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The problem of thermal stress development in composite structures containing one linear isotropic vis-
coelastic phase is considered. The time-temperature superposition principle is assumed to be applicable
to the viscoelastic media under consideration. Two methods of solution based on the reduction of the
original viscoelastic problem to the corresponding elastic one are discussed. It is argued that the use
of a method based on the Laplace transform is impractical for some problems, such as those involving
viscoelastic asphalt binders. However, the solution can be obtained by means of the second method con-
sidered in the paper, the Volterra correspondence principle, in which the integral operator corresponding
to the master relaxation modulus is presented in matrix form. The Volterra principle can be applied to the
solution of viscoelastic problems with complex geometry if the analytical solution for the corresponding
elastic problem is known. Numerical examples show that the proposed method is simple and accurate.
The approach is suitable to the solution of problems involving viscoelastic materials, whose rheological
properties strongly depend on temperature. In particular, it can be found useful in the analysis of the
low-temperature thermal cracking of viscoelastic asphalt binders.

1. Introduction

Composite structures consisting of elastic and viscoelastic materials play an important role in today’s
engineering applications. Such structures are used in various environmental conditions, often involving
temperature variations. Due to the effects of thermal expansion and contraction of the materials, it is
important to be able to predict the behavior of composite structures subjected to varying temperature.
For the case of elastic media, temperature effects can be easily incorporated in the analysis since the
material’s elastic properties are time- and temperature independent. However, temperature changes in
viscoelastic media cause changes in the material’s rheological properties, which makes the analysis of
thermoviscoelastic problems more complex.

Methods of solution of linear viscoelastic problems fall into two major categories: approaches based
on the approximate and iterative solutions in the time domain and methods based on the solution of
the corresponding elastic problem formulated in the frequency (transformed) domain. Time-stepping
algorithms (see [Mesquita et al. 2001], for instance), widely used in the finite element and boundary
element methods, belong to the first category. The second category includes approaches based on the
application of integral transformations, such as the Laplace or Fourier transforms, to reduce a time-
dependent problem to one that depends on the transform parameter only [Lee et al. 1959; Findley et al.
1976]. In the case of nonisothermal conditions, some of these methods can be adopted to the solution of
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thermoviscoelastic problems by using, for example, the time-temperature superposition (TTS) principle,
whereas other methods fail.

TTS is widely used to describe the effect of temperature on the mechanical response of a certain class
of viscoelastic materials [Ferry 1961; Findley et al. 1976; Wineman and Rajagopal 2000]. Theoretical
and experimental results indicate that for such materials the response to a load at high temperature over a
short period of time is identical to that at lower temperature but over a longer period, and vice versa. Thus,
at any temperature, a material property such as relaxation modulus or creep compliance can be expressed
in terms of the material property at the reference temperature and another material property known as
the time-shift factor. Following [Schwarzl and Staverman 1952], materials for which the mechanical
behavior due to temperature is equivalent to a corresponding shift in the logarithmic time scale are called
thermorheologically simple.

A number of studies have been devoted to the solution of thermoviscoelastic problems with the use of
TTS. Taylor et al. [1970] proposed an integration scheme that was used together with the Prony series
approximation of viscoelastic properties to obtain a recursive expression for the solution of thermovis-
coelastic problems at each next time step. Chien and Tzeng [1995] considered the problem of a thick
laminated composite cylinder under elevated temperature change. The dependency of creep compliances
on time was presented in the form of a simple power function that allowed them to obtain closed form
relations in the Laplace domain and use analytical Laplace inversion. Ekel’chik et al. [1994] studied
the problem of a thick-walled orthotropic viscoelastic ring; the authors applied a procedure of numerical
inversion of the Laplace transform after the solution of the corresponding problem was obtained. A
review of some other methods of solving quasistatic problems of linear thermoviscoelasticity is provided
in [Bykov et al. 1971].

The aim of this work is to demonstrate, for the first time, that the use of the Volterra correspondence
principle can be an effective tool for solving complex thermoviscoelastic problems, such as those en-
countered in pavement engineering. While the Volterra correspondence principle is well known and has
been applied to the solution of a number of viscoelastic problems (in [Rabotnov 1966; Khazanovich
2008], for instance), its application to problems involving thermal effects is, to our knowledge, new. The
approach proposed here employs a discrete representation of time-varying functions, and the integral
operator corresponding to the master relaxation modulus is presented in matrix form. This technique is a
modification of the approach of [Bažant 1972]. Special attention is devoted to thermal stress development
in the binders. If tensile stress in asphalt binders or mixtures exceeds their strength upon cooling, cracking
occurs. The importance of the study of low-temperature cracking of asphalt pavements stems from the
fact that this is one of the dominant distresses occurring in cold climates, where temperature variation
can be significant over short periods of time.

This paper is organized as follows. Section 2 summarizes the two approaches used for reducing
a viscoelastic problem to an elastic one. Section 3 provides the basic definitions of time-temperature
superposition and the description of functional dependencies used for materials characterization. Sections
4 and 5 deal with the relaxation operator and its discrete representation. A simple problem of a restrained
bar is considered in Section 6. The solution of this problem can be directly found in the time domain,
which allows for comparison results and evaluating the accuracy of the present approach. Section 7 deals
with the problem of a composite ring or cylinder undergoing thermal loading, and includes results for
thermal stresses and strains in the Asphalt Binder Cracking Device [Kim 2005].
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2. Elastic-viscoelastic correspondence principles

One of the most powerful approaches in solving linear viscoelastic problems consists in the reduction to
a corresponding elastic problem. This can provide an analytical solution for time-dependent problems
and usually is simpler to implement than numerical algorithms for calculating time-varying fields in
homogeneous or heterogeneous viscoelastic materials.

Two techniques can be used to obtain a corresponding elastic problem. The first is based on the
application of the Laplace transform to all governing equations and boundary conditions describing a
viscoelastic body in equilibrium. The Laplace transform of a real function f (t) is defined as

f ∗(s)= L[ f (t)] =
∫
∞

0
f (t)e−st dt (1)

where s is the complex transform parameter.
In the case of simple deformations, such as uniaxial tension or shear, the Boltzmann superposition

principle for linear viscoelastic materials [Findley et al. 1976] states that the stress σ is related to the
mechanical strain ε by

σ(t)=
∫ t

0
E(t − τ)

∂ε(τ )

∂τ
dτ, ε(t)= εtot(t)− εth(t), (2)

where E is the relaxation modulus, t is time, εtot results from a given displacement field, and εth is related
to the effect of thermal expansion. In more general cases, the relaxation modulus E has to be replaced by
a tensor of creep functions, and stress and strain tensors should be used. Applying the Laplace transform
to the convolution integral (2), an expression formally equivalent to Hooke’s law is obtained:

σ ∗(s)= s E∗(s)ε∗(s). (3)

The idea of the approach is to formulate the corresponding elastic problem by replacing time-varying
parameters with their transformed counterparts, solve the obtained problem, and apply an inversion of
the Laplace transform to arrive at the time domain solution. However, the use of this approach may be
limited by the fact that strain or stress histories and/or material properties may be complicated functions
of time, whose Laplace transform cannot be found in a closed form. This makes impossible to obtain
the solution of the corresponding elastic problem.

The Volterra correspondence principle [1913] can be used in the case when the Laplace transform is
not applicable [Rabotnov 1966]. The principle is based on the representation of hereditary integrals of
type (2) as integral operators acting on time-varying functions. This technique also leads to the reduction
of a time-dependent problem to a corresponding elastic problem.

Consider the case of a simple deformation caused by uniaxial tension of a linear viscoelastic body.
Evaluating the integral (2) by parts, it can be found that

σ(t)= E(0)ε(t)−
∫ t

0
ε(τ ) d E(t − τ)≡ Ẽ · ε(t) (4)

where Ẽ is an integral operator acting on a function of time, and E(0) is the value of the relaxation
modulus at zero time. It is seen that (4) is formally equivalent to Hooke’s law. The operator Ẽ is
referred to as the relaxation operator. In more general cases, it can be shown [Rabotnov 1966] that other
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viscoelastic parameters, such as creep compliance, viscoelastic bulk or shear moduli, can be expressed
in an operator form in such a way that the constitutive equations written with the use of these operators
resemble elastic constitutive equations. This implies that in order to solve a viscoelastic problem, one
has to solve a corresponding elastic problem, and substitute the elastic properties with the corresponding
integral operators in the obtained elastic solution for each physical variable of interest. Since superpo-
sition holds for elasticity, the viscoelastic solution for any physical variable γ(t) can be presented as a
combination of functions of one or more commutative integral operators1 acting on known functions of
time fi (t), which can be time-dependent boundary parameters, body forces, temperature, etc. In the case
of an isotropic viscoelastic material, such a relation can be presented as

γ(t)=
∑

i

Fi [Ẽ, ν̃] · fi (t), (5)

where ν̃ is the integral operator corresponding to the viscoelastic Poisson’s ratio and the Fi are functions
of operators. Analytical evaluation of the result of the action of integral operators on known functions
of time is often a complicated and impractical task, and numerical approximations are used to represent
integral operators in matrix form. Thus, the solution of a time-dependent problem is formulated in terms
of matrix operators acting on vectors obtained from the discretization of the time functions:

γ =
∑

i

Fi
[

E, ν
]
· f i , (6)

where E and ν are matrix operators and γ and f are vectors representing the discrete values of functions
γ(t) and f (t). In the present work it is assumed that the viscoelastic Poisson’s ratio ν does not change
in time; hence the corresponding matrix operator is represented as ν times the identity matrix.

3. Time-temperature superposition

The problem of deformation of viscoelastic media coupled with temperature variation can be treated with
the use of the time-temperature superposition principle [Ferry 1961; Findley et al. 1976; Wineman and
Rajagopal 2000]. It follows from the principle that real time t in (2) has to be replaced by reduced time
ξ to account for the change in material’s properties with temperature. The constitutive equation (2) is
now written as

σ(ξ)=

∫ ξ

0
E(ξ − ξ ′)

∂ε(ξ ′)

∂ξ ′
dξ ′, (7)

where ε(ξ)= εtot(ξ)− εth(ξ). For transient temperature conditions, the reduced time is connected to the
real time by an integral:

ξ(t)=
∫ t

0

dτ
aT [T (τ )]

(8)

where aT is shift function (factor) obtained during the process of the construction of the material’s
master curve. Different functions can be used to fit the plot for the shift factor. The shift factor described
by the Williams–Landau–Ferry equation [Williams et al. 1955] is often used to describe the behavior

1The term “commutativity” is understood here in the sense used in [Rabotnov 1966; Arutyunyan and Zevin 1997]. Note that
the operators are commutative only for the case of nonaging viscoelasticity; see the second of these references.
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of polymers. In this work, a linear function is adopted to describe the decimal logarithm of the shift
factor aT :

log aT = C1−C2T, (9)

where C1 and C2 are constants determined through least squares fitting. It was found that (9) provides
accurate fitting for the experimental data used in this work.

The thermal strain εth is given by
εth = α1T, (10)

where α is the coefficient of thermal expansion (assumed to be constant) and 1T is the temperature
change. For simplicity, the temperature variation is considered to be linear in time:

1T (t)= C0t, (11)

where C0 is the constant temperature rate. (Nonlinear temperature changes can be treated similarly.) The
temperature at time t is thus

T = T0+1T, (12)

where T0 is the reference temperature.
Combining equations (8)–(11), one obtains the relation between real time t and reduced time ξ , as

well as relations between thermal strain εth and reduced time ξ . These relations are

ξ(t)= A1(1− 10C0C2t) with A1 =−
(
C0C210(C1−C2T0) ln 10

)−1
, (13)

t (ξ)=
1

C0C2
log(1− ξ/A1), εth(ξ)=

α

C2
log(1− ξ/A1). (14)

Because the time shift is zero at the reference temperature, we have 10(C1−C2T0) = 1 in (13).
For asphalt binders, the master relaxation modulus curve is obtained (see Appendix) using the CAM

model of [Marasteanu and Anderson 1999], given by the equation

E(ξ)= Eg

(
1+

(
ξ

tc

)v)−w/v
(15)

where Eg is the glassy modulus, tc is the crossover time, and v and w are the parameters of the model,
which, in general, are some rational numbers. The CAM model is considered an effective phenomeno-
logical model for characterizing the linear viscoelastic behavior of asphalt binders at low temperatures.

4. Relaxation operator with varying temperature

The approaches presented in Section 2 can be used to solve problems of thermal stress evolution in
viscoelastic composite materials. However, when the CAM model (15) is adopted to describe viscoelastic
material behavior, its Laplace transform cannot be found in a closed form. Another degree of complexity
is introduced by the fact that the Laplace transform of the thermal strain described by (14) is a complex-
valued function of s. Because of this, it seemed impractical to use the elastic-viscoelastic correspondence
principle based on the Laplace transform for the analysis of the problem. Therefore, we use here the
integral operator representation approach.

Because for each value of reduced time ξ one can find a corresponding value of real time t (and vice
versa), the stress and strain in the reduced time domain can be replaced by their values found for the
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corresponding real time: σ(ξ) ≡ σ(ξ(t)) ≡ σ(t), ε(ξ) ≡ ε(ξ(t)) ≡ ε(t). Therefore, it is possible to
simplify expression (7):

σ(t)=
∫ t

0
E
(
ξ(t)− ξ ′(τ )

)
·
∂ε(τ (ξ ′))

∂τ (ξ ′)

∂τ (ξ ′)

∂ξ ′
·
∂ξ ′

∂τ(ξ ′)︸ ︷︷ ︸
≡1

dτ(ξ ′)=
∫ t

0
E
(
ξ(t)− ξ ′(τ )

)∂ε(τ )
∂τ

dτ. (16)

The integral (16) is now similar to (2), with the only difference that the master relaxation modulus is still
given in the reduced time domain. This allows us to use the stress-strain relation in the form

σ(t)= Ẽ · ε(t), (17)

where the integral operator (relaxation operator) Ẽ is now defined as

Ẽ · f (t)≡ E(0) ·
(

f (t)−
1

E(0)

∫ t

0
f (τ ) d E

[
ξ(t)− ξ ′(τ )

])
. (18)

5. Matrix representation of the relaxation operator

For the analysis of viscoelastic problems considered in the present work, a procedure of numerical solu-
tion based on the representation of relaxation operator Ẽ given by (18) as a matrix operator is adopted.

Consider a discrete set of time moments t0, t1, . . . , tn , with t0 = 0 and tn ≡ t . Strain ε, as well as
temperature variation 1T (t) are presented as column vectors

ε ≡ εk = ε(tk) and 1T ≡1Tk = T (tk)− T (t0). (19)

To obtain a matrix representation for the integral operator Ẽ , we integrate numerically using the trapezoid
rule [Bažant 1972]. Thus, the expression σ = Ẽ · ε for each moment of time k can be written as

σk ≡ (Ẽ · ε)k = E(0) ·
(
εk −

1
E(0)

∫ tk

0
ε(τ ) d E

(
ξ(t)− ξ ′(τ )

))
= Ek,kεk −

1
2

k∑
i=1

(εi + εi−1) (Ek,i − Ek,i−1), (20)

where Ek,i ≡ E
(
ξ(tk)− ξ(ti )

)
and Ek,k ≡ E(0). Recalling that ε0 ≡ 0 and rearranging terms in (20), the

result is a column vector σ consisting of terms

σk =
1
2

( k−1∑
i=1

(
Ek,i−1− Ek,i+1

)
εi + (Ek,k−1+ Ek,k)εk

)
, k = 1, . . . , n, (21)

or, in matrix form,

σ = E · ε. (22)
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The matrix E is lower triangular:

E =

∣∣∣∣∣∣∣∣∣∣∣

E1,0+E1,1 0 0 . . . 0
E2,0−E2,2 E2,1+E2,2 0 . . . 0
E3,0−E3,2 E3,1−E3,3 E3,2+E3,3 . . . 0

...
...

...
. . .

...

En,0−En,2 En,1−En,3 En,2−En,4 . . . En,n−1+En,n

∣∣∣∣∣∣∣∣∣∣∣
, (23)

and

ε =

∣∣∣∣∣∣∣∣∣
ε1

ε2
...

εn

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣
εtot 1

εtot 2
...

εtot n

∣∣∣∣∣∣∣∣∣−α
∣∣∣∣∣∣∣∣∣
1T1

1T2
...

1Tn

∣∣∣∣∣∣∣∣∣ . (24)

The lower triangular structure of E represents the history-dependent nature of viscoelastic problems.
Thus, it is obvious that for longer time histories the size of the matrix E grows, which may reduce the
numerical efficiency. However, it has been found that for the problems considered in the present study,
a relatively small number of subdivisions in the trapezoidal rule is sufficient to obtain accurate solutions
over a large interval of temperatures (for instance, ranging from −50◦C to +20◦C).

In general case of a boundary value problem describing an isotropic viscoelastic material, two integral
operators are present in the solution. The problem can be simplified greatly, if one assumes that Poisson’s
ratio is independent of time and temperature. This allows using only relaxation operator Ẽ in the analysis
of the problem. The assumption of constant Poisson’s ratio is employed in the present work due to the
following facts. Experimental data reveal that the Poisson’s ratio of viscoelastic asphalt mixtures varies
very little at low temperatures, and therefore it can be considered constant [Huang 1993; Levenberg and
Uzan 2007]. Furthermore, the study of asphalt binders in [Marasteanu and Anderson 2000] indicates that
binders’ Poisson’s ratio can be reasonably assumed constant at low temperatures. In addition, the results
of numerical simulations conducted in the present work also indicate that using constant but different
values of Poisson’s ratio within a realistic range has very small effect on the final results. Therefore, the
solution for viscoelastic problems can be represented in discrete form as a function of the only matrix
operator E multiplied by a vector of a known time function, e.g.,

σ = F
[
E
]
· εtot+G

[
E
]
·1T (25)

where F and G are some functions of matrices. In many cases it is much easier to calculate rational
functions of matrices than functions of integral operators.

6. Analysis of a viscoelastic restrained bar

Consider the problem of thermal stress evolution in a restrained isotropic homogeneous viscoelastic bar
(Figure 1). The total strain in this case is zero, and ε =−α1T . The problem is described by (16), which
simplifies to the form

σ(t)=−αC0

∫ t

0
E
(
ξ(t)− ξ ′(τ )

)
dτ. (26)
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Figure 1. Geometry for the problem of a restrained bar.

Due to the simple structure of the integrand in (26), one can use various numerical integration tech-
niques to obtain the thermal stress in the bar. Comparison of the results of integration with those obtained
from (22)–(24) allows us to evaluate the accuracy of the present approach for the considered class of
functions describing material properties (CAM model).

In the present analysis, we used the parameters obtained by the procedure in the Appendix for a
modified asphalt binder tested at temperatures −24◦C, −30◦C, and −36◦C.2 These parameters are as
follows:

(CAM model) Eg = 3 GPa, tc = 1.04655 · 10−6 sec, v = 0.177585, w = 0.359506,

(Other) α = 2× 10−4 ◦C−1
, C2 = 0.18562◦C−1

, C0 =−10◦C/hour, T0 = 20◦C.

The tensile stress in the bar caused by the temperature drop was determined by the present approach and
by numerical integration using 24-point Gaussian quadrature, a technique that provides highly accurate
results and whose application to this problem was originally proposed by Voller [Marasteanu et al. 2004].

The comparative plots are presented in Figure 2. It is apparent from the figure that both approaches
produce virtually identical results. By testing the accuracy of the present method on various asphalt

-40 -30 -20 -10 0 10 20
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3

4

S
tre

ss
, M

P
a

Temperature, C

Solution by the method of

 24-points Gaussian quadrature rule
 Matrix representation of 

         the relaxation operator

Figure 2. Comparison of stresses obtained from (26) using 24-point Gaussian quadra-
ture and by the method of matrix representation of the relaxation operator Ẽ .

2The binder was modified with styrene-butadiene diblock copolymer (Black Max™) and produced by Husky Energy
(Canada). The binder’s performance grade is PG 64-34 [AASHTO 2005]. The binder was tested in the Pavement Laboratory
of the Department of Civil Engineering at the University of Minnesota. More information about its properties can be found in
[Marasteanu et al. 2007]
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binders described by the CAM model (15), it was found that quite accurate results can be obtained for
the number of integration points n & 1000 used in the trapezoid rule. The results presented in Figure 2 are
obtained with n = 2000. Note that for longer time histories more segments in the trapezoidal rule have
to be used to obtain accurate results. For the case when the properties of viscoelastic materials cannot be
described by the CAM model and/or a linear shift function, the use of a more accurate integration rule
such as Simpson’s rule may be required.

7. Analysis of viscoelastic composite cylinder/ring

Consider the problem of a composite cylinder subjected to uniform temperature variation. The geometry
of the problem is given in Figure 3. The hollow inner cylinder (inclusion) is assumed to be elastic and
the outer (binder) to be linearly viscoelastic. The plane strain condition is assumed, but the plane stress
solution can also be easily obtained by replacing the elastic Young’s moduli and Poisson’s ratios [Barber
1992] in the corresponding elastic problem. A perfect bond between the binder and inclusion is assumed;
the distribution of circumferential stresses and strains in each cylinder is of primary interest.

To obtain the solution of the corresponding elastic problem, we assume the binder is an elastic material
with Young’s modulus Eb, Poisson’s ratio νb, and coefficient of thermal expansion αb. The material
properties of the inner cylinder (inclusion) are denoted by Ei , νi and αi . The elastic solution for the
circumferential stresses in the binder can be obtained in the form

σ bind
θθ (r)=

a(r)Ei + b(r)Eb

cEi + Eb
Eb1T, (27)

where c is a constant and the parameters a and b depend on the radius. Expressions for these parameters
are given in the Appendix as relations (A3) and (A4), following an outline of the derivation of (27).

Assuming that the Poisson’s ratio of the binder does not vary with time and temperature, the solution
for time-dependent circumferential stresses corresponding to the viscoelastic problem is

σ bind
θθ (r)=

[
aEi I + bEb

]
·
[
cEi I + Eb

]−1
· Eb1T , (28)

where σ bind
θθ and 1T are vectors of size n, I is identity n×n matrix, and Eb is n×n matrix of relaxation

functions given by (23). It is seen from (28) that the calculation of the inverse of matrix M =
(
cEi I + Eb

)
is required. This operation can be easily performed, since M is a lower triangular matrix.

Figure 3. Geometry of an axisymmetric problem with a hollow inner part.
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The solutions for circumferential strains in the binder and in the inclusion can be obtained in a form
similar to (28). In particular, the total circumferential strain εinc

θθ (r) in the inclusion is

εinc
θθ (r)=

[
αi F1

(
r, Eb

)
+αb F2

(
r, Eb

)]
·1T (29)

where we omit the subscript “tot”, and the matrix functions F1
(
r, Eb

)
and F2

(
r, Eb

)
are given by

F1
(
r, Eb

)
= (1+ νi )I − 2

r2
1

r2 (1− ν
2
i )
[
d I + gEi

(
Eb
)−1]−1

,

F2
(
r, Eb

)
= 2

r2
1

r2 (1− νi )(1+ νb)
[
d I + gEi

(
Eb
)−1]−1

,

(30)

with constants d and g given as (A5) in the Appendix.

Comparison with the analytical solution. The calculations presented in the analysis of the bar problem
(Section 6) were simple and did not involve evaluating the inverse of Ẽ . The present problem of a
composite cylinder (Figure 3) is a more realistic test of accuracy. The plane strain elastic solution for
this problem is given by (28)–(30). The results are compared with an analytical solution obtained by the
application of the Laplace transform. To be able to use the Laplace transform, the expression for the
shift factor aT given by (9) is replaced with linear function

âT (T )= Ĉ1− Ĉ2T, (31)

(The hat over the quantities means that they have a different interpretation from before — say in (9).)
Using (31) and (10), the reduced time becomes

ξ̂ =−
1

Ĉ0Ĉ2
ln

∣∣∣∣∣1+ Ĉ2(T0− T )

Ĉ1− Ĉ2T0

∣∣∣∣∣ (32)

and we have

t̂(ξ)=
Ĉ1− Ĉ2T0

Ĉ0Ĉ2

(
1− exp(−Ĉ0Ĉ2ξ)

)
, 1T̂ (ξ)=

(
Ĉ1

Ĉ2
− T0

)(
1− exp(−Ĉ0Ĉ2ξ)

)
. (33)

Despite the fact that the expressions (31)–(33) do not have a physical interpretation (e.g., Ĉ1− Ĉ2T0 6= 0,
which follows from (32)), the choice of a linear form for âT allows the determination of the Laplace
transform of 1T̂ (ξ):

1T̂ ∗(s)=
(

Ĉ1

Ĉ2
− T0

)
Ĉ0Ĉ2

s
(
s+ Ĉ0Ĉ2

) . (34)

Similarly, the CAM model used for the description of the master relaxation modulus is replaced by
a function for which the Laplace transform can be easily found. A series of several exponents (Prony
series) is used instead of (15):

Ê(ξ)=
∑

i

Êi exp(γ̂iξ), Ê∗(s)=
∑

i

Êi

s− γ̂i
. (35)

For illustration purposes it is enough to use only a few terms in the series; we preserve them up to i = 3.
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Even though, for comparison purposes, the parameters Ĉ1, Ĉ2, Êi , and γ̂i could be chosen arbitrarily,
we chose them via a least squares fitting of the functions aT (T ) and E(ξ) experimentally obtained for a
modified asphalt binder (PG58-40). (It is not essential to have perfect fitting of experimental data with
the new functions âT (T ) and Ê(ξ); we just need to use the same functions in solving the problem using
the two approaches being compared.)

The values of the parameters involved in âT (T ) are

Ĉ1 = 41.156640, Ĉ2 = 2.276346◦C−1
.

Those appearing in Ê(ξ) are

(in MPa) Ê0 = 38.598647, Ê1 = 349.348243, Ê2 = 195.939985, Ê3 = 126.336051,

(in sec−1) γ̂0 = 0, γ̂1 =−0.517286 · 109, γ̂2 =−0.265315 · 108, γ̂3 =−0.137463 · 107.

We next present the parameters of the composite cylinder, chosen according to an ABCD specimen
described in detail in the next subsection. The specimen consisted of an elastic ring with thickness
r1 − r0, surrounded by a viscoelastic binder with thickness r2 − r1 (compare Figure 3 on page 845).
These geometric parameters are

r0 = 23.75 · 10−3 m, r1 = 25.4 · 10−3 m, r2 = 31.75 · 10−3 m, (36)

while the remaining parameters are

T0 = 18◦C, C0 =−1◦C/hour,
α1 = 1.4 · 10−6 ◦C−1

,

α2 = 2.0 · 10−4 ◦C−1
,

E1 = 141 GPa,
ν1 = 0.3,
ν2 = 0.33.

(37)

Figure 4 compares the analytical plane strain solution for σ bind
θθ (r1) obtained with the use of the Laplace
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transform with the numerical solution found by the present approach for n = 2500. As in the previous
problem, the results from the both methods match very well. The stress rises linearly in this case due to
the use of modified shift factor âT (T ), which depends linearly on temperature.

Simulation of thermal stresses in Asphalt Binder Cracking Device. This section is devoted to the study
of viscoelastic fields evolution in specimens undergoing thermal loading in the Asphalt Binder Cracking
Device (ABCD). ABCD was developed in [Kim 2005; Kim et al. 2006] for direct measurements of
cracking temperature of asphalt binders. Based on the present approach, it is possible to relate measured
strains to time-dependent thermal stresses that cause the cracking of the binder and determine its strength
at the cracking temperature.

The ABCD, schematically represented in Figure 5, consists of a hollow invar (Ni-Fe alloy) ring with
uniform thickness surrounded by a layer of asphalt binder. A silicone mold (not shown in the figure) is
used to form asphalt binder into a ring. The mold contains a cylindrical protrusion (shown as a hole in
Figure 5) that extends through the thickness of the binder and touches the invar ring. An electrical strain
gage is glued on the inner surface of the invar ring across the protrusion. To determine the cracking
temperature, the whole structure is placed into a temperature chamber, where it is cooled down. Because
the coefficient of thermal expansion of asphalt binders (α ∼ 2 · 10−4 ◦C−1) is much larger than invar’s
(α = 1.4 · 10−6 ◦C−1), the contraction of the binder is constrained, which causes tensile circumferential
stress development in the binder. As a result of cooling, the binder cracks around the hole, where the
thickness (in the axial direction) is least. At the moment of cracking the accumulated stress is relieved,
and this is expressed as a sudden drop in the strain readings by the strain gage. Thus, the cracking
temperature of the asphalt binder can be determined as the temperature at which the sudden drop in
measured strain occurs.

In contrast with the cracking temperature, the magnitude of tensile stress in the binder that causes
cracking cannot be directly determined from the strain gage readings. Using the present approach, it is
possible to simulate both circumferential strain on the inner surface of the invar ring and circumferential
stress in the binder. The knowledge of such strain-stress relations can provide a simple tool for the
measurement of the tensile circumferential stress causing the crack. This stress can be referred to as the
binder’s strength at the cracking temperature.

Figure 5. An ABCD specimen consisting of an elastic ring surrounded by a viscoelastic binder.
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Figure 6. Stress-strain curves for strains on the inner surface of the invar ring and
stresses in asphalt binder.

In order to simulate thermal stresses and strains in an ABCD specimen, the model of a composite
cylinder (Figure 3) under the condition of plane stress is used. Circumferential strain at the inner side of
the invar ring is given by (29), and the expression (28) is used to calculate circumferential stress in the
binder. The material properties corresponding to a modified asphalt binder 3 are used, as follows:

(CAM model) Eg = 3 GPa, tc = 148.381583 sec, v = 0.11346, w = 3.73643,

(Other) C1 = 3.03155, C2 = 0.16842◦C−1
, T0 = 18◦C.

The rest of the parameters is given in (36) and (37) on page 847.
The stress-strain relations obtained for the temperature rates C0 =−1◦C/hour and C0 =−10◦C/hour

are shown in Figure 6. Circumferential stress is found at r = r1 (inner surface of the binder ring) and
r = r2 (outer surface of the binder ring). The plots in Figure 6 reveal that the magnitude of circumferential
stress is higher at the inner surface of the binder ring. Based on this, it is reasonable to conclude that
cracking starts from the inner side of the binder ring. Simulation results also show that at the same strain
value, stresses in the binder are larger when the magnitude of temperature rate is larger. This is related to
the fact that stress in the binder is not able to fully relax when the temperature drops faster. Plots similar
to those given in Figure 6 can be obtained for other binders.

The results just presented are for a model that does not take into account the presence of the hole in
the asphalt binder. To estimate the influence of the hole on the stress/strain fields around it, an elastic
finite element (FE) model replicating the geometry of an ABCD specimen was built. The effect of the
influence of the hole in viscoelastic case would be qualitatively similar to that in the elastic problem. A

3This binder was modified with styrene-butadiene-styrene copolymer and produced by Flint Hills (USA). Binder’s perfor-
mance grade (PG) is PG 58-40 [AASHTO 2005]. This binder was tested in the Pavement Laboratory of the Department of Civil
Engineering at the University of Minnesota. For more on the properties of this binder, see [Marasteanu et al. 2007].
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Figure 7. Finite element models used for simulations.

full viscoelastic finite element analysis would be beyond the scope of this paper, though it is possible to
conduct such an analysis.

For simplicity, the Young’s modulus of the binder in FE model was taken to be constant: E = 3 GPa,
the initial value of the binder’s relaxation modulus. The properties of the inner ring and geometric
parameters corresponded to those of an actual ABCD specimen, and are listed on page 847. A full bond
between the binder and the invar ring was assumed. Due to the symmetry of the problem, only a quarter
of the ABCD rings had to be modeled. Two models, one without a hole (Figure 7a) and another with a
hole in the external ring (Figure 7b), were considered. Both were subjected to a temperature change of
1T =−50◦C, and the circumferential strain along the arc AB in Figure 7 was determined.

The results of the FE simulations, shown in Figure 8, reveal that the magnitude of circumferential strain
in the model with a hole (Figure 7b) increases significantly at point A. At this location the difference
reaches ∼55% in comparison with the case when no hole is present in the outer ring. Indeed, the presence
of the hole causes stress concentration around it, and the additional stress causes local bending of the
invar ring. This suggests that experimental strain measurements conducted across the hole cannot be
directly used for the calculation of thermal stresses in the binder based on the results given in Figure 6.
As follows from Figure 8, thermal stress may be estimated more accurately if strain measurements are
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conducted at an angle different from 0◦. Measurements taken at angles around 120◦ are likely to provide
more accurate results.

In order to be able to fully incorporate the advantages of the present approach into the calculations
of thermal stresses in ABCD specimens, a binder ring should be tested without a hole in it. In this case
strain measurements can be conducted at any location. Based on this suggestion, it may be concluded
that using ABCD (without a hole) together with the present approach may substitute two separate tests,
the bending beam rheometer and indirect tensile tests, which are currently used for determining thermal
stresses in binders, their strength and cracking temperature [AASHTO 2007; 2008].

8. Conclusion

A problem of thermal stress development in composite structures containing one linear isotropic vis-
coelastic phase is considered. The study is particularly devoted to problems involving viscoelastic asphalt
binders, whose properties strongly depend on temperature. The ability to determine thermal stresses in
asphalt binders and/or mixtures and the knowledge of their strength is critical for the proper design of
road pavements. The approach presented in the paper can be equally useful for the calculation of thermal
stresses in other viscoelastic composite structures made of materials — including many polymers and
resins — for which the time-temperature superposition principle is applicable.

Two methods of solution of viscoelastic problems are discussed. Both are based on the reduction of
viscoelastic problem to an elastic one. It is argued that the use of the method based on the application of
the Laplace transform to the analysis of the problems involving viscoelastic asphalt binders is impractical.
Therefore, an approach based on the use of the Volterra correspondence principle is adopted.

It is assumed that the Poisson’s ratios of the materials do not depend on time and temperature, which
allows reducing the number of integral operators to one for the case of an isotropic linear viscoelastic
material. This assumption is valid for asphalt binders at low temperatures. Incorporating a numerical
technique of solution, the integral operator corresponding to the master relaxation modulus is presented
in matrix form. The solution of a problem of viscoelastic composite structures is then reduced to the
calculation of functions of matrices, the form of which is determined by the corresponding elastic solution.
The application of this technique to the analysis of composite structures (including viscoelastic and elastic
constituents) under varying temperature is novel.

Several examples are discussed, in an attempt to estimate the accuracy of the method. It is shown
that for the case of viscoelastic asphalt binders, the simple integration technique adopted in the method
provides accurate results. For the case of other viscoelastic materials, it may be necessary to use a more
accurate integration scheme in the derivation of the matrix representation of the relaxation operator. The
last example involves an approach that can potentially be used for the calculation of thermal stresses and
binder strength in the Asphalt Binder Cracking Device.

The method can be applied to isotropic viscoelastic problems in which both material parameters
change with time and temperature. This is because the integral operators for the case of nonaging
viscoelasticity commute with each other.

Composite materials with complex internal structure, such as asphalt mixtures, can be treated with
the present method if effective mechanical and thermal properties are used. The method can also be
extended to problems involving temperature gradients and heat transfer. However, the application may
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be limited in the following cases: the solution of the corresponding elastic problem is a transcendental
function of elastic properties; the viscoelastic medium exhibits strong aging effects; the time-temperature
superposition principle is not applicable. These are topics for future research.

Appendix

Master relaxation modulus curve. The master relaxation modulus E(ξ) of asphalt binders is determined
from experimental data for creep compliances, which are obtained with the use of the bending-beam
rheometer (BBR) test. In this test [AASHTO 2008], a small beam made of an asphalt binder or asphalt
mix is subjected to three-point bending at different low temperatures (for example, −18◦C, −24◦C,
−30◦C). The deflection and the applied load are measured in real time. According to Euler–Bernoulli
beam theory, the maximum elastic deflection at the mid-span of the beam is

δmax =
P L3

48E I
, (A1)

where P is the concentrated load, L the beam span, I the moment of inertia, and E the Young’s modulus
of the material. Using (A1), the creep compliance of the viscoelastic beam D(t) can be determined to be

D(t)=
48 I
P L3 δ(t),

where δ(t) is the mid-span deflection history of the beam caused by a constant load P applied at zero
time.

The creep compliance D(t) is converted to the relaxation modulus E(t) using the Hopkins–Hamming
method [1957] of numerical integration of a convolution integral:∫ t

0
E(t)D(t − τ) dτ = t.

After E(t) is obtained for each testing temperature, the shift function aT (T ) can be found by shifting
each relaxation curve along time axis in such a way that they create a single smooth curve, called the
master relaxation curve. The direction of shifting is chosen in correspondence with the reference and
current temperatures. The master curve is fitted using least squares by the CAM model (15), and the shift
function is fitted using expression (9). This finally yields the constants C1 and C2 and reduced time ξ(t).

Outline of the solution of the composite elastic cylinder problem. (Refer to Figure 3.) The constitutive
equations for total strains in each cylinder are written in polar coordinates (r, θ) as

εrr =
1+ν

E
(
(1− ν)σrr − νσθθ +αE1T

)
, εθθ =

1+ν
E

(
(1− ν)σθθ − νσrr +αE1T

)
. (A2)

It is assumed that only radial displacement u exists, and the strain components are expressed (see, e.g.,
[Ugural and Fenster 2003]) as

εrr = u,r , εθθ =
u
r
, εrθ = 0.

where the subscript comma means derivative. Substituting these expressions into (A2) and using the
equilibrium equation

∂σrr

∂r
+
σrr − σθθ

r
= 0,
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it is straightforward to obtain the solution for the unknown radial displacement. After cancellation of the
terms containing temperature, the result is

u = c1r +
c2

r
,

where c1 and c2 are constants. The general solution for the stresses in each elastic cylinder is

σrr =
E

1+ ν

(
c1

1− 2ν
−

c2

r2

)
−

E
1− 2ν

α1T, σθθ = σrr + rσr,r .

Using the boundary conditions for the problem of composite cylinder (Figure 3), namely

σ inc
rr = 0 at r = r0, σ inc

rr = σ
bind
rr at r = r1, uinc

r = ubind
r at r = r1, σ bind

rr = 0 at r = r2,

the constants c1 and c2 are found for each cylindrical layer. Then the solution for the circumferential
stresses in the binder is given by (27)–(28), in which

a(r)=−
r2

1

r2 ·
r2

0−r2
1

r2
1−r2

2
·

r2
+r2

2

r2−2νir2
1+r2

0
·
αb(νb+1)−(νi+1)

νi+1
, (A3)

b(r)=−
r2

1

r2 ·
r2
+r2

2

r2
1−2νbr2

1+r2
2
·
(αi−1)(νi+1)

νb+1
, c =

r2
0−r2

1

r2
1−r2

2
·

r2
1−2νbr2

1+r2
2

r2−2νir2
1+r2

0
·
νb+1
νi+1

. (A4)

The solution for the total circumferential strains in the inclusion is given by (29)–(30), in which

d = 1+ (1−2νi )
r2

1

r2
0
, g =

r2
1

r2
0
·

r2
0−r2

1

r2
1−r2

2

(
1−2νb+

r2
2

r2
1

)
1+νb

1+νi
. (A5)
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