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A SEMIANALYTICAL SOLUTION FOR THE BENDING OF CLAMPED
LAMINATED DOUBLY CURVED OR SPHERICAL PANELS

KASRA BIGDELI AND MOHAMMAD MOHAMMADI AGHDAM

A semianalytical solution is presented for bending of moderately thick fully clamped laminated doubly
curved panels using the extended Kantorovich method (EKM). The panel is subjected to uniform and
nonuniform distributed loading and cut from a rectangular platform. Based on the first-order shear
deformation theory, five highly coupled second-order partial differential equations in terms of displace-
ment components are derived. Assuming separable functions for panel displacements together with the
EKM converts the governing equations into double sets of ordinary differential equations with constant
coefficients in terms of x and y. The resulting ODE systems are then solved iteratively until a level
of prescribed convergence is achieved. Closed-form solutions can be presented for ODE systems in
each iteration. Efficiency and rapid convergence of the solution technique are examined using several
examples. Predictions of both deflection and stress resultants show very good agreement with other
available results in the literature. It is also shown that the same formulation and solution method can be
used to obtain results for spherical and cylindrical panels and rectangular plates.

1. Introduction

Since fabrication of composite materials such as graphite/epoxy, boron/epoxy, Kevlar/epoxy and graphite/
PEEK started, high-tech industries have become interested in using them as structural materials. Thus
laminated composites have replaced metallic alloys in many applications, offering, among their beneficial
features, light weight, high stiffness and strength.

Panels can generally bear much higher loads than plates, due to the geometric coupling between the
membrane and flexure forces in panels. This coupling is material-independent and only occurs in panels
due to the curved geometry. Material asymmetry in composite structures, either panels or plates, may also
cause another type of coupling between the membrane and flexure forces which can occur in composite
plates as well as composite panels. Thus, advanced laminated composite panels are currently being used
in aircraft, space vehicles, ships and other structures where excellent structural performance is needed.
Particularly, spherical panels are used wherever a high external pressure is applied on the panel, such as
pressure vessel caps and ceilings.

The efficient use of laminated panels relies on the accurate prediction of their behavior under various
types of loading. This depends on the level of accuracy of the modeling theory which normally leads
to a system of coupled PDEs and also solution technique. An efficient procedure to solve systems of
PDEs, known as the extended Kantorovich method (EKM), was initially introduced in [Kerr 1968] to
obtain highly accurate approximate closed-form solutions for torsion of isotropic beams with rectangu-
lar cross-section. In the EKM, the idea of the Kantorovich method [Kantorovich and Krylov 1958],
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which transforms a partial differential equation into a couple of ordinary differential equations, is further
developed into an iterative scheme to improve accuracy.

The EKM has been widely used to obtain highly accurate approximate solutions for several 2D elastic-
ity problems of rectangular plates in such applications as the bending of thin plates [Kerr and Alexander
1968; Dalaei 1995], eigenvalue problems [Kerr 1969], free vibration [Aghdam et al. 2009; Dalaei and
Kerr 1996], buckling [Yuan and Jin 1998], bending of thick plates [Aghdam et al. 1996; Yuan et al. 1998;
Aghdam and Falahatgar 2003], bending of variable thickness plates [Fariborz and Pourbohloul 1989] and
free-edge strength analysis [Kim et al. 2000]. Recently, the EKM has been used to solve problems in
other geometries, such as annular sector plates [Aghdam and Mohammadi 2009] and cylindrical panels
[Alijani and Aghdam 2009; Alijani et al. 2008; Abouhamze et al. 2007].

This study presents an EKM-based semianalytical solution for the bending of clamped laminated
doubly curved panels. Based on first-order deformation theory (FSDT) and considering initial curvature
effects [Toorani and Lakis 2000], governing equations in the form of five highly coupled second-order
PDEs are derived. The EKM is employed to convert them to two sets of five ODEs with constant
coefficients in terms of x and y. An exact closed-form solution is presented for each ODE system,
ensuring the computational effort in applying this method is generally lower than for numeric methods.
Rapid convergence and good accuracy of the solution is shown through examples and comparisons with
other analytical and numerical methods. The effects of length-to-thickness ratio and radius-to-length ratio
on stress resultant and displacement components are also investigated. We also show how the method
can be used for the analysis of rectangular plates and cylindrical panels by assuming infinite values for
one or both radii of curvatures.

2. Governing equations

A laminated doubly curved panel of rectangular platform with total thickness of h is considered. A
curvilinear coordinate system (x, y, z) is used to describe the geometry of the panel, as shown in Figure 1.
The radii of curvature of the panel are Rx and Ry , and the lengths of the panel are a and b, along the x
and y directions, respectively.

According to the FSDT assumptions, the three-dimensional displacement field is

ux(x, y, z)= u0(x, y)+ zβ1(x, y), u y(x, y, z)= v0(x, y)+ zβ2(x, y), uz(x, y, z)=w0(x, y), (1)

Ry  Rx  

x

z

y

b
a

Figure 1. Doubly curved panel geometry.



BENDING OF CLAMPED LAMINATED DOUBLY CURVED OR SPHERICAL PANELS 857

where ui (i = x, y, z) are the displacement components of the panel along the analogous directions, u0,
v0 and w0 stand for the displacements of mid-surface, and β1 and β2 represent rotations about y and x ,
respectively. (For formulas (1)–(3) see [Reddy 2004].)

The strain-displacement relationships of the panel can be expressed as

ε1 =
1

1+z/Rx
(ε0

1 + zε1
1), ε2 =

1
1+z/Ry

(ε0
2 + zε1

2), ε4 =
1

1+z/Ry
ε0

4, ε5 =
1

1+z/Rx
ε0

5,

ε6 =
1

1+z/Rx
(ω0

1+ zω1
1)+

1
1+z/Ry

(ω0
2+ zω1

2),

(2)

where ε1 and ε2 are the normal strains along the x and y axes, ε6 is the shear strain in the xy-plane, ε4 and
ε5 stand for the transverse shear strains in the yz- and xz-planes, respectively. Also, ε0

i , ω
0
i , ε

1
i (i = 1, 2)

and ω1
i (i = 1, 2) represent the in-plane normal strains, in-plane shear strains, changes in the curvature

and the torsions of the mid-plane surface. ε0
i (i = 4, 5) denote the transverse shear strains of the reference

surface in y-z and x-z planes.
The relationship between the reference surface strains and the displacement components is

ε0
1 =

∂u0

∂x
+
w0

Rx
, ε0

2 =
∂v0

∂y
+
w0

Ry
, ε0

4 =
∂w0

∂y
−
v0

Ry
+β2, ε0

5 =
∂w0

∂x
−

u0

Rx
+β1,

ε1
1 =

∂β1

∂x
, ε1

2 =
∂β2

∂y
, ω0

1 =
∂v0

∂x
, ω0

2 =
∂u0

∂y
, ω1

1 =
∂β2

∂x
, ω1

2 =
∂β1

∂y
.

(3)

For simplicity we rewrite this in matrix form:

{ε} = [d]{u}, (4)

where {u}=〈u0, v0, w0, β1, β2〉
T is the displacement vector, {ε}=〈ε0

1, ω
0
1, ε

0
5, ε

0
2, ω

0
2, ε

0
4, ε

1
1, ω

1
1, ε

1
2, ω

1
2〉

T

is the strain vector and the operator matrix [d]10×5 is given by

[d] =



∂

∂x
0 −1

Rx
0 ∂

∂y
0 0 0 0 0

0 ∂

∂x
0 ∂

∂y
0 −1

Ry
0 0 0 0

1
Rx

0 ∂

∂x
1
Ry

0 ∂

∂y
0 0 0 0

0 0 1 0 0 0 ∂

∂x
0 0 ∂

∂y

0 0 0 0 0 1 0 ∂

∂x
∂

∂y
0



T

. (5)

The constitutive equations, that is, the relationship between strain components and stress resultants,
including transverse shear deformations and initial curvature effects, can be written as

{F} = [P]{ε} (6)
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(see [Toorani and Lakis 2000]), where {F} = 〈Nx , Nxy, Qx , Ny, Nyx , Q y,Mx ,Mxy,My,Myx 〉
T is the

stress resultant vector, and the stiffness matrix [P] is defined as

[P] =



G11 G16 0 A12 A16 0 H11 H16 B12 B16

G61 G66 0 A62 A66 0 H61 H66 B62 B66

0 0 Ks G55 0 0 Ks A54 0 0 0 0

A21 A26 0 G ′22 G ′26 0 B21 B26 H ′22 H ′26

A61 A66 0 G ′62 G ′66 0 B61 B66 H ′62 H ′66

0 0 Ks A45 0 0 Ks G ′44 0 0 0 0

H11 H16 0 B12 B16 0 J11 J16 D12 D16

H61 H66 0 B62 B66 0 J61 J66 D62 D66

B21 B26 0 H ′22 H ′26 0 D21 D26 J ′22 J ′26

B61 B66 0 H ′62 H ′66 0 D61 D66 J ′62 J ′66



(7)

(see [Reddy 2004]), where Ks is the shear correction factor and

Gi j = Ai j + a′1 Bi j + a′2 Di j + a′2 Ei j , G ′i j = Ai j + b′1 Bi j + b′2 Di j + b′3 Ei j ,

Hi j = Bi j + a′1 Di j + a′2 Ei j + a′3 Fi j , H ′i j = Bi j + b′1 Di j + b′2 Ei j + b′3 Fi j ,

Ji j = Di j + a′1 Ei j + a′2 Fi j + a′3Ci j , J ′i j = Di j + b′1 Ei j + b′2 Fi j + b′3Ci j ,

a′1 =
1
Ry
−

1
Rx
, a′2 =

1
Rx

( 1
Rx
−

1
Ry

)
, a′3 =

1
R2

x Ry
,

b′1 =
1
Rx
−

1
Ry
, b′2 =

1
Ry

( 1
Ry
−

1
Rx

)
, b′3 =

1
R2

y Rx
,

(8)

with (for i, j = 1, 2, 4, 5, 6)

Ai j =

N∑
k=1

(Qi j )k(hk − hk−1), Bi j =
1
2

N∑
k=1

(Qi j )k(h2
k − h2

k−1),

Di j =
1
3

N∑
k=1

(Qi j )k(h3
k − h3

k−1), Ei j =
1
4

N∑
k=1

(Qi j )k(h4
k − h4

k−1),

Fi j =
1
5

N∑
k=1

(Qi j )k(h5
k − h5

k−1), Ci j =
1
6

N∑
k=1

(Qi j )k(h6
k − h6

k−1),

(9)

the Qi j being defined by

Q11 = Q11m4
+ 2(Q12+ 2Q66)+ Q22n4,

Q12 = (Q11+ Q22− 4Q66)m2n2
+ Q12(m4

+ n4),

Q22 = Q11n4
+ 2(Q12+ 2Q66)m2n2

+ Q22m4,
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1 

2 

x y 

3

n 

Figure 2. An orthotropic layer.

Q45 = (Q55− Q44)mn,

Q16 = (Q11− Q12− 2Q66)m3n+ (Q12− Q22+ 2Q66)mn3,

Q26 = (Q11− Q12− 2Q66)mn3
+ (Q12− Q22+ 2Q66)m3n, (10)

Q44 = Q44m2
+ Q55n2,

Q55 = Q44n2
+ Q55m2,

Q66 = (Q11+ Q22− 2Q12− 2Q66)m2n2
+ Q66(m4

+ n4),

for m = cosϕ, n = sinϕ, and

Q11 = E11/(1− ν12ν21), Q44 = G23,

Q12 = E11ν12/(1− ν12ν21), Q55 = G13,

Q22 = E22/(1− ν12ν21) Q66 = G12.

(11)

Here Eαα, Gαβ and ναβ (α, β = 1, 2) represent the Young’s moduli, rigidity moduli, and Poisson ratios,
respectively, along the principal directions, and the orientation angle ϕ is measured counterclockwise
from the x-axis to the 1-axis (fiber orientation) as shown in Figure 2.

The matrices [B], [E] and [C] vanish in the case of symmetrically laminated composites. Note that,
unlike the conventional constitutive equations in general use [Reddy 2004], here we consider also initial
curvature effects. Therefore, the shear forces and torsional moments are not generally equal, i.e., Nxy 6=

Nyx and Mxy 6= Myx .
To obtain equations of equilibrium, Hamilton’s principle is applied to the FSDT displacement field

[Toorani and Lakis 2000]. Neglecting time-dependent terms in the resulting equations, one obtains the
static form of the equilibrium equations as

[E]{F} = {q}, (12)

where the vector {q} = {0, 0, q(x, y), 0, 0}T is the external force vector and the matrix [E], usually called
the equilibrium operator, is defined as
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[E] =



∂

∂x
0 1

Rx
0 ∂

∂y
0 0 0 0 0

0 ∂

∂x
0 ∂

∂y
0 1

Ry
0 0 0 0

−1
Rx

0 ∂

∂x
−1
Ry

0 ∂

∂y
0 0 0 0

0 0 −1 0 0 0 ∂

∂x
0 0 ∂

∂y

0 0 0 0 0 −1 0 ∂

∂x
∂

∂y
0


. (13)

Substitution of (4) into (6) in conjunction with (12) leads to five second-order PDEs in terms of five
unknown displacement and rotation components. The final governing system of equations may be written
in matrix form as

[S]{u} = {q}, (14)

where the square matrix [S]5×5 = [E][P][d], called the fundamental matrix, comprises the geometric and
material properties of the panel; its entries are defined in Appendix A. In the case of clamped structures,
all displacements and rotations must vanish at the boundaries:

u0(x, y)= v0(x, y)= w0(x, y)= β1(x, y)= β2(x, y)= 0 at x = 0, a and at y = 0, b. (15)

3. Application of the EKM

To apply the EKM to the governing equations (14), the first step is to assume all displacement components
to be products of single-term separable functions. For economy we write this in matrix form as

u0(x, y)
v0(x, y)
w0(x, y)
β1(x, y)
β2(x, y)

=

ξ1(x)×ψ1(y)
ξ2(x)×ψ2(y)
ξ3(x)×ψ3(y)
ξ4(x)×ψ4(y)
ξ5(x)×ψ5(y)

= [ψ]× [ξ ]× {1}, (16)

where the square matrices [ξ ]5×5, [ψ]5×5 and {1}5×1 are defined by

[ψ] =


ψ1

ψ2 0
ψ3

0 ψ4

ψ5

 , [ξ ] =

ξ1

ξ2 0
ξ3

0 ξ4

ξ5

 , {1} =


1
1
1
1
1

 . (17)

Introducing (16) into (14) leads to the new form of the governing equations as

[S][ψ][ξ ]{1} = −{q}. (18)
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It is essential to rewrite the clamped boundary condition in terms of ψi (y) and ξi (x). Substituting (16)
into (15) results in the new form of the boundary conditions for clamped panels as

ξi (0)= ξi (a)= ψi (0)= ψi (b)= 0, i = 1, . . . , 5. (19)

Following the main idea of the weighted residuals method, all the governing equations should be multi-
plied by an appropriate weighting function, which in this case, in view of Hamilton’s principle, is ψi (y)
for the i-th equation. Multiplying the governing equations (18) by the appropriate functions leads to

[ψ][S][ψ][ξ ] = [ψ]{q}. (20)

The next step is to integrate over the length of the panel in the y direction. Performing the integration
results in the first system of ODEs:

[X ]{ξ} = {J }, (21)

where the matrices [X ] =
∫ b

0 [ψ][S][ψ]dy and {J } =
∫ b

0 [ψ]{q}dy. are presented in Appendix B. Thus,
assuming the first set of ψi (y) as the initial guess functions, [X ] and {J } can be calculated. Any analytical
or numerical solution for (21) leads to the first approximate displacement and rotation functions in the x
direction, i.e., ξi (x), i = 1, . . . , 5.

Closed-form solutions can be found for the system of simultaneous ODEs (21), using standard tech-
niques [Wylie and Barret 1985]. The solution consists of particular and homogenous parts:


ξ1

ξ2

ξ3

ξ4

ξ5

=


1 1 1 · · · 1
α1 α2 α3 · · · α10

β1 β2 β3 · · · β10

χ1 χ2 χ3 · · · χ10

δ1 δ2 δ3 · · · δ10


5×10



A1eλ1x

A2eλ2x

A3eλ3x

...

A10eλ10x


10×1

+


ξp1(x)
ξp2(x)
ξp3(x)
ξp4(x)
ξp5(x)

 , (22)

where the ξi p(x) are particular parts of the solution that depend on the type of external load. For instance,
in the case of uniform loading, all the ξi p(x) are constants. They can be obtained by substituting dx = 0
in the matrix [X ] of (21) and using the equality

{ξp}5×1 = ([X ]|dx=0)
−1
×{J }. (23)

The homogenous part of the solution is comprised of exponential functions multiplied by appropriate
constant coefficients. To obtain the λi in (22), one solves the characteristic equation

det [X ] = 0, (24)

which amounts to a polynomial equation

H1λ
10
+ H2λ

8
+ H3λ

6
+ H4λ

4
+ H5λ

2
+ H6 = 0, (25)
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in which dx is replaced by λ. Once the λi are calculated, it is possible to determine αi , βi , χi and δi , by
replacing dx by λi : 

X21 X22 X23 X24 X25

X31 X32 X33 X34 X35

X41 X42 X43 X44 X45

X51 X52 X53 X54 X55

 ∣∣∣∣
dx=λi

×


1
αi

βi

χi

δi

=


0
0
0
0
0

 . (26)

Finally, the boundary conditions (19) lead to the determination of the constant coefficients Ai :

1 1 1 1 1 1 1 1 1 1
α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

eλ1a eλ2a eλ3a eλ4a eλ5a eλ6a eλ7a eλ8a eλ9a eλ10a

α1eλ1a α2eλ2a α3eλ3a α4eλ4a α5eλ5a α6eλ6a α7eλ7a α8eλ8a α9eλ9a α10eλ10a

β1eλ1a β2eλ2a β3eλ3a β4eλ4a β5eλ5a β6eλ6a β7eλ7a β8eλ8a β9eλ9a β10eλ10a

χ1eλ1a χ2eλ2a χ3eλ3a χ4eλ4a χ5eλ5a χ6eλ6a χ7eλ7a χ8eλ8a χ9eλ9a χ10eλ10a

δ1eλ1a δ2eλ2a δ3eλ3a δ4eλ4a δ5eλ5a δ6eλ6a δ7eλ7a δ8eλ8a δ9eλ9a δ10eλ10a



×



A1

A2

A3

A4

A5

A6

A7

A8

A9

A10



=



−ξ1p

−ξ2p

−ξ3p

−ξ4p

−ξ5p

−ξ1p

−ξ2p

−ξ3p

−ξ4p

−ξ5p



.

Subsequently, a similar procedure in the x direction results in the second set of ODEs:

[Y ]{ψ} = {K }, (27)

where the matrices [Y ] =
∫ a

0 [ξ ][S][ξ ]dx and {K } =
∫ a

0 [ξ ]{q}dx are defined in Appendix C. The same
process can be used to obtain closed-form solutions for (27) which lead to the approximate functions
forψi (y). At this point, the first iteration for solution of governing equations (18) is completed. Again,
the new set of ψi (y) is used to calculate coefficients of (21). This cyclic procedure should be continued
successively, until a predefined level of accuracy is achieved. Results show that three to four iterations
are usually enough to obtain the converged solution.

4. Results and discussion

In order to examine the efficiency and applicability of the solution, we consider examples of laminated
panels and plates subjected to uniform and nonuniform loadings. The mechanical properties of two
orthotropic materials used in this study are tabulated in Table 1, where E1 and E2 are the Young’s
moduli of the material in x and y directions, ν12 is the Poisson’s ratio in the xy-plane, G12 stands for the
in-plane shear modulus, and G13 and G23 are the transverse shear moduli in the xz- and yz-planes. The

E1 (GPa) E1/E2 E1/G13 E1/G12 E1/G23 ν12

Material I 175.78 25 50 50 125 0.25
Material II 147.66 15 35 35 42 0.3

Table 1. Material properties.



BENDING OF CLAMPED LAMINATED DOUBLY CURVED OR SPHERICAL PANELS 863

shear correction factor is taken as Ks =
5
6 [Chaudhuri and Kabir 1993]. The results are then compared

with others results in the literature. Moreover, many results including displacement components as well
as stress resultants are presented to show the effects of various parametric ratios on the static response
of the panel. The following dimensionless terms are used in all results presented in this study:

W ∗ =
103 E2h3w0

qa4 , M∗ =
103 M1

qa2 , β∗ =
102 E2h3

qa3 β1. (28)

The dimensionless deflection (W ∗) and moment (M∗) are computed at the center point (a/2, b/2) of the
panel, while the dimensionless rotation (b∗) is reported at the point (a/4, b/2). The stacking sequence
of the panel is taken as [0/90/0] unless explicitly noted.

It should be noted that unlike the traditional weighted residual methods, the EKM does not require the
initial guess functions to meet boundary conditions. To illustrate this, arbitrary initial guess functions
for all cases are taken as ψi (y)= y2 sin(yπ/ i), i = 1, . . . , 5, which clearly do not satisfy the clamped
boundary conditions (19). However, the solution obtained satisfies the boundary conditions once the first
iteration is accomplished.

4.1. Laminated spherical panel. The first example deals with a clamped symmetrically laminated spher-
ical panel (Rx = Ry = R) subjected to a uniform distributed load. The span lengths of the panel are
taken as a = b = 812.8 mm, and the panel is made of material type I. For the described panel with the
radius to side length ratio of R/a = 10 and the side length to thickness ratio of a/h = 10, the first four
iterations of deflection functions ψ3(y) and ξ3(x) are illustrated in Figure 3. Note the good convergence
rate of the method apparent in these graphs. After the second iteration, both ξ3(x) and ψ3(y) overlap
completely. The predictions for dimensionless deflection, moment and rotation, tabulated in Table 2, left,
also show the rapid convergence of the solution: the last two iterations differ by no more than 0.07% in
dimensionless deflection, moment and rotation.

Table 2, right, compares, for a laminated spherical panel (R/a= a/h = 10) with symmetric lamination
[0/90/0] and asymmetric lamination [0/90], the results of the present study and those of the double
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Figure 3. First four iterations for ψ3 (left) and ξ3 (right).
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Iteration W ∗ M∗ β∗

1 4.5973 36.6842 0.3452
2 4.5012 35.9860 0.3332
3 4.4956 35.9494 0.3329
4 4.4925 35.9274 0.3327

Lamin. Method W ∗ M∗ β∗

[0/90/0] EKM 4.49 35.92 0.333
DF 4.73 35.89 0.322

[0/90] EKM 5.97 31.86 1.023
DF 5.58 31.70 1.030

Table 2. First four iterations for spherical panel (left) and comparison of end result with
those of the double Fourier method of [Chaudhuri and Kabir 1993] (right). In both cases,
a/h = R/a = 10.

Fourier series analysis reported in [Chaudhuri and Kabir 1993]. The predictions for dimensionless de-
flection, moment and rotation are in agreement with Chaudhuri and Kabir’s. However, it seems that
the results of their double Fourier series technique are slightly inaccurate, since the analytical solution
based on Navier’s approach for dimensionless deflection of a similar panel with simply supported (SS1)
edges is 10.11 [Reddy 2004], while the double Fourier series technique results in 10.53. Note also that
the solution based on the double Fourier series needs about 100 terms to converge, while the solution
presented here usually converges after the third iteration.

Figure 4, left, plots the dimensionless displacement W ∗, moment M∗ and rotation β∗ versus the length
to thickness ratio (a/h) of a moderately deep, symmetrically laminated cross-ply (R/a = 10) spherical
panel. For thin panels (a/h > 40), both dimensionless deflection and rotation are constant. Included in
the figure are also results of the double Fourier series method [Chaudhuri and Kabir 1993].

Variations of the dimensionless displacement W ∗, moment M∗ and rotation β∗ with respect to radius
to side length ratio (R/a) for symmetrically laminated moderately thick (a/h = 10) spherical panels are
depicted in Figure 4, right. No variations of the dimensionless parameters (W ∗, M∗ and β∗) can be seen
for the case of shallow shells (R/a > 20).
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Figure 4. Dimensionless deflection, moment and rotation as functions of thickness (left)
and curvature (right).
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Figure 5. Dimensionless deflection of the spherical panel along the centerline x/a = 0.5.
Left: R/a = 3 and a/h = 10; right: R/a = 3 and a/h = 100.

The next example investigates the static response of the laminated spherical panel to nonuniform
loading. The geometric parameters of the panel are taken as R/a = 3 and a/h = 10, and the material
is type I. Figure 5, left, shows the dimensionless deflection along the centerline (x/a = 0.5) of the
panel subjected to a uniformly distributed load of q0 and a sinusoidal load q0 sin(π x/a) sin(π y/b).
The deflection is greater under the uniform load than under the sinusoidal load. However, this is not
always the case: Figure 5, right, shows the dimensionless deflection of a spherical panel with geometric
parameters R/a = 3 and a/h = 100, where the maximum deflection is higher under a sinusoidal load.

To study the effects of the loading distribution on the static response, dimensionless deflection, we
give in Tables 3 and 4 the moment and rotation of spherical panels with different geometric parameters
and laminations. We see that that as the panel gets thinner and deeper, it is more easily deflected under
a sinusoidal load than under a uniform load.

4.2. Orthotropic spherical panel. This example investigates sensitivity of the static response of a single-
layer orthotropic spherical panel to degree of orthotropy (E1/E2). Except for E1/E2 ratio, other mechan-
ical properties of the panel are the same as material type I. In order to show the effect of the degree of
orthotropy on the static response of the panel, the dimensionless displacement W ∗, moment M∗ and
rotation β∗ versus degree of orthotropy (E1/E2) are plotted in Figure 6. It is obvious that changes in
the degree of orthotropy result in significant changes of the static response of the panel. It can easily
be seen that dimensionless deflection and rotation decrease as degree of orthotropy (E1/E2) increases
while increasing degree of orthotropy leads to increasing of dimensionless moment.

4.3. Laminated cylindrical panel. We now turn to cylindrical panels, introduced first as the limit of
doubly curved panels as one radius of curvature increases. Thus we take Rx = 108 m in this section.
Table 5 shows the dimensionless central deflections of clamped cylindrical panels made of material I
with constant curvature ratio of 10 (Ry/a = 10), various thickness ratios and various laminations under
uniform loading. Analogous results obtained using the commercial finite element software code ANSYS
are also included in the table, showing good agreement with our solution.
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a/h = 10 a/h = 20 a/h = 50
R/a W ∗ M∗ β∗ W ∗ M∗ β∗ W ∗ M∗ β∗

2 UL 1.715 12.544 0.120 0.518 8.299 0.082 0.092 1.696 0.021
SL 1.413 13.039 0.112 0.469 9.809 0.084 0.104 3.619 0.029

3 UL 2.715 20.917 0.196 0.943 16.332 0.156 0.209 4.918 0.052
SL 2.069 18.774 0.164 0.774 15.764 0.138 0.203 6.661 0.056

5 UL 3.777 29.876 0.278 1.535 27.664 0.260 0.492 13.140 0.129
SL 2.783 24.768 0.218 1.185 23.711 0.210 0.421 13.206 0.116

10 UL 4.493 35.927 0.333 2.049 37.524 0.351 1.018 28.653 0.271
SL 3.263 28.819 0.254 1.536 30.492 0.272 0.800 24.476 0.218

20 UL 4.715 37.805 0.350 2.231 41.023 0.382 1.356 38.646 0.362
SL 3.409 30.061 0.266 1.661 32.887 0.294 1.039 31.558 0.283

Table 3. Dimensionless deflection, moment and rotation for symmetrically laminated
[0/90/0] spherical panels, under uniform loading (UL) and sinusoidal loading (SL).

a/h = 10 a/h = 20 a/h = 50
R/a W ∗ M∗ β∗ W ∗ M∗ β∗ W ∗ M∗ β∗

2 UL 1.723 10.598 0.113 0.523 7.116 0.080 0.092 1.259 0.020
SL 1.387 11.138 0.106 0.477 8.677 0.083 0.107 3.129 0.030

3 UL 2.688 17.689 0.184 0.956 14.395 0.154 0.217 4.246 0.053
SL 2.010 15.969 0.153 0.781 14.025 0.136 0.209 5.967 0.057

5 UL 3.685 25.113 0.258 1.556 24.641 0.256 0.521 12.217 0.134
SL 2.667 20.895 0.202 1.182 21.051 0.205 0.432 12.055 0.117

10 UL 4.345 30.043 0.307 2.075 33.560 0.345 1.069 26.966 0.282
SL 3.103 24.168 0.234 1.524 27.001 0.264 0.814 22.478 0.221

20 UL 4.545 31.547 0.322 2.259 36.731 0.377 1.416 36.349 0.375
SL 3.237 25.168 0.244 1.644 29.097 0.285 1.054 28.986 0.285

Table 4. Dimensionless deflection, moment and rotation for symmetrically laminated
[0/90/90/0] spherical panels. under uniform loading (UL) and sinusoidal loading (SL).

Lamination a/h = 10 20 30 40 50

[30/−30/30/−30] EKM 4.560 2.490 2.053 1.867 1.754
ANSYS 4.563 2.496 2.062 1.890 1.783

[45/−45/45/−45] EKM 4.510 2.488 2.016 1.785 1.626
ANSYS 4.542 2.514 2.062 1.846 1.704

[0/90/0] EKM 4.702 2.215 1.674 1.445 1.303
ANSYS 4.711 2.215 1.674 1.439 1.299

Table 5. Dimensionless central deflection of cylindrical panels with constant curvature
ratio of R/a = 10 and various thickness ratios and laminations: comparison of present
method with results obtained using commercial finite-element code (ANSYS).
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Figure 7. Dimensionless deflection of cylindrical panel along the straight center line.

The next example is a clamped symmetrically laminated cylindrical panel subjected to sinusoidal
loading. The material properties of the panel are shown in Table 1 under type I and the geometric
parameters are Ry = 3 m, a = b = 0.3 m and h = 0.03 m. A sinusoidal loading distribution is assumed
along both curved and straight axes as q(x, y)= sin(π x/a) sin(π y/b). The dimensionless deflection of
the panel along straight axis x is plotted in Figure 7; close agreement can be seen between the present
method and the results from ANSYS. This suggests that the method provides a stable and valid solution
even as one radius of curvature tends to infinity.

4.4. Laminated rectangular plate. The next case mimics that of laminated rectangular plates by assum-
ing very large values for both radii of the panel, say Rx = Ry = 108 m. The mechanical properties of the
panel are shown in Table 1 under type II. The dimensionless deflections of plates with different aspect
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a/h b/a = 1.0 1.2 1.4 1.6 1.8 2.0

10 EKM 5.20 5.96 6.31 6.42 6.42 6.35
LMT 5.17 5.93 6.29 6.41 6.40 6.33

100 EKM 2.33 2.49 2.52 2.48 2.44 2.41
LMT 2.28 2.44 2.46 2.43 2.38 2.35

Table 6. Dimensionless deflection of plates with different aspect ratios: comparison
between the present method and results from [Chandrashekhara et al. 1990] obtained
with the Lagrange multiplier technique.

Lamination a/h = 10 20 30 40 50

[30/−30/30/−30] EKM 4.599 2.535 2.122 1.971 1.899
ANSYS 4.605 2.531 2.117 1.966 1.896

[45/−45/45/−45] EKM 4.615 2.614 2.203 2.049 1.974
ANSYS 4.626 2.610 2.200 2.043 1.969

[0/90/0] EKM 4.809 2.308 1.797 1.613 1.527
ANSYS 4.830 2.311 1.799 1.615 1.524

Table 7. Dimensionless central deflection of rectangular plates with various thickness
ratios and laminations: comparison between the present method and results obtained
from ANSYS.

ratios and thickness-to-side-length ratios are reported in Table 6. Predictions of the EKM are compared
with corresponding results achieved by the Lagrange multipliers technique (LMT) [Chandrashekhara
et al. 1990], again showing good agreement.

Finally, dimensionless central deflections of square plates made of material I with various thickness
ratios and laminations obtained using the presented solution along with analogous results obtained using
ANSYS are reported in Table 7.

Again, if we take infinite values for both radii (Rx = Ry =∞), no divergence appears to occur. This
suggests the validity and stability of the EKM for solving for the bending of laminated doubly curved
panels even in the limit when both axes are straight.

5. Conclusion

We have presented an accurate semianalytical solution procedure for the bending of clamped doubly
curved panels, using the extended Kantorovich method. Assuming the displacement functions to be
products of two sets of separable functions, the governing PDEs are converted to two systems of ODEs
with constant coefficients, each of which can be solved in closed form. Successive solution of the ODE
systems results in convergence to the final solution of the problem. Unlike other weighted residual
methods, this approach accepts arbitrary initial guess functions, not necessarily satisfying the boundary
conditions. Examples are given of panels with different length-to-thickness and radius-to-length ratios,
subjected to both uniform and nonuniform loading. In each case rapid convergence and high accuracy
are observed, and the results agree with existing numerical and analytical solutions. The method also
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performs well in predicting displacement components and stress resultants. Finally, for the case of
cylindrical panels (Rx = ∞) and rectangular plates (Rx = Ry = ∞), we check that the procedure
remains functional and valid.

Appendix A: Coefficients of the fundamental matrix S of (14)

The matrix is symmetric. Set dx =
∂

∂x
, dy =

∂

∂y
, d2

x =
∂2

∂x2 , d2
y =

∂2

∂y2 .

S11 = G11d2
x + 2A16dx dy +G ′66d2

y − Ks G55/R2
x

S12 = G61d2
x + A66dx dy + A21dx dy +G ′26d2

y − Ks A45/Rx Ry

S13 =

(
Ks G55+G11

Rx
+

A12

Ry

)
dx +

(
Ks A54+ A61

Rx
+

G ′62

Ry

)
dy

S14 = H11d2
x + H ′66d2

y + Ks G55/Rx + 2B16dx dy

S15 = H16d2
x + H ′62d2

y + Ks A54/Rx + (B66+ B12)dx dy

S22 = G66d2
x + 2A26dx dy +G ′22d2

y − Ks G ′44/R
2
y

S23 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
dx +

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
dy

S24 = H61d2
x + H ′26d2

y + Ks A45/Ry + (B66+ B12)dx dy

S25 = H66d2
x + H ′22d2

y + Ks G ′44/Ry + 2B26dx dy

S33 =−Ks(G55d2
x + 2A45dx dy +G ′44d2

y )+
G11

R2
x
+

2A12

Rx Ry
+

G ′22

R2
y

S34 =

(
H11

Rx
− Ks G55+

B12

Ry

)
dx +

(
H ′26

Ry
− Ks A45+

B16

Rx

)
dy

S35 =

(
H16

Rx
− Ks A45+

B26

Ry

)
dx +

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
dy

S44 = J11d2
x + 2D16dx dy + J ′66d2

y − Ks G55

S45 = J16d2
x + (D12+ D66)dx dy + J ′26d2

y − Ks A54

S55 = J66d2
x + 2D26dx dy + J ′22d2

y − Ks G ′44

Appendix B: Coefficients of the fundamental matrix X of (21)

Set Ii j =

∫ b

0
ψi (y)ψ j (y) dy, I ′i j =

∫ b

0
ψi (y)

dψ j (y)
dy

dy, I ′′i j =

∫ b

0
ψi (y)

d2ψ j (y)
dy2 dy, and

{J } =
〈
0, 0,−

∫ b

0
q(x, y)ψ3(y)dy, 0, 0

〉T

.
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X11 = G11 I11d2
x + 2A16 I ′11dx +G ′66 I ′′11− Ks G55 I11/R2

x

X12 = G61 I12d2
x + (A21+ A66)I ′12dx +G ′26 I ′′12− Ks A45 I12/Rx Ry

X13 =

(
Ks G55+G11

Rx
+

A12

Ry

)
I13dx +

(
Ks A54+ A61

Rx
+

G ′62

Ry

)
I ′13

X14 = H11 I14d2
x + H ′66 I ′′14+ Ks G55 I14/Rx + 2I ′14 B16dx

X15 = H16 I15d2
x + H ′62 I ′′15+ Ks A54 I15/Rx + I ′15(B66+ B12)dx

X21 = G61 I21d2
x + (A21+ A66)I ′21dx +G ′26 I ′′21− Ks A45 I21/Rx Ry

X22 = G66 I22d2
x + 2A26 I ′22dx +G ′22 I ′′22− Ks G ′44 I22/R2

y

X23 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
I23dx +

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
I ′23

X24 = H61 I24d2
x + H ′26 I ′′24+ Ks A45 I24/Ry + I ′24(B66+ B12)dx

X25 = H66 I25d2
x + H ′22 I ′′25+ Ks G ′44 I25/Ry + 2I ′25 B26dx

X31 =

(
Ks G55+G11

Rx
+

A12

Ry

)
I31dx +

(
Ks A54+ A61

Rx
+

G ′62

Ry

)
I ′31

X32 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
I32dx +

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
I ′32

X33 =−Ks(G55 I33d2
x + 2A45 I ′33dx +G ′44 I ′′33)+

(
G11

R2
x
+

2A12

Rx Ry
+

G ′22

R2
y

)
I33

X34 =

(
H11

Rx
− Ks G55+

B12

Ry

)
I34dx +

(
H ′26

Ry
− Ks A45+

B16

Rx

)
I ′34

X35 =

(
H16

Rx
− Ks A45+

B26

Ry

)
I35dx +

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
I ′35

X41 = H11 I41d2
x + H ′66 I ′′41+ Ks G55 I41/Rx + 2I ′41 B16dx

X42 = H61 I42d2
x + H ′26 I ′′42+ Ks A45 I42/Ry + I ′42(B66+ B12)dx

X43 =

(
H11

Rx
− Ks G55+

B12

Ry

)
I43dx +

(
H ′26

Ry
− Ks A45+

B16

Rx

)
I ′43

X44 = J11 I44d2
x + 2D16 I ′44dx + J ′66 I ′′44− Ks G55 I44

X45 = J16 I45d2
x + (D12+ D66)I45dx + J ′26 I ′′45− Ks A54 I45

X51 = H16 I51d2
x + H ′62 I ′′51+ Ks A54 I51/Rx + I ′51(B66+ B12)dx

X52 = H66 I52d2
x + H ′22 I ′′52+ Ks G ′44 I52/Ry + 2I ′52 B26dx

X53 =

(
H16

Rx
− Ks A45+

B26

Ry

)
I53dx +

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
I ′53

X54 = J16 I54d2
x + (D12+ D66)I54dx + J ′26 I ′′45− Ks A54 I45

X55 = J66 I55d2
x + 2D26 I ′55dx + J ′22 I ′′55− Ks G ′44 I55
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Appendix C: Coefficients of the fundamental matrix Y of (27)

Set L i j =

∫ a

0
ξi (x)ξ j (x) dx , L ′i j =

∫ a

0
ξi (x)

dξ j (x)
dx

dx , L ′′i j =

∫ a

0
ξi (x)

d2ξ j (x)
dx2 dx , and

{K } =
〈
0, 0,−

∫ a

0
q(x, y)ξ3(x)dx, 0, 0

〉T

.

Y11 = G11L ′′11+ 2A16L ′11dy +G ′66L11d2
y − Ks G55L11/R2

x

Y12 = G61L ′′12+ (A66+ A21)L ′12dy +G ′26L12d2
y − Ks A45L12/Rx Ry

Y13 =

(
Ks G55+G11

Rx
+

A12

Ry

)
L ′13+

(
Ks A54+ A61

Rx
+

G ′62

Ry
r
)

L13dy

Y14 = H11L ′′14+ H ′66L14d2
y + Ks G55L14/Rx + 2L ′14 B16dy

Y15 = H16L ′′15+ H ′62L15d2
y + Ks A54L15/Rx + L ′15(B66+ B12)dy

Y21 = G61L ′′21+ (A66+ A21)L ′21dy +G ′26L21d2
y − Ks A45L21/Rx Ry

Y22 = G66L ′′22+ 2A26L ′22dy +G ′22L22d2
y − Ks G ′44L22/R2

y

Y23 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
L ′23+

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
L23dy

Y24 = H61L ′′24+ H ′26L24d2
y + Ks A45L24/Ry + L ′24(B66+ B12)dy

Y25 = H66L ′′25+ H ′22L25d2
y + Ks G ′44L25/Ry + 2L ′25 B26dy

Y31 =

(
Ks G55+G11

Rx
+

A12

Ry

)
L ′31+

(
Ks A54+ A61

Rx
+

G ′62

Ry

)
L31dy

Y32 =

(
Ks A45+ A62

Ry
+

G61

Rx

)
L ′32+

(
Ks G ′44+G ′22

Ry
+

A21

Rx

)
L32dy

Y33 =−Ks(G55L ′′33+ 2A45L ′33dy +G ′44L33d2
y )+

(
G11

R2
x
+

2A12

Rx Ry
+

G ′22

R2
y

)
L33

Y34 =

(
H11

Rx
− Ks G55+

B12

Ry

)
L ′34+

(
H ′26

Ry
− Ks A45+

B16

Rx

)
L34dy

Y35 =

(
H16

Rx
− Ks A45+

B26

Ry

)
L ′35+

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
L35dy

Y41 = H11L ′′41+ H ′66L41d2
y + Ks G55L41/Rx + 2L ′41 B16dy

Y42 = H61L ′′42+ H ′26L42d2
y + Ks A45L42/Ry + L ′42(B66+ B12)dy

Y43 =

(
H11

Rx
− Ks G55+

B12

Ry

)
L ′43+

(
H ′26

Ry
− Ks A45+

B16

Rx

)
L43dy

Y44 = J11L ′′44+ 2D16L ′44dy + J ′66L44d2
y − Ks G55L44

Y45 = J16L ′′45+ (D12+ D66)L ′45dy + J ′26L45d2
y − Ks A54L45
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Y51 = H16L ′′51+ H ′62L51d2
y + Ks A54L51/Rx + L ′51(B66+ B12)dy

Y52 = H66L ′′52+ H ′22L52d2
y + Ks G ′44L52/Ry + 2L ′52 B26dy

Y53 =

(
H16

Rx
− Ks A45+

B26

Ry

)
L ′53+

(
H ′22

Ry
− Ks G ′44+

B12

Rx

)
L53dy

Y54 = J16L ′′54+ (D12+ D66)L ′54dy + J ′26L54d2
y − Ks A54L54

Y55 = J66L ′′55+ 2D26L ′55dy + J ′22L55d2
y − Ks G ′44L55
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ANALYTICAL SOLUTION FOR A CONCENTRATED FORCE
ON THE FREE SURFACE OF A COATED MATERIAL

ZHIGEN WU, YIHUA LIU, CHUNXIAO ZHAN AND MEIQIN WANG

Based on the general solution of the displacement method for isotropic plane problems, the analytical
solution for the plane problem of coated materials subjected to an arbitrary concentrated force on the free
surface has been derived explicitly by using the image point method. The displacement functions are
assumed to be the infinite series of the harmonic functions defined in the local coordinate systems with
their origins placed at different image points. The harmonic functions corresponding to the higher-order
image points can be deduced from those to the lower-order points by the recurrence formulae presented
in this paper, and the first two harmonic functions are the displacement functions for the solution of a
semi-infinite plane subjected to a concentrated force on the free surface. The theoretical formulae have
been confirmed by numerical, finite-element-based, results in a special coated material.

1. Introduction

With the wide application of film-coated and surface-treated materials in engineering structures, the stress
and failure analysis of coated materials have been the focus of attention. To obtain interfacial stresses for
the evaluation of the cohesive strength, there are commonly three approaches: analytical, numerical, and
experimental. In the last two decades, some numerical studies [Djabella and Arnell 1993; Hiroyuki et al.
1994b; Hiroyuki et al. 1994a; Kouitat-Njiwa and von Stebut 2003] and experimental methods [Masayuki
et al. 1994; Takuma et al. 2000] have been developed. However, accurate stress results at the interface
cannot be obtained easily by numerical or experimental methods for reasons of the thin coating or surface
layer. Therefore, an analytical solution for coated materials is desirable.

For coated materials with a thin surface layer, the analytical solution of the stress field cannot be de-
duced easily by the theoretical method due to the difficulty in satisfying boundary and interface conditions.
In recent years, the image point method has been applied to the construction of stress or displacement
functions and the analytical solutions of coated materials for some cases have been obtained. The image
point method is a technique that uses the superposition of known solutions to construct the solution of
other complicated problems, and the relevant stress or displacement functions are expressed in the form
corresponding to the loading point or image points. To our knowledge, this method was first employed
by Mindlin [1936], who dealt with the fundamental solution for a single force applied in the interior
of a semi-infinite solid, and the solution may be called a half-space nucleus of strain. Subsequently,
Mindlin and Cheng [1950] provided many fundamental solutions for nuclei of strain in the half-space
solid. Rongved [1955] found the theoretical solution of a point force acting in the interior of one of
the two jointed half-spaces. Dundurs and Hetényi [1965] presented the fundamental solution for a point

Keywords: analytical solution, coated material, image point method, displacement method, interface.
Work supported by the Anhui Provincial Natural Science Foundation under Grant No. 090414157.

875

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2010.5-6


876 ZHIGEN WU, YIHUA LIU, CHUNXIAO ZHAN AND MEIQIN WANG

force applied in the interior of one of the two elastic half-spaces jointed by a sliding contact interface.
Phan-Thien [1983] considered the case of an elastic half-space with a fixed boundary. Hasegawa et al.
[1992] investigated Green’s function for the axisymmetric problem of a bimaterial elastic solid. Recently,
Ma and Lin [2001; 2002b] researched Green’s functions for an isotropic elastic half-plane and bimaterial
subjected to forces and dislocations, and nearly all kinds of image singularities for both half-plane and
bimaterial were discussed in considerable detail. In these studies, one reflection face exists and the
image point is a single point as far from the face as the object point. If there are two parallel reflection
faces, the object point will lead to infinite image points by reciprocal reflections. Therefore, the image
point method can be also extended to solve the problem with two parallel faces, and the related stress or
displacement functions are constructed in the form of infinite series about the image points. For example,
by taking the two interfaces as reflection faces, Aderogba [2003] established a theorem to generate the
Airy stress function for trimaterials comprised of two semi-infinite planes separated by a thick layer due
to a point force applied in or near the intermediate layer. By adopting the interface and surface as the
reflection faces, Xu and Mutoh [2003a; 2003b] derived the analytical solutions for both two- and three-
dimensional problems of coated semi-infinite bodies subjected to a concentrated force on the surface.
By introducing two series image points, Li and Xu [2004; 2007] obtained the fundamental solutions for
a coated semi-infinite plane subjected to a concentrated force in the interior of the coating layer and
substrate as well as at the interface. Most recently, Yang and Xu [2009] deduced the three-dimensional
analytical solution of coated materials with concentrated forces in the interior of the coating layer.

In the literature above, the image method was applied to isotropic materials. In fact, this method can
also be applied to anisotropic materials. For example, Willis [1970] and Barnett and Lothe [1974] consid-
ered Green’s functions for the two-dimensional deformation of an anisotropic elastic half-space subjected
to a line force and/or a line dislocation inside it. Ting [1992] discussed in detail the image singularities
of Green’s functions for an anisotropic elastic half-space and bimaterials subjected to line forces and line
dislocations based on Stroh’s formalism. It should be mentioned that the locations of image singularities
of Green’s functions for the half-plane depend on anisotropic elastic constants and there are at most nine
image points located at different positions with respect to the object point. Therefore, it is difficult to
apply the conventional image method to obtain the solution of the anisotropic problem with two reflection
faces directly. Nevertheless, recently, some particular mathematical approaches were employed by fewer
researchers to treat certain layered half-planes with complex material constants. For instance, by using
the Lekhnitskii formalism for anisotropic elastic materials and the Fourier-transformation technique, Ma
and Lin [2002a] obtained the analytical solutions for stresses in the anisotropic layered half-plane sub-
jected to concentrated forces and edge dislocations in the thin layer or in the half-plane. Applying the
Fourier transform method and the series expansion technique, an effective analytic methodology was
developed by Ma and Lee [2009] to construct the full-field explicit solutions for a transversely isotropic
magnetoelectroelastic layered half-plane subjected to generalized line forces and edge locations. In these
problems, the complete solutions consist of the simplest solutions for the infinite medium with applied
loadings, and the physical meaning of these simplest solutions is the image method.

In this paper, in order to obtain the explicit analytical solution for coated materials subjected to an
arbitrary concentrated force on the free surface, we make use of the general solution of the displacement
method as well as the image point method to construct the displacement functions in terms of infinite
series of harmonic functions. According to the free boundary and interface continuity conditions, the
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Figure 1. Analytical model of a coated material.

recurrence formulae for the harmonic functions are derived and all harmonic functions can be deter-
mined from the initial harmonic functions, which correspond to the first-order image point and are the
displacement functions for the semi-infinite plane subjected to a concentrated force on the free surface.

2. Analytical model

The coated material is modeled as a surface layer with thickness h bonded perfectly to a half-plane, as
shown in Figure 1. An arbitrary concentrated force is decomposed into a normal force Fx and a tangential
force Fy applied at the point O1 on the free surface of the surface layer. The surface layer and half-plane
materials are numbered I and II, respectively; their shear moduli and Poisson’s ratios are µI, µII, νI, and
νII. We place the origin O of the global coordinate system on the interface just beneath the loading
point O1 and the x-axis along the interface. By use of the reciprocal reflections of the loading point
O1 on the interface and free surface, infinite image points will be produced on the xy-plane, i.e., the
image points Ok (k = 1, 2, 3, . . .) in the upper half-plane and Ck (k = 1, 2, 3, . . .) in the lower half-plane.
Introducing the local coordinates (x, yk) and (x, ηk) with their origins located at Ok and Ck , respectively,
the relationships between the local and global coordinates can be expressed as

yk = y− (2k− 1)h, ηk = y+ (2k− 1)h, k = 1, 2, 3, . . . . (1)

The displacement and traction continuity conditions on the interface can be represented as

uI = uII, νI = νII, σyI = σyII, τxyI = τxyII, at y = 0, (2)

and the free surface condition can be written as

σyI = 0, τxyI = 0, at y = h, (3)

where subscript I and II refer to materials I and II, respectively.
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3. Derivation of theoretical formulae

The general solution of the displacement method for isotropic plane problems can be obtained from [Wu
and Liu 2008] as

2µu =
∂8

∂x
+ y

∂9

∂x
, 2µv =

∂8

∂y
+ y

∂9

∂y
− κ9, (4)

σx =
∂28

∂x2 + y
∂29

∂x2 +
κ − 3

2
∂9

∂y
, σy =

∂28

∂y2 + y
∂29

∂y2 −
κ + 1

2
∂9

∂y
,

τxy =
∂28

∂x∂y
+ y

∂29

∂x∂y
−
κ − 1

2
∂9

∂x
,

(5)

where8 and9 are the two displacement functions which are harmonic, µ is the shear modulus, κ= 3−4ν
for plane strain and (3− ν)/(1+ ν) for plane stress, and ν is Poisson’s ratio.

Substituting (4) and (5) into (2) and (3), respectively, one has

08I =8II, 0

(
∂8I

∂y
− κI9I

)
=
∂8II

∂y
− κII9II,

∂28I

∂y2 −
κI+1

2
∂9I

∂y
=
∂28II

∂y2 −
κII+1

2
∂9II

∂y
,

∂8I

∂y
−
κI−1

2
9I =

∂8II

∂y
−
κII−1

2
9II, at y = 0,

(6)

where 0 = µII/µI, and

∂28I

∂y2 + h
∂29I

∂y2 −
κI+ 1

2
∂9I

∂y
= 0,

∂8I

∂y
+ h

∂9I

∂y
−
κI− 1

2
9I = 0, at y = h. (7)

In order to solve the displacement functions 8I, 9I, 8II, and 9II, assume that these functions can be
written in series form as

8I =

∞∑
k=1

[Ak(x, yk)+φk(x, ηk)] , 8II =

∞∑
k=1

Bk(x, yk),

9I =

∞∑
k=1

[ak(x, yk)+ψk(x, ηk)] , 9II =

∞∑
k=1

bk(x, yk),

(8)

where Ak , φk , ak , ψk , Bk , and bk are harmonic functions with respect to x and yk or ηk . Considering
the remote stress condition (the stresses should vanish at infinite), all functions on the right in (8) must
be singular at their corresponding origins. Since there is no stress singularity in the material II, the
displacement functions of the material II cannot contain any term related to the image points in the lower
half-plane.

From (1), it is easy to find that

∂

∂y
=

∂

∂yk
,

∂

∂y
=

∂

∂ηk
. (9)
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Substituting (8) into (6) and using (9), one obtains, at y = 0,

0φk(x, ηk)= Bk(x, yk)−0Ak(x, yk),

0

[
∂φk(x, ηk)

∂ηk
− κIψk(x, ηk)

]
=
∂Bk(x, yk)

∂yk
− κIIbk(x, yk)−0

[
∂Ak(x, yk)

∂yk
− κIak(x, yk)

]
,

∂2φk(x, ηk)

∂η2
k

−
κI+1

2
∂ψk(x, ηk)

∂ηk
=
∂2 Bk(x, yk)

∂y2
k

−
κII+1

2
∂bk(x, yk)

∂yk
−
∂2 Ak(x, yk)

∂y2
k

+
κI+1

2
∂ak(x, yk)

∂yk
,

∂φk(x, ηk)

∂ηk
−
κI− 1

2
ψk(x, ηk)=

∂Bk(x, yk)

∂yk
−
κII− 1

2
bk(x, yk)−

∂Ak(x, yk)

∂yk
+
κI− 1

2
ak(x, yk). (10)

These equations are of the form L(x, ηk) = R(x, yk) (L and R being the left and right sides of the
equation, respectively). Because (10) is valid only on the interface where the local coordinate values
satisfy yk =−ηk =−(2k− 1)h, we have the interchange laws

∂L
∂ηk
=−

∂R
∂yk

,

∫
L dηk =−

∫
R dyk . (11)

Applying (11) to (10), we obtain

Bk(x, yk)=
0(κI+ 1)
0κI+ 1

Ak(x, yk)+0

[
κ2

I (0− 1)
2(0κI+ 1)

−
0κI− κII

2(0+ κII)

] ∫
ak(x, yk) dyk,

bk(x, yk)=
0(κI+ 1)
0+ κII

ak(x, yk),

(12)

φk(x, ηk)=−
κI(0− 1)
0κI+ 1

Ak(x, yk)+

[
κ2

I (0− 1)
2(0κI+ 1)

−
0κI− κII

2(0+ κII)

] ∫
ak(x, yk) dyk,

ψk(x, ηk)=
2(0− 1)
0κI+ 1

∂Ak(x, yk)

∂yk
−
κI(0− 1)
0κI+ 1

ak(x, yk), at yk =−ηk .

(13)

Equations (12) and (13) show that the four harmonic functions Bk , bk , φk , and ψk can be calculated
by using the other two ones, Ak and ak . In (13), yk = −ηk means that yk on the right side should be
replaced by −ηk to obtain φk and ψk .

Substituting the values of 8I and 9I from (8) into (7), using the relation (9), and considering the
symmetric relations of the image points Ok+1 and Ck about the free surface, we have

∂2 Ak+1(x, yk+1)

∂y2
k+1

+ h
∂2ak+1(x, yk+1)

∂y2
k+1

−
κI+ 1

2
∂ak+1(x, yk+1)

∂yk+1

=−

[
∂2φk(x, ηk)

∂η2
k

+ h
∂2ψk(x, ηk)

∂η2
k

−
κI+ 1

2
∂ψk(x, ηk)

∂ηk

]
,

∂Ak+1(x, yk+1)

∂yk+1
+ h

∂ak+1(x, yk+1)

∂yk+1
−
κI− 1

2
ak+1(x, yk+1)

=−

[
∂φk(x, ηk)

∂ηk
+ h

∂ψk(x, ηk)

∂ηk
−
κI− 1

2
ψk(x, ηk)

]
, at y = h, (14)
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and

∂2 A1(x, y1)

∂y2
1

+ h
∂2a1(x, y1)

∂y2
1

−
κI+ 1

2
∂a1(x, y1)

∂y1
= 0,

∂A1(x, y1)

∂y1
+ h

∂a1(x, y1)

∂y1
−
κI− 1

2
a1(x, y1)= 0, at y = h.

(15)

Equation (14) is in the form L(x, yk+1)= R(x, ηk). On the free surface y = h, the local coordinate
values satisfy yk+1 =−ηk =−2kh; thus we can get the interchange laws in the form

∂L
∂yk+1

=−
∂R
∂ηk

,

∫
L dyk+1 =−

∫
R dηk . (16)

Applying (16) to (14), one has

Ak+1(x, yk+1)= κIφk(x, ηk)+ 2h
∂φk(x, ηk)

∂ηk
+ 2h2 ∂ψk(x, ηk)

∂ηk
−
κ2

I − 1
2

∫
ψk(x, ηk) dηk,

ak+1(x, yk+1)=−2
∂φk(x, ηk)

∂ηk
− 2h

∂ψk(x, ηk)

∂ηk
+ κIψk(x, ηk), at ηk =−yk+1.

(17)

From (17), we find that the harmonic functions Ak+1 and ak+1 can be obtained from φk and ψk . In
(17), ηk =−yk+1 means that ηk on the right side should be replaced by −yk+1 to obtain Ak+1 and ak+1.
Equation (17) shows that the harmonic functions corresponding to the order k+ 1 can be deduced from
the ones to the order k. Therefore, if the functions A1 and a1 are given, all functions on the right in (8)
can be derived by using (12), (13), and (17).

To determine the functions A1 and a1, one should consider simultaneously (15) and the condition of a
concentrated force applied at the point O1 on the free surface. It is not difficult to find that the solutions
for the normal and tangential concentrated forces on the free surface of a semi-infinite plane satisfy these
conditions. Considering the parallel translation of the coordinate system, the functions A1 and a1 for the
normal and tangential forces can be found, respectively, as

A1(x, y1)=
Fy

2π

[(
κI− 1

2
y1− h

)
ln(x2

+ y2
1)+ (κI− 1)x arctan

y1

x

]
,

a1(x, y1)=
Fy

2π
ln(x2

+ y2
1), for normal force,

(18)

A1(x, y1)=
Fx

π

[(
κI+ 1

2
y1− h

)
arctan

y1

x
−
(κI+ 1)

4
x ln(x2

+ y2
1)

]
,

a1(x, y1)=
Fx

π
arctan

y1

x
, for tangential force.

(19)

It is easy to demonstrate that (18) and (19) are all harmonic functions and satisfy (15) as well as the
condition of the concentrated force applied at the point O1. To this time, all harmonic functions appearing
on the right in (8) can be derived through the recurrence as shown in (12), (13), (17), and (18) or (19).
Therefore, the analytical solution for coated materials subjected to an arbitrary concentrated force on the
free surface is obtained explicitly.
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4. Numerical results

For a verification of the correctness of the above theoretical formulae, the stresses along the interface of
a coated material (Figure 2) have been numerically analyzed by ABAQUS based on the displacement
finite element method concerning the plane strain analysis. Since the thickness of the surface layer is
very thin, it can be considered as a thin film bonded to the free surface of a semi-infinite plane. In Figure
2, the height and width of the substrate are taken as one and two hundred times the thickness of the film,
respectively. Although half of the analytical model can be selected for the numerical calculation due
to the symmetry and anti-symmetry of the problem, the whole model was till treated for the numerical
analysis to obtain the accurate numerical results of the nodes at and near the symmetric axis y. The finite
element mesh, containing 6200 elements and 18841 nodes, is shown in Figure 3. The material constants
are EI = 546 GPa, EII = 206 GPa, and νI = νII = 0.3, respectively.

Tables 1–4 compare the theoretical and FEM results of the stress components along the interface for
the normal and tangential concentrated forces, respectively, where n = k means that the orders of the
image point from one to k are considered in the analytical solution. From these tables it can be observed
that the higher the order of the image point is considered, the better the theoretical results agree with the
FEM ones, and the convergence rates are all very rapid. From Table 1 it can be found that the maximum of
the stress component σy is about 0.513892 MPa for the theoretical result and 0.517178 MPa for the FEM
one at x = 0, and the relative error is 0.64%. Table 2 shows that the minimum of the stress component τxy

is about −0.166807 MPa for the theoretical result and −0.168955 MPa for the FEM one at x = 0.6 mm,
and the relative error is 1.27%. Table 3 indicates that the minimum of the stress component σy is about

mm 1

mm 100
mm 100mm 100

yF

xF

I  Material

II  Material
x

y

O

Figure 2. Model for FEM calculation.

 

Figure 3. Mesh division for FEM (right: zoom near the loading point).
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σy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 0.377616 0.470810 0.502243 0.513892 0.517178
0.2 0.348280 0.439538 0.470597 0.482151 0.486965
0.4 0.277906 0.363634 0.393600 0.404869 0.412302
0.6 0.199702 0.277057 0.305294 0.316106 0.324809
0.8 0.134947 0.202128 0.228126 0.238330 0.246878
1.0 0.088676 0.144976 0.168376 0.177853 0.185658
1.2 0.057885 0.103544 0.124148 0.132810 0.138807
1.4 0.037974 0.073918 0.091680 0.099476 0.105742
1.6 0.025168 0.052719 0.067721 0.074633 0.080256
1.8 0.016876 0.037494 0.049923 0.055961 0.061005
2.0 0.011439 0.026542 0.036652 0.041853 0.046368

2.31919 0.006252 0.015088 0.022140 0.026092 0.029827
2.69364 0.003101 0.007558 0.011908 0.014714 0.017624
3.13291 0.001306 0.003164 0.005508 0.007284 0.009394
3.64824 0.000355 0.000952 0.002031 0.003028 0.004437
4.25279 −0.000101 0.000031 0.000472 0.000978 0.001850

Table 1. Normal stress σy along the interface for the case of Fx = 0 and Fy = 1 N.

τxy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 −0.078466 −0.086408 −0.088172 −0.088660 −0.090259
0.4 −0.126963 −0.141976 −0.145389 −0.146345 −0.148621
0.6 −0.140036 −0.160574 −0.165427 −0.166807 −0.168955
0.8 −0.130309 −0.154459 −0.160467 −0.162210 −0.163999
1.0 −0.111587 −0.137409 −0.144241 −0.146276 −0.147799
1.2 −0.091997 −0.117795 −0.125111 −0.127359 −0.128753
1.4 −0.074835 −0.099318 −0.106796 −0.109176 −0.110524
1.6 −0.060862 −0.083188 −0.090546 −0.092981 −0.094314
1.8 −0.049829 −0.069566 −0.076578 −0.078995 −0.080316
2.0 −0.041206 −0.058242 −0.064744 −0.067084 −0.068366

2.31919 −0.031160 −0.044170 −0.049661 −0.051781 −0.052963
2.69364 −0.023304 −0.032496 −0.036728 −0.038501 −0.039528
3.13291 −0.017365 −0.023419 −0.026333 −0.027663 −0.028471
3.64824 −0.012977 −0.016778 −0.018529 −0.019392 −0.019936
4.25279 −0.009781 −0.012140 −0.013028 −0.013478 −0.013750

Table 2. Shear stress τxy along the interface for the case of Fx = 0 and Fy = 1 N.

−0.143830 MPa for the theoretical result and −0.143788 MPa for the FEM one at x = 0.6 mm, and the
relative error is 0.03%. In Table 4, the maximum of the stress component τxy is about 0.101641 MPa for
the theoretical result and 0.102782 MPa for the FEM one at x = 1.2 mm, and the relative error is 1.11%.
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σy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 −0.069656 −0.076721 −0.078337 −0.078804 −0.077114
0.4 −0.111162 −0.124505 −0.127639 −0.128552 −0.127132
0.6 −0.119821 −0.138045 −0.142507 −0.143830 −0.143788
0.8 −0.107958 −0.129342 −0.134879 −0.136558 −0.137641
1.0 −0.088676 −0.111488 −0.117807 −0.119778 −0.121405
1.2 −0.069462 −0.092198 −0.098999 −0.101193 −0.102991
1.4 −0.053163 −0.074696 −0.081694 −0.084038 −0.085851
1.6 −0.040268 −0.059879 −0.066827 −0.069253 −0.071031
1.8 −0.030376 −0.047714 −0.054414 −0.056860 −0.058592
2.0 −0.022878 −0.037874 −0.044183 −0.046595 −0.048302

2.31919 −0.014500 −0.026062 −0.031579 −0.033851 −0.035506
2.69364 −0.008354 −0.016731 −0.021256 −0.023285 −0.024818
3.13291 −0.004091 −0.009919 −0.013416 −0.015124 −0.016489
3.64824 −0.001295 −0.005342 −0.007950 −0.009318 −0.010482
4.25279 −0.000429 −0.002494 −0.004460 −0.005532 −0.006493

Table 3. Normal stress σy along the interface for the case of Fx = 1 N and Fy = 0.

τxy /MPa
x/mm n = 1 n = 2 n = 3 n = 4 FEM

0.0 −0.022910 −0.025870 −0.026507 −0.026780 −0.028217
0.2 −0.007212 −0.009495 −0.010030 −0.010127 −0.011164
0.4 0.027875 0.027507 0.027271 0.027240 0.027283
0.6 0.061111 0.063535 0.063761 0.063833 0.064659
0.8 0.081337 0.086962 0.087769 0.087976 0.089110
1.0 0.088676 0.097452 0.098904 0.099268 0.100444
1.2 0.087486 0.099000 0.101107 0.101641 0.102782
1.4 0.081859 0.095488 0.098213 0.098918 0.100030
1.6 0.074469 0.089522 0.092791 0.093660 0.094766
1.8 0.066781 0.082613 0.086326 0.087346 0.088465
2.0 0.059502 0.075575 0.079624 0.080775 0.081943

2.31919 0.049356 0.065027 0.069393 0.070705 0.071945
2.69364 0.039863 0.054403 0.058853 0.060276 0.061562
3.13291 0.031491 0.044462 0.048753 0.050214 0.051528
3.64824 0.024433 0.035721 0.039673 0.041093 0.042405
4.25279 0.018685 0.028395 0.031935 0.033254 0.034533

Table 4. Shear stress τxy along the interface for the case of Fx = 1 N and Fy = 0.

Tables 1–4 illustrate that the analytical results really converge to FEM ones and that enough accuracy
of the analytical solution can be achieved only considering the first four image points for this coated
material. Figures 4 and 5 provide the numerical calculations based on the analytical solution (n = 4) for
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Figure 4. Analytical solutions of stress components at different values of y for the case
of Fx = 0 and Fy = 1 N: σy (left) and τxy (right).
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Figure 5. Analytical solutions of stress components at different values of y for the case
of Fx = 1 N and Fy = 0: σy (left) and τxy (right).

the stress components at different locations for the cases of Fx = 0 and Fy = 1 N as well as Fx = 1 N
and Fy = 0, respectively.

On the other hand, to maintain the accuracy of the analytical solution, the different orders of image
points should be needed for the various matches of material constants. Given νI = νII = 0.3 and EI =

546 GPa, Figure 6 displays the required image point order to obtain the results with the relative error
below 2.5%. It can be found that the larger the difference of the material constants is, the more image
points are needed.

5. Conclusions

In this paper, we derived the analytical solution for the plane problem of the coated material subjected
to an arbitrary concentrated force on the free surface by using the general solution of the displacement
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Figure 6. Image point order required for various Young’s modulus ratios.

method as well as the image point method. This solution is given explicitly as the summation of the
harmonic functions corresponding to each image point, and the harmonic functions corresponding to the
higher-order image points can be determined from those to the lower-order ones through the recurrence.
The numerical results verified the correctness and rapid convergence of the analytical solution obtained
in this paper. The enough accurate theoretical results can be obtained only by considering image points
of the first several order.
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ON THE NONLINEAR DYNAMICS OF OVAL CYLINDRICAL SHELLS

SYED MUHAMMAD IBRAHIM, BADRI PRASAD PATEL AND YOGENDRA NATH

The nonlinear periodic response characteristics of symmetrically and nonsymmetrically excited oval
cylindrical shells are investigated using the first order shear deformation theory based finite strip method.
The periodic solutions of the governing second order equations of motion are obtained using the shooting
technique coupled with Newmark time marching and the arc length continuation algorithm. The effect of
ovality parameter and loading locations on the steady state frequency response and modal participation
factors is studied. For circular shells (ζ = 0.0), travelling waves emanating at loading point but moving
in opposite directions for certain range of forcing frequency are brought out. For the symmetrically
excited oval shell with ζ = 0.6, due to 1:1 internal resonance between the AS/SS and SA/AA modes,
a secondary branch with traveling wave response emanates from the primary one through a symmetry
breaking bifurcation. For the nonsymmetrically excited oval shells (ζ = 0.6), either waves moving in
anticlockwise direction or those originating near the major axis and moving in opposite directions in the
top and bottom halves of the shell are observed for certain forcing frequency ranges.

A list of symbols can be found on page 907.

1. Introduction

Large amplitude vibrations occur frequently in thin shells and panels used in the aerospace industry,
as they are subjected to high acoustic and aerodynamic excitations. For the study of such vibrations,
a linear model (usually the first approximation to the actual system) is often inadequate. In particular,
the nonlinear forced response analysis of closed circular cylindrical shells still remains an active and
challenging area of research [Moussaoui and Benamar 2002; Amabili and Paı̈doussis 2003; Amabili
2008].

Shells with variable curvature, especially oval and elliptical cylindrical shells, are used in nuclear
fusion reactors, heat exchangers, aerospace and underwater structures due to special external shape or in-
ternal storage requirements. Noncircularity may also be introduced while fabricating circular shells. The
variable stiffness along the circumference of a shell due to noncircularity leads to the coupling of modes
with different circumferential wave numbers of a corresponding perfect circular shell and influences the
dynamic characteristics significantly. The asymmetric free vibration modes of perfect circular cylindrical
shells are not spatially fixed, due to axisymmetric geometry, but noncircular shells with doubly symmetric
cross-section have spatially fixed free vibration modes, categorised as AS, SA, SS, AA, the first and
second letters indicating symmetry or antisymmetry about the major and minor axes, respectively.

Studies relating to the linear static and dynamic, buckling and nonlinear static analyses of shells
with noncircular cross-sections have been reviewed in [Soldatos 1999]. Investigations on the nonlinear

Keywords: noncircular shell, nonlinear, periodic, shooting, travelling wave, internal resonance.
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vibration characteristics of oval and elliptical shells are quite limited. Using the Galerkin method, Pan-
dalai and Sathyamoorthy [1970] investigated large amplitude flexural vibrations of simply supported
thin oval rings and finite oval cylindrical shells using one axisymmetric and one asymmetric term in
the approximation of transverse displacement, and a softening type behaviour was found. Using the
Bubnov–Galerkin method, the nonlinear free vibration of thin-walled elastic cylindrical shell of elliptic
cross-section was analysed in [Kozarov and Mladenov 1979] using a single term approximation of all
the three displacements (axial, circumferential, radial) and predicted hardening behaviour. The studies
[Pandalai and Sathyamoorthy 1970; Kozarov and Mladenov 1979] are based on approximate analytical
solutions that may affect the accuracy of the results. Patel et al. [2002; 2003] investigated the nonlin-
ear free flexural vibration behaviour of the isotropic/laminated orthotropic noncircular rings using the
finite element approach and Newmark time marching scheme and reported softening nonlinearity. The
nonlinear forced vibration analysis of oval cylindrical shells with different support conditions has been
carried out in [Ibrahim et al. 2008a; 2008b] employing the direct time integration approach and only part
of the stable branches of the frequency response curves could be captured. Further, it is observed that in
the direct integration approach, the convergence to a steady state solution is very slow. In addition, the
steady state response can not be ascertained in the direct time integration approaches.

Periodic solutions of nonlinear systems can be obtained by the shooting method. Unlike frequency
domain methods, the number of equations does not depend on the number of harmonics. Steady state
solutions can be reached in significantly fewer iterations than with direct time integration methods. The
shooting method also yields the monodromy matrix, which can be used to predict the stability of the
solution. In the traditional shooting approach, the dynamical equations of motion are transformed into
first order equations [Nayfeh and Balachandran 1994; Padmanabhan and Singh 1995; Sundararajan and
Noah 1997; Ribeiro 2004; 2008], thus increasing computational time as the number of equations is dou-
bled and the banded nature of system of equations is destroyed. This issue is quite important, particularly
for systems with many degrees of freedom such as the ones resulting from finite element discretisation.
Note that a few-degrees-of-freedom model of a continuous system may not capture a priori unknown
modal interactions/phenomena. To the best of the authors’ knowledge, the complete frequency response
characteristics of oval cylindrical shells have not been dealt with in the literature, nor are there results on
the participation of different modes, effect of loading location, internal resonance between AS/SS and
SA/AA modes and travelling wave response of noncircular cylindrical shells.

The modified shooting technique coupled with the Newmark time marching and arc length continua-
tion algorithm [Patel et al. 2009; Ibrahim et al. 2009; 2010] is employed to investigate the steady state
periodic response of the oval cylindrical shells excited in the neighbourhood of the first AS, SA, SS,
and AA linear free vibration modes. The analysis is carried out using the finite strip method based on
first order shear deformation theory. The effect of the ovality parameter and loading locations on the
steady-state frequency response and modal participation factors is studied. Participation of AS and SS
modes in the primary branch of symmetrically excited shells and participation of AS, SA, SS, and AA
modes in asymmetrically excited shells is brought out. For symmetrically excited shells, a secondary
branch corresponding to significant participation of SA/AA modes in addition to AS/SS modes due to
one-to-one internal resonance is reported for the first time. For a certain forcing frequency range, shell
response includes waves travelling from the loading point in two opposite directions or in the same
direction, depending on the forcing frequency.
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Figure 1. Coordinate system and geometry of oval shell.

2. Formulation

The geometry and coordinate system of the oval cylindrical shell are shown in Figure 1. The coordinates
x , y and z having origin at the mid-surface of the shell are considered along the meridional, circum-
ferential and thickness directions, respectively. The displacements u, v, w at a point (x, y, z), employing
the first order shear deformation theory, are expressed as

u(x, y, z, t)= u0(x, y, t)+ zθx(x, y, t),

v(x, y, z, t)= v0(x, y, t)+ zθy(x, y, t),

w(x, y, z, t)= w0(x, y, t).

(1)

The displacement field variables u0, v0, w0, θx and θy are represented as the superposition of trigonomet-
ric functions in the meridional coordinate x as

u0(x, y, t)=
M∑

i=1

ui
0(y, t)Ui (x),

v0(x, y, t)=
M∑

i=1

vi
0(y, t)Vi (x),

w0(x, y, t)=
M∑

i=1

wi
0(y, t)Wi (x),

θx(x, y, t)=
M∑

i=1

θ i
x(y, t)2xi (x),

θy(x, y, t)=
M∑

i=1

θ i
y(y, t)2yi (x),

(2)
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where the trigonometric functions Ui (x), Vi (x), Wi (x), 2x i(x) and 2yi(x) satisfying all the boundary
conditions for movable simply supported shell at its two ends are taken as in [Soedel 1993]:

Ui (x)= cos(iπx/L), Vi (x)= sin(iπx/L), Wi (x)= sin(iπx/L),

2xi (x)= cos(iπx/L), 2yi (x)= sin(iπx/L).

For the other boundary conditions, these functions can be chosen appropriately.
The strain-displacement relations are based on kinematic approximations of Sanders type: (i) small

strains, (ii) moderately large rotations; and (iii) thin shell (z/r << 1) such that 1+ z/r ≈ 1. However,
transverse shear deformation is important due to smaller wavelength of the deformation shape to thickness
ratio. The Green’s strains are written in terms of the midsurface deformations as

ε =

{
εL

p

0

}
+

{
zεb

εs

}
+

{
εN L

p

0

}
, (3)

where 0 is the 2× 1 null vector, and

εL
p =



∂u0
∂x

∂v0
∂y
+
w0
r

∂u0
∂y
+
∂v0
∂x


, εb =



∂θx
∂x
∂θy

∂y
∂θx
∂y
+
∂θy

∂x


, εs =


θx +

∂w0
∂x

θy +
∂w0
∂y
−
v0
r

 , εN L
p =



1
2

(
∂w0
∂x

)2

1
2

(
∂w0
∂y
−
v0
r

)2

∂w0
∂x

(
∂w0
∂y
−
v0
r

)


,

are respectively the linear membrane, bending, transverse shear, and nonlinear membrane strain vectors,
with r the radius of curvature of the oval cylindrical shell, expressed as

r =
r0

1+ ζ cos(2y/r0)
. (4)

The membrane stress resultant Ñ = {Nxx Nyy Nxy}
T , moment resultant M̃ = {Mxx Myy Mxy}

T and
transverse shear stress resultant Q̃ = {Qxz Q yz}

T vectors are related to the membrane εp = ε
L
p + ε

N L
p ,

bending εb and transverse shear εs strain vectors through the constitutive relation as{
Ñ
M̃

}
=

[
A B
B D

]{
εp

εb

}
, Q̃ = Eεs, (5)

where Bi j = 0 and the nonzero elements of Ai j , Di j (i, j = 1, 2, 6) and Ei j (i, j = 4, 5) for an isotropic
shell are:

A11 = A22 =
Eh

1− ν2 , A21 = A12 =
νEh

1− ν2 , A66 =
Eh

2(1+ ν)
,

D11 = D22 =
Eh3

12(1− ν2)
, D21 = D12 =

νEh3

12(1− ν2)
, D66 =

Eh3

24(1+ ν)
,

E44 = E55 =
Eh

2(1+ ν)
The potential energy functional U is given by

U =
1
2

[∫
A
εT

p Aεp + ε
T
p Bεb+ ε

T
b Bεp + ε

T
b Dεb+ ε

T
s Eεs

]
dA−w0(L/2, y∗, t)F (6)
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Based on the approach of [Rajasekaran and Murray 1973], this can be expressed as

U (δ)= δT ( 1
2 K + 1

6 K1(δ)+
1
12 K2(δ)

)
δ− δT F. (7)

The kinetic energy of the shell is given by

T̃ (δ)=
1
2

∫
A

(
γ (u̇2

0+ v̇
2
0 + ẇ

2
0)+ I (θ̇2

x + θ̇
2
y )
)

dA (8)

where γ = ρh and I = ρh3/12. The dot over the variables denotes derivative with respect to time.
Substituting (7) and (8) in the Lagrange’s equation of motion and considering dissipative forces, the

governing equation of the shell is written as

M δ̈+ (αM +βK )δ̇+
(
K + 1

2 K1(δ)+
1
3 K2(δ)

)
δ = F. (9)

3. Element description

The field variables in the circumferential direction (y) are approximated using a C0 continuous three-
noded quadratic element and are expressed in terms of their nodal values as

(ui
0, v

i
0, w

i
0, θ

i
x , θ

i
y)=

3∑
k=1

N 0
k(u

i
0k, v

i
0k, w

i
0k, θ

i
xk, θ

i
yk), (10)

where N 0
1 = (ξ

2
− ξ)/2, N 0

2 = (1− ξ
2), N 0

3 = (ξ
2
+ ξ)/2; here ξ is the local natural circumferential

coordinate of the element and the N 0
k are the original shape functions.

In order to avoid membrane and shear locking, the field redistributed substitute shape functions are
used to interpolate the constrained strain fields. These substitute shape functions, obtained using the
method of least squares, are

N 1
1 =

1
2

( 1
3 − ξ

)
, N 1

2 =
2
3 , N 1

3 =
1
2

( 1
3 + ξ

)
, (11)

where the N 1
i are consistent with d N 0

i /dξ .
Using smoothed interpolation functions, the constrained membrane and transverse shear strain com-

ponents are expressed as

∂v0

∂y
+
w0

r
=

M∑
i=1

3∑
k=1

(
∂N 0

k

∂y
Vi (x)vi

0k + N 1
k Wi (x)

wi
0k

r

)
,

∂u0

∂y
+
∂v0

∂x
=

M∑
i=1

3∑
k=1

(
∂N 0

k

∂y
Ui (x)ui

0k + N 1
k
∂Vi

∂x
vi

0k

)
,

θy +
∂w0

∂y
−
v0

r
=

M∑
i=1

3∑
k=1

(
N 1

k2yi (x)θ i
yk +

∂N 0
k

∂y
Wi (x)wi

0k − N 1
k Vi (x)

vi
0k

r

)
.

(12)

The other strain components are expressed in terms of the original shape functions (N 0
i ) and their

derivatives. The element behaves very well for both thick and thin situations. It has good convergence
characteristics and has no spurious rigid body modes [Babu and Prathap 1986].
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Integration with respect to the meridional coordinate x is carried out explicitly using Mathematica 5.1.
Based on the convergence study for the evaluation of various energy terms, a five-point Gauss-quadrature
numerical integration scheme is used with respect to the circumferential coordinate y. Since the element
is derived from the field consistency approach, exact integration is performed to evaluate all the energy
terms.

4. Solution method

We briefly describe the method used to find periodic solutions to (9). The 2N -component state vector
{δ(t) δ̇(t)}T evolves according to (9) from an initial state to be determined. The condition that a solution
is periodic with period T is expressed by the equation{

δ(T )
δ̇(T )

}
=

{
δ(0)
δ̇(0)

}
def
= η. (13)

To find such solutions we use the shooting method. This involves taking a guess for the initial state,
integrating the differential equation to the target time T , and then playing with the initial state so as to
enforce the periodicity condition (13). To integrate (9) we use Newmark’s direct time integration scheme.
To find a satisfactory initial state we use the Newton–Raphson method.

To elaborate, we rewrite (13) stressing the dependence of δ on the initial state vector, and also on the
frequency of the forcing term F: {

δ(T, η, ωF )

δ̇(T, η, ωF )

}
− η = 0. (14)

Given a first guess η0 for the initial state vector η, Newton–Raphson tells us to solve the linear system
∂δ(T, η, ωF )

∂η

∣∣∣
η=η0

∂ δ̇(T, η, ωF )

∂η

∣∣∣
η=η0

− I

1η0 = η0−

{
δ(T, η0, ωF )

δ̇(T, η0, ωF )

}
(15)

to find the correction 1η0 to the initial guess. We then repeat the process with η0+1η0 in place of η0,
and so on, until the equality (14) is satisfied within the desired tolerance limit, which we set at 0.001%.
In (15), I is the 2N × 2N identity matrix and the derivatives ∂δ/∂η and ∂ δ̇/∂η are N × 2N matrices.
These derivatives are obtained for t = T by applying Newmark’s direct time integration scheme to the
differential equation

M
(
∂δ

∂η

)̈
+ (αM +βK )

(
∂δ

∂η

)̇
+
(
K + K1(δ)+ K2(δ)

) ∂δ
∂η
= 0, (16)

which is simply the first variation of (9) with respect to η (recall that K1(δ) is linear in δ and K2(δ) is
quadratic). The initial condition for (16), following from the definition of η in (13), is[

∂δ/∂η

∂ δ̇/∂η

]
t=0
= I . (17)

We also calculate the eigenvalues of the monodromy matrix
[
∂δ/∂η

∂ δ̇/∂η

]
using the QR algorithm, in order

to study the stability of the periodic response.
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We further desire T to be the minimal period. We take T as 2π/ωF for systems with harmonic
excitation with angular frequency ωF , for a response with fundamental and higher harmonics. To obtain
the branches of the periodic response curve with subharmonic participation, the response time period
T is taken as an integer multiple of fundamental period. For autonomous systems, T is treated as an
unknown and an additional equation such as a phase condition/amplitude is required.

For obtaining the complete frequency response, the analysis is carried out in two phases: first, starting
far away from resonance, the forcing frequency is incremented and the periodic solutions are obtained;
then, when bifurcation points are encountered, the solution is continued via the arc length continuation
method. For the second phase, the forcing frequency is treated as an unknown and an incremental arc
length is specified.

5. Results and discussion

Validation of the present approach is carried out considering a movable simply supported (v0=w0= θy =

0 at x = 0, L) circular cylindrical shell studied by [Amabili 2003]. Dimensions and material properties
are: L = 0.2 m, r0= 0.1 m, ζ = 0.0, h = 0.247 mm, E = 71.02 GPa, ρ = 2796 kg/m3, ν = 0.31. Rayleigh
proportional damping parameters α and β are determined such that damping factors ξ1,6 = 0.0005 (cor-
responding to asymmetric mode with n = 6) and ξ1,0 = 0 (corresponding to axisymmetric mode). The
shell is subjected to a point harmonic force at midlength (x = L/2, y∗ = 0): F = F0 cos(ωF t), where
F0 = 0.0785 N. The first four natural frequencies (ωmn) of the shell corresponding to modes with axial
half wave number m = 1 and number of circumferential waves n = 7, 8, 9 and 6 are found to be 484.38,
489.85, 546.11 and 553.33 Hz, respectively. The forcing frequency (ωF ) is varied in the neighbourhood
of the mode with (m, n) = (1, 6) (ωmn = 553.33 Hz). In the approximate solution [Amabili 2003] for
transverse displacement w0, axisymmetric and asymmetric modes with kn (k = 1, 2; n = 6 for this case)
circumferential waves were considered. The present results are obtained using a half-wave model of the
shell along the circumference, with symmetry conditions at y = 0, πr0/n, and the full model. In the half
wave model, the participation of axisymmetric and asymmetric modes with kn circumferential waves can
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Figure 2. Comparison of steady state response for movable simply supported circular
cylindrical shell.
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ζζζζ = 0.6 
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397.64 Hz (SA) 400.05 Hz (AA) 

Minor axis 

Major axis 

Figure 3. First four free vibration modes and corresponding frequencies of oval cylin-
drical shells.

be simulated. In the full model, the complete circumferential length of the shell is modelled and it can
simulate the participation of all modes with appropriate discretization. The comparison of the results is
given in Figure 2. The present results based on the half-wave model are found to be in good agreement
with those of [Amabili 2003]. Those based on the full model are slightly different due to the additional
participation of the mode with n = 9, which is excluded by Amabili and in the present half-wave model.

Next, a detailed study is carried out for different values of the ovality parameter, keeping the other shell
parameters the same as in the validation example. The damping parameter α is taken as zero and β is
determined such that ξ1,n = 0.004. The shell is subjected to a discrete harmonic force (F = F0 cosωF t) at
y∗=C/4 for symmetric excitation about the minor axis and at y∗= 3C/16, C/8, C/16 for nonsymmetric
excitation. The forcing frequency ωF is varied in the neighbourhood of linear free vibration frequencies
corresponding to first SS, SA, AS, AA modes (S = symmetric, A = antisymmetric; major axis symmetry
listed first). The free vibration modes and corresponding frequencies of oval cylindrical shells considered
in the present study are given in Figure 3. Note that the asymmetric free vibration modes of circular
(ζ = 0) cylindrical shells are not spatially fixed due to axisymmetric geometry and there are two modes
corresponding to each frequency. Noncircular shells with doubly symmetric cross-section have spatially
fixed free vibration modes.

The modal participation factors η j (t) are obtained from w(x, y, t) =
∑
∞

j=1 η j (t)φ j (x, y); where
φ j (x, y) is the j-th free vibration mode of the oval cylindrical shell. The total response at any location
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can be expressed as a Fourier series: w(x, y, t)= A0+
∑
∞

i=1 Ai cos(ωi t+ψi ), where Ai is the harmonic
amplitude, ωi is a multiple of forcing frequency ωF , and ψi is the phase difference.

A convergence study reveals that 1t = π/(100ωF ), M = 3, and 48-element discretization in the
circumferential direction (total number of degrees of freedom, N = 960), are sufficient to yield results
of the desired accuracy.

For symmetric loading of circular and oval shells, the travelling wave direction will depend upon the
initial conditions. The solutions in the present work are obtained using the shooting technique with initial
state vector as the solution of previous frequency step. This has resulted in the traveling wave directions
indicated.

The stable regions of loading point response (w0/h) versus forcing frequency (ωF/ωmn) characteristics
are shown by continuous curves and unstable ones are shown by dashed curves. The bifurcation points
marked in the response curves are identified as period doubling (PD) if at least one eigenvalue of the
monodromy matrix crosses the unit circle along the negative real axis, as symmetry breaking (SB) /
turning point (TP) if it leaves the unit circle along the positive real axis, and as secondary Hopf (SH)
bifurcation if a pair of complex conjugate eigenvalues crosses the unit circle.

5.1. Response of symmetrically excited cylindrical shells (load at y∗ = C/4). The frequency response
curves of movable simply supported oval cylindrical shells (F0 = 0.4 N, y∗ =C/4) are shown in Figure 4
for different ovality parameters (ζ = 0.0, 0.2, 0.4 and 0.6). We see that with the increase in the ovality
parameter, the nonlinear dynamic response changes significantly due to increased modal interactions
and the frequency range corresponding to greater response amplitudes increases. For circular shells
(ζ = 0.0), no unstable regions are observed, whereas response of noncircular shells reveals the presence
of bifurcation points and unstable regions. The forcing frequency parameter ωF/ωmn corresponding to
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Figure 4. Nonlinear steady state response amplitude versus forcing frequency curves for
movable simply supported cylindrical shells subjected to excitation in the neighbourhood
of first mode: (a) ζ = 0.0 (circular, ωmn = 484.38 Hz), ζ = 0.2 (ωmn = 472.23 Hz), and
ζ = 0.4 (ωmn = 441.64 Hz); (b) ζ = 0.6 (ωmn = 394.15 Hz).
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Figure 5. Frequency spectra of oval cylindrical shells with different ovality parameters
corresponding to the first peaks of response curves (Figure 4).

first peak response decreases as the ovality parameter increases. The frequency response spectra plotted
in Figure 5 corresponding to first peaks of the response curves (Figure 4) reveal that with an increase in
the ovality parameter, the number of significant higher harmonics present in the response increases. In
particular, the number of higher harmonics is three for ζ = 0.0, five for ζ = 0.2, and up to nine harmonics
for ζ = 0.4, 0.6.

The modal participation factors of the first four predominant modes are shown in Figure 6, correspond-
ing to the points marked in Figure 4 for ζ = 0.0. It can be noted from Figure 6 that the participation of the
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Figure 6. Modal participation factors of the first four modes corresponding to typical
points marked (Figure 4a) on the response curves of circular shells (ζ = 0.0).



ON THE NONLINEAR DYNAMICS OF OVAL CYLINDRICAL SHELLS 897

0.25T 

0.5T 

0.75T 

1.0T 

Figure 7. Transverse displacement variations along the circumference at different time
instants of one cycle corresponding to point 2 (Figure 4a) on the response curve of
circular cylindrical shell (ζ = 0.0).

mode with n= 7 is predominant at the first response peak (w0/h = 1.24, ωF/ωmn = 0.994) and decreases
as the forcing frequency increases further. The participation of the mode with n = 8 increases with the
forcing frequency and is predominant at point 3 (w0/h = 1.00, ωF/ωmn = 1.011). These two modes
(n = 7 and 8), whose linear free vibration frequencies are very close, are excited due to the concentrated
harmonic excitation force.

The deformed shape of the shell cross-section at x = L/2 at different moments of one cycle corre-
sponding to point 2 (w0/h = 0.55, ωF/ωmn = 1.003) is plotted in Figure 7, revealing waves travelling in
two opposite directions from the loading point. This phenomenon is observed for the narrow frequency
range between points 1 and 3 due to the participation of modes with n = 7 and 8.

A detailed analysis of the modal participation factors for oval shells reveals that only AS and SS
modes participate in the response corresponding to the primary branch of symmetrically excited shells
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Figure 8. Modal participation factors of the first AS and SS modes for typical points
marked (Figure 4a) on the response curve of oval cylindrical shell (ζ = 0.2).
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Figure 9. Modal participation factors of the first AS and SS modes corresponding to
typical points marked on the response curve of oval cylindrical shell (ζ= 0.4, Figure 4a).
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Figure 10. Modal participation factors of the first four modes corresponding to typical
points marked on the response curve of oval cylindrical shell (ζ = 0.6, Figure 4b).

(y∗ = C/4). The modal participation of the first AS and SS modes is shown in Figure 8 and 9 for oval
shells with ζ = 0.2 and 0.4, respectively, corresponding to the points marked in Figure 4. It can be seen
from Figure 8 that at the first peak (point 4: w0/h = 2.04, ωF/ωmn = 0.988) for ζ = 0.2, the participation
of the first AS mode is significantly greater than that of the first SS mode, whereas at the second peak
(point 6: w0/h = 1.59, ωF/ωmn = 1.004) the opposite trend is observed. At point 5 (w0/h = 1.48,
ωF/ωmn = 0.997), the participation of both the modes is of comparable amplitude. It can be seen
from Figure 9 for ζ = 0.4 that the participation of AS and SS modes at the first (point 7: w0/h = 2.00,
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ωF/ωmn = 0.971) and last (point 11: w0/h= 1.30, ωF/ωmn = 1.020) peaks is qualitatively similar to that
for ζ = 0.2. At point 9 (w0/h= 1.91, ωF/ωmn= 0.989), the participation of both the modes is comparable.
The participation of AS mode is dominant at point 8 (w0/h= 1.45, ωF/ωmn = 0.982) and that of SS mode
at point 10 (w0/h = 1.07, ωF/ωmn = 1.013). In general, it can be concluded that the relative participation
of AS mode decreases and that of SS mode increases with the increase in the forcing frequency.

The steady state response amplitude versus forcing frequency curve plotted in Figure 4b for the shell
with ζ = 0.6 shows that different response peaks appear at almost equal response amplitudes unlike for
ζ = 0.4. The modal participation of the first AS and SS modes is shown in Figure 10 corresponding to
the points marked in Figure 4b. It is seen from Figure 10 that at the first peak (point 1: w0/h = 1.98,
ωF/ωmn = 0.960), the contribution of both AS and SS modes is comparable. From point 1 to 2 (point 2:
w0/h = 1.50, ωF/ωmn = 0.972), the response amplitude decreases but the relative participation of the
AS and SS modes remains the same. From point 2 to 3 (point 3: w0/h = 1.97, ωF/ωmn = 0.971), the par-
ticipation of AS mode increases significantly. The relative participation of the SS mode is very less from
point 3 to 4 (point 4: w0/h = 1.36, ωF/ωmn = 0.985). After point 4, the response amplitude increases
and the curve loses stability through a symmetry breaking bifurcation and the main branch forms peak
at point 5 (w0/h = 2.15, ωF/ωmn = 1.0), where the contribution of both AS and SS modes is dominant.

The secondary branch emanating from the primary one at the symmetry breaking bifurcation corre-
sponds to a significant participation of the SA and AA modes in addition to the AS and SS modes, as
evident from the modal participation factors corresponding to points 6 (w0/h = 1.56, ωF/ωmn = 0.998)
and 7 (w0/h = 1.29, ωF/ωmn = 0.981) shown in Figure 10. This is due to 1:1 internal resonance
between AS/SS and SA/AA modes: the ratios of their linear free vibration frequencies are almost equal
to one. The multiple peaks depicted in the secondary branch are due to increases/decreases in the relative
participation of AS, SA, SS and AA modes. The deformed shape of the shell cross-section at x = L/2
at different moments in one cycle corresponding to the point 7 is plotted in Figure 11, showing waves
travelling in one direction only.

0.25T 

0.5T 

0.75T 

1.0T 

Figure 11. Transverse displacement variations along the circumference at different time
instants of one cycle corresponding to point 7 (Figure 4b) on the response curve of oval
shell (ζ = 0.6).
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To demonstrate the participation of all the modes corresponding to first peak for ζ = 0.6 (point 1
marked in Figure 4b), the modal displacement variations along the circumference and corresponding
modal participation factors with time are shown in Figures 12 and 13. It can be seen from Figure 13 that
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Figure 12. Modal displacement variation along the circumference of the modes partici-
pating in the response corresponding to point 1 (Figure 4b) on the response curve of oval
cylindrical shell (ζ = 0.6).
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in addition to the first AS and SS modes, the other modes participate in the response with fundamental
and higher harmonics. Further, due to the harmonic excitation at (x, y∗) = (L/2,C/4), only AS/SS
modes, not AA/SA modes, participate in the response corresponding to the primary branch.
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Figure 13. Modal participation factors in the response corresponding to point 1 marked
(Figure 4b) on the response curve of oval cylindrical shell (ζ = 0.6).
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5.2. Response of nonsymmetrically excited cylindrical shells. The frequency response characteristics
of oval shells are investigated by varying the location of the concentrated harmonic excitation force along
the circumference. The steady state response amplitude of the loading location versus forcing frequency
curves are shown in Figure 14 for oval cylindrical shells with ζ = 0.2 subjected to a concentrated harmonic
loading at y∗ = C/4, 3C/16, C/8 and C/16 with the forcing frequency in the neighbourhood of the first
AS, SS, SA, and AA modes. The maximum response for the loading locations y∗= 3C/16, C/8 and C/16
is smaller than that corresponding to the loading at the minor axis (y∗ = C/4). The modal participation
factors of the first four participating modes corresponding to the typical points, marked in Figure 14 on
the nonlinear steady state response amplitude versus forcing frequency curves, are shown in Figure 15.

In the response of nonsymmetrically excited oval shells, all types of modes (AS, SS, SA, AA) par-
ticipate, unlike the primary branch of symmetrically excited shells. The frequency response curve for
the shell with ζ = 0.2 (load at y∗ = 3C/16) shows an unstable region between turning points and a
maximum response amplitude of w0/h = 1.72 at ωF/ωmn = 0.989 (point 1). The modal participation
factors obtained at the peak reveal that the contribution of the AS mode is around 70% of the total
response amplitude. The contributions of the SA, SS and AA modes are around 64%, 40% and 40% of
the AS mode contribution, respectively. It is also seen that the AS, SS and AA modes are almost in same
phase, whereas the SA mode participates with opposite phase. With a further increase in the forcing
frequency, the response amplitude decreases, as does the participation of the AS, SS and AA modes.
However, the participation of the SA mode increases and at point 2 (w0/h = 1.41, ωF/ωmn = 0.994) it
becomes around 95% of the AS mode participation. Beyond point 2, another turning point bifurcation is
encountered and at point 3 (w0/h = 1.40, ωF/ωmn = 0.994), the contribution of AS mode is predominant.
After point 3, the relative contribution of the SS mode increases and is maximum at point 4 (w0/h = 1.18,
ωF/ωmn = 0.998). At the local peak formed at point 5 (w0/h = 1.31, ωF/ωmn = 1.004), the contribution
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Figure 14. Nonlinear steady state response amplitude versus forcing frequency curves
of movable simply supported oval shells subjected to excitation at different circumferen-
tial locations in the neighbourhood of the first mode (ζ = 0.2: ωmn = 472.23 Hz).
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Figure 15. Modal participation factors of the first AS, SS, SA and AA modes corre-
sponding to typical points marked (Figure 14) on the response curve of oval cylindrical
shell (ζ = 0.2).

of the SS mode is almost three times the AS mode participation. Further, with the shifting of the loading
location towards the major axis, the response amplitude and number of peaks decrease.

The effect of the loading location on the nonlinear steady state response amplitude versus forcing
frequency for the shell with ζ = 0.6 is shown in Figure 16. Starting from a low frequency excitation
(ωF/ωmn = 0.925), the response curve for the loading at y∗ = 3C/16 loses its stability through a turning
point and forms a peak in the unstable region at point 1 (w0/h = 1.18, ωF/ωmn = 0.979). This region
corresponds to the vibration of the shell predominantly in the AS mode, as seen from the modal partici-
pation factors plotted in Figure 17. The relative participations of the SA, SS and AA modes are around
35%, 35% and 15% of the AS mode, respectively.

After point 1, the response amplitude decreases and encounters a secondary Hopf bifurcation, then
it increases, becomes stable and forms another peak at point 2 (w0/h = 1.43, ωF/ωmn = 0.991). The
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Figure 16. Nonlinear steady state response amplitude versus forcing frequency curves
of movable simply supported oval shells subjected to excitation at different circumferen-
tial locations in the neighbourhood of the first mode (ζ = 0.6: ωmn = 394.15 Hz).

participation of the first AS, SA, SS and AA modes is significant at this point, with the AS mode having
highest participation.

With a further increase in the forcing frequency after point 2, both the relative and the absolute partici-
pation of the AS mode decrease and at point 3 (w0/h = 1.29, ωF/ωmn = 0.998), its contribution becomes
even smaller than that of the SA and SS modes. The participation of the AS and AA modes is around
65% of the SA mode. In the narrow frequency range of ωF/ωmn = 0.999 to 1.009, both the absolute
and the relative contribution of AA mode first increase and it reaches a peak at point 4 (w0/h = 1.05,
ωF/ωmn = 1.009), where the next significant mode is SS.

After point 4, the contribution of the AA mode decreases and that of the SS and SA modes increases
significantly. At point 5 (w0/h = 1.29, ωF/ωmn = 1.006), the relative contribution of the SA mode is
greatest, with the participation of the SS, AS and AA modes around 86%, 38% and 30% of SA mode
participation.

After point 5, the participation of the AS mode increases and forms a peak at point 6 (w0/h = 0.89,
ωF/ωmn = 1.008). Subsequently, its relative participation decreases and is least at point 7 (w0/h = 1.09,
ωF/ωmn = 1.014). From points 6 to 7, the absolute contribution of the SA and SS modes remain almost
constant, whereas the contribution of the AA mode increases significantly.

The transverse displacement variations along the circumference at different time instants of one cycle
of response corresponding to points 1 and 3 on the response curve are plotted in Figure 18. At point 1,
a travelling wave with the significantly greater amplitudes in the upper half of the shell is predicted. At
point 3, the travelling waves originating near major axis (y = 0) move in opposite directions in the top
and bottom halves of the shell with greater amplitude near the minor axis.
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Figure 17. Modal participation factors of the first AS, SS, SA and AA modes corre-
sponding to typical points marked (Figure 16) on the response curve of oval cylindrical
shell (ζ = 0.6).



906 SYED MUHAMMAD IBRAHIM, BADRI PRASAD PATEL AND YOGENDRA NATH

0.25T 

0.5T 

0.75T 

1.0T 

Point 1 Point 3 

Figure 18. Transverse displacement variations along the circumference at different time
instants of one cycle corresponding to points 1 and 3 (Figure 16) on the response curve
of oval shell (ζ = 0.6).

6. Conclusions

The nonlinear periodic response characteristics of oval cylindrical shells are investigated using the finite
strip method. The governing equations are solved by the shooting technique, coupled with the Newmark
time marching scheme and the arc length continuation algorithm.

The influence of ovality parameter and loading location on the periodic response is studied in detail.
It is found that for the circular shells, all modes with close linear free vibration frequencies are excited
due to the concentrated harmonic excitation force.

With an increase in ovality parameter, the nonlinear dynamic response changes significantly, due to
increased modal interactions and participation of higher harmonics. The AS and SS modes participate
in the response corresponding to primary branch of symmetrically excited noncircular shells.

For nonsymmetrically excited shells and in the secondary branch of symmetrically excited shells, all
the modes participate in the nonlinear response. Due to 1:1 internal resonance between AS/SS and SA/AA
modes, a secondary branch emanating from primary one through the symmetry breaking bifurcation is
predicted for symmetrically excited oval shell with ζ = 0.6.

For symmetrically excited oval shells, waves travelling in one direction from loading point in sec-
ondary branch of the response curve are predicted.

For nonsymmetrically excited oval shells (ζ = 0.6), either waves moving in anticlockwise direction
from the loading point (y∗ = 3C/16) or those originating near major axis (y = 0) moving in opposite
directions in the top and bottom halves of the shell are observed in certain forcing frequency range.

The traveling waves in earlier work are due to driven and companion modes with a specific circum-
ferential wave number, whereas the contribution of several modes is responsible for the traveling wave
behavior predicted in the present work.
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List of symbols

·0 Middle surface/magnitude
α, β Rayleigh damping parameters

A, B Stiffness coefficient matrices
·b Bending component
C Circumference

D, E Stiffness coefficient matrices
δ̈, δ̇, δ Acceleration, velocity and displacement

vectors
E Young’s modulus
ε Strain vector
η State vector
F Discrete force
F Force vector
h Thickness
I Rotary inertia

K Constant stiffness matrix
K1, K2 Stiffness matrices linearly and quadratically

dependent on field variables
L Meridional length
·
L Linear
·m Number of half sine waves in meridional

direction
M Number of terms in the displacement fields in

the meridional direction
M Consistent mass matrix
M̃ Moment resultant vector

N Number of degrees of freedom
·n Circumferential wave number
Ñ Stress resultant vector
·
N L Nonlinear
N 0

k Original shape function
N 1

k Smoothed shape function
ν Poisson’s ratio

ωmn Linear free vibration frequency
ωF Forcing frequency
ωi Frequency of the i-th harmonic
·p Extensional/stretching component
Q̃ Transverse shear stress resultant vector
r Radius of curvature

r0 Average radius of curvature (= C/2π )
ρ Density
t Time

T Time period
T̃ Kinetic energy

θx , θy Rotation of meridional and circumferential
sections

U Total potential energy
u, v, w Displacements in meridional, circumferential

and thickness directions
x, y, z Coordinate directions

ξ Damping parameter
y∗ Circumferential location of discrete harmonic

load
ζ Ovality parameter
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TIME-HARMONIC ELASTODYNAMIC GREEN’S FUNCTION
FOR THE HALF-PLANE

MODELED BY A RESTRICTED INHOMOGENEITY OF QUADRATIC TYPE

TSVIATKO V. RANGELOV AND GEORGE D. MANOLIS

We derive closed-form solutions for point-force generated motions in a continuously inhomogeneous
half-plane, which represent the complete elastic wave-train in the interior domain obeying traction-free
boundary conditions at the horizontal surface. More specifically, a special type of material inhomo-
geneity is studied, where the shear modulus varies quadratically with respect to the depth coordinate.
Furthermore, the material density profile varies proportionally to the aforementioned profile, while Pois-
son’s ratio remains fixed at one-quarter. Limit forms for the Green’s functions are derived for both zero
frequency and for the equivalent homogeneous medium. Next, a series of numerical results serve to
validate this mechanical model, and to show the differences in the wave motion patterns developing in
media that are inhomogeneous as compared to a reference homogeneous background. These singular
solutions are useful within the context of boundary element formulations for the numerical solution of
problems involving nonhomogeneous continua, which find applications in fields as diverse as composite
materials, geophysical prospecting, petroleum exploration and earthquake engineering.

1. Introduction and problem statement

Detailed knowledge of wave motions produced by point forces in the elastic half-plane [Achenbach
1973] are of paramount importance in mechanics, since they form the backbone of any integral equation
formulation whose numerical treatment yields boundary element method solutions to a wide range of
boundary-value problems in elastodynamics [Kausel and Manolis 2000].

We examine here a restricted class of inhomogeneous media, where the elastic parameters and the
density all vary proportionally with depth, which makes possible a decoupling of the equations of motion
for the boundless continuum into pseudopressure and shear wave components in a transformed domain.
Although somewhat unlikely, there are situations where this type of inhomogeneity has actually been
observed. As an example, we mention the geological profile of the Sofia region in Bulgaria [Bonchev
et al. 1982], which was measured from in-situ data. This profile seems to imply both a proportional
variation of the shear modulus and of the density, plus a constant Poisson’s ratio value of one-quarter,
for a nearly thirty kilometer thickness of the local deposits as measured from the surface.

Let (x1, x2) be Cartesian coordinates in R2 and denote the lower half-plane by R2
−
= {(x1, x2) : x2 < 0};

see Figure 1. Consider the following boundary-value problem defined in the frequency domain, where

Keywords: inhomogeneous media, elastic waves, Fourier transforms, singular solutions.
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x2

x1(0, 0) h(0)=1

h(x)

Figure 1. Elastic half-plane with quadratically varying material properties in the depth
coordinate as described by the profile function h(x).

all dependent variables have an eiωt type dependence on time:

La(G)≡ (Cikpq Gi p,q), j − ρω
2Gik =−δ(x − ξ)εik, where x, ξ ∈ R2

−
, (1)

T a(G)≡ C j2pq Gi p,q = 0 on x2 = 0, (2)

G→ 0 for x2→−∞. (3)

Here Green’s tensor G satisfies the Sommerfeld radiation condition along lines parallel to {x2 = 0},
i.e., {(x1, x2), x1 → ±∞}. Furthermore, x = (x1, x2) and ξ = (ξ1, ξ2) are source/receiver points in
the continuum; C jkpq = h(x2)C0

jkpq is the elasticity tensor; ρ = h(x2)ρ0, with ρ0 > 0, is the material
density; and h(x2) = (ax2 + 1)2, with a ≤ 0, is the material profile, implying a quadratic variation
with depth. In terms of the quantities defined for the corresponding homogeneous background, we have
C0

jkpq = µ0(δ jkδpq + δ j pδkq + δ jqδkp), where µ0 > 0 is the shear modulus, δ jk is Kronecker’s delta, and
ω > 0 is the frequency. Finally, δ is Dirac’s delta function, ε = εik is the unit tensor, commas denote
partial differentiation with respect to the spatial coordinates and summation is implied over repeated
indices.

In elastodynamics, the problem defined by (1)–(3) is a model of an isotropic elastic medium in R2
−

with a point force at ξ and traction-free boundary conditions. Poisson’s ratio is fixed at a value of
ν = 0.25, while the shear modulus µ and the density ρ depend in the same manner on depth coordinate
x2. A fundamental solution to (1) of this problem in R2

−
was derived in [Manolis and Shaw 1996] for

a 6= 0, while a solution of (1)–(3) defining a Green’s function for the homogeneous half-plane, i.e., for
a = 0, has been obtained in M. Kinoshita’s M.Sc. thesis, quoted in [Kobayashi 1983]. A corresponding
Green’s function in the Laplace domain for a homogeneous half-plane can be found in [Guan et al. 1998],
while an approximate such function using an image source across the free surface was derived earlier
in [Kontoni et al. 1987]. Finally, the transient Green’s function due to a suddenly applied load in the
homogeneous half-plane, namely Lamb’s problem, can be found in [Kausel 2006], a compilation of
fundamental solutions in elastodynamics.
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2. Solution outline

By following the procedure as outlined in references given above, we will now derive the unique solution
to the problem (1)–(3), which corresponds to a Green’s function G for the inhomogeneous half-plane
with a quadratic variation of the material parameters. Let the matrix-valued function u be a fundamental
solution to equation (1):

La(u)=−δ(x − ξ)ε, where x, ξ ∈ R2
−
, (4)

while w is a smooth matrix-valued function such that

La(w)= 0, where x, ξ ∈ R2
−
, (5)

T a(w)=−T a(u) on x2 = 0, (6)

where superscript a in the operators corresponds to the degree of inhomogeneity. Then, by using super-
position, the complete Green’s function is simply G = u+w.

The fundamental solution u can be expressed as in [Manolis and Shaw 1996] in the form

u(x, ξ, ω)= h−1/2(ξ2)U (x, ξ, ω)h−1/2(x2), (7)

where U is a fundamental solution for the corresponding homogeneous case, i.e.,

L0(U )=−δ(x − ξ)ε, with x, ξ ∈ R2
−
. (8)

Finally, the traction matrix corresponding to displacements u on free surface x2 = 0 is

T a
1k(u)= µ0h−1/2(ξ2)(−aU1k +U1k,2+U2k,1),

T a
2k(u)= µ0h−1/2(ξ2)(−3aU2k +U1k,1+ 3U2k,1).

(9)

The homogeneous matrix-valued function U in R2 can be found in [Eringen and Şuhubi 1974] as

U jk =
i

4µ0

[
δ jk H (1)

0 (k2r)+
1
k2

2
∂2

jk
(
H (1)

0 (k2r)− H (1)
0 (k1r)

)]
. (10)

Here the wave numbers corresponding to pressure and shear body waves are respectively k1=
√
ρ0/3µ0ω

and k2=
√
ρ0/µ0ω, while the radial distance between source and receiver is r =

√
(x1− ξ1)2+ (x2− ξ2)2

and H (1)
0 (z) is the Bessel function of third kind (or Hankel function) and zero order.

In order to simplify the calculations, we fix the source point along the vertical axis as ξ = (0, ξ2), ξ2< 0.
As will be shown later on, Green’s function G actually depends on x1− ξ1 and separately on x2 and ξ2

because the corresponding profile function h is independent of x1; thus the assumption ξ1 = 0 is not
restrictive.

3. Solution methodology

The first step is to recover a general solution w to (5), in the form

w(x, ξ, ω)= h−1/2(x2)W (x, ξ, ω). (11)
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Then, the two corresponding differential operators for the homogeneous and inhomogeneous cases are
related as

La(w)= h1/2(x2)L0(W ), (12)

where

La(w)= h−1/2Ca
jkpq

(
Wi p,qk + h−1(h1/2

, j Wi p,q − h1/2
,q Wik, j − h1/2

,qk Wi p)
)
+ ρω2h−1/2Wi j

= h1/2(C jkpq Wi p,qk + ρ0ω
2Wi j )= h1/2L0(W ).

Thus, if W solves (5) with a = 0, then w also solves (5) for a < 0 and we seek a solution W = {W jk}

in the general Rayleigh form [Achenbach 1973; Rajapakse and Wang 1991] as a transformation between
distance x1 and wave number η:

W jk =
1

2π

∫
R

S jkeiηx1dη, (13)

where the kernel function S jk depends on eβx2 , η, ω, a, and the parameter β is found as solution of an
algebraic system of equations to be developed.

Remark 1. It is not possible to proceed for the inhomogeneous case as in [Kinoshita 1983] for a homo-
geneous material. The algebraic transformation produces a function

ũ(x, ξ, ω)= h−1/2(−ξ2)U (x, ξ, ω)h−1/2(x2)

that is not well defined for all ξ2< 0 and is infinite if h(−ξ2)= 0, corresponding to a value ξ2= 1/a, a< 0.
Thus, we cannot use superposition as u(x, ξ, ω)+ ũ(x, ξ, ω), for which T1k = 0, T2k = 0 on x2 = 0, but
can only use u(x, ξ, ω) and then add a Rayleigh form to satisfy the boundary conditions.

Thus, in order to find S= S jk we use the Fourier transform = with respect to the x1 coordinate, defined,
together with its inverse, by

f̃ (η, x2)= =x1→η f =
∫

R
f (x1, x2)e−iηx1dx1,

f (x1, x2)= =
−1
η→x1

f̃ =
1

2π

∫
R

f̃ (η, x2)eiηx1dη,
(14)

where η is the transform parameter. By applying the Fourier transform to W , we turn (1) with a = 0 into

L0(=x1→η(W ))= 0, (15)

which in matrix form reads as
(M(η, β)+ ρ0ω

2 I2)S = 0, (16)

where I2 is the 2× 2 unit matrix and

M(η, β)=

(
−3µ0η

2
+µ0β

2
+ ρ0ω

2 2iµ0ηβ

2iµ0ηβ −µ0η
2
+ 3µ0β

2
+ ρ0ω

2

)
. (17)

For every fixed value of η, a nonzero solution to (16) exists if det M(η, β)= 0, which gives the following
biquadratic equation for β:

3µ2
0β

4
− 2µ0(3µ0η

2
− 2ρ0ω

2)β2
+ ρ2

0ω
4
+ 3µ0ω

4
− 4µ0η

2ρ0ω
2
= 0. (18)
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If we set γ 2
j = η

2
− k2

j , equation (18) simplifies to

β4
− (γ 2

1 + γ
2
2 )β

2
+ γ 2

1 γ
2
2 = 0, (19)

and the solutions are β2
j =±γ

2
j . In order to satisfy the radiation condition of (3), only the positive root

is retained:

β j = γ j =

√
η2− k2

j . (20)

Since the matrix M(η, β j ), for j = 1, 2, has rank 1, there are two eigenvectors, namely

ν1
=

(
η

−iβ1

)
, ν2

=

(
iβ2

η

)
, (21)

and every solution of (16) has the standard form

S = S jk =

2∑
m=1

Ck
k ν

m
j eβm x2 . (22)

Recapitulating, the matrix form of (11) using indicial notation is

w jk(x, ξ, ω)= h−1/2(x2)W jk(x, ξ, ω), (23)

and the remaining step is to determine functions Ck
m(η, ξ2, a) such that the boundary condition for zero

tractions in (6) is satisfied. The traction field corresponding to displacement field w on x2 = 0 is

T a
1k =

1
2π

∫
R
µ0
[
η(−a+ 2β1)Ck

1 + i(−aβ2+ 2η2
− k2

2)C
k
2
]
eiηx1dx1,

T a
2k =

1
2π

∫
R
µ0
[
i(3aβ1− 2η2

+ k2
2)C

k
1 + η(−3a+ 2β2)Ck

2
]
eiηx1dx1.

(24)

To determine the traction field corresponding to displacement field u on x2 = 0, we use the representation
of H (1)

0 based on a Fourier transform with respect to x1 (see [Gradshteyn and Ryzhik 1980, formulas
6.6773,4 and Section 8.42]):

H (1)
0 (rk j )=

i
2π

∫
R

1
β j

e(ξ2−x2)β j eiηx1dη. (25)

Employing (7) and (10) for u and for U , respectively, we obtain

T a
jk(u)=

i
2π

∫
R

D jkeiηx1dη. (26)
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where the matrix components D jk are

D11 =
h−1/2(ξ2)

2k2
2

[
(−aβ2− 2η2

+ k2
2)e

ξ2β2 + η2(a/β1+ 2)eξ2β1
]
,

D21 =
iηh−1/2(ξ2)

2k2
2β1

[
β1(−3a− 2β2)eξ2β2 + η2(3aβ1+ 2η2

− k2
2)e

ξ2β1
]
,

D12 =
iηh−1/2(ξ2)

2k2
2β2

[
(−aβ2− 2η2

+ k2
2)e

ξ2β2 +β2(a+ 2β1)eξ2β1
]
,

D22 =
iηh−1/2(ξ2)

2k2
2

[
η2(3a/β2+ 2)eξ2β2 + (−3aβ1− 2η2

+ k2
2)e

ξ2β1
]
.

(27)

Combining equations (24) and (26), we obtain a system of two linear equations in C1
m,C2

m , which appear
as kernels of integral equations when substituted in the boundary condition of (6). The determinant of
this system is

1a
=
µ2

0

4π2

∣∣∣∣∣ η(−a+ 2β1) i(−aβ2+ 2η2
− k2

2)

i(3aβ1− 2η2
+ k2

2) η(−3a+ 2β2)

∣∣∣∣∣ , (28)

which evaluates to

1a
=
µ2

0

4π2

[
3(η2
−β1β2)a2

−
(
(β1+β2)k2

2 + η
2β1
)
a−10], (29)

where 10
= 4η2β1β2− (2η2

− k2
2)

2 is a Rayleigh function [Kobayashi 1983].
The functions C1

m,C2
m are unique solutions of (6), since for every η ∈ R, a < 0, ω > 0, ρ0 > 0, µ0 > 0

the condition 1a
6= 0 holds true. Possible combinations of values of parameter |η| as compared to the

two wave numbers k1, k2 yield the following cases:

(i) If |η|< k1, then Im1a
=−

(
(|β1| + |β2|)k2

2 + η
2
|β1|

)
a > 0.

(ii) If |η| = k1, then Im1a
=−

(
|β2|k2

2a+ (2η2
− k2

2)
2
)
> 0.

(iii) If k1 < |η| ≤ k2, then Re1a
= 3η2a2

−β1(k2
2 + η

2)a+ (2η2
− k2

2) > 0.

(iv) If k2 < |η|, then 1a >10 > 0.

An application of Cramer’s rule yields the matrix functions

Ck
m =1

a
mk/1

a, (30)

where the subdeterminants 1a
mk are given by

1a
11 =

∣∣∣∣∣−D11 iµ0(−aβ2+ 2η2
− k2

2)

−D21 µ0η(−3a+ 2β2)

∣∣∣∣∣ , 1a
21 =

∣∣∣∣∣ µ0η(−a+ 2β1) −D11

iµ0(3aβ1− 2η2
+ k2

2) −D21

∣∣∣∣∣
1a

12 =

∣∣∣∣∣ µ0η(−a+ 2β1) −D12

iµ0(3aβ1− 2η2
+ k2

2) −D22

∣∣∣∣∣ , 1a
22 =

∣∣∣∣∣−D12 iµ0(−aβ2+ 2η2
− k2

2)

−D22 µ0η(−3a+ 2β2)

∣∣∣∣∣ .
(31)

Finally, the radiation boundary condition in (3) holds true because of the presence of the multiplier
h−1/2(x2) for u and h−1/2(x2)ex2β under the integral sign on η for w in (13).
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Remark 2. This method can be applied for complex wave numbers (k j = k j R + ik j I with k j R > 0,
k j I > 0) and the structure of Green’s function remains the same. This is because the representations for
the fundamental solution of (10) and for the Bessel function (25) are valid for complex numbers as well.
However, the proof that 1a

6= 0 in this case is quite complicated.

Remark 3. The same method can be applied to obtain a transient Green’s function in the inhomogeneous
half-plane for the equations of motion defined in the time domain as

La(G)≡ (C jkpq Gi p,q), j − ρGik,t t =− f (t)δ(x − ξ)εik, (32)

where f (t) ∈ L1
loc(R

1) and f = 0 for t < 0. More specifically, f (t)= H(t)F(t), with H(t) the Heaviside
function and |F(t)| ≤ Aect for t→∞. The transient Green’s function is obtained by applying Laplace’s
transformation to (32) and using a Kelvin function representation of the type K0(z)= (iπ/2)H

(1)
0 (i z).

Formally, the Green’s function in the Laplace domain is obtained by replacing frequency ω with the
Laplace transform parameter written as a purely imaginary number is and then applying the inverse
Laplace transform. This path was followed for the homogeneous case, i.e., a = 0 and with F(t)= 1, in
[Guan et al. 1998].

Remark 4. Green’s function G(x, ξ, ω, a) converges in the weak sense to G(x, ξ, ω, 0) for a→ 0, i.e.,
for every ϕ(ξ) ∈ C∞0 (R

2
−
) we have∫

R2
G(x, ξ, ω, a)ϕ(ξ) dξ →

∫
R2

G(x, ξ, ω, 0)ϕ(ξ) dξ for a→ 0.

Also, Green’s function G(x, ξ, ω, a) converges in the weak sense to G(x, ξ, 0, a) for ω→ 0, i.e., for
every ϕ(ξ) ∈ C∞0 (R

2
−
) we have∫

R2
G(x, ξ, ω, a)ϕ(ξ) dξ →

∫
R2

G(x, ξ, 0, a)ϕ(ξ) dξ for ω→ 0.

More details for this elastostatic case can be found in the Appendix.

4. Recovery of the homogeneous case

In order to check that it is possible to recover the homogeneous half-plane solution by setting the inho-
mogeneity parameter a to zero (and, correspondingly, h(x2)= h(ξ2)= 1 for the profile function) in the
solution derived above, we start with the results presented in [Kobayashi 1983]. In that case, (24) reads
as

T 0
1k =

1
2π

∫
R
µ0[2ηβ1Ck

1 + i(2η2
− k2

2)C
k
2 ]e

iηx1dx1,

T a
2k =

1
2π

∫
R
µ0[i(−2η2

+ k2
2)C

k
1 + 2ηβ2Ck

2 ]e
iηx1dx1.

(33)

Also, in place of u(x1, x2− ξ2) we use u(x1, x2− ξ2)+ ũ(x1, x2+ ξ2), where ũ(x1, x2+ ξ2) is a smooth
matrix-valued function defined in reference to (10) as

ũ jk(x1, x2+ ξ2)=
i

4µ0

[
δ jk H (1)

0 (k2r̃)+
1
k2

2
∂2

jk
(
H (1)

0 (k2r̃)− H (1)
0 (k1r̃)

)]
, (34)
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with r̃ =
√

x2
1 + (x2+ ξ2)

2 the distance between source and receiver. Furthermore, the integral represen-
tation for the Hankel function corresponding to (25) is

H (1)
0 (r̃ k j )=

i
2π

∫
R

1
β j

e(ξ2+x2)β j eiηx1dη. (35)

Thus, the traction vector on the free surface x2 = 0 for the complete displacement field u+ ũ that replaces
(26) is

T 0
jk(u+ ũ)=

i
2π

∫
R

D̂ jkeiηx1dη. (36)

with the new definitions

D̂11 = 0, D̂21 =
iη

2k2
2β1

[
−2β1β2eξ2β2 + (2η2

− k2
2)e

ξ2β1
]
,

D12 =
iη

2k2
2β2

[
−(2η2

− k2
2)e

ξ2β2 + 2β1β2eξ2β1
]
, D̂22 = 0.

(37)

The new subdeterminants 1̄0
mk are now

1̂0
11 =

∣∣∣∣ 0 iµ0(2η2
− k2

2)

−D̂21 2µ0β2

∣∣∣∣ , 1̂0
21 =

∣∣∣∣ 2µ0β1 0
−iµ0(2η2

− k2
2) −D̂21

∣∣∣∣ ,
1̂0

12 =

∣∣∣∣−D̂12 iµ0(2η2
− k2

2)

0 2µ0β2

∣∣∣∣ , 1̂0
22 =

∣∣∣∣ 2µ0β1 −D̂12

−iµ0(2η2
− k2

2) 0

∣∣∣∣ ,
(38)

and the solution for the matrix functions is

Ĉk
m = 1̂

0
mk/1

0. (39)

Finally, the reconstruction of the complete Green’s function that replaces (22) is

Ŝ = Ŝ jk =

2∑
m=1

Ĉk
mν

m
j eβm x2, (40)

whose components can be explicitly written as

Ŝ11 =
iηµ0

10

[
(2η2
−k2

2)e
x2β2−2β1β2ex2β1

]
D̂21, Ŝ21 =

β1µ0

10

[
(2η2
−k2

2)e
x2β2−2η2ex2β1

]
D̂21,

Ŝ12 =
β2µ0

10

[
−2η2ex2β2+(2η2

−k2
2)e

x2β1
]

D̂12, Ŝ22 =
iηµ0

10

[
−2β1β2ex2β2+(2η2

−k2
2)e

x2β1
]

D̂21.

(41)

Remark 5. The half-plane Green’s function derived above can be used for solving general types of
boundary-value problems in the half-plane enclosing singularities such as cracks, holes, cavities, etc.
This can be done using boundary element method formulations [Manolis and Beskos 1988], and the
advantage here is that a free surface (x2 = 0) discretization is unnecessary.
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5. Numerical example

As an example, we consider the lower part of an original full plane, keeping in mind that in the upper
half-plane the material function h has a line of degeneracy (see Figure 1). A numerical study will be run
for this inhomogeneous half-plane and its equivalent homogeneous limit form (a = 0→ h(x2) = 1.0)
using the Green’s functions derived herein. We start with the following source/receiver configuration:

(ξ1, ξ2)= (0.0,−30.0 m), (x1, x2)= (30.0 m, 0.0). (42)

The background homogeneous material corresponds to firm soil and has the following values for the
pressure (P) and shear (S) wave speeds and for the density:

c1 = 621.0 m/sec, c2 = 359.0 m/sec, ρ = 2100.0 kg. (43)

The inhomogeneity parameter is assigned a value of a =−0.001 m−1, which implies that the inhomo-
geneous profile at the level of the source is stiffer by a factor of 1.07 (i.e., about 7%) compared to the
reference value µ0 = 270.0×106 N/m2 at the free surface level. The travel times for the P and S waves to
reach the receiver starting from the source are t1 = r/c1 = 42.4/621= 0.07 sec, t2 = 42.4/359= 0.12 sec,
respectively, in the reference homogeneous background material. Choosing a total time T = 2.0 sec for
the dynamic phenomenon to develop fully yields a frequency value f = 1.0/T = 0.50 Hz, which is
rounded-off to 0.64 Hz so it corresponds to �= 4.0 rad/sec. This interval is swept in 40 increments of
1ω = 0.1 rad/sec starting from zero, where the static solution G(x, ξ, 0, a) is used (see Remark 4).

In reference to the one-sided Fourier transform of (14), this is performed numerically using the fast
Fourier transform. More specifically, we use the positive side of the horizontal axis going up to four
times the distance of the receiver from the epicenter, i.e., for X = 120.0 m. For better accuracy, we
develop a two-sided transform by projecting symmetric values of the functions to be inverted along the
negative X -axis. More specifically, for N = 1024 data points, the wave number spectrum −H ≤ η≤+H
is set up according to the following formulas:

1x = 2X/N = 0.23437 m, 1η = 2π/N1x = 0.02618 m−1, H = π/1x = 13.404 m−1. (44)

We note in passing that it is possible to introduce viscoelastic material behavior using the Kelvin model
with complex values for the material parameters [Flugge 1967], which is compatible with the static
solution at zero frequency.

Figures 2 and 3 plot both amplitude and phase angle of the Green’s functions G inhom(x, ξ, ω) and
Ghom(x, ξ, ω), respectively. The general structure of the Green’s functions is

G I J (x, ξ, ω)=UI J (x, ξ, ω)+WI J (x, ξ, ω), I, J = 1, 2, (45)

where UI J (x, ξ, ω) is the full space solution and WI J (x, ξ, ω) the Rayleigh-type correction. We note
again that in the approach used in [Kinoshita 1983], the component WI J (x, ξ, ω) restores traction-free
conditions at the free horizontal surface through addition to the full-plane solution UI J (x, ξ, ω) plus its
image UI J (x,−ξ, ω). This latter operation results in a zeroing of the off-diagonal components and a
doubling of the diagonal ones for the full-space solution.

We first observe in Figures 2 and 3 that the introduction of inhomogeneity results in a small decrease
of a few percentage points in the amplitude of the full-space components UI,J (x, ξ, ω), since the elastic
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Figure 2. Inhomogenous half-plane (a =−0.0010) fundamental solution components:
amplitude (left column) and phase angle (right column) versus frequency. From top to
bottom, the graphs show G11, G12, G21 and G22.
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Figure 3. Homogenous half-plane fundamental solution components at surface source
S: amplitude (left column) and phase angle (right column) versus frequency. From top
to bottom, the graphs show G11, G12, G21 and G22.
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Figure 4. Inhomogeneous half-plane (a =−0.0010) Rayleigh-type fundamental solu-
tion components W11, W12, W21, and W22, at a frequency ω = 1.0 rad/sec: real and
imaginary parts versus distance along the surface.

waves are moving upwards in a medium with decreasing stiffness that is still larger than that of the
equivalent homogeneous medium (but becomes equal to it at the surface). The same behavior holds true
regarding the phase angle, i.e., there are some small differences between the two cases.. The situation is
somewhat different regarding the Rayleigh-type correction. Starting with the homogeneous medium, this
correction is substantial for the (1, 2) and (2, 2) components, and less so for the other two. The same
trend holds for the inhomogeneous medium, but the correction is not a smoothly decreasing function
of frequency as before. Instead, there are peaks at discrete frequency values such as ω = 1.5, 2.5, 3.5
rad/sec. These local peaks are also manifested in the phase angle, with the exception when values that
are nearly zero, as is the case with the (1, 1) and (1, 2) components.

In order to further investigate the behavior of the WI,J (x, ξ, ω) components, Figures 4 and 5 show
the variation of the Rayleigh-type solutions (both real and imaginary parts) along the free surface at a
fixed value of the external frequency equal to ω = 1.0 rad/sec for both inhomogeneous and equivalent
homogeneous media. At first we note that in these solutions, either the real part (for the off-diagonal
components) or the imaginary part (for the diagonal components) is zero. Next, these solutions decay
slowly with increasing distance from the epicenter and show a sinusoidal type variation. The role of
inhomogeneity is primarily seen in the magnitude of the nonzero components, in that they are quite
more pronounced compared to the homogeneous medium case.
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Figure 5. Homogenous half-plane Rayleigh-type fundamental solution components
W11, W12, W21, and W22, at a frequency ω = 1.0 rad/sec: real and imaginary parts
versus distance along the surface.

We note in closing that approximate solutions using just one positive image source [Kontoni et al.
1987] lead to a doubling of the diagonal components of the displacement field and a zeroing of the off-
diagonal ones in order to erase their corresponding traction contributions from the free surface. The use
of a negative image source accomplishes the reverse. Thus, it is not possible to reproduce the correct
traction conditions at the surface for all four components simultaneously, unless additional sources such
as dipoles are added in the form of the Rayleigh integral [Kinoshita 1983].

6. Conclusions

In this work, we derived a new point-force solution in the continuously inhomogeneous half-plane with
quadratic-type variation of all material parameters in terms of the depth coordinate. The solution com-
prises a complete elastic wave-train propagating outwards from the loaded area that satisfies traction-free
boundary conditions along the horizontal surface. As such, solutions of this type are useful as kernel
functions in boundary element method formulations of problems of engineering importance in elastody-
namics and related fields of mechanics, with the added advantage that no free surface discretization is
necessary.
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Appendix: Elastostatic Green’s functions for the half-plane

We derive here the Green’s functions for the inhomogeneous half-plane as the external frequency of
vibration tends to zero, i.e., the equivalent elastostatic forms. More specifically, based on the continuity
of the Fourier transform as =η→x1(limω→0 g(η, ω))= limω→0 =η→x1(g(η, ω)), it is sufficient to find the
limit for ω→ 0 of (22), (30) for the case a < 0 and of (39), (40) for a = 0.

To this purpose, we employ L’Hospital rule and re-define the wave numbers k j = q jω in terms of the
two wave slowness q1 =

√
ρ0/3µ0, q2 =

√
ρ0/µ0. Next, we define the following limit forms:

(β j )
′

ω =−
q2

j√
η2− q2

jω
2
ω, with lim

ω→0

(β j )
′
ω

ω
=−

q2
j

|η|
,

(β1β2)
′

ω =−
(q2

1 + q2
2 )η

2
− q2

1 q2
2ω

2√
(η2− q2

1ω
2)(η2− q2

2ω
2)

ω, with lim
ω→0

(β1β2)
′
ω

ω
=−(q2

1 + q2
2 ),

(A1)

(eξ2β j )′ω =−
ξ2q2

j eξ2β j√
η2− q2

jω
2
ω, with lim

ω→0

(eξ2β j )′ω

ω
=−

ξ2q2
j eξ2|η|

|η|
,

(ex2β j )′ω =−
x2q2

j ex2β j√
η2− q2

jω
2
ω, with lim

ω→0

(ex2β j )′ω

ω
=−

x2q2
j ex2|η|

|η|
,

(A2)

where primes denote derivatives with respect to ω. For the limit of the determinant in (29) we have

1a,0
= lim
ω→0

1a
=−

η2
|η|µ2

0a
4π2 , (A3)

since

lim
ω→0

10
= 0.

For the coefficients appearing in (30), we set Da,0
jm = limω→01

a
jm , and by using (A1), (A2) and (27) we

obtain the expressions

Da,0
11 =

h−1/2(ξ2)

4q2
2

[
a
(

q2
1 + q2

2

|η|
+ ξ2(q2

2 − q2
1 )

)
+ 2q2

2 + 2ξ2|η|(q2
2 − q2

1 )

]
eξ2|η|,

Da,0
21 =

iηh−1/2(ξ2)

4q2
2 |η|

[
3aξ2(q2

1 − q2
2 )+ 2q2

1 + 2ξ2|η|(q2
1 − q2

2 )
]
eξ2|η|,

Da,0
12 =−

iηh−1/2(ξ2)

4q2
2 |η|

[
aξ2(q2

1 − q2
2 )+ 2q2

1 + 2ξ2|η|(q2
1 − q2

2 )
]
eξ2|η|,

Da,0
22 =

h−1/2(ξ2)

4q2
2

[
3a
(

q2
1 + q2

2

|η|
+ ξ2(q2

1 − q2
2 )

)
+ 2q2

2 + 2ξ2|η|(q2
1 − q2

2 )

]
eξ2|η|.

(A4)
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Also, by using (A3) , (A4) and (31) we recover

1
a,0
11 =

∣∣∣∣∣−Da,0
11 iµ0(−a|η| + 2η2)

−Da,0
21 µ0η(−3a+ 2|η|)

∣∣∣∣∣ , 1
a,0
21 =

∣∣∣∣∣ µ0η(−a+ 2|η|) −Da,0
11

iµ0(3a|η| − 2η2) −Da,0
21

∣∣∣∣∣
1

a,0
12 =

∣∣∣∣∣ µ0η(−a+ 2|η|) −Da,0
12

iµ0(3a|η| − 2η2) −Da,0
22

∣∣∣∣∣ , 1
a,0
22 =

∣∣∣∣∣−Da,0
12 iµ0(−a|η| + 2η2)

−Da,0
22 µ0η(−3a+ 2|η|)

∣∣∣∣∣ .
(A5)

Finally, the coefficients for the inhomogeneous case in (30) become

Ck,a,0
m = lim

ω→0
Ck

m =
1

a,0
mk

1a,0 . (A6)

For completeness, we focus now on the homogeneous half-plane solution. First,

(10)
′

ω = 4η2(β1β2)
′

ω− 4(2η2
− q2

2ω
2)q2

2ω, with lim
ω→0

(10)
′
ω

ω
= 4η2(q2

1 + 3q2
2 ). (A7)

Next we set D̂0
jm = limω→0 D̂ jm , 1̂0

jm = limω→0 1̂ jm , and by employing (A1), (A2) and (36) we obtain
the following limits for the coefficients:

D̂0
11 = 0, D̂0

12 =−
iη

4q2
2 |η|

[
2q2

1 + 2|η|ξ2(q2
1 − q2

2 )
]
eξ2|η|,

D̂0
21 =

iη
4q2

2 |η|

[
2q2

1 + 2|η|ξ2(q2
1 − q2

2 )
]
eξ2|η|, D̂0

22 = 0.
(A8)

Because of (A7), the limit of (38) does not exist as ω→ 0, but the limit of the coefficients Ŝ jm does. By
setting

S̄11 =
iηµ0

10

[
(2η2
− k2

2)e
x2β2 − 2β1β2ex2β1

]
, S̄21 =

β1µ0

10

[
(2η2
− k2

2)e
x2β2 − 2η2ex2β1

]
,

S̄12 =
β2µ0

10

[
−2η2ex2β2 + (2η2

− k2
2)e

x2β1
]
, S̄22 =

iηµ0

10

[
−2β1β2ex2β2 + (2η2

− k2
2)e

x2β1
]
.

(A9)

we obtain
lim
ω→0

Ŝ11 = ( lim
ω→0

S̄11)D̂0
21, lim

ω→0
Ŝ21 = ( lim

ω→0
S̄21)D̂0

12,

lim
ω→0

Ŝ12 = ( lim
ω→0

S̄12)D̂0
12, lim

ω→0
Ŝ22 = ( lim

ω→0
S̄22)D̂0

21.

Thus, the final expressions completing the elastostatic homogeneous case are

lim
ω→0

S̄11 =
iµ0[x2|η|(q2

1 − q2
2 )+ q2

1 ]

η(q2
1 + 3q2

2 )
ex2|η|, lim

ω→0
S̄21 =

µ0[x2|η|(q2
1 − q2

2 )− q2
2 ]

η(q2
1 + 3q2

2 )
ex2|η|,

lim
ω→0

S̄12 =
iµ0[x2|η|(q2

2 − q2
1 )− q2

1 ]

η(q2
1 + 3q2

2 )
ex2|η|, lim

ω→0
S̄22 =

iµ0[x2|η|(q2
2 − q2

1 )+ q2
1 ]

η(q2
1 + 3q2

2 )
ex2|η|.

(A10)
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AN ENHANCED ASYMPTOTIC EXPANSION FOR THE STABILITY
OF NONLINEAR ELASTIC STRUCTURES

CLAUS DENCKER CHRISTENSEN AND ESBEN BYSKOV

A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic
materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial
terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns with two
different types of cross-section. Comparison with numerical results show that our expansion provides
more accurate predictions of the behavior than usual expansions.

The method is based on an extended version of the principle of virtual displacements that covers
cases with auxiliary conditions, such as inextensibility. Membrane locking and similar problems are also
handled by the method.

Part I. Theory

1. Introduction

The asymptotic expansions for elastic postbuckling and imperfection sensitivity originally introduced in
[Koiter 1945] may be applied to any linearly elastic structure that experiences bifurcation instability in its
geometrically perfect realization. There is, however, an inherent problem with these expansions, in that
they employ polynomial terms, which means that the predictions of carrying capacities are inaccurate
because the term of highest order approaches plus or minus infinity depending on its sign. This is,
of course, not a desirable situation; it may be mended by exploiting some of the ideas introduced in
[Christensen and Byskov 2008]. In particular, the concept of enhancing asymptotic expansions by using
hyperbolic instead of polynomial terms is central here.

A set of explicit expressions for the coefficients of asymptotic elastic postbuckling and imperfection
sensitivity analysis, applicable to linearly elastic structures with moderately large strains, linear loads
and linear prebuckling was first proposed in [Budiansky and Hutchinson 1964]. Soon afterward, Fitch
[1968] modified this to include nonlinear prebuckling. Later Byskov et al. [1996] extended the previous
expansions to include loads which are nonlinear to fourth order in the displacements, and introduced
Lagrange multiplier terms to fourth order in the displacements. The Lagrange multiplier terms provide
a way to impose constraints on the structure, such as inextensibility, and a way of handling numerical
phenomena such as membrane locking.

Here, we concentrate on two main subjects. The first is the development of a general asymptotic
method akin to the one in [Byskov et al. 1996], but with strains, constraints and loads that may be
arbitrarily nonlinear in the displacements. The constitutive relation is taken to be nonlinear elastic. Our
second focus is the application of the enhanced asymptotic expansion developed in [Christensen and

Keywords: elastic stability, full nonlinearity, asymptotic expansion.
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Byskov 2008], where we utilized the expansion to study postbuckling and imperfection sensitivity of
the so-called Shanley–Hutchinson model column; see, e.g., [Hutchinson 1974]. In the present study this
expansion is applied to the more realistic case of a nonlinear elastic Euler column.

2. Principle of virtual displacements

Consider a structure which, when it is geometrically perfect, experiences bifurcation at a certain critical
load level λc. In order to investigate the behavior of the perfect structure and the influence of small
geometric imperfections for situations in the vicinity of the critical load, we follow ideas from [Koiter
1945] and [Budiansky 1974], and use the perfect structure as a basis for the group of structures that only
differ from the perfect one by an initial geometric imperfection. Regard the initial geometric imperfection
as a small stress-free displacement û, which is not necessarily forced to obey the kinematic boundary
conditions and does not depend on the actual stress and deformation state in the structure. A full nonlinear
modified principle of virtual displacements including Lagrange multiplier terms, as previous used in
[Byskov et al. 1996], for example, and nonlinear elasticity, may in general be written

P(u, λ, û)= σ (1ε) · δ1ε(u, û)− δ
[
η ·C(u, û)

]
− λδ1B(u, û)= 0, (1)

where u is defined as an extended field of additional displacements that may include both derivatives
of the basic displacements with respect to position and Lagrange multipliers, ε is the strain measured
on the perfect structure, σ the nonlinear elastic stress, λ is a scalar load parameter, B is a nonlinear
loading functional based on the perfect structure, C contains the appropriate constraints with associated
Lagrange multiplier fields η, and 1 indicates the difference between nondeformed and deformed states.
Finally, following the notation in [Budiansky and Hutchinson 1964], a dot ( · ) signifies a generalized
inner product over the entire structure.

For later purposes, let u include n components u and define

u = {u1, u2, . . . , un
} = ui . (2)

According to these definitions,

1ε = ε(u+ û)− ε(0+ û), 1B = B(u+ û)− B(0+ û). (3)

The principle of virtual displacements depends linearly on the virtual displacements δu and may be
written as

P = δul · pl = 0, (4)

where

pl = σ (1ε) ·
∂ε(u+ û)
∂ul −

∂ [η ·C]
∂ul − λ

∂B(u+ û)
∂ul . (5)

Note that pl does not depend on δu.

3. Perturbation expansion

Let the load be controlled by the scalar load parameter λ. When λ is close to its classical critical value
λc, the displacement field u, the scalar load parameter λ, and the principle of virtual displacements
P(ui , λ, ûi ) may be expanded in perturbation series around the prebuckling solution in the spirit of,
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for instance, [Budiansky and Hutchinson 1964; Budiansky 1974; Byskov et al. 1996]. Let us choose a
characteristic buckling amplitude ξ , which vanishes at the critical point, as our perturbation parameter.
Further, let ξ denote a characteristic amplitude of the imperfection shape ũ:

û = ξ ũ. (6)

It is our purpose to establish a formula for the maximum value of λ for a given value ξ of the imper-
fection amplitude.

Following [Budiansky 1974] we may imagine that in the space (ξ , ξ, λ) the values of λ form a surface
and assume that the following relation is valid for small values of ξ , ξ and |λ− λc|:

ξ = αξγ (7)

where the coefficient α and the exponent γ both are scalars, and the value α = 0 implies the traditional
postbuckling path.

By choosing values of α and γ appropriately we may reach any point in the (ξ , ξ)-plane, in particular
the point associated with λmax, as indicated in Figure 1. In our search for the above mentioned maximum
value of λ we select the value γ = 2 and determine the value of α by inserting (7) into the equations for
the boundary value problem for the geometrically imperfect structure after having made an asymptotic
expansion in terms of the characteristic buckling amplitude ξ . We shall assume that a perturbation
expansion for the equilibria on which (7) holds may be written

λ

λc
= 1+

1λ

λc
= 1+ ā1ξ + ā2ξ

2
+ ā3ξ

3
+ O(ξ 4). (8)

λ

ξ

ξ̄ ξ̄ = α2ξ
γ 2

ξ̄ = α1ξ
γ 1

λmax(ξ)

Figure 1. Prebuckling and equilibrium paths on which ξ = αξγ close to bifurcation.
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Any such solution to the principle of virtual work includes parts of the prebuckling displacements u0,
where subscript 0 indicates the prebuckling path. In anticipation of this we write the solution close to
prebuckling as

u = u0(λ)+1u = ū0(λ)+ ξ ū1+ ξ
2ū2+ ξ

3ū3+ O(ξ 4). (9)

The perturbation coefficients āi and ūi may be split into a part independent of α and a part which
depends on α and vanishes when α = 0:

āi = ai + aαi , ūi = ui + uαi . (10)

Now P may be expanded in terms of ξ through its dependence on λ and u:

P = P0(λ)+1P = P0(λ)+ ξ P1+ ξ
2 P2+ ξ

3 P3+ O(ξ 4)= 0. (11)

4. Asymptotic problems

Since the prebuckling path is a solution to the principle of virtual displacements (1), the prebuckling
term of (11) is identically zero, i.e., P0(λ)≡ 0. Therefore the matched asymptotic expansion (11) may
be rewritten as

1P = P(u0+1u, λ)− P(u0, λ)= ξ P1+ ξ
2 P2+ ξ

3 P3+ O(ξ 4)= 0, (12)

where we demand that (12) is fulfilled exactly for all values of the expansion parameter ξ and obtain the
higher-order asymptotic stability problems according to the order in ξ :

first-order problem P1 = 0 (13)

second-order problem P2 = 0 (14)

third-order problem P3 = 0 (15)

4.1. First-, second- and third-order problems. In order to solve the asymptotic problems (13)–(15), the
three high-order operators Pi (i = 1, 2, 3) must be expressed in terms of the expansion coefficients of the
basic variables, i.e., ūi and āi . Prebuckling fields may be considered known at bifurcation and derivatives
with respect to the scalar load parameter λ are defined:

( )′ ≡
d( )
dλ

. (16)

In the following, subscript c or superscript c designates prebuckling values taken at bifurcation. From
(12) it is evident that Pi are the coefficient fields of an expansion in ξ of the prebuckling solution given
in Appendix B subtracted from the full postbuckling solution. In Appendix A this approach has been
utilized to provide the higher-order problems Pi provided that P has continuous derivatives at least up til
fourth order with respect to ūi . This ensures that the indices (i, j, k) in the below expressions for P1, P2

and P3 may be swapped freely:
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P1 = Pc
,i · ū

i
1, (17)

P2 = Pc
,i · ū

i
2+

1
2 Pc

,i j · [ū
i
1ū j

1] + ā1λc(δBc
,i + Pc

,i j u
j
c
′
) · ūi

1+αũ(Pc
,û), (18)

P3 = Pc
,i · ū

i
3+ Pc

,i j · [ū
i
2ū j

1] +
1
6 Pc

,i jk · [ū
i
1ū j

1ūk
1] + ā2λc(δBc

,i + Pc
,i j u

j
c
′
) · ūi

1 (19)

+ ā1λc
[
(δBc

,i + Pc
,i j u

j
c
′
) · ūi

2+
1
2(δBc

,i j + Pc
,i jkuk

c
′
) · [ūi

1ū j
1]
]

+ (ā1λc)
2(δBc

,i j u
j
c
′
+

1
2 Pc

,i jk[u
j
c
′
uk

c
′
] +

1
2 Pc

,i j u
j
c
′′)
· ūi

1

+αũ ·
[
ā1λc(δ1Bc

,û+ Pc
,i ûui

c
′
)+ Pc

,i ûūi
1
]
,

where, according to (4),

P,i ...k = δul · pl,i ...k =
∂n P

∂ui . . . ∂uk and P,û = δul · pl,û =
∂ P
∂ ûi (20)

and it is utilized that
P,λi ...k = δBi ...k = δul · B,li ...k . (21)

4.2. Stability operators. In the first- to third-order problems, (17)–(19), a number of scalar operators
may be identified, which we call the stability operators. These operators are given directly by the loading
conditions, the strain measure, the stress-strain relation, the constraints, and the imperfection shape. In
the following, the subscript of the operators indicates their degree.

Operators not acting on the imperfection shape. The following stability operators always enter the sta-
bility problems. Below the displacement fields, uα, uβ , uγ and uδ may be any displacement field:

Pc
1(uα)= pc

l · [u
l
α],

Pc
2(uα, uβ)= pc

l,i · [u
l
αui

β],

Pc
3(uα, uβ, uγ )= pc

l,i j · [u
l
αui

βu j
γ ],

Pc
4(uα, uβ, uγ , uδ)= pc

l,i jk · [u
l
αui

βu j
γ uk

δ],

(22)

Bc
1(uα)= Bc

,l · [u
l
α],

Bc
2(uα, uβ)= Bc

,li · [u
l
αui

β],

Bc
3(uα, uβ, uγ )= Bc

,li j · [u
l
αui

βu j
γ ],

Bc
4(uα, uβ, uγ , uδ)= Bc

,li jk · [u
l
αui

βu j
γ uk

δ].

(23)

It is easily shown that pc
l,i ...k is not influenced by the imperfection since û = ξ ũ = αξ 2ũ vanishes

at the critical load. Thus Pc
i and Bc

i only depend indirectly on the geometric imperfection through the
displacements they operate on.

Operators acting on the imperfection shape. These operators enter only when imperfections are present
(α 6= 0) and operate directly on the imperfection shape, ũ:

P̄c
2(uα, ũ)= pc

l,û · [u
l
α ũ] and P̄c

3(uα, uβ, ũ)= pc
l,i û · [u

l
αui

β ũ], (24)

B̄c
2(uα, ũ)=1Bc

,l û · [u
l
α ũ] = Bc

,li · [u
l
αũi
] (25)
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5. Bifurcation

The first-order problem (13) is referred to as the eigenvalue problem at bifurcation as it is used to de-
termine the critical load λc and its associated bifurcation mode ū1, which is not necessarily identical to
the traditional buckling mode u1 because imperfections may interact. Insert P1 as given by (17) in the
first-order problem (13) to furnish

0= Pc
2(ū1, δu), (26)

where the first postcritical constant ā1 does not enter. Thus, ū1 is simply determined as an eigenfield of
(26) at the critical load, fixed by the characteristic amplitude ξ . As (26) is independent of the imperfection
because the characteristic amplitude is only an expansion parameter, the first postcritical displacement
field does not depend on the imperfection, and (10) yields

ū1 = u1 and uα1 = 0. (27)

6. Higher-order problems

The main purpose of the higher-order problems (14) and (15) which are sometimes called the postcritical
problems, is to provide a relation between the expansion parameter ξ , which usually is identified as
some characteristic buckling mode amplitude, and the load level characterized by the value of the load
parameter λ. In order to do this, we need the values of the constants ā1, ā2, . . . , which determine the
initial displacement-load relation after the classical critical load has been reached. Therefore, the higher-
order displacement fields ū2, . . . , must be found. Interest is, however, usually focused on determining
the first nonvanishing postcritical constant. In the case of an unsymmetric structure, or a symmetric
structure loaded unsymmetrically, the first postbuckling constant a1 = 0 does not vanish, and we shall
not need more than the buckling field u1. On the other hand, when the structure as well as the load is
symmetric ā1 becomes zero, and we need to determine the higher order displacement field u2 and the
higher-order postbuckling constant ā2. When ā1 = 0 computation of â2 is simplified because in this case
certain terms vanish from the higher order problems.

6.1. First postcritical problem. The first postcritical problem (14) determines the second order displace-
ments ū2 and the first-order postcritical constant, ā1, when the first-order displacement field has been
determined by the buckling problem. Introduce P2 in (14) to obtain

0= Pc
2(ū2, δu)+ 1

2P
c
3(u1, u1, δu)+ ā1λc

(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)
+αP̄c

2(ũ, δu). (28)

First postcritical constant. To determine the first postcritical constant ā1 introduce δul
= ūl

2 in the buck-
ling problem (26) and subtract it from the first postcritical problem (28) with δul

= ul
1 and exploit that,

as shown in Appendix C, pc
l,i = pc

i,l and eliminate the unknown postcritical displacement field ūi
2 from

the problem. The solution takes the form

ā1 = a1+ aα1 = a1+αρ1, (29)

where we for later use define a1 and ρ1 by

a1 =
aN

1

aD
1

1
λc

and ρ1 =
ρN

1

aD
1

1
λc
, (30)
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with

aN
1 =−

1
2P

c
3(u1, u1, u1), ρN

1 =−P̄
c
2(ũ, u1), (31)

and

aD
1 = Bc

2(u1, u1)+Pc
3(u
′

c, u1, u1). (32)

Postcritical displacement field. When ā1 has been determined ū2 is found as a particular solution of
the first postcritical problem (28) where ū2 only enters linearly. It appears from (28) that the complete
solution for this problem takes the form

ū2 = c1u1+ ūpartic
2 . (33)

In principle the arbitrary constant c1 may be chosen freely. Each specific choice will only lead to a dif-
ferent interpretation of the expansion parameter ξ . Conversely, c1 is fixed when ξ has been chosen. Often
some orthogonality condition between the buckling displacement u1 and the postcritical displacement
ū2 is enforced in order to exclude domination of the buckling field on the postcritical field in (33); see,
e.g., [Fitch 1968; Budiansky 1974; Byskov et al. 1996]. Since ū1 does not depend on the imperfection,
and because ā1 depends linearly on α, u2 and uα2 may be found separately from (28), where we note that
uα2 depends linearly on α. The variational equation for u2 is

0= Pc
2(u2, δu)+ 1

2P
c
3(u1, u1, δu)+ a1λc

(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)

(34)

and the equation for uα2 = αv2 becomes

0= Pc
2(v2, δu)+ P̄c

2(ũ, δu)+ ρ1λc
(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)
. (35)

Note that α does not enter (35), and therefore v2 does not depend on α.

6.2. Second postcritical problem. The sole purpose of the second postcritical problem (15) is to deter-
mine the second postcritical constant ā2. Utilize P3 in (15) to provide a problem depending on ā2, ū3

and lower-order fields alone:

0= Pc
2(ū3, δu)+Pc

3(ū2, u1, δu)+ 1
6P

c
4(u1, u1, u1, δu)+ ā2λc

(
Bc

2(u1, δu)+Pc
3(u
′

c, u1, δu)
)

+ ā1λc
(
Bc

2(ū2, δu)+Pc
3(u
′

c, ū2, δu)+ 1
2B

c
3(u1, u1, δu)+ 1

2P
c
4(u
′

c, u1, u1, δu)
)

+ (ā1λc)
2 (Bc

3(u
′

c, u1, δu)+ 1
2P

c
4(u
′

c, u′c, u1, δu)+ 1
2P

c
3(u
′′

c , u1, δu)
)

+α
(
P̄c

3(u1, ũ, δu)+ ā1λc(B̄c
2(ũ, δu)+ P̄c

3(u
′

c, ũ, δu))
)
. (36)

Second postcritical constant. The second postcritical constant ā2 is determined by a procedure similar to
the one used to calculate the first postcritical constant ā1. Let δul

= ūl
3 in the buckling problem (26) and

subtract it from the second postcritical problem (36) with δul
= ul

1 to eliminate the unknown postcritical
displacement field ūi

3 from the problem:

ā2λc = (a2+ aα2 )λc = (a2+ ρ2α+ ρ3α
2)λc =

(aN
2 + ρ

N
2 α+ ρ

N
3 α

2)

aD
1

. (37)
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Here, aD
1 is determined earlier by (32) and aN

2 , a2, ρN
i and ρi are parameters that do not depend on α:

aN
2 =−P

c
3(u2, u1, u1)−

1
6P

c
4(u1, u1, u1, u1)

− a1λc
(
Bc

2(u2, u1)+Pc
3(u
′

c, u2, u1)+
1
2B

c
3(u1, u1, u1)+

1
2P

c
4(u
′

c, u1, u1, u1)
)

− (a1λc)
2 (Bc

3(u
′

c, u1, u1)+
1
2P

c
4(u
′

c, u′c, u1, u1)+
1
2P

c
3(u
′′

c , u1, u1)
)
, (38)

ρN
2 =−P

c
3(v2, u1, u1)

− a1λc
(
Bc

2(v2, u1)+Pc
3(u
′

c, v2, u1)
)

− ρ1λc
(
Bc

2(u2, u1)+Pc
3(u
′

c, u2, u1)+
1
2B

c
3(u1, u1, u1)+

1
2P

c
4(u
′

c, u1, u1, u1)
)

− 2ρ1a1λ
2
c
(
Bc

3(u
′

c, u1, u1)+
1
2P

c
4(u
′

c, u′c, u1, u1)+
1
2P

c
3(u
′′

c , u1, u1)
)

−
(
P̄c

3(u1, u1, ũ)+ a1λc(B̄c
2(u1, ũ)+ P̄c

3(u
′

c, u1, ũ))
)
, (39)

ρN
3 =− ρ1λc

(
Bc

2(v2, u1)+Pc
3(u
′

c, v2, u1)
)

− (ρ1λc)
2 (Bc

3(u
′

c, u1, u1)+
1
2P

c
4(u
′

c, u′c, u1, u1)+
1
2P

c
3(u
′′

c , u1, u1)
)

− ρ1λc(B̄c
2(u1, ũ)+ P̄c

3(u
′

c, u1, ũ)). (40)

In the actual computation of a2, ρ2 and ρ3 it may be exploited that several patterns of stability operators
appear more than once.

7. Asymptotic problems to lowest order

As mentioned earlier, we are often only interested in determining the lowest-order postcritical effects
with the implication that solving the asymptotic problems is simplified a great deal.

7.1. Postbuckling of a symmetric structure. Here, a1 equals zero. In order to predict the initial post-
buckling behavior for these structures, the second postbuckling constant a2 must be found. However,
when a1 = 0 the formulas (28) and (37) for determining u2 and a2 simplify considerably, becoming

0= Pc
2(u2, δu)+ 1

2P
c
3(u1, u1, δu) (41)

and

a2λc =
−Pc

3(u2, u1, u1)−
1
6P

c
4(u1, u1, u1, u1)

Bc
2(u1, u1)+Pc

3(u′c, u1, u1)
. (42)

8. Determination of stability operators

The stress field σ may be given by the displacements ui and ũi . However, for simplicity the stress field σ
is often given as a function of the additional strain field 1ε of (3), which itself is a function of ui and ũi .

The scalar stability operators given in (22) which determine the asymptotic coefficients āi and ūi

depend on strain terms, Lagrange multiplier terms and load terms through the principle of virtual dis-
placements.

8.1. Operators of the principle of virtual displacements. Together with the load operators Bc
i given

in (23) the general operators below are used both for calculating the postbuckling equilibrium and the
asymptotic effects of initial imperfections. As was the case for the stability operators, uα , uβ , uγ and uδ
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may be any relevant displacement field:

Ec
1(uα)= ε

c
,lu

l
α,

Ec
2(uα, uβ)= εc

,li u
l
αui

β,

Ec
3(uα, uβ, uγ )= εc

,li j u
l
αui

βu j
γ ,

Ec
4(uα, uβ, uγ , uδ)= εc

,li jkul
αui

βu j
γ uk

δ ,

(43)

Cc
1(uα)= (η ·C)

c
,lu

l
α,

Cc
2(uα, uβ)= (η ·C)c,li u

l
αui

β,

Cc
3(uα, uβ, uγ )= (η ·C)c,li j u

l
αui

βu j
γ ,

Cc
4(uα, uβ, uγ , uδ)= (η ·C)c,li jkul

αui
βu j

γ uk
δ .

(44)

The derivatives of the stress field with respect to the strain field are

σ = σi , D = σ,ε = Di j , D′ = σ,εε = D′i jk and D′′ = σ,εεε = D′′i jkl, (45)

where i , j , k and l may take on any natural number between 1 and the number of stress components.
The operators Di j , D′i jk and D′′i jkl are symmetric in their indices for nonlinear elastic materials; thus the
indices may be swapped freely. Now use the fact that the initial imperfection û does not depend on any
displacement component and that û = 0 at the classical critical load to evaluate the stability operators
given in (22). Finally, introduce the operators from (43) to provide the scalar stability operators.

Note that in the following the fields in brackets have the same number of dimensions as the corre-
sponding field of stiffnesses, which is one for each Ec. When evaluating the bracket each Ec is treated
as a tensor with a separate index. The order of the Ec-fields in the bracket is unimportant, since the
corresponding field of stiffnesses is symmetric.

Pc
1(uα)= σc ·Ec

1(uα)− C
c
1(uα)− λcBc

1(uα),

Pc
2(uα, uβ)= Dc · [Ec

1(uβ)E
c
1(uα)] + σc ·Ec

2(uα, uβ)− Cc
2(uα, uβ)− λcBc

2(uα, uβ),

Pc
3(uα, uβ, uγ )= D′c · [Ec

1(uγ )E
c
1(uβ)E

c
1(uα)]

+ Dc ·
(
Ec

2(uβ, uγ )Ec
1(uα)+Ec

1(uβ)E
c
2(uα, uγ )+Ec

1(uγ )E
c
2(uα, uβ)

)
+ σc ·Ec

3(uα, uβ, uγ )− Cc
3(uα, uβ, uγ )− λcBc

3(uα, uβ, uγ ). (46)

In the stability problems, the fourth stability operator P4 operates at least twice on the buckling dis-
placement field, u1. Exploit this to show that

Pc
4(u1, u1, uα, uβ)=D′′c · [Ec

1(u1)
2Ec

1(uα)E
c
1(uβ)]

+ D′c ·
(
Ec

2(u1, u1)Ec
1(uα)E

c
1(uβ)+Ec

2(uα, uβ)Ec
1(u1)

2

+ 2Ec
1(u1)Ec

1(uα)E
c
2(u1, uβ)+ 2Ec

1(u1)Ec
1(uβ)E

c
2(u1, uα)

)
+ Dc ·

(
Ec

2(u1, u1)Ec
2(uα, uβ)+ 2Ec

2(u1, uα)Ec
2(u1, uβ)+Ec

3(u1, u1, uα)Ec
1(uβ)

+Ec
3(u1, u1, uβ)Ec

1(uα)+ 2Ec
3(u1, uα, uβ)Ec

1(u1)
)

+ σc ·Ec
4(u1, u1, uα, uβ)− Cc

4(u1, u1, uα, uβ)− λcBc
4(u1, u1, uα, uβ). (47)
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8.2. Scalar operators associated with imperfections. Let operators evaluated at the initially perfect ref-
erence before loading be indicated by superscript I . Then, operators associated with imperfections may
be written

E I
1 (ũ)= ε

I
,l ũ

l and D I
2(uα, ũ)= ηαC I

,i ũ
i
; (48)

thus, the stability operators introducing imperfection given by (24) become

P̄c
2(uα, ũ)= Pc

2(uα, ũ)− Dc · [E I
1 (ũ)Ec

1(uα)] +D
I
2(uα, ũ),

P̄c
3(uα, uβ, ũ)= Pc

3(uα, uβ, ũ)− D′c · [E I
1 (ũ)Ec

1(uα)E
c
1(uβ)] − Dc · [E I

1 (ũ)Ec
2(uα, uβ)],

(49)

and
B̄c

2(uα, ũ) = Bc
2(uα, ũ). (50)

The asymptotic coefficients given earlier by the buckling, the first postcritical and the second postcrit-
ical problem are simple to compute when the above given stability operators have been computed for the
specific structure.

9. Load-carrying capacity of imperfect structures

The asymptotic equilibrium path of both perfect and imperfect structures where ξ = αξ 2 may be written

λ

λc
= 1+ (a1+ ρ1α)ξ + (a2+ ρ2α+ ρ3α

2)ξ 2
+ O(ξ 3). (51)

In reality the imperfection amplitude ξ is constant for each load case and introduction of α = ξ/ξ 2

provides an expression which links the load parameter λ to the characteristic buckling amplitude ξ for
given ξ :

λ

λc
=
(
1+ a1ξ + a2ξ

2
+ O(ξ 3)

)
+
ξ

ξ

(
ρ1+ ρ2ξ + O(ξ 2)

)
+

(
ξ

ξ

)2

(ρ3+ O(ξ))+ O((ξ/ξ)3). (52)

9.1. Enhanced asymptotic expansion through the origin. Structures for which ξ is a characteristic
buckling amplitude are subject to the simple boundary condition λ(ξ = 0)= 0. The asymptotic expansion
(52) does not fulfill this condition. An expression which does fulfill λ(ξ = 0) = 0 and matches (52)
asymptotically may be constructed as

λ

λc
=
(
1+ a1ξ + a2ξ

2
+ O(ξ 3)

)
+

(
ξ/ξ

1+m1ξ/ξ

)(
ψ1+ψ2ξ + O(ξ 2)

)
+

(
ξ/ξ

1+m1ξ/ξ

)2

(ψ3+ O(ξ))+ O
((

ξ/ξ

1+m1ξ/ξ

)3 )
. (53)

An asymptotic match of (53) with (52) provides the constants ψi as

ψ1 = ρ1, ψ2 = ρ2 and ψ3 = ρ3+m1ρ1, (54)

while the condition λ(ξ = 0)= 0 furnishes for m1 the expression

m2
1+ 2ρ1m1+ ρ3 = 0. (55)
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Remark. Our enhancement is not the only possible one. For instance, Koiter [1945] establishes one in
a more physically intuitive way than ours, which is of a more mathematical origin and nature. Koiter’s
method, which results in modifying the load term in the expression for the potential energy or principle
of virtual work by multiplication by the load parameter, has been applied elsewhere, as in [Byskov and
Hutchinson 1977] and [Koiter 2009]. After a simple rearrangement of terms, Koiter’s expression, valid
for linear elasticity and linear prebuckling, is

λ

λc
=
ξ + b1ξ + b2ξ

2

ξ + ξ
(56)

which at first appears to be different from our expression. An expansion in terms of ξ reveals, however,
that the structure of the two formulas is the same for small values of ξ . At the same time, our choice
seems justified by the remarkably accurate results for large values of the rotation θ0 shown in Figure 11.

9.2. Asymptotic maximum load of imperfect structures. The maximum load-carrying capacity of the
imperfect structure may be determined asymptotically from either the traditional asymptotic expansion
(52) or from the enhanced asymptotic expansion (53) with the same asymptotic accuracy. The asymptotic
procedure for determining maximum load is, however, simpler for the traditional asymptotic expansion
(52) and we shall later tie our enhanced expansion to it, but for larger imperfections abandon it in favor
of the enhanced expansion.

The asymptotic maximum load of the imperfect structure is found where the derivative of λ/λc, given
by (51), with respect to the buckling amplitude ξ becomes zero:

d(λ/λc)

dξ
= (a1− ρ1αm)+ 2(a2− ρ3α

2
m)ξm + O(ξ 2

m)= 0, (57)

where subscript m indicates quantities related to the asymptotic maximum load and where we have used

dα
dξ
=−2

α

ξ
, (58)

a consequence of (7).
An asymptotic match in (57) reveals that

αm = c1+ c2ξm + O(ξ 2
m) or ξ = c1ξ

2
m + c2ξ

3
m + O(ξ 4

m), (59)

where the constants are readily found to be

c1 =
a1

ρ1
and c2 = 2

a2ρ1− a1ρ3

ρ2
1

. (60)

Insert the asymptotic expansion (59) for αm in (51) to obtain a relation between the maximum load,
λm , and the buckling amplitude at maximum load, ξm :

λm

λc
= 1+ 2a1ξm +

(
a2+ ρ1c2+ ρ2c1+ ρ3c2

1
)
ξ 2

m + O(ξ 3
m). (61)

In order to determine the maximum load for imperfect structures from (61), an asymptotic expression
for ξ at maximum load must be found from (59). Since a1= 0 implies c1= 0, the asymptotic investigation
is split into two cases, one for unsymmetric (a1 6= 0) and one for symmetric (a1 = 0) structures.
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Maximum load of unsymmetric structures. The asymptotic expression for the buckling amplitude ξm at
maximum load becomes

ξm = l1ξ
1
2 + l2ξ + O(ξ

3
2 ) with l1 =

√
ρ1

a1
and l2 =

a1ρ3− a2ρ1

a2
1

. (62)

The asymptotic expansion for ξm , given by (62), may be inserted in (61) to provide the exact initial
asymptotic dependency of the maximum load on the imperfection amplitude and shape when a1 6= 0:

λm

λc
= 1+ cm

1
2
ξ

1
2 + cm

2
2
ξ + O(ξ

3
2 )= 1− 2

√
a1ρ1 ξ

1
2 +

(
a2ρ1

a1
+ ρ2+

ρ3a1

ρ1

)
ξ + O(ξ

3
2 ) , (63)

with

cm
1
2
=−2

√
a1ρ1 and cm

2
2
=

(
a2ρ1

a1
+ ρ2+

ρ3a1

ρ1

)
, (64)

where we note that the maximum only exists when a1ρ1 > 0.

Maximum load of symmetric structures. At maximum load the asymptotic expression for the buckling
amplitude ξm becomes

ξm = q1ξ
1
3 + O(ξ

2
3 ) with q1 =

( ρ1

2a2

)1
3
. (65)

Insert the asymptotic expansion for ξm , given by the imperfection amplitude ξ (65) in (61) to provide
the exact asymptotic dependency of the maximum load on the imperfection amplitude and shape when
a1 = 0 and get

λm

λc
= 1+ cm

2
3
ξ

2
3 + O(ξ) with cm

2
3
= 3a

1
3
2

(ρ1

2

)2
3
. (66)

Note that the maximum only exists when a2 < 0.
For a symmetric structure the third postbuckling constant a3 will also vanish and one more term may

be added to the asymptotic expansion (66) of the maximum load when a1 = 0 without further expansion
of the stability problems.

It is easily shown that the third degree term, t3, of (51) takes the form

t3 = kiα
iξ 3, summed over i ≥ 1. (67)

Thus, the expression for the maximum load associated with ξm simplifies to the exact asymptotic
expansion

λm

λc
= 1+ 3a2ξ

2
m +

2a2ρ2

ρ1
ξ 3

m + O(ξ 4
m), (68)

where it has been exploited that both a1 and a3 vanish.
Use ξm as given in (65) to obtain the asymptotic expression for the maximum load as a function of

the imperfection shape and amplitude:

λm

λc
= 1+ cm

2
3
ξ

2
3 + cm

3
3
ξ + O(ξ

4
3 ) with cm

3
3
= ρ2, (69)

where cm
2
3

follows from (66)b.
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Enhanced maximum load prediction. Because the above asymptotic expansion of the maximum load
eventually approaches plus or minus infinity, it often deviates considerably from the real maximum load,
even for relatively small imperfection amplitudes; this is the basic reason for our enhanced expansion
(53). Due to the fact that the load parameter is zero before loading is applied, the maximum load
of any imperfect structure must be greater than or equal to zero. Since we concentrate on structures
whose maximum load decreases with the imperfection amplitude ξ , but is always greater than zero,
an enhanced maximum load prediction of the asymptotic method may be obtained by matching the
asymptotic maximum load prediction given above with an expression that approaches zero with ξ .

The traditional polynomial asymptotic expression for maximum load is determined by (63) for a 6= 0
and by (66) or (69) when a = 0. In the enhanced approach each asymptotic term is chosen to be a
hyperbolic function approaching a constant at infinity. Often only the first asymptotic term is determined
and therefore the enhanced asymptotic expansion is required to approach zero even if only one asymptotic
term is used. The second term in the enhanced asymptotic expansion is required to match the second
traditional asymptotic term, if present. A third enhancing term is included to force the expansion to
approach zero at infinity. Its presence does, however, not interfere with the asymptotic correctness of
the expansion because its dependence on the expansion parameters is beyond the limit of the original
expansion. We establish the enhanced asymptotic expansion for the two separate cases:

Enhanced expansion, a 6= 0:

λm

λc
= 1+ cm

1
2

(
ξ

1+ (cm
1
2
)2ξ

)1
2

+ cm
2
2

(
ξ

1+ (cm
1
2
)2ξ

)
+ cm

2
2

cm
1
2

(
ξ

1+ (cm
1
2
)2ξ

)3
2

+ O(ξ
3
2 ) (70)

Enhanced expansion, a = 0:

λm

λc
= 1+ cm

2
3

(
ξ

1+ (−cm
2
3
)

3
2 ξ

)2
3

+ cm
3
3

(
ξ

1+ (−cm
2
3
)

3
2 ξ

)
− cm

3
3
(−cm

2
3
)

1
2

(
ξ

1+ (−cm
2
3
)

3
2 ξ

)4
3

+ O(ξ
3
2 ) (71)

Part II. Application: the Euler column

10. Introduction to the Euler column

A vast number of analytical asymptotic and numerical studies have been performed on the postbuckling
and imperfection sensitivity of the linear elastic Euler column (see [Kuznetsov and Levyakov 2002], for
example), while the effects of nonlinear elasticity on the behavior of Euler columns have been studied
less frequently; but see, for instance, [Tvergaard and Needleman 1982].

In the following, the formulas derived above are applied to the pin-ended Euler column (see Figure 2 on
the next page), taking into account the effect of nonlinear elasticity as well as full nonlinear kinematics.
Two different cross-sections, one symmetric and one asymmetric, of the column are investigated in
order to show the ability of our method to handle both kinds of structures. Furthermore, the influence
and possible simplifications caused by introduction of inextensibility is examined. In Appendix D the
problem of stability of the geometrically perfect column is solved for nonlinear elasticity, considering
extensibility as well as inextensibility. It turns out that the extensible and inextensible case yield the same
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or

x, v

z, w

θ0
Both cross-sections:

Area A
Moment of inertia I
Same buckling load

σ

1 Ec
t

σc

In our examples:
σ

σu
=
ε

εu

(
1+

(
ε

εu

)n)− 1
n

ε

λPc

Figure 2. The nonlinear elastic Euler column.

critical load, while the first and second postbuckling constants are only identical or close to identical
when the material model is linear. Thus, to solve stability problems for nonlinear elastic structures it is
imperative to model extensibility.

11. Geometry and constitutive relation of the Euler column

In solving the stability problems we shall employ fully nonlinear strain measures and a fully nonlinear
elastic stress-strain relation. The column is not regarded as inextensible but the usual Bernoulli–Euler
beam theory simplifications are implemented, with the following nondimensional cross-sectional con-
stants:

A0 ≡

∫
A0

d A, Z0 ≡

∫
A0

z d A = 0

I j ≡

∫
A0

zj+1d A, i j ≡

(π
L

)j+1 I j

A0
� 1 (i = 1, 2, 3),

(72)

where A0 is the initial area of the columns cross-section and it important to note that all i j vanish
compared to unity according to the Bernoulli–Euler beam theory.

For convenience we introduce the nondimensional material stiffnesses

e′c = i1 Ec
t,ε/Ec

t and e′′c = i3 Ec
t,εε/Ec

t , (73)

where we note that Ec
t,ε/Ec

t and Ec
t,εε/Ec

t may be very large. Thus, the constants e′c and e′′c are not
necessarily small compared to unity.

11.1. Cross-sections. In order to demonstrate the capability of our method to predict the postbuckling
behavior of geometrically perfect columns as well as describing the load-displacement relation of geo-
metrically imperfect columns, either with symmetric or asymmetric cross-sections consider the two types
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of cross-sections shown in Figure 2. In both cases, which were studied in [Tvergaard and Needleman
1982], we let the area A and the moment of inertia I1 of the cross-sections be identical for the two
columns. In order to obtain the same critical load, given by the value of i1 and material expense of the
two types of column, the height and width of the triangular cross-section must be

hT =

√
3
2 h, bT =

√
2
3 b, (74)

where h and b are the height and width of the rectangular cross-section, respectively, hT and bT denote
the equivalent quantities of the triangular cross-section, and

i1 =
1
12

(
hπ
L

)2

. (75)

The higher-order nondimensional moments i2 and i3 are, of course, not the same for the nonsymmetric
and symmetric cross-sections.

Triangular cross-section. Only the second dimensionless moment of inertia i2 is needed since a1 6= 0
when the material is nonlinear:

i2 =

√
3
2

90

(
hπ
L

)3

. (76)

Rectangular cross-section. Here, both i2 and i3 are necessary because a1 = 0:

i2 = 0, i3 =
1

80

(
hπ
L

)4

. (77)

11.2. Strain-displacement relation. According to Bernoulli–Euler beam theory the only nonvanishing
strains are in the axis direction and may be given as

ε(x)= ε(x)+ zκ(x), (78)

where ε is the fiber strain, ε the strain of the neutral axis, and κ denotes the curvature strain. In the
following we consider full kinematic nonlinearity, and thus

ε =
√
(1+ v̇)2+ ẇ2− 1, κ = θ̇ =

ẅ(1+ v̇)− v̈ẇ
(1+ v̇)2+ ẇ2 , (79)

where a dot over a quantity denotes differentiation with respect to x , and the coordinates x and z and the
displacements v and w are defined in Figure 2.

11.3. Stress-strain relation. Obviously, the choice of stress-strain relation influences the postbifurcation
constants through the nondimensional derivatives with respect to strain at critical load defined in (73),
i.e., through e′c and e′′c , which both equal zero in linear elasticity. Provided that buckling takes place under
decreasing stiffness in compression, e′c may be any positive value and e′′c any value at all, independently
of each other and of i1 and i3 respectively:

e′c ∈ ]0;∞[, e′′c ∈ ]−∞;∞[. (80)
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To investigate the stability behavior of a structure for realistic cases, we shall assume that the column
obeys the nonlinear elastic constitutive relation

σ

σu
=
ε

εu

(
1+

(
ε

εu

)n
)−1/n

, (81)

where E is Young’s modulus, σu < 0 is the ultimate stress in compression, εu = σu/E < 0 is the strain
corresponding to σu assuming linear elasticity, and n is a hardening parameter. High values of n imply
nearly linear elastic behavior up till σu , while low values of n induce nonlinear elastic behavior even at
small stresses compared to σu .

n = 1
n = 2
n = 10
n ∼∞

(σ/σu)

(ε/εu)21.751.51.2510.750.50.250

1

0.75

0.5

0.25

0

Figure 3. Stress-strain relation for different levels of the strain hardening parameter n.
For n→∞ the constitutive model approaches linear elasticity-perfect plasticity.

11.4. Expansion parameter. Let the expansion parameter ξ be identified as the rotation of the column
at x = 0:

ξ ≡ θ(0). (82)

12. Geometrically perfect Euler column

Appendix D contains the detailed calculations and derivations which lead to the determination of the
asymptotic coefficient fields and critical load. In particular, we note that

λc = 1, σc = i1 Ec
t . (83)

12.1. Unsymmetric elastic triangular cross-section. When the cross-section of the column is nonsym-
metric and the material model is nonlinear elastic at the same time, the first postbuckling constant a1

does not vanish. Under these conditions it is only necessary to determine the buckling displacement field
u1 and a1. The asymptotic displacement field is

w = w1ξ + O(ξ 2)= (L/π) sin(πx/L)ξ + O(ξ 2),

v = v1ξ + O(ξ 2)= 0+ O(ξ 2),
(84)
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and the asymptotic load parameter is

λ

λc
= 1+ a1ξ + O(ξ 2)= 1−

4e′ci2

3π i2
1(1+ e′c)

ξ + O(ξ 2), (85)

which is in exact agreement with the result obtained in [Tvergaard and Needleman 1982] for the non-
symmetric cross-section.

12.2. Symmetric as well as linear elastic unsymmetric cross-sections. When the cross-section of the
column is symmetric or when the material is linear elastic, the first postbuckling constant a1 vanishes.
Then, it is necessary to determine the second postbuckling constant a2 to investigate postbuckling behav-
ior. To the lowest order the asymptotic loads and displacements are

w = w1ξ +w2ξ
2
+ O(ξ 3)= (L/π) sin(πx/L)ξ + O(ξ 3),

v = v1ξ + v2ξ
2
+ O(ξ 3)=−

1
4

(
(1+ e′c)x + (1− e′c)

L
2π

sin(2πx/L)
)
ξ 2
+ O(ξ 3),

(86)

and the asymptotic load parameter is

λ

λc
= 1+ a2ξ

2
+ O(ξ 3)= 1+

i1− 3(e′c)
2
+ e′′c

8i1(1+ e′c)
ξ 2
+ O(ξ 3). (87)

12.3. Comparison with known results: the elastica. The load-carrying capacity in initial and advanced
postbuckling of the linear elastic pin-ended Euler column has received much attention since the original
study in [Euler 1744] of the so-called elastica and has been investigated in [Britvec 1973; Kuznetsov
and Levyakov 2002], among other works, for a full nonlinear strain measure.

Excluding material nonlinearity from our initial postbuckling loads (87) provides the linear elastic
postbuckling constants a1 = 0 and a2 =

1
8 , which agree exactly with the elastica solution in [Britvec

1973]. It may be worth noticing that, according to the kinematically moderately linear theory, a2 as
well as a1 vanishes which underlines the importance of applying a general full nonlinear stability theory
to obtain accurate postbuckling constants. On the other hand, the fact that the results for the second
postbuckling constant differ between the two theories should not, in general, discredit the moderately
nonlinear theory. The relative difference in predicted load is, after all, only ξ/8 (around 9.8% at the very
large end rotation 45◦).

12.4. Postbuckling behavior assuming nonlinear elasticity. As is evident from the expressions (85) and
(87), introduction of nonlinear elasticity requires, apart from more constitutive parameters, i.e., e′c and e′′c ,
a detailed knowledge of the cross-section geometry through i2 and i3. Because the expressions are only
valid for small i1 compared to unity the ratio between h and L must be limited. Since the absolute value
of εu usually is less than one tenth of a per cent, the order of i1 lies in the same range. In Figures 4–7
results for the Euler column are shown for the constitutive relation given by (81). The critical load, the
first and second postbuckling constants are plotted as functions of the ratio between i1 and the absolute
value of εu in the range [0; 2] (where εc/εu ∈ [0; 1] as indicated at the top of Figures 4–6).

Bifurcation load. In Figure 4 the nondimensional critical load, σc/σu , of the column is plotted for both
nonlinear and initially linear elastic behavior. It is not surprising that the difference in critical load
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between nonlinear and linear elasticity increases with increasing cross-section, given by i1, relative to
the “ultimate” strain εu .

n = 1
n = 2
n = 10
n ∼∞

(σ/σu)

(i1/|εu |)21.751.51.2510.750.50.250

1

0.75

0.5

0.25

0

Figure 4. Bifurcation load of nonlinear elastic Euler columns with an ultimate stress.

Triangular cross-section. Figure 5 shows the first postbuckling constant a1 of the triangular cross-section
for nonlinear elasticity. Only at extremely small values of i1/|εu|, i.e., for very slender columns, or
extremely high values of n with relatively low values of i1/|εu| is a1 according to the nonlinear elastic
theory close to vanishing as it does according to linear elastic theory. The fact that nonlinear stress-strain
relations deviate faster from initial linearity for lower values of n reflects in that a1 initially deviates
more rapidly from zero with increasing values of εc/εu (and thus i1/|εu|) the lower the value of n. When
εc/εu approaches unity (i1/|εu| approaches 2) high n yields the largest absolute values of a1 because of
the sudden large drop in tangent modulus near εu .

n = 10
n = 2
n = 1

a1
√
|εu |

(i1/|εu |)21.751.51.2510.750.50.250

0

−0.05

−0.1

−0.15

−0.2

Figure 5. First postbuckling constant a1 for triangular cross-section.
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n = 10
n = 2
n = 1

a2|εu|

(i1/|εu|)21.751.51.2510.750.50.250

0

-0.05

-0.1

-0.15

-0.2

Figure 6. Second postbuckling constant a2 for rectangular cross-section.

Rectangular cross-section. Results for the second postbuckling constant a2 of the rectangular cross-
section in nonlinear elastic postbuckling are shown in Figure 6. When i1/|εu| → 0, i.e., for extremely
slender columns, the buckling stress is very low, and therefore the second postbuckling constant a2 of
nonlinear elasticity approaches that of linear elasticity. In linear elasticity a2|εu| is usually of the order
10−4. However, as i1/|εu| is increased a2 rapidly grows negative and reaches a global minimum. The
higher the value of n the lower the minimum (the minimum for n = 10 falls outside the bounds of this
plot), and as n→∞ the minimum value of a2 becomes −∞ and is reached for i1/|εu| = 2 where εc = εu).
Thus, assuming material linearity only furnishes reliable values of a2 for extremely slender columns.

The large deviation of a2|εu| in Figure 6 from its linear elastic counterpart helps to demonstrate that
the linear elastic value of a2, assuming full nonlinear kinematics differs very little from the value obtained
under the assumption of moderately nonlinear kinematics compared to the effects of nonlinearity of the
stress-strain curve. Therefore, as discussed earlier, the simplifications of moderately nonlinear geometry
should not necessarily be discarded.

12.5. Comparison with numerical results. An immediate and important consequence of including non-
linear elastic effects is that both symmetric (except for extremely slender columns) and nonsymmetric
cross-sections may become imperfection sensitive in contrast to the predictions of linear elasticity. It
follows that nonlinear material effects may not be handled safely by assuming that the correct nonlinear
elastic bifurcation load shown in Figure 4 predicts the real load-carrying capacity.

The two cross-section types, triangular and rectangular are, as mentioned earlier, constructed to occupy
the same amount of material for the same critical load. However, as is clear from Figure 7, the postbuck-
ling paths of the cross-sections are not identical as the column with triangular cross-section experiences
asymmetric buckling (in contrast to its linear elastic counterpart), while the column with rectangular
cross-section buckles symmetrically. This agrees with the findings in [Tvergaard and Needleman 1982].

Figure 7 shows an example of the load parameter, λ, plotted against the end rotation of the column
for both the triangular and the rectangular cross-sections where |εu| = 0.002, n = 2, i1/|εu| = 0.2
(h/L = 0.022) which yields a1

√
|εu| = −0.0538 for the triangle and a2|εu| = −0.117 for the rectangle.



944 CLAUS DENCKER CHRISTENSEN AND ESBEN BYSKOV

Rectangle, FEA
Rectangle, asymptotic

Triangle, FEA
Triangle, asymptotic

λ
Pc

PE

θ00.0250.0150.005−0.005−0.015−0.025

1

0.975

0.95

0.925

0.9

0.875

Figure 7. Initial postbuckling behavior for rectangular and triangular cross-sections,
|εu| = 0.002, n= 2, i1/|εu| = 0.2. The classic Euler load of linear elasticity is denoted PE .

The asymptotic results for initial postbuckling are verified by a finite element analysis. While the
symmetric asymptotic analysis including both the postbuckling constants a1 (= 0) and a2 matches the
finite element analysis results nicely in the range θ0 ∈ [−0.025; 0.025] the precision of the nonsymmetric
analysis which is only carried out to the first postbuckling constant a1 rapidly deteriorates mainly because
of the heavy nonlinearities introduced through the material law.

The column with rectangular cross-section always exhibits imperfection sensitivity although not as
distinct as with the triangular cross-section because it experiences symmetric postbuckling.

According to the asymptotic analysis the triangular cross-section column is initially stable in post-
buckling when forced to bifurcate in the opposite direction of the w-axis (see Figure 2), in the direction
of the cross-section axis z while it is imperfection sensitive when buckling in the direction of the w-axis.
On the other hand, the finite element analysis shows that the initial postbuckling stability is soon negated
by a decrease in load-carrying capacity which is not detected by the asymptotic analysis. Therefore and
because the accuracy of the asymptotic approach decreases soon after bifurcation it may be an obvious
idea to include the next asymptotic term a2 for nonsymmetric structures as well as for symmetric ones.

13. Imperfect Euler column

In principle the geometric imperfection may be of any shape. Here, in the spirit of Koiter, we restrict
ourselves to columns subject to an initial imperfection in the shape of the buckling displacement field u1

and characterized by the imperfection amplitude ξ :

ŵ = ξw1, v̂ = ξv1 = 0. (88)
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The asymptotic equilibrium path of the imperfect column close to bifurcation may be examined
through the stability problems derived earlier by calculating the imperfection shape parameters ρ1, ρ2

and ρ3. However, since the second postbuckling constant a2 was not determined for the nonsymmetric
perfect column, ρ2 and ρ3 may not be determined exactly and are therefore excluded for nonsymmetric
perfect columns.

13.1. Asymptotic imperfection shape parameters. In Appendix E the asymptotic stability problems for
imperfect structures are solved in details. For small values of i1 The asymptotic imperfection parameters
are given as

ρ1λc =
−1

1+ e′c
(89)

for all columns, while ρ2 and ρ3 are only determined for symmetric columns:

ρ2λc = 0, ρ3λc = (ρ1λc)
2
−

e′c
2
−

5
9 e′′c

2(1+ e′c)3
. (90)

For various values of the hardening parameters n the dependence on the slenderness i1/|εu| of the two
nonvanishing imperfection shape parameters ρ1 and ρ3 are shown in Figure 8. For infinitely slender
columns, i.e., for i1/|εu| → 0, the imperfection parameters ρ1 and ρ3 approach their linear elastic
counterparts ρ1 = −1 and ρ3 = −1, respectively. When i1/|εu| increases the absolute values of ρ1

and ρ3 decrease towards zero, though for ρ3 the sign changes for large n. The larger the value of the
hardening parameter, the faster decrease of |ρ1| and |ρ3|. In general, this means that the equilibrium of
a geometrically imperfect nonlinear elastic column is closer to the equilibrium of its perfect realization

n = 1
n = 2
n = 10

ρ1

(i1/|εu |)21.510.50

0

−0.25

−0.5

−0.75

−1

n = 1
n = 2
n = 10

ρ3

(i1/|εu |)21.510.50

1

0.75

0.5

0.25

0

−0.25

−0.5

Figure 8. Left: The first imperfection shape parameter ρ1. Right: The third imperfec-
tion shape parameter ρ3 for symmetric columns.
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than it is for a linear elastic column. The initial imperfection sensitivity, described by the maximum
load, depends both on the initial postbuckling path and the three imperfection shape parameters. The
nonlinear elastic effect of smaller imperfection parameters partly neutralizes the more rapid decrease in
postbuckling load capacity shown for the perfect Euler column.

13.2. Asymptotic maximum load. As mentioned above, the expression for the asymptotic maximum
load depends on whether the perfect structure is symmetric or not.

Nonsymmetric column. The asymptotic maximum load of the nonsymmetric column may be computed
from (63):

λm

λc
= 1+ cm

1
2
ξ

1
2 + O(ξ 1) (91)

where the constant cm
1
2

, shown in Figure 9, is given by

cm
1
2
=−

4
1+ e′c

√
i2

3π i2
1

e′c, (92)

where λc and a1 are determined for the perfect column and ρ1 is given by (89).

n = 1
n = 2
n = 10

(i1/|εu |)

cm
1
2
|εu |

1
4

21.510.50

0

-0.25

-0.5

-0.75

Figure 9. The maximum load constant, cm
1
2

, for nonsymmetric columns.

Symmetric column. The asymptotic maximum load of the symmetric column is determined from (69):

λm

λc
= 1+ cm

2
3
ξ

2
3 + O(ξ

4
3 ), (93)

where the constant cm
2
3

, shown in Figure 10, is given by

cm
2
3
=

3
2(1+ e′c)

(
i1− 3(e′c)

2
+ e′′c

4i1

)1
3

. (94)
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n = 1
n = 2
n = 10

cm
2
3
|εu |

1
3

(i1/|εu |r)21.510.50

0

-0.5

-1

-1.5

Figure 10. The maximum load constant cm
2
3

for symmetric columns.

While λc and a2 are associated with the perfect column, ρ1 is given by (89). Note that even though
ρ2 and ρ3 do not affect the maximum load directly in this case, then the fact that ρ2 vanishes enables us
to show that the remainder O(ξγ ) is of order ξ

4
3 and not of order ξ 1.

13.3. Comparison with numerical results. Here, results of the usual asymptotic and the enhanced as-
ymptotic expansion, both taking imperfections into account, are compared with numerical results ob-
tained by a full nonlinear finite element analysis for the same symmetric column that was used for
comparison of perfect column results. Equilibria for the imperfection levels ξ = 0.0025, 0.01, 0.04 are
plotted in Figure 11 for a regular expansion with one and two terms, as well as the enhanced asymptotic
expansion of (53), which is forced to obey the condition λ(ξ = 0)= 0. The one-term asymptotic expansion
is the traditional lowest order asymptotic method developed in [Koiter 1945] which only depends on ρ1

in (52), while ρ2 is ignored. The two-term asymptotic expansion takes also ρ2 into account by (52). For
the structure in question the relevant constants are

ρ1 =−0.90, ρ3 = 0.57, m1 = 1.39, ψ3 =−0.681. (95)

It appears from Figure 11 that, as expected, independent of the imperfection amplitude the enhanced
solution through (0, 0) yields the best approximation to the numerical solution, especially for small values
of the characteristic buckling amplitude, θ0. Though both the one- and the two-term solutions diverge
close to zero, the two-term solution provides accurate results for much smaller buckling amplitudes than
the one-term solution. While the one-term solution provides reliable estimates of the equilibrium path
only for very small imperfection levels, the two-term solution approximates loads around the maximum
well even for moderate imperfection amplitudes, although the shape of the equilibrium path is badly
approximated for smaller amplitudes of the buckling mode (small values of ξ ). As seen from the plot,
the estimates of the equilibrium paths given by the enhanced asymptotic expansion lie very close to the nu-
merical results for any limited buckling amplitude and even for relatively large imperfection amplitudes.
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Through (0, 0)
2 term approximation
1 term approximation

FEA

ξ̄ = 0.04

ξ̄ = 0.01

ξ̄ = 0.0025

ξ̄ = 0.0

λ
Pc

PE

θ00.070.060.050.040.030.020.010

1.2

1

0.8

0.6

0.4

0.2

0

Figure 11. Comparison of equilibrium paths for geometrically imperfect column with
rectangular cross-section, |εu| = 0.002, n = 2, i1/|εu| = 0.2. The classic Euler load of
linear elasticity is denoted PE .

In Figure 12 the dependence of the maximum load on the imperfection amplitude ξ is illustrated
for the traditional polynomial 1-term asymptotic expansion given by (93), for the enhanced hyperbolic

Enhanced, 1 asymptotic term
1 asymptotic term

FEA

λm
Pc

PE

ξ̄0.350.30.250.20.150.10.050

1

0.8

0.6

0.4

0.2

0

Figure 12. Comparison of maximum load prediction for rectangular cross-section,
|εu| = 0.002, n= 2, i1/|εu| = 0.2. The classic Euler load of linear elasticity is denoted PE .
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asymptotic expansion suggested in (71) and for numerical finite element calculations. For the actual
column the relevant constants are

cm
2
3
=−6.83, cm

3
3
= 0. (96)

and thus only one nonvanishing asymptotic term exists for both the enhanced and the traditional asymp-
totic method. Comparison between numerical results and the traditional 1-term polynomial asymptotic
expansion shows good agreement only for very small values of ξ . The enhanced expansion provides rel-
atively accurate approximations of the maximum load even at large values of the imperfection amplitude
ξ . In part, this is due to the fact that the enhanced method utilizes that the maximum load does not drop
below zero by letting the maximum load approach zero for large values of ξ . For this column numerical
studies show that the maximum load has a lower limit which is higher than zero, yet the enhanced method
provides excellent results.

14. Conclusion

In the body of the text a generally applicable asymptotic expansion valid for determination of postbifur-
cation behavior and imperfection sensitivity of structures under the assumption of full kinematic and
elastic nonlinearity has been established. The asymptotic prediction of equilibria for imperfect structures
has been enhanced such that the boundary condition that the buckling amplitude vanishes with the load
for any imperfection is fulfilled.

The above comparisons with numerical results indicate that exploitation of additional boundary condi-
tions and limit states imposed on the asymptotic expansion may lead to modified, but still asymptotically
correct, expressions for imperfect structures which provide stable and relatively accurate results even for
larger values of the imperfection amplitude.

Appendix A. Asymptotic coefficient fields Pi

Consider the function P(ui , λ) of a field of n variables, u(ξ):

u(ξ)= {u1(ξ), u2(ξ), . . . , un(ξ)} = ui (ξ), (A-1)

where P(ui , λ) depends linearly on the scalar load parameter λ(ξ), and where we shall assume that the
partial derivatives of P with respect to ui are continuous at least to third order to ensure that the order
of differentiation is unimportant.

A.1. Expansion of P at bifurcation. Suppose ξ = 0 at the bifurcation and expand in series in ξ around
the singular point:

λ/λc = 1+ ā1ξ + ā2ξ
2
+ ā3ξ

3
+ O(ξ 4),

u(ξ)= uc+ ξ ūT
1 + ξ

2ūT
2 + ξ

3ūT
3 + O(ξ 4),

P (u(ξ), λ(ξ))= Pc+ ξ PT
1 + ξ

2 PT
2 + ξ

3 PT
3 + O(ξ 4),

(A-2)

where c designates prebifurcation values taken at the critical point. In the following we exploit that P
depends linearly on λ to eliminate higher-order derivatives with respect to λ when the derivatives of P
with respect to ξ are obtained.
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We define a generalized displacement field consisting of u and the imperfection û:

U ∈ {u, û} = {u, αũξ 2
}, (A-3)

where (6) and (7) are introduced. Then,

∂ P
∂ξ
=
∂ P
∂U i

∂U i

∂ξ
+
∂ P
∂λ

∂λ

∂ξ
,

∂2 P
∂ξ 2 =

∂ P
∂U i

∂2U i

∂ξ 2 +
∂2 P

∂U i∂U j

∂U i

∂ξ

∂U j

∂ξ
+
∂ P
∂λ

∂2λ

∂ξ 2 + 2
∂2 P
∂λ∂U i

∂λ

∂ξ

∂U i

∂ξ
,

∂3 P
∂ξ 3 =

∂ P
∂U i

∂3U i

∂ξ 3 + 3
∂2 P

∂U i∂U j

∂2U i

∂ξ 2

∂U j

∂ξ
+

∂3 P
∂U i∂U j∂U k

∂U i

∂ξ

∂U j

∂ξ

∂U k

∂ξ

+
∂ P
∂λ

∂3λ

∂ξ 3 +
∂2 P
∂λ∂U i

(
∂2λ

∂ξ 2

∂U i

∂ξ
+
∂λ

∂ξ

∂2U i

∂ξ 2

)
+ 3

∂3 P
∂λ∂U i∂U j

∂λ

∂ξ

∂U i

∂ξ

∂U j

∂ξ
.

(A-4)

Now the coefficient fields PT
i are expressible in terms of ūT

i and āi and the imperfection shape ũ as

PT
1 =

∂ P
∂ξ

∣∣∣∣
c
= Pc

,i ū
T i
1 + ā1λc Pc

,λ,

PT
2 =

1
2
∂2 P
∂ξ 2

∣∣∣∣
c
= Pc

,i ū
T i
2 + ā2λc Pc

,λ+ ā1λc Pc
,λi ū

T i
1 +

1
2 Pc

,i j ū
T i
1 ūT j

1 +αũ(Pc
,û),

PT
3 =

1
6
∂3 P
∂ξ 3

∣∣∣∣
c
= Pc

,i ū
T i
3 + ā3λc Pc

,λ+ ā2λc Pc
,λi ū

T i
1 + ā1λc(Pc

,λi ū
T i
2 +

1
2 Pc

,λi j ū
T i
1 ūT j

1 )

+ Pc
,i j ū

T i
2 ūT j

1 +
1
6 P,i jk ūT i

1 ūT j
1 ūT k

1 +αũ(ā1λc Pc
,λû+ Pc

,i ûūT i
1 ),

(A-5)

where

( ),i,...,k =
∂n( )

∂ui , . . . , ∂uk . (A-6)

A.2. Perturbation expansion close to the precritical path. Let a perturbation expansion of the function
P around the precritical path, indicated by subscript 0, be given:

u(ξ)= u0(ξ)+ ξ ū1+ ξ
2ū2+ ξ

3ū3+ O(ξ 4),

P(u(ξ))= P0(ξ)+ ξ P1+ ξ
2 P2+ ξ

3 P3+ O(ξ 4),
(A-7)

and an expansion of the precritical path in ξ :

u0(ξ)= uc+ ξu0
1+ ξ

2u0
2+ ξ

3u0
3+ O(ξ 4),

P0 (u(ξ))= Pc+ ξ P0
1 + ξ

2 P0
2 + ξ

3 P0
3 + O(ξ 4).

(A-8)

It is now possible to determine the asymptotic coefficient fields Pi when the precritical path is es-
tablished. Insert the precritical path (A-8) in the perturbation expansion (A-7) and match it with the
expansion of P (A-2) to provide

ūi = ūT
i − u0

i , (A-9)
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which yields

P1 = PT
1 − P0

1 = Pc
,i ū

i
1,

P2 = PT
2 − P0

2 = Pc
,i ū

i
2+ ā1λc Pc

,λi ū
i
1+

1
2 Pc

,i j (ū
i
1ū j

1 + 2ūi
1u0 j

1 )+αũ(Pc
,û),

P3 = PT
3 − P0

3 = Pc
,i ū

i
3+ ā2λc Pc

,λi ū
i
1+ ā1λc(Pc

,λi ū
i
2+

1
2 Pc

,λi j (ū
i
1ū j

1 + 2ūi
1u0 j

1 ))

+ Pc
,i j (ū

i
2ū j

1 + ūi
2u0 j

1 + u0 j
2 ūi

1)

+
1
6 P,i jk(ūi

1ū j
1ūk

1+ 3ūi
1u0 j

1 u0k
1 + 3ūi

1ū j
1u0k

1 )

+αũ(ā1λc Pc
,λû+ Pc

,i û(ū
i
1+ u0i

1 )),

(A-10)

The prebuckling fields established in Appendix B are introduced to provide the specific expressions
for Pi in (17)–(19).

Appendix B. Expansion of u0 in ξ

A traditional expansion of u0 around Bifurcation in λ yields

u0 = uc+ (λ− λc)u′c+
1
2(λ− λc)

2u′′c + O((λ− λc)
3). (B-1)

Insertion of λ given by (8) in (B-1) provides the desired expansion in ξ as

u0 = uc+ ξu0
1+ ξ

2u0
2+ O(ξ 3), (B-2)

where

u0
1 = a1λcu′c u0

2 = a2λcu′c+
1
2(a1λc)

2u′′c . (B-3)

Appendix C. Symmetry of pl,i

Differentiation of pl given by (5) provides

pl,i = σ · ε,li + σ,i · ε,l − (η ·C),li − λB,li . (C-1)

The stress field is a function of the strain field alone, i.e., σ (ε), so differentiation of the stress field
with respect to the displacement field yields

σ,i =
∂σ

∂ε
ε,i = Dε,i , (C-2)

where D is the field of tangent stiffnesses.
Because P and therefore also pl has continuous derivatives of at least to fourth order with respect to u,

the constituent functions of pl must be equally differentiable. This ensures that the order of differentiation
may be switched without altering the result. Thus

pl,i = σ · ε,li + Dε,i · ε,l − (η ·C),li − λB,li
= σ · ε,il + Dε,l · ε,i − (η ·C),il − λB,il = pi,l,

(C-3)

which proves that pl,i is symmetric and that the indices may be interchanged freely, i.e., pl,i = pi,l .
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Appendix D. Perfect Euler column: asymptotic coefficients

D.1. Prebuckling. The straightforward prebuckling solution for the Euler column is

w0(x)= 0, v̈0(x)= 0, (D-1)

where dots over a quantity denote differentiation with respect to x .

D.2. Principle of virtual displacements and operators. The principle of virtual displacements as given
in (1) depends on strains, stresses, constraints and load.

The Bernoulli–Euler beam theory assumes the only influential strains to be the strains in the direction
of the x-axis, here denoted ε:

ε = ε+ zκ, (D-2)

where

ε =
√
(1+ v̇)2+ ẇ2− 1, κ = θ̇ =

ẅ(1+ v̇)− v̈ẇ
(1+ v̇)2+ ẇ2 , (D-3)

and the corresponding stresses σ(ε) may depend on the strains to any degree of nonlinearity.
The load operator B is taken to be linear in the displacements:

B(u)=−Pcv(L). (D-4)

In the present application no Lagrange constraints are enforced.

The operators Cc
i , Bc

i and Ec
i . Use (23), (43) and (44) to show that for this column the operators associ-

ated with the principle of virtual displacements are as follows:

Constraints: Cc
i ≡ 0 (D-5)

Loads: Bc
1(uα)=−Pcvα(L), Bc

i = 0, i 6= 1 (D-6)

Strains: The strain operator may be split up in parts that are independent of the cross-sectional variable z:

Ec
i = Ecε

i + zEcκ
i . (D-7)

The stretch ratio at critical load sc is

1
sc
=

1
1+ v̇c

= 1− v̇c+ O(v̇2
c )= 1+ i1(1− nc)+ O(i2

1), (D-8)

where 0≤ nc ≤ 1 and nc = 0 for linear elasticity. Thus the strain operators are

Ecε
1 (uα)= v̇α, Ecε

2 (uα, uβ)= ẇαẇβ
1
sc

(D-9)

and

Ecκ
1 (uα)= ẅα

1
sc
, Ecκ

2 (uα, uβ)=−
(
(ẇα v̇β)

·
+ (ẇβ v̇α)

·
) 1

s2
c
. (D-10)

Provided that we only determine the second postbuckling constant a2 when the column is symmetric
Ec

3 enters solely as Ec
3(uα, u1, u1) and Ec

4 as Ec
4(u1, u1, u1, u1) after u1 has been determined. It is later
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shown that v1 ≡ 0, and thus we get

Ecε
3 (uα, u1, u1)=−(v̇αẇ1ẇ1)

1
s2

c
,

Ecε
4 (u1, u1, u1, u1)=−3(ẇ1ẇ1ẇ1ẇ1)

1
s3

c
,

(D-11)

and

Ecκ
3 (uα, u1, u1)=−2(ẇαẇ1ẇ1)

· 1
s3

c
, Ecκ

4 (u1, u1, u1, u1)= 0. (D-12)

Stability operators Pc
i . The relevant stability operators Pc

1–Pc
4 are provided by (46) and (47):

Pc
1(uα)=

∫ L

0
(−λc Pcv̇α) dx + λc Pcvα(L),

Pc
2(uα, uβ)=

∫ L

0

(
Ec

t Av̇α v̇β +
Ec

t I1

s2
c
ẅαẅβ −

σc A
sc
ẇαẇβ

)
dx .

(D-13)

Again, we only determine the second postbuckling constant a2 when the column is symmetric. Thus
Pc

3 enters solely as Pc
3(uα, u1, u1) and Pc

4 as Pc
4(u1, u1, u1, u1) after u1 has been determined. Utilize

v1 ≡ 0 in (D-9) and (D-11) to provide

Pc
3(uα, u1, u1)=

∫ L

0

((
Ec

t,ε

s2
c
−

2Ec
t

s3
c

)
I1v̇αẅ

2
1+

(
Ec

t

sc
+
σc

s2
c

)
Av̇αẇ2

1−
2Ec

t

s3
c

I1ẇ1v̈αẅ1+
Ec

t,ε

s3
c

I2ẅαẅ
2
1

)
dx,

Pc
4(u1, u1, u1, u1)=

∫ L

0

(
Ec

t,εε

s4
c

I3ẅ
4
1 +

(
6Ec

t,ε

s3
c
−

24Ec
t

s4
c

)
I1ẇ

2
1ẅ

2
1 + 3

(
Ec

t

s2
c
+
σc

s3
c

)
Aẇ4

1

)
dx . (D-14)

D.3. Expansion parameter and boundary conditions. Let the expansion parameter ξ be the rotation of
the column end, i.e.,

ξ = θ(0), tan θ(0)=
ẇ(0)

1+ v̇(0)
. (D-15)

The solution to the boundary value problem of the geometrically perfect column must fulfill (D-15)b.
Insert (D-15)a in the asymptotic expansion (9) of u and match the right-hand side of (D-15)b with the
left-hand side to reveal the rather obvious boundary conditions

ẇ1(0)= 1, ẇ2(0)= v̇1(0). (D-16)

D.4. Buckling. The buckling equation (26) using the stability operator (D-13) with the operators of
(D-9) inserted provides

0=
∫ L

0

(
Ec

t Av̇1δv̇+
Ec

t I1

s2
c
ẅ1δẅ−

λc Pc

sc
ẇ1δẇ

)
dx . (D-17)

Fulfill (D-17) for all admissible δv and δw to get

Ec
t Av̈1 = 0,

....
w 1+

scλc Pc

Ec
t I1

ẅ1 = 0, (D-18)
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respectively. Apply the kinematic boundary conditions at the pinned ends to obtain the eigenmode
solution of (D-18). The amplitude of the eigenmode is determined by condition (D-16)a:

v1 = 0, w1 =
L
π

sin(πx/L). (D-19)

Normalize the applied force as follows to make λc = 1:

Pc/A = σc = Ec
t
(
i1+ O(i2

1)
)
H⇒ λc = 1. (D-20)

D.5. First postbuckling problem.

First postbuckling constant. As mentioned earlier, in the case of a nonsymmetric structure, we shall limit
ourselves to determining the first postbuckling constant a1 and refrain form determining the second, a2.
From (29) with (D-14) inserted we get

aN
1 =−

∫ L

0

1
2s3

c
Ec

t,ε I2ẅ
3
1dx = Ec

t AL
2e′ci2

3π i1s3
c
. (D-21)

Utilize the necessary coefficient from the expansion of the prebuckling path, namely

v̇′c(x)=−
σc

Ec
t
=−i1, (D-22)

to determine

aD
1 =−

σc

Ec
t

∫ L

0

((
Ec

t,ε

s2
c
−

2Ec
t

s3
c

)
I1ẅ

2
1 +

(
Ec

t

sc
+
σc

s2
c

)
Aẇ2

1

)
dx

=−
1
2 Ec

t ALi1
(
1+ e′c+ O(i1)

)
. (D-23)

As i1� 1, introduction of the nondimensional quantities defined in (72) and (73) yields

a1 =−
4e′ci2

3π i2
1(1+ e′c)

. (D-24)

From (D-24) it is clear that only when the cross-section is nonsymmetric (i2 6= 0) and the material
model is nonlinear will the first postbuckling constant a1 differ from zero.

Postbuckling displacement field. The postbuckling displacement field, which is only determined when
a1 = 0 (implying e′ci2 = 0), may be determined from the variational equation (41) together with the
boundary conditions (D-16). Utilize the stability operators (D-13)–(D-14) and get

0=
∫ L

0

(
Ec

t Av̇2δv̇+
1
s2

c
Ec

t I1ẅ2δẅ−
1
sc
σc Aẇ2δẇ

)
dx

+
1
2

∫ L

0

(
1
s2

c
Ec

t,ε I1ẅ
2
1δv̇+

(
1
sc

Ec
t +

1
s2

c
σc

)
Aẇ2

1δv̇+
1
s3

c
2Ec

t I1
...
w1ẇ1δv̇

)
dx . (D-25)

Gather terms in (D-25) and introduce u1 from (D-19) and sc from (D-8) to reach the differential
equations

v̇2 =−
1
2

(
(1− nci1) cos2 πx

L
+ e′c

(
1+ 2(1− nc)i1

)
sin2 πx

L

)
+ O(i2

1),
...
w2+

(
π

L

)2
ẇ2 = 0, (D-26)
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and the static boundary conditions

ẅ2(0)= 0, ẅ2(L)= 0. (D-27)

Use the kinematic boundary conditions (D-27) at the pinned ends along with the conditions (D-16).
When i1� 1 the second postbuckling displacement field becomes

v2 =−
1
4

(
(1+ e′c)x + (1− e′c)

L
2π

sin 2πx
L

)
+ O(i1), w2 = 0. (D-28)

D.6. Second postbuckling constant. For symmetric cross-sections (a1 = 0, e′ci2 = 0) the numerator of
the second postbuckling constant aN

2 may be found from (42). Utilize the operator expressions (D-13)–
(D-14) to obtain

aN
2 =−

∫ L

0

((
1
s2

c
Ec

t,ε −
2
s3

c
Ec

t

)
I1v̇2ẅ

2
1 +

(
1
sc

Ec
t +

1
s2

c
σc

)
Av̇2ẇ

2
1 −

2
s3

c
Ec

t I1ẇ1v̈2ẅ1

)
dx

−
1
6

∫ L

0

(
1
s4

c
Ec

t,εε I3ẅ
4
1 + 6

(
1
s3

c
Ec

t,ε −
4
s4

c
Ec

t

)
I1ẅ

2
1ẇ

2
1 + 3

(
1
s2

c
Ec

t +
1
s3

c
σc

)
Aẇ4

1

)
dx . (D-29)

Since the terms proportional to Ec
t A vanish, it is essential to include the first-order terms of i1 in u2

(D-26) and 1/sc (D-8). After some derivations (D-29) yields

aN
2 =−

1
16 Ec

t AL
(
i1− 3(e′c)

2
+ e′′c

)
+ O(i2

1)+ e′c O(i1)+ e′′c O(i1). (D-30)

The denominator of a2 is identical to the denominator of a1, which is given by (D-23). Utilize that
i1� 1 to truncate terms of order 1, e′c and e′′c respectively to the lowest order of i1. Then, the second
postbuckling constant becomes

a2 =
i1− 3(e′c)

2
+ e′′c

8i1(1+ e′c)
. (D-31)

Note that the term i1 in the numerator of a2 is not necessarily small compared to the other terms e′c
and e′′c . When the column exhibits linear or near linear material behavior at buckling, the absolute value
of the nonlinear material constants e′c and e′′c decrease and the i1-term becomes important.

D.7. Nonlinear elastic inextensible Euler column. When the Euler column is constrained to be inex-
tensible, it is easily shown that

C1
= η1 ·

(
v̇+ 1

2 v̇
2
+

1
2ẇ

2)
= 0, C2

= η2 · (sin θ − ẇ)= 0, B =−Pcv(L), (D-32)

and
ε = 0, κ = θ̇ . (D-33)

Furthermore, when prebuckling is given by

v0 = w0 = θ0 = η
2
0 = 0, η1

0 = λPc, (D-34)

the operators associated with the principle of virtual displacements may be found from (23) and (43) and
(44) together with (D-32)–(D-33).
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Constraints: Inextensibility requires

C1c
1 (uα)= λc Pc · v̇α,

C1c
2 (uα, uβ)= η1

β · v̇α + η
1
α · v̇β + λc Pc · (v̇α v̇β + ẇαẇβ),

C1c
3 (uα, u1, u1)= η

1
α · ẇ

2
1,

C1c
4 (u1, u1, u1, u1)= 0

(D-35)

and
C2c

1 (uα)= 0,

C2c
2 (uα, uβ)= η2

β · (θα − ẇα)+ η
2
α · (θβ − ẇβ),

C2c
3 (uα, u1, u1)= 0,

C2c
4 (u1, u1, u1, u1)=−4η2

1 · θ
3
1 ,

(D-36)

where it is utilized that v1 = η
1
1 ≡ 0 has been established before Ci

3 and Ci
4 are used.

Loads: Bc
1(uα)=−Pcvα(L), Bc

i = 0, i 6= 1. (D-37)

Strains: Ec
1(uα)= zθ̇α, Ec

i = 0. (D-38)

Stability operators: The stability operators defined in (46) and (47) become

Pc
1(uα)=

∫ L

0

(
−λc Pcv̇α

)
dx + λc Pcvα(L),

Pc
2(uα, uβ)=

∫ L

0

(
Ec

t I1θ̇α θ̇β −
(
η1
β v̇α + η

1
α v̇β + λc Pc(v̇α v̇β + ẇαẇβ)

)
−
(
η2
β(θα − ẇα)+ η

2
α(θβ − ẇβ)

))
dx,

Pc
3(uα, u1, u1)=

∫ L

0

(
Ec

t,ε I2θ̇α θ̇
2
1 − η

1
αẇ

2
1
)

dx,

Pc
4(u1, u1, u1, u1)=

∫ L

0

(
Ec

t,εε I3θ̇
4
1 + 4η2

1θ
3
1
)

dx .

(D-39)

Buckling and postbuckling. Insert the stability operators in the stability problems (26) and (29) together
with (41) and (42) to provide the buckling solution

λc = 1, Pc =
π2 Ec

t I1

L2 , σc = i1 Ec
t ,

v1 = 0, w1 =
L
π

sin
πx
L
, θ1 = cos

πx
L
,

η1
1 = 0, η2

1 = Pc cos
πx
L
,

(D-40)

the first postbuckling constant a1 for nonsymmetric cross-sections

a1 =−
4e′ci2

3π i2
1
, (D-41)
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the postbuckling solution

v2 =−
1
4

(
x + L

2π
sin 2πx

L

)
, w2 = 0, θ2 = 0,

η1
2 =

1
2 Pc cos2 πx

L
, η2

2 = 0,
(D-42)

and the second postbuckling constant a2 for symmetric cross-sections

a2 =
i1+ e′′c

8i1
. (D-43)

Appendix E. Imperfect Euler column: asymptotic coefficients

The prebuckling, buckling and postbuckling solution may be taken from Appendix D and the strain
measure with respect to the perfect reference is given by (D-3).

E.1. Scalar stability operators connected with imperfection. The effects of initial imperfections are de-
termined by the imperfection shape parameters, ρi . The scalar general stability operators Pc

i determined
for the perfect column in (D-13) and (D-14), some of the additional general stability operators defined
by (46) and (47) and the scalar operators associated with imperfections defined by (49) are needed in
order to compute ρi .

Additional general stability operator. Most general stability operators needed to determine ρi were deter-
mined for the perfect structure in (D-13) and (D-14). Because the second postbuckling constant a2 only is
determined when a1 = 0 some general stability operators enter only the imperfection sensitivity analysis.
These stability operators are Pc

3(uα, u1, u′c) and Ec
4(u1, u1, u1, u′c). First we determine the additional

operators associated with the principle of virtual displacements needed to compute Pc
3(uα, u1, u′c) and

Ec
4(u1, u1, u1, u′c) from (43) when it is exploited that v1 = 0 and w0 = 0 and the strains are given by

(D-3):
Ecε

3 (uα, u1, u′c)=−(ẇαẇ1v̇
′

c)s
−2
c , Ecε

4 (u1, u1, u1, u′c)= 0,

Ecκ
3 (uα, u1, u′c)= 2(v̇αẇ1v̇

′

c)
·s−3

c , Ecε
4 (u1, u1, u′c, u′c)= 2ẇ2

1(v̇
′

c)
2s−3

c .
(E-1)

Thus, the additional general stability operators become

Pc
3(u
′

c, u1, uα)=−
∫ L

0

σc

Ec
t

((
Ec

t,ε

s2
c
− 3

Ec
t

s3
c

)
I1ẅ1ẅα +

Ec
t A
sc

ẇ1ẇα

)
dx,

Pc
4(u
′

c, u1, u1, u1)= 0,

Pc
4(u
′

c, u′c, u1, u1)=

∫ L

0

(
σc

Ec
t

)2 ((Ec
t,εε

s2
c
− 4

Ec
t,ε

s3
c
+ 6

Ec
t

s4
c

)
I1ẅ

2
1 +

(
Ec

t,ε

sc
− 2

Ec
t

s2
c
+ 2

σc

s3
c

)
Aẇ2

1

)
dx,

(E-2)

where we have used that v̇′c = −σc/Ec
t and v̈′c = 0 according to (D-22) and the buckling problem has

been utilized to eliminate terms.

Stability operators associated with imperfections. Use (48) to show that the operators associated with
imperfections are

E Iε
1 (ũ)= ˙̃v, E Iκ

1 (ũ)= ¨̃w, D I
2(uα, ũ)= 0, (E-3)
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when no constraints are enforced.
The only stability operators associated with imperfections needed to determine ρ1 and when a1 = 0,

as well as ρ2 and ρ3 are P̄c
2(uα, ũ), P̄c

3(u1, u1, ũ) and P̄c
3(u
′
c, u1, ũ). The third degree operators are only

determined for symmetric and/or linear elastic columns, thus I2 and/or derivatives of Et with respect to
ε vanish. From (49) we have

P̄c
2(uα, ũ)= Pc

2(uα, ũ)−
∫ L

0

(
Ec

t Av̇α ˙̃v+
Ec

t I1

sc
ẅα ¨̃w

)
dx,

P̄c
3(u1, u1, ũ)= Pc

3(u1, u1, ũ)−
∫ L

0

(
Et,ε I1

s2
c

˙̃vẅ2
1 +

Ec
t A
sc

˙̃vẇ2
1

)
dx,

P̄c
3(u
′

c, u1, ũ)= Pc
3(u
′

c, u1, ũ)−
∫ L

0

((
Et,ε

sc
−

Ec
t

s2
c

)
I1 ¨̃wẅ1v̇

′

c

)
dx .

(E-4)

E.2. Expansion parameter. Since the expansion parameter ξ is identified as the rotation of the column
end even for the imperfect structure, the condition (D-15) must apply. Similar to the asymptotic match
for the perfect structure (D-15) yields

˙̄w1(0)= 1, ˙̄w2(0)= ẇ2(0)+αω̇2(0)= ˙̄v1(0), (E-5)

where ω2 is associated with the shape of the imperfection.
Because u1 is independent of the imperfection and ẇ2(0) already fulfills the condition ẇ2(0)= v̇1(0),

the boundary condition on ω2 becomes

ω̇2(0)= 0. (E-6)

E.3. Imperfection in shape of the buckling displacements. When the shape of the imperfection is given,
the imperfect stability operators (E-4) may be evaluated. For simplicity, let the shape of the imperfection
be the buckling displacement field u1:

ŵ = ξw1 = ξ
( L
π

)
sin πx

L
, v̂ = ξv1 = 0. (E-7)

Thus, from the buckling problem Pc
2(uα, u1)= 0, and the stability operators associated with imper-

fections become

P̄c
2(uα, u1)=−

∫ L

0

Ec
t I1

sc
ẅαẅ1dx,

P̄c
3(u1, u1, u1)= Pc

3(u1, u1, u1)= 0,

P̄c
3(u
′

c, u1, u1)= Pc
3(u
′

c, u1, u1)−

∫ L

0

((
Et,ε

sc
−

Ec
t

s2
c

)
I1ẅ

2
1 v̇
′

c

)
dx .

(E-8)

First imperfection parameter. The first imperfection shape parameter ρ1 may be determined from (30)
with ũ = u1:

ρ1λc =
ρN

1

aD
1
, (E-9)
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where aD
1 has already been determined in (D-23) and

ρN
1 =−P̄

c
2(u1, u1)=

∫ L

0

Ec
t I1

sc
ẅ2

1dx = 1
2 Ec

t ALi1
(
1+ O(i1)

)
. (E-10)

Thus, as i1� 1,

ρ1λc '
−1

1+ e′c
. (E-11)

Imperfection displacement field for symmetric columns. The lowest degree displacement field which
depends on the imperfection is v2. The field v2 may be found as a linear solution of (35). Let v2 =

(vυ2 , w
υ
2 ), where vυ2 is affine with v and wυ2 with w, and insert stability the operators (E-2), (E-8) and

(D-13)–(D-14):

0=
∫ L

0

(
Ec

t Av̇υ2 δv̇+
1
s2

c
Ec

t I1ẅ
υ
2 δẅ−

1
sc
σc Aẇυ2 δẇ

)
dx −

∫ L

0

Ec
t I1

sc
ẅ1δẅdx

−

∫ L

0
ρ1λc

σc

Ec
t

((
Ec

t,ε

s2
c
− 3

Ec
t

s3
c

)
I1ẅ1δẅ+

Ec
t A
sc

ẇ1δẇ

)
dx . (E-12)

Gather terms of the same variational fields and introduce u1 to provide

Ec
t Av̇υ2 = 0,

( L
π

)2 ...
w
υ
2 + ẇ

υ
2 = k1 cos πx

L
, (E-13)

where the constant k1 is

k1 =−sc− ρ1λc

(
e′c
sc
−

3i1

s2
c
+ 1

)
= O(i1). (E-14)

Introducing the geometric boundary conditions and the expansion parameter condition (E-6) yields

vυ2 = 0, wυ2 = k1

(
L

2π
sin(πx/L)−

L
4
(1− cos(πx/L))− 1

2
x cos(πx/L)

)
. (E-15)

Second imperfection parameter for symmetric columns. The second imperfection parameter ρ2 may in
general be computed from (37). For symmetric columns, and when stability operators which equal zero
for the column are excluded, (37) provides

ρ2λc =
ρN

2

aD
1
, (E-16)

where aD
1 is given by (D-23), and

ρN
2 =−P

c
3(v2, u1, u1)− ρ1λcPc

3(u
′

c, u2, u1), (E-17)

where the operators are given by (D-14) and (E-2), respectively. The first operator depends linearly
on v̇υ2 = 0 for symmetric postbuckling behavior and the second operator depends linearly on w2 and
derivatives which are all zero. Thus, (E-16) and (E-17) yields

ρ2λc = 0 H⇒ ρ2 = 0. (E-18)
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Third imperfection parameter for symmetric columns. The third imperfection parameter ρ3 may in gen-
eral be calculated from (37). For symmetric columns, and when stability operators which equal zero for
the column are excluded, (37) provides

ρ3λc =
ρN

3

aD
1
, (E-19)

where aD
1 is given by (D-23) and the only nonvanishing contributions to ρN

3 are

ρN
3 =−ρ1λc

(
Pc

3(u
′

c,v2,u1)+ P̄c
3(u
′

c,u1, ũ)
)
−

1
2(ρ1λc)

2(Pc
4(u
′

c,u
′

c,u1,u1)+Pc
3(u
′′

c ,u1,u1)
)
. (E-20)

When the relevant displacement fields are introduced in the four operators given by (D-14), (E-2) and
(E-4), and u′′c given by

v̇′′c =−e′ci1, (E-21)

the expression to lowest degree in i1 for ρN
3 is

ρN
3 =−

1
2 Ec

t ALi1

(
−ρ1λc−

1
2(ρ1λc)

2
(

e′c
2
−

i2
1

i3
e′′c

))
(1+ O(i1)). (E-22)

Utilize the result of (E-22) with ρ1λc given by (E-11) and aD
1 in (E-19) to provide

ρ3λc ' (ρ1λc)
2
−

e′c
2
− (i2

1/ i3)e′′c
2(1+ e′c)3

(E-23)

when i1� 1. Since i3 is generally of order i2
1 , both terms in the numerator may become important.
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STRESS AND STRAIN RECOVERY FOR THE IN-PLANE DEFORMATION
OF AN ISOTROPIC TAPERED STRIP-BEAM

DEWEY H. HODGES, ANURAG RAJAGOPAL, JIMMY C. HO AND WENBIN YU

The variational-asymptotic method was recently applied to create a beam theory for a thin strip-beam
with a width that varies linearly with respect to the axial coordinate. For any arbitrary section, ratios
of the cross-sectional stiffness coefficients to their customary values for a uniform beam depend on the
rate of taper. This is because for a tapered beam the outward-directed normal to a lateral surface is not
perpendicular to the longitudinal axis. This changes the lateral-surface boundary conditions for the cross-
sectional analysis, in turn producing different formulae for the cross-sectional elastic constants as well
as for recovery of stress, strain and displacement over a cross-section. The beam theory is specialized
for the linear case and solutions are compared with those from plane-stress elasticity for stress, strain
and displacement. The comparison demonstrates that for beam theory to yield such excellent agreement
with elasticity theory, one must not only use cross-sectional elastic constants that are corrected for taper
but also the corrected recovery formulae, which are in turn based on cross-sectional in- and out-of-plane
warping corrected for taper.

A list of symbols can be found on page 975.

1. Introduction

It is typical in beam theory to assume that taper affects cross-sectional stiffness constants, stress and strain
only from the change in section geometry along the beam axis. In other words, if for a homogeneous,
isotropic beam, the bending stiffness is EI, then for a homogeneous, isotropic, tapered beam, the bending
stiffness is simply written as EI(x), where the area moment of inertia varies with the axial coordinate due
to change in the sectional geometry arising from taper. A recent work, [Das et al. 2009], is one among
a series of papers on tapered beams by the same authors that follows this methodology. In [Abdel-Jaber
et al. 2008] and [de Rosa et al. 2010], the bending energy per unit length is simply written as EI(x)κ2/2.
Results in [Abdel-Jaber et al. 2008] were compared with those of an older work [Rao and Rao 1988],
both of which clearly follow this methodology. These are only a few selected examples out of the many
recent works on tapered beams based on cross-sectional stiffnesses that are not corrected for taper.

An asymptotic beam theory for an isotropic strip-beam with linearly tapered width was presented in
[Hodges et al. 2008]. Section stiffnesses for this theory depend on taper in ways other than the simplistic
approach noted above. The main reason for this is the tilting of the outward-directed normal so that it has
a non-zero component along the beam longitudinal axis, and to be accurate the cross-sectional analysis
must take this tilt into account. Because of the strip-like geometry, accuracy of the cross-sectional
stiffnesses was evaluated using plane-stress elasticity solutions for extension, bending and flexure from
[Timoshenko and Goodier 1970] and [Krahula 1975] and were shown to be in excellent agreement. The

Keywords: beam theory, elasticity, asymptotic methods.
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plane stress problem of the in-plane deformation of an isotropic tapered strip was chosen because it is
a simple example to illustrate the proposed theory. All results are closed-form expressions that can be
validated from corresponding elasticity solutions available in the literature.

One purpose of this paper is to show that high-fidelity information is available in beam theories based
on asymptotic methods, which are no more complicated than “engineering” theories. This paper focuses
on the recovery of the stress, strain, and displacement fields for the linearly tapered isotropic strip-beam.
This aspect was not addressed in [Hodges et al. 2008]. The recovery is performed by the variational-
asymptotic method (VAM) and is consistent with the derivation of the stiffness constants in that paper.
It will be shown that to capture the recovery relations accurately, one needs to evaluate the warping one
order higher. The recovery relations are then compared with the corresponding elasticity solutions, a
comparison that confirms that a VAM-based beam theory is able to satisfactorily predict all aspects of
the behavior of beam-like structures.

Section 2 of this paper revisits the previous work of [Hodges et al. 2008] and reviews the importance
of including taper in the stiffness constants. Section 3 provides details of the procedure to determine the
recovery relations using the VAM and presents a comparison with the corresponding elasticity solutions.
In Section 4, the range of the small parameters used in the VAM is determined for which the VAM
solution is in close proximity with the elasticity solutions. Finally conclusions are drawn.

2. Corrected stiffness constants for a tapered beam

For better understanding of the results to be presented, a brief review of the variational-asymptotic method
and a summary of the results from [Hodges et al. 2008] is presented here. The VAM is used to perform
cross-sectional analysis of beams using the principle of minimum total potential energy, exploiting the
presence of small parameters. The total potential energy is developed from a general displacement field
subject to a restriction to small strain. The leading terms of the energy can be obtained asymptotically in
terms of the small parameters of the analysis, which can be used to obtain the equations governing in- and
out-of-plane warping. This procedure can be repeated for successively higher powers of the small parame-
ters until the desired accuracy is achieved. As a result of this analysis, the warping is expressed in terms of
one-dimensional (1D) strains and can then be used to calculate the strain energy per unit length. This 1D
strain energy per unit length provides the cross-section constants, reducing the 2D plane stress problem
to 1D, and formulae that allow for recovery of stress, strain and displacement over the cross-section.

We now proceed to outline a procedure to obtain the cross-sectional constants using the VAM for a
tapered-strip beam as in Figure 1. For details, the reader is encouraged to consult [Hodges et al. 2008].

!!"!!

"!"!"

#
$

%

Figure 1. Schematic of the isotropic strip tapered beam.
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The two small parameters of the system are a slenderness parameter δ = a/ l and a taper parameter
τ =−b′(x), which are assumed to be of the same asymptotic order. Considering the position vector of
an arbitrary point in the undeformed and deformed configurations of the beam, the expressions for strain
can be derived as

0xx = ε− yκ +wx,x , 0xy = wx,y +wy,x , 0yy = wy,y, (1)

where ε and κ are the classical 1D stretching and bending strain measures, respectively. The strain energy
per unit length is then

U =
Et

2(1− ν2)

〈
02

xx +0
2
yy + 2ν0xx0yy +

1− ν
2

02
xy

〉
, (2)

where

〈•〉 =

∫ b(x)

−b(x)
• dy. (3)

The first step is to solve for the zeroth-order warping. For this, we identify and remove all the terms
that are first and higher order in the small parameters from the strain energy. The resulting equations
obtained using the principle of minimum total potential energy can be used to evaluate the zeroth-order
warping, which in turn gives the zeroth-order strain energy per unit length as

U0 =
1
2 EA(x)ε2

+
1
2 EI(x)κ2, (4)

the expected expression for strain energy per unit length associated with classical Euler–Bernoulli beam
theory.

To refine this result it is necessary to solve for the warping corrected to first order in δ and τ . To do so,
the solution of warping previously obtained is perturbed to the next higher order. A similar procedure
is preformed as described previously, the only difference being that all the terms in the energy correct
through second order in the small parameters are retained. The first-order warping thus obtained is used
to obtain the strain energy per unit length:

U2 = Etb(x)
(
1− 2

3(1+ ν)τ
2)ε2
+

2
3 Etντb(x)2ε ε′+ 1

9 Etb(x)3
(
3+ 2(14ν+ 15)τ 2)κ2

−
4
9 Etτ(8ν+ 9)b(x)4κ κ ′+ 4

15 Et (1+ ν)b(x)5κ ′2+ 2
45 Et (11ν+ 12)b(x)5κ κ ′′, (5)

which is asymptotically correct through second order.
However, this strain energy per unit length is unsuitable for an engineering beam theory because

it contains derivatives of the classical 1D strain measures. Hence, it is transformed into a generalized
Timoshenko form as follows: First, the 1D classical strain measures are written in terms of 1D generalized
Timoshenko strain measures using simple beam kinematics. A 1D shear strain measure enters into the
picture through this transformation. Second, the derivatives of the 1D generalized Timoshenko strain
measures are evaluated using equilibrium equations. The equilibrium equations can be simply obtained
by the standard textbook approach of considering an element of the beam and writing the force and
moment equilibrium.
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Thus, the strain energy per unit length of a beam correct through second order, when transformed to
the form of a generalized Timoshenko theory, is given by

U∗ = 1
2 Zε2

+
1
2 Wκ2

+
1
2 Yγ 2

+ Xκγ, (6)

where

Z = EA(x)
(

1− 2τ 2

3

)
, W = EI(x)

(
1+

(ν−48)ν−45
45(ν+1)

τ 2
)
,

Y = 5
6 G A(x), X =

Et (5ν+3)b(x)2τ
9(1+ν)

,

(7)

where, for a linearly tapered beam, τ is the tangent of the taper angle α as shown in Figure 1. It should
be noted that the stiffness associated with shear is what one obtains from the usual Timoshenko beam
theory. There is no taper correction to this term because the shear strain is already one order higher in
the small parameter δ than the strains associated with 1D bending and extension measures, so that the
overall contribution of the term to the strain energy per unit length is correct through second order. This
theory is said to be a generalized Timoshenko theory in that it contains contributions to the strain energy
associated with extension, bending and shear. However, it is not subject to any of the usual restrictions
on kinematics associated with the original Timoshenko theory. Moreover, it includes a bending-shear
coupling term X , which is not found in the original theory.

Validation of these stiffness constants, presented in [Hodges et al. 2008], showed that the theory is
only accurate when corrections associated with nonzero τ are included. Unfortunately, a review of
the literature shows that there is hardly any awareness among researchers that beam stiffness constants
depend on taper, as all references the authors have found to date would provide the above stiffness
constants with τ set equal to zero.

An important aspect of the asymptotic theory is that bending and shear are coupled for a tapered
beam; hence, the coefficient X is present in the energy. Therefore, if one takes the bending and shear
stiffnesses as EI(x) and 5G A(x)/6 (i.e., only changing the sectional width in the stiffness formulae), the
strain energy associated with bending-shear coupling will be missed. This can lead to significant errors
in prediction of the beam deflection.

Figure 2 shows the percentage errors in extension and bending stiffnesses (Z and W from (7)) when
one neglects the effect of taper and proceeds with the simplistic change in the sectional stiffnesses. It
can be concluded that neglecting taper introduces an error in the beam sectional stiffnesses that can be
significant, affecting deflections under load as well as natural frequencies.

To assess the importance of the bending-shear coupling term X relative to the pure bending and pure
shear term, the coupling stiffness is normalized, such that

X =
X
√

Y W
=

(5ν+ 3)τ√
45(ν+ 1)+

(
ν2− 48ν− 45

)
τ 2
. (8)

This normalized value can be thought of as a measure of coupling strength to be compared with unity. For
a taper (τ ) of 0.2, it varies from 0.0215 to 0.1367 as Poisson’s ratio varies from −0.5 to 0.5. Moreover,
the plot shown in Figure 3 indicates that these values are by no means negligible compared to unity.
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Figure 2. Percentage errors in the stiffnesses for ν = 0.3.
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Figure 3. Normalized stiffness for bending-shear coupling, ν = 0.3.

Therefore, its absence may cause significant errors, and it is thus important to include these corrections
in the stiffnesses to account correctly for the effects of taper.

3. Recovery relations

This section presents strain, stress and displacement components obtained from the beam theory based
on VAM and comparisons with elasticity solutions. Although the baseline elasticity solutions are not
restricted to small values of the parameters δ and τ , they are compared to solutions from the beam
theory, which are subject to small values of δ and τ . In particular, beam theory based on the VAM is
used to analyze the problem of a tapered beam subjected to three different types of loading described as
extension, bending and flexure shown in Figure 4. These three cases correspond to constant axial force,
constant bending moment and constant shear force, respectively. As in [Hodges et al. 2008], the warping
and strain energy are evaluated through first and second orders, respectively.

For greater accuracy than in the earlier paper, the warping is here evaluated to second order. For this,
the same procedure outlined in Section 2 is followed. The first-order warping is perturbed and from the
perturbed warping, strains are obtained that are, in turn, used to evaluate the strain energy as a function
of the unknown warping perturbations. Minimization of the strain energy using calculus of variations
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Figure 4. Schematic of beam loaded for extension, bending and flexure.

yields the expression for the second-order terms in warping as

w(2)x = 0, w(2)y = A0ε+ A1ε
′
+ A2ε

′′
+ B0κ + B1κ

′
+ B2κ

′′, (9)

where

A0 =
1
6 b−2 y(ν+ 1)τ 2(y2(ν+ 1)− b2(ν− 3)

)
,

A1 =
1
6 b−1 yτ

(
y2(ν+ 1)2− b2(ν2

+ 2ν+ 3)
)
,

A2 =
1
6 yν2(b2

− y2),

B0 =−
1

18(8ν
2
+ 6ν− 3)τ 2(b2

− 3y2),

B1 =
1
9 bν(5ν+ 6)τ (b2

− 3y2),

B2 =
1

360

(
−b4(40ν2

+ 54ν+ 7)+ 30b2 y2(4ν2
+ 6ν+ 1)− 15y4(2ν+ 1)

)
.

(10)

Thus, an expression for the warping through second order has been obtained. The derivatives of the 1D
classical strain measures make it unsuitable for use in an engineering beam theory. The classical strain
measures are transformed into generalized Timoshenko strain measures, whose derivatives are computed
using the equilibrium equations. The required sectional stiffnesses for use in the equilibrium equations
are given by (7).

Note that the second-order warping functions are not used for obtaining stiffnesses but only for re-
covery of stress, strain and displacement. The expressions for strain in (1) are restricted only by the
assumption of small strain. The 1D strain measures may be used in their geometrically exact form.
Herein, however, for the purpose of comparison with linear elasticity theory, we restrict them to small
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displacement and rotation. Care should be taken to distinguish between the 1D classical strain measures
appearing in (1) and 1D generalized Timoshenko strain measures in (6). The relation between the two
is detailed in [Hodges 2006] and specialized in [Hodges et al. 2008] and here as

ε = ε, κ = κ + γ ′. (11)

Since the problem under consideration is that of plane stress, the stresses are simply obtained from
the constitutive law as 

σxx

σyy

σxy

= E
1− ν2

1 ν 0
ν 1 0
0 0 1

2(1−ν)


0xx

0yy

0xy

 . (12)

The 2D displacements from linear beam theory are computed from subtracting the position vector of
an arbitrary point on the undeformed cross-sectional plane from the corresponding position vector in the
deformed cross-sectional surface, such that

ux = u− yv,x +wx and u y = v+wy, (13)

where u and v are the 1D displacement variables of the beam theory, while ux and u y are the 2D dis-
placements of an arbitrary point of the cross-section. These 1D displacement variables can be computed
from the 1D strain measures by using the linear 1D strain-displacement equations

ε = u′, γ = v′− θ, κ = θ ′. (14)

To completely determine the 1D displacement and rotation variables, i.e., u, v and θ , the boundary
condition specified at x = 0 sets u, v and θ to zero.

From this the stress, strain and displacement components were obtained from the beam analysis based
on VAM. They are compared with the plane-stress elasticity solutions obtained from [Krahula 1975] and
[Timoshenko and Goodier 1970]. Results are presented in Figures 5–7 for the three loading cases of
extension, bending and flexure, respectively. The two results from the variational-asymptotic method,
VAM (I) and VAM (II), correspond to the cases when warping is evaluated through first and second
orders, respectively. The elasticity solutions also have been plotted for comparison purposes. For the
three loading cases, the recovery relations are plotted at x = l/2, versus ζ , a dimensionless variable
defined as y/b(x).

It is clear that if the warping is accurate to second order, then the recovery relations of the beam theory
agree very well with results from the elasticity solution. On the other hand, if warping is evaluated
only to first order as in [Hodges et al. 2008], some results are not in good agreement with the elasticity
solutions. Note that for presentation the recovery relations were normalized by certain standard quantities.
In the case of strain the normalizing quantities were F/(E Lt), Q/(E L2t) and P/(E Lt) for extension,
bending and flexure, respectively. For stresses and displacements, they were the strain normalizing factors
multiplied by modulus of elasticity and length of the beam, respectively. The results were generated for
ν = 0.3, τ = 0.2 and δ = 0.25. It is essential to state here that the VAM solutions are compared with the
total elasticity solutions, not with the elasticity solutions expanded to a certain order in small parameters.

Asymptotic expansions of the expressions for recovered strains were carried out, and it was seen that
the results are in excellent agreement with the elasticity solutions expanded through the corresponding
order. For the extension case, if the warping is correct through second order, i.e., O(aδ2ε), then the strains
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Figure 5. Comparison of the normalized VAM strains, stresses and displacements with
the elasticity solutions for extension.

0xx , 0xy and 0yy are expected to be correct through orders 3, 1 and 2, respectively. However, based on
the trends in the evaluation of warping the third-order contribution to the warping, wy is expected to
be zero. Therefore, under these special circumstances, the strains listed in the same order as above are
actually correct through orders 3, 2 and 3, respectively, relative to the leading term. Expansions of the
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Figure 6. Comparison of the normalized VAM strains, stresses and displacements with
the elasticity solutions for bending.

2D strain components for extension are presented in Table 1 on page 973. For brevity, the bending and
flexure cases are not included. The third-order terms are zero for 0xx and 0yy and hence the expansions
are correct through the third order. Also, the second-order terms are zero for 0xy , and hence it is correct
through second order.
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Figure 7. Comparison of the normalized VAM strains, stresses and displacements with
the elasticity solutions for flexure.

Recovery relations without taper corrections. When the sectional formulae of an untapered beam are
used for a tapered one, with the only effect of taper being a change in the width, it follows that taper
does not enter into the expressions for strains and stresses. The stresses, strains and displacements from
this type of analysis, which as mentioned in Section 2 is the starting point for most of the research
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Strain Expansion

0xx
F

2Etb

(
1+ 1

3τ
2(−3ζ 2ν− 6ζ 2

+ 2)
)

0xy −
τ Fζ(ν+ 1)

Etb

0yy −
Fν

2Etb

(
τ 2(−6ζ 2ν− 3ζ 2

+ 2ν)
3ν

+ 1
)

Table 1. Asymptotic expansions of the strains from VAM and elasticity for the extension case.

on tapered beams, has been plotted along with the VAM and elasticity solutions in Figures 5–7. The
recovery relations are erroneous and certain trends are incorrect. The bending-shear coupling effect is
not captured as expected, and it can be seen from the graphs of 0xy and σxy in Figure 6 that the case of
bending does not result in any shear stress or strain. Another example is that of σxy for flexure, where
the trend for a tapered beam is exactly opposite that of a prismatic beam, as shown in the graph for σxy

in Figure 7. Using the change in sectional width in the stiffness formulae for prismatic beams leads to
erroneous stress, strain and displacement. This implies that the problem is being posed in a fundamentally
incorrect way. A prominent error of this type was identified in [Hodges et al. 2008], wherein it was shown
that the lateral-surface boundary conditions in the typical tapered beam analysis are incorrect.

4. Validity of the recovery expressions

In the previous sections, the recovery relations obtained from the VAM were compared with the exact
elasticity solutions. The VAM analysis was based on considering the parameters δ and τ to be small.
This section addresses the definition of the “smallness” of these parameters. In other words, we increase
the values of δ and τ till the point at which the VAM solution deviates from the exact elasticity solutions,
thus determining the range of applicability of the VAM solution. It is important to note that from their
definitions, the value of τ must always be less than or equal to the value of δ. If τ were equal to δ, this
is a special case of a tapered beam, i.e., a wedge, for which a singularity exists in the case of flexure
and extension, as the force applied at the end in both the cases, acts over a vanishing area. Hence, we
will address the cases for which τ is strictly less than δ. The percentage errors for various values of δ
at are plotted in Figure 8. By error here we mean the maximum of the percentage errors of the recovery
relations for all the three loading cases. The error of a VAM solution is obtained by comparison with the
corresponding elasticity solution. Results for those combinations of τ and δ for which the maximum error
was below 5% was considered to be satisfactory. It is seen that at the extreme case of δ = 0.4, the results
are accurate up to τ = 0.26. Investigations were terminated at δ = 0.4 as for higher values, it is generally
expected that an engineering analysis would be done considering the structure as a plate and not a beam.

5. Conclusions

A beam theory has been presented based on the VAM for tapered strip-beam. The strip-beam is suffi-
ciently thin that it can be assumed to be in a state of plane stress. The novel feature of the beam theory
is that the effect of the taper parameter τ on the lateral-surface boundary conditions is included. This



974 DEWEY H. HODGES, ANURAG RAJAGOPAL, JIMMY C. HO AND WENBIN YU

o
o
o
o
o
o o o

o
o
o
o
o
o
o
o
o

o

o

o

o

o

o

x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

x

x

x

x

*
*
*
*
*
*
*
*
*
*
*
*

*

*

*

*

*

0.0 0.2 0.4 0.6 0.8

Τ

∆

1

2

3

4

5

Percent Error

* ∆=0.4

x ∆=0.35

o ∆=0.3

∆=0.25

∆=0.2

∆=0.1

Figure 8. Percentage errors with respect to τ/δ at a given δ for the VAM recovery
relations with respect to the elasticity solutions.

effect must be accounted for when performing a cross-sectional analysis, which gives the cross-sectional
elastic constants necessary for solving the 1D beam equations, and the recovery relations necessary for
accurately capturing stress, strain and displacement. To obtain accurate recovery relations, it is necessary
to evaluate warping through second order in the small parameters, while only first-order warping is
sufficient for obtaining accurate cross-sectional elastic constants.

When the VAM-based beam theory is linearized and applied to problems for which elasticity solutions
exist, such as constant axial force, constant bending moment and constant transverse shear force, the
results agree quite well for all values of τ for a beam with δ up to 0.25. Beyond this value of δ, the
values of τ for which the solutions are good reduces; and, finally, for δ = 0.4, the maximum value of
τ is 0.26, which is satisfactory. Therefore, a VAM-based beam cross-sectional analysis can solve the
problem of a tapered beam with sufficient accuracy.
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List of symbols

A(x) cross-sectional area of the strip-beam
E Young’s modulus
F axial force
G shear modulus

I (x) area moment of inertia of the strip-beam
about the z axis

P shear force
Q bending moment
U strain energy per unit length

U0 zeroth-order sectional strain energy
U2 second-order sectional strain energy
U ∗ second-order sectional strain energy

transformed to generalized Timoshenko form
a half-width of the strip-beam at x = 0, equal

to b(0)
b(x) half-width of the strip-beam

h half-width of the strip-beam at x = l, equal
to b(l)

l length of the strip-beam
t thickness of the strip-beam

u, v 1D displacements
ux , u y 2D displacements

wx , wy warping of the strip-beam section,
out-of-plane and in-plane, respectively

w(2)x , w(2)y second-order warping of the strip-beam
section

x axial coordinate of the strip-beam
y, z cross-sectional coordinates of the strip-beam,

with z through the thickness
0xx , 0yy, 0xy 2D strain components

α taper angle of the strip-beam
δ ratio of the maximum half-width of the

strip-beam to its length
ε 1D classical generalized stretching strain
ε 1D generalized Timoshenko stretching strain
κ 1D classical generalized bending strain
κ 1D generalized Timoshenko bending strain
γ 1D generalized Timoshenko shearing strain
ν Poisson’s ratio

σxx , σyy, σxy 2D stress components
θ 1D rotation
τ taper of the strip-beam, equal to tanα
ζ dimensionless cross-sectional coordinate

y/b(x), such that −1≤ ζ ≤ 1
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ASSESSMENT OF THE PERFORMANCE OF UNIFORM MONOLITHIC PLATES
SUBJECTED TO IMPULSIVE LOADS

JONAS DAHL

The uniform monolithic metallic plate is the standard for assessing structural performance against blasts.
For example, this has been the reference in recent work assessing the blast resistance of sandwich plates.
Here, the performance of monolithic plates made from a hardening metal with high ductility is inves-
tigated by systematic optimization. The thickness distribution of clamped monolithic wide plates is
optimized with respect to minimizing the permanent deflection at midspan under impulsive loads. The
optimized plates are compared to a uniform plate of the same mass. Two load cases are considered:
one with impulses acting uniformly along the plate, and one with impulses acting over a central patch.
In both cases the reduction of permanent deflection of the optimized plate relative to the uniform plate
is pronounced for small impulses but progressively smaller for larger impulses. For large impulses the
optimal thickness distribution differs only slightly from that of a uniform plate. The study confirms the
effectiveness of uniform thickness plates against large impulses.

1. Introduction

Plates subjected to blast loads have been extensively studied; especially so, in recent years, in the context
of all-metal sandwich plates [Fleck and Deshpande 2004; Xue and Hutchinson 2004; Qiu et al. 2005;
Dharmasena et al. 2008]. In all of these studies the performance of the sandwich plates is compared
to the performance of uniform monolithic plates of the same mass. The aim of the present study is to
optimize the thickness distribution of monolithic plates for impulsive loads. This has direct applications
in its own right, and the results can also be used to asses the effectiveness of the uniform plate as the
standard reference for blast load resistance.

An infinite depth clamped plate with length 2L and thickness H in Figure 1 is considered. The plate
is loaded with a pressure given as an exponentially decaying function typical of blast loads:

P(x, t)= f (x) exp
(
−t
τ

)
, −L ≤ x ≤ L , t ≥ 0, (1)

where τ is the characteristic time of loading, t is time, x is the distance from midspan (see Figure 1), and
f (x) describes the spatial distribution of the pressure, which is detailed below. The characteristic time τ
is chosen such that it is much shorter than the response time of the plate T (defined as the time to reach the
maximum midspan deflection), hence the loading is effectively impulsive1. Two situations are considered:
uniform loading with f (x)= p0, and loading over a central patch with f (x)= p0 exp(−(x/a)2), where

Keywords: impulsive loads, FE simulations, finite deflections, blast resistance, monolithic plates.
1Numerical studies show that for all practical purposes T/τ = 75 is more than adequate for this purpose.
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x

P (x, t) = p0e
−(x/a)2e−t/τ

y

P (x, t) = p0e
−t/τ

H

H

2L

2a

Figure 1. Clamped plate loaded with a pressure P(x, t). Uniform loading (top) and
loading over a central patch (bottom).

a is the characteristic spatial width of the pressure pulse. The impulse per unit depth of the plate is

I = 2
∫
∞

0

∫ L

0
P(x, t)dxdt =

{
2Lp0τ for uniform loading,
√
πap0τ for central patch loading (a� L),

(2)

where the expression for central patch loading is an excellent approximation for localized pressure
(a � L) as considered in this study, and the infinite upper limit on the integral over time is a good
approximation when the simulation time is much larger than τ . The dimensionless impulse per unit
depth of the plate Î = I/(L2√σYρ) is used throughout this article, where σY and ρ are defined below.

The plate material is assumed isotropic with power-law hardening stress-strain relationship

σ =

Eε, ε ≤
σY
E
,

σY

(Eε
σY

)N
, ε >

σY
E
,

(3)

where σ is the true stress, ε the true strain, σY the initial yield stress, E the Young’s modulus, and N the
hardening exponent.

The conventional J2 flow rule is used. For a sufficiently ductile metal alloy such that necking occurs
before any material failure, necking controls the maximum impulse the plate can withstand. This is due
to the fact that if a plate is loaded with an impulse that is just large enough to produce necking at the
boundary, then any larger impulse will almost certainly cause separation at the boundary because all the
additional energy associated with the larger impulse will be absorbed only within the highly localized
necking region. Necking and localization of plastic deformation is accurately captured by the finite strain
finite element formulation used, which is detailed below. A material failure criterion that would predict
details of the final fracture of the neck is not adopted. Failure by necking is evident in experiments on
thin beams subject to a uniform impulsive load [Menkes and Opat 1973]. As detailed above, impulse
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levels above those required to produce the onset of necking caused the beams to fully separate at the
clamped ends in a necking mode.

The material parameters used throughout the article are: σY = 260 MPa, N = 0.2, E = 200 GPa,
density ρ = 7800 kg/m3, and Poisson’s ratio ν = 0.3. Unless otherwise stated the following dimensions
are used: L = 100 mm, H = 6 mm, and a = 20 mm. For this choice of parameters numerical studies
show that for a/L < 0.15 necking at midspan develops for the uniform plate at large impulses, while for
a/L > 0.15 the plate fails by necking at the supports, which is also the case for uniform pressure. In this
paper a/L = 0.2 is used, hence the failure modes for the central patch and uniform loading are identical.
All computations are performed using the finite strain formulation available in the finite element code
ABAQUS/Explicit version 6.6-1 [2006].

The clamped plate is modeled using four-node plane strain quadrilateral elements with reduced inte-
gration and hourglass control (CPE4R), with 5 elements through the thickness of the plate H and 125
elements along half of the plate length L . Symmetry is exploited; thus symmetry boundary conditions are
used at the center and only half the plate is modeled. To evaluate the permanent deflection, an artificial
viscous damping is introduced after a few elastic oscillations, which damps out the elastic vibrations (see
Figure 2). This shows the time history of the vertical deflection (the y-axis of the coordinate system in
Figure 1) of the midspan denoted δ. As only negligible plastic deformation takes place after the damping
is activated it is assumed that this is a valid approach for finding the permanent deformation.

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

δ H

t̂ = t

L
√

ρ/σY

T̂ δp

H

Artificial damping is introduced

Figure 2. Normalized deflection at the midspan for central patch loading with
H/L = 6/100, Î = 0.0535, and a/L = 0.2. The introduction of artificial viscous
damping is indicated as is the dimensionless plate response time T̂ and the normalized
permanent deflection δp/H .
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Figure 3. Permanent deflection at the midspan of uniform plates. Triangular markers
indicate uniform pressure, and square markers indicate central patch pressure (with char-
acteristic spatial width a/L = 0.2). The curves terminate at the impulse when substantial
necking is observed.

Figure 3 gives an overview of the nondimensional permanent displacement of the midspan δp/H of
uniform plates of different thicknesses. The curves are terminated at an impulse level within the small
range of impulse levels where necking occurs. In Figure 3, a rapid upturn of the curves between the last
two impulse levels is observed. For practical purposes this represents the limit of impulses that the plates
can withstand.

2. Computational model and optimization scheme

In this study, the topology of the plate is not subject to change, that is, the top and bottom contours of the
plate are parameterized and material is distributed throughout the thickness which these contours define,
see Figure 4. Preliminary studies show that if both the top and bottom contours of the plate are allowed
to change freely, the optimized structure will approach a V-shape such that the response is dominated by
stretching from the initial application of the loading. In this study we are interested in plate-like structures,
hence the contours must in some way be restrained. For example, restrictions could be put on the top or
bottom contour, or on the midplane. We choose to restrict the top contour of the undeformed plate to be
planar, as this ensures that the loading pressure does not change during optimization, see Figure 4. The
gradient based code for constrained optimization SNOPT [Gill et al. 2005] is used to alter the design
in an iterative fashion to minimize an object function, which is a measure of the performance of the
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2L

H

Bezier control points Bezier control points

Figure 4. Plate loaded over a central patch. Uniform reference plate with thickness H
(top) and optimized plate with average thickness H (bottom). The geometry of the lower
contour of the plate is determined by equidistanced Bézier points, as indicated, which
can move in the vertical direction. The top surface is restricted to be a plane. Symmetry
is exploited, hence only the left half of the plate is modeled and parameterized.

structure. The gradients used in the optimization are obtained by finite differences with a perturbation
of the control points equal to approximately 1/100 of the element side length. The standard settings of
SNOPT are used.

Object function. Several object functions could be used, such as minimization of average deflection,
minimization of maximum deflection, minimization of maximum permanent deflection, et cetera. In
this paper, minimization of the permanent deflection at midspan is used (specifically the bottom finite
element node at the midspan symmetry line), which is denoted δp. The object function is normalized to
cater for the performance of the optimization algorithm:

ψ =
δp,ref− δp,opt

δp,ref
(4)

where δp,ref is the permanent deflection of a uniform plate with the same mass acted upon by the same
loading and δp,opt is the permanent deflection of the optimized plate.

Parametrization and constraints. As mentioned earlier, to obtain plate-like geometries, the top surface
of the plate is not allowed to change during the optimization process. The bottom surface of the plate is
parameterized using a Bézier curve with control points at the left support and midspan and a number of
equidistanced control points in between. This limits the design to relatively smooth designs, depending
on the number of control points, and prevents infeasible designs with a large number of stiffers that
depend on the spatial discretization, as observed for static elastic plate problems in [Cheng and Olhoff
1981]. The design variables of the problem are the vertical positions of the Bézier control points, see
Figure 4. To establish an adequate number of control points, a plate has been optimized for a given load,
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with the number of Bézier control points ranging from 3 to 15. It was observed that the optimized designs
were similar when using more than 4 control points, and that using a large number of control points made
convergence to local minima more likely. Therefore, in this paper all optimizations are carried out using
five Bézier control points, as this is the number of control points for which the object function seemed to
plateau. The motion of the control points is constrained by enforcing a constant mass of the plate, that
is, an average thickness equal to H . This is readily implemented using SNOPT, and the gradient of the
mass constraint is evaluated in the same finite difference loop as the gradient of the object function. A
feasibility constraint is employed to keep the optimization routine from requesting analysis of plates with
very thin sections, which would cause numerical difficulties due to severely distorted elements during
the finite element analysis. In this paper, the feasibility constraint demands that the thickness of the
plate is everywhere more than 1/10 of the uniform plate thickness. This limit is seldom reached during
optimization, but it makes the optimization process more robust. Attention must be paid to two general
problems arising in shape optimization: convergence to a local minimum, which is avoided in this paper
by varying the initial guesses on the position of the control points, and the fact that the parametrization
prevents the plate from reaching optimum, which is avoided by doing a convergence study in the number
of parametrization variables, as mentioned above. For a general description of the shape optimization
method the reader is referred to the review [Haftka and Grandhi 1986] and the more recent monograph
[Haslinger and Mäkinen 2003].

3. Optimization results

The permanent midspan deflection of the optimized plates (H/L = 0.06) is compared to the permanent
midspan deflection of a uniform plate with the same mass in Figure 5, left. To present the results
more clearly, the relative improvement is plotted in Figure 5, right, against the dimensionless impulse,
and in Figure 6 against the permanent deflection of the optimized plates (here several plate thicknesses
are considered). As mentioned earlier, the curves have been terminated in the range where necking is
observed. The figures show that the permanent deflection is significantly reduced in the range where
the impulses are relatively small. Nevertheless the impulse levels in this range are still able to cause
significant plastic deformation of the plate, giving rise to maximum permanent deflections less than about
two times the plate thickness. The improvement relative to the uniform plate declines for larger impulses
where the response transitions from being bending-dominated to stretching-dominated. The improvement
over the uniform plate almost vanishes for impulses causing permanent midspan deflections greater than
about 6 times the plate thickness. Nevertheless improvements of more than 10 percent can be achieved
well into the stretching-dominated regime (δp/H > 1). The plates optimized for this range of impulses
do not, however, perform as well as uniform plates when subjected to larger impulses.

Reduction of imparted kinetic energy. In general, greater performance improvement is achieved in the
optimized plates for central patch loading than for uniform loading; see Figures 5–6. This can be under-
stood by studying the kinetic energy imparted to the plates. The kinetic energy imparted to the plates
must be dissipated through plastic straining (neglecting elastic vibrations). Hence reducing the imparted
kinetic energy is a potential means for reducing the permanent deflection. When considering a mass m
initially at rest subjected to an impulse I = mv, where v is the velocity of the mass, the imparted kinetic
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Figure 5. Left: permanent deflection at the midspan for a plate with dimensions H/L =
0.06. Right: relative improvement of the permanent deflection at the midspan for a plate
with dimensions H/L = 0.06.
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Figure 6. The relative reduction of permanent deflection plotted against the deflection of
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0.06 (continuous line), and 0.08 (dotted) for both uniform and central patch loading.
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energy of this mass is

Ekin =
mv2

2
=

I 2

2m
. (5)

Hence, increasing the mass on which a given impulse is acting will decrease the kinetic energy imparted
to the mass. The same is true for the plates considered here. In the case of central patch loading, mass can
be redistributed to the midspan where the loading acts, effectively decreasing the kinetic energy imparted
to the plate, which in turn must be dissipated through plastic strain. This is seen in Figure 7, where the
kinetic energy imparted to the optimized plates is plotted relative to the kinetic energy imparted to a
uniform thickness plate. This effect is observed also in the case of uniform loading, as regions near the
supports contribute only slightly to the kinetic energy. Thus it can be beneficial to move some mass to
the midspan, but the effect is much smaller than for central patch loading.

Optimized thickness distributions. The inserts in Figure 7 show the optimized thickness distributions
(for the left symmetric half) for a number of impulse levels. The optimized thickness distributions are
similar for central patch and uniform loading. For small impulses the optimized plates resemble what is
found for optimization of static elastic plates [Cheng and Olhoff 1981], that is, the thickness distribution

Figure 7. Kinetic energy imparted to the optimized plate relative to the kinetic energy
imparted to the uniform plate. The inserts show the left symmetric half of the optimized
plates.
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varies with the bending moment distribution. For medium impulses, most of the redistributed mass is
concentrated near the midspan of the plate which indicates that it is beneficial to reduce the kinetic
energy imparted to the plate, compared to increasing the stiffness of the plate, as the discussion above
suggests. For large impulses, causing permanent midspan deflections of more than about six times the
plate thickness, the optimized plates are nearly uniform for both uniform and central patch loading. In
this stretching-dominated range, uniform plates perform well, as changes in thickness variation promote
necking in the thinnest regions.

4. Conclusions

In general, the reduction of permanent midspan deflection of the optimized plates compared to the uni-
form plates is significant for relatively small impulses, which give rise to permanent deflections that are
less than two times the plate thickness. For larger impulses, which give rise to deflections greater than
about six times the plate thickness, the payoff from optimization is less than five percent. Optimization
of the thickness distribution shows more promise for plates subjected to central patch loading, as the
kinetic energy imparted to the plates can be significantly reduced by relocating mass to areas below the
loading. Three impulse domains have been identified:

• Small impulses (maximum permanent deflection less than the average plate thickness): The opti-
mized plates resemble those found by shape optimization of linear elastic plates subjected to a static
load at midspan [Cheng and Olhoff 1981]. This suggests that the response is primarily governed
by the bending moment distribution. In this range of impulse levels the optimized plates perform
significantly better than uniform plates.

• Medium impulses (maximum permanent deflection greater than the average plate thickness but less
than about six times the average plate thickness): The optimized plates have a significant amount of
material at the midspan, as to reduce the kinetic energy imparted to the plate. This effect is limited
in the case of uniform loading, as pressure is applied everywhere on the top surface of the plate.
Therefore, the impulse is transferred to the whole plate, hence moving mass from one region to
another does not reduce the kinetic energy transferred to the plate, except near the supports. In this
range of impulse levels the optimized plates perform 10–35% better than uniform plates in the case
of central patch loading, and 5–15% better under uniform loading.

• Large impulses (maximum permanent deflection greater than about six times the average plate
thickness): The plate response is dominated by stretching. Uniform plates perform very well, and
only a slight reduction of permanent deflection can be obtained from optimization. In this range
nonuniform thickness variations promote necking in regions where the thickness is minimum.

Finally, it can be emphasized again that the present study establishes that uniform plates perform well
for large impulses, and that little is gained by varying the thickness distribution of the plate. This is an
important observation for the monolithic plates studied here, and it establishes that the uniform monolithic
plate is in fact a good reference for sandwich plates subjected to blast loads.
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STRESS SMOOTHING HOLES IN PLANAR ELASTIC DOMAINS

SHMUEL VIGDERGAUZ

The actual elastostatic problem of optimizing the stress state in a two-dimensional perforated domain
by proper shaping of holes is considered with respect to minimization of the global variations of the
boundary hoop stresses. This new criterion radically extends the rather restrictive equistress principle
introduced by Cherepanov and results in a favorable response of the structure to an external load, with
neither local stress concentrations nor underloading of other parts of the boundary. Mathematically, the
variations provide an integral-type assessment of the local stresses which requires less computational
effort than direct minimization of the stress concentration factor. The proposed criterion can thus be
easily incorporated in the numerical optimization scheme previously developed by the author in the
closely related context of energy optimization. It includes an efficient complex-valued direct solver and
a standard evolutionary optimization algorithm enhanced with an economical shape parametrization tool.
The effectiveness of the proposed scheme is illustrated through numerical simulations.

1. Introduction and motivation

Thin and flat construction elements with holes enjoy frequent application in engineering. The holes may
cause significant stress concentration and crack initiation, which occur when the resultant maximum
hoop stresses σh along the hole boundaries L exceeds the material-specific constant σ0:

K(L)≡max |σh(t)|> σ0, t ∈ L . (1-1)

This weakening effect of the holes can be efficiently reduced by their proper shaping to achieve a more
favorable stress state of the construction under the same given loading. Such an approach is all the more
promising as the hole area usually matters much more than its shape, which thus permits a certain design
freedom.

With (1-1), the commonly used criterion for assessing the elastic structure optimality is the minimum
of K(L) over the pool {L} of all admissible shapes L j of each hole:

max |σh(t)| ≡ K−−−−−−−−−→
{L}

min; t ∈ L; L =
N⋃

j=0
L j . (1-2)

The stress-minimizing holes (1-2) maximize the undamaging level of the acting load. The direct problem
of evaluating the factor K over given holes and the inverse problem of its possible minimization are

Keywords: plane elasticity problem, Kolosov–Muskhelishvili potentials, shape optimization, hoop stresses, extremal elastic
structures, genetic algorithm.

Preliminary results in this paper were presented at the Fourth European Conference on Computational Mechanics (ECCM
2010), Paris, May 16–21, 2010.
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amongst the main topics in elasticity. The related literature is abundant. In the next sections, some
relevant papers are commented on for comparison purposes.

Much less attention, however, has been paid to another criterion, according to which the hoop stresses
should have minimal possible variation along the holes:

V [σh(L)] −−−−−−−−−→
{L}

min . (1-3)

In accordance with the general theory of real-valued functions [Natanson 1955], the variation of the
stress function is defined as

V [σh(L)] = sup
∑

j

n∑
i=0

∣∣σh(t
( j)
i+1)− σh(t

( j)
i )

∣∣, (1-4)

where the supremum is taken over all possible partitions of L j with an arbitrary system of points
t ( j)
0 , t ( j)

1 , . . . , t ( j)
n ordered by a chosen direction of traversing. For a closed contour we require t ( j)

n = t ( j)
0 .

Since the variation is always nonnegative and reaches its zero global minimum only at constant-valued
functions, i.e.,

V [σh(L)] = 0⇐⇒ σh(L j )= C j ∀ j, (1-5)

this is an integral measure of how the function is everywhere close to uniformity.
When the constants {C j } are reasonably small, the uniform stress distribution (1-5) presents an ideal

response of the structure to an applied external load while avoiding both excessive local stress concen-
tration and underloading of other parts of the boundary at an acceptable stress level.

Though the criteria (1-2) and (1-3) for V [σh(L)] > 0 are implicitly connected through the evident
inequality

max σh(L)−min σh(L)≤ V [σh(L)], (1-6)

where the equality sign is attained at, for instance, any monotone function, it remains unclear whether
they go to their minima together or at each other’s expense.

The absolutely nontrivial and purely analytical example here consists of the equistress shapes (ESS)
[Cherepanov 1974; Vigdergauz 1976; Banichuk 1977] along which the hoop stresses are simultaneously
uniform [Cherepanov 1974] and globally minimal [Vigdergauz 1976]. In other words, an ESS is optimal
with respect to both criteria, which, for brevity, will be referred to as K and V , respectively.

However, these shapes exist only under the following restrictive conditions:

(A1) The elastic domain is infinite.

(A2) The absolute value of the ratio of deviatoric stresses to dilatational stresses externally applied at
infinity must be no greater than 1 or, equivalently, the principal remote stresses must have the same
sign. Under this requirement, the resultant stress field in the domain remains rather isotropic, thus
preserving the ellipticity of the optimization problem.

(A3) All the contours must be optimized simultaneously: no fixed holes are allowed.

If all this takes place, the constants C j are all equal, and are determined only by an external load
independently of the number of holes and their relative arrangement. They are found analytically in
parallel with the parametric representation of the ESS by solving the Dirichlet problem in a plane with
rectilinear slits. See [Milton 2002] and references therein.
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Whenever any of the conditions (A1)–(A3) is violated, an ESS most likely no longer exists.
A less restrictive piecewise constant distribution of the hoop stresses (M-equistressness) was proposed

in [Vigdergauz and Cherkaev 1986] and more comprehensively in [Vigdergauz 2006], as an immediate
extension of (1-5) to any loading at infinity. The M-equistress single hole under remote shear is semi-
analytically identified in [Vigdergauz 2006]; two closely spaced holes are numerically found in [Waldman
et al. 2003]. Physically, they contain four angular points t1, . . . , t4 across which the hoop stresses change
sign:

σh(t)=

{
C ′, t1 < t < t2, t3 < t < t4,

C ′′, t4 < t < t1, t2 < t < t3, C ′,C ′′ 6= 0, C ′C ′′ < 0,
(1-7)

so that V [σh(L)] = 2|C ′−C ′′|.
Less constrained optimal problems of this kind have received little or no attention in the literature.

We study them here using only the V-criterion, with no additional prerequisites like, say, the piecewise
constancy (1-7) of σh . The numerical results obtained (Section 5) show that this approach, among other
things, reliably reproduces equi- and M-equistressness. In this connection, we note that, as mentioned
above, any nonzero variation corresponds to at least an immense variety of monotone functions with
the same extrema; thus, the fact that the V-criterion identifies just the independently found piecewise
constant M-distributions (when they exist) strongly counts in its favor.

On the other hand, the equistressness (1-5) for a general geometry and the M-equistressness (1-7) for
a single hole were first derived as a stationary point of the variation of the strain energy integral over
the solid phase with moving boundaries [Cherepanov 1974]. In contrast, we formulate the V-criterion
as an essential relaxation of equistressness rather than variationally. Nevertheless, the fact that the stress
variation is bounded from below by zero allows one to formulate the V-related shaping of the holes as
a global optimization problem (Section 3). A possible relation between energy minimization and the
V-criterion deserves a separate study, which is currently beyond our scope.

In the general unrestricted case, the ESS serve as an absolute benchmark to measure the effectiveness
of a shape optimization which may be performed now only separately for the concentration factor (1-2)
and for the variation of the stresses (1-3).

Though both criteria have comparable practical implications, they generalize the ESS in diverging
directions. More importantly in the current context, they substantially differ in computational complexity.
Indeed, a typical numerical optimization strategy involves two main ingredients: the solution of a given
direct problem which has to be repeated many times, and a minimization scheme. The direct solver as-
sesses the fitness of each candidate for optimization by a chosen criterion. The stress concentration factor
(1-2), due to its local nature, must be evaluated here with high accuracy to avoid spurious oscillations
around the true value, which frequently occur in numerical stress analysis. By contrast, the integral-
type criterion (1-3) may be assessed less accurately because the sums (1-4) permit, at least partially, the
compensation of numerical errors in the stress computation. The results displayed in Section 5 illustrate
that minimization of the variation of the stresses effectively smooths them also outside of limitations
(A1)–(A3). It works as an oscillation filter within the numerical optimization scheme composed here as
follows:
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Figure 1. The problem schematic: a two-dimensional elastic region with holes. The
outer boundary L0 may recede to infinity.

• The direct solver employs complex-valued Kolosov–Muskhelishvili (KM) potentials [Muskhelish-
vili 1963], which result in a specially derived system of linear algebraic equations involving no
singularities and, hence, providing a fast and accurate assessment of any admissible hole shape.

• The minimization process is based on a standardized configured genetic algorithm (GA) which
includes the above-described solver for fitness evaluation in a gradientless search of the global opti-
mum. Of importance here is the novel encoding scheme, where each optimized shape is presented
separately by a sequence of the first N Laurent coefficients of the function mapping it conformally
onto a unit circle. As a whole, the proposed scheme was validated previously [Vigdergauz 2008;
2010] in the closely related context of the minimization of the strain energy.

Our contribution, therefore, is twofold: the relaxation of the equistress principle and its efficient
numerical implementation.

The paper is organized as follows. In Section 2, the two-dimensional boundary value elastostatic
problem for a multiply connected region and the hoop stresses variations is formulated in complex-
variable terms. On this basis, Section 3 poses the optimization problem and illustrates its peculiarities by
the example of the equistress and the M-equistress shapes. Section 4 described the components of the
numerical optimization scheme and how they are combined together. In Section 5, numerical results for
a selection of benchmark problems are detailed and discussed to illustrate the validity of our approach
and its limitations. Finally, some concluding remarks are made in Section 6.

2. Problem setup and governing equations

Consider, in the complex plane E : z = x + iy ∈ E , a linearly elastic, homogeneous, and isotropic solid S
which contains a finite number N of nonintersecting holes S j with boundaries L j , j = 1, . . . , N , as shown
in Figure 1. The infinite region outside the outer boundary L0 is denoted by S0, so S+

⋃N
j=0 S j = E .

Each curve L j , j = 0, . . . , N , is supposed to be closed and piecewise smooth, with area F j . When it
exists, the outer boundary L0 is subject to given external stresses

σnn(t) and σnτ (t), t ∈ L0, (2-1)
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in a local system of curvilinear orthogonal coordinates (n, τ ), while the boundaries of the holes are taken
to be traction-free:

σnn(t)≡ 0, σnτ (t)≡ 0, t ∈ L j , j = 1, . . . , N . (2-2)

The load-induced stress tensor {σ(z)} at any point of the elastic domain is expressed by the complex-
valued Kolosov–Muskhelishvili (KM) functions 8(z),9(z) holomorphic in S (see [Muskhelishvili 1963]
for these and other formulas in this section):

σxx(z)+ σyy(z)= 4 Re8(z), z ∈ S, (2-3a)

σyy(z)− σxx(z)+ 2iσxy(z)= 2[z8′(z)+9(z)]. (2-3b)

In conformity with the loading conditions (2-1)–(2-2) the KM potentials are linearly linked along the
boundary L =

⋃N
j=0 L j of the solid S by

2
∂t
∂t

Re8(t)+ t8′(t)− σnn(t)− iσnτ (t)=−9(t), t ∈ L0; (2-4a)

2
∂t
∂t

Re8(t)+ t8′(t)=−9(t), t ∈ L j , j = 1, . . . , N . (2-4b)

The second potential 9(z) is isolated in the right-hand side of (2-4) for future use (see Section 4.1).
When the elastic domain is infinite, the outer boundary L0 does not exist and the nonzero conditions
(2-4a) are replaced by the given far-field principal stresses σ∞xx = P , σ∞yy = Q, σ∞xy = 0, which dictate
the asymptotics

8(z)= Bz+ O(|z|−2), 4B = P + Q, z→∞; (2-5a)

9(z)= 0z+ O(|z|−2), 20 = Q− P. (2-5b)

The identities (2-4a)+(2-4b) or (2-4a)+(2-5) form a boundary value problem to be solved for KM poten-
tials, which in turn define the resultant stresses through (2-3). Using the traction-free condition (2-4b)
and the coordinate invariance of the stress tensor trace in the left side of (2-3a) we obtain, along each
inner hole,

σττ (t)= 4 Re8(t), t ∈ L j , j = 1, . . . , N , (2-6)

and, in like manner, when the outer boundary is present,

σττ (t)= 4 Re8(t)− σnn(t), t ∈ L0. (2-7)

Here σττ (t) denotes the hoop stresses abstractly written in Section 1 as σh . In view of (2-6), (2-7), their
total variation is written as

V [σττ (L)] =
N∑

j=0

V [σττ (L j )] = 4
N∑

j=0

V [Re8(L j )− δ j,0σnn(L j )] (2-8)

where δ j,0 stands for the Kronecker delta.
At a fixed external load, the stresses and hence their boundary variations depend only on a number of

the holes, their shape, size and mutual arrangement. As it will be shown later, the hole shapes admit an
effective finite parametrization, which significantly facilitates the numerical shape optimization technique
with respect to the V-criterion.
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3. Problem formulation

We are now in a position to define more precisely the problem (1-3) of minimizing the variation of the
hoop elastic stresses in complex-variable terms:

Given relative locations and areas of a number of traction-free holes in a two-dimensional
thin elastic domain, find the hole shapes L j that minimize the hoop stresses variation
(1-3)+(2-8) under a load specified either along a fixed outer boundary by (2-1)+(2-4a)
or at infinity by (2-5).

Except for the novel criterion, this is a standard shape optimization problem in elasticity.
As already noted, the global minimum (1-5) of the variation criterion V is reached, for instance, at

the equistress holes in an infinite plate; they are derived in the current terms as follows.
Substitution of (1-5) into (2-6) gives at the inner traction-free holes

Re8(t)= C j , j = 1, . . . , N . (3-1)

The identities (3-1) and the bulk-type asymptotics (2-5a) form the elementary Dirichlet problem in the
holomorphic function 8(z) with the unique solution

8(z)= constant= B, z ∈ S; C j = B, j = 1, . . . , N ; (3-2)

which is valid for any hole shapes and locations. By (3-2), the traction-free condition (2-4a) then simpli-
fies to the boundary-value problem in the second KM potential 9(z)

9(t)=−2B
∂t
∂t
, t ∈ L j , j = 1, . . . , N , (3-3)

with shear-type asymptotics (2-5b) at infinity. In contrast to (3-1), this problem may have a solution only
for specifically shaped holes along which the right-hand side of (3-3) is the boundary value of a function
holomorphic in S. The bulk-type asymptotics (2-5) provides a necessary condition for solvability of the
problem. Indeed, taking the absolute values of both sides of (3-3) and using the evident fact that∣∣∣∣∂t

∂t

∣∣∣∣≡ 1, t ∈ L , (3-4)

for any arc L in the complex plane, we have∣∣9(t)∣∣= 2
∣∣∣∣B ∂t
∂t

∣∣∣∣= 2|B|. (3-5)

Since the modulus of a holomorphic function is a real subharmonic function of z [Courant 1950], it obeys
the maximum principle and hence achieves its maximum only at the domain boundary L . Particularly∣∣9(z =∞)∣∣= |0| ≤ 2|B| (3-6)

or, in equivalent form, 1≡ 0/(2B), which implies

|1| =

∣∣∣∣∣σ∞yy − σ
∞
xx

σ∞yy + σ
∞
xx

∣∣∣∣∣≤ 1, (3-7)

a quantitative expression of the solvability condition (A2) discussed in Section 1.
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In themselves, the equistress shapes are found parametrically by the conformal mapping of the opti-
mized infinite domain into a plane with parallel slits [Cherepanov 1974] where the transformed boundary
conditions (3-3) are met. For further references, we reproduce here the equations for the upper side of the
right hole in the case of two identical ESS disposed symmetrically about the y-axis [Cherepanov 1974]:

y(ξ)
C
= (1+ γ )

(
E
(
θ,
√

1− ξ 2
0
)
+ d0 F

(
θ,
√

1− ξ 2
0
)
− R(ξ)

)
x(ξ)

C
= x0+ (1− γ )(ξ − ξ0)

 for 0< ξ0 ≤ ξ ≤ 1, (3-8)

where

θ = arcsin
1
ξ

√
ξ 2− ξ 2

0

1− ξ 2
0
, x0 = (1− γ )ξ0+ (1+ γ )

(
E
(
π

2
, ξ0

)
− (1+ d0)F

(
π

2
, ξ0

))
,

d0 =−
E
(
π

2
,
√

1− ξ 2
0

)
F
(
π

2
,
√

1− ξ 2
0

) , R(ξ)= ξ−1
√
(1− ξ 2)(ξ 2− ξ 2

0 ).

Here F and E are the elliptic integrals of the first and second kind, respectively, C denotes a nonessential
scaling factor up to which the two-hole geometry is described by the single dimensionless parameter λ,
the ratio of the half interdistance x0 to the square rooted area F1 = F2 of either of the holes:

λ=
x0√
F1,2

, 0< λ <∞. (3-9)

With decreasing distance x0, and, hence, increasing interaction between the holes, the resultant optimal
shape (3-8) evolves from an ellipse to a kidney-like shape, as illustrated in [Cherepanov 1974].

The seeming ease of obtaining the globally optimal solution (3-8) is completely due to the conditions
(A1)–(A3) listed in Section 1, which make it possible to preliminary find the first KM potential 8(z) in
the geometry-independent form (3-2). Other examples of the ESS such as a circular hole under uniform
pressure are too trivial to be considered.

Now it becomes clear how the loading inequality (3-6) works. Indeed, consider a single traction-free
hole under remote shear [Vigdergauz and Cherkaev 1986]: then B = 0 and 0 = 1. The nonzero equistress
condition (3-1) then makes no sense in view of the mean value theorem for a harmonic function Re8(z)
[Courant 1950], by which

R̂e8(t)= C1 = Re8(∞)= B ≡ 0, t ∈ L1, (3-10)

where the hat denotes the function’s mean value along L1. In contrast, the weakened M-equistress
condition (1-7) is compatible with (3-10) provided that C ′=−C ′′ and arg tk= (2k−1)iπ/4 (k=1, 2, 3, 4),
as dictated by the problem’s rotational symmetry. Again, as above, substitution of (1-7) into the boundary
condition (2-4a) and conformal mapping help to find the shape and the stress constant C ′ [Vigdergauz
and Cherkaev 1986], this time only numerically. The optimal shape looks like a slightly rounded square.
A more efficient semianalytical approach [Vigdergauz 2006] is given in Section 5 for comparison.

The general case, however, does not lend itself to solution by this approach and the whole situation
calls for a numerical treatment based on a novel analytical approach.
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4. Numerical scheme

Particularly relevant to the present purposes, is the scheme previously developed in [Vigdergauz 2008;
2010], in the similar context of the energy-related shape optimization. For completeness and reader’s
convenience, its basic features are briefly outlined below.

4.1. Direct solver. It is shown in the previous section that the ESS allow one to find the KM potentials
(a) sequentially rather than in parallel, and (b) in closed form.

Actually, however, 8(z),9(z) can be separated for any set of hole shapes, though in a quite different
manner and only numerically. As compared to the standard practice, this option halves the computational
complexity of the direct problem. Crucial here is that, in contrast to 8(z), the second potential 9(z)
enters the boundary conditions (2-4) with neither conjugates nor derivatives. This offers a way of solving
(2-4) as a regular boundary-value problem in only 8(z) and, when needed, to find 9(z) by simple
integration thereafter.

Indeed, since the Cauchy-type integral of the holomorphic function 9(z), z ∈ S, over L vanishes
identically in each complementary region S j , j = 0, . . . , N [Ahlfors 1978], we have from (2-4)∫

L

2 Re8(t) dt + t8′(t) dt
t − z

=

∫
L0

σnn(t)+ iσnτ (t)
t − z

dt, ∀z ∈ S j , j = 0, . . . , n. (4-1)

Here L is traversed in the positive direction with respect to the elastic domain S.
Evidently, a Taylor-like expansion of the Cauchy kernel 1/(t− z) around arbitrary finite points a j ∈ S j ,

j = 1, . . . , n, namely

1
t − z

=
1

t − a j
+

∞∑
k=1

(z− a j )
k

(t − a j )k+1 , |z− a j |< ε, j = 1, . . . , N , (4-2)

is absolutely convergent at least for a sufficiently small ε. Similarly, at infinity,

1
t − z

=−
1
z
−

∞∑
k=1

tk

zk+1 , |z|> R, (4-3)

for a sufficiently large R.
Next, substitution of (4-2) and (4-3) into (4-1) and equating like powers on both side yields the infinite

set of identities (k = 1, 2, . . . )∫
L

2 Re8(t) dt + t8′(t) dt
(t − a j )k

=

∫
L0

σnn(t)+ iσnτ (t)
(t − a j )k

dt; j = 1, . . . , N , (4-4a)∫
L

(
2 Re8(t) dt + t8′(t)

)
tk−1dt =

∫
L0

(
σnn(t)+ iσnτ (t)

)
tk−1dt. (4-4b)

By the principle of analytical continuation [Ahlfors 1978], these identities are valid not only near the
points {a j } but everywhere outside S. Therefore, taken together, they are equivalent to the initial boundary
conditions (2-4). Finally, the Laurent series of 8(z) around the same points a j and at infinity,

8(z)=
n∑

j=1

∞∑
k=2

d(k)j

(z− a j )k
+

∞∑
k=2

d(k)0

zk , z ∈ S, (4-5)
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transforms (4-4) into an infinite set of linear algebraic equations

AEx = D, A = {Akl}, D = {Dk}, (4-6)

for the unknowns Ex = {d(k)j }, with j = 0, . . . , N and k = 2, . . . . The coefficients of the system involve
regular rather then singular integrals and hence are computationally more advantageous than the con-
ventional integral equation schemes [Muskhelishvili 1963]. For certain geometries, they are displayed
in Section 5. When S is infinite, the integrals along the outer contour L0 are discarded together with the
coefficients {d(k)0 }, while the right-hand side of the system is a linear combination of specific integrals
over all holes with the loading coefficients B and 0 from (2-5) as detailed in [Vigdergauz 2008; 2010].
In both cases, the system involves only the first KM potential 8(z) and hence has a halved size when
truncated for numerical purposes to a finite number Nsyst. The number of the unknowns may be further
reduced for a problem with symmetry as shown for specific cases in Section 5.

4.2. Shape encoding algorithm. The key issue in numerical applications of the proposed solver is how
to effectively parametrize hole shapes, both for evaluating the contour integrals (4-4) in the system coef-
ficients and optimizing the shapes over the same parameters. A workable approach here is a conformal
mapping of the domain D outside a unit circle ρ = exp iθ , 0≤ θ ≤ 2π , |ρ| = 1, onto the infinite domain
E j ≡ E − S j performed separately [Vigdergauz 2008; 2010] for each shape L j , j = 0, . . . , N , by N+1
functions with a finite Laurent expansion in D:

ω j (ζ )

C
= ζ +

M∑
m=1

b( j)
m

ζm with |ζ | ≥ 1, j = 0, . . . , N , (4-7)

where C is the scaling coefficient at which

ω j (ρ)= t ∈ L j , j = 0, . . . , N . (4-8)

Taken as design variables, the mapping coefficients b( j)
m , with m = 1, . . . ,M and j = 0, . . . , N , offer a

number of substantial advantages over the commonly used nodal point shape representation, as detailed
in [Vigdergauz 2010]. First, the conformal mapping-based description (4-8) is continuous rather than
discrete, and hence even a small number M of them gives a wide variety of smooth closed shapes as
compared to tens and hundreds of nodal points required for the same purpose. This is all the more so
because the b(m)j are bounded by the successively narrowed intervals

−
1
√

m
≤ b( j)

m ≤
1
√

m
, j = 0, . . . , N , m = 1, 2, . . . (4-9)

(see [Ahlfors 1978]), which are the necessary condition for the nonnegativeness of the area F j inside L j :

F j = π

(
1−

M∑
m=1

m
∣∣b( j)

m

∣∣2), j = 0, . . . , N . (4-10)

As a result, high-order coefficients are mostly responsible for forming large local curvatures and have
little impact on the integral-type criterion (2-8) of minimum stress variation. Second, with the identities

ρ = ρ−1, dρ = ρ dθ, dt = iω′j (ρ)ρ dθ, dt =−iω j (ρ)′ρ
−1 dθ, t ∈ L j , (4-11)



996 SHMUEL VIGDERGAUZ

the integration path L j is continuously transformed into the unit circumference ρ, thus making the
numerical integration easier and independent of the parameter M . In numerical simulation (Section 5)
we use the simplest trapezoid rule with Nint equal subintervals.

In a multiply connected case, the parametrization (4-7)–(4-11) also does better numerically than the
canonical simultaneous mapping [Courant 1950] of an infinite plane ζ with N slits or holes by a holo-
morphic function ω(ζ ). Indeed, the boundary condition in ζ [Muskhelishvili 1963]

−
2
ζ 2ω

′(ζ )Re8(ζ)+ω(ζ )8′(ζ )+ω′(ζ )9(ζ )= 0, ζ ∈ l, (4-12)

is more complicate than its unmapped counterpart (2-4b) and, most likely, may not be simplified be-
yond the nice exception of the equistressness. Further, the proposed approach easily meets any given
arrangement of the holes by displacing the separate maps (4-7) in the physical plane E :

ω j (z)→ ω j (z)+ h j , j = 1, . . . , N . (4-13)

Here the h j are complex-valued constants. This can hardly be done by an ordinary mapping of the whole
domain S as exemplified in Section 3, where the implicit relation in (3-8) between the ESS interdistance
x0 and the auxiliary parameter λ is not invertible analytically to give λ as a function of ξ0. This is all the
more true for fixed shapes. When they exist, they are necessarily involved into the usual mapping, and
should be restored through a nonlinear boundary condition imposed on the holomorphic function ω(ζ ),
while separate mapping simply does not touch them. Finally, we note that the parametrization works well
up to closely spaced holes (see Section 5) with a relatively small number M of the Laurent terms in (4-7).

4.3. Fitness evaluation. Once the hoop stresses σττ (t) are found through 8(z), the fitness of the cor-
responding set of the holes can be next evaluated with respect to the minimum variation criterion
(2-8)+(1-4). Of course, for numerical implementation, the supremum in (1-4) is replaced by the sum
over only one selection of q closely spaced points 0= x1 < x2 < · · ·< xq = 2π along each hole contour.
We select the points x p in the form

x p = π(1+β(q)p ), p = 1, . . . , q, (4-14)

where the β(q)p are the roots of the Chebyshev polynomials of the second kind

Uq(x)=
q∏

p=1

(
x −β(q)p

)
, β(q)p = arccos

pπ
q + 1

, (4-15)

widely used in approximation theory. In the current context, their especially relevant property stems from
the fact that the Un(x) are known [Abramowitz and Stegun 1964] to minimize the integral∫ 1

−1
Pq(x) dx −−−−−−−−−→

{Pq }

∫ 1

−1
Uq(x) dx (4-16)

among all polynomials Pq(x) of same degree q and same leading coefficient. On the other hand, the
variation of a differentiable function f (x) in an interval takes the form [Natanson 1955]

V b
a ( f )=

∫ b

a
| f ′(x)| dx, (4-17)
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in conformity with the general definition (1-4). Comparison of (4-17) with (4-16) shows that Vq+1(x) :
V ′q+1≡Uq(x), q ≥ 1, are the polynomials of the minimum variation in [−1, 1]. The numerical simulation
(Section 5) indicate that the usage of (4-14) adds some 6 to 8 percent to the accuracy of the results obtained
with the same number of uniformly distributed approximation points.

Finally (4-17) gives

V b
a ( f )=

∫ b

a

∣∣ f ′(x)
∣∣ dx ≥

∣∣∣∣ ∫ b

a
f ′(x) dx

∣∣∣∣= ∣∣ f (b)− f (a)
∣∣, (4-18)

where the equality holds if and only if f ′(x) has constant sign on [a, b]. This means that V-optimization
seeks to smooth the stresses distribution by making it monotonous on the irreducible part of the con-
tour. We have already noted that the proposed criterion, in fact, does even more. Amongst monotone
distributions it tends to find a piecewise constant one, as exemplified in Section 5.

4.4. Evolutionary optimization scheme. With the mapping terms (4-7), the optimization problem is
finally reformulated as follows

V [σθθ (L)] −−−−−−−→
{b( j)

m }

min
(
b̂( j)

m , m = 1, . . . ,M, j = 0, . . . , N
)
. (4-19)

Put another way, the search space for each shape L j is reduced to a M-dimensional rectangular paral-
lelepiped with edges of length 2/

√
m, m = 1, . . . ,M , as defined by bilateral inequalities (4-9). They form

a set of linear constraints on the definition domain of the nonlinear minimized function V (b(0)1 , . . . , b(N )M ),
thus completing the problem formulation.

Our previous experience [Vigdergauz 2008; 2010] suggests that the computational process of shape
optimization (4-19)+(4-9) can be effectively conducted by evolutionary genetic algorithms (GAs), which
have been well-accepted in the last two decades (see, for instance, [Goldberg and Sastry 2010] and
references therein). They perform a gradientless optimization in a large search space by mimicking
the Darwinian process of natural selection over successive generations through crossover and mutation
operations. The efficient direct solver and the time-saving shape encoding numerically simplify the
parametrized optimization problem (4-19), allowing the use of an ordinary genetic algorithm configura-
tion, as detailed in our papers just cited. A set {L} of shapes is stochastically generated into a “chromo-
some” encoding M × (n+1) mapping parameters (4-7) as signed 16-bit integers rm

j , in conformity with
(4-9):

b(m)j =
rm

j

I
√

m
with I = 215

− 1, −I ≤ rm
j ≤ I, j = 0, . . . , n, m = 1, 2, . . . . (4-20)

The proposed direct solver permits evaluating the fitness of the chromosome that is the stresses variation
for the decoded shapes L(b(m)j ). An initial family of Nchr chromosomes is then subject to genetic opera-
tions of recombination, crossover and mutation performed over the integers {rm

j } rather then over {b(mj )}.
In doing so, the best individuals with the minimal fitness have the highest chance of surviving in the
offspring which in turn is passed to the fitness evaluation stage, and the cycle continues until the search
is terminated. The number Niter of iterations should be taken sufficiently large to ensure close proximity
of the solution to the global minimum. As is customary in iterative optimization, we indirectly estimate
the proximity by the inner stability of the process when the obtained minimum remains unchanged
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through a number of successive evolutionary steps. In general, the efficiency of GAs strongly depends
on the parameters involved, which, when chosen poorly, may slow convergence or even result in failure.

Of course, the scheme above described is not the only possible way to solve the shape optimization
problem at hand. For instance, Waldman et al. [2003] combine the finite element analysis with the
specially designed gradientless scheme of shape optimization by the M-equistress criterion (1-7) when
the elastic material is added at regions of high stress and/or removed where the hoop stress is low. In
contrast to our approach, this procedure needs an initial guess for the shapes to start with. As a result, a
given mutual arrangement of the holes is generally not preserved after optimization. Besides, the authors
use a time-consuming remeshing between iterations to avoid mesh distortion. Qualitatively, their results
fully agree with ours, though quantitative discrepancies are rather significant for two closely spaced
optimal holes in a plane under shear dominating far load. The details are discussed in Section 5.3.

5. Numerical results

As already noted, the evaluation of the variation under the proposed optimization scheme depends on
a number of parameters such as the probabilities of the GA operations, the truncated system size Nsyst,
and the numbers Nint, M , and q of, respectively, integration points, mapping terms, and Chebyshev
polynomial roots. All must be pre-adjusted to obtain stable and reliable solutions. We do it here using
a rare opportunity of comparing the numerical results with the corresponding closed solution (3-8) for
two equistress holes (Section 5.1). Further, in order to validate the approach, we numerically simulated
a number of yet unsolved two-dimensional cases.

5.1. Two equistress holes in an infinite plate under unibiaxial tension (B = 1, 0= 0). Here our aim is
to identify the ESS numerically with the minimum variation criterion (2-8) instead of using the equistress
principle (3-1)+(3-2) as a prerequisite.

Let two identical holes be located symmetrically with respect to the Cartesian axes. Then 8(z) is
even and takes conjugate values at complex conjugate points [Muskhelishvili 1963]:

8(z)=8(−z), 8(z)=8(z), z ∈ S+ L (5-1)

With this in view, the Laurent expansion (4-5) simplifies to

8(z)=
∞∑

k=2

d(1)k

(
1

(z− a1)k
+

(−1)k

(z+ a1)k

)
, z ∈ S+ L , a1 ∈ S1; Im d(1)k , k = 2, 3, . . . , (5-2)

and the system (4-6) takes the form

Akl = 2l
∫

L1

Re(ρl+1(t, c))ρk(t, c) dt + l(l + 1)
∫

L1

tρl+2(t, c)ρk(t, c) dt, (5-3a)

Dk =−4B
∫

L1

ρk(t, c) dt, k = 0, 1, 2, (5-3b)

ρ0(t, z)≡ 1
t−z
+

1
t+z

, z ∈ S1, (5-3c)

ρk(t, c)≡
1
k!
∂kρ0(t, z)
∂zk

∣∣∣
z=a1
=

1
(t − a1)k+1 +

(−1)k

(t + a1)k+1 , (5-3d)
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Figure 2. Two holes under remote bulk loading: the V-optimal hoop stresses σττ (θ) as
a function of the mapping size M at λ= 0.2.

Finally, when replacing t ∈ L1 by its map (4-7)+(4-8), we define the scaling factor C and the displacement
(4-13) (separately for each generated shape) to keep a given geometrical parameter λ from (3-9). By
virtue of symmetry, the mapping terms b(1)m , m = 1, . . . ,M are also real and the integration in (5-3) is
performed only along the upper half of L1 : 0≤ θ ≤ π .

Figure 2 depicts the convergence of the resultant hoop stresses on the optimized contour L1 to the
uniform distribution (3-2) at λ= 0.2 in dependence on the mapping problem size M , beginning with a
circle M = 0. As one would expect, the largest local deviation of the hoop stresses is observed near the
point x0, (θ = π) closest to the opposite hole. Figure 3 shows the optimally smoothed stresses at M = 9
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Figure 3. Two holes under remote bulk loading: the V-optimal hoop stresses for M = 9
in an enlarged scale.
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Figure 4. Two holes under remote bulk loading: the upper half of the right V-optimal
hole at λ= 0.2.

in an enlarged scale. The maximum relative error of σθθ is approximately 0.65%. We believe that the
error can be further reduced at the expense of increasing the computational cost but it is not our current
aim. Figure 4 depicts the numerically obtained optimal shape which is compared with the parametric
equations (3-8) taken at the computed value ξ0 ≈ 0.0024051725, λ(ξ0)= 0.2. The mutual deviations are
too small to be seen here. This closeness provides empirical grounds for adjusting the parameters listed
at the beginning of the section. Table 1 gives their calibrated values used in further calculations.

GA parameter Parameter value(s)

Gene Integer in [−32767; 32767]
Individual Interface shape
Population size 800
Number of genes, M up to 9
Initial population 800 random individuals
Selection Tournament
Elitism Four best individuals
Crossover 1-point
Crossover rate 0.90
Creep mutation By randomly changing a bit
Creep mutation rate 0.35
Jump mutation By adding a random integer,

typically in the range [−4; 4]
Jump mutation rate 0.35
Stopping criterion After 1200 iterations
Resolving system size K 36
Number of integration points Np 720 (in the interval [0, π])
Number q of sample points on contour 1440

Table 1. GA operator types, their probability rates and related parameters typically used
in further optimizations.
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5.2. A single V-optimal hole in infinite plate under remote shear (B = 0, 0 = 1). Here, the rotational
properties of the problem imply that 8(i z)=−8(z) and hence

8(z)=
∞∑

k=1

a(1)4k−2

z4k−2 ;
ω1(ζ )

C
= ζ +

M∑
m=1

b(1)4m−1

ζ 4m−1 , |ζ | ≥ 1, (5-4)

while the right-hand side of the system (4-6) takes the form

D0 =−200, Dk = 0, k = 1, 2, . . . (5-5)

In conformity with (3-10) and (5-4) we have

σθθ (eiπ/2ζ )=−σθθ (ζ ), σ̂θθ (ζ )= 0. (5-6)

Remarkably, for a single hole an M-term finite mapping expansion generates exactly a finite M ×M
system [Vigdergauz 2006]. This allows one to avoid additional truncation error by explicitly summing
the infinite tail of the series (5-4) through a finite difference scheme. As a result, the hoop stresses along
any hole are obtained as rational functions of the nonzero mapping terms b(1)4m−1, m = 1, . . . ,M . In
particular, for M = 1 we have [Vigdergauz 2006]

σθθ (ξ)=
4(1− 3b3) cos 2θ

(1− b3)(1− 6b3 cos 4θ + 9b2
3)
, b3 = b(1)3 . (5-7)

This makes the fitness evaluation equally easy and accurate for any criterion of optimality. Table 2
compares the computed V- and K-optima and the corresponding mapping terms for various M . The K-
related values, in parentheses, are taken from [Vigdergauz 2006]. It is seen that with increasing M , both
sets come closer and closer together; this is further illustrated in Figure 5. The V- and K-optimal stress

N b(1)3 b(1)7 b(1)11 b(1)15 b(1)19 b(1)23 Vmin Kmin

−0.07110 3.15744 3.117653
(−0.09000) (3.07165)

−0.09681 0.00444 2.96826 2.956837
(−0.11162) (0.00751) (2.90563)

−0.10987 0.00733 −0.00090 2.88768 2.8800311
(−0.12182) (0.01044) (−0.00200) (2.84110)

−0.11748 0.00918 −0.00165 0.00027 2.84435 2.8415915
(−0.12732) (0.01210) (−0.00293) (0.00076) (2.80824)

−0.12991 0.01055 −0.00221 0.00055 −0.00011 2.81818 2.8151719
(−0.13049) (0.01293) (−0.00340) (0.00112) (−0.00032) (2.78843)

−0.12498 0.01093 −0.00239 0.00064 −0.00017 0.00003 2.80387 2.8026223
(−0.13059) (0.01292) (−0.00338) (0.00116) (−0.00041) (0.00010) (2.77936)

Table 2. A single square symmetric hole under remote shear: conformal mapping co-
efficients and the V-criterion resulting from the GA optimization process for different
values of N . The K-related values are also shown for comparison, in parentheses.
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Figure 5. A single square symmetric hole under remote shear: tangential stress distribu-
tion along the V- and K-optimal holes (solid and dashed lines, respectively) for M = 23.
The local nonmonotonicity of the K-related curve is marked with an ellipse.

distributions at M = 23 are very similar except for a vicinity of the angular point (θ = π/4) where the
criteria work differently. As explained at the end of Section 4.3, the V-optimal stress distribution tends
to be monotonous while the K-criterion further diminishes the stress maximum with some sacrifice in
monotonicity. In any case, the difference between two maxima is hardly greater than the computational
errors. This favors in the V-criterion ability. We may conservatively conclude that again, as in the
equistress case, the K- and V-optimal single holes under pure shear are very similar to each other, if not
the same. Figure 6 depicts the evolution of the V-optimal shape with increasing M . One clearly sees the
smooth formation of an angular point with higher mapping coefficients.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Y

X

M=3
M=11

M=23

Figure 6. A single square symmetric hole under remote shear: the M-related evolution
of the V-optimal hole.
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Figure 7. An infinite plate with two identical holes under pure shear. The hole shapes
are symmetric about the x-axis and may have a finite number of angular points.

5.3. Two V-optimal holes in an infinite plate under remote shear (B = 0, 0 = 1). The corresponding
setup is shown in Figure 7. The only computational difference from the equistress case (Section 5.1) is
in the right-hand side (5-3b) of the resolving system (5-3). Now it has the form (5-5) [Vigdergauz 2008].

It is worth noting the following. Our previous experience [Vigdergauz 2008; 2010] shows that, by
contrast to (5-3b), the shear-type loading vector (5-5) results in low stability and accuracy of computing
the local stresses which are polluted with spurious oscillations. The reason is that the shear-type opti-
mal problem is no more elliptic as (3-2), and hence its solution looses some regular properties. For a
single hole (Section 5.2) it was compensated by an analytical summation of the infinite series in (5-4).
Here, as before, the numerically implemented V-criterion works equally well. Figure 8 illustrates this
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Figure 8. An infinite plate with two identical holes under pure shear: the V- and K-
optimal stresses (the dashed line) obtained by the same numerical scheme at λ= 0.2 are
compared to demonstrate the distinctive V-related smoothing effect.
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Figure 9. An infinite plate with two identical holes under pure shear: the upper half of
the right V-optimal hole at λ= 0.2.

conclusion, exemplifying the V-related filtering effect for two closely spaced holes at λ = 0.2 whose
shape is given in Figure 9. In contrast to the square symmetric V-optimal single hole, they are elongated
in the y-direction as was previously found by Waldman et al. [2003]. However, these authors further
obtained that the piecewise-constant hoop stresses for two holes under shear-dominating loading are
exactly the same as in the single hole case independently of the separation distance. In other words,
the shear-loaded optimal shapes also fully eliminate the holes interaction like in the equistress case. In
contrast, our stresses extrema max σθθ (θ)≈ 3.10 and min σθθ (θ)≈−2.85 on Figure 8 are higher than
the single-hole level σθθ (θ) ≈ 2.78843 (the right-bottom cell of Table 2) and differ in their absolute
values. The difference is too large to be attributed completely to numerical accuracy and, therefore, the
above-mentioned conclusion is not entirely supported in the quantitative analysis.

5.4. Two V-optimal holes in a circular disk under uniform pressure (σnn = P, σnτ = 0). As the last
example, we consider a uniformly compressed disk with two identical traction-free side holes. Here,
again, the symmetry relations (5-1) are obeyed, so that 8(z) is written as

8(z)=
∞∑

k=1

d(0)2k z2k
+

∞∑
k=1

d(1)k

(
1

(z− a1)k
−

(−1)k

(z+ a1)k

)
, (5-8)

z ∈ S+ L , a1 ∈ S1, Im d(0,1)k , k = 2, 3, . . .

In contrast to the equistress case (Section 5.1), the elastic domain is now finite and described by two
dimensionless parameters, namely the relative area f1,2= f1,2/πR2< 0.5 of the hole and its displacement
x0 < R from the center of the disk, where R is the disk radius.

Figure 10 depicts the identified V-optimal holes against their circular counterparts. Qualitatively, the
resultant shape is rather predictable because at given f1,2 and x0 the V-optimization strives to move
the hole away from the fixed outer boundary at the expense of the inner disk part. The corresponding
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Figure 10. A uniformly compressed disk with two V-optimal holes at x0 = 0.05 and
f1,2 = 0.2025. The circular holes of the same location and area (dashed lines) are also
shown for comparison.
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Figure 11. A uniformly compressed disk with two V-optimal holes at x0 = 0.05 and
f1,2 = 0.2025. The resultant tangential stress distributions (solid lines) versus their
counterparts for circular holes (dashed lines).

stress distributions are shown in Figure 11. As one might expect, the V-criterion not only smooths the
hoop stresses but also drastically reduces them as compared to the standard circular holes. The observed
deviations of the V-optimal distributions from the equistress value σθθ ≡ 2 measure the influence of the
disk’s circular boundary.

6. Concluding remarks

A new optimality criterion of smoothing the hoop stresses along holes in a perforated two-dimensional
elastic body has been proposed to extend the equistress principle (3-1) for the general case when neither
the equi- nor M-equistress shapes exist. For efficient numerical simulations, the criterion was combined
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with a complex variable-base direct solver and an economical shape encoding scheme as the main ingre-
dients of an evolutionary optimization process, each especially tailored for the problem at hand. Of them,
only the stresses variation criterion is really novel. Though related to the local stress distributions, it has
an integral form thus offering substantial numerical advantages. Within the proposed simulation approach
the V-criterion runs as a powerful filter of spurious oscillations of the hoop stresses thus permitting to
effectively smooth and reduce them at moderate computational cost. It is worthy to note again that the V-
optimal distribution tends to be piecewise constant what is absolutely a nontrivial solution. The results
presented demonstrate the promise of applying it to shape optimization in other fields of continuum
mechanics.
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NUMERICAL SIMULATION OF FAILED ZONE PROPAGATION PROCESS
AND ANOMALIES RELATED TO THE RELEASED ENERGY DURING

A COMPRESSIVE JOG INTERSECTION

XUE-BIN WANG, JIN MA AND LI-QIANG LIU

A compressive echelon fault structure is modeled using an explicit finite difference code (FLAC). The
Weibull distribution is used to reflect the heterogeneity of elemental parameters. The released elastic
strain energies due to shear and tensile failures are calculated using FISH functions. We examine the
failed zone propagation process and the temporal and spatial distribution of the released strain energy,
emphasizing those during the jog intersection.

A specimen including two parallel faults with an overlap is divided into square elements. Rock and
faults are considered as nonhomogeneous materials with uncorrelated mechanical parameters (elastic
modulus, tensile strength and cohesion). A Mohr–Coulomb criterion with tension cut-off and a post-
peak brittle law are used. During the jog intersection, high values of released tensile strain energy are
found at wing failure zones and at fault tips, while high values of released shear strain energy are found
at faults. Despite the jog intersection, the released strain energy in the jog is not high.

We also introduce a quantity b0 describing the slope of the curve connecting the number of failed
elements and the energy released. This is similar to the quantity b found in the literature, but is expressed
in units of J−1. Before the jog intersection, some anomalies associated with shear sliding of rock blocks
along faults can be observed from the number of failed elements (in shear, in tension and in either), the
accumulated released strain energy due to shear and tensile failures, the strain energy release rates in
shear and in tension, and the value of b0. As deformation proceeds, the evolution of b0 is calculated
according to two kinds of the released energy: total energy due to shear and tensile failures and shear
strain energy. The two exhibit similar behavior, suggesting that the released strain energy in shear is
much higher than in tension.

1. Introduction

Echelon fault structures can be observed in a wide range of length scales: they can be some 20 km long in
the San Andreas fault [Segall and Pollard 1980], while in mining-induced normal faults observed in South
Africa gold mines [Gay and Ortlepp 1979], echelon faults measured in centimeters can be found. The
observed echelon cracks are even smaller in rock samples stressed in laboratory [Ewy and Cook 1990;
Saimoto et al. 2003]. Seismologic evidence indicates that some earthquakes tend to cluster near echelon
faults or in jogs [Segall and Pollard 1980; Sibson 1985]. Geologic evidence indicates that some basins
and ranges can be formed in jogs [Aydin and Schultz 1990; Zachariasen and Sieh 1995]. Therefore,
considerable attention has been given to the problems of deformation, failure process and stability of
echelon fault structures [Bombolakis 1973; Segall and Pollard 1980; Sibson 1985; Ma et al. 1986; Aydin

Keywords: compressive echelon fault structure, jog intersection, failed zone, released strain energy, heterogeneity, shear
failure.
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and Schultz 1990; Du and Aydin 1991; Harris and Day 1993; Thomas and Pollard 1993; Zachariasen
and Sieh 1995; Jiang et al. 2002; Chen et al. 2005; Ma et al. 2007; 2008; 2010].

Echelon fault structures fall into two categories, compressive and extensional, according to the stress
state in the jog. For a compressive echelon fault structure, the jog is also called anti-dilatation or com-
pressive, while for an extensional one, the jog is called a dilatation jog. Extensive evidence shows a
marked difference between the two kinds, in stress distribution, secondary fracturing and magnitude
of earthquakes [Segall and Pollard 1980; Sibson 1985; Aydin and Schultz 1990]. For a compressive
echelon fault structure, the elastic interaction between two faults increases both the mean compressive
stress between them and the frictional resistance at fault tips, inhibiting slip transfer across the jog.
The compressive jog is a “pinned” area where much strain and strain energy can be stored [Segall and
Pollard 1980; Sibson 1985; Ma et al. 2007; 2008; 2010]. Such a pinned jog is a potential nucleation site
for moderate to large earthquakes. In contrast, in the extensional echelon fault structure, the frictional
resistance at fault tips decreases, facilitating sliding [Segall and Pollard 1980; Sibson 1985]. For this
reason, the present study is limited to compressive echelon structures.

Laboratory experiments, using transducers to measure displacement, strain, acoustic emissions (AE),
and so on, have contributed greatly to ongoing research on faulting and rock failure, and have provided
a vast amount of data, including waveforms, AEs and displacements on and around artificial faults [Pa-
terson and Wong 2005]. Even with transducers, however, no accurate results are guaranteed. Narrow
faults have been modeled physically by weak materials, such as gypsum mixture and wax paper [Shen
et al. 1995]. It is often difficult to make precise direct measurements using transducers on and adjacent
to faults. Therefore, energy accumulation and release are not clear in faults. Location errors in AE
events may lead to inaccurate results — even that AE sources are located outside the sample boundaries
[Lockner et al. 1991; Jiang et al. 2002]. For most experimental systems, insufficient AE data have been
provided [Lei et al. 2000]. In addition, in AE tests, the released strain energy in shear and tensile failures
cannot be distinguished from the total energy; and the individual sizes of failed zones in shear and in
tension cannot be determined.

Stress and secondary fracturing distribution near jogs of two kinds of echelon fault structures were
analyzed theoretically in [Segall and Pollard 1980]. A marked difference in behavior between them was
found. However, this was a two-dimensional quasistatic study. In quasistatic analyses, some critical
elements cannot be included, such as stress waves and time-dependent stress concentrations [Harris
and Day 1993]. Therefore, dynamic rupture propagation analyses were advocated by Harris and Day.
However, their model is purely elastic, in which the rupture cannot break through into the rock medium
surrounding faults.

The studies mentioned mainly focus on the interaction between faults and the distribution of stress and
displacement. The following problems are left untouched: the temporal and spatial distribution of the
released elastic strain energy during the jog intersection and the corresponding change in macroscopic
mechanical behavior, precursors to the jog intersection or the consequent unstable sliding of rock blocks
along faults and the relation between the number of events and the released energy.

The principal objective of this paper is to examine these problems numerically by use of FLAC (“Fast
Lagrangian Analysis of Continua”), an explicit finite-difference code that can be used to model geologic
structures [Strayer and Hudleston 1997; McKinnon and de la Barra 1998; Erickson et al. 2001], rock
specimens with imperfections and joints, [Wang 2005; Wang 2007a; Wang 2007b; Wang 2007c; Wang
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2008; Wang et al. 2009] and heterogeneous rock specimens [Cundall 1989; Fang and Harrison 2002;
Wang and Pan 2008; Wang and Zhang 2009].

2. Introduction of heterogeneity and calculation of released energy

Weibull’s theory is known to be useful for tensile fractures. There are still arguments on whether it is also
appropriate for fracturing in compression [Paterson and Wong 2005]. For brittle materials, the Weibull
distribution function has been used in considering the distribution of microdefects [Tang and Kou 1998;
Liu et al. 2004]. Here it is still used to describe the heterogeneity in an elemental parameter:

f (u)= m
u0

( u
u0

)m−1
exp

(
−

( u
u0

)m)
(1)

where u is the elemental parameter, with mean u0, and m is the shape parameter describing the scatter
of u, Higher values of m mean the material is more homogeneous.

FLAC includes a programming language, FISH, which allows the definition of new functions, thus
providing great flexibility. In [Wang 2007b; 2008; Wang et al. 2009] we used FISH functions to introduce
random material imperfections with the same strength within rock specimens. A similar method is used
in the present paper to consider the heterogeneity in an elemental parameter satisfying the statistical
distribution above.

If an element undergoes shear or tensile failure, the stored elastic strain energy is given by

W =
V

2E

(
σ 2

1 + σ
2
2 + σ

2
3 − 2ν(σ1σ2+ σ1σ3+ σ2σ3)

)
, (2)

where E is the elastic modulus, σ1, σ2 and σ3 are the principal stresses, ν is the Poisson’s ratio and V is
the volume of the element.

This equation is applied as follows. Once an element is found to fail in shear, the value given by the
formula is the stored shear strain energy, and likewise for an element undergoing tensile failure. Equation
(2) is applied once every 10 timesteps. Once the stored shear or tensile strain energy for an element is
found to decrease, the change in the energy is remembered for the element. This part of the energy is the
released elastic strain energy in shear or in tension. In any 10 timesteps, summing the released elastic
strain energy of all elements leads to the elastic strain energy release rate whose units are still J . Then,
for the time interval of interest (from a beginning to an ending timestep), we sum the elastic strain energy
release rate to obtain the accumulated released elastic strain energy.

We next introduce a quantity we call b0, which is the negative of the slope of the line relating the log of
the number of failed elements and the released energy. Here is how b0 is calculated. In a given timestep
interval, the element releasing the maximum elastic strain energy Emax is found among all elements. We
find that the elements releasing higher strain energy are fewer than those releasing lower energy. If all
data about energy are used to obtain the relation between the number of failed elements and the released
elastic strain energy, then possibly the relation is not monotonic. Therefore, a part of the data may need to
be omitted. For this we introduce two factors: the cut-off factor P and the classification factor Q (Figure
1). All data higher than E0 = Emax · P are discarded. The remaining energy interval, from 0 to E0, is
divided into Q subintervals. The calculation of b0 is made from the residual data sorted according to
subinterval. For each subinterval, the average released average strain energy can be calculated according
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Figure 1. Definitions of the cut-off factor and classification factor.

to the upper and lower limits of the released energy. The number of failed elements in each level and
its logarithm need to be determined. For each level, the same operation is executed. Thus, the relation
between the logarithm of the number and the average released energy can be determined. Linearly fitting
the relation and multiplying the slope by −1 yields b0, whose units are J−1, different from the common
b-value [Lockner et al. 1991; Main et al. 1992; Sammonds et al. 1992; Lei et al. 2000].

3. Numerical model and constitutive parameters

3.1. Constitutive models. For elements in elastic stage, an isotropic model is used:

1σi j = 2G1εi j +
(
K − 2

3 G
)
1εkkδi j (3)

where 1σi j is the stress tensor, 1εi j is the strain tensor, G is the shear modulus, K is the bulk modulus
and δi j is the Kronecker sign. G and K are related to two elastic parameters: elastic modulus and
Poisson’s ratio.

As is known, the Mohr–Coulomb criterion can overestimate the tensile strength of brittle materials.
Therefore, a tension cut-off is needed. For the Mohr–Coulomb criterion with tension cut-off, the initial
yield function includes two parts: the shear yield function

f s
= σ1− σ3 Nφ + 2c

√
Nφ = 0, (4)

depending on the the initial cohesion c and the initial internal friction angle φ, via Nφ =
1+sinφ
1−sinφ

, and
the tensile yield function

f t
= σ3− σt = 0, (5)

depending on the initial tensile strength σt .
Accordingly, the plastic potential function governing plastic flows is composed of two parts: the shear

potential function
gs
= σ1− σ3 Nψ (6)

and the tensile potential function
gt
= σ3. (7)

In (6), ψ is the dilatation angle; the functional dependence of Nψ on ψ is the same as that of Nφ on φ.
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Figure 2. Computational model for the compressive echelon fault structure.

Once an element fails as deformation proceeds, the stress state will not reside on the initial yield surface
and will drop to the yield surfaces determined by the present cohesion, internal friction angle and tensile
strength. These yield surfaces lie below the initial yield surface. Eventually, as deformation proceeds,
the stress state will stop on the residual yield surface controlled by the residual strength parameters.

3.2. Computational model and parameters. Figure 2 shows the computational model of a specimen
whose size is 0.3 m× 0.3 m. The specimen is composed of a rock block and two faults. Two faults form
an echelon fault structure, which are oriented at 45◦ from the horizontal direction. The fault overlap is
equal to the distance between two faults, i.e., 1.84× 10−2 m. The specimen is divided into 300× 300
elements and faults are composed of 1.493× 103 elements. Elements in faults are determined through
their centroid coordinates by use of a written FISH function for identifying a joint in rock specimens
[Wang 2005; 2007a]. The present numerical model represents a plane strain problem and only a small
strain mode is permitted.

Two steps of calculation are carried out. In the first step, a hydrostatic pressure of 2 MPa is applied to
four specimen boundaries. This step consumes 2×104 timesteps. A timestep (or step, computational step)
in FLAC is a cycle in which constitutive equations for elements and equations of motion for gridpoints or
nodes are executed one time. Large complex problem can require tens of thousands of timesteps to reach
a steady state. During computation stepping, information is propagated across the elements in the finite
difference grid. After calculating 2× 104 cycles, the maximum unbalanced force among nodes has been
found to be small enough, and the specimen is considered to have reached a static equilibrium state. In
FLAC, each gridpoint is surrounded by elements that contribute forces to the gridpoint. At equilibrium,
the algebraic sum of these forces is almost zero. When failure and plastic flow are occurring within a
model, the unbalanced force of some nodes can be nonzero, among which the maximum value is usually
called the maximum unbalanced force that can be displayed in FLAC. It is a good tool for assessing the
state of a model, such as equilibrium or plastic flow.

In the second step, a displacement-controlled loading is conducted in the vertical direction (σ1 direc-
tion in Figure 2 in which σ3 = 2 MPa) with a small compressive velocity of v = 1× 10−9 m/timestep.
According to the stress state in the jog, the echelon fault structure belongs to a compressive one.

In this paper, three mechanical parameters (elastic modulus, initial cohesion and initial tensile strength)
are declared to obey the Weibull distribution, and a value of m = 9 is used. The three parameters are
a priori uncorrelated. This suggests that for an element, if its initial cohesion is higher, then its elastic
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modulus or initial tensile strength is possibly lower. The point of assigning uncorrelated parameters is
to increase the complexity of elemental mechanical parameters with position variation.

The reported values of Poisson’s ratio for marble and gypsum are 0.25 and 0.2, respectively [Chen et al.
2005]. These values are used in the isotropic elastic model. The reported values of elastic modulus for
marble and gypsum are 55 GPa and 5.1 GPa, respectively [Chen et al. 2005]. These values are adopted
as average values in the isotropic elastic model. For rock and fault elements, average values of initial
cohesion are assumed to be 37.5 MPa and 5 MPa, respectively; average values of initial tensile strength
are 12 MPa and 1.2 MPa, respectively; initial internal friction angles are 50◦ and 10◦, respectively. The
dilatation angle is 0◦ for two kinds of materials.

In fact, for most rock materials, the post-peak behavior exhibits apparent brittle nature at low confining
pressures [Wawersik and Fairhurst 1970]. Once elements fail, they are assumed to undergo a linear strain-
softening behavior followed by a residual deformation stage. For both kinds of elements, we assume that
the residual strength will be reached immediately after failures occur. This means that the plastic strain
corresponding to the beginning of the residual deformation stage is extremely low. In the present paper,
the values of residual tensile strength and cohesion of rock elements are assumed to be zero. When the
plastic strain exceeds 5× 10−6 (an extremely low value to reflect the brittle nature of rock elements),
it is assumed that rock element completely loses its cohesion and tensile strength. For fault elements,
the values for residual tensile strength and cohesion are assumed to be zero. When the plastic strain
is larger than 5× 10−7 (0.1 times the value for rock elements), it is assumed that fault elements have
completely lost their cohesion and tensile strength. For rock and fault elements, a small residual internal
friction angle of 1◦ is used to model the relative weak fault gouge and to create an obvious response in
the macroscopic mechanical behavior (stress-timestep curve) during the jog intersection.

4. Results and discussion

4.1. Stress-timestep curve and propagation process of failed zones. Figure 3 shows the stress-timestep
curve of the specimen including a compressive jog and the relation between the maximum unbalanced
force and the timestep. The stress-timestep curve is basically the same as the stress-strain curve. The
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(a) (b) (c)

(d) (e) (f)

Figure 4. Failure patterns at different timesteps: (a) = 4× 104, (b) = 6× 104, (c) =
1× 105, (d) = 1.2× 105, (e) = 1.7× 105, (f) = 2.2× 105.

formula εa = vt/L can be used to convert εa (axial strain) from t (timestep) and L (height of the specimen).
Figure 4 shows the failure process of the echelon fault structure. Black elements are failed elements. The
stress-timestep curve can be roughly divided into four stages based on its slope.

Let’s consider Figure 4 in light of the stress-timestep graph in Figure 3. Points a– f in the latter
correspond to parts (a)–(f) of the former. In the first stage, the stress-timestep graph has a fairly high
slope, and is relatively smooth and straight. In this stage, the failed elements are at the faults — see
Figure 4(a) — due to the weakness of faults.

In the second stage, the graph becomes less smooth and its slope decreases. At this stage, failed zones
extend outwards from the fault tips. In Figure 4(b), there are two failed zones pointing up and down,
while in Figure 4(c), the two failed zones become even longer and two wing failure zones also extend
outwards from two fault tips. Cracks formed toward the outside of the jog can be observed in tests [Jiang
et al. 2002; Chen et al. 2005; Ma et al. 2008], in steeply dipping-mining-induced normal faults in South
Africa [Gay and Ortlepp 1979] and in granitic rocks of the Sierra Nevada [Segall and Pollard 1980].
Based on the elastic model, tensile cracks are formed at fault tips and propagate outwards [Segall and
Pollard 1980]. The present numerical results agree with these observations and theoretical results.

In the third stage, a local stress peak is formed (point A in Figure 3) and the jog is intersected by
elements arranged in a vertical direction. After that, the stress increases slightly in a long timestep
interval until a global stress peak is reached (point B in Figure 3). Failed zones outside the jog become
even longer. We see in Figure 4(d,e) that the vertical failure zones have stopped, while the wing failure
zones continuously extend toward loading ends of the specimen. In Figure 4(e), they have reached the
loading ends.
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In the fourth stage, the load-carrying capacity of the specimen is slowly decreased and the specimen
will collapse. The failure patterns of the specimen do not change; see Figure 4(f).

It is noted that the vertical failure zones outside the jog stop during the propagation of wing failure
zones. The reason will be discussed in the next section.

4.2. Intersection process of the jog. Figure 5 shows the propagation of failed zones in the jog inter-
section process: black elements have failed in shear or in tension, while the scale of yellows and reds
represents the magnitude of tensile strength for an unfailed element (redder or darker = higher tensile
strength). Figure 6 shows the corresponding timesteps as points a, b, c, d . Thus, Figure 5(c) corresponds
to the local stress peak (point A in Figure 3). Parts (a) and (b) of Figure 5 represent the situation pre-peak,
while part (d) is post-peak.

It is found from Figure 5(a) that wing failure zones are more curved near fault tips, which are perpen-
dicular to faults. They tend to grow in the vertical direction with an increase of their length, parallel to
the vertical failure zones. These two kinds of failed zones nearly have the same distance from their tips
to loading ends. In part (a) of the figure, the jog has not been bisected and the maximum unbalanced
force among nodes is low. In part (b), the jog is bisected and tips of wing failure zones have exceeded
those of the vertical failure zones. At about 1.0745× 105 timesteps (Figure 6), the maximum unbalanced

(a) (b) (c) (d)

Figure 5. Jog intersection process at different timesteps: (a) = 1.06× 105, (b) = 1.08×
105, (c) = 1.09× 105, (d) = 1.12× 105.
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Figure 6. Evolution of stress, maximum unbalanced force, and number of failed el-
ements (in shear, in tension, and in either) during the jog intersection. Note clipped
vertical scales. For the horizontal scale, 105 timesteps equal axial strains of 3.33× 10−4.
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Figure 7. Observed cracks extending outwards and inwards from fault tips (a,c) and
some straight and wing cracks (d,e). Part (a) from [Jiang et al. 2002], (b) from [Chen
et al. 2005], (c) from [Segall and Pollard 1980], (d) from [Ewy and Cook 1990], (e) from
[Shen et al. 1995].

force begins to increase rapidly. This phenomenon ends at about 1.084× 105 timesteps. During the
rapid increase in the maximum unbalanced force, the jog is bisected. In parts (c) and (d) of Figure 5,
the wing failure zones become even longer. Beyond timesteps of 1.084× 105, the maximum unbalanced
force exhibits a deceasing tendency. However, there are two major peaks (at 1.09× 105 and 1.093× 105

timesteps) in the maximum unbalanced force; beyond the local stress peak, many minor peaks can be
observed.

Parts (a)–(c) of Figure 7 show experimental failure modes of compressive echelon fault structures
[Jiang et al. 2002; Chen et al. 2005] and field observation [Segall and Pollard 1980]. Two kinds of cracks
(dotted lines) can be found: cracks extending outwards, not linking faults, and those linking fault tips.
These observed cracks are similar in geometry to those in the present numerical study results. The vertical
failure zones outside the jog, which are observed in the present numerical results, are especially similar
to splitting cracks from a slip interface in the simplified model of [Ewy and Cook 1990]; see Figure
7(d). Wing fractures originating from a preexisting fracture were also observed in many experiments
[Horii and Nemat-Nasser 1985; Shen et al. 1995; Dyskin et al. 1999; Saimoto et al. 2003]. Using a
displacement discontinuous method, Shen and Stephansson found that a stiff contact condition (high
normal fracture stiffness and high shear fracture stiffness) produces straight wing fractures similar to the
present vertical failure zones, while a noncontact condition (zero normal fracture stiffness and zero shear
fracture stiffness) leads to curved wing fractures analogous to the present wing failure zones. Both types
are shown in Figure 7(e).

It is found from the present numerical results that the vertical failure zones stop when their length
reach a critical value. After wing failure zones appear, they extend continuously. This phenomenon may
be due to the change in the internal friction angle of the faults beyond failure: when elements in faults just
fail, their internal friction angles are high, but when elements in faults enter the residual deformational
stage, lower internal frictional angles are expected. Following [Shen et al. 1995], we can say that in the
first case the fault is similar to a frictional fracture, resulting in straight failed zones, while in the second
case, the behavior of the fault is equivalent to that of a nonfrictional fracture, thus inducing curved wing
failure zones.
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4.3. Temporal and spatial distribution of the released energy in the jog intersection process. Figure 8
shows the temporal and spatial distribution of the released elastic strain energy before the jog intersection
and beyond. Green color regions denote faults. The radii of black and red circles denote magnitudes of
the released shear and tensile strain energy, respectively. The four images at the bottom are close-ups of
the four at the top, emphasizing the jog. The markers a–d in Figure 6 correspond to (a)–(d) and (aa)–(dd)
in Figure 8.

It is found from (a) and (aa) that the released shear strain energy is high at faults, while the released
tensile strain energy is high at fault tips. Parts (b) and (bb) reveal that, after the jog intersection, failed
zones linking fault tips in the jog liberate both strain energy in shear and in tension. The latter is lower.

   
 

(a)                  (b)                  (c)                  (d) 

 
 

(aa)                                   (bb)�

 
 

(cc)                                   (dd) 

Figure 8. Spatial and temporal distribution of the liberated energy in the jog intersection process.  
Figure 8. Spatial and temporal distribution of the liberated energy in the jog intersection
process. Timesteps are 1.06×105 for (a) and (aa), 1.08×105 for (b) and (bb), 1.09×105

for (c) and (cc), and 1.12× 105 for (d) and (dd).



FAILED ZONE PROPAGATION PROCESS AND ANOMALIES DURING COMPRESS JOG INTERSECTION 1017

  

Figure 9. Failed zones in shear (left) and in tension (right).

The remaining images suggest that in the strain-softening stage beyond the local stress peak, many sites
in faults release a great deal of elastic strain energy, implying occurrence of many events associated with
abrupt shear sliding of rock blocks along faults.

Note that a relatively small amount of strain energy is released in the vertical failure zones in the jog
and outside, while a large amount is liberated in wing failure zones and at fault tips. Much strain energy
in shear is released at faults, especially at their tips.

4.4. Evolution of the number of failed elements. Figure 9 shows the location of failed elements (blue)
at 2.2×105 timesteps. The figure reveals that shear and tension failures occur at faults, also in the vertical
failed zone in the jog. Failures in the vertical failure zones outside the jog and in wing failure zones are
due to tension. The elastic model predicts that antithetic shear fractures bisect the jog [Segall and Pollard
1980], which is consistent with the present numerical results. However, the jog is subjected to both shear
and tensile failures in the present simulation.

In Figure 6 we showed the evolution of the number of failed elements. (Since some elements fail
both in shear and in tension, the topmost curve, showing the number of failed elements in either shear
or tension, does not equal the sum of the two lowest curves, showing the number of elements failing in
each mode.)

To better clarify this evolution, the figure also shows stress and maximum unbalanced force as function
of timestep. One sees that before the maximum unbalanced force begins to increase rapidly (at about
1.0745×105 timesteps) the numbers of failed elements (in shear, in tension, or in either) increase steadily.
During the rapid increase in the maximum unbalanced force, these numbers increase rapidly. These
phenomena occur prior to the local stress peak. Beyond the peak, there is little change in the number
of failed elements in shear, while the other two numbers continue to increase significantly. The reason
for this is the extending wing failure zones where tensile failure propagates continuously beyond the jog
intersection.

4.5. Evolution of the accumulated released energy and the energy release rate. The top graph in Figure
10 shows the evolution of the released energy due to shear failure and the energy release rate in shear (i.e.,
the released energy due to shear failure per 10 timesteps, whose units are still J). As can be seen from
the figure, before the maximum unbalanced force rapidly increases (at about 1.0745× 105 timesteps),
the released energy in shear increases linearly. Afterwards, the released shear strain energy-timestep
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1. Evolution of the released tensile strain energy and the tensile strain energy release ra
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Figure 10. Evolution of the released strain energy and the strain energy release rate with
timestep during the jog intersection for the case of shear strain energy (top) and tensile
strain energy (bottom).

curve exhibits an apparent change in slope, deviating from the dotted line. (In fact some deviation from
linearity occurs even prior to the local stress peak: the curve exhibits a concave-upward behavior.)

The energy release rate in shear is relatively low before the rapid increase in the maximum unbalanced
force and the fluctuating amplitude is also low. Next, a peak of the energy release rate is formed. After-
wards, although the energy release rate in shear is lower than the peak, it is higher than before the rapid
increase in the maximum unbalanced force. Moreover, the fluctuation is more obvious.

The bottom graph in Figure 10 shows the evolution of the released energy due to tensile failure and
the energy release rate in tension. Two apparent slope changes occur in the released energy in tension
(the dotted lines show the slope before each change). The first change corresponds to the rapid increase
in the maximum unbalanced force, in which a high energy release rate in tension can be observed. This
change is caused by a large amount of energy release in tension due to the jog intersection. The second
change begins at about 1.102× 105 timesteps, and is due to extension of wing failure zones. The energy
release rate in tension is higher and fluctuates greatly.

4.6. Evolution of b0 using two kinds of energy. Eighty timestep intervals, each 500 timesteps long, are
taken covering the range from timestep 8.75× 104 to 1.275× 105. The value of b0 for each interval
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Figure 11. Evolution of b0 according to the released energy due to shear failure and
the released energy due to shear and tensile failures from 87500 to 127500 timesteps at
different cut-off factors P . The dotted vertical line denotes the jog intersection and the
solid one corresponds to the local stress peak.

is calculated as described on page 1009 and plotted in Figure 11. At the 41st interval (dotted vertical
line), the jog is intersected. Local stress peak appears in the 44th interval (solid line). Figure 11 shows
the evolution of b0 according to two kinds of the released energy: energy due to failures and that solely
due to tensile failure. These results reveal that b0 fluctuates at a higher level and then decreases to a
lower level. Transition between the two levels can be found at timestep roughly corresponding to the
local stress peak. For a low cut-off factor P (omitting many big data), the fluctuation in b0 is apparent.
Experimental results show that the related variable b decreases to a single minimum or double minimum
before fault nucleation [Lockner et al. 1991; Lei et al. 2000] and before rapid stress drop [Main et al. 1992;
Sammonds et al. 1992]. The present numerical results support these findings. However, the recovery for
b0 from the minimum cannot be observed in Figure 11.

Only a small difference exists in b0 according to two kinds of energy. This suggests that the released
energy due to shear failure is much higher than that due to tensile failure. For the sake of simplicity of
calculation, seemingly, the released energy in shear is sufficient in calculating the evolution of b0. No
value for b0 is calculated in some timestep intervals in Figure 11(a) since big events are greater and small
events are fewer, leading to a nonmonotonic relation between the log of the number of failed elements and
the released elastic strain energy. Therefore, an appropriate selection of the cut-off factor P is necessary.
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5. Conclusions

Two kinds of failed zones initiated from fault tips are observed in the process of the compressive jog
intersection. The vertical failed zones outside the jog occur earlier and then stop. The wing failure zones
appear later and then extend continuously toward the outside of the jog. The possible reason for this
phenomenon stems from the decreasing internal friction angle of faults at post-peak. During the jog
intersection, high released tensile strain energy is found at wing failure zones and at fault tips, while
high released shear strain energy is at faults. Despite the jog intersection, the released strain energy in
the jog is not high. After the jog intersection, a local stress peak is reached and then much shear strain
energy is released at faults, indicating that a number of events related to abrupt shear sliding of rock
blocks along faults occur.

Before the jog intersection, some anomalies associated with shear sliding of rock blocks along faults
can be observed: rapid increases in the numbers of failed elements in shear and in tension, rapid increases
in the accumulated strain energy released due to shear and tensile failures, peak values of strain energy
release rates in shear and in tension, and b0-value transition from higher values with higher fluctuating
amplitude to lower values with lower fluctuating amplitude. As deformation proceeds, the evolution of b0

is calculated according to two kinds of energy exhibits similar behavior. This suggests that the released
strain energy in shear is much higher than that in tension, facilitating the calculation of b0 with timestep
or exerted strain in the displacement-controlled direction.
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REVISITING THE HULT–MCCLINTOCK CLOSED-FORM SOLUTION
FOR MODE III CRACKS

ZHI-JIAN YI

The well-known closed-form solution given by Hult and McClintock for an antiplane crack in an elastic-
perfectly plastic material is reconsidered using the crack line analysis method. A precise elastic-plastic
solution near the crack line region, different from Hult and McClintock’s, is deduced by matching the
general solution of the plastic field with that of the exact elastic field. It is verified from the deduction
that the Hult–McClintock elastic-plastic solution is inadequate for many purposes.

Introduction

The Hult–McClintock closed-form solution [1957] for an antiplane crack in an elastic-perfectly plastic
material was a significant achievement in the development of fracture mechanics. Its importance lies not
only in being the first closed-from elastic-plastic solution in fracture mechanics, but also in that the two
usual assumptions of small-scale yielding originate from it: (1) the plastic zone ahead of the crack tip is
so small that the elastic field out of the plastic zone is the K -dominant elastic singular field for the crack;
and (2) the crack tip of the K -dominant elastic singular field effectively behaves as if it lies a distance
xe ahead of the actual crack tip, along the crack line, giving rise to the notion of an “imaginary crack”
(see Figure 1). These assumptions were preserved in many subsequent works on the problem, such as
[Koshinen 1963; Rice 1966; 1967; Edmunds and Willis 1976; Hutchinson 1979].

Because of the authority of the Hult–McClintock elastic-plastic solution, its limitations have largely
gone unaddressed. These shortcomings are difficult to verify directly by conventional crack tip asymptotic

imaginary crack tip

Figure 1. The crack-tip plastic zone [Hult and McClintock 1957].

Keywords: crack, crack line, elastic-plastic solution, Hult–McClintock solution.
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analysis under small-scale yielding. However, if the crack line analysis method is used, the method’s
inadequacy becomes apparent, and already in [Yi 1993; 1994] we were compelled to find more reasonable
solutions. In this paper we continue these investigations by deducing an elastic-plastic solution near the
crack line region, different from Hult and McClintock’s. We do this by matching the general solution of
the plastic field to that of the exact elastic field, to discuss the validity of the Hult–McClintock solution.

1. Review of the Hult–McClintock solution

General assumptions. For an antiplane crack in an elastic-perfectly plastic solid, the displacement w
and stress components τxz and τyz are assumed to depend only on x and y. The crack tip region is shown
in Figure 1. The equilibrium equation is

∂τxz

∂x
+
∂τyz

∂y
= 0 (1)

and the Huber–von Mises yield criterion is

τ 2
xz + τ

2
yz = k2, (2)

where k is the yield stress in pure shear. The strain is given by γxz =
∂w

∂x
and γyz =

∂w

∂y
. For a stationary

crack, the Hencky deformation constitutive relations are

∂w

∂x
=

1
G
τxz + λτxz,

∂w

∂y
=

1
G
τyz + λτyz, (3)

where G is the elastic shear modulus and λ a nonnegative factor.

Statement of the Hult–McClintock solution. In an (r, θ) polar coordinate system, Hult and McClintock
suggested that the stresses in the plastic zone are

τxz =−k sin θ, τyz = k cos θ. (4)

They then obtained the displacement in the plastic zone, the strains in the plastic zone, and the elastic-
plastic boundary by matching the plastic stress field (4) and its corresponding displacement field for
the actual crack with the usual crack tip K -dominant elastic singular field of an “imaginary crack” (see
Figure 1) at the elastic-plastic boundary. The Hult–McClintock solutions are

w =
K 2

III

Gπk
sin θ, γxz =−

K 2
III

Gπk
sin θ cos θ

r
, γyz =

K 2
III

Gπk
cos2 θ

r
, R(θ)= 1

π

(KIII

k

)2
cos θ, (5)

where KIII is the stress intensity factor. The strain (5)2,3 in the plastic zone has a 1/r singularity.
According to (5)4, the plastic zone is a circle tangent to the actual crack tip, having diameter d =

R(0)= K 2
III/(πk2). The imaginary crack tip of the K -dominant elastic singular field lies at the center of

the plastic zone, at a distance xe = d/2 ahead of the actual tip.

Beyond the Hult–McClintock plastic field. Solutions satisfying the equilibrium equations (1) and the
Huber–von Mises yield criterion (2) are countless: the Hult–McClintock plastic stress field (4) is just a
particular solution, not a general one. What are its limitations? A fruitful approach to this question is
to use the crack line analysis method and expansion in power series of θ , reducing the solution of the
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partial differential equations to that of ordinary differential equations, through which a description of the
general solution for the plastic field near the crack line region can be obtained.

The crack line analysis method only focuses on the field near the crack line. The method has been
used for an antiplane crack before [Achenbach and Li 1984; Guo and Li 1987; Yi 1992]. The elastic-
plastic solutions obtained in those references are the same as those given by Hult and McClintock near
the crack line, but any such solution is still inadequate and is still confined by the small-scale yielding
assumptions.

The crack line analysis method was improved in [Yi 1993; 1994; Yi et al. 1996; 1997; Yi and Yan
2001], and has been used to solve other crack problems [Wu and Wang 1996; Wang and Zhang 1998;
Wang and Wu 2003; Wang and Zhou 2004; Zhou and Wang 2005; Zhou and Ling 2006]. The method
also applies well to linear elastic fracture mechanics and has been developed into an effective way of
solving the stress intensity factors of cracks [Yi 1991; 1992; Wang 1996; 2002]. The significance of the
improved crack line method is that the general solution in power series of the plastic field near the crack
line can be obtained exactly. By matching the general power series form solution of the plastic field
with the precise elastic field outside the plastic zone, the assumptions of the usual small-scale yielding
condition can be completely given up. Thus, a more reasonable elastic-plastic solution can be obtained.

2. Introduction to the crack line analysis method:
General power series solution for the plastic field near the crack line

To proceed, consider the region near the crack line, shown in Figure 2 and corresponding to θ = 0. The
stress components and the displacement are continuous across the crack line. So in the plastic zone near
the crack line region, τxz , τyz , and w can be expressed in polar coordinates as power series up to second
order in θ as

τxz = τ1(r)θ + O(θ3), w = w1(r)θ + O(θ3),

τyz = τ0(r)+ τ2(r)θ2
+ O(θ4), λ= λ0(r)+ λ2(r)θ2

+ O(θ4),
(6)

where λ is the nonnegative factor in (3). Here we have taken into account that τxz and w are antisymmetric,
while τyz and λ are symmetric with respect to θ = 0. (In [Guo and Li 1987; Yi 1992] the corresponding
expressions in rectangular coordinates are considered.)

Figure 2. The region near the crack line.



1026 ZHI-JIAN YI

Substituting (6) into (1)–(3) by using the relationships r2
= x2
+ y2 and θ = arctan y

x
and collecting

terms of the same order θ yields

dτ1

dr
+

dτ0

dr
−
τ1

r
+

2τ2

r
= 0, τ 2

0 = k2, τ 2
1 + 2τ0τ2 = 0,

dw1

dr
−
w1

r
=

( 1
G
+ λ0

)
τ1,

w1
r
=

( 1
G
+ λ0

)
τ0.

(7)

Thus the system of partial differential equations (1)–(3) has been transformed into a system of ordinary
differential equations. We can solve the equations (7) to obtain in closed form the coefficients τ0, τ1, τ2,
and w1 appearing in (6). We find

τ0 = k, τ1 =−
kr

r + L
, τ2 =−

kr2

2(r + L)2
, w1 =

Cr
r + L

, (8)

where L and C are constants of integration. Thus we have

τxz =−
kr

r + L
θ + O(θ3), τyz = k−

kr2

2(r + L)2
θ2
+ O(θ4), w =

Cr
r + L

θ + O(θ3). (9)

When converted to rectangular coordinates, the solutions (9) are the same as those given in [Yi 1994].
The strains corresponding to (9) are

γxz =−
Cr

(r + L)2
θ + O(θ3), γyz =

C
r + L

+ O(θ2), (10)

which have no singularities as r→ 0 if L > 0.

Remark. Although the preceding discussion only considered terms up to θ2, it can be extended to a
higher-order analysis using the same idea. Suppose, for example, that we wish to go up to θ4, writing

τxz = τ1(r)θ + τ3(r)θ3
+ O(θ5),

τyz = τ0(r)+ τ2(r)θ2
+ τ4(r)θ4

+ O(θ6).
(11)

Substituting these equalities into (1) and (2) and collecting terms of the same order in θ yields two new
equations besides the ones appearing on the first line of (7):

−
1
6

dτ0

dr
−

1
2

dτ1

dr
+

1
6
τ1

r
+

dτ2

dr
−
τ2

r
+

dτ3

dr
− 3

τ3

r
+ 4

τ4

r
= 0, 2τ1τ3+ τ

2
2 + 2τ0τ4 = 0.

The number of equations and unknowns has increased from three to five, but we can still use the same
method to solve the system of five equations, obtaining, besides the first three equations in (8), the
expressions

τ3 =
k
6

r
r+L

−
k
2

( r
r+L

)2
+

(k
2
+

D
r + L

)( r
r+L

)3
,

τ4 =
k
6

( r
r+L

)2
−

k
2

( r
r+L

)3
+

(3k
8
+

D
r + L

)( r
r+L

)4
,

which are then plugged into (11) to give explicit expressions for the stress components to order four. The
displacement is handled similarly.
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Further, the elastic-plastic boundary is assumed to be continuous across the crack line and to have
equation r = rp(θ) (Figure 2). Again by symmetry, the function rp is even, and we have, to second order,

rp(θ)= r0+ r2θ
2
+ O(θ4), (12)

where r0 is the length of the plastic zone along the crack line [Yi 1994]. The values of r0 and r2 can be
determined by matching the plastic field with the elastic field at the elastic-plastic boundary.

It follows from (12) that the unit normal vector n= (nx , ny) of the elastic-plastic boundary is

nx = 1− 1
2 B2

1θ
2
+ O(θ4), ny = B1θ + (θ

3), where B1 = 1− 2
r2

r0
. (13)

Returning to the analysis to second order, the idea now is to match (9) and (10) with a sufficiently
precise elastic field near the crack line. Before doing this, we recall the derivation of the Hult–McClintock
equations in the context of our analysis, to understand its limitations and set the scenario for our solution.

3. Further discussion of the Hult–McClintock matching result

Rederivation of the Hult–McClintock elastic-plastic boundary. In polar coordinates (ρ, φ) centered at
the point x = xe, y = 0 (the “imaginary crack tip”), let the elastic-plastic boundary be written as

ρp(φ)= ρ0+ ρ2φ
2
+ O(φ4), (14)

(see Figure 3). The unit normal vector n= (nx , ny) of the boundary is then

nx = 1− 1
2 β

2
1φ

2
+ O(φ4), ny = β1φ+ O(φ3), where β1 = 1− 2

ρ2

ρ0
(15)

(compare (13)), and the equations relating the two polar coordinate systems are

θ = arctan
ρ sinφ

xe+ ρ cosφ
, r2

= x2
e + ρ

2
− 2ρxe cos(π −φ). (16)

In the Hult–McClintock solution, the usual K-dominant elastic stress field for the imaginary crack in
polar coordinates (ρ, φ) (see Figure 1 or Figure 3) is

τxz =−
KIII
√

2πρ
sin

φ

2
, τyz =

KIII
√

2πρ
cos

φ

2
, (17)

imaginary crack tip

Figure 3. The region near the crack according to [Hult and McClintock 1957].
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where the second assumption of small scale yielding is adopted.
Expanding (17) to second order gives

τxz =−
1
2

KIII
√

2πρ
φ+ O(φ3), τyz =

KIII
√

2πρ

(
1− 1

8
φ2
)
+ O(φ4). (18)

The corresponding displacement is

w =

√
ρ

2π
·

KIII

G
φ+ O(φ3). (19)

Substituting (14) into (18) and (19), we get for the elastic stresses and displacement at the elastic-
plastic boundary the expressions

τ e
xz =−

1
2

KIII
√

2πρ0
φ+ O(φ3), τ e

yz =
KIII
√

2πρ0

(
1−

(1
2
ρ2
ρ0
+

1
8

)
φ2
)
+ O(φ4), (20)

w =

√
ρ0
2π
·

KIII

G
φ+ O(φ3). (21)

The Hult–McClintock plastic stresses (4) have the expansion

τxz =−kθ + O(θ3), τyz = k− 1
2 kθ2
+ O(θ4). (22)

The expansion of the Hult–McClintock displacement in the plastic zone is

w = Cθ + O(θ3), (23)

where C is a constant, and the expansion of the strain is

γxz =−
C
r
θ + O(θ3), γyz =

C
r
+ O(θ2), (24)

Combining (14) with (22), (23) and (16), we obtain the plastic stresses and displacement of the real
crack at the elastic-plastic boundary:

τ p
xz =−k ρ0

xe+ρ0
φ+ O(φ3), τ p

yz = k− k
2

(
ρ0

xe+ρ0

)2
φ2
+ O(φ4), (25)

w p
= C ρ0

xe+ρ0
φ+ O(φ3). (26)

Now the plastic stresses (25) are made to match the crack tip K -dominant elastic stresses (20) at
the elastic-plastic boundary (14), and likewise for the displacements (26) and (21). In the normal local
coordinate frame (n, s) along the elastic-plastic boundary (see Figure 1), let σnz and σsz denote the stress
components, so

σnz = τxznx + τyzny, σsz = τxzny − τyznx . (27)

Then the matching conditions for the stresses are

σ e
nz = σ

p
nz, σ e

sz = σ
p

sz along the elastic-plastic boundary. (28)
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where superscript e and p represent the elastic and plastic sides of the boundary. The right-hand sides
of (28)1,2 can be obtained by substituting (25) and (15) into (27), and the left-hand sides by substituting
(20) and (15) into (27). In this way we obtain three matching equations:

KIII
√

2πρ0
= k, 1

2
KIII
√

2πρ0
= k ρ0

xe+ρ0
,

KIII
√

2πρ0

(1
2
ρ2
ρ0
+

1
8

)
=

1
2

k
(

ρ0
xe+ρ0

)2
. (29)

Solving the system (29) yields

ρ0 =
K 2

III

2πk2 , ρ2 = 0, xe =
K 2

III

2πk2 . (30)

Thus ρ0 = xe, expressing that the imaginary crack tip moves to the center of the plastic zone along the
crack line. The length of the plastic zone is x p = xe + ρ0 = K 2

III/(πk2), in agreement with the case
θ = 0 of (5)4. The result ρ2 = 0 in (30)2 agrees with Hult–McClintock’s elastic-plastic solution, in which
the elastic-plastic boundary is a circle. Similarly, the constant C in (23) and (24) can be obtained by
comparing (21) with (26) and using (29):

C = k
G
(ρ0+ xe), (31)

leading to the following expression for the strain (24) in the plastic zone:

γxz =−
k
G
ρ0+ xe

r
θ + O(θ3), γyz =

k
G
ρ0+ xe

r
+ O(θ2); (32)

this again agrees with the Hult–McClintock solution in (5)2,3.
It follows that, to second order in θ , the Hult–McClintock elastic-plastic solution is a necessary con-

sequence of the underlying assumptions.

Critique of the assumptions underlying the Hult–McClintock elastic-plastic solution. Nevertheless, we
must inquire whether the assumptions are reasonable. If the plastic zone is small enough, the first
assumption — that the dominant elastic field matches the plastic field at the elastic-plastic boundary — is
acceptable. However, the second assumption, concerning the “imaginary crack tip”, is questionable on
several grounds. First, it has no clear physical meaning. Second, it is arbitrary; it is introduced essentially
in order to gain one free parameter, the distance xe. Finally, according to the Hult–McClintock elastic-
plastic solution, the strain in the plastic zone, given by (32) or (24), has a singularity. Such a result is
incorrect even under small-scale yielding, as will be explained later.

In the alternative formulation we started to develop in Section 2, there is no singularity in the corre-
sponding expression for the strain, (10), unless the parameter L is taken equal to 0 (which corresponds
to the Hult–McClintock situation).

4. Abandoning the second assumption

We saw in Section 2 that the three matching equations in (29) involve three constants, ρ0, ρ2 and xe.
If we let xe = 0, thus giving up the second assumption of small scale yielding (under which condition
the coordinates (ρ, φ) coincide with (r, θ)), a conflict inevitably occurs in that the three independent
matching equations (29) involve only two unknowns ρ0 and ρ2. But if the general solution (9) is used in
the matching, the constant L can replace the artificial xe in providing the additional degree of freedom
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necessary for a natural match at the actual elastic-plastic boundary. Thus, the second assumption of
small-scale yielding becomes unnecessary, and a more natural matching solution can be obtained even
under small-scale yielding.

The crack tip K -dominant elastic singular field for the actual crack (see Figure 2) is

τxz =−
KIII
√

2πr
sin θ

2
, τyz =

KIII
√

2πr
cos θ

2
, (33)

(compare (17)). The power series expansion of (33) to second order is

τxz =−
1
2

KIII
√

2πr
θ + O(θ3), τyz =

KIII
√

2πr

(
1− 1

8
θ2
)
+ O(θ4) (34)

(compare with (18), which expresses the same relationship but for the imaginary crack tip). The corre-
sponding displacement is

w =

√
r

2π
·

KIII

G
θ + O(θ3). (35)

The expression (9) of the plastic field is now required to match that of the crack-tip elastic dominant
field, (34). In the same vein as in Section 3, we can do this by taking the expressions for σ p

nz and σ p
sz

obtained by combining (9), (12), (13) and (27), and equating it, coefficient-wise, to the expressions for
σ e

nz and σ e
sz obtained by combining (34), (12), (13) and (27) (see (28)). Solving the resulting equations

yields

r0 =
1

2π

(KIII

k

)2
, r2 = 0, L = 1

2π

(KIII

k

)2
. (36)

According to (36)1 and Figure 2, the length of the plastic zone along the crack line is r0, or half the
length of the plastic zone

x p = xe+ ρ0 = 2ρ0 =
K 2

III

πk2

obtained in the Hult–McClintock solution.
From the continuity condition we

= w p for the displacement at the elastic-plastic boundary, the con-
stant C in (9) can be obtained from (35), (36), and (12) as

C = k
G
(r0+ L). (37)

The strain near the crack line can be deduced as

γxz =−
k
G
(r0+ L)r
(r + L)2

θ + O(θ3), γyz =
k
G

r0+ L
r + L

+ O(θ2). (38)

Thus no singularity is present in the plastic zone, in contrast with the Hult–McClintock strain, (32).

5. Abandoning the first assumption

In Section 4, we kept the first assumption usually made for small-scale yielding. Although the results
are more natural than the Hult–McClintock solution (Section 3), they are still confined by small-scale
yielding.

The crack line analysis method allows us to abandon also the first assumption. In this section we go
over an example of how this can be done in special cases. The general idea is this: the general solution
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u

Figure 4. An antiplane crack in an infinite plate.

(9)–(10) for the plastic stress field near the crack line is correct to second order in the plastic zone,
whether it be small or large. Hence, if a sufficiently accurate elastic field is known outside the plastic
zone, the small-scale yielding assumptions can be relaxed by matching the elastic field with the general
plastic field. The key, therefore, is to obtain the precise elastic field, and this can be done with sufficient
accuracy near the crack line for some problems.

Our example involves an antiplane crack in an infinite body; see Figure 4. As discussed in [Yi 1994],
the exact elastic stresses satisfying the far field boundary condition and the boundary condition that the
crack surface is traction-free can be shown to be (see [Paris and Sih 1965; Gdoutos 2005, pp. 25–27])

τxz = Im ZIII(u), τyz = Re ZIII(u), (39)

where u = x + iy and ZIII(u) = τu/
√

u2− a2 is the Westergaard complex stress function. The corre-
sponding displacement is w = Im Z̃III(u)/G, where Z̃III(u)=

∫
ZIII(u)du, the integral being over the

contour u = a+ reiθ . In the polar coordinate system centered at the crack tip, when r→ 0, the elastic
K -dominant field can be obtained from (39) as in (33). But in the following analysis we will focus not
on the elastic dominant term near the crack tip where r→ 0, but on the terms that are sufficiently precise
near the crack line region when θ→ 0.

Equation (39) is a classical analytical solution satisfying the basic equations and boundary conditions
for the problem, which contains nonsingular terms besides the K -dominant field. Expanding (39) as a
power series in θ , we get for the elastic stresses near the crack line

τxz =−
τ

√
r(2a+ r)

a2

2a+r
θ + O(θ3), τyz =

τ
√

r(2a+ r)

(
(a+ r)−

2a2r + a3

2(2a+ r)2
θ2
)
+ O(θ4). (40)

As r→ 0, this degenerates into (34); but note that (40) is sufficiently precise near the crack line, while
(34) is valid only within a tiny area around the crack tip near the crack line.

Matching the elastic stress (40) and its corresponding displacement with the plastic stress and dis-
placement, given in (9), one can obtain an accurate matching solution without the small-scale yielding
assumptions. For details, see [Yi 1994].
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Comparison between the general matching results and Hult and McClintock’s results. In the example
just given, elastic stresses precise enough near the crack line are obtained. By matching the general
solution of the plastic stress (9) (and the corresponding plastic displacement) with the precise elastic
stress (40) (and the corresponding elastic displacement) at the elastic-plastic boundary (12), the small-
scale yielding assumptions can be completely abandoned and the matching results are correct, whether
the plastic zone is small or large.

The matching results of the example for the infinite cracked plate are

r0 = a
(√

k2

k2−τ 2 − 1
)
,

r2

r0
=

1
2

√
k2
−τ 2

k2 −
k

k+
√

k2− τ 2
, L = a

(
1+ 2τ 2

−k2

k2−τ 2

√
k2

k2−τ 2

)
, (41)

C = k
G
(r0+ L), γxz =−

k
G
(r0+ L)r
(r + L)2

θ + O(θ3), γyz =
k
G

r0+L
r+L

+ O(θ2). (42)

Expanding the first of these equations in a power series of τ/k, when τ/k� 1, we have

r0 = a
(√

1
1−τ 2/k2 − 1

)
=

a
2

(
τ

k

)2
+ O

(τ
k

)4
=

1
2π

(
τ 2aπ

k2

)
=

1
2π

(KIII
k

)2
. (43)

Similarly, when τ/k� 1, we have to second order

r2

r0
= 0, L = 1

2π

(KIII

k

)2
. (44)

Equations (43) and (44) say the same as (36), where KIII = τ(πa)1/2.
It is obvious that when the first assumption of small-scale yielding is introduced, the matching results

(41) reduce to (43) and (44).
Figure 5 compares the plastic zone lengths for three solutions: the present solution (41), obtained after

abandoning the two small-scale yielding assumptions; the solution (43) or (36)1, obtained by maintaining
first assumption of small-scale yielding reserved; and Hult and McClintock’s solution (5)4, which relies
on both the small-scale yielding assumptions.

We see that the result (41) is not confined by the yielding scale: when τ → k the length of the plastic
zone in (41) approaches∞, which is reasonable for a plate with infinite width. By contrast, (43) and

(5)4
(43)
(41)1

Figure 5. Comparison of the plastic zone lengths.
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(36)1 behave correctly only when τ/k is relatively small (τ/k ≤ 0.5), while Hult and McClintock’s result
(5)4, also meant for τ/k small, lies some distance from either of the above.

However, when focusing on the plastic strain, neither our solution (42)2,3 nor the small-scale yielding
solution (38) have any singularities. In contrast, Hult and McClintock’s solution (32) shows a physically
unreasonable singularity 1/r .

6. Conclusions

Three elastic-plastic matching solutions are given in the present paper.
The first matching solution is exhibited by the crack line analysis method to demonstrate the crack-tip

elastic-plastic solution given by Hult and McClintock, where the particular plastic stresses (4) and the
corresponding plastic strains suggested by Hult and McClintock are expanded in power series forms, (22)
and (24), to match with the crack tip K -dominant elastic singular fields. The two small-scale yielding
assumptions have to be used during deduction and the resultant plastic strains (32) have singularities.
Although the matching solution is obtained around the crack line, it is in fact the same crack tip asymptotic
solution as that of Hult and McClintock because the crack tip K -dominant elastic singular fields are
introduced in matching.

The second matching solution (Section 4) takes the general power series form (but not the above
particular form) plastic stresses (9) and corresponding plastic strains (10) near the crack line, to match
with the crack tip K -dominant elastic singular fields. A more rational elastic-plastic solution is obtained
with only the first small-scale yielding assumption adopted, in which the plastic strains do not have
singularities. Since the crack tip K -dominant elastic singular fields are still applied in matching, the
resultant solution can be considered as a new crack tip asymptotic solution, distinct from Hult and
McClintock’s. This new solution has no singularity in the plastic strain, unlike Hult and McClintock’s.

The third matching solution (Section 5) shows how to obtain the precise elastic-plastic solution near
the crack line with the usual small-scale yielding assumptions completely removed; the general power
series form plastic fields are used to match the precise elastic fields near the crack line. The matching
results in the case of an infinite plate will degenerate to those of the second matching solution, the validity
of which is strictly justified by the matching conditions and the boundary conditions of the real problem.
The resultant plastic strains also have no singularities.

The following observations can be made:

• Hult and McClintock’s solution is inappropriate. Firstly, the plastic stress field (4) suggested by Hult
and McClintock is just one particular solution of countless solutions to the system of partial differential
equations, (1) and (2), instead of a general solution. Near the crack line, the plastic stress field of the
Hult–McClintock particular solution is shown in (22) while that of the author’s general solution is shown
in (9). A comparison between (9) and (22) indicates that the general solution (9) has one constant L but
the particular solution (22) does not. Secondly, owing to the adoption of particular plastic solution (4), the
assumption that the crack-tip elastic field moves a distance xe along the crack line has to be expediently
introduced in Hult and McClintock’s matching solution. Thus the elastic field used to match with the
real plastic field is just an imaginarily offset elastic field, not the real one. Thirdly, the plastic strain, (24)
or (32), corresponding to Hult and McClintock’s matching solution obtained from the particular plastic
stress (22) has a singularity, which is incorrect even under small scale yielding.
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• The second assumption of the usual small-scale yielding is removable. The usual small-scale yielding
involves two assumptions. If the plastic zone is small enough, the first assumption can be adopted,
meaning, to match the K -dominant elastic field with the plastic field is acceptable. However, to adopt
the second assumption, that is, to assume that the crack tip of the elastic field moves a distance along the
crack line as Hult and McClintock have done, is inappropriate and should be rationally abandoned.

• The crack line analysis method offers a precise Taylor series form general solution (that is, a general
power series form solution) of the plastic field (9), and provides the possibility of completely abandoning
the two small-scale yielding assumptions. Then the elastic-plastic matching solution is decided by how
the two small-scale yielding assumptions are treated. If both assumptions are still embraced, as Hult and
McClintock have done, the same matching solution as Hult and McClintock’s will be reached, as shown
in Section 3; if only the first assumption is adopted a mathematically approximate matching solution will
be gained which is more appropriate than Hult and McClintock’s, as shown in Section 4; finally, if both
assumptions are given up, a rigorously precise matching solution will be attained, as shown in Section 5,
which goes far beyond Hult and McClintock’s.

• There exists an obvious difference between the crack line analysis method and the crack tip asymptotic
analysis method. The crack tip area is really a crucial position in the analysis of a crack problem, but
the same is true of the crack line area: the stresses, strains, and plastic length near the crack line are all
crucial parameters in analysis. When the dominant order terms are used to characterize the stress or strain
field, the crack tip asymptotic analysis method only gives solutions appropriate for all points infinitely
approaching the crack tip, but which are inappropriate for those points beyond a certain distance from
the crack tip. In the polar coordinate system with the crack tip as its origin, the crack tip analysis method
is usually restricted by the condition of r→ 0 but not by any range of θ (−π ≤ θ ≤ π), so the solution
is restricted by the small-scale yielding conditions and remains valid only when the plastic zone is small
enough. While the crack line analysis method only gives solutions appropriate for all points infinitely
approaching the crack line, restricted by the condition of θ→ 0 but not by any range of r (0≤ r ≤∞),
then the results are sufficiently precise within an area close enough to the crack line and not restricted by
the small-scale yielding conditions. The crack line analysis method has the following merits: it can give
the precise power-series-form plastic field solution near the crack line, the precise power-series-form
plastic field can match with the precise elastic field near the crack line to give sufficiently precise results
with the small scale yielding conditions completely abandoned, and it bears a physical clarity of related
concepts and mathematical simplicity in deduction.
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