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FOR MODE III CRACKS

ZHI-JIAN YI

The well-known closed-form solution given by Hult and McClintock for an antiplane crack in an elastic-
perfectly plastic material is reconsidered using the crack line analysis method. A precise elastic-plastic
solution near the crack line region, different from Hult and McClintock’s, is deduced by matching the
general solution of the plastic field with that of the exact elastic field. It is verified from the deduction
that the Hult–McClintock elastic-plastic solution is inadequate for many purposes.

Introduction

The Hult–McClintock closed-form solution [1957] for an antiplane crack in an elastic-perfectly plastic
material was a significant achievement in the development of fracture mechanics. Its importance lies not
only in being the first closed-from elastic-plastic solution in fracture mechanics, but also in that the two
usual assumptions of small-scale yielding originate from it: (1) the plastic zone ahead of the crack tip is
so small that the elastic field out of the plastic zone is the K -dominant elastic singular field for the crack;
and (2) the crack tip of the K -dominant elastic singular field effectively behaves as if it lies a distance
xe ahead of the actual crack tip, along the crack line, giving rise to the notion of an “imaginary crack”
(see Figure 1). These assumptions were preserved in many subsequent works on the problem, such as
[Koshinen 1963; Rice 1966; 1967; Edmunds and Willis 1976; Hutchinson 1979].

Because of the authority of the Hult–McClintock elastic-plastic solution, its limitations have largely
gone unaddressed. These shortcomings are difficult to verify directly by conventional crack tip asymptotic

imaginary crack tip

Figure 1. The crack-tip plastic zone [Hult and McClintock 1957].
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analysis under small-scale yielding. However, if the crack line analysis method is used, the method’s
inadequacy becomes apparent, and already in [Yi 1993; 1994] we were compelled to find more reasonable
solutions. In this paper we continue these investigations by deducing an elastic-plastic solution near the
crack line region, different from Hult and McClintock’s. We do this by matching the general solution of
the plastic field to that of the exact elastic field, to discuss the validity of the Hult–McClintock solution.

1. Review of the Hult–McClintock solution

General assumptions. For an antiplane crack in an elastic-perfectly plastic solid, the displacement w
and stress components τxz and τyz are assumed to depend only on x and y. The crack tip region is shown
in Figure 1. The equilibrium equation is

∂τxz

∂x
+
∂τyz

∂y
= 0 (1)

and the Huber–von Mises yield criterion is

τ 2
xz + τ

2
yz = k2, (2)

where k is the yield stress in pure shear. The strain is given by γxz =
∂w

∂x
and γyz =

∂w

∂y
. For a stationary

crack, the Hencky deformation constitutive relations are

∂w

∂x
=

1
G
τxz + λτxz,

∂w

∂y
=

1
G
τyz + λτyz, (3)

where G is the elastic shear modulus and λ a nonnegative factor.

Statement of the Hult–McClintock solution. In an (r, θ) polar coordinate system, Hult and McClintock
suggested that the stresses in the plastic zone are

τxz =−k sin θ, τyz = k cos θ. (4)

They then obtained the displacement in the plastic zone, the strains in the plastic zone, and the elastic-
plastic boundary by matching the plastic stress field (4) and its corresponding displacement field for
the actual crack with the usual crack tip K -dominant elastic singular field of an “imaginary crack” (see
Figure 1) at the elastic-plastic boundary. The Hult–McClintock solutions are

w =
K 2

III

Gπk
sin θ, γxz =−

K 2
III

Gπk
sin θ cos θ

r
, γyz =

K 2
III

Gπk
cos2 θ

r
, R(θ)= 1

π

(KIII

k

)2
cos θ, (5)

where KIII is the stress intensity factor. The strain (5)2,3 in the plastic zone has a 1/r singularity.
According to (5)4, the plastic zone is a circle tangent to the actual crack tip, having diameter d =

R(0)= K 2
III/(πk2). The imaginary crack tip of the K -dominant elastic singular field lies at the center of

the plastic zone, at a distance xe = d/2 ahead of the actual tip.

Beyond the Hult–McClintock plastic field. Solutions satisfying the equilibrium equations (1) and the
Huber–von Mises yield criterion (2) are countless: the Hult–McClintock plastic stress field (4) is just a
particular solution, not a general one. What are its limitations? A fruitful approach to this question is
to use the crack line analysis method and expansion in power series of θ , reducing the solution of the
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partial differential equations to that of ordinary differential equations, through which a description of the
general solution for the plastic field near the crack line region can be obtained.

The crack line analysis method only focuses on the field near the crack line. The method has been
used for an antiplane crack before [Achenbach and Li 1984; Guo and Li 1987; Yi 1992]. The elastic-
plastic solutions obtained in those references are the same as those given by Hult and McClintock near
the crack line, but any such solution is still inadequate and is still confined by the small-scale yielding
assumptions.

The crack line analysis method was improved in [Yi 1993; 1994; Yi et al. 1996; 1997; Yi and Yan
2001], and has been used to solve other crack problems [Wu and Wang 1996; Wang and Zhang 1998;
Wang and Wu 2003; Wang and Zhou 2004; Zhou and Wang 2005; Zhou and Ling 2006]. The method
also applies well to linear elastic fracture mechanics and has been developed into an effective way of
solving the stress intensity factors of cracks [Yi 1991; 1992; Wang 1996; 2002]. The significance of the
improved crack line method is that the general solution in power series of the plastic field near the crack
line can be obtained exactly. By matching the general power series form solution of the plastic field
with the precise elastic field outside the plastic zone, the assumptions of the usual small-scale yielding
condition can be completely given up. Thus, a more reasonable elastic-plastic solution can be obtained.

2. Introduction to the crack line analysis method:
General power series solution for the plastic field near the crack line

To proceed, consider the region near the crack line, shown in Figure 2 and corresponding to θ = 0. The
stress components and the displacement are continuous across the crack line. So in the plastic zone near
the crack line region, τxz , τyz , and w can be expressed in polar coordinates as power series up to second
order in θ as

τxz = τ1(r)θ + O(θ3), w = w1(r)θ + O(θ3),

τyz = τ0(r)+ τ2(r)θ2
+ O(θ4), λ= λ0(r)+ λ2(r)θ2

+ O(θ4),
(6)

where λ is the nonnegative factor in (3). Here we have taken into account that τxz and w are antisymmetric,
while τyz and λ are symmetric with respect to θ = 0. (In [Guo and Li 1987; Yi 1992] the corresponding
expressions in rectangular coordinates are considered.)

Figure 2. The region near the crack line.
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Substituting (6) into (1)–(3) by using the relationships r2
= x2
+ y2 and θ = arctan y

x
and collecting

terms of the same order θ yields

dτ1

dr
+

dτ0

dr
−
τ1

r
+

2τ2

r
= 0, τ 2

0 = k2, τ 2
1 + 2τ0τ2 = 0,

dw1

dr
−
w1

r
=

( 1
G
+ λ0

)
τ1,

w1
r
=

( 1
G
+ λ0

)
τ0.

(7)

Thus the system of partial differential equations (1)–(3) has been transformed into a system of ordinary
differential equations. We can solve the equations (7) to obtain in closed form the coefficients τ0, τ1, τ2,
and w1 appearing in (6). We find

τ0 = k, τ1 =−
kr

r + L
, τ2 =−

kr2

2(r + L)2
, w1 =

Cr
r + L

, (8)

where L and C are constants of integration. Thus we have

τxz =−
kr

r + L
θ + O(θ3), τyz = k−

kr2

2(r + L)2
θ2
+ O(θ4), w =

Cr
r + L

θ + O(θ3). (9)

When converted to rectangular coordinates, the solutions (9) are the same as those given in [Yi 1994].
The strains corresponding to (9) are

γxz =−
Cr

(r + L)2
θ + O(θ3), γyz =

C
r + L

+ O(θ2), (10)

which have no singularities as r→ 0 if L > 0.

Remark. Although the preceding discussion only considered terms up to θ2, it can be extended to a
higher-order analysis using the same idea. Suppose, for example, that we wish to go up to θ4, writing

τxz = τ1(r)θ + τ3(r)θ3
+ O(θ5),

τyz = τ0(r)+ τ2(r)θ2
+ τ4(r)θ4

+ O(θ6).
(11)

Substituting these equalities into (1) and (2) and collecting terms of the same order in θ yields two new
equations besides the ones appearing on the first line of (7):

−
1
6

dτ0

dr
−

1
2

dτ1

dr
+

1
6
τ1

r
+

dτ2

dr
−
τ2

r
+

dτ3

dr
− 3

τ3

r
+ 4

τ4

r
= 0, 2τ1τ3+ τ

2
2 + 2τ0τ4 = 0.

The number of equations and unknowns has increased from three to five, but we can still use the same
method to solve the system of five equations, obtaining, besides the first three equations in (8), the
expressions

τ3 =
k
6

r
r+L

−
k
2

( r
r+L

)2
+

(k
2
+

D
r + L

)( r
r+L

)3
,

τ4 =
k
6

( r
r+L

)2
−

k
2

( r
r+L

)3
+

(3k
8
+

D
r + L

)( r
r+L

)4
,

which are then plugged into (11) to give explicit expressions for the stress components to order four. The
displacement is handled similarly.
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Further, the elastic-plastic boundary is assumed to be continuous across the crack line and to have
equation r = rp(θ) (Figure 2). Again by symmetry, the function rp is even, and we have, to second order,

rp(θ)= r0+ r2θ
2
+ O(θ4), (12)

where r0 is the length of the plastic zone along the crack line [Yi 1994]. The values of r0 and r2 can be
determined by matching the plastic field with the elastic field at the elastic-plastic boundary.

It follows from (12) that the unit normal vector n= (nx , ny) of the elastic-plastic boundary is

nx = 1− 1
2 B2

1θ
2
+ O(θ4), ny = B1θ + (θ

3), where B1 = 1− 2
r2

r0
. (13)

Returning to the analysis to second order, the idea now is to match (9) and (10) with a sufficiently
precise elastic field near the crack line. Before doing this, we recall the derivation of the Hult–McClintock
equations in the context of our analysis, to understand its limitations and set the scenario for our solution.

3. Further discussion of the Hult–McClintock matching result

Rederivation of the Hult–McClintock elastic-plastic boundary. In polar coordinates (ρ, φ) centered at
the point x = xe, y = 0 (the “imaginary crack tip”), let the elastic-plastic boundary be written as

ρp(φ)= ρ0+ ρ2φ
2
+ O(φ4), (14)

(see Figure 3). The unit normal vector n= (nx , ny) of the boundary is then

nx = 1− 1
2 β

2
1φ

2
+ O(φ4), ny = β1φ+ O(φ3), where β1 = 1− 2

ρ2

ρ0
(15)

(compare (13)), and the equations relating the two polar coordinate systems are

θ = arctan
ρ sinφ

xe+ ρ cosφ
, r2

= x2
e + ρ

2
− 2ρxe cos(π −φ). (16)

In the Hult–McClintock solution, the usual K-dominant elastic stress field for the imaginary crack in
polar coordinates (ρ, φ) (see Figure 1 or Figure 3) is

τxz =−
KIII
√

2πρ
sin

φ

2
, τyz =

KIII
√

2πρ
cos

φ

2
, (17)

imaginary crack tip

Figure 3. The region near the crack according to [Hult and McClintock 1957].
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where the second assumption of small scale yielding is adopted.
Expanding (17) to second order gives

τxz =−
1
2

KIII
√

2πρ
φ+ O(φ3), τyz =

KIII
√

2πρ

(
1− 1

8
φ2
)
+ O(φ4). (18)

The corresponding displacement is

w =

√
ρ

2π
·

KIII

G
φ+ O(φ3). (19)

Substituting (14) into (18) and (19), we get for the elastic stresses and displacement at the elastic-
plastic boundary the expressions

τ e
xz =−

1
2

KIII
√

2πρ0
φ+ O(φ3), τ e

yz =
KIII
√

2πρ0

(
1−

(1
2
ρ2
ρ0
+

1
8

)
φ2
)
+ O(φ4), (20)

w =

√
ρ0
2π
·

KIII

G
φ+ O(φ3). (21)

The Hult–McClintock plastic stresses (4) have the expansion

τxz =−kθ + O(θ3), τyz = k− 1
2 kθ2
+ O(θ4). (22)

The expansion of the Hult–McClintock displacement in the plastic zone is

w = Cθ + O(θ3), (23)

where C is a constant, and the expansion of the strain is

γxz =−
C
r
θ + O(θ3), γyz =

C
r
+ O(θ2), (24)

Combining (14) with (22), (23) and (16), we obtain the plastic stresses and displacement of the real
crack at the elastic-plastic boundary:

τ p
xz =−k ρ0

xe+ρ0
φ+ O(φ3), τ p

yz = k− k
2

(
ρ0

xe+ρ0

)2
φ2
+ O(φ4), (25)

w p
= C ρ0

xe+ρ0
φ+ O(φ3). (26)

Now the plastic stresses (25) are made to match the crack tip K -dominant elastic stresses (20) at
the elastic-plastic boundary (14), and likewise for the displacements (26) and (21). In the normal local
coordinate frame (n, s) along the elastic-plastic boundary (see Figure 1), let σnz and σsz denote the stress
components, so

σnz = τxznx + τyzny, σsz = τxzny − τyznx . (27)

Then the matching conditions for the stresses are

σ e
nz = σ

p
nz, σ e

sz = σ
p

sz along the elastic-plastic boundary. (28)
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where superscript e and p represent the elastic and plastic sides of the boundary. The right-hand sides
of (28)1,2 can be obtained by substituting (25) and (15) into (27), and the left-hand sides by substituting
(20) and (15) into (27). In this way we obtain three matching equations:

KIII
√

2πρ0
= k, 1

2
KIII
√

2πρ0
= k ρ0

xe+ρ0
,

KIII
√

2πρ0

(1
2
ρ2
ρ0
+

1
8

)
=

1
2

k
(

ρ0
xe+ρ0

)2
. (29)

Solving the system (29) yields

ρ0 =
K 2

III

2πk2 , ρ2 = 0, xe =
K 2

III

2πk2 . (30)

Thus ρ0 = xe, expressing that the imaginary crack tip moves to the center of the plastic zone along the
crack line. The length of the plastic zone is x p = xe + ρ0 = K 2

III/(πk2), in agreement with the case
θ = 0 of (5)4. The result ρ2 = 0 in (30)2 agrees with Hult–McClintock’s elastic-plastic solution, in which
the elastic-plastic boundary is a circle. Similarly, the constant C in (23) and (24) can be obtained by
comparing (21) with (26) and using (29):

C = k
G
(ρ0+ xe), (31)

leading to the following expression for the strain (24) in the plastic zone:

γxz =−
k
G
ρ0+ xe

r
θ + O(θ3), γyz =

k
G
ρ0+ xe

r
+ O(θ2); (32)

this again agrees with the Hult–McClintock solution in (5)2,3.
It follows that, to second order in θ , the Hult–McClintock elastic-plastic solution is a necessary con-

sequence of the underlying assumptions.

Critique of the assumptions underlying the Hult–McClintock elastic-plastic solution. Nevertheless, we
must inquire whether the assumptions are reasonable. If the plastic zone is small enough, the first
assumption — that the dominant elastic field matches the plastic field at the elastic-plastic boundary — is
acceptable. However, the second assumption, concerning the “imaginary crack tip”, is questionable on
several grounds. First, it has no clear physical meaning. Second, it is arbitrary; it is introduced essentially
in order to gain one free parameter, the distance xe. Finally, according to the Hult–McClintock elastic-
plastic solution, the strain in the plastic zone, given by (32) or (24), has a singularity. Such a result is
incorrect even under small-scale yielding, as will be explained later.

In the alternative formulation we started to develop in Section 2, there is no singularity in the corre-
sponding expression for the strain, (10), unless the parameter L is taken equal to 0 (which corresponds
to the Hult–McClintock situation).

4. Abandoning the second assumption

We saw in Section 2 that the three matching equations in (29) involve three constants, ρ0, ρ2 and xe.
If we let xe = 0, thus giving up the second assumption of small scale yielding (under which condition
the coordinates (ρ, φ) coincide with (r, θ)), a conflict inevitably occurs in that the three independent
matching equations (29) involve only two unknowns ρ0 and ρ2. But if the general solution (9) is used in
the matching, the constant L can replace the artificial xe in providing the additional degree of freedom
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necessary for a natural match at the actual elastic-plastic boundary. Thus, the second assumption of
small-scale yielding becomes unnecessary, and a more natural matching solution can be obtained even
under small-scale yielding.

The crack tip K -dominant elastic singular field for the actual crack (see Figure 2) is

τxz =−
KIII
√

2πr
sin θ

2
, τyz =

KIII
√

2πr
cos θ

2
, (33)

(compare (17)). The power series expansion of (33) to second order is

τxz =−
1
2

KIII
√

2πr
θ + O(θ3), τyz =

KIII
√

2πr

(
1− 1

8
θ2
)
+ O(θ4) (34)

(compare with (18), which expresses the same relationship but for the imaginary crack tip). The corre-
sponding displacement is

w =

√
r

2π
·

KIII

G
θ + O(θ3). (35)

The expression (9) of the plastic field is now required to match that of the crack-tip elastic dominant
field, (34). In the same vein as in Section 3, we can do this by taking the expressions for σ p

nz and σ p
sz

obtained by combining (9), (12), (13) and (27), and equating it, coefficient-wise, to the expressions for
σ e

nz and σ e
sz obtained by combining (34), (12), (13) and (27) (see (28)). Solving the resulting equations

yields

r0 =
1

2π

(KIII

k

)2
, r2 = 0, L = 1

2π

(KIII

k

)2
. (36)

According to (36)1 and Figure 2, the length of the plastic zone along the crack line is r0, or half the
length of the plastic zone

x p = xe+ ρ0 = 2ρ0 =
K 2

III

πk2

obtained in the Hult–McClintock solution.
From the continuity condition we

= w p for the displacement at the elastic-plastic boundary, the con-
stant C in (9) can be obtained from (35), (36), and (12) as

C = k
G
(r0+ L). (37)

The strain near the crack line can be deduced as

γxz =−
k
G
(r0+ L)r
(r + L)2

θ + O(θ3), γyz =
k
G

r0+ L
r + L

+ O(θ2). (38)

Thus no singularity is present in the plastic zone, in contrast with the Hult–McClintock strain, (32).

5. Abandoning the first assumption

In Section 4, we kept the first assumption usually made for small-scale yielding. Although the results
are more natural than the Hult–McClintock solution (Section 3), they are still confined by small-scale
yielding.

The crack line analysis method allows us to abandon also the first assumption. In this section we go
over an example of how this can be done in special cases. The general idea is this: the general solution
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u

Figure 4. An antiplane crack in an infinite plate.

(9)–(10) for the plastic stress field near the crack line is correct to second order in the plastic zone,
whether it be small or large. Hence, if a sufficiently accurate elastic field is known outside the plastic
zone, the small-scale yielding assumptions can be relaxed by matching the elastic field with the general
plastic field. The key, therefore, is to obtain the precise elastic field, and this can be done with sufficient
accuracy near the crack line for some problems.

Our example involves an antiplane crack in an infinite body; see Figure 4. As discussed in [Yi 1994],
the exact elastic stresses satisfying the far field boundary condition and the boundary condition that the
crack surface is traction-free can be shown to be (see [Paris and Sih 1965; Gdoutos 2005, pp. 25–27])

τxz = Im ZIII(u), τyz = Re ZIII(u), (39)

where u = x + iy and ZIII(u) = τu/
√

u2− a2 is the Westergaard complex stress function. The corre-
sponding displacement is w = Im Z̃III(u)/G, where Z̃III(u)=

∫
ZIII(u)du, the integral being over the

contour u = a+ reiθ . In the polar coordinate system centered at the crack tip, when r→ 0, the elastic
K -dominant field can be obtained from (39) as in (33). But in the following analysis we will focus not
on the elastic dominant term near the crack tip where r→ 0, but on the terms that are sufficiently precise
near the crack line region when θ→ 0.

Equation (39) is a classical analytical solution satisfying the basic equations and boundary conditions
for the problem, which contains nonsingular terms besides the K -dominant field. Expanding (39) as a
power series in θ , we get for the elastic stresses near the crack line

τxz =−
τ

√
r(2a+ r)

a2

2a+r
θ + O(θ3), τyz =

τ
√

r(2a+ r)

(
(a+ r)−

2a2r + a3

2(2a+ r)2
θ2
)
+ O(θ4). (40)

As r→ 0, this degenerates into (34); but note that (40) is sufficiently precise near the crack line, while
(34) is valid only within a tiny area around the crack tip near the crack line.

Matching the elastic stress (40) and its corresponding displacement with the plastic stress and dis-
placement, given in (9), one can obtain an accurate matching solution without the small-scale yielding
assumptions. For details, see [Yi 1994].
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Comparison between the general matching results and Hult and McClintock’s results. In the example
just given, elastic stresses precise enough near the crack line are obtained. By matching the general
solution of the plastic stress (9) (and the corresponding plastic displacement) with the precise elastic
stress (40) (and the corresponding elastic displacement) at the elastic-plastic boundary (12), the small-
scale yielding assumptions can be completely abandoned and the matching results are correct, whether
the plastic zone is small or large.

The matching results of the example for the infinite cracked plate are

r0 = a
(√

k2

k2−τ 2 − 1
)
,

r2

r0
=

1
2

√
k2
−τ 2

k2 −
k

k+
√

k2− τ 2
, L = a

(
1+ 2τ 2

−k2

k2−τ 2

√
k2

k2−τ 2

)
, (41)

C = k
G
(r0+ L), γxz =−

k
G
(r0+ L)r
(r + L)2

θ + O(θ3), γyz =
k
G

r0+L
r+L

+ O(θ2). (42)

Expanding the first of these equations in a power series of τ/k, when τ/k� 1, we have

r0 = a
(√

1
1−τ 2/k2 − 1

)
=

a
2

(
τ

k

)2
+ O

(τ
k

)4
=

1
2π

(
τ 2aπ

k2

)
=

1
2π

(KIII
k

)2
. (43)

Similarly, when τ/k� 1, we have to second order

r2

r0
= 0, L = 1

2π

(KIII

k

)2
. (44)

Equations (43) and (44) say the same as (36), where KIII = τ(πa)1/2.
It is obvious that when the first assumption of small-scale yielding is introduced, the matching results

(41) reduce to (43) and (44).
Figure 5 compares the plastic zone lengths for three solutions: the present solution (41), obtained after

abandoning the two small-scale yielding assumptions; the solution (43) or (36)1, obtained by maintaining
first assumption of small-scale yielding reserved; and Hult and McClintock’s solution (5)4, which relies
on both the small-scale yielding assumptions.

We see that the result (41) is not confined by the yielding scale: when τ → k the length of the plastic
zone in (41) approaches∞, which is reasonable for a plate with infinite width. By contrast, (43) and

(5)4
(43)
(41)1

Figure 5. Comparison of the plastic zone lengths.
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(36)1 behave correctly only when τ/k is relatively small (τ/k ≤ 0.5), while Hult and McClintock’s result
(5)4, also meant for τ/k small, lies some distance from either of the above.

However, when focusing on the plastic strain, neither our solution (42)2,3 nor the small-scale yielding
solution (38) have any singularities. In contrast, Hult and McClintock’s solution (32) shows a physically
unreasonable singularity 1/r .

6. Conclusions

Three elastic-plastic matching solutions are given in the present paper.
The first matching solution is exhibited by the crack line analysis method to demonstrate the crack-tip

elastic-plastic solution given by Hult and McClintock, where the particular plastic stresses (4) and the
corresponding plastic strains suggested by Hult and McClintock are expanded in power series forms, (22)
and (24), to match with the crack tip K -dominant elastic singular fields. The two small-scale yielding
assumptions have to be used during deduction and the resultant plastic strains (32) have singularities.
Although the matching solution is obtained around the crack line, it is in fact the same crack tip asymptotic
solution as that of Hult and McClintock because the crack tip K -dominant elastic singular fields are
introduced in matching.

The second matching solution (Section 4) takes the general power series form (but not the above
particular form) plastic stresses (9) and corresponding plastic strains (10) near the crack line, to match
with the crack tip K -dominant elastic singular fields. A more rational elastic-plastic solution is obtained
with only the first small-scale yielding assumption adopted, in which the plastic strains do not have
singularities. Since the crack tip K -dominant elastic singular fields are still applied in matching, the
resultant solution can be considered as a new crack tip asymptotic solution, distinct from Hult and
McClintock’s. This new solution has no singularity in the plastic strain, unlike Hult and McClintock’s.

The third matching solution (Section 5) shows how to obtain the precise elastic-plastic solution near
the crack line with the usual small-scale yielding assumptions completely removed; the general power
series form plastic fields are used to match the precise elastic fields near the crack line. The matching
results in the case of an infinite plate will degenerate to those of the second matching solution, the validity
of which is strictly justified by the matching conditions and the boundary conditions of the real problem.
The resultant plastic strains also have no singularities.

The following observations can be made:

• Hult and McClintock’s solution is inappropriate. Firstly, the plastic stress field (4) suggested by Hult
and McClintock is just one particular solution of countless solutions to the system of partial differential
equations, (1) and (2), instead of a general solution. Near the crack line, the plastic stress field of the
Hult–McClintock particular solution is shown in (22) while that of the author’s general solution is shown
in (9). A comparison between (9) and (22) indicates that the general solution (9) has one constant L but
the particular solution (22) does not. Secondly, owing to the adoption of particular plastic solution (4), the
assumption that the crack-tip elastic field moves a distance xe along the crack line has to be expediently
introduced in Hult and McClintock’s matching solution. Thus the elastic field used to match with the
real plastic field is just an imaginarily offset elastic field, not the real one. Thirdly, the plastic strain, (24)
or (32), corresponding to Hult and McClintock’s matching solution obtained from the particular plastic
stress (22) has a singularity, which is incorrect even under small scale yielding.
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• The second assumption of the usual small-scale yielding is removable. The usual small-scale yielding
involves two assumptions. If the plastic zone is small enough, the first assumption can be adopted,
meaning, to match the K -dominant elastic field with the plastic field is acceptable. However, to adopt
the second assumption, that is, to assume that the crack tip of the elastic field moves a distance along the
crack line as Hult and McClintock have done, is inappropriate and should be rationally abandoned.

• The crack line analysis method offers a precise Taylor series form general solution (that is, a general
power series form solution) of the plastic field (9), and provides the possibility of completely abandoning
the two small-scale yielding assumptions. Then the elastic-plastic matching solution is decided by how
the two small-scale yielding assumptions are treated. If both assumptions are still embraced, as Hult and
McClintock have done, the same matching solution as Hult and McClintock’s will be reached, as shown
in Section 3; if only the first assumption is adopted a mathematically approximate matching solution will
be gained which is more appropriate than Hult and McClintock’s, as shown in Section 4; finally, if both
assumptions are given up, a rigorously precise matching solution will be attained, as shown in Section 5,
which goes far beyond Hult and McClintock’s.

• There exists an obvious difference between the crack line analysis method and the crack tip asymptotic
analysis method. The crack tip area is really a crucial position in the analysis of a crack problem, but
the same is true of the crack line area: the stresses, strains, and plastic length near the crack line are all
crucial parameters in analysis. When the dominant order terms are used to characterize the stress or strain
field, the crack tip asymptotic analysis method only gives solutions appropriate for all points infinitely
approaching the crack tip, but which are inappropriate for those points beyond a certain distance from
the crack tip. In the polar coordinate system with the crack tip as its origin, the crack tip analysis method
is usually restricted by the condition of r→ 0 but not by any range of θ (−π ≤ θ ≤ π), so the solution
is restricted by the small-scale yielding conditions and remains valid only when the plastic zone is small
enough. While the crack line analysis method only gives solutions appropriate for all points infinitely
approaching the crack line, restricted by the condition of θ→ 0 but not by any range of r (0≤ r ≤∞),
then the results are sufficiently precise within an area close enough to the crack line and not restricted by
the small-scale yielding conditions. The crack line analysis method has the following merits: it can give
the precise power-series-form plastic field solution near the crack line, the precise power-series-form
plastic field can match with the precise elastic field near the crack line to give sufficiently precise results
with the small scale yielding conditions completely abandoned, and it bears a physical clarity of related
concepts and mathematical simplicity in deduction.
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