solution of the nonlinear problem, so one kind of numerical methods
is adopted to solve the problem. Firstly, the DQM is used to discrete the nonlinear system on the spatial
domain, a set of nonlinear algebraic equations or ordinary differential equations are obtained for the
static or dynamic problem, respectively. Then, the Newton–Raphson method and Runge–Kutta method
are adopted to calculate the static and dynamical system, respectively. Mechanical characteristics of
the system are investigated for four beams, that is, TEVB, TEB, EVB and EB, and the influences of
parameters are all investigated. The general conclusion is that the presence of voids enlarges beam
deflection. The deformation-void coupling parameters mainly bring changes in the deflection and void
moment. The effect of the deformation-heat coupling parameters is significant. The void-heat coupling
parameters change the void moment and thermal moment greatly, but the effect on the deflection is little.
Beam deflection increases with an increase in a1, a3, a5 but decreases with an increase in a2, a4, a8. The
effect of other parameters on the deflection is not obvious. For the dynamical problem, the effects of the
temperature on the deflection and void moment are less obvious than the static case, which maybe the
external work is transformed to the thermal energy partially and to be dissipated.

Appendix: Derivation of Hamilton variational principle of thermoelastic beam with voids

Letting u2(x1, t)≡ 0 in the equations above corresponds to considering only plane bending of the beam.
Applying a variational calculation to (19), we then obtain the variational formulas

δT1 =−

∫∫
�

{ρh(ü1δu1+ ü3δu3)+ ρχ M̈ϕδMϕ} d�+
∫∫

�

∂

∂t
{ρh(u̇1δu1+ u̇3δu3)+ ρχ ṀϕδMϕ} d�,
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δT2 = Iρ
∮
∂�

(∂ u̇3

∂x1
l
)
δu̇3 ds− Iρ

∫∫
�

(
∂

∂t

(∂2u̇3

∂x2
1
δu3

)
−
∂2ü3

∂x2
1
δu3

)
d�,

δW =
∫∫

�

(q1δu1+ q3δu3) d�+ Nx0δu1(0)− Nxaδu1(a),

δD(Mθ )=

∫∫
�

∫ t1

0

(
−

K
T0

Mθ,11δMθ+

( hh̄
2T0
+

K
T0

)12
h2 MθδMθ

)
dt1 d�+

∮
∂�

∫ t1

0

K
T0
(l Mθ,1δMθ ) dt1 ds,

δU =−(λ+ 2µ)h
∫∫

�

(
∂ε0

11

∂x1
δu1+

∂

∂x1

(
ε0

11
∂u3

∂x1

)
δu3

)
d�+

(λ+ 2µ)h3

12

∫∫
�

∂4u3

∂x4
1
δu3 d�

+

∫∫
�

(
−αvMϕ,11δMϕ + ξvMϕδMϕ +

12αv
h2 MϕδMϕ

)
d�−

∫∫
�

mv(MϕδMθ +MθδMϕ) d�

−
h3

12

∫∫
�

(
(bvδMϕ −βδMθ )

∂2u3

∂x2
1
+

(
bv
∂2 Mϕ

∂x2
1
−β

∂2 Mθ

∂x2
1

)
δu3

)
d�−

∫∫
�

ρce

T0
MθδMθ d�+ δUB,

in which

δUB = (λ+ 2µ)h
∮
∂�

(
lε0

11δu1+ lε0
11
∂u3

∂x1
δu3

)
ds+

(λ+ 2µ)h3

12

∮
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1
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1

δu3

)
ds
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αv

(
l
∂Mϕ

∂x1
δMϕ
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12

(
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12

(
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)
δu3

)
ds,

δ5B =

∫ t

0

(∫
∂Vσ

T αδuα ds+
∫
∂Vu

(uα − ūα)δTα ds+
∫
∂Vh

MhδMϕ ds+
∫
∂Vϕ
(Mϕ −Mϕ)δMh ds

+

∫
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1
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α)δu̇α − u̇0
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ρχh
(
(Mϕ|t=0−M0
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�

h
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0

ρce
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θ )δMθ dt
)

d�.

Substituting these variational formulas into δ5= 0, we can obtain the differential equations of motion
in terms of u1, u3,Mϕ,Mθ , that is, Equations (20).

Boundary conditions can be derived from the following boundary virtual work equation in variational
equation:

(λ+ 2µ)h
∮
∂�

(
lε0

11δu1+ lε0
11
∂u3

∂x1
δu3

)
ds+

(λ+ 2µ)h3

12

∮
∂�

(
l
∂2u3
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1
δ
∂u3

∂x1
− l
∂3u3

∂x3
1

δu3

)
ds

+

∮
∂�
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αv
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l
∂Mϕ

∂x1
δMϕ

)
−

h3l
12
(bvMϕ −βMθ )δ

∂u3
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+

h3l
12
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ds

+

∮
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∫ t1

0

K
T0
(l Mθ,1δMθ ) dt1 ds− Nxaδu1(a)+ Nx0δu1(0)= 0.
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[Chirit,ă and Ciarletta 2008] S. Chirit,ă and M. Ciarletta, “On the structural stability of thermoelastic model of porous media”,
Math. Methods Appl. Sci. 31:1 (2008), 19–34.

[Chirit,ă and Scalia 2001] S. Chirit,ă and A. Scalia, “On the spatial and temporal behavior in linear thermoelasticity of materials
with voids”, J. Therm. Stresses 24:5 (2001), 433–455.

[Ciarletta et al. 2007] M. Ciarletta, B. Straughan, and V. Zampoli, “Thermo-poroacoustic acceleration waves in elastic materials
with voids without energy dissipation”, Int. J. Eng. Sci. 45:9 (2007), 736–743.

[Cicco and Diaco 2002] S. D. Cicco and M. Diaco, “A theory of thermoelastic materials with voids without energy dissipation”,
J. Therm. Stresses 25:5 (2002), 493–503.

[Cowin and Nunziato 1983] S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids”, J. Elasticity 13:2 (1983),
125–147.

[Iesan 1986] D. Iesan, “A theory of thermoelastic materials with voids”, Acta Mech. 60:1-2 (1986), 67–89.

[Kumar and Rani 2005] R. Kumar and L. Rani, “Interaction due to mechanical and thermal sources in thermoelastic half-space
with voids”, J. Vib. Control 11:4 (2005), 499–517.

[Luo et al. 2002] E. Luo, J.-S. Kuang, W.-J. Huang, and Z.-G. Luo, “Unconventional Hamilton-type variational principles for
nonlinear coupled thermoelastodynamics”, Sci. China, A 45:6 (2002), 783–794.

[Puri and Cowin 1985] P. Puri and S. C. Cowin, “Plane waves in linear elastic materials with voids”, J. Elasticity 15:2 (1985),
167–183.
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H. D. BUI École Polytechnique, France
J. P. CARTER University of Sydney, Australia

R. M. CHRISTENSEN Stanford University, U.S.A.
G. M. L. GLADWELL University of Waterloo, Canada

D. H. HODGES Georgia Institute of Technology, U.S.A.
J. HUTCHINSON Harvard University, U.S.A.

C. HWU National Cheng Kung University, R.O. China
B. L. KARIHALOO University of Wales, U.K.

Y. Y. KIM Seoul National University, Republic of Korea
Z. MROZ Academy of Science, Poland
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