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KASRA BIGDELI AND MOHAMMAD MOHAMMADI AGHDAM

A semianalytical solution is presented for bending of moderately thick fully clamped laminated doubly
curved panels using the extended Kantorovich method (EKM). The panel is subjected to uniform and
nonuniform distributed loading and cut from a rectangular platform. Based on the first-order shear
deformation theory, five highly coupled second-order partial differential equations in terms of displace-
ment components are derived. Assuming separable functions for panel displacements together with the
EKM converts the governing equations into double sets of ordinary differential equations with constant
coefficients in terms of x and y. The resulting ODE systems are then solved iteratively until a level
of prescribed convergence is achieved. Closed-form solutions can be presented for ODE systems in
each iteration. Efficiency and rapid convergence of the solution technique are examined using several
examples. Predictions of both deflection and stress resultants show very good agreement with other
available results in the literature. It is also shown that the same formulation and solution method can be
used to obtain results for spherical and cylindrical panels and rectangular plates.

1. Introduction

Since fabrication of composite materials such as graphite/epoxy, boron/epoxy, Kevlar/epoxy and graphite/
PEEK started, high-tech industries have become interested in using them as structural materials. Thus
laminated composites have replaced metallic alloys in many applications, offering, among their beneficial
features, light weight, high stiffness and strength.

Panels can generally bear much higher loads than plates, due to the geometric coupling between the
membrane and flexure forces in panels. This coupling is material-independent and only occurs in panels
due to the curved geometry. Material asymmetry in composite structures, either panels or plates, may also
cause another type of coupling between the membrane and flexure forces which can occur in composite
plates as well as composite panels. Thus, advanced laminated composite panels are currently being used
in aircraft, space vehicles, ships and other structures where excellent structural performance is needed.
Particularly, spherical panels are used wherever a high external pressure is applied on the panel, such as
pressure vessel caps and ceilings.

The efficient use of laminated panels relies on the accurate prediction of their behavior under various
types of loading. This depends on the level of accuracy of the modeling theory which normally leads
to a system of coupled PDEs and also solution technique. An efficient procedure to solve systems of
PDEs, known as the extended Kantorovich method (EKM), was initially introduced in [Kerr 1968] to
obtain highly accurate approximate closed-form solutions for torsion of isotropic beams with rectangu-
lar cross-section. In the EKM, the idea of the Kantorovich method [Kantorovich and Krylov 1958],
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which transforms a partial differential equation into a couple of ordinary differential equations, is further
developed into an iterative scheme to improve accuracy.

The EKM has been widely used to obtain highly accurate approximate solutions for several 2D elastic-
ity problems of rectangular plates in such applications as the bending of thin plates [Kerr and Alexander
1968; Dalaei 1995], eigenvalue problems [Kerr 1969], free vibration [Aghdam et al. 2009; Dalaei and
Kerr 1996], buckling [Yuan and Jin 1998], bending of thick plates [Aghdam et al. 1996; Yuan et al. 1998;
Aghdam and Falahatgar 2003], bending of variable thickness plates [Fariborz and Pourbohloul 1989] and
free-edge strength analysis [Kim et al. 2000]. Recently, the EKM has been used to solve problems in
other geometries, such as annular sector plates [Aghdam and Mohammadi 2009] and cylindrical panels
[Alijani and Aghdam 2009; Alijani et al. 2008; Abouhamze et al. 2007].

This study presents an EKM-based semianalytical solution for the bending of clamped laminated
doubly curved panels. Based on first-order deformation theory (FSDT) and considering initial curvature
effects [Toorani and Lakis 2000], governing equations in the form of five highly coupled second-order
PDEs are derived. The EKM is employed to convert them to two sets of five ODEs with constant
coefficients in terms of x and y. An exact closed-form solution is presented for each ODE system,
ensuring the computational effort in applying this method is generally lower than for numeric methods.
Rapid convergence and good accuracy of the solution is shown through examples and comparisons with
other analytical and numerical methods. The effects of length-to-thickness ratio and radius-to-length ratio
on stress resultant and displacement components are also investigated. We also show how the method
can be used for the analysis of rectangular plates and cylindrical panels by assuming infinite values for
one or both radii of curvatures.

2. Governing equations

A laminated doubly curved panel of rectangular platform with total thickness of h is considered. A
curvilinear coordinate system (x, y, z) is used to describe the geometry of the panel, as shown in Figure 1.
The radii of curvature of the panel are Rx and Ry , and the lengths of the panel are a and b, along the x
and y directions, respectively.

According to the FSDT assumptions, the three-dimensional displacement field is

ux(x, y, z)= u0(x, y)+ zβ1(x, y), u y(x, y, z)= v0(x, y)+ zβ2(x, y), uz(x, y, z)=w0(x, y), (1)

Ry  Rx  

x

z

y

b
a

Figure 1. Doubly curved panel geometry.
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where ui (i = x, y, z) are the displacement components of the panel along the analogous directions, u0,
v0 and w0 stand for the displacements of mid-surface, and β1 and β2 represent rotations about y and x ,
respectively. (For formulas (1)–(3) see [Reddy 2004].)

The strain-displacement relationships of the panel can be expressed as

ε1 =
1

1+z/Rx
(ε0

1 + zε1
1), ε2 =

1
1+z/Ry

(ε0
2 + zε1

2), ε4 =
1

1+z/Ry
ε0

4, ε5 =
1

1+z/Rx
ε0

5,

ε6 =
1

1+z/Rx
(ω0

1+ zω1
1)+

1
1+z/Ry

(ω0
2+ zω1

2),

(2)

where ε1 and ε2 are the normal strains along the x and y axes, ε6 is the shear strain in the xy-plane, ε4 and
ε5 stand for the transverse shear strains in the yz- and xz-planes, respectively. Also, ε0

i , ω
0
i , ε

1
i (i = 1, 2)

and ω1
i (i = 1, 2) represent the in-plane normal strains, in-plane shear strains, changes in the curvature

and the torsions of the mid-plane surface. ε0
i (i = 4, 5) denote the transverse shear strains of the reference

surface in y-z and x-z planes.
The relationship between the reference surface strains and the displacement components is

ε0
1 =

∂u0

∂x
+
w0

Rx
, ε0

2 =
∂v0

∂y
+
w0

Ry
, ε0

4 =
∂w0

∂y
−
v0

Ry
+β2, ε0

5 =
∂w0

∂x
−

u0

Rx
+β1,

ε1
1 =

∂β1

∂x
, ε1

2 =
∂β2

∂y
, ω0

1 =
∂v0

∂x
, ω0

2 =
∂u0

∂y
, ω1

1 =
∂β2

∂x
, ω1

2 =
∂β1

∂y
.

(3)

For simplicity we rewrite this in matrix form:

{ε} = [d]{u}, (4)

where {u}=〈u0, v0, w0, β1, β2〉
T is the displacement vector, {ε}=〈ε0

1, ω
0
1, ε

0
5, ε

0
2, ω

0
2, ε

0
4, ε

1
1, ω

1
1, ε

1
2, ω

1
2〉

T

is the strain vector and the operator matrix [d]10×5 is given by

[d] =



∂

∂x
0 −1

Rx
0 ∂

∂y
0 0 0 0 0

0 ∂

∂x
0 ∂

∂y
0 −1

Ry
0 0 0 0

1
Rx

0 ∂

∂x
1
Ry

0 ∂

∂y
0 0 0 0

0 0 1 0 0 0 ∂

∂x
0 0 ∂

∂y

0 0 0 0 0 1 0 ∂

∂x
∂

∂y
0



T

. (5)

The constitutive equations, that is, the relationship between strain components and stress resultants,
including transverse shear deformations and initial curvature effects, can be written as

{F} = [P]{ε} (6)
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(see [Toorani and Lakis 2000]), where {F} = 〈Nx , Nxy, Qx , Ny, Nyx , Q y,Mx ,Mxy,My,Myx 〉
T is the

stress resultant vector, and the stiffness matrix [P] is defined as

[P] =



G11 G16 0 A12 A16 0 H11 H16 B12 B16

G61 G66 0 A62 A66 0 H61 H66 B62 B66

0 0 Ks G55 0 0 Ks A54 0 0 0 0

A21 A26 0 G ′22 G ′26 0 B21 B26 H ′22 H ′26

A61 A66 0 G ′62 G ′66 0 B61 B66 H ′62 H ′66

0 0 Ks A45 0 0 Ks G ′44 0 0 0 0

H11 H16 0 B12 B16 0 J11 J16 D12 D16

H61 H66 0 B62 B66 0 J61 J66 D62 D66

B21 B26 0 H ′22 H ′26 0 D21 D26 J ′22 J ′26

B61 B66 0 H ′62 H ′66 0 D61 D66 J ′62 J ′66



(7)

(see [Reddy 2004]), where Ks is the shear correction factor and

Gi j = Ai j + a′1 Bi j + a′2 Di j + a′2 Ei j , G ′i j = Ai j + b′1 Bi j + b′2 Di j + b′3 Ei j ,

Hi j = Bi j + a′1 Di j + a′2 Ei j + a′3 Fi j , H ′i j = Bi j + b′1 Di j + b′2 Ei j + b′3 Fi j ,

Ji j = Di j + a′1 Ei j + a′2 Fi j + a′3Ci j , J ′i j = Di j + b′1 Ei j + b′2 Fi j + b′3Ci j ,

a′1 =
1
Ry
−

1
Rx
, a′2 =

1
Rx

( 1
Rx
−

1
Ry

)
, a′3 =

1
R2

x Ry
,

b′1 =
1
Rx
−

1
Ry
, b′2 =

1
Ry

( 1
Ry
−

1
Rx

)
, b′3 =

1
R2

y Rx
,

(8)

with (for i, j = 1, 2, 4, 5, 6)

Ai j =

N∑
k=1

(Qi j )k(hk − hk−1), Bi j =
1
2

N∑
k=1

(Qi j )k(h2
k − h2

k−1),

Di j =
1
3

N∑
k=1

(Qi j )k(h3
k − h3

k−1), Ei j =
1
4

N∑
k=1

(Qi j )k(h4
k − h4

k−1),

Fi j =
1
5

N∑
k=1

(Qi j )k(h5
k − h5

k−1), Ci j =
1
6

N∑
k=1

(Qi j )k(h6
k − h6

k−1),

(9)

the Qi j being defined by

Q11 = Q11m4
+ 2(Q12+ 2Q66)+ Q22n4,

Q12 = (Q11+ Q22− 4Q66)m2n2
+ Q12(m4

+ n4),

Q22 = Q11n4
+ 2(Q12+ 2Q66)m2n2

+ Q22m4,
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Figure 2. An orthotropic layer.

Q45 = (Q55− Q44)mn,

Q16 = (Q11− Q12− 2Q66)m3n+ (Q12− Q22+ 2Q66)mn3,

Q26 = (Q11− Q12− 2Q66)mn3
+ (Q12− Q22+ 2Q66)m3n, (10)

Q44 = Q44m2
+ Q55n2,

Q55 = Q44n2
+ Q55m2,

Q66 = (Q11+ Q22− 2Q12− 2Q66)m2n2
+ Q66(m4

+ n4),

for m = cosϕ, n = sinϕ, and

Q11 = E11/(1− ν12ν21), Q44 = G23,

Q12 = E11ν12/(1− ν12ν21), Q55 = G13,

Q22 = E22/(1− ν12ν21) Q66 = G12.

(11)

Here Eαα, Gαβ and ναβ (α, β = 1, 2) represent the Young’s moduli, rigidity moduli, and Poisson ratios,
respectively, along the principal directions, and the orientation angle ϕ is measured counterclockwise
from the x-axis to the 1-axis (fiber orientation) as shown in Figure 2.

The matrices [B], [E] and [C] vanish in the case of symmetrically laminated composites. Note that,
unlike the conventional constitutive equations in general use [Reddy 2004], here we consider also initial
curvature effects. Therefore, the shear forces and torsional moments are not generally equal, i.e., Nxy 6=

Nyx and Mxy 6= Myx .
To obtain equations of equilibrium, Hamilton’s principle is applied to the FSDT displacement field

[Toorani and Lakis 2000]. Neglecting time-dependent terms in the resulting equations, one obtains the
static form of the equilibrium equations as

[E]{F} = {q}, (12)

where the vector {q} = {0, 0, q(x, y), 0, 0}T is the external force vector and the matrix [E], usually called
the equilibrium operator, is defined as
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[E] =



∂

∂x
0 1

Rx
0 ∂

∂y
0 0 0 0 0

0 ∂

∂x
0 ∂

∂y
0 1

Ry
0 0 0 0

−1
Rx

0 ∂

∂x
−1
Ry

0 ∂

∂y
0 0 0 0

0 0 −1 0 0 0 ∂

∂x
0 0 ∂

∂y

0 0 0 0 0 −1 0 ∂

∂x
∂

∂y
0


. (13)

Substitution of (4) into (6) in conjunction with (12) leads to five second-order PDEs in terms of five
unknown displacement and rotation components. The final governing system of equations may be written
in matrix form as

[S]{u} = {q}, (14)

where the square matrix [S]5×5 = [E][P][d], called the fundamental matrix, comprises the geometric and
material properties of the panel; its entries are defined in Appendix A. In the case of clamped structures,
all displacements and rotations must vanish at the boundaries:

u0(x, y)= v0(x, y)= w0(x, y)= β1(x, y)= β2(x, y)= 0 at x = 0, a and at y = 0, b. (15)

3. Application of the EKM

To apply the EKM to the governing equations (14), the first step is to assume all displacement components
to be products of single-term separable functions. For economy we write this in matrix form as

u0(x, y)
v0(x, y)
w0(x, y)
β1(x, y)
β2(x, y)

=

ξ1(x)×ψ1(y)
ξ2(x)×ψ2(y)
ξ3(x)×ψ3(y)
ξ4(x)×ψ4(y)
ξ5(x)×ψ5(y)

= [ψ]× [ξ ]× {1}, (16)

where the square matrices [ξ ]5×5, [ψ]5×5 and {1}5×1 are defined by

[ψ] =


ψ1

ψ2 0
ψ3

0 ψ4

ψ5

 , [ξ ] =

ξ1

ξ2 0
ξ3

0 ξ4

ξ5

 , {1} =


1
1
1
1
1

 . (17)

Introducing (16) into (14) leads to the new form of the governing equations as

[S][ψ][ξ ]{1} = −{q}. (18)
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It is essential to rewrite the clamped boundary condition in terms of ψi (y) and ξi (x). Substituting (16)
into (15) results in the new form of the boundary conditions for clamped panels as

ξi (0)= ξi (a)= ψi (0)= ψi (b)= 0, i = 1, . . . , 5. (19)

Following the main idea of the weighted residuals method, all the governing equations should be multi-
plied by an appropriate weighting function, which in this case, in view of Hamilton’s principle, is ψi (y)
for the i-th equation. Multiplying the governing equations (18) by the appropriate functions leads to

[ψ][S][ψ][ξ ] = [ψ]{q}. (20)

The next step is to integrate over the length of the panel in the y direction. Performing the integration
results in the first system of ODEs:

[X ]{ξ} = {J }, (21)

where the matrices [X ] =
∫ b

0 [ψ][S][ψ]dy and {J } =
∫ b

0 [ψ]{q}dy. are presented in Appendix B. Thus,
assuming the first set of ψi (y) as the initial guess functions, [X ] and {J } can be calculated. Any analytical
or numerical solution for (21) leads to the first approximate displacement and rotation functions in the x
direction, i.e., ξi (x), i = 1, . . . , 5.

Closed-form solutions can be found for the system of simultaneous ODEs (21), using standard tech-
niques [Wylie and Barret 1985]. The solution consists of particular and homogenous parts:


ξ1

ξ2

ξ3

ξ4

ξ5

=


1 1 1 · · · 1
α1 α2 α3 · · · α10

β1 β2 β3 · · · β10

χ1 χ2 χ3 · · · χ10

δ1 δ2 δ3 · · · δ10


5×10



A1eλ1x

A2eλ2x

A3eλ3x

...

A10eλ10x


10×1

+


ξp1(x)
ξp2(x)
ξp3(x)
ξp4(x)
ξp5(x)

 , (22)

where the ξi p(x) are particular parts of the solution that depend on the type of external load. For instance,
in the case of uniform loading, all the ξi p(x) are constants. They can be obtained by substituting dx = 0
in the matrix [X ] of (21) and using the equality

{ξp}5×1 = ([X ]|dx=0)
−1
×{J }. (23)

The homogenous part of the solution is comprised of exponential functions multiplied by appropriate
constant coefficients. To obtain the λi in (22), one solves the characteristic equation

det [X ] = 0, (24)

which amounts to a polynomial equation

H1λ
10
+ H2λ

8
+ H3λ

6
+ H4λ

4
+ H5λ

2
+ H6 = 0, (25)
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in which dx is replaced by λ. Once the λi are calculated, it is possible to determine αi , βi , χi and δi , by
replacing dx by λi : 

X21 X22 X23 X24 X25

X31 X32 X33 X34 X35

X41 X42 X43 X44 X45

X51 X52 X53 X54 X55

 ∣∣∣∣
dx=λi

×


1
αi

βi

χi

δi

=


0
0
0
0
0

 . (26)

Finally, the boundary conditions (19) lead to the determination of the constant coefficients Ai :

1 1 1 1 1 1 1 1 1 1
α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

eλ1a eλ2a eλ3a eλ4a eλ5a eλ6a eλ7a eλ8a eλ9a eλ10a

α1eλ1a α2eλ2a α3eλ3a α4eλ4a α5eλ5a α6eλ6a α7eλ7a α8eλ8a α9eλ9a α10eλ10a

β1eλ1a β2eλ2a β3eλ3a β4eλ4a β5eλ5a β6eλ6a β7eλ7a β8eλ8a β9eλ9a β10eλ10a

χ1eλ1a χ2eλ2a χ3eλ3a χ4eλ4a χ5eλ5a χ6eλ6a χ7eλ7a χ8eλ8a χ9eλ9a χ10eλ10a

δ1eλ1a δ2eλ2a δ3eλ3a δ4eλ4a δ5eλ5a δ6eλ6a δ7eλ7a δ8eλ8a δ9eλ9a δ10eλ10a



×



A1

A2

A3

A4

A5

A6

A7

A8

A9

A10



=



−ξ1p

−ξ2p

−ξ3p

−ξ4p

−ξ5p

−ξ1p

−ξ2p

−ξ3p

−ξ4p

−ξ5p



.

Subsequently, a similar procedure in the x direction results in the second set of ODEs:

[Y ]{ψ} = {K }, (27)

where the matrices [Y ] =
∫ a

0 [ξ ][S][ξ ]dx and {K } =
∫ a

0 [ξ ]{q}dx are defined in Appendix C. The same
process can be used to obtain closed-form solutions for (27) which lead to the approximate functions
forψi (y). At this point, the first iteration for solution of governing equations (18) is completed. Again,
the new set of ψi (y) is used to calculate coefficients of (21). This cyclic procedure should be continued
successively, until a predefined level of accuracy is achieved. Results show that three to four iterations
are usually enough to obtain the converged solution.

4. Results and discussion

In order to examine the efficiency and applicability of the solution, we consider examples of laminated
panels and plates subjected to uniform and nonuniform loadings. The mechanical properties of two
orthotropic materials used in this study are tabulated in Table 1, where E1 and E2 are the Young’s
moduli of the material in x and y directions, ν12 is the Poisson’s ratio in the xy-plane, G12 stands for the
in-plane shear modulus, and G13 and G23 are the transverse shear moduli in the xz- and yz-planes. The

E1 (GPa) E1/E2 E1/G13 E1/G12 E1/G23 ν12

Material I 175.78 25 50 50 125 0.25
Material II 147.66 15 35 35 42 0.3

Table 1. Material properties.



BENDING OF CLAMPED LAMINATED DOUBLY CURVED OR SPHERICAL PANELS 863

shear correction factor is taken as Ks =
5
6 [Chaudhuri and Kabir 1993]. The results are then compared

with others results in the literature. Moreover, many results including displacement components as well
as stress resultants are presented to show the effects of various parametric ratios on the static response
of the panel. The following dimensionless terms are used in all results presented in this study:

W ∗ =
103 E2h3w0

qa4 , M∗ =
103 M1

qa2 , β∗ =
102 E2h3

qa3 β1. (28)

The dimensionless deflection (W ∗) and moment (M∗) are computed at the center point (a/2, b/2) of the
panel, while the dimensionless rotation (b∗) is reported at the point (a/4, b/2). The stacking sequence
of the panel is taken as [0/90/0] unless explicitly noted.

It should be noted that unlike the traditional weighted residual methods, the EKM does not require the
initial guess functions to meet boundary conditions. To illustrate this, arbitrary initial guess functions
for all cases are taken as ψi (y)= y2 sin(yπ/ i), i = 1, . . . , 5, which clearly do not satisfy the clamped
boundary conditions (19). However, the solution obtained satisfies the boundary conditions once the first
iteration is accomplished.

4.1. Laminated spherical panel. The first example deals with a clamped symmetrically laminated spher-
ical panel (Rx = Ry = R) subjected to a uniform distributed load. The span lengths of the panel are
taken as a = b = 812.8 mm, and the panel is made of material type I. For the described panel with the
radius to side length ratio of R/a = 10 and the side length to thickness ratio of a/h = 10, the first four
iterations of deflection functions ψ3(y) and ξ3(x) are illustrated in Figure 3. Note the good convergence
rate of the method apparent in these graphs. After the second iteration, both ξ3(x) and ψ3(y) overlap
completely. The predictions for dimensionless deflection, moment and rotation, tabulated in Table 2, left,
also show the rapid convergence of the solution: the last two iterations differ by no more than 0.07% in
dimensionless deflection, moment and rotation.

Table 2, right, compares, for a laminated spherical panel (R/a= a/h = 10) with symmetric lamination
[0/90/0] and asymmetric lamination [0/90], the results of the present study and those of the double
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Figure 3. First four iterations for ψ3 (left) and ξ3 (right).
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Iteration W ∗ M∗ β∗

1 4.5973 36.6842 0.3452
2 4.5012 35.9860 0.3332
3 4.4956 35.9494 0.3329
4 4.4925 35.9274 0.3327

Lamin. Method W ∗ M∗ β∗

[0/90/0] EKM 4.49 35.92 0.333
DF 4.73 35.89 0.322

[0/90] EKM 5.97 31.86 1.023
DF 5.58 31.70 1.030

Table 2. First four iterations for spherical panel (left) and comparison of end result with
those of the double Fourier method of [Chaudhuri and Kabir 1993] (right). In both cases,
a/h = R/a = 10.

Fourier series analysis reported in [Chaudhuri and Kabir 1993]. The predictions for dimensionless de-
flection, moment and rotation are in agreement with Chaudhuri and Kabir’s. However, it seems that
the results of their double Fourier series technique are slightly inaccurate, since the analytical solution
based on Navier’s approach for dimensionless deflection of a similar panel with simply supported (SS1)
edges is 10.11 [Reddy 2004], while the double Fourier series technique results in 10.53. Note also that
the solution based on the double Fourier series needs about 100 terms to converge, while the solution
presented here usually converges after the third iteration.

Figure 4, left, plots the dimensionless displacement W ∗, moment M∗ and rotation β∗ versus the length
to thickness ratio (a/h) of a moderately deep, symmetrically laminated cross-ply (R/a = 10) spherical
panel. For thin panels (a/h > 40), both dimensionless deflection and rotation are constant. Included in
the figure are also results of the double Fourier series method [Chaudhuri and Kabir 1993].

Variations of the dimensionless displacement W ∗, moment M∗ and rotation β∗ with respect to radius
to side length ratio (R/a) for symmetrically laminated moderately thick (a/h = 10) spherical panels are
depicted in Figure 4, right. No variations of the dimensionless parameters (W ∗, M∗ and β∗) can be seen
for the case of shallow shells (R/a > 20).
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Figure 4. Dimensionless deflection, moment and rotation as functions of thickness (left)
and curvature (right).
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Figure 5. Dimensionless deflection of the spherical panel along the centerline x/a = 0.5.
Left: R/a = 3 and a/h = 10; right: R/a = 3 and a/h = 100.

The next example investigates the static response of the laminated spherical panel to nonuniform
loading. The geometric parameters of the panel are taken as R/a = 3 and a/h = 10, and the material
is type I. Figure 5, left, shows the dimensionless deflection along the centerline (x/a = 0.5) of the
panel subjected to a uniformly distributed load of q0 and a sinusoidal load q0 sin(π x/a) sin(π y/b).
The deflection is greater under the uniform load than under the sinusoidal load. However, this is not
always the case: Figure 5, right, shows the dimensionless deflection of a spherical panel with geometric
parameters R/a = 3 and a/h = 100, where the maximum deflection is higher under a sinusoidal load.

To study the effects of the loading distribution on the static response, dimensionless deflection, we
give in Tables 3 and 4 the moment and rotation of spherical panels with different geometric parameters
and laminations. We see that that as the panel gets thinner and deeper, it is more easily deflected under
a sinusoidal load than under a uniform load.

4.2. Orthotropic spherical panel. This example investigates sensitivity of the static response of a single-
layer orthotropic spherical panel to degree of orthotropy (E1/E2). Except for E1/E2 ratio, other mechan-
ical properties of the panel are the same as material type I. In order to show the effect of the degree of
orthotropy on the static response of the panel, the dimensionless displacement W ∗, moment M∗ and
rotation β∗ versus degree of orthotropy (E1/E2) are plotted in Figure 6. It is obvious that changes in
the degree of orthotropy result in significant changes of the static response of the panel. It can easily
be seen that dimensionless deflection and rotation decrease as degree of orthotropy (E1/E2) increases
while increasing degree of orthotropy leads to increasing of dimensionless moment.

4.3. Laminated cylindrical panel. We now turn to cylindrical panels, introduced first as the limit of
doubly curved panels as one radius of curvature increases. Thus we take Rx = 108 m in this section.
Table 5 shows the dimensionless central deflections of clamped cylindrical panels made of material I
with constant curvature ratio of 10 (Ry/a = 10), various thickness ratios and various laminations under
uniform loading. Analogous results obtained using the commercial finite element software code ANSYS
are also included in the table, showing good agreement with our solution.
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a/h = 10 a/h = 20 a/h = 50
R/a W ∗ M∗ β∗ W ∗ M∗ β∗ W ∗ M∗ β∗

2 UL 1.715 12.544 0.120 0.518 8.299 0.082 0.092 1.696 0.021
SL 1.413 13.039 0.112 0.469 9.809 0.084 0.104 3.619 0.029

3 UL 2.715 20.917 0.196 0.943 16.332 0.156 0.209 4.918 0.052
SL 2.069 18.774 0.164 0.774 15.764 0.138 0.203 6.661 0.056

5 UL 3.777 29.876 0.278 1.535 27.664 0.260 0.492 13.140 0.129
SL 2.783 24.768 0.218 1.185 23.711 0.210 0.421 13.206 0.116

10 UL 4.493 35.927 0.333 2.049 37.524 0.351 1.018 28.653 0.271
SL 3.263 28.819 0.254 1.536 30.492 0.272 0.800 24.476 0.218

20 UL 4.715 37.805 0.350 2.231 41.023 0.382 1.356 38.646 0.362
SL 3.409 30.061 0.266 1.661 32.887 0.294 1.039 31.558 0.283

Table 3. Dimensionless deflection, moment and rotation for symmetrically laminated
[0/90/0] spherical panels, under uniform loading (UL) and sinusoidal loading (SL).

a/h = 10 a/h = 20 a/h = 50
R/a W ∗ M∗ β∗ W ∗ M∗ β∗ W ∗ M∗ β∗

2 UL 1.723 10.598 0.113 0.523 7.116 0.080 0.092 1.259 0.020
SL 1.387 11.138 0.106 0.477 8.677 0.083 0.107 3.129 0.030

3 UL 2.688 17.689 0.184 0.956 14.395 0.154 0.217 4.246 0.053
SL 2.010 15.969 0.153 0.781 14.025 0.136 0.209 5.967 0.057

5 UL 3.685 25.113 0.258 1.556 24.641 0.256 0.521 12.217 0.134
SL 2.667 20.895 0.202 1.182 21.051 0.205 0.432 12.055 0.117

10 UL 4.345 30.043 0.307 2.075 33.560 0.345 1.069 26.966 0.282
SL 3.103 24.168 0.234 1.524 27.001 0.264 0.814 22.478 0.221

20 UL 4.545 31.547 0.322 2.259 36.731 0.377 1.416 36.349 0.375
SL 3.237 25.168 0.244 1.644 29.097 0.285 1.054 28.986 0.285

Table 4. Dimensionless deflection, moment and rotation for symmetrically laminated
[0/90/90/0] spherical panels. under uniform loading (UL) and sinusoidal loading (SL).

Lamination a/h = 10 20 30 40 50

[30/−30/30/−30] EKM 4.560 2.490 2.053 1.867 1.754
ANSYS 4.563 2.496 2.062 1.890 1.783

[45/−45/45/−45] EKM 4.510 2.488 2.016 1.785 1.626
ANSYS 4.542 2.514 2.062 1.846 1.704

[0/90/0] EKM 4.702 2.215 1.674 1.445 1.303
ANSYS 4.711 2.215 1.674 1.439 1.299

Table 5. Dimensionless central deflection of cylindrical panels with constant curvature
ratio of R/a = 10 and various thickness ratios and laminations: comparison of present
method with results obtained using commercial finite-element code (ANSYS).
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Figure 7. Dimensionless deflection of cylindrical panel along the straight center line.

The next example is a clamped symmetrically laminated cylindrical panel subjected to sinusoidal
loading. The material properties of the panel are shown in Table 1 under type I and the geometric
parameters are Ry = 3 m, a = b = 0.3 m and h = 0.03 m. A sinusoidal loading distribution is assumed
along both curved and straight axes as q(x, y)= sin(π x/a) sin(π y/b). The dimensionless deflection of
the panel along straight axis x is plotted in Figure 7; close agreement can be seen between the present
method and the results from ANSYS. This suggests that the method provides a stable and valid solution
even as one radius of curvature tends to infinity.

4.4. Laminated rectangular plate. The next case mimics that of laminated rectangular plates by assum-
ing very large values for both radii of the panel, say Rx = Ry = 108 m. The mechanical properties of the
panel are shown in Table 1 under type II. The dimensionless deflections of plates with different aspect
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a/h b/a = 1.0 1.2 1.4 1.6 1.8 2.0

10 EKM 5.20 5.96 6.31 6.42 6.42 6.35
LMT 5.17 5.93 6.29 6.41 6.40 6.33

100 EKM 2.33 2.49 2.52 2.48 2.44 2.41
LMT 2.28 2.44 2.46 2.43 2.38 2.35

Table 6. Dimensionless deflection of plates with different aspect ratios: comparison
between the present method and results from [Chandrashekhara et al. 1990] obtained
with the Lagrange multiplier technique.

Lamination a/h = 10 20 30 40 50

[30/−30/30/−30] EKM 4.599 2.535 2.122 1.971 1.899
ANSYS 4.605 2.531 2.117 1.966 1.896

[45/−45/45/−45] EKM 4.615 2.614 2.203 2.049 1.974
ANSYS 4.626 2.610 2.200 2.043 1.969

[0/90/0] EKM 4.809 2.308 1.797 1.613 1.527
ANSYS 4.830 2.311 1.799 1.615 1.524

Table 7. Dimensionless central deflection of rectangular plates with various thickness
ratios and laminations: comparison between the present method and results obtained
from ANSYS.

ratios and thickness-to-side-length ratios are reported in Table 6. Predictions of the EKM are compared
with corresponding results achieved by the Lagrange multipliers technique (LMT) [Chandrashekhara
et al. 1990], again showing good agreement.

Finally, dimensionless central deflections of square plates made of material I with various thickness
ratios and laminations obtained using the presented solution along with analogous results obtained using
ANSYS are reported in Table 7.

Again, if we take infinite values for both radii (Rx = Ry =∞), no divergence appears to occur. This
suggests the validity and stability of the EKM for solving for the bending of laminated doubly curved
panels even in the limit when both axes are straight.

5. Conclusion

We have presented an accurate semianalytical solution procedure for the bending of clamped doubly
curved panels, using the extended Kantorovich method. Assuming the displacement functions to be
products of two sets of separable functions, the governing PDEs are converted to two systems of ODEs
with constant coefficients, each of which can be solved in closed form. Successive solution of the ODE
systems results in convergence to the final solution of the problem. Unlike other weighted residual
methods, this approach accepts arbitrary initial guess functions, not necessarily satisfying the boundary
conditions. Examples are given of panels with different length-to-thickness and radius-to-length ratios,
subjected to both uniform and nonuniform loading. In each case rapid convergence and high accuracy
are observed, and the results agree with existing numerical and analytical solutions. The method also
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performs well in predicting displacement components and stress resultants. Finally, for the case of
cylindrical panels (Rx = ∞) and rectangular plates (Rx = Ry = ∞), we check that the procedure
remains functional and valid.

Appendix A: Coefficients of the fundamental matrix S of (14)

The matrix is symmetric. Set dx =
∂

∂x
, dy =

∂

∂y
, d2

x =
∂2

∂x2 , d2
y =

∂2

∂y2 .

S11 = G11d2
x + 2A16dx dy +G ′66d2

y − Ks G55/R2
x

S12 = G61d2
x + A66dx dy + A21dx dy +G ′26d2

y − Ks A45/Rx Ry

S13 =

(
Ks G55+G11

Rx
+

A12

Ry

)
dx +

(
Ks A54+ A61

Rx
+

G ′62

Ry

)
dy

S14 = H11d2
x + H ′66d2

y + Ks G55/Rx + 2B16dx dy

S15 = H16d2
x + H ′62d2

y + Ks A54/Rx + (B66+ B12)dx dy

S22 = G66d2
x + 2A26dx dy +G ′22d2

y − Ks G ′44/R
2
y

S23 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
dx +

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
dy

S24 = H61d2
x + H ′26d2

y + Ks A45/Ry + (B66+ B12)dx dy

S25 = H66d2
x + H ′22d2

y + Ks G ′44/Ry + 2B26dx dy

S33 =−Ks(G55d2
x + 2A45dx dy +G ′44d2

y )+
G11

R2
x
+

2A12

Rx Ry
+

G ′22

R2
y

S34 =

(
H11

Rx
− Ks G55+

B12

Ry

)
dx +

(
H ′26

Ry
− Ks A45+

B16

Rx

)
dy

S35 =

(
H16

Rx
− Ks A45+

B26

Ry

)
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(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
dy

S44 = J11d2
x + 2D16dx dy + J ′66d2

y − Ks G55

S45 = J16d2
x + (D12+ D66)dx dy + J ′26d2

y − Ks A54

S55 = J66d2
x + 2D26dx dy + J ′22d2

y − Ks G ′44

Appendix B: Coefficients of the fundamental matrix X of (21)

Set Ii j =

∫ b

0
ψi (y)ψ j (y) dy, I ′i j =

∫ b

0
ψi (y)

dψ j (y)
dy

dy, I ′′i j =

∫ b

0
ψi (y)

d2ψ j (y)
dy2 dy, and

{J } =
〈
0, 0,−

∫ b

0
q(x, y)ψ3(y)dy, 0, 0

〉T

.
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Appendix C: Coefficients of the fundamental matrix Y of (27)

Set L i j =

∫ a

0
ξi (x)ξ j (x) dx , L ′i j =

∫ a

0
ξi (x)

dξ j (x)
dx

dx , L ′′i j =

∫ a

0
ξi (x)

d2ξ j (x)
dx2 dx , and

{K } =
〈
0, 0,−

∫ a

0
q(x, y)ξ3(x)dx, 0, 0

〉T
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A12

Ry

)
L ′31+

(
Ks A54+ A61

Rx
+

G ′62

Ry

)
L31dy

Y32 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
L ′32+

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
L32dy

Y33 =−Ks(G55L ′′33+ 2A45L ′33dy +G ′44L33d2
y )+

(
G11

R2
x
+

2A12

Rx Ry
+

G ′22

R2
y

)
L33

Y34 =

(
H11

Rx
− Ks G55+

B12

Ry

)
L ′34+

(
H ′26

Ry
− Ks A45+

B16

Rx

)
L34dy

Y35 =

(
H16

Rx
− Ks A45+

B26

Ry

)
L ′35+

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
L35dy

Y41 = H11L ′′41+ H ′66L41d2
y + Ks G55L41/Rx + 2L ′41 B16dy

Y42 = H61L ′′42+ H ′26L42d2
y + Ks A45L42/Ry + L ′42(B66+ B12)dy

Y43 =

(
H11

Rx
− Ks G55+

B12

Ry

)
L ′43+

(
H ′26

Ry
− Ks A45+

B16

Rx

)
L43dy

Y44 = J11L ′′44+ 2D16L ′44dy + J ′66L44d2
y − Ks G55L44

Y45 = J16L ′′45+ (D12+ D66)L ′45dy + J ′26L45d2
y − Ks A54L45
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Y51 = H16L ′′51+ H ′62L51d2
y + Ks A54L51/Rx + L ′51(B66+ B12)dy

Y52 = H66L ′′52+ H ′22L52d2
y + Ks G ′44L52/Ry + 2L ′52 B26dy

Y53 =

(
H16

Rx
− Ks A45+

B26

Ry

)
L ′53+

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
L53dy

Y54 = J16L ′′54+ (D12+ D66)L ′54dy + J ′26L54d2
y − Ks A54L54

Y55 = J66L ′′55+ 2D26L ′55dy + J ′22L55d2
y − Ks G ′44L55
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