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ON THE NONLINEAR DYNAMICS OF OVAL CYLINDRICAL SHELLS

SYED MUHAMMAD IBRAHIM, BADRI PRASAD PATEL AND YOGENDRA NATH

The nonlinear periodic response characteristics of symmetrically and nonsymmetrically excited oval
cylindrical shells are investigated using the first order shear deformation theory based finite strip method.
The periodic solutions of the governing second order equations of motion are obtained using the shooting
technique coupled with Newmark time marching and the arc length continuation algorithm. The effect of
ovality parameter and loading locations on the steady state frequency response and modal participation
factors is studied. For circular shells (ζ = 0.0), travelling waves emanating at loading point but moving
in opposite directions for certain range of forcing frequency are brought out. For the symmetrically
excited oval shell with ζ = 0.6, due to 1:1 internal resonance between the AS/SS and SA/AA modes,
a secondary branch with traveling wave response emanates from the primary one through a symmetry
breaking bifurcation. For the nonsymmetrically excited oval shells (ζ = 0.6), either waves moving in
anticlockwise direction or those originating near the major axis and moving in opposite directions in the
top and bottom halves of the shell are observed for certain forcing frequency ranges.

A list of symbols can be found on page 907.

1. Introduction

Large amplitude vibrations occur frequently in thin shells and panels used in the aerospace industry,
as they are subjected to high acoustic and aerodynamic excitations. For the study of such vibrations,
a linear model (usually the first approximation to the actual system) is often inadequate. In particular,
the nonlinear forced response analysis of closed circular cylindrical shells still remains an active and
challenging area of research [Moussaoui and Benamar 2002; Amabili and Paı̈doussis 2003; Amabili
2008].

Shells with variable curvature, especially oval and elliptical cylindrical shells, are used in nuclear
fusion reactors, heat exchangers, aerospace and underwater structures due to special external shape or in-
ternal storage requirements. Noncircularity may also be introduced while fabricating circular shells. The
variable stiffness along the circumference of a shell due to noncircularity leads to the coupling of modes
with different circumferential wave numbers of a corresponding perfect circular shell and influences the
dynamic characteristics significantly. The asymmetric free vibration modes of perfect circular cylindrical
shells are not spatially fixed, due to axisymmetric geometry, but noncircular shells with doubly symmetric
cross-section have spatially fixed free vibration modes, categorised as AS, SA, SS, AA, the first and
second letters indicating symmetry or antisymmetry about the major and minor axes, respectively.

Studies relating to the linear static and dynamic, buckling and nonlinear static analyses of shells
with noncircular cross-sections have been reviewed in [Soldatos 1999]. Investigations on the nonlinear
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vibration characteristics of oval and elliptical shells are quite limited. Using the Galerkin method, Pan-
dalai and Sathyamoorthy [1970] investigated large amplitude flexural vibrations of simply supported
thin oval rings and finite oval cylindrical shells using one axisymmetric and one asymmetric term in
the approximation of transverse displacement, and a softening type behaviour was found. Using the
Bubnov–Galerkin method, the nonlinear free vibration of thin-walled elastic cylindrical shell of elliptic
cross-section was analysed in [Kozarov and Mladenov 1979] using a single term approximation of all
the three displacements (axial, circumferential, radial) and predicted hardening behaviour. The studies
[Pandalai and Sathyamoorthy 1970; Kozarov and Mladenov 1979] are based on approximate analytical
solutions that may affect the accuracy of the results. Patel et al. [2002; 2003] investigated the nonlin-
ear free flexural vibration behaviour of the isotropic/laminated orthotropic noncircular rings using the
finite element approach and Newmark time marching scheme and reported softening nonlinearity. The
nonlinear forced vibration analysis of oval cylindrical shells with different support conditions has been
carried out in [Ibrahim et al. 2008a; 2008b] employing the direct time integration approach and only part
of the stable branches of the frequency response curves could be captured. Further, it is observed that in
the direct integration approach, the convergence to a steady state solution is very slow. In addition, the
steady state response can not be ascertained in the direct time integration approaches.

Periodic solutions of nonlinear systems can be obtained by the shooting method. Unlike frequency
domain methods, the number of equations does not depend on the number of harmonics. Steady state
solutions can be reached in significantly fewer iterations than with direct time integration methods. The
shooting method also yields the monodromy matrix, which can be used to predict the stability of the
solution. In the traditional shooting approach, the dynamical equations of motion are transformed into
first order equations [Nayfeh and Balachandran 1994; Padmanabhan and Singh 1995; Sundararajan and
Noah 1997; Ribeiro 2004; 2008], thus increasing computational time as the number of equations is dou-
bled and the banded nature of system of equations is destroyed. This issue is quite important, particularly
for systems with many degrees of freedom such as the ones resulting from finite element discretisation.
Note that a few-degrees-of-freedom model of a continuous system may not capture a priori unknown
modal interactions/phenomena. To the best of the authors’ knowledge, the complete frequency response
characteristics of oval cylindrical shells have not been dealt with in the literature, nor are there results on
the participation of different modes, effect of loading location, internal resonance between AS/SS and
SA/AA modes and travelling wave response of noncircular cylindrical shells.

The modified shooting technique coupled with the Newmark time marching and arc length continua-
tion algorithm [Patel et al. 2009; Ibrahim et al. 2009; 2010] is employed to investigate the steady state
periodic response of the oval cylindrical shells excited in the neighbourhood of the first AS, SA, SS,
and AA linear free vibration modes. The analysis is carried out using the finite strip method based on
first order shear deformation theory. The effect of the ovality parameter and loading locations on the
steady-state frequency response and modal participation factors is studied. Participation of AS and SS
modes in the primary branch of symmetrically excited shells and participation of AS, SA, SS, and AA
modes in asymmetrically excited shells is brought out. For symmetrically excited shells, a secondary
branch corresponding to significant participation of SA/AA modes in addition to AS/SS modes due to
one-to-one internal resonance is reported for the first time. For a certain forcing frequency range, shell
response includes waves travelling from the loading point in two opposite directions or in the same
direction, depending on the forcing frequency.
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Figure 1. Coordinate system and geometry of oval shell.

2. Formulation

The geometry and coordinate system of the oval cylindrical shell are shown in Figure 1. The coordinates
x , y and z having origin at the mid-surface of the shell are considered along the meridional, circum-
ferential and thickness directions, respectively. The displacements u, v, w at a point (x, y, z), employing
the first order shear deformation theory, are expressed as

u(x, y, z, t)= u0(x, y, t)+ zθx(x, y, t),

v(x, y, z, t)= v0(x, y, t)+ zθy(x, y, t),

w(x, y, z, t)= w0(x, y, t).

(1)

The displacement field variables u0, v0, w0, θx and θy are represented as the superposition of trigonomet-
ric functions in the meridional coordinate x as

u0(x, y, t)=
M∑

i=1

ui
0(y, t)Ui (x),

v0(x, y, t)=
M∑

i=1

vi
0(y, t)Vi (x),

w0(x, y, t)=
M∑

i=1

wi
0(y, t)Wi (x),

θx(x, y, t)=
M∑

i=1

θ i
x(y, t)2xi (x),

θy(x, y, t)=
M∑

i=1

θ i
y(y, t)2yi (x),

(2)
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where the trigonometric functions Ui (x), Vi (x), Wi (x), 2x i(x) and 2yi(x) satisfying all the boundary
conditions for movable simply supported shell at its two ends are taken as in [Soedel 1993]:

Ui (x)= cos(iπx/L), Vi (x)= sin(iπx/L), Wi (x)= sin(iπx/L),

2xi (x)= cos(iπx/L), 2yi (x)= sin(iπx/L).

For the other boundary conditions, these functions can be chosen appropriately.
The strain-displacement relations are based on kinematic approximations of Sanders type: (i) small

strains, (ii) moderately large rotations; and (iii) thin shell (z/r << 1) such that 1+ z/r ≈ 1. However,
transverse shear deformation is important due to smaller wavelength of the deformation shape to thickness
ratio. The Green’s strains are written in terms of the midsurface deformations as

ε =

{
εL

p

0

}
+

{
zεb

εs

}
+

{
εN L

p

0

}
, (3)

where 0 is the 2× 1 null vector, and

εL
p =



∂u0
∂x

∂v0
∂y
+
w0
r

∂u0
∂y
+
∂v0
∂x


, εb =



∂θx
∂x
∂θy

∂y
∂θx
∂y
+
∂θy

∂x


, εs =


θx +

∂w0
∂x

θy +
∂w0
∂y
−
v0
r

 , εN L
p =



1
2

(
∂w0
∂x

)2

1
2

(
∂w0
∂y
−
v0
r

)2

∂w0
∂x

(
∂w0
∂y
−
v0
r

)


,

are respectively the linear membrane, bending, transverse shear, and nonlinear membrane strain vectors,
with r the radius of curvature of the oval cylindrical shell, expressed as

r =
r0

1+ ζ cos(2y/r0)
. (4)

The membrane stress resultant Ñ = {Nxx Nyy Nxy}
T , moment resultant M̃ = {Mxx Myy Mxy}

T and
transverse shear stress resultant Q̃ = {Qxz Q yz}

T vectors are related to the membrane εp = ε
L
p + ε

N L
p ,

bending εb and transverse shear εs strain vectors through the constitutive relation as{
Ñ
M̃

}
=

[
A B
B D

]{
εp

εb

}
, Q̃ = Eεs, (5)

where Bi j = 0 and the nonzero elements of Ai j , Di j (i, j = 1, 2, 6) and Ei j (i, j = 4, 5) for an isotropic
shell are:

A11 = A22 =
Eh

1− ν2 , A21 = A12 =
νEh

1− ν2 , A66 =
Eh

2(1+ ν)
,

D11 = D22 =
Eh3

12(1− ν2)
, D21 = D12 =

νEh3

12(1− ν2)
, D66 =

Eh3

24(1+ ν)
,

E44 = E55 =
Eh

2(1+ ν)
The potential energy functional U is given by

U =
1
2

[∫
A
εT

p Aεp + ε
T
p Bεb+ ε

T
b Bεp + ε

T
b Dεb+ ε

T
s Eεs

]
dA−w0(L/2, y∗, t)F (6)
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Based on the approach of [Rajasekaran and Murray 1973], this can be expressed as

U (δ)= δT ( 1
2 K + 1

6 K1(δ)+
1
12 K2(δ)

)
δ− δT F. (7)

The kinetic energy of the shell is given by

T̃ (δ)=
1
2

∫
A

(
γ (u̇2

0+ v̇
2
0 + ẇ

2
0)+ I (θ̇2

x + θ̇
2
y )
)

dA (8)

where γ = ρh and I = ρh3/12. The dot over the variables denotes derivative with respect to time.
Substituting (7) and (8) in the Lagrange’s equation of motion and considering dissipative forces, the

governing equation of the shell is written as

M δ̈+ (αM +βK )δ̇+
(
K + 1

2 K1(δ)+
1
3 K2(δ)

)
δ = F. (9)

3. Element description

The field variables in the circumferential direction (y) are approximated using a C0 continuous three-
noded quadratic element and are expressed in terms of their nodal values as

(ui
0, v

i
0, w

i
0, θ

i
x , θ

i
y)=

3∑
k=1

N 0
k(u

i
0k, v

i
0k, w

i
0k, θ

i
xk, θ

i
yk), (10)

where N 0
1 = (ξ

2
− ξ)/2, N 0

2 = (1− ξ
2), N 0

3 = (ξ
2
+ ξ)/2; here ξ is the local natural circumferential

coordinate of the element and the N 0
k are the original shape functions.

In order to avoid membrane and shear locking, the field redistributed substitute shape functions are
used to interpolate the constrained strain fields. These substitute shape functions, obtained using the
method of least squares, are

N 1
1 =

1
2

( 1
3 − ξ

)
, N 1

2 =
2
3 , N 1

3 =
1
2

( 1
3 + ξ

)
, (11)

where the N 1
i are consistent with d N 0

i /dξ .
Using smoothed interpolation functions, the constrained membrane and transverse shear strain com-

ponents are expressed as

∂v0

∂y
+
w0

r
=

M∑
i=1

3∑
k=1

(
∂N 0

k

∂y
Vi (x)vi

0k + N 1
k Wi (x)

wi
0k

r

)
,

∂u0

∂y
+
∂v0

∂x
=

M∑
i=1

3∑
k=1

(
∂N 0

k

∂y
Ui (x)ui

0k + N 1
k
∂Vi

∂x
vi

0k

)
,

θy +
∂w0

∂y
−
v0

r
=

M∑
i=1

3∑
k=1

(
N 1

k2yi (x)θ i
yk +

∂N 0
k

∂y
Wi (x)wi

0k − N 1
k Vi (x)

vi
0k

r

)
.

(12)

The other strain components are expressed in terms of the original shape functions (N 0
i ) and their

derivatives. The element behaves very well for both thick and thin situations. It has good convergence
characteristics and has no spurious rigid body modes [Babu and Prathap 1986].
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Integration with respect to the meridional coordinate x is carried out explicitly using Mathematica 5.1.
Based on the convergence study for the evaluation of various energy terms, a five-point Gauss-quadrature
numerical integration scheme is used with respect to the circumferential coordinate y. Since the element
is derived from the field consistency approach, exact integration is performed to evaluate all the energy
terms.

4. Solution method

We briefly describe the method used to find periodic solutions to (9). The 2N -component state vector
{δ(t) δ̇(t)}T evolves according to (9) from an initial state to be determined. The condition that a solution
is periodic with period T is expressed by the equation{

δ(T )
δ̇(T )

}
=

{
δ(0)
δ̇(0)

}
def
= η. (13)

To find such solutions we use the shooting method. This involves taking a guess for the initial state,
integrating the differential equation to the target time T , and then playing with the initial state so as to
enforce the periodicity condition (13). To integrate (9) we use Newmark’s direct time integration scheme.
To find a satisfactory initial state we use the Newton–Raphson method.

To elaborate, we rewrite (13) stressing the dependence of δ on the initial state vector, and also on the
frequency of the forcing term F: {

δ(T, η, ωF )

δ̇(T, η, ωF )

}
− η = 0. (14)

Given a first guess η0 for the initial state vector η, Newton–Raphson tells us to solve the linear system
∂δ(T, η, ωF )

∂η

∣∣∣
η=η0

∂ δ̇(T, η, ωF )

∂η

∣∣∣
η=η0

− I

1η0 = η0−

{
δ(T, η0, ωF )

δ̇(T, η0, ωF )

}
(15)

to find the correction 1η0 to the initial guess. We then repeat the process with η0+1η0 in place of η0,
and so on, until the equality (14) is satisfied within the desired tolerance limit, which we set at 0.001%.
In (15), I is the 2N × 2N identity matrix and the derivatives ∂δ/∂η and ∂ δ̇/∂η are N × 2N matrices.
These derivatives are obtained for t = T by applying Newmark’s direct time integration scheme to the
differential equation

M
(
∂δ

∂η

)̈
+ (αM +βK )

(
∂δ

∂η

)̇
+
(
K + K1(δ)+ K2(δ)

) ∂δ
∂η
= 0, (16)

which is simply the first variation of (9) with respect to η (recall that K1(δ) is linear in δ and K2(δ) is
quadratic). The initial condition for (16), following from the definition of η in (13), is[

∂δ/∂η

∂ δ̇/∂η

]
t=0
= I . (17)

We also calculate the eigenvalues of the monodromy matrix
[
∂δ/∂η

∂ δ̇/∂η

]
using the QR algorithm, in order

to study the stability of the periodic response.
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We further desire T to be the minimal period. We take T as 2π/ωF for systems with harmonic
excitation with angular frequency ωF , for a response with fundamental and higher harmonics. To obtain
the branches of the periodic response curve with subharmonic participation, the response time period
T is taken as an integer multiple of fundamental period. For autonomous systems, T is treated as an
unknown and an additional equation such as a phase condition/amplitude is required.

For obtaining the complete frequency response, the analysis is carried out in two phases: first, starting
far away from resonance, the forcing frequency is incremented and the periodic solutions are obtained;
then, when bifurcation points are encountered, the solution is continued via the arc length continuation
method. For the second phase, the forcing frequency is treated as an unknown and an incremental arc
length is specified.

5. Results and discussion

Validation of the present approach is carried out considering a movable simply supported (v0=w0= θy =

0 at x = 0, L) circular cylindrical shell studied by [Amabili 2003]. Dimensions and material properties
are: L = 0.2 m, r0= 0.1 m, ζ = 0.0, h = 0.247 mm, E = 71.02 GPa, ρ = 2796 kg/m3, ν = 0.31. Rayleigh
proportional damping parameters α and β are determined such that damping factors ξ1,6 = 0.0005 (cor-
responding to asymmetric mode with n = 6) and ξ1,0 = 0 (corresponding to axisymmetric mode). The
shell is subjected to a point harmonic force at midlength (x = L/2, y∗ = 0): F = F0 cos(ωF t), where
F0 = 0.0785 N. The first four natural frequencies (ωmn) of the shell corresponding to modes with axial
half wave number m = 1 and number of circumferential waves n = 7, 8, 9 and 6 are found to be 484.38,
489.85, 546.11 and 553.33 Hz, respectively. The forcing frequency (ωF ) is varied in the neighbourhood
of the mode with (m, n) = (1, 6) (ωmn = 553.33 Hz). In the approximate solution [Amabili 2003] for
transverse displacement w0, axisymmetric and asymmetric modes with kn (k = 1, 2; n = 6 for this case)
circumferential waves were considered. The present results are obtained using a half-wave model of the
shell along the circumference, with symmetry conditions at y = 0, πr0/n, and the full model. In the half
wave model, the participation of axisymmetric and asymmetric modes with kn circumferential waves can
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ωωωωF/ωωωωmn 

w
o
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Figure 2. Comparison of steady state response for movable simply supported circular
cylindrical shell.
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ζζζζ = 0.6 
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441.64 Hz (AS) 441.84 Hz (SA) 
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477.24 Hz (SS) 477.24 Hz (AA) 
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397.64 Hz (SA) 400.05 Hz (AA) 

Minor axis 

Major axis 

Figure 3. First four free vibration modes and corresponding frequencies of oval cylin-
drical shells.

be simulated. In the full model, the complete circumferential length of the shell is modelled and it can
simulate the participation of all modes with appropriate discretization. The comparison of the results is
given in Figure 2. The present results based on the half-wave model are found to be in good agreement
with those of [Amabili 2003]. Those based on the full model are slightly different due to the additional
participation of the mode with n = 9, which is excluded by Amabili and in the present half-wave model.

Next, a detailed study is carried out for different values of the ovality parameter, keeping the other shell
parameters the same as in the validation example. The damping parameter α is taken as zero and β is
determined such that ξ1,n = 0.004. The shell is subjected to a discrete harmonic force (F = F0 cosωF t) at
y∗=C/4 for symmetric excitation about the minor axis and at y∗= 3C/16, C/8, C/16 for nonsymmetric
excitation. The forcing frequency ωF is varied in the neighbourhood of linear free vibration frequencies
corresponding to first SS, SA, AS, AA modes (S = symmetric, A = antisymmetric; major axis symmetry
listed first). The free vibration modes and corresponding frequencies of oval cylindrical shells considered
in the present study are given in Figure 3. Note that the asymmetric free vibration modes of circular
(ζ = 0) cylindrical shells are not spatially fixed due to axisymmetric geometry and there are two modes
corresponding to each frequency. Noncircular shells with doubly symmetric cross-section have spatially
fixed free vibration modes.

The modal participation factors η j (t) are obtained from w(x, y, t) =
∑
∞

j=1 η j (t)φ j (x, y); where
φ j (x, y) is the j-th free vibration mode of the oval cylindrical shell. The total response at any location
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can be expressed as a Fourier series: w(x, y, t)= A0+
∑
∞

i=1 Ai cos(ωi t+ψi ), where Ai is the harmonic
amplitude, ωi is a multiple of forcing frequency ωF , and ψi is the phase difference.

A convergence study reveals that 1t = π/(100ωF ), M = 3, and 48-element discretization in the
circumferential direction (total number of degrees of freedom, N = 960), are sufficient to yield results
of the desired accuracy.

For symmetric loading of circular and oval shells, the travelling wave direction will depend upon the
initial conditions. The solutions in the present work are obtained using the shooting technique with initial
state vector as the solution of previous frequency step. This has resulted in the traveling wave directions
indicated.

The stable regions of loading point response (w0/h) versus forcing frequency (ωF/ωmn) characteristics
are shown by continuous curves and unstable ones are shown by dashed curves. The bifurcation points
marked in the response curves are identified as period doubling (PD) if at least one eigenvalue of the
monodromy matrix crosses the unit circle along the negative real axis, as symmetry breaking (SB) /
turning point (TP) if it leaves the unit circle along the positive real axis, and as secondary Hopf (SH)
bifurcation if a pair of complex conjugate eigenvalues crosses the unit circle.

5.1. Response of symmetrically excited cylindrical shells (load at y∗ = C/4). The frequency response
curves of movable simply supported oval cylindrical shells (F0 = 0.4 N, y∗ =C/4) are shown in Figure 4
for different ovality parameters (ζ = 0.0, 0.2, 0.4 and 0.6). We see that with the increase in the ovality
parameter, the nonlinear dynamic response changes significantly due to increased modal interactions
and the frequency range corresponding to greater response amplitudes increases. For circular shells
(ζ = 0.0), no unstable regions are observed, whereas response of noncircular shells reveals the presence
of bifurcation points and unstable regions. The forcing frequency parameter ωF/ωmn corresponding to
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Figure 4. Nonlinear steady state response amplitude versus forcing frequency curves for
movable simply supported cylindrical shells subjected to excitation in the neighbourhood
of first mode: (a) ζ = 0.0 (circular, ωmn = 484.38 Hz), ζ = 0.2 (ωmn = 472.23 Hz), and
ζ = 0.4 (ωmn = 441.64 Hz); (b) ζ = 0.6 (ωmn = 394.15 Hz).
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Figure 5. Frequency spectra of oval cylindrical shells with different ovality parameters
corresponding to the first peaks of response curves (Figure 4).

first peak response decreases as the ovality parameter increases. The frequency response spectra plotted
in Figure 5 corresponding to first peaks of the response curves (Figure 4) reveal that with an increase in
the ovality parameter, the number of significant higher harmonics present in the response increases. In
particular, the number of higher harmonics is three for ζ = 0.0, five for ζ = 0.2, and up to nine harmonics
for ζ = 0.4, 0.6.

The modal participation factors of the first four predominant modes are shown in Figure 6, correspond-
ing to the points marked in Figure 4 for ζ = 0.0. It can be noted from Figure 6 that the participation of the

-1.2

0

1.2

0 0.25 0.5 0.75 1

-1.2

0

1.2

0 0.25 0.5 0.75 1

-1.2

0

1.2

0 0.25 0.5 0.75 1

-1.2

0

1.2

0 0.25 0.5 0.75 1

-0.7

0

0.7

0 0.25 0.5 0.75 1

-0.7

0

0.7

0 0.25 0.5 0.75 1

-0.7

0

0.7

0 0.25 0.5 0.75 1

-0.7

0

0.7

0 0.25 0.5 0.75 1

-0.8

0

0.8

0 0.25 0.5 0.75 1

-0.8

0

0.8

0 0.25 0.5 0.75 1

-0.8

0

0.8

0 0.25 0.5 0.75 1

-0.8

0

0.8

0 0.25 0.5 0.75 1

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

ηηηηj    
t/T 

Point 1 

Point 2 

Point 3 

First Mode: n = 7 Second Mode: n = 7 First Mode: n = 8 Second Mode: n = 8 

Figure 6. Modal participation factors of the first four modes corresponding to typical
points marked (Figure 4a) on the response curves of circular shells (ζ = 0.0).
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Figure 7. Transverse displacement variations along the circumference at different time
instants of one cycle corresponding to point 2 (Figure 4a) on the response curve of
circular cylindrical shell (ζ = 0.0).

mode with n= 7 is predominant at the first response peak (w0/h = 1.24, ωF/ωmn = 0.994) and decreases
as the forcing frequency increases further. The participation of the mode with n = 8 increases with the
forcing frequency and is predominant at point 3 (w0/h = 1.00, ωF/ωmn = 1.011). These two modes
(n = 7 and 8), whose linear free vibration frequencies are very close, are excited due to the concentrated
harmonic excitation force.

The deformed shape of the shell cross-section at x = L/2 at different moments of one cycle corre-
sponding to point 2 (w0/h = 0.55, ωF/ωmn = 1.003) is plotted in Figure 7, revealing waves travelling in
two opposite directions from the loading point. This phenomenon is observed for the narrow frequency
range between points 1 and 3 due to the participation of modes with n = 7 and 8.

A detailed analysis of the modal participation factors for oval shells reveals that only AS and SS
modes participate in the response corresponding to the primary branch of symmetrically excited shells
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Figure 9. Modal participation factors of the first AS and SS modes corresponding to
typical points marked on the response curve of oval cylindrical shell (ζ= 0.4, Figure 4a).
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Figure 10. Modal participation factors of the first four modes corresponding to typical
points marked on the response curve of oval cylindrical shell (ζ = 0.6, Figure 4b).

(y∗ = C/4). The modal participation of the first AS and SS modes is shown in Figure 8 and 9 for oval
shells with ζ = 0.2 and 0.4, respectively, corresponding to the points marked in Figure 4. It can be seen
from Figure 8 that at the first peak (point 4: w0/h = 2.04, ωF/ωmn = 0.988) for ζ = 0.2, the participation
of the first AS mode is significantly greater than that of the first SS mode, whereas at the second peak
(point 6: w0/h = 1.59, ωF/ωmn = 1.004) the opposite trend is observed. At point 5 (w0/h = 1.48,
ωF/ωmn = 0.997), the participation of both the modes is of comparable amplitude. It can be seen
from Figure 9 for ζ = 0.4 that the participation of AS and SS modes at the first (point 7: w0/h = 2.00,
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ωF/ωmn = 0.971) and last (point 11: w0/h= 1.30, ωF/ωmn = 1.020) peaks is qualitatively similar to that
for ζ = 0.2. At point 9 (w0/h= 1.91, ωF/ωmn= 0.989), the participation of both the modes is comparable.
The participation of AS mode is dominant at point 8 (w0/h= 1.45, ωF/ωmn = 0.982) and that of SS mode
at point 10 (w0/h = 1.07, ωF/ωmn = 1.013). In general, it can be concluded that the relative participation
of AS mode decreases and that of SS mode increases with the increase in the forcing frequency.

The steady state response amplitude versus forcing frequency curve plotted in Figure 4b for the shell
with ζ = 0.6 shows that different response peaks appear at almost equal response amplitudes unlike for
ζ = 0.4. The modal participation of the first AS and SS modes is shown in Figure 10 corresponding to
the points marked in Figure 4b. It is seen from Figure 10 that at the first peak (point 1: w0/h = 1.98,
ωF/ωmn = 0.960), the contribution of both AS and SS modes is comparable. From point 1 to 2 (point 2:
w0/h = 1.50, ωF/ωmn = 0.972), the response amplitude decreases but the relative participation of the
AS and SS modes remains the same. From point 2 to 3 (point 3: w0/h = 1.97, ωF/ωmn = 0.971), the par-
ticipation of AS mode increases significantly. The relative participation of the SS mode is very less from
point 3 to 4 (point 4: w0/h = 1.36, ωF/ωmn = 0.985). After point 4, the response amplitude increases
and the curve loses stability through a symmetry breaking bifurcation and the main branch forms peak
at point 5 (w0/h = 2.15, ωF/ωmn = 1.0), where the contribution of both AS and SS modes is dominant.

The secondary branch emanating from the primary one at the symmetry breaking bifurcation corre-
sponds to a significant participation of the SA and AA modes in addition to the AS and SS modes, as
evident from the modal participation factors corresponding to points 6 (w0/h = 1.56, ωF/ωmn = 0.998)
and 7 (w0/h = 1.29, ωF/ωmn = 0.981) shown in Figure 10. This is due to 1:1 internal resonance
between AS/SS and SA/AA modes: the ratios of their linear free vibration frequencies are almost equal
to one. The multiple peaks depicted in the secondary branch are due to increases/decreases in the relative
participation of AS, SA, SS and AA modes. The deformed shape of the shell cross-section at x = L/2
at different moments in one cycle corresponding to the point 7 is plotted in Figure 11, showing waves
travelling in one direction only.

0.25T 

0.5T 

0.75T 

1.0T 

Figure 11. Transverse displacement variations along the circumference at different time
instants of one cycle corresponding to point 7 (Figure 4b) on the response curve of oval
shell (ζ = 0.6).
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To demonstrate the participation of all the modes corresponding to first peak for ζ = 0.6 (point 1
marked in Figure 4b), the modal displacement variations along the circumference and corresponding
modal participation factors with time are shown in Figures 12 and 13. It can be seen from Figure 13 that
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Figure 12. Modal displacement variation along the circumference of the modes partici-
pating in the response corresponding to point 1 (Figure 4b) on the response curve of oval
cylindrical shell (ζ = 0.6).
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in addition to the first AS and SS modes, the other modes participate in the response with fundamental
and higher harmonics. Further, due to the harmonic excitation at (x, y∗) = (L/2,C/4), only AS/SS
modes, not AA/SA modes, participate in the response corresponding to the primary branch.
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Figure 13. Modal participation factors in the response corresponding to point 1 marked
(Figure 4b) on the response curve of oval cylindrical shell (ζ = 0.6).



902 SYED MUHAMMAD IBRAHIM, BADRI PRASAD PATEL AND YOGENDRA NATH

5.2. Response of nonsymmetrically excited cylindrical shells. The frequency response characteristics
of oval shells are investigated by varying the location of the concentrated harmonic excitation force along
the circumference. The steady state response amplitude of the loading location versus forcing frequency
curves are shown in Figure 14 for oval cylindrical shells with ζ = 0.2 subjected to a concentrated harmonic
loading at y∗ = C/4, 3C/16, C/8 and C/16 with the forcing frequency in the neighbourhood of the first
AS, SS, SA, and AA modes. The maximum response for the loading locations y∗= 3C/16, C/8 and C/16
is smaller than that corresponding to the loading at the minor axis (y∗ = C/4). The modal participation
factors of the first four participating modes corresponding to the typical points, marked in Figure 14 on
the nonlinear steady state response amplitude versus forcing frequency curves, are shown in Figure 15.

In the response of nonsymmetrically excited oval shells, all types of modes (AS, SS, SA, AA) par-
ticipate, unlike the primary branch of symmetrically excited shells. The frequency response curve for
the shell with ζ = 0.2 (load at y∗ = 3C/16) shows an unstable region between turning points and a
maximum response amplitude of w0/h = 1.72 at ωF/ωmn = 0.989 (point 1). The modal participation
factors obtained at the peak reveal that the contribution of the AS mode is around 70% of the total
response amplitude. The contributions of the SA, SS and AA modes are around 64%, 40% and 40% of
the AS mode contribution, respectively. It is also seen that the AS, SS and AA modes are almost in same
phase, whereas the SA mode participates with opposite phase. With a further increase in the forcing
frequency, the response amplitude decreases, as does the participation of the AS, SS and AA modes.
However, the participation of the SA mode increases and at point 2 (w0/h = 1.41, ωF/ωmn = 0.994) it
becomes around 95% of the AS mode participation. Beyond point 2, another turning point bifurcation is
encountered and at point 3 (w0/h = 1.40, ωF/ωmn = 0.994), the contribution of AS mode is predominant.
After point 3, the relative contribution of the SS mode increases and is maximum at point 4 (w0/h = 1.18,
ωF/ωmn = 0.998). At the local peak formed at point 5 (w0/h = 1.31, ωF/ωmn = 1.004), the contribution
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Figure 14. Nonlinear steady state response amplitude versus forcing frequency curves
of movable simply supported oval shells subjected to excitation at different circumferen-
tial locations in the neighbourhood of the first mode (ζ = 0.2: ωmn = 472.23 Hz).
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Figure 15. Modal participation factors of the first AS, SS, SA and AA modes corre-
sponding to typical points marked (Figure 14) on the response curve of oval cylindrical
shell (ζ = 0.2).

of the SS mode is almost three times the AS mode participation. Further, with the shifting of the loading
location towards the major axis, the response amplitude and number of peaks decrease.

The effect of the loading location on the nonlinear steady state response amplitude versus forcing
frequency for the shell with ζ = 0.6 is shown in Figure 16. Starting from a low frequency excitation
(ωF/ωmn = 0.925), the response curve for the loading at y∗ = 3C/16 loses its stability through a turning
point and forms a peak in the unstable region at point 1 (w0/h = 1.18, ωF/ωmn = 0.979). This region
corresponds to the vibration of the shell predominantly in the AS mode, as seen from the modal partici-
pation factors plotted in Figure 17. The relative participations of the SA, SS and AA modes are around
35%, 35% and 15% of the AS mode, respectively.

After point 1, the response amplitude decreases and encounters a secondary Hopf bifurcation, then
it increases, becomes stable and forms another peak at point 2 (w0/h = 1.43, ωF/ωmn = 0.991). The
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Figure 16. Nonlinear steady state response amplitude versus forcing frequency curves
of movable simply supported oval shells subjected to excitation at different circumferen-
tial locations in the neighbourhood of the first mode (ζ = 0.6: ωmn = 394.15 Hz).

participation of the first AS, SA, SS and AA modes is significant at this point, with the AS mode having
highest participation.

With a further increase in the forcing frequency after point 2, both the relative and the absolute partici-
pation of the AS mode decrease and at point 3 (w0/h = 1.29, ωF/ωmn = 0.998), its contribution becomes
even smaller than that of the SA and SS modes. The participation of the AS and AA modes is around
65% of the SA mode. In the narrow frequency range of ωF/ωmn = 0.999 to 1.009, both the absolute
and the relative contribution of AA mode first increase and it reaches a peak at point 4 (w0/h = 1.05,
ωF/ωmn = 1.009), where the next significant mode is SS.

After point 4, the contribution of the AA mode decreases and that of the SS and SA modes increases
significantly. At point 5 (w0/h = 1.29, ωF/ωmn = 1.006), the relative contribution of the SA mode is
greatest, with the participation of the SS, AS and AA modes around 86%, 38% and 30% of SA mode
participation.

After point 5, the participation of the AS mode increases and forms a peak at point 6 (w0/h = 0.89,
ωF/ωmn = 1.008). Subsequently, its relative participation decreases and is least at point 7 (w0/h = 1.09,
ωF/ωmn = 1.014). From points 6 to 7, the absolute contribution of the SA and SS modes remain almost
constant, whereas the contribution of the AA mode increases significantly.

The transverse displacement variations along the circumference at different time instants of one cycle
of response corresponding to points 1 and 3 on the response curve are plotted in Figure 18. At point 1,
a travelling wave with the significantly greater amplitudes in the upper half of the shell is predicted. At
point 3, the travelling waves originating near major axis (y = 0) move in opposite directions in the top
and bottom halves of the shell with greater amplitude near the minor axis.
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Figure 17. Modal participation factors of the first AS, SS, SA and AA modes corre-
sponding to typical points marked (Figure 16) on the response curve of oval cylindrical
shell (ζ = 0.6).
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Figure 18. Transverse displacement variations along the circumference at different time
instants of one cycle corresponding to points 1 and 3 (Figure 16) on the response curve
of oval shell (ζ = 0.6).

6. Conclusions

The nonlinear periodic response characteristics of oval cylindrical shells are investigated using the finite
strip method. The governing equations are solved by the shooting technique, coupled with the Newmark
time marching scheme and the arc length continuation algorithm.

The influence of ovality parameter and loading location on the periodic response is studied in detail.
It is found that for the circular shells, all modes with close linear free vibration frequencies are excited
due to the concentrated harmonic excitation force.

With an increase in ovality parameter, the nonlinear dynamic response changes significantly, due to
increased modal interactions and participation of higher harmonics. The AS and SS modes participate
in the response corresponding to primary branch of symmetrically excited noncircular shells.

For nonsymmetrically excited shells and in the secondary branch of symmetrically excited shells, all
the modes participate in the nonlinear response. Due to 1:1 internal resonance between AS/SS and SA/AA
modes, a secondary branch emanating from primary one through the symmetry breaking bifurcation is
predicted for symmetrically excited oval shell with ζ = 0.6.

For symmetrically excited oval shells, waves travelling in one direction from loading point in sec-
ondary branch of the response curve are predicted.

For nonsymmetrically excited oval shells (ζ = 0.6), either waves moving in anticlockwise direction
from the loading point (y∗ = 3C/16) or those originating near major axis (y = 0) moving in opposite
directions in the top and bottom halves of the shell are observed in certain forcing frequency range.

The traveling waves in earlier work are due to driven and companion modes with a specific circum-
ferential wave number, whereas the contribution of several modes is responsible for the traveling wave
behavior predicted in the present work.
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List of symbols

·0 Middle surface/magnitude
α, β Rayleigh damping parameters

A, B Stiffness coefficient matrices
·b Bending component
C Circumference

D, E Stiffness coefficient matrices
δ̈, δ̇, δ Acceleration, velocity and displacement

vectors
E Young’s modulus
ε Strain vector
η State vector
F Discrete force
F Force vector
h Thickness
I Rotary inertia

K Constant stiffness matrix
K1, K2 Stiffness matrices linearly and quadratically

dependent on field variables
L Meridional length
·
L Linear
·m Number of half sine waves in meridional

direction
M Number of terms in the displacement fields in

the meridional direction
M Consistent mass matrix
M̃ Moment resultant vector

N Number of degrees of freedom
·n Circumferential wave number
Ñ Stress resultant vector
·
N L Nonlinear
N 0

k Original shape function
N 1

k Smoothed shape function
ν Poisson’s ratio

ωmn Linear free vibration frequency
ωF Forcing frequency
ωi Frequency of the i-th harmonic
·p Extensional/stretching component
Q̃ Transverse shear stress resultant vector
r Radius of curvature

r0 Average radius of curvature (= C/2π )
ρ Density
t Time

T Time period
T̃ Kinetic energy

θx , θy Rotation of meridional and circumferential
sections

U Total potential energy
u, v, w Displacements in meridional, circumferential

and thickness directions
x, y, z Coordinate directions

ξ Damping parameter
y∗ Circumferential location of discrete harmonic

load
ζ Ovality parameter
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