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A dynamic stiffness method is presented for determining the free vibration frequencies and mode shapes
of thick spherical shell segments with variable thickness and different boundary conditions. The analysis
uses the equations of the two-dimensional theory of elasticity, in which the effects of both transverse
shear stresses and rotary inertia are accounted for. The displacement components are taken to be si-
nusoidal in time, periodic in the circumferential direction, constant through the thickness, and solved
exactly in the meridional direction using the exact element method. The shape functions are derived
from the exact solutions for the system of the differential equation of motion with variable coefficients.
The dynamic stiffness matrix is derived from the exact shape functions and their derivatives. High-
precision numerical results are presented for thick spherical shell segments with constant or linearly
varying thickness and for several combinations of boundary conditions. Comparison is made with results
of published research and with two- and three-dimensional finite element analyses.

1. Introduction

Spherical shells are extensively used in civil, mechanical, aircraft, and naval structures. The free vibration
of solid and hollow spheres has been a subject of study for more than a century. Historical reviews of
the research into the vibrations of spherical shell are given in [Leissa 1973; Kang and Leissa 2000;
Qatu 2002]. For segmented spherical shells very few studies can be found. Gautham and Ganesan
[1992] used finite elements to study the free vibration analysis of open spherical shells, based on a thick
(two-dimensional) shell theory. A thick shell finite element was derived and vibration frequencies were
obtained for spherical caps with and without center cutout having simply supported or clamped boundary
conditions. Lim et al. [1996] analyzed spherical shells with variable thickness using two-dimensional
shell theory and the Ritz method, and the results were compared with finite element and experimental
ones. For spherical shell segments based on three-dimensional analysis, Kang and Leissa [2000] used
the Ritz method to obtain accurate frequencies for thick spherical shell segments of uniform or varying
thickness. Their method does not yield exact solutions, but with proper use of displacement components
in the form of algebraic polynomials, one is able to obtain frequency upper bounds, that are as close to
the exact values as desired. Corrected results for the test cases in that paper appeared subsequently in
[Kang and Leissa 2006].

In this paper the equations of motion for a thick spherical shell segment with variable thickness are
derived. Then, these are solved for the dynamic stiffness matrix of the segment, and assembled for a
complete structure.
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2. Equations of motion

The shell coordinates and shell parameters for axisymmetric spherical shells with thickness varying along
the meridian are shown in Figure 1, left, where φ and θ are spherical angle coordinates, z is thickness
coordinate from middle surface, R0 is radius of curvatures of the middle surface of the shell in both
meridian and circumferential directions and Rp(φ)) describes the perpendicular distance to the axis of
revolution of the generating line. The location of the shell segment is defined by either the angle of the
beginning of the shell φb, or the angle of the end of the shell segment φe, and the meridional dimension
of the shell is defined by the opening angle φ0.
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Figure 1. Left: geometry and coordinates of a spherical shell segment. Right: displace-
ment field according to the thick shell theory.

The strain-displacement equations of the first order shear deformation shell theory of thick shells are
obtained by satisfying the Kirchoff–Love hypothesis, such that normal to the shell mid-surface during
deformation remain straight, and suffer no extension, but are not necessarily normal to the mid-surface
after deformation. According to these assumptions the displacement of every point of the shell (see
Figure 1, right) may be expressed as

u(φ, θ, z, t)=U0(φ, θ, t)+ z9φ(φ, θ, t),

v(φ, θ, z, t)= V0(φ, θ, t)+ z9θ (φ, θ, t),

w(φ, θ, z, t)=W0(φ, θ, t)

(1)

and the strain-displacement equations given in [Leissa and Chang 1996] for a general spherical shell
become, for a spherical shell segment,

εφ =
ε0φ + zkφ
1+ z/R0

, εθ =
ε0θ + zkφ
1+ z/R0

,

γφθ =
γ0φθ + zτφθ + γ0θφ + zτθφ

1+ z/R0
,

γφz =
γ0φz

1+ z/R0
, γθ z =

γ0θ z

1+ z/R0
,

(2)

where we have denoted by ε0 ·, γ0 ·· and k· the strains and curvatures of the middle surface of the shell,
given by the expressions
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ε0φ =
1
R0

∂U0

∂φ
+

W0

R0
, ε0θ =

1
Rp

∂V0

∂θ
+

U0

R0 Rp

∂Rp

∂φ
+

W0

R0
,

kφ =
1
R0

∂9φ

∂φ
, kθ =

1
Rp

∂9θ

∂θ
+

9φ

R0 Rp

∂Rp

∂φ
,

γ0φθ =
1
A
∂V0

∂φ
, γ0θφ =

1
Rp

∂U0

∂θ
−

V0

R0 Rp

∂Rp

∂φ
,

γ0φz =
1
R0

∂W0

∂φ

U0

R0
+9φ, γ0φz =

1
Rp

∂W0

∂θ
−

V0

R0
+9θ .

(3)

Substituting the shell parameters into the five equations of motion of general shells [Leissa and Chang
1996] using the relations for principle shell coordinates (α1 = φ, α2 = θ), Lamé’s coefficients (A = R0,
B = Rp(φ)= R0 sinφ) and radii of curvatures (R1 = R2 = R0) yields the five equilibrium equations for
a spherical shell segment with variable thickness:

d Rp(φ)

dφ
Nφ(φ, θ)+ Rp(φ)

∂Nφ(φ, θ)
∂φ

+ R0
∂Nθφ(φ, θ)

∂θ
−
∂Rp(φ)

∂φ
Nθ (φ, θ)

+R0 Rp(φ)Qφ(φ, θ)− Rp(φ)
(
R0 I1(φ)Ü0(φ, θ, t)+ 2I3(φ)9̈φ(φ, θ, t)

)
= 0,

R0
∂Nθ (φ, θ)

∂θ
+

d Rp(φ)

dφ
Nφθ (φ, θ)+ Rp(φ)

∂Nφθ (φ, θ)
∂φ

+
d Rp(φ)

dφ
Nθφ(φ, θ)

+Rp(φ)Qφ(φ, θ)− Rp(φ)
(
R0 I1(φ)V̈0(φ, θ, t)+ 2I3(φ)9̈θ (φ, θ, t)

)
= 0,

−Rp(φ)Nφ(φ, θ)− Rp(φ)Nθ (φ, θ)+
∂Rp(φ)

∂φ
Qφ(φ, θ)

+Rp(φ)
∂Qφ(φ, θ)

∂φ
+ R0

∂Qθ (φ, θ)

∂θ
− R0 Rp(φ)I1(φ)Ẅ0(φ, θ, t)= 0,



(4)

d Rp(φ)

dφ
Mφ(φ, θ)+ Rp(φ)

∂Mφ(φ, θ)

∂φ
+ R0

∂Mθφ(φ, θ)

∂θ
−
∂Rp(φ)

∂θ
Mθ (φ, θ)

−R0 Rp(φ)Qφ(φ, θ)− Rp(φ)
(
2I3(φ)Ü0(φ, θ, t)+ R0(φ)I3(φ)9̈φ(φ, θ, t)

)
= 0,

R0
∂Mθ (φ, θ)

∂θ
+

d Rp(φ)

dφ
Mφθ (φ, θ)+ Rp(φ)

∂Mφθ (φ, θ)

∂φ
+
∂Rp(φ)

∂φ
Mθφ(φ, θ)

−R0 Rp(φ)Qφ(φ, θ)− Rp(φ)
(
2I3(φ)V0(φ, θ, t)+ R0 I3(φ)9̈θ (φ, θ, t)

)
= 0.

with variable quantities I1(φ), I3(φ) obtained by integration of the material density through the thickness
as follows:

I1(φ)=

∫
+h(φ)/2

−h(φ)/2
ρ dz = ρh(φ), I3(φ)=

∫
+h(φ)/2

−h(φ)/2
ρz2 dz =

ρh3(φ)

12
. (5)

The stress-strain relations for an isotropic material are given by
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σφ

σθ

σφθ

σφz

σθ z

=
E

1−µ2


1 µ 0 0 0
µ 1 0 0 0
0 0 (1−µ)/2 0 0
0 0 0 (1−µ)/2 0
0 0 0 0 (1−µ)/2



εφ

εθ

γφθ

γφz

γθ z

 , (6)

where E is the modulus of elasticity and µ is Poisson’s ratio. For isotropic materials the force and
moment resultants are obtained by integrating the stresses through the shell thickness, which in this case
is variable along the meridian:

Nφ(φ, θ)
Nθ (φ, θ)
Nφθ (φ, θ)
Nθφ(φ, θ)

=
∫
+h(φ)/2

−h(φ)/2


σφ(z)
σθ (z)
σφθ (z)
σθφ(z)


(

1+
z

R0

)
dz, (7)

{
Qφ(φ, θ)

Qθ (φ, θ)

}
= κ

∫
+h(φ)/2

−h(φ)/2

{
σφz(z)
σθ z(z)

}(
1+

z
R0

)
dz, (8)


Mφ(φ, θ)

Mθ (φ, θ)

Mφθ (φ, θ)

Mθφ(φ, θ)

=
∫
+h(φ)/2

−h(φ)/2


σφ(z)
σθ (z)
σφθ (z)
σθφ(z)


(

1+
z

R0

)
z dz, (9)

where κ is a shear correction factor. Various derivations of the shear correction factor have been proposed.
Mindlin [1951] gave an implicit result for the shear correction factor for isotropic elastic plates that
depends on Poisson ratio µ. Hutchinson [1984] determined the shear coefficient in a Mindlin plate
equation based on matching a mode of the Mindlin plate theory to the exact Rayleigh–Lamb frequency
equation for the flexural wave response at long wavelengths and proposed the value κ = 5/(6−µ). Later,
Stephen [1997] reexamined this solution, and called this the “best” shear coefficient. In the present work
this value of Hutchinson’s shear coefficient is used in the calculations.

Considering the stress-strain relations, the kinematical relations for shells with variable thickness the
constitutive relations become

Nφ(φ, θ)=
E

1−µ2 h(φ)(ε0φ +µε0θ ), Nθ (φ, θ)=
E

1−µ2 h(φ)(µε0φ + ε0θ ),

Qφ(φ, θ)=
κE

2(1+µ)
h(φ)γ0φn, Qθ (φ, θ)=

κE
2(1+µ)

h(φ)γ0φn,

Nφθ (φ, θ)=
E

2(1+µ)
h(φ)(γ0φθ + γ0θφ), Nθφ(φ, θ)= Nφθ (φ, θ),

Mφ(φ, θ)=
E

1−µ2

h3(φ)

12
(kφ +µkθ ), Mθ (φ, θ)=

E
1−µ2

h3(φ)

12
(µkφ + kθ ),

Mφθ (φ, θ)=
E

2(1+µ)
h3(φ)

12
(τφθ + τθφ), Mθφ(φ, θ)= Mφθ (φ, θ).

(10)
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3. Solution procedure

We introduce a nondimensional coordinate ξ = (φ−φb)/φ0 that vary from 0 to 1. The variation of the
geometric parameters h and Rp is taken in a polynomial form as follows:

h(φ) H⇒ h(ξ)=
nh∑

i=0

hiξ
i , Rp(φ) H⇒ Rp(ξ)=

n Rp∑
i=0

Rpiξ
i , (11)

Spherical shell segments with a wide range of meridian opening angles, concave or convex thickness
variation can be described in this way, up to any desired accuracy. In case of shell with wavy or corrugated
surface, it could be represented by segmented shell with sequential shell segments with convex and
concave thickness variation.

When the force and moment resultants are substituted into the equations of motion (4), assuming
harmonic vibrations, and using the assumed displacement field

U0(φ, θ, t)= u(φ) cos nθ sinωt,

V0(φ, θ, t)= v(φ) sin nθ sinωt,

W0(φ, θ, t)= w(φ) cos nθ sinωt,

9φ(φ, θ, t)= ψφ(φ) cos nθ sinωt,

9θ (φ, θ, t)= ψθ (φ) sin nθ sinωt,

(12)

with the notation

U(φ)= {u(φ), v(φ),w(φ), ψφ(φ), ψθ (φ)}T (13)
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Figure 2. Dynamic stiffnesses defined by resultant forces along a unit angle segment of
the perimeter of the shell edges (ξ = 0, ξ = 1).
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after transformation to the nondimensional coordinate ξ , we obtain the equations of motion in term of
the displacements as

K (0)(ξ, ω)U(ξ)+ K (1)(ξ)U ′(ξ)+ K (2)(ξ)U ′′(ξ)= 0, (14)

where primes refer to derivatives with respect to ξ , and the terms in the matrices K (0), K (1), and K (2) are
given in the Appendix. The solution is obtained using the exact element method algorithm [Eisenberger
1990] by assuming the solution as infinite power series

U(ξ)=
∞∑

i=0

uiξ
i , (15)

and following the procedure in [Eisenberger 1990] we get the five basic shape functions for each case
of unit displacement on the shell edges. Based on the values of the shape functions and their derivatives
at the two edges of the segment (ξ = 0; ξ = 1) we get the terms in the dynamic stiffness matrix as the
resultant forces along the unit angle segment of the perimeter of the shell, as shown in Figure 2, as

S1

S6

}
= Nφ

∣∣∣∣
ξ=0
ξ=1

=
E

1−µ2

[ R′p8

R0
µu+

Rp8

R0
u′+µnv+

(
Rp

R0
(1+µ)

)
w

] ∣∣∣∣
ξ=0
ξ=1

,

S2

S7

}
= Nφθ

∣∣∣∣
ξ=0
ξ=1

=
E

2(1+µ)

[
−nu−

R′p8

R0
v+

Rp8

R0
v′
] ∣∣∣∣

ξ=0
ξ=1

,

S3

S8

}
= Qφ

∣∣∣∣
ξ=0
ξ=1

=
κE

2(1+µ)

[
−

Rp

R0
u+

Rp8

R0
w′+ψs

] ∣∣∣∣
ξ=0
ξ=1

,

S4

S9

}
= Mφ

∣∣∣∣
ξ=0
ξ=1

=
E

(1−µ2)

h3

12

[
µ

R′p8

R0
ψφ +

Rp8

R0
ψ ′φ +µnψφ

] ∣∣∣∣
ξ=0
ξ=1

,

S5

S10

}
= Mφθ

∣∣∣∣
ξ=0
ξ=1

=
E

2(1+µ)
h3

12

[
−nψφ −

R′p8

R0
ψθ +

(
Rp

R0

)
8ψ ′θ

] ∣∣∣∣
ξ=0
ξ=1

.

(16)

The dynamic stiffness matrix for a segment, having ten degrees of freedom, five on each edge, is
then assembled for the structure in the usual procedure of structural analysis. The natural frequencies of
vibration are found as the values of the frequency that will cause the assembled dynamic stiffness matrix
of the structure to become singular.

When the cut-outs size becomes relatively small (Rp,in/Rp,out < 0.1) the shape functions series con-
verges rather slowly and have relatively large number of terms. Therefore, in order speed the convergence
process one can divide the shell into sections with ratio Rp,in = 0.3Rp,out for each section. So, by adding
a small number of elements one can solve for shells with very small cut-outs (e.g., three elements for
Rp,in = 0.03Rp,out and four elements for Rp,in = 0.01Rp,out).

4. Numerical examples

In order to obtain a high-precision solution for vibration problems of thick spherical shells, numerical
calculations have been performed for a spherical shells with different thickness-radius ratios, and various
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h/R = 0.1 h/R = 0.2
Clamped-Free SS-Free Clamped-Free SS-Free

n 5 DOF Lit. Diff.% 7 DOF Lit. Diff.% 5 DOF Lit. Diff.% 7 DOF Lit. Diff.%

0.9810 0.978 0.30 0.9079 0.906 0.21 1.1403 1.133 0.64 1.0516 1.047 0.44
0 1.3025 1.297 0.42 1.3025 1.297 0.42 1.3025 1.297 0.42 1.3022 1.297 0.40

1.3398 1.340 –0.01 1.3398 1.340 –0.02 1.4212 1.427 –0.40 1.3583 1.358 0.02

0.7052 0.704 0.17 0.6593 0.658 0.19 0.7553 0.753 0.30 0.6785 0.678 0.08
1 1.0757 1.073 0.25 1.0172 1.014 0.32 1.2999 1.295 0.38 1.2065 1.203 0.29

1.6828 1.684 –0.07 1.5745 1.572 0.16 1.9858 1.982 0.19 1.9829 1.965 0.91

0.4477 0.445 0.61 0.4111 0.409 0.51 0.6530 0.653 0.00 0.5687 0.571 –0.41
2 1.2783 1.275 0.26 1.1921 1.185 0.60 1.6917 1.688 0.22 1.5586 1.550 0.56

1.8342 1.835 –0.05 1.7248 1.722 0.16 2.0241 2.022 0.10 2.0181 2.007 0.55

0.7617 0.764 –0.30 0.7453 0.747 –0.23 1.1415 1.157 –1.34 1.0726 1.086 –1.24
3 1.4676 1.465 0.17 1.3656 1.357 0.63 2.0931 2.087 0.29 1.9374 1.922 0.80

2.1411 2.142 –0.04 1.9834 1.979 0.22 2.4381 2.435 0.13 2.4306 2.428 0.11

1.1698 1.176 –0.52 1.1406 1.145 –0.38 1.6949 1.719 –1.40 1.6041 1.622 –1.11
4 1.7184 1.718 0.02 1.6085 1.602 0.41 2.5572 2.557 0.01 2.4219 2.426 –0.17

2.4824 2.776 –10.6 2.3148 2.311 0.17 3.1124 3.107 0.17 3.0877 3.087 0.02

1.5177 1.525 –0.48 1.4576 1.461 –0.23 2.2095 2.235 –1.14 2.0996 2.118 –0.87
5 2.1060 2.109 –0.14 1.9964 1.994 0.12 3.1445 3.151 -0.21 3.0215 3.024 –0.08

2.8804 2.885 –0.16 2.7240 2.721 0.11 3.8489 3.860 –0.29 3.8133 3.851 –0.98

Table 1. Nondimensional frequency λ= ωR
√
ρ/E for a hemispherical shell with a 30◦

cutout at the apex, with free boundary conditions at the cutout and different boundary
conditions at the base. The columns “5 DOF” and “7 DOF” give the result with the
present method (one exact element and the specified number of degrees of freedom).
“Lit.” refers to [Gautham and Ganesan 1992]. “Diff.%” is the ratio (λexact− λFE)/λFE.

combinations of boundary conditions: constant thickness hemispherical caps with annular cutout at the
apex, variable thickness spherical annular segment, and variable thickness spherical barrel shell.

The results for the constant thickness hemispherical shells are set out in Tables 1 and 2 for two
cutout sizes (60◦ and 30◦), and with two types of boundary conditions at the base: clamped and simply
supported, and two thickness/radius ratios: 0.1 and 0.2. A comparison is made with the results of the FE
analysis of [Gautham and Ganesan 1992] that were obtained by using Nagdhi’s basic relations that take
the transverse shear and the normal strain into consideration. Three-noded finite elements with 7 DOF
per node were used for solving the problem. Good general agreement of the results is shown. Some
fictitious frequencies given by FE analysis can be observed (marked in bold).

Table 3, left, presents a comparison of the natural frequencies for an annular hemispherical shell
with linearly varying thickness (φ0 = 60◦, hb/he = 1/3) (Figure 3, left). The comparison is performed
with the results from FE analysis using the commercial code ABAQUS, and the results from a three-
dimensional analysis by the Ritz method reported in [Kang and Leissa 2006]. The results of the present
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h/R = 0.1 h/R = 0.2
Clamped-Free SS-Free Clamped-Free SS-Free

n 5 DOF Lit. Diff.% 7 DOF Lit. Diff.% 5 DOF Lit. Diff.% 7 DOF Lit. Diff.%

1.1353 1.139 –0.32 1.0722 1.072 0.02 1.2777 1.289 –0.88 1.0583 1.059 –0.06
0 2.0232 2.014 0.45 1.7280 1.726 0.12 2.0232 2.013 0.50 2.0223 2.014 0.41

2.1232 2.125 –0.08 2.0231 2.010 0.65 2.7504 2.747 0.12 2.4947 2.487 0.31

0.9833 0.984 –0.07 0.8890 0.887 0.22 1.1492 1.152 –0.24 0.8968 0.895 0.20
1 2.1026 2.106 –0.16 1.7584 1.756 0.14 2.3395 2.337 0.11 2.3347 2.332 0.12

2.4140 2.408 0.25 2.3790 2.369 0.42 2.8142 2.810 0.15 2.5781 2.565 0.51

0.7965 0.794 0.32 0.6507 0.648 0.41 1.0567 1.053 0.35 0.7540 0.751 0.40
2 2.2267 2.232 –0.24 1.8775 2.038 –7.88 2.8075 2.822 -0.51 2.6616 2.670 –0.31

3.0967 3.088 0.28 3.0846 2.764 11.6 3.1626 3.150 0.40 3.1131 3.087 0.85

0.7515 0.748 0.47 0.5844 0.581 0.58 1.1578 1.154 0.33 0.8790 0.879 0.00
3 2.4119 2.416 –0.17 2.0644 2.522 –18.1 3.0761 3.099 -0.74 2.9268 2.939 –0.42

3.3919 3.398 –0.18 3.3843 2.524 34.1 3.6591 3.634 0.69 3.5337 3.459 2.16

0.8764 0.873 0.39 0.7344 0.731 0.47 1.4400 1.441 –0.07 1.2250 1.230 –0.40
4 2.6411 2.643 –0.07 2.2964 2.307 –0.46 3.3779 3.407 –0.85 3.2616 3.278 –0.50

3.5287 3.532 –0.09 3.5250 3.477 1.38 3.8222 3.782 1.06 3.6590 3.586 2.03

1.1272 1.126 0.11 1.0160 1.014 0.20 1.8473 1.853 –0.31 1.6855 1.693 –0.44
5 2.8959 2.894 0.06 2.5589 2.546 0.51 3.7419 3.772 –0.80 3.6600 3.675 –0.41

3.7873 3.789 –0.04 3.7869 3.780 0.18 4.0686 4.025 1.08 3.8853 3.818 1.76

Table 2. Nondimensional frequency λ = ωR
√
ρ/E for hemispherical shells with 60◦

cutout at the apex, with free boundary conditions at the cutout and different boundary
conditions at the base. The columns “5 DOF” and “7 DOF” give the result with the
present method (one exact element and the specified number of degrees of freedom).
“Lit.” refers to [Gautham and Ganesan 1992]. “Diff.%” is the ratio (λexact− λFE)/λFE.

=

°60

 

°=°= φφ =+ =

°90

°45

Figure 3. Left: hemispherical annular shell with linearly varying thickness; φ0 = 60◦,
hb/he = 1/3 (results in Table 3, left). Right: spherical barrel shell with variable thick-
ness; φb = 45◦, φe = 135◦, (hb+he)/2R = 0.2, hb/he = 1/3, µ= 0.3 (results in Table 3,
right, and Figures 4–7).
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n

2D FE
1600 S4R
shell els.

10080 DOF

3D FE
2095 C3D20R

solid els.
43020 DOF

[Kang and
Leissa
2006]

3D, Ritz

Present
DSM with
2 exact els.
15 DOF

3D FE
2095 C3D20R

solid els.
43020 DOF

[Kang and
Leissa
2006]

3D, Ritz

Present
DSM with
3 exact els.

20 DOF

1.5357 1.5361 1.536 1.5347 1.5345 1.535 1.5299
2.1152 2.0862 2.090 2.1138 1.9099 1.911 1.9268

0 (A) 2.3992 2.4216 2.423 2.4057 1.9632 1.963 1.9651
4.3117 4.3143 4.322 4.3041 2.4772 2.487 2.4846
5.9909 5.8511 5.844 5.9780 3.8292 3.844 3.8355

3.7144 3.6775 3.669 3.7053 2.4774 2.470 2.4938

0 (T) 6.5151 6.3843 6.385 6.4586 4.2877 4.290 4.3343
9.5088 9.1976 9.200 9.3248 6.1689 6.172 6.2411

NA 8.093 8.1862

1.5666 1.5687 1.568 1.5645 1.3915 1.390 1.3898
2.4016 2.3730 2.374 2.3990 1.7690 1.771 1.7688

1 2.4824 2.4819 2.485 2.4845 2.3793 2.379 2.4037
4.4149 4.4072 4.414 4.4101 2.5836 2.594 2.5915
4.6268 4.5782 4.572 4.6131 3.4497 3.445 3.4897

0.3495 0.3495 0.349 0.3494 0.3593 0.362 0.3613
0.7135 0.7031 0.705 0.7136 0.6065 0.604 0.6076

2 1.8514 1.8563 1.857 1.8443 1.6842 1.690 1.6977
2.8071 2.8044 2.809 2.8093 2.0238 2.027 2.0281
3.6503 3.5714 3.572 3.6372 2.8902 2.901 2.9006

0.9382 0.9368 0.934 0.9364 0.9085 0.918 0.9169
1.6815 1.6615 1.666 1.6794 1.4032 1.400 1.3997

3 2.6617 2.6422 2.646 2.6436 2.2845 2.298 2.3155
3.3486 3.3397 3.346 3.3494 2.6510 2.651 2.6687
4.8367 4.7495 4.746 4.8121 3.3737 3.385 3.3824

1.6823 1.6757 1.671 1.6753 1.5436 1.561 1.5597
2.6672 2.6368 2.643 2.6577 2.1947 2.196 2.1917

4 3.6246 3.5577 3.564 3.5878 2.9024 2.911 2.9192
4.0553 4.0540 4.060 4.0547 3.5713 3.579 3.6300
5.8216 5.8013 5.793 5.8063 4.0506 4.059 4.0507

2.5319 2.5140 2.507 2.5144 2.2465 2.271 2.2696
3.6775 3.6304 3.637 3.6558 2.9445 2.954 2.9478

5 4.5940 4.4686 4.475 4.5297 3.6991 3.707 3.7014
4.9368 4.9436 4.951 4.9250 4.4644 4.477 4.5276
6.6094 6.6536 6.665 6.6166 4.9457 4.952 4.9700

Table 3. Comparison of the nondimensional natural frequency �= ωR
√
ρ/G for com-

pletely free spherical shells with linearly varying thickness. Left: annular shell with
φb = 30◦ and φe = 90◦ (Figure 3, left). Right: barrel shell with φb = 45◦ and φe = 135◦

(Figure 3, right). In both cases, (hb + he)/2R = 0.2, hb/he = 1/3, and µ = 0.3. “A”
stands for axisymmetric modes, “T” for torsional modes.
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Figure 4. The first four mode shapes of axisymmetric vibrations (n = 0) of completely
free spherical barrel shell with variable thickness (Figure 3, right).

exact analysis are generally lower than the results from the two-dimensional FE analysis, and for some
modes the frequency is a little bit higher due the difference in the shear correction factor that was used:
5/(6−µ) in the present analysis versus 5/6 in the FE analysis. Comparison with the three-dimensional
Ritz solution shows that the torsional modes in the present analysis are higher than the values in the
three-dimensional analysis due to kinematical simplifications of the first order shear deformation shell
theory. In other vibrational modes no clear tendency is observed.

The same conclusions are obtained from comparison of frequency results for barrel spherical shell
(φb = 45◦, φe = 135◦, (hb+ he)/2R = 0.2, hb/he = 1/3, µ= 0.3) presented in Table 3, right. Figures 4,
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Figure 5. The first four mode shapes of pure torsional vibrations (n = 0) of completely
free spherical barrel shell with variable thickness (Figure 3, right).

5, 6, and 7 show the three-dimensional vibrational modes and the exact displacement shape functions
obtained by the present method.

5. Conclusions
The natural frequencies for spherical shells of revolution with different boundary conditions have been
investigated using the Dynamic Stiffness method. This approach is combined with the exact element
method for the vibration analysis of spherical shell segments with curved meridian and variable cross-
section. The analysis uses the equations of the two-dimensional theory of elasticity, in which the effects
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Figure 6. Mode shapes of vibrations with one circumferential waves (n = 1) of a com-
pletely free spherical barrel shell with variable thickness (Figure 3, right).

of both transverse shear stresses and rotary inertia are accounted for, in their general forms for isotropic
homogeneous materials. The proposed method shows the following advantages:

(1) Any polynomial variation of the thickness of the shell along the meridian can be considered.

(2) The method is mesh-free, and dividing the surface to many elements doesn’t improve the solution.
No convergence study is necessary to obtain the true results.

(3) The shape functions are derived automatically and they are the exact solutions for the system of the
differential equation of motion with variable coefficients. As a result, the solution for free vibrations
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Figure 7. Mode shapes of vibrations with two circumferential waves (n = 2) of a com-
pletely free spherical barrel shell with variable thickness (Figure 3, right).

problem is a highly accurate solution (depending only on the accuracy of the numerical calculations).

(4) The order of the frequency determinants which are required for the solution by the present method
are at least an order of magnitude smaller than those needed by a finite element analysis of compa-
rable accuracy.

(5) The derived dynamic stiffness matrix allows combination of spherical shell segments into complex
assemblies with different combinations of shell types, variable thickness, and analyzing them with
small number of elements.
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Appendix: Entries of the coefficient matrices K (0), K (1), and K (2) in Equation (14)

Only nonzero entries are listed. We set 8= 1/φ0.

K (0)
11 = ω

2(ρ/E)(1−µ2)R2
p R3

0h+ Rp R0(R′ph′+ R′′ph)82µ− 1
2(1−µ)(R

2
p R0κh+ R3

0hn2)

K (0)
12 =

1
2 R2

0n8R′ph(µ− 3)+ R2
0n8Rph′µ

K (0)
13 = R2

p R0h′8(1+µ) K (0)
14 =

1
6ω

2(ρ/E)(1−µ2)R2
p R2

0h3
+

1
2(1−µ)R

2
p R2

0κh

K (0)
21 =

1
2 R2

0n8R′ph(µ− 3)− 1
2 R2

0n8(1−µ)Rph′

K (0)
22 = ω

2(1−µ2)(ρ/E)R2
p R3

0h− 1
2(1−µ)Rp R′′p R0h82µ− 1

2(1−µ)Rp R′p R0h′82
− R3

0hn2

−
1
2(1−µ)R

2
p R0κh− 1

2(1−µ)R
′2
p R0h82

K (0)
23 =−(1+µ)Rp R2

0hn− 1
2(1−µ)Rp R2

0κhn K (0)
25 =

1
6ω

2(ρ/E)(1−µ2)R2
p R2

0h3
+

1
2(1−µ)R

2
p R2

0κh

K (0)
31 =−(1+µ)Rp R′p R08h− 1

2(1−µ)Rp R′p R0κh8− 1
2(1−µ)R

2
p R0κh′8

K (0)
32 = K (0)

23 K (0)
33 = ω

2(ρ/E)(1−µ2)R2
p R3

0h− 1
2(1−µ)R

3
0κhn2

− 2(1+µ)R2
p R0h

K (0)
34 =

1
2(1−µ)

(
R2

p R2
0κh′+ Rp R′p R2

08κh
)

K (0)
35 =

1
2(1−µ)Rp R3

0κhn

K (0)
41 = K (0)

14

K (0)
44 =

1
12ω

2(ρ/E)(1−µ2)R2
p R3

0h3
−

1
24(1−µ)R

3
0h3n2

−
1

12 R′2p R0h382(1+µ)

−
1
2(1−µ)R

2
p R3

0κh+ 1
12 Rp R′′p R0h382µ+ 1

4 Rp R′p R0h′h282µ

K (0)
45 =

1
4 nµRp R2

0h′h28− 1
24 R′p R2

0n8h3(3−µ)

K (0)
52 = K (0)

25 K (0)
53 = K (0)

35 K (0)
54 =−

1
8(1−µ)n Rp R2

0h′h28− 1
24 R′p R2

0n8h3(3−µ)

K (0)
55 =

1
12ω

2(ρ/E)(1−µ2)R2
p R3

0h3
+

1
24(1−µ)Rp R′′p R0h382

+
1
8(1−µ)Rp R′p R0h′h282µ

−
1
2(1−µ)R

2
p R3

0κh− 1
12 R3

0n2h3
−

1
12 R2

p
′R0h382(1−µ)

K (1)
11 = Rp R′p R0h82

+ R2
p R0h′82

K (1)
12 =

1
2(1+µ)Rp R2

0hn8 K (1)
13 = (1+µ)R

2
p R08h+ 1

2(1−µ)R
2
p R0K8h

K (1)
21 =−K (1)

12 K (1)
22 =

1
2(1−µ)Rp R′p R0h82

+
1
2(1−µ)R

2
p R0h′82

K (1)
31 =−K (1)

13

K (1)
33 =

1
2(1−µ)(R

2
p R0κh′82

+ Rp R′p R2
08

2κh) K (1)
34 =

1
2(1−µ)R

2
p R2

0κh8

K (1)
43 = K (1)

34

K (1)
44 =8

2 R0
( 1

12 Rp R′ph3
+

1
4 R2

ph′h2) K (1)
45 =

1
24(1+µ)Rp R2

08h3n

K (1)
54 =−K (1)

45 K (1)
55 =

1
8(1−µ)28

2 R2
p R0h′h2

+
1
24(1−µ)Rp R′p R0h382
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K (2)
11 = R2

p R0h82

K (2)
22 =

1
2(1−µ)R

2
p R0h82

K (2)
33 =

1
2(1−µ)R

2
p R0κh82

K (2)
44 =

1
12 R2

p R08
2h3

K (2)
55 =

1
24(1−µ)R

2
p R08

2h3
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