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DEDICATION

This issue of the Journal of Mechanics of Materials and Structures is dedicated to Professor Charles
R. Steele, the journal’s Founding Editor, and his late wife, Marie-Louise Steele, Associate Editor of
JoMMS until her untimely death in 2009. It includes papers written by colleagues and friends who
thereby wanted to honor the two. We, who have succeeded Charles and Marie-Louise at the helm of the
journal, consider it a privilege to have acted as editors of this issue.

The issue has a twofold purpose: to celebrate the Steeles’ accomplishments and to commemorate
the passing of Marie-Louise, who was an indispensable partner in running the journal and is to be
credited to no small degree with supporting Charles in his professional endeavors. They both made
an important contribution to the engineering community by founding the nonprofit Journal of Mechanics
of Materials and Structures, and prior to that by their editorship of the International Journal of Solid and
Structures. Charles’s own research work has had a lasting impact on theoretical and applied mechanics
and biomechanics, addressing problems in shell theory, elasticity theory, cochlear mechanics, and bone
mechanics, among others. He has been recognized for these contributions by being elected to National
Academy of Engineering in 1995 and by the ASME Koiter medal in 1999.

The original papers presented in this issue are authored by researchers whose scientific interests fall
within the broad spectrum of JoMMS. They include theoretical, numerical and experimental reports
spanning the fields of mechanics, mathematics and biology, covering fundamental problems in continuum
and discrete mechanics, deformation, flow and failure of materials (beams, shells, composites, fractal
media), wave propagation of linear and nonlinear waves, cellular mechanics, adaptation of biological
tissues, and a range of other topics.

We extend sincere thanks to all the authors who contributed to this issue, for which the manuscripts
were reviewed according to the rules of JoMMS. We thank them for their cooperation throughout the
process.

DAVIDE BIGONI: bigoni@ing.unitn.it
Dipartimento di Ingegneria Meccanica e Strutturale, Facoltà di Ingegneria - University of Trento, Via Mesiano 77,
I-38123 Povo (TN), Italy

IWONA JASIUK: ijasiuk@illinois.edu
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street,
Urbana, IL 61801, United States

YASUHIDE SHINDO: shindo@material.tohoku.ac.jp
Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-02,
Aoba-ku, Sendai 980-8579, Japan
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FROM THE EDITORAL BOARD

The Editorial Board of JoMMS and the Publisher join the Chief Editors today in remembering
Marie-Louise Steele with fondness, expressing their warmest appreciation and good wishes to
Charles, and renewing their commitment to JoMMS, so that it may evermore be a tribute to the
monumental work of its founders.
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MARIE-LOUISE (BÜHLER) STEELE (1943–2009)

On February 17, 2009, Marie-Louise (MarieLu) was diagnosed with metastatic breast cancer. This
was a complete shock, since she had a clear mammogram just 18 months before, there is little cancer in
the family, her father lived to 92, and her mother lived to 99. Her mother always told MarieLu that she
would not live as long, because she used too much of her energy in each day. As many know, MarieLu
did not spare effort in her projects and in helping friends and family. Below is a photograph taken at the
beginning of radiotherapy; the one on the next page was taken just before the first chemotherapy session
on April 15. Despite her good physical condition and very positive outlook, she reacted very poorly to
the chemotherapy, entered the hospital intensive care on April 30, and died on May 14. Although she
grew weaker by the day, she always had a smile to greet visitors.

When MarieLu received the health report on February 17, she said there should be no tears and quoted
Edith Piaf: Je ne regrette rien. She and Charles had such good fortune in meeting each other and sharing
life in journal work, morning workout followed by coffee latte in the hot tub, so much opportunity to
travel and keep friends around the world, and healthy children and grandchildren.

Personal background

MarieLu was born in Heilbronn (Germany) in 1943 to Karl and Elise Bühler, and remembered well
growing up in the aftermath of World War II, an experience that helped to form her lifelong dedication
to conservation and hard work. Her father was a prisoner of war in Siberia, and was one of the few to
return. After recuperation he became Burgermeister of Brackenheim, a small town about 30 miles from
Stuttgart. She always remembered as a nine-year-old, looking up at the stars and vowing that she would

MarieLu with grandchildren (and granddog) on March 14, 2009.
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4 MARIE-LOUISE (BÜHLER) STEELE (1943–2009)

MarieLu on a hike with the family at the Golden Gate Bridge, San Francisco on April 5, 2009.

see the world one day. She loved poring over maps and picked two places she had to visit. One was
San Francisco and the other was Rio de Janeiro. As it transpired, she has lived at Stanford near San
Francisco, and has spent four New Year’s Eves on Copacabana, related to attending PACAM meetings
with Charles.

The acceptable means for a young lady to escape to the large world was through language. So, after
finishing the arbitur, MarieLu attended interpreter school in Stuttgart and then in Geneva. The interna-
tional flavor was greatly to her liking, and she became fluent in French. However, her focus was English,
and she decided that she must spend time in an English-speaking country to achieve proficiency. So she
immigrated to the United States, which was relatively easy then for northern Europeans. In Geneva she
worked part-time in an office of Hewlett-Packard. Apparently her skills were already developed at the
age of 21, since a position was offered to her if she would come to Palo Alto, California. She first spent
three months working for Siemens in the Empire State Building. The chaos of Manhattan, however, did
not appeal to her, but she decided to give the US one more chance. In Geneva she had purchased a
bus ticket: 100 days for 100 dollars. With her direct practical thinking, she took the bus nonstop from
Manhattan to Palo Alto. After a few years in the international office of Hewlett-Packard, she decided
to go to school full time, but then walked into the life of Charles Steele, a single father of three boys —
Eric, Brett and Jay — and changed both of their lives forever. Thus began a 40-year love affair, enhanced
by the arrival in 1971 of their son Ryan.

When Ryan was only one month old, the family packed up and traveled to Switzerland, where Charles
was invited to teach for a year. MarieLu was not daunted by caring for a newborn and setting up a new
household in a foreign country. She thrived on challenges and later completed the BS and MS degrees,
made possible by organizing an equal distribution of household chores and cooking among all family
members. Over the years, the family went on to spend sabbatical time in Taiwan, Sweden, Germany and
South Africa.

MarieLu will be remembered by all for her bubbly personality, her passion for life and culture. After
the boys were grown up and on their own, MarieLu and Charles continued to travel, and spent months at
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a time in Italy, Spain, Germany, Thailand, and India. In recent years, they traveled with three computers,
in order to combine work and pleasure. Around the globe, MarieLu won friends with her vivaciousness
and zest for life.

MarieLu further will be remembered for her generous assistance to others less fortunate. She provided
a home away from home for generations of foreign visitors and relatives, both distant and close. She
gave to all she met, thrilled to be able to help in anyway she could. In 1993, she helped a Ukranian
friend start a dress shop in the Ukraine with second-hand wedding dresses collected in the United States.
She sponsored two of her German nieces to come to school in the States and put two step-grandchildren
through University. She helped each of her sons secure a home for their families, and often handled the
home improvements herself. The examples of generosity and selflessness go on and on. She was tireless,
and even while the cancer attacked her body, she worked on the journal, painted, cleaned, worked out at
the YMCA, and played with her grandchildren.

MarieLu loved all creatures of the world, and would even rescue spiders from the shower to liberate
in the garden. She cherished her furry friends and the little birdies she fattened up with birdseed in the
deluxe feeders and birdhouses she constructed in her garden. She often cared for her grandkitties and
granddogs, spoiling them as only a grandmother can. Some recent fond memories are of her butterfly
walks this past Easter with her young granddaughters at her beloved Sea Ranch in Sonoma County,
California, where the family maintained a vacation home.

Journal work

In 1965, George Herrmann founded the International Journal of Solids and Structures (IJSS), one of a
number of journals launched by Pergamon Press around that time. In 1984, he retired, and Charles Steele
agreed to succeed him as editor. Because of a previous change in staff, the editorial office was not in
good order, with piles of manuscripts and cabinets full of unanswered correspondence, some more than
a year old. MarieLu offered to help for a few days. However, she quickly proved to be indispensible
and was appointed as Associate Editor. The few days turned into 20 years. She was well suited for this,
since her great skill was bringing order to a chaotic situation, with her desire to help people and her
interest in the international community. She grew to know thousands of authors and reviewers around
the world. Correspondents were appreciative of her cheerfulness, efficiency and warmth — rarities when
dealing with a technical journal! As the figure on the next page shows, IJSS was stable in the first 20
years of existence, with around 150 submissions per year. After MarieLu began work, the number of
submissions increased exponentially to over 900 in 2004. This is despite the launching of a number of
competing journals of mechanics during this time. Standards were not relaxed, with only about 60% of
the submitted papers published all that time.

Unfortunately, in the hands of Elsevier, the price per page also increased substantially. The Cornell
University Library includes IJSS among the four most outrageous examples of pricing for engineering
journals:

http://engineering.library.cornell.edu/about/stickershock_4

Generally, the price per article (or per page) of technical journals from commercial publishers are
many times those published by nonprofit organizations. Consequently in response to the international
library crisis, Charles and MarieLu, with 21 of the 23 members of the Board of Editors, resigned from
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Manuscripts submitted for publication and those accepted and sent to the publisher for
publication, by year. Included are IJSS, from 1965 through 2004 under Pergamon and
Elsevier, and JoMMS from 2005 through 2008 under MSP. After Marie-Louise Steele
began with IJSS in 1985, the increase in activity is substantial. A new phase starts with
the low-cost JoMMS.

IJSS to establish the Journal of Mechanics of Materials and Structures (JoMMS). The publisher is the
nonprofit Mathematical Sciences Publications (MSP). JoMMS has made a very good beginning, now with
about 160 submissions per year. MarieLu’s ambition was to see JoMMS catch up to IJSS in activity, but
with the cost to libraries remaining low. The advantages of JoMMS for authors and libraries make this a
possibility. In any case, the mechanics community will miss the contribution of Marie-Louise Steele. In
the hospital, she was pleased and quite relieved to hear that Davide Bigoni, Iwona Jasiuk, and Yasuhide
Shindo agreed to take over the responsibility for JoMMS, and joint Chief Editors. In their hands, her
ambition for JoMMS will be fulfilled.

ELIZABETH WILLES, friend, and CHARLES STEELE, husband
6 October 2009

mathematical sciences publishers msp
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FINITE STRAIN MICROMECHANICAL MODELING OF
THERMOVISCOELASTIC MATRIX COMPOSITES

JACOB ABOUDI

A finite strain micromechanical analysis is generalized for the modeling of thermoviscoelastic matrix
composites. The thermoviscoelastic matrix of the composite is represented by a finite thermoviscoelas-
ticity theory that permits (in contrast to finite linear thermoviscoelasticity theories) large deviations away
from thermodynamic equilibrium. As a result, it is possible to subject the composite to large thermome-
chanical loadings. In addition, the possibility of evolving damage in the matrix is included. The derived
micromechanical model is applied to investigate the behavior of a thermoviscoelastic rubber-like matrix
reinforced by steel fibers in various circumstances. By subjecting the composite to mechanical loading
under isentropic conditions, the micromechanical model is employed for the prediction of thermoelastic
inversion point at which the Gough–Joule phenomenon at the rubber-like phase occurs. Results are given
that show the effect of damage, elevated temperature and viscoelasticity of the matrix on the global
response of the composite including its creep and relaxation behavior.

1. Introduction

The viscoelastic effects of polymers that are undergoing large deformations can be modeled by finite
linear viscoelasticity. In the framework of this theory the strains are finite, but the deviations away
from thermodynamic equilibrium are assumed to be small. This implies that the equations that control
the evolution of the internal variables are linear; see [Lockett 1972; Christensen 1982; Holzapfel 2000;
Simo 1987], for example. For large deviations from equilibrium the finite linear viscoelasticity is not
applicable any more and nonlinear evolution laws must be introduced to allow more accurate modeling.
To this end a finite viscoelasticity theory was formulated in [Reese and Govindjee 1998b] in which the
equations of evolution are nonlinear thus allowing very large strains to take place. In [Govindjee and
Reese 1997] comparisons have been made between the finite linear viscoelasticity of [Simo 1987] and
their developed finite viscoelasticity theory.

The development of thermoviscoelasticity theories at finite strain that include viscous and nonisother-
mal effects is very important since the behavior of polymeric materials is strongly influenced by tempera-
ture changes. A thermoviscoelasticity theory at finite strains was presented in [Holzapfel and Simo 1996].
In this formulation, however, the evolution equations of the internal variables are linear and, therefore, this
theory can be considered as finite linear thermoviscoelasticity. Finite thermoviscoelasticity theories that
allow finite perturbations away from thermodynamic equilibrium were presented by [Lion 1996; Reese

Keywords: finite thermoviscoelasticity, large deformations, Rubber-like matrix composites, evolving damage, finite strain
high-fidelity generalized method of cells.
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and Govindjee 1998a]. The formulation in the latter reference is based on entropic elasticity and involves
nonlinear evolution equations that allow the modeling of significant thermomechanical deformations of
the material and permits large deformation rates.

The derived constitutive equations of [Reese and Govindjee 1998a] are based on the multiplicative
decomposition of the deformation gradient into elastic and viscous parts. In addition, the free energy is
decomposed into equilibrium (which corresponds to time-independent thermoelastic deformation) and
nonequilibrium (which corresponds to the time-dependent deformation) parts. Damage considerations
are not included in the finite thermoviscoelasticity of that paper. In the present investigation, evolving
damage in finite thermoviscoelastic materials is included by adopting, in the framework of continuum
damage mechanics, the derivation of [Lin and Schomburg 2003; Miehe and Keck 2000], according to
which the rate of damage depends upon the kinematic arc-length. Isothermal finite viscoelasticity with
evolving damage is obtained as a special case, and by neglecting the thermal and viscous effects, the
special case of a hyperelastic material with evolving damage is obtained.

In [Aboudi 2004], a micromechanical analysis was proposed for the prediction of the behavior of
composites undergoing large deformations in which one of the phases is modeled by the finite linear
thermoviscoelasticity theory of [Holzapfel and Simo 1996]. In the present investigation, this finite strain
micromechanical analysis, referred to as high-fidelity generalized method of cells (HFGMC), is extended
to incorporate polymeric phases that can be modeled by the finite thermoviscoelasticity of [Reese and
Govindjee 1998a] in which damage can evolve, the rate of which depends upon the kinematic arc-length.
As a result of the present generalization, finite strain constitutive equations that govern the macroscopic
behavior of the anisotropic thermoviscoelasticity composites undergoing large deformations with evolv-
ing damage in the polymeric phase are established. These equations involve the damaged instantaneous
mechanical and thermal tangent tensors as well as a global tensor that includes the current viscoelas-
ticity and damage effects. Every one of these three tensors is given by closed-form expressions that
involve the instantaneous properties of the phases and the corresponding current mechanical, thermal
and viscoelastic-damage tensors which have been established from the micromechanical procedure. The
special case of composites that consist of finite viscoelastic phases has been recently investigated in
[Aboudi 2010].

Results are given for a thermoviscoelastic rubber-like matrix reinforced by thermoelastic steel fibers.
The thermoviscoelastic rubber-like matrix consists of a system of a thermoelastic element together with a
single Maxwell element which is represented by the equilibrium and the nonequilibrium parts of the free
energy. The thermoelastic inversion point which is characteristic for rubber-like materials at which the
Gough–Joule effect occurs is determined by analyzing an isentropic process that provides the induced
temperature by stretching the composite in the transverse direction (perpendicular to the fibers). In addi-
tion, the effects of elevated temperature, viscoelasticity and damage on the steel/rubber-like composite
response to mechanical and thermal loading-unloading conditions are examined, as well as its creep and
relaxation behavior.

This paper is organized as follows. After a brief summary in Section 2 of the thermoviscoelastic
model of [Reese and Govindjee 1998a] for monolithic materials and its coupling with evolving damage,
the HFGMC analysis is described in Section 3. Section 4 includes the application of the finite strain
thermoviscoelastic composite model in various circumstances, followed by conclusions and suggestions
for future research.
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2. Finite strain thermoviscoelasticity coupled with damage model of monolithic materials

In the present section we briefly present the constitutive behavior of finite strain thermoviscoelastic
polymeric materials that exhibit evolving damage. The presentation follows the papers of [Reese and
Govindjee 1998a] where no damage is accounted to and [Lin and Schomburg 2003] where evolving
damage is included. The present thermoviscoelastic modeling allows finite strain and large deviations
from the thermodynamic equilibrium state.

Let X and x denote the location of a point in the material with respect to the initial (Lagrangian)
and current systems of coordinates, respectively, and t is the time. In terms of the local deformation
gradient tensor F(X, t), dx= F(X, t)d X . The deformation gradient F is expressed by the multiplicative
decomposition

F(X, t)= Fe(X, t)Fv(X, t), (1)

where Fe and Fv are the elastic and viscous parts. The Jacobians that correspond to F and Fe are:
J = det F and J e

= det Fe, respectively.
The modeling that is presented herein is based on a single Maxwell and elastic elements, but it can

be extended to include several Maxwell elements. The total free energy per unit reference volume
is decomposed into equilibrium (EQ) which represents the strain energy of the elastic element and a
nonequilibrium (NEQ) part that accounts for the Maxwell element:

ψ = ψEQ
+ψNEQ. (2)

The equilibrium part is given by

ψEQ
= (1− D)

[
fEQψ

EQ
0 + (e0)EQ

(
1− θ

θ0

)
+ c0

(
θ − θ0− θ log θ

θ0

)]
, (3)

where D denotes the amount of damage such that 0 ≤ D ≤ 1, θ and θ0 are the current and reference
temperatures, respectively, and c0 is the heat capacity. In this relation fEQ and (e0)EQ are of the form

fEQ =
θ

θ0
, (e0)EQ = K eαe log Jθ0, (4)

where K e and αe are the bulk modulus and thermal expansion coefficient, respectively, of the elastic ele-
ment. It follows from (3) that ψEQ

0 is the equilibrium part of the free energy at the reference temperature
θ0 in the presence of damage.

The nonequilibrium part is given by

ψNEQ
= (1− D)

[
fNEQψ

NEQ
0 + (e0)NEQ

(
1− θ

θ0

)]
, (5)

where

fNEQ =
θ

θ0
and (e0)NEQ = K vαv log Jeθ0, (6)

K v and αv being the bulk modulus and thermal expansion coefficient, respectively, of the viscous part
of the material. Here too, ψNEQ

= ψ
NEQ
0 for θ = θ0 and D 6= 0.
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The Kirchhoff stresses can be derived from the free-energy expressions above:

τEQ
= 2F

∂ψEQ

∂C
FT
≡ (1− D)τEQ

0 , (7)

C = FT F being the right Cauchy–Green deformation tensor, and

τNEQ
= 2F

∂ψNEQ

∂C
FT
= 2Fe ∂ψ

NEQ

∂Ce FeT
≡ (1− D)τNEQ

0 , (8)

where Ce
= FeT Fe and τEQ

0 , τNEQ
0 correspond to the Kirchhoff stresses of the undamaged material.

Let the left Cauchy–Green tensor B = F FT be represented in terms of its eigenvalues bp and unit
principal directions ep, p = 1, 2, 3:

B = diag [b1, b2, b3], i.e., B =
3∑

p=1

bp ep⊗ ep. (9)

With J = det F =
√

b1b2b3, the volume preserving tensor B = J−2/3 B can be accordingly represented
in the form

B = diag [b̄1, b̄2, b̄3] = (b1b2b3)
−1/3 diag [b1, b2, b3]. (10)

The finite strain isothermal contribution ψEQ
0 can be modeled by the Ogden’s compressible material

representation [Ogden 1984; Holzapfel 2000] as follows

ψ
EQ
0 =

3∑
p=1

µe
p

αe
p

(
(b̄1)

αe
p/2+ (b̄2)

αe
p/2+ (b̄3)

αe
p/2− 3

)
+

K e

4

(
J 2
− 2 log J − 1

)
, (11)

where µe
p and αe

p are material parameters of the elastic element.
For Maxwell’s element, the isothermal free energy ψNEQ

0 is represented by [Reese and Govindjee
1998a]:

ψ
NEQ
0 =

3∑
p=1

µvp

αvp

(
(b̄e

1)
αvp/2+ (b̄e

2)
αvp/2+ (b̄e

3)
αvp/2− 3

)
+

K v

4

(
(J e)2− 2 log J e

− 1
)
, (12)

where
Be
= Fe
[Fe
]
T
= diag [be

1, be
2, be

3] (13)

and J e
=
√

be
1be

2be
3, b̄e

A = (J
e)−2/3be

A, and µvp, αvp, are material parameters.
The entropy of the system can be determined from

η =−
∂ψ

∂θ
=−

∂ψEQ

∂θ
−
∂ψNEQ

∂θ

=−(1− D)
[

1
θ0
ψ

EQ
0 −

1
θ0
(e0)EQ− c0 log

θ

θ0

]
− (1− D)

[
1
θ0
ψ

NEQ
0 −

1
θ0
(e0)NEQ

]
≡ (1− D)η0. (14)

The evolution equation for the internal variables is given in [Reese and Govindjee 1998a]:

−
1
2

Lv[Be
][Be
]
−1
=

1
2ηD

dev [τNEQ
] +

1
9ηV

trace [τNEQ
], (15)
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where ηD and ηV are the deviatoric and volumetric viscosities, respectively, and Lv[Be
], the Lie deriva-

tive of Be, can be expressed as
Lv[Be

] = FĊv−1 FT , (16)

with Cv
= FvT Fv. For elastic bulk behavior, 1/ηV = 0 and the relaxation time is given by ξ = ηD/µ

where µ is the small strain shear modulus of the Maxwell element (the nonequilibrium part).
The integration of the evolution equation (15) is performed by means of the return mapping algorithm

in conjunction with the logarithmic strain and the backward exponential approximation which were
developed in the framework of elastoplasticity, see [Weber and Anand 1990; Eterovic and Bathe 1990;
Cuitino and Ortiz 1992; Simo 1992]. Thus, by employing the exponential mapping algorithm, (15) is
reduced to

εe
n+1,A = ε

e trial
n+1,A−1t

[
1

2ηD
dev [τNEQ

A ] +
1

9ηV
trace [τNEQ

]

]
n+1

, (17)

with A= 1, 2, 3, where the principal values of the elastic logarithmic strain εe
A are given by εe

A =
1
2 log be

A
and 1t is the time increment between the current and previous step. In (17), the trial values of εe trial

n+1,A
can be expressed in terms of the eigenvalues be trial

n+1,A of Be trial
n+1 namely, εe trial

n+1,A =
1
2 log be trial

A,n+1, where

Be trial
n+1 = fn+1 Be

n f T
n+1, (18)

with
fn+1 = Fn+1 F−1

n , (19)

Equation (17) forms a system of coupled nonlinear equations in the unknowns εe
n+1,A, A = 1, 2, 3. It

can be rewritten in terms of the elastic logarithmic strain increments in the form

1εe
A = ε

e trial
n+1,A− ε

e
n,A−1t

[
1

2ηD
dev [τNEQ

A ] +
1

9ηV
trace [τNEQ

]

]
n+1

. (20)

In this equation, the principal values of τNEQ are given according to (8) by

τ
NEQ
A = 2

∂ψNEQ

∂bA
bA = 2

∂ψNEQ

∂be
A

be
A. (21)

The rate of damage evolution is given by (see [Lin and Schomburg 2003; Miehe and Keck 2000])

Ḋ =
ż
ηdam

(D∞− D), (22)

where the rate of kinematic arc length is defined by

ż =
√

2
3‖Ḣ‖, H = 1

2 log C, (23)

with the saturation value
D∞ =

1
1+ D∞0 exp (−βdam/αdam)

(24)

and
βdam = max

0≤ξ≤t

√
2
3‖H(ξ)‖. (25)

In these relations, ηdam, D∞0 and αdam are material parameters.
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The incremental form of the constitutive equations of the finite thermoviscoelastic material and the
corresponding instantaneous tangent tensor that are needed in the following micromechanical analysis,
are determined as follows. From (8) the following expression can be established

1τ
NEQ
A = (1− D)1τNEQ

0A − τ
NEQ
0A 1D. (26)

Let the second-order tensor MNEQ be defined by

MNEQ
= [MNEQ

AB ] ≡

[
∂τ

NEQ
0A

∂εe
B

]
, A, B = 1, 2, 3, (27)

In addition, the components of the thermal stress vector 0NEQ are determined from

0
NEQ
A =−

∂τ
NEQ
0A

∂θ
, A = 1, 2, 3. (28)

In conjunction with (20), we obtain from (26) that

1τ
NEQ
A = (1− D)MNEQ

AB

{
εe trial

n+1,B − ε
e
n,B −1t

[
1

2ηD
dev [τNEQ

B ] +
1

9ηV
trace [τNEQ

]

]
n+1

}
− (1− D)0NEQ

A 1θ − τ
NEQ
0A 1D. (29)

Let 1εe
A and 1εved

A be defined by

1εA ≡ ε
e trial
n+1,A− ε

e
n,A,

1εved
A ≡1t

[
1

2ηD
dev [τNEQ

A ] +
1

9ηV
trace [τNEQ

]

]
n+1
+ [MNEQ

]
−1
ABτ

NEQ
0B

1D
1− D

. (30)

Therefore (29) can be represented by

1τ
NEQ
A = (1− D)

{
MNEQ

AB [1εB −1ε
ved
B ] −0

NEQ
A 1θ

}
≡ (1− D)[MNEQ

AB 1εB −0
NEQ
A 1θ ] −1W NEQ

A , (31)

where the components 1W NEQ
A involve the thermoviscoelastic and damage effects.

The fourth-order tangent tensor dNEQ is defined by

dNEQ
= 2

∂SNEQ

∂C
= 4

∂2ψNEQ

∂C∂C
, (32)

where SNEQ is the second Piola–Kirchhoff stress tensor:

SNEQ
= 2

∂ψNEQ

∂C
= 2[Fv

]
−1 ∂ψ

NEQ

∂Ce [F
v
]
−T , (33)

whose the principal values are given by

SNEQ
A = 2

∂ψNEQ

∂bA
=

2
bvA

∂ψNEQ

∂be
A
, A = 1, 2, 3, (34)
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with bvA = bA/be
A being the principal values of Bv

= Fv
[Fv
]
T
= diag [bv1, bv2, bv3]. The principal values

of dNEQ can be determined from the following expression [Holzapfel 2000]:

dNEQ
=

3∑
A=1

3∑
B=1

1
λB

∂SNEQ
A

∂λB
NA⊗ NA⊗ NB ⊗ NB

+

3∑
A=1

3∑
B 6=A=1

SNEQ
B − SNEQ

A

(λB)2− (λA)2
(NA⊗ NB ⊗ NA⊗ NB + NA⊗ NB ⊗ NB ⊗ NA), (35)

where
1
λB

∂SNEQ
A

∂λB
= 2

∂SNEQ
A

∂bB
=

4
bvAbvB

∂2ψNEQ

∂be
Abe

B
, (36)

with λA =
√

bA and NA denotes the principal referential orthonormal directions. It should be noted that
for λA = λB , a Taylor expansion shows that

lim
λB→λA

SNEQ
B − SNEQ

A

(λB)2− (λA)2
=

1
2λB

[
∂SNEQ

B

∂λB
−
∂SNEQ

A

∂λB

]
. (37)

The second-order thermal stress tensor γ NEQ is determined from

γ NEQ
=−

∂SNEQ

∂θ
=−2

∂2ψNEQ

∂C∂θ
(38)

and its principal values are given by

γ
NEQ
A =−2

∂2ψNEQ

∂bA∂θ
=−

2
bvA

∂2ψNEQ

∂be
A∂θ

. (39)

The values of γ NEQ
A can be readily related to 0NEQ

A in (28) by employing the relation: τ = FSFT from
which the equality 0NEQ

A = bAγ
NEQ
A is obtained.

The fourth-order first tangent tensor RNEQ which is defined by

RNEQ
=
∂T NEQ

∂F
, (40)

where T NEQ is the first Piola–Kirchhoff stress tensor, can be determined from

RNEQ
= F dNEQ FT

+ SNEQ
⊗ I, (41)

with I denoting the unit second-order tensor. Thus, the rate form of the nonequilibrium portion of the
constitutive equations of the finite thermoviscoelastic material is given by

Ṫ NEQ
= RNEQ

: Ḟ− HNEQθ̇ − V̇ NEQ, (42)

where by taking into account the relation between the Kirchhoff τ and the first Piola–Kirchhoff T stress
tensors: τ = FT , the following expressions for the thermal stress HNEQ and viscous-damage V̇ NEQ
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terms can be established:

HNEQ
= F−10NEQ

= γ NEQ FT , (43)

V̇ NEQ
= F−1 ẆNEQ. (44)

The same procedure can be followed for the establishment of the first tangent tensor REQ of equilibrium
elastic element where ẆEQ involves this time the damage effects only and Fv

= I . It yields

Ṫ EQ
= REQ

: Ḟ− HEQθ̇ − V̇ EQ. (45)

The final total rate form of the finite thermoviscoelastic material is as follows

Ṫ = R : Ḟ− H θ̇ − V̇ , (46)

where Ṫ = Ṫ NEQ
+ Ṫ EQ, R = RNEQ

+ REQ, H = HNEQ
+ HEQ, and V̇ = V̇ NEQ

+ V̇ EQ. Constitutive
equations can be obtained from (46) as specials cases in the presence/absence of damage and viscous
effects.

3. Finite-strain micromechanical analysis

Finite strain HFGMC micromechanical analyses for the establishment of the macroscopic constitutive
equations of various types of composites with doubly periodic microstructure undergoing large defor-
mations have been previously reviewed by [Aboudi 2008]. These micromechanical analyses are based
on the homogenization technique in which a repeating unit cell of the periodic composite can identified.
This repeating unit cell represents the periodic composite in which the double periodicity is taken in
the transverse 2− 3 plane, so that the axial 1-direction corresponds to the continuous direction; see
Figure 1. (For a unidirectional fiber-reinforced material, for example, the 1-direction coincides with the

Repeating

Unit Cell

X3

X2 Y3

Y2

Figure 1. A multiphase composite with doubly periodic microstructures defined with
respect to global initial coordinates of the plane X2 − X3. The repeating unit cell is
defined with respect to local initial coordinates of the plane Y2− Y3.
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fiber orientation.) In the framework of these HFGMC micromechanical models, the displacements are
asymptotically expanded and the repeating unit cell is discretized. This is followed by imposing the
equilibrium equations, the displacement and traction interfacial conditions as well as the conditions that
ensure that the displacements and tractions are periodic across the repeating unit cell. In particular, the
imposition of the equilibrium equations provide the strong form of the Lagrangian equilibrium conditions
of the homogenization theory that must be satisfied. In addition, since the solution of the repeating unit
cell is determined with a constant vector, the corners of this cell are rigidly clamped to prevent this
indeterminacy. The resulting homogenization derivation establishes the deformation concentration tensor
A(Y , θ), where Y are the local Lagrangian system of coordinates with respect to which field variables
in the repeating unit cell are characterized. This tensor relates the rate of the local deformation gradient
Ḟ(Y , θ) at a material point Y within the repeating unit cell to the externally applied deformation gradient
rate ˙̄F on the composite in the form

Ḟ(Y , θ)= A(Y , θ) : ˙̄F+ Ath(Y , θ)θ̇ + Ȧvd(Y , θ), (47)

where Ath and Ȧvd are the thermal concentration tensor and the viscous-damage contribution. The
mechanical concentration tensor A is determined at every increment of loading when the thermal and
viscous-damage effects are absent. Similarly, the thermal concentration tensor Ath is determined at
every increment in the absence of mechanical and viscous-damage effects. Finally, the current Ȧvd can
be determined when no mechanical or thermal effects are present. It follows from (47) and in conjunction
with (46) that the local stress rate at this point is given by

Ṫ (Y , θ)= R(Y , θ) :
[

A(Y , θ) : ˙̄F+ Ath(Y , θ)θ̇ + Ȧvd(Y , θ)
]
−H(Y , θ)θ̇ − V̇ (Y , θ). (48)

Hence the resulting rate form of the macroscopic constitutive equation for the multiphase thermovis-
coelastic composite undergoing large deformation is given by

˙̄T = R∗ : ˙̄F− H∗θ̇ − ˙V , (49)

where ˙̄T is the rate of the overall (global) first Piola–Kirchhoff stress tensor and R∗ is the instantaneous
effective stiffness (first tangent) tensor of the multiphase composite. It can be expressed in terms of the
first tangent tensors of the constituents R(Y , θ) and the established deformation concentration tensor
A(Y , θ) in the form

R∗ =
1
SY

∫∫
SY

R(Y , θ) A(Y , θ) d SY , (50)

where SY is the area of the repeating unit cell. The effective instantaneous thermal stress tensor H∗ in
(49) is established from

H∗ =−
1
SY

∫∫
SY

[
R(Y , θ) Ath(Y , θ)− H(Y , θ)

]
d SY . (51)

Finally, the current viscous-damage contribution to the macroscopic constitutive equations (49) is given
by

˙V =−
1
SY

∫∫
SY

[
R(Y , θ) : Ȧvd(Y , θ)− V̇ (Y , θ)

]
d SY . (52)
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More details can be found in [Aboudi 2008]. It should be noted that the current values of R∗, H∗ and
˙V of the composite are affected by the current value of damage variable through the instantaneous value
of the tensors R(Y , θ), H(Y , θ) and V̇ (Y , θ) of the finite strain constituents.

The finite strain HFGMC micromechanical model predictions were assessed and verified by compar-
ison with analytical and numerical large deformation solutions in [Aboudi and Pindera 2004; Aboudi
2009] for composites with hyperelastic and hyperelastic coupled with damage constituents, respectively.

4. Applications

In the present section, applications are given that exhibit under various circumstances the response of
a composite undergoing large deformations, which consists of a thermoviscoelastic rubber-like material
reinforced by continuous thermoelastic fibers. The thermoviscoelastic matrix is characterized by the free
energy functions (3) and (5) that represent elastic and maxwell elements, respectively in conjunction
with the corresponding isothermal free-energy functions (11) and (12). The parameters in these functions
[Reese and Govindjee 1998a] are given in Tables 1 and 2, together with ηD and 1/ηV = 0 (assuming
elastic bulk deformations). The damage mechanism affects the thermoviscoelastic matrix only and its
parameters which appear in (22)–(24) are: ηdam = 0.1, D∞0 = 1 and αdam = 1. The effect of damage can
be totally neglected by choosing 1/ηdam = 0.

The continuous thermoelastic steel fibers are oriented in the 1-direction and they are characterized by
the free energy function [Reese and Govindjee 1998a]

ψ steel
=
(µ1)st

(α1)st

[
(b̄1)

(α1)st/2+ (b̄2)
(α1)st/2+ (b̄3)

(α1)st/2− 3
]
+

Kst

4

[
J 2
− 2 log J − 1

]
, (53)

where (µ1)st , (α1)st and Kst are material parameters of the steel fibers which are given in Table 3. The
volume fraction of the fibers is v f = 0.05 which is characteristic for a rubber-like material reinforced by
steel fibers.

µe
1 (MPa) µe

2 (MPa) µe
3 (MPa) αe

1 αe
2 αe

3 K e (MPa) αe(K−1) ce
0 (MPa K−1)

0.13790 −0.04827 0.01034 1.8 −2 7 50 223.33× 10−6 1.7385

Table 1. Material parameters in the function ψEQ
0 of (11). The parameters µe

p and αe
p,

p = 1, 2, 3 are the Ogden’s material constants, K e is the bulk modulus, αe is its thermal
expansion coefficient and ce

0 is its heat capacity. In the small strain domain, the shear
modulus of this material is 0.208 MPa.

µv1 (MPa) µv2 (MPa) µv3 (MPa) αv1 αv2 αv3 K v (MPa) ηD (MPa s) αv (K−1)

0.3544 −0.1240 0.0266 1.8 −2 7 50 9.38105 223.33× 10−6

Table 2. Material parameters in the function ψNEQ
0 of (12). The parameters µvp and αvp,

p = 1, 2, 3 are the Ogden’s material constants, K v is the bulk modulus and αv is its
thermal expansion coefficient. ηD and ηV are the viscoelastic constants with ηV →∞

implying elastic bulk behavior. In the small strain domain, the shear modulus of this
material is 0.536 MPa.
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(µ1)st (MPa) (α1)st Kst (MPa) (α)st(K−1) (c0)st (MPa K−1)

80769.231 2 121153.85 12× 10−6 3.768

Table 3. Material parameters in the function ψ steel of (53). The parameters (µ)st and
(α)st are the Ogden’s material constants of the steel fibers, Kst is the bulk modulus,
(α)st its coefficient of thermal expansion and (c0)st is its heat capacity. In the small
strain domain, the shear modulus of the material is 80769.231 MPa.

4.1. The thermoelastic inversion effect. Consider a uniaxially stretched specimen of rubber in the 1-
direction that is subjected to thermal loading (isomeric behavior). For low values of constant stretch, the
graph of the gradient of the stress against temperature is negative (as in glass and metals), but becomes
positive at certain critical stretching. This change of gradient sign characterizes the thermoelastic inver-
sion effect also referred to as the Gough–Joule effect. Similarly, in ordinary materials with a prescribed
stress and subjected to a thermal loading (isotonic behavior), the gradient of deformation with respect to
temperature is always positive, but in rubbers this gradient becomes negative at loadings beyond a critical
value. As was shown by [Ogden 1992], the derivative of the stress T11 with respect to the temperature
θ at constant stretch λ1: (∂T11/∂θ)λ1 , and the derivative of the temperature θ with respect to the stretch
λ1 at constant entropy η: (∂θ/∂λ1)η (isentropic behavior) vanish simultaneously. Thus, it is possible
to detect the critical value of stretch at which the thermoelastic inversion takes place by considering a
strip of rubber subjected to a uniaxial stress loading under isentropic conditions, namely η̇ = 0. The
minimum value of the generated temperature against applied stretch graph corresponds to the critical
inversion point.

For a homogeneous material the (undamaged) entropy η0 is given by (14). Under uniaxial stress
loading in the 1-direction, the principal values b2 and b3 of the left Cauchy–Green deformation tensor
B can be expressed in terms of the stretch λ1 =

√
b1 and temperature θ . Hence η0 = η0(λ1, θ). For

isentropic stretching

dη0(λ1, θ)=

(
∂η0

∂λ1

)
θ

dλ1+

(
∂η0

∂θ

)
λ1

dθ = 0, (54)

where (
∂η0

∂λA

)
θ

= 2

√
be

A

bvA

∂η0

∂be
A
, A = 1, 2, 3. (55)

This relation provides

dθ
dλ1
=−

(∂η0/∂λ1)θ

(∂η0/∂θ)λ1

. (56)

The integration of this differential equation provides the graph of temperature deviation 1θ = θ − θ0

against the stretch λ1 which shows initially a falling and then rising temperature, thus exhibiting the
thermoelastic inversion effect. The critical value of stretch where thermoelastic inversion effect takes
place correspond to the minimum of this curve.
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For a rubber specimen that is subjected to prescribed stress, the critical value of the stress at which
the slope of (∂λ1/∂θ)T11 changes sign can be determined as follows. The Maxwell relations(

∂T11

∂θ

)
λ1

=−

(
∂η0

∂λ1

)
θ

,

(
∂λ1

∂θ

)
T11

=

(
∂η0

∂λ1

)
θ

(57)

show that (∂T11/∂θ)λ1
= 0 yields (∂η0/∂λ1)θ = 0; namely, (∂λ1/∂θ)T11

= 0. But from

dT11 =

(
∂T11

∂λ1

)
θ

dλ1+

(
∂T11

∂θ

)
λ1

dθ (58)

and (54) we obtain that (∂η0/∂λ1)θ = 0 implies that (∂θ/∂T11)η0
= 0. Hence the critical value of stress

T11 can be determined from the minimum of the curve θ vs. T11 generated during an isentropic procedure.
In order to determine the thermoelastic inversion effect in thermoviscoelastic composites, the follow-

ing tensor is defined in terms of its principal values ∂η0/∂λp and unit principal directions kp, p = 1, 2, 3:

K =
∂η0

∂F
= diag

[
∂η0

∂λ1
,
∂η0

∂λ2
,
∂η0

∂λ3

]
, i.e., K =

3∑
p=1

∂η0

∂λp
kp⊗ kp. (59)

It follows that the increment of the local value of the entropy is given by

1η0(Y , θ)= K (Y , θ) :1F(Y , θ)+ P(Y , θ)1θ, (60)

where P = c0/θ of the constituent. By substituting (47) in this relation the following expression is
established

1η0(Y , θ)= K (Y , θ) :
[

A(Y , θ) :1F̄+ Ath(Y , θ)1θ +1Avd(Y , θ)
]
+ P(Y , θ)1θ. (61)

The increment of the global entropy of the composite is given by

1η̄0 =
1
SY

∫∫
SY

1η0(Y , θ) d SY . (62)

Consider a thermoviscoelastic composite that subjected to a uniaxial stress loading in the transverse
2-direction such that all components of T are zero except T̄22. Here, there are eight unknown deformation
gradients 1F (except 1F̄22) and 1θ . There are, on the other hand eight equations 1T = 0 (except 1T̄22)
and for isentropic procedure there is the additional relation: 1η̄0 = 0. Thus, the above relations enable
the computation of the temperature θ that is generated at applying a transverse stretch F22 in a stepwise
manner. Figure 2(a) shows the generated temperature deviation 1θ = θ−θ0 under isentropic and uniaxial
stress loading conditions against the applied average transverse deformation gradient F22. This figure
shows the resulting behavior of the homogeneous (unreinforced) and the unidirectional steel/rubber-like
composite where the matrix is considered as thermoviscoelastic (TVE) as well as thermoelastic (TE) in
which the viscous effects have been neglected. The minima of the curves correspond to the critical stretch
F22 at which the thermoelastic inversions take place. It can be readily observed that the viscous effects on
the critical points are negligible. The critical stretch of the TVE homogeneous matrix occurs at a stretch
of F22 = 1.023, but due to the presence of reinforcement it moves to F22 = 1.032. The corresponding
graph which exhibits the resulting temperature deviation 1θ against transverse stress T 22 is shown in
Figure 2(b). This latter figure also shows the locations of the inversion thermoelastic points when the
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Figure 2. Temperature deviations generated by applying, under isentropic conditions, a
uniaxial transverse stress loading on thermoviscoelastic (TVE) and thermoelastic (TE)
composites. Also shown are the corresponding temperature deviations generated in the
homogeneous (H) unreinforced matrix. The minima correspond to the locations of the
thermoelastic inversions. Temperature deviations are plotted against average transverse
deformation gradient (a) and against average transverse stress (b).

composite and its homogeneous unreinforced matrix are subjected to a thermal loading in conjunction
with a prescribed transverse uniaxial stress. These critical stresses occur at about T 22 = 0.1 MPa and
T22 = 0.05 MPa for the composite and its homogeneous matrix, respectively.

4.2. The composite and its unreinforced matrix responses. We now study the behaviors of the uni-
directional thermoviscoelastic composite and its matrix under various circumstances. Figures 3 and 4
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Figure 3. Response of the homogeneous thermoviscoelastic (TVE) and thermoelastic
(TE) rubber-like material to uniaxial stress loading in the 1-direction, applied at elevated
temperature 1θ = 100 K at a rate of r = Ḟ11 = 0.01/s: stress-deformation gradient
response (a), damage evolution (b), and stress-deformation gradient response in the ab-
sence of damage (c).



20 JACOB ABOUDI

show the behavior under uniaxial stress loading in the 1-direction (i.e., when all components T are zero
except T11) of the homogeneous (unreinforced) thermoviscoelastic (TVE) rubber-like matrix at elevated
temperature 1θ = 100 K as well as the thermoelastic (TE) matrix when the viscous effects have been
neglected. Figure 3(a) compares the response of the TE and TVE matrix, whereas Figure 3(b) shows the
evolution of damage in the matrix as the loading proceeds. Here and in the following, the value of the
damage refers to its maximum amount that evolves in all locations of the rubber-like phase. Figure 3(c)
shows the counterpart behavior of the homogeneous matrix in the absence of any damage effects (note
that the scale of the plot in the latter case is twice that of the damaged case). In all cases the rate of
loading is r = Ḟ11 = 0.01/s. This figure exhibits very well the significant viscous and damage effects
on the rubber-like material behavior.

Figure 4 provides comparisons of the rubber-like material response at the reference temperature (i.e.,
1θ = 0) such that the material behavior is viscoelastic (VE), and at elevated temperature 1θ = 100 K
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Figure 4. Top row: stress-deformation gradient response of the homogeneous viscoelas-
tic (a) and thermoviscoelastic (b) rubber-like material to uniaxial stress loading in the
1-direction, applied at two rates: r = Ḟ11 = 1/s and 0.01/s. In (a) the VE material is
kept at θ = θ0, in (b) the TVE material undergoes a temperature change of 1θ = 100 K.
Bottom row: corresponding results in the absence of damage effects.
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Figure 5. Response of the steel/rubber-like thermoviscoelastic (TVE) and thermoelastic
(TE) composite to uniaxial stress loading in the transverse 2-direction, applied at elevated
temperature1θ = 100 K at a rate of r = Ḟ22= 0.01/s: global stress-deformation gradient
response (a), damage evolution (b), and global stress-deformation gradient response in
the absence of damage (c).

resulting in a thermoviscoelastic behavior (TVE). In this figure, comparisons are also shown when the
uniaxial stress loading is applied at two rates r = 1/s and 0.01/s in the presence and absence of damage
(in the latter case the scale of the graph is twice the former). Significant differences between the various
cases can be clearly observed.

Similar studies can be carried out in order to show the behavior of the unidirectional steel/rubber-like
composite. In this case, the application of a transverse uniaxial stress loading perpendicular to the fiber
direction is the most interesting loading, since for loading in the fiber direction (1-direction) the much
stiffer elastic steel will dominate the response of the composite. In this type of loading all components
of the average stress T are equal to zero except T 22. The transverse loading is performed by applying
the average transverse deformation gradient F22 at a rate of r = Ḟ22. Figure 5 exhibits the viscous and
damage effects of the rubber-like phase on the behavior of the composite loaded at a rate of r = 0.01/s
(note that the scale of the plot in the undamaged case is three times the damaged one). Figure 6 shows
the effect of elevated temperature, rate of loading and damage on the macroscopic transverse response
of the composite.

Let the unidirectional steel/rubber-like thermoviscoelastic composite be subjected to a cyclic thermal
loading at a rate θ̇ = 1 K/s while keeping the composite traction-free (T = 0). In this thermal loading case,
the temperature deviation increases/decreases linearly such that −100 K≤1θ ≤ 100 K. The resulting
average of the transverse deformation gradient F22 caused by this thermal loading is shown in Figure 7
during 7 cycles followed by 1/4 cycle after which the applied temperature deviation reaches 1θ = 100 K,
where the damage reaches the value of D = 0.5. This figure shows the transverse deformation gradient in
both the presence and absence of evolving damage in the rubber-like matrix. In presence of damage, its
evolution with applied thermal loading is shown in Figure 7(b). It can be readily observed that the effect
of damage on the resulting transverse deformation gradient is negligible, and that the induced strains are
quite small and can be regarded to belong to the infinitesimal domain. In addition, it turns out that the
rate of applied thermal loading has no appreciable effect on these strains.
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Figure 6. Top row: global stress-deformation gradient response of the steel/rubber-like
viscoelastic and thermoviscoelastic composite to uniaxial stress loading in the transverse
2-direction, applied at two rates: r = Ḟ22 = 1/s and 0.01/s. In (a) the VE material is
kept at θ = θ0, in (b) the TVE material undergoes a temperature change of 1θ = 100 K.
Bottom row: corresponding results in the absence of damage effects.

Although the previous thermal loading case that was shown in Figure 7 indicates that the effect of
evolving damage on the free-thermal expansion response of the thermoviscoelastic composite appears
to be minor, it should be interesting to investigate the response of the composite by applying a uniaxial
transverse stress of loading and unloading at a rate of r = Ḟ22 = 1/s, which immediately follows the
previously applied 7.25 cycles of thermal loading, −100 K≤1θ ≤ 100 K, which will be referred to as
case 1. The response of the composite in case 1 is compared to the response which results by subjecting
the steel/rubber-like composite to a uniaxial transverse stress of loading and unloading applied at a rate
of r = Ḟ22 = 1/s at elevated temperature 1θ = 100 K, referred to as case 2. The resulting comparison is
shown in Figure 8 together with the evolving damage in both cases. It is readily observed that although
the cyclic thermal loading ends with a damage of D = 0.5 in the rubber-like matrix, its effect on the
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Ḟ22 = 1/s, at elevated temperature 1θ = 100 K; and (2) stress loading-unloading alone,
as in (1). Plot (a) shows the average transverse stress deformation gradient, plot (b) the
damage evolution.

subsequent mechanical transverse loading is quite small. Applying the uniaxial transverse stress loading
at the lower rate of r = Ḟ22 = 0.01/s gave the same closeness between the two cases.

The following four figures exhibit the creep behavior of the composite under various circumstances.
Figure 9(a) compares the creep behavior of the thermoviscoelastic steel/rubber-like composite with the
corresponding behavior of the homogeneous (H) matrix. In both cases a uniaxial transverse stress loading
is applied at elevated temperature 1θ = 100 K such that all components of the stress T are zero except
T 22 = 1 MPa. Figure 9(b) shows the evolving damage to saturation in the thermoviscoelastic matrix of
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to a uniaxial transverse stress loading T 22 = 1 MPa at elevated temperature 1θ = 100 K.
Also shown is the corresponding creep behavior of the homogeneous (H) unreinforced
thermoviscoelastic matrix. As functions of time, the plots show the global transverse de-
formation gradient (a), damage evolution (b), and global transverse deformation gradient
in the absence of damage effects.

the composite as well is in the unreinforced material. Finally, Figure 9(c) is the counterpart of Figure 9(a)
in the absence of any damage effects.

It is interesting to observe that whereas the existence of the steel fibers decreases, as expected, the
resulting macroscopic deformation gradient of the composite, the damage induced in the reinforced
matrix is higher that the one that evolves in the homogeneous material. Figure 10 compares the creep
behavior of thermoviscoelastic steel/rubber-like composite when it is subjected to uniaxial transverse
stress loadings of T 22 = 1 MPa and 2 MPa at elevated temperature 1θ = 100 K. This figure shows that
by doubling the value of the applied stress, the global transverse displacement gradient F22− 1 of the
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Figure 10. Comparison between the creep behaviors of the thermoviscoelastic
steel/rubber-like composite which is subjected to uniaxial transverse stress loadings
T 22 = 1 MPa and 2 MPa at elevated temperature 1θ = 100 K. As functions of time,
the plots show the global transverse deformation gradient (a), damage evolution (b), and
global transverse deformation gradient in the absence of damage effects.
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transverse stress loading T 22 = 1 MPa at elevated temperature 1θ = 100 K. As functions
of time, the plots show the global transverse deformation gradient (a), damage evolution
(b), and global transverse deformation gradient in the absence of damage effects (c).

composite increases due to the nonlinearity by about 1.25 times only. On the other hand, the amount of
saturation value of damage increase is just about 1.03 times. Next, Figure 11 shows the viscous effects
in the matrix phase of the composite. This figure compares the creep response to uniaxial transverse
stress loading T 22 = 1 MPa of the thermoviscoelastic (TVE) steel/rubber-like composite at elevated
temperature 1θ = 100 K with the corresponding thermoelastic (TE) one in which the viscoelasticity of
the matrix is neglected and, therefore, there is no creep effect. The graphs show that the viscous effects
are significant. It increases the saturated transverse macroscopic displacement gradient of the composite
and the saturation value of damage by about 1.8 and 1.14 times, respectively. Finally, in Figure 12 the
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Figure 12. Comparison between the creep behaviors of thermoviscoelastic (TVE) at
elevated temperature 1θ = 100 K, and viscoelastic (VE) at the reference temperature
(1θ = 0) of steel/rubber-like composites. Both are subjected to uniaxial transverse stress
loading T 22 = 1 MPa. Global transverse deformation gradient (a), damage evolution (b),
and global transverse deformation gradient in the absence of damage effects (c).



26 JACOB ABOUDI

2

1

1.5

0.5

(a)

0 50 100 150 200 250

t (s)

T
2
2
(M

P
a)

H

vf = 0.05

F22=2

Dq=100K

0

0.9

(b)

0 50 100 150 200 250

0.8

0.7

0.6

t (s)

D

F22=2

Dq=100K

H

vf = 0.05

(c)

0 50 100 150 200 250

6

5

4

3

2

1

t (s)

T
2

2
(M

P
a)

D = 0

Dq=100K

H

F22=2

vf = 0.05
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homogeneous (H) unreinforced thermoviscoelastic matrix. Global transverse stress (a),
damage evolution (b), and global transverse stress in the absence of damage effects (c).

effect of elevated temperature on the creep of the thermoviscoelastic (TVE) steel/rubber-like composite
loaded by a transverse stress T 22 = 1 MPa at 1θ = 100 K is compared with that of a viscoelastic (VE)
composite that is subjected to the same loading but by keeping the composite at the reference temperature
θ = θ0. This figure shows that the effect of elevated temperature on the creep of the composite and the
evolving damage in its matrix are not appreciable.

Corresponding to these four figures that describe the creep behavior of the composite and its matrix
in various circumstances, the following four figures show the relaxation behavior of the composite and
its matrix. Figure 13(a) and (c) display the relaxation at elevated temperature 1θ = 100 K of the ther-
moviscoelastic steel/rubber-like composite and its homogeneous (H) unreinforced matrix when they are
subjected to a transverse deformation gradient of F22 = 2 under uniaxial stress loading conditions (all
components of T are equal to zero except T 22) in the presence and absence of damage effects in the matrix.
(Note that the scale of the graph when D = 0 is three times the scale of the damaged case.) Figure 13(b)
shows is the damage evolution with time. The effect of the steel fibers is well exhibited in this figure.

The effect of doubling the applied transverse displacement gradient F22− 1 on the relaxation behavior
of the composite is displayed in Figure 14 in the presence and absence of damage (it should be noted
that the scale of the plot in the latter case is four time the scale of the former one). Doubling the
applied deformation gradient generates a stress at saturation of about 5.3 and 7 times in the damaged
and undamaged case, respectively. The damage increases by about 1.1 times, however.

The viscous effects in the rubber-like matrix on the relaxation behavior of the composite are shown in
Figure 15 at elevated temperature 1θ = 100 K in the presence and absence of damage. The relaxation
stresses of the thermoviscoelastic (TVE) composite are observed to be much lower than the thermoelastic
(TE) case in which no relaxation effects exist. In both cases, however, the viscoelasticity has a very small
effect on the damage evolution in the matrix.

The final illustration is given in Figure 16, where a comparison between the relaxation behaviors of
the thermoviscoelastic (TVE) composite at elevated temperature 1θ = 100 K and a viscoelastic (VE)
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Figure 15. Comparison between the relaxation behaviors of thermoviscoelastic (TVE)
and thermoelastic (TE) steel/rubber-like composites where in the latter the viscous ef-
fects of in the matrix phase have been neglected. Both composites are subjected to
uniaxial transverse stress loading such that F22 = 2 at elevated temperature 1θ = 100 K.
Global transverse stress (a), damage evolution (b), and global transverse stress in the
absence of damage effects (c).

composite which is kept at the reference temperature θ = θ0. As in the creep case, the effect of elevated
temperature appears to be moderate.

Conclusions

The finite strain HFGMC micromechanical model which is capable of predicting the global behavior of
thermoviscoelastic rubber-like matrix composites that are subjected to arbitrarily large thermomechanical
loading has been presented. The rubber-like matrix is modeled by finite thermoviscoelasticity, which in
contrast to finite linear thermoviscoelasticity where the deformations are large but the deviations from
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equilibrium are small (i.e., Be
≈ I , implying that the dependence on the strain is nonlinear but the

dependence on the strain rate is linear), permits large deviation from equilibrium. In addition, the effect
of evolving damage in the finite thermoviscoelastic matrix is incorporated. The finite strain HFGMC
analysis establishes the rate form of the macroscopic constitutive equations that govern the composite’s
global response. The results exhibit the response of the composite and its unreinforced thermoviscoelastic
matrix under various circumstances including their creep and relaxation behaviors.

The present derivation is confined to one-way thermomechanical coupling according to which the me-
chanical effects do not affect the temperature. It is possible, however, to generalize the micromechanical
analysis by including a full (two-way) thermomechanical coupling.

The established global finite strain constitutive equations of the unidirectional composite can be em-
ployed to investigate the behavior of thermoviscoelastic laminates. They can be also employed to inves-
tigate the response of thermoviscoelastic structures such as laminated plates and shells undergoing large
deformations. This can be performed by coupling the present micromechanical model to a finite element
software such that the nonlinear composite structure response at each integration point is governed by
the established macroscopic constitutive equations at each increment. This multiscale approach has been
recently implemented by [Kim 2009] who coupled the hyperelastic HFGMC model to the finite element
ABAQUS software in order to investigate the behavior of various types of tissue materials including the
human arterial wall layers and porcine aortic valves leaflets.
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GENERALIZED THERMOELASTIC WAVES IN CYLINDERS
DUE TO LOCALIZED HEATING

HAO BAI, RAVI CHITIKIREDDY, ARVIND H. SHAH AND SUBHENDU K. DATTA

This paper presents a theoretical study of propagation of thermoelastic waves generated by concentrated
heating of the outer surface of circular cylindrical shells. The generalized thermoelastic theory proposed
by Lord and Shulman is used to model the response of a circular cylindrical shell to a pulsed laser focused
on the surface of the cylinder. Guided wave modes in the cylinder are obtained by a semianalytical finite
element method. Dynamic response is constructed numerically by superposition of guided wave modes.
In this method, the cylinder is discretized in the radial direction into several coaxial circular cylinders
(subcylinders) and the radial dependence of the displacement and temperature in each subcylinder is
approximated by quadratic interpolation polynomials. Numerical results for the variation through the
thickness of various physical quantities of interest at a location away from the source are presented
for a silicon nitride (Si3N4) tube for illustration purposes. The frequency dependence of the response
quantities is discussed and attention is focused on convergence and accuracy of the computed results.

1. Introduction

Laser-based ultrasonic techniques have been used in several recent studies to generate elastic waves in
solids. These techniques provide a number of advantages over conventional ultrasonic methods, such
as higher spatial resolution, noncontact generation and detection of waves, and the ability to operate on
curved and rough surfaces [Scruby and Drain 1990]. The use of generalized thermoelasticity theories to
analyze thermoelastic waves generated by a pulsed laser beam has received some attention in recent years.
The classical theory of heat conduction in solids treats the flux of heat as proportional to the gradient of
temperature in the media. Thus, the heat conduction equation is a parabolic partial differential equation,
which predicts an infinite thermal wave speed. This assumption of infinite speed of heat propagation is
contrary to physical reality. To rectify this paradox, several generalizations to the classical heat conduc-
tion equation and the thermoelastic wave equations have been proposed. These generalizations take into
account the finite wave speed of the thermal pulse travelling through the body.

Lord and Shulman [1967] presented a generalized theory of thermoelasticity for an isotropic body that
was a modification of the Fourier law of heat conduction by the inclusion of a relaxation time. This then
predicts a finite thermal wave speed. Other generalizations were proposed by Green and Lindsay [1972],
who developed a temperature-rate dependent theory that included two relaxation times, and by Green
and Naghdi [1993], who introduced a thermoelasticity theory without energy dissipation. See [Ignaczak
and Ostoja-Starzewski 2010] for a theoretical development of thermoelasticity with finite wave speeds.

Hao Bai and Arvind H. Shah would like to acknowledge the financial support of Natural Science of Engineering Research
Council of Canada grants 245020 and 7249, respectively.
Keywords: circular cylinder, thermoelasticity, transversely isotropic, wave propagation, thermal dynamic load, finite element.
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Guided surface (Rayleigh) waves and Rayleigh–Lamb waves in plates have been studied by sev-
eral investigators using generalized thermoelasticity theories. Rayleigh–Lamb waves in plates using
Lord–Shulman theory have been discussed in [Datta and Shah 2009]. References to many other works
can be found in [Sharma et al. 2000; Verma and Hasebe 2001; Verma 2002; Al-Qahtani and Datta 2004;
Al-Qahtani et al. 2005]. Compared to many studies that have dealt with plates, there is a very limited
amount of reported work on waves in cylinders using generalized thermoelastic theories.

Dispersion of longitudinal thermoelastic wave propagation in a circular isotropic cylinder was studied
by Erbay and Şuhubi [1986], who considered the cylinder surface to be stress-free and at a constant
temperature. Elnagar and Abd-Alla [1987] studied the influence of the initial stress on Rayleigh wave
propagation in a generalized thermoelastic cylinder. Three-dimensional vibration of a homogeneous
transversely isotropic thermoelastic cylindrical panel was investigated in [Sharma 2001; Sharma and
Sharma 2002]. Recently, wave propagation in a thermoelastic cylinder of an arbitrary cross section was
reported by Ponnusamy [2007], who used a collocation method to study the dispersive waves.

Circumferential isothermal elastic waves in an isotropic cylinder generated by a laser pulse and their
scattering by a surface defect was studied experimentally in [Clorennec and Royer 2003]. Pan et al. [2004;
2006] investigated theoretically and experimentally the isothermal acoustic waves generated by a laser
point pulse in an isotropic and a transversely isotropic cylinder. Three-dimensional Fourier transforms
were used to find the dynamic displacements at the cylinder surface.

In this work, we present an analysis of generalized thermoelastic waves in cylinders due to a pulsed
laser beam focused on the surface of the cylinders. The generalized heat conduction theory of [Lord and
Shulman 1967] has been adopted here. A semianalytical finite element (SAFE) method was employed
earlier in [Chitikireddy et al. 2010] to obtain the dispersion relations for guided thermoelastic waves in
free cylinders. These modes are used here to represent the time-harmonic solutions for the field quantities
due to the laser excitation. Based on this solution, the steady-state Green’s function for the thermoelastic
cylinder can also be constructed. Zhuang et al. [1999] used the SAFE method to study the steady-state
Green’s function for isothermal composite cylinders. The response in the time domain can be obtained
by applying an inverse Fourier transform. Here, the distributions of the stresses, displacements, and
heat flux through the thickness of the cylinder are presented at certain chosen frequencies to show the
convergence of the results.

2. Formulation

2.1. Governing equations. Consider an infinite thermoelastic cylinder of inner radius ri and outer radius
ro in the cylindrical coordinate system (r, θ, z) with the origin at the centre of the cross section of the
cylinder as shown in Figure 1. The generalized Lord–Shulman governing equations of thermoelasticity,
in the presence of a body force and heat source, are given by [Al-Qahtani et al. 2005]

σi j, j + fi = ρüi , T0ρη̇+ Q =−qi,i , σi j = Ci jklεkl −βi j T,

ρη̇ = βi j ε̇i j +
ρcE
T0

Ṫ , qi + τ0q̇i =−ki j T, j .
(1)

The physical quantities and material constants appearing in these equations are: σi j , the components
of the stress tensor; ui , the components of the displacement; εi j , the components of the strain tensor;
Ci jkl , the elastic constants; qi , the components of the heat flux vector; ρ, the mass density; T0, the
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reference temperature; η, the entropy density; T , the temperature change; cE , the specific heat at constant
deformation; τ0, the thermal relaxation time; βi j , the thermal coefficients; ki j , the coefficients of thermal
conductivity; fi , the body force per unit volume; and Q, the heat source. In the above equations, a
superposed dot indicates the derivative with respect to time.

We define nondimensional quantities

r∗i =
ri
H
, u∗i =

ui
δH

, T ∗ = T
T̄
, t∗ = v̄

H
t, σ ∗i j =

σi j

δc̄
, q∗i =

qi
q̄
, ε∗i j =

εi j

δ
,

ρ∗ =
ρ

ρ̄
, c∗E =

cE
c̄E
, β∗i j =

βi j

β̄
, k∗i j =

ki j

k̄
, c∗i jkl =

ci jkl

c̄
, τ ∗0 =

v̄

H
τ0, T ∗0 =

T0

T̄
,

(2)

where

v̄ =

√
c̄
ρ̄
, δ =

√
k̄ T̄

H v̄c̄
, q̄ = k̄ T̄

H
, β̄ =

δc̄
T̄
, c̄E =

k̄
ρ̄v̄H

. (3)

In the sequel, two more nondimensional quantities are defined: the wave number k∗ = k H and frequency
ω∗ = ωH/v̄. Here ρ̄, k̄, c̄, H , and T̄ are the basic normalization quantities, and the rest can be derived
from them as shown above. Note that ρ̄, k̄, c̄, and T̄ can be taken suitably depending upon the material
properties of the cylinder. This nondimensionalization scheme yields all dimensionless equations in
the same form as their dimensional counterparts. Therefore, this normalization could be used to solve
multilayer structures.

Using (1), the governing coupled thermoelastic equations can be written as

ci jkluk,l j −βi j T, j + fi = ρüi ,
(

1+ τ0
∂

∂t

)
[T0βi j ε̇i j + ρcE Ṫ + Q] = ki j T,i j . (4)

Writing these equations in terms of the nondimensional quantities defined in (2) and introducing

f ∗i =
H
δc̄

fi , Q∗ = H 2

k̄ T̄

(
1+ τ ∗0

∂

∂t∗
)

Q,

Figure 1. Geometry of the cylinder.
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we obtain
c∗i jklu

∗

k,l j −β
∗

i j T
∗

, j + f ∗i = ρ
∗ü∗i ,

β∗i j T
∗

0

(
1+ τ ∗0

∂

∂t∗
)

u̇∗i, j − k∗i j T
∗

,i j + ρ
∗c∗E

(
1+ τ ∗0

∂

∂t∗
)

Ṫ ∗ =−Q∗.
(5)

These two equations have to be solved by numerical techniques for a generally anisotropic medium. If
the material of the cylinder is transversely isotropic with the symmetry axis coinciding with the z-axis,
the equations can be solved analytically in terms of Bessel functions. This will be discussed in a future
publication. In the following, we will use the SAFE method to solve the problem. For convenience, the
superscript * will be dropped.

2.2. Semianalytical finite element formulation. In this method, the radial dependence of the displace-
ment u and the temperature T are approximated by one-dimensional isoparametric finite elements. The
total thickness of the cylinder H is composed of cylindrical layers and each layer can have distinct
thermoelastic properties and thickness. By using the SAFE method, the thickness of the cylinder is dis-
cretized into N laminas. Quadratic interpolation polynomials are used to approximate the displacement
and temperature field over each lamina in the radial direction.

The displacement and temperature of the k-th lamina are expressed as

u(r, θ, z, t)= N1(ξ)ue(θ, z, t),

T (r, θ, z, t)= N2(ξ)T e(θ, z, t),
(6)

with

r = N2(ξ)Re. (7)

Here

N1(ξ)=

n1 0 0 n2 0 0 n3 0 0
0 n1 0 0 n2 0 0 n3 0
0 0 n1 0 0 n2 0 0 n3

 , N2(ξ)=
[
n1 n2 n3

]
, (8)

ue
= (ur1, uθ1, uz1, ur2, uθ2, uz2, ur3, uθ3, uz3)

T , T e
= (T1, T2, T3)

T , Re
= (Rb, Rm, R f )

T . (9)

In (8), the shape functions are

n1 =
1
2 ξ(ξ − 1), n2 = 1− ξ 2, n3 =

1
2 ξ(ξ + 1), −1≤ ξ ≤ 1. (10)

In (9) the nodal displacements ur j , uθ j , and uz j and temperature T j , where j = 1, 2, 3, are taken at
the inner surface (r = Rb), middle layer (r = Rm = (Rb+ R f )/2), and outer surface (r = R f ) of the k-th
lamina.

The strain tensor and temperature gradient are expressed as

ε = D1ue
+ D2ue

,θ + D3ue
,z, T ′ = B1T e

+ B2T e
,θ + B3T e

,z. (11)

The matrices B1, B2, B3, D1, D2, and D3 are defined in the Appendix. The stress vector is given by

σ = C(D1ue
+ D2ue

,θ + D3ue
,z)−βN2T e. (12)



GENERALIZED THERMOELASTIC WAVES IN CYLINDERS DUE TO LOCALIZED HEATING 35

The variational principle of thermoelasticity [Al-Qahtani et al. 2005] is∫ t1

t0

∫
V

(
δεTσ − δT ′T K T ′− δT ′T (q+ τ0q̇)

)
dV dt =

∫ t1

t0

∫
V
( f − δuTρ ü) dV dt. (13)

The first term on the left-hand side is∫ t1

t0

∫
V
δεTσ dV dt =

∫ t1

t0

∫
V
(D1δue

+ D2δue
,θ + D3δue

,z)
T
[C(D1ue

+ D2ue
,θ + D3ue

,z)−βN2T e
] dV dt

=

∫ t1

t0

∫
z

∫
θ

δueT

K11ue
+ (K12−K21)ue

,θ + (K13−K31)ue
,z−

K22ue
,θθ − (K23+ K32)ue

,θ z− K33ue
,zz−

K e
01T e
+ K e

02T e
,θ + K e

03T e
,z

 dθ dz dt. (14)

The second term in (13) is∫ t1

t0

∫
V
δT ′T K T ′ dV dt =

∫ t1

t0

∫
V
(δT eT BT

1 + δT eT
,θ BT

2 + δT eT
,z BT

3 )K (B1T e
+B2T e

,θ+B3T e
,z) dV dt

=

∫ t1

t0

∫
z

∫
θ

δT eT (g11T e
− g22T e

,θθ − g33T e
,zz) dθ dz dt . (15)

The third term in (13) is∫ t1

t0

∫
V
δT ′T (q+ τ0q̇) dV dt =−

∫ t1

t0

∫
V
δT T (∇ · q+ τ0∇ · q̇) dV dt

=

∫ t1

t0

∫
V
δT T (T0ρη̇+ Q+ τ0T0ρη̈+ τ0 Q̇) dV dt

=

∫ t1

t0

∫
V
δT T (T0β

T ε̇+ ρCE Ṫ + Q+ τ0(T0β
T ε̈+ ρCE T̈ + Q̇)

)
dV dt

=

∫ t1

t0

∫
z

∫
θ

δT eT
[
( f1u̇e

+ f2u̇e
,θ + f3u̇e

,z +m0Ṫ e)+

τ0( f1üe
+ f2üe

,θ + f3üe
,z +m0T̈ e)+ Qe

]
dθ dz dt.

(16)

The right-hand side of (13) has the form∫ t1

t0

∫
V
δuT ( f − ρ ü) dV dt =

∫ t1

t0

∫
z

∫
θ

δueT ( f e
−Müe) dθ dz dt. (17)

The element matrices appearing in equations (14)–(17) are defined in the Appendix. Equating the coef-
ficients of δue in (13) to zero gives the equation

Müe
+ K11ue

− K01T e
+ (K12− K21)ue

,θ + K02T e
,θ

+ (K13− K31)ue
,z + K03T e

,z − K22ue
,θθ − (K23+ K32)ue

,θ z − K33ue
,zz = f e. (18)

Similarly, equating the coefficients of δT e in (13) yields

τ0 f1üe
+τ0m0T̈ e

+τ0 f2üe
,θ+τ0 f3üe

,z+m0Ṫ e
+ f1u̇e

+ f2u̇e
,θ+ f3u̇e

,z+ g11T e
− g22T e

,θθ− g33T e
,zz = Qe.

(19)
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Combining (18) and (19) and assembling the element matrices into global matrices leads to the governing
equations of motion

H1V̈+H2V̈,θ+H3V̈,z+H4V̇+H5V̇,θ+H6V̇,z+H7V+H8V,θ+H9V,z+H10V,θθ+H11V,θ z+H12V,zz

= F, (20)

where Hi (i = 1, 2, . . . , 12) are the global matrices, given in the Appendix, V is the global nodal dis-
placement and temperature vector, and F is a load vector defined by

F =
[

f e

Qe

]
. (21)

The traction-free boundary conditions on surfaces of the cylinder require that the stresses at the inner
and outer surfaces of the cylinder are zero:

σrr = σrθ = σr z = 0 at r = ri and r = ro. (22)

The thermal boundary conditions are considered as

T,r = 0 at r = ri and r = ro. (23)

These thermal boundary conditions imply that heat does not flow into or out of the system via the
boundaries. Note that for a free cylinder without body forces and heat sources the right-hand side
of (20) will be zero. Then, the homogeneous equation (20) leads to the eigenvalue problem for the
determination of the dispersion relation between the frequency ω and the z-direction wave number k for
a fixed circumferential integral wave number n. This was studied in [Chitikireddy et al. 2010].

3. Solution procedure for steady-state loading

In (20), the force vector F and the response V are assumed to be time harmonic with frequency ω. The
θ -dependence of the load and response can be expressed in Fourier series as:

F(θ, z, t)= e−iωt F(θ, z)= e−iωt
n=+∞∑
n=−∞

Fn(z)einθ ,

V (θ, z, t)= e−iωt V (θ, z)= e−iωt
n=+∞∑
n=−∞

Vn(z)einθ .

(24)

Substitution of (24) into (20) yields a system of ordinary differential equations with Fourier coefficients
Vn in terms of z. For each circumferential wave number (n), we obtain

H12Vn,zz + (−ω
2 H3− iωH6+ H9+ in H11)Vn,z

− [ω2(H1+ in H2)+ iω(H4+ in H5)− (H7+ in H8− n2 H10)]Vn = Fn. (25)

The following Fourier integral transform pairs are used to treat the z-dependence in (25):

V̄n(kn)=

∫
+∞

−∞

Vn(z)e−ikn z dz, Vn(z)=
1

2π

∫
+∞

−∞

V̄n(kn)eikn z dkn. (26)
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Application of Fourier transformation to (25) yields an algebraic equation in terms of the transform
parameter (kn):

−k2
n H12V̄n + kn HB V̄n + HAV̄n = F̄n, (27)

where
HB =−iω2 H3+ωH6+ i H9− n H11,

HA =−ω
2(H1+ in H2)− iω(H4+ in H5)+ (H7+ in H8− n2 H10).

Equation (27) is the governing equation for the n-th circumferential harmonic in the transformed domain.
The solution of (27) will be obtained in the form of an expansion in guided wave modes in the

z-direction. For this purpose, we consider the homogeneous equation, which is a three-parameter alge-
braic eigensystem in ω, n, and kn . If kn serves as an eigenvalue for given values of ω and n, (27) gives a
quadratic eigenvalue problem. Equation (27) can be converted into two first-order equations in the form[

0 I
HA HB

]{
V̄n

kn V̄n

}
− kn

[
I 0
0 H12

]{
V̄n

kn V̄n

}
=

[
0
F̄n

]
, (28)

which we rewrite more compactly as

[A− kn B]Un = Pn. (29)

If the displacement and temperature vector V̄n has dimension M , the dimension of Un in (29) is 2M .
A nontrivial solution to the homogeneous form of (29) in terms of kn yields 2M roots, denoted by knm .
They represent axial wave numbers which can be real, purely imaginary, or complex. A real wave number
represents a propagating wave and purely imaginary or complex wave numbers represent nonpropagating
(evanescent) waves.

Once the wavenumbers and wave functions are found from (29), the response due to the n-th circumfer-
ential mode in the Fourier series representation of the applied loads can be obtained by modal summation.
Associated with each eigenvalue there are right and left eigenvectors, 8R

nm and 8L
nm , respectively, and

they satisfy the equations

[A− kn B]8R
nm = 0, [AT

− kn BT
]8L

nm = 0. (30)

The right and left eigenvectors also satisfy the biorthogonality relations

8LT

nm B8R
np = diag(Bnm), 8LT

nm A8R
np = diag(knm Bnm), (31)

where diag( ) denotes a diagonal matrix. The eigenvectors can also be partitioned into the following
upper and lower halves (represented by subscript u and l, respectively):

8R
nm =

[
8R

nmu
8R

nml

]
, 8L

nm =

[
8L

nmu
8L

nml

]
. (32)

The solution of (29) is expressed by summation of right eigenvectors as

Un =

2M∑
m=1

Unm8
R
nm . (33)
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The coefficients Unm are calculated by substituting (33) into (28) and using the biorthogonality relations
(31). Then, the solution vector Un is written as

Un =

2M∑
m=1

8LT

mn Pn

(knm − kn)Bnm
8R

nm . (34)

The solution vector V̄n in (28), occupying the upper half of Un , takes the form

V̄n =

2M∑
m=1

8LT

mnl F̄n

(knm − kn)Bnm
8R

nmu . (35)

Inverse Fourier transform of (35) gives the response, Vn(z), of the n-th circumferential harmonic in the
spatial domain:

Vn(z)=
1

2π

2M∑
m=1

∫
+∞

−∞

8LT

mnl F̄n

(knm − kn)Bnm
8R

nmueikn z dkn. (36)

In many problems, F̄n , 8L
mn , 8R

nm , and Bnm are independent of wave number kn , so that application of the
Cauchy residue theorem yields the modal response Vn(z) in a straightforward way. The eigendata can be
divided into two groups for travelling or decaying modes from the origin in ±z directions, respectively.
Therefore, Vn(z) can be expressed as summation of motions in the positive and negative directions as

Vn(z, ω)=−i
M∑

m=1

8LT

mnl F̄n

Bnm
8R

nmueiknm z
− i

2M∑
m=M+1

8LT

mnl F̄n

Bnm
8R

nmue−iknm z. (37)

The response in the time domain is now obtained by applying an inverse Fourier transformation to
(37) and is calculated numerically as

Vn(z, t)= 1
2π

∫
+∞

−∞

Vn(z, ω)e−iωt dω. (38)

4. Heat source representation

The heat input due to the laser pulse is assumed to be of the form

Q = I0 f (t)δ(θ)gr (r)gz(z), (39)

where I0 is the energy of the laser pulse. The temporal profile f (t) is assumed as

f (t)= t
t2
0

e
−

t
t0 , (40)

where t0 is the pulse rise time. The spatial profile gz(z) is assumed to have a Gaussian profile in the
z-direction,

gz(z)=
1
√
πa

e−z2/a2
, (41)
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where a is the radius of the laser beam. The depth dependence, gr (r), of the pulse is taken as

gr (r)=
γ

r
e−γ (r0−r), (42)

where γ is the extinction coefficient. A schematic representation of the pulse and the frequency spectrum
of f (t) are shown in Figures 2 and 3, respectively. Here, the nondimensional frequency, ω∗ = ωH/ν̄,
where ν̄ = 2.5× 102 m/s. Note that the rise time of the pulse, t0, has been taken to be 1µs.
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Figure 2. Temporal and spatial profiles of the pulse.

Figure 3. Frequency spectrum of f (t).
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Once the fundamental response functions 0(z) are constructed due to Q = I0 f (t)δ(θ)gr (r)δ(z), the
response due to the heat source Q, represented by (39), can be calculated as

v(z0)=

∫
+∞

−∞

0(z)gz(z− z0) dz. (43)

In the present work, only the thermal load is considered for constructing the response function. The
spatial representation of the heat source along the radial profile in the frequency domain is

Q = I0 f̄ (ω)δ(θ)δ(z)Q0, (44)

where Q0 = (Q1, Q2, . . . , Qk, . . . , Q2N+1)
T and Qk is the value of gr (r) at the k-th node using a

consistent load formulation. The solution procedure involves expansion of δ(θ) in a Fourier series. It is
well known that the Fourier series representation of a δ-function does not converge. Hence, it is necessary
to replace the point source by a uniform spatial pulse of intensity q0 over a circumferential distance 2roθ0.
For equivalence of a unit concentrated source, q0 is given by∫

+θ0

−θ0

q0rodθ = 1 or q0 =
1

2roθ0
. (45)

Therefore, the θ-dependence of Q in (44) is represented by a Fourier series expansion in the circumfer-
ential direction as

Q =
n=+∞∑
n=−∞

einθ Qnθ , (46)

where

Qnθ =
1

2πro

sin nθ0

nθ0
I0 f̄ (ω)δ(z)Q0. (47)

The Fourier transform of Qnθ in the z-direction is

Q̄nθ =
1

2πro

sin nθ0

nθ0
I0 f̄ (ω)Q0. (48)

Since mechanical load is not considered here, the load vector in (27) becomes

F̄n =

[
0

Q̄nθ

]
=

I0 f̄ (ω)
2πro

sin nθ0

nθ0
F0, (49)

where F0=
[
0 Q0

]T
. Substitution of (49) into (37) and considering propagation only in the+z directions

yields the n-th circumferential mode displacement and temperature response functions as

Vn(z, ω)=
−i I0 f̄ (ω)

2πro

sin nθ0

nθ0

M∑
m=1

8LT

mnl F0

Bnm
8R

nmueiknm z. (50)

Using (50) in (46), we obtain

V (θ, z, ω)=
−i I0 f̄ (ω)

2πro

n=+∞∑
n=−∞

sin nθ0

nθ0
einθ

M∑
m=1

8LT

mnl F0

Bnm
8R

nmueiknm z. (51)
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Equation (51) is used in the next section to calculate the vector V at a given location (θ, z) for different
frequencies ω. Attention is focused on the convergence of the numerical results by varying the number
of nodes through the thickness of the cylinder, the number of terms |n| in the Fourier series, and the
number of modes M .

5. Numerical results and discussion

In this section, we consider propagation of thermoelastic waves in a cylindrical shell generated by the heat
source represented by (39). The material of the cylinder is taken to be silicon nitride (Si3N4). Amorphous
and textured Si3N4 has been widely studied in the past for its excellent mechanical properties, such as high
resistance to thermal shock, resistance to chemical attack, high fracture toughness, and good tribological
and wear properties. A good review of the processing and anisotropic properties of silicon nitride for
various automotive and aerospace applications can be found in [Zhu and Sakka 2008] (see also [Kitayama
et al. 1999; Vogelgesang et al. 2000; Yokota and Ibukiyama 2003]). Dispersion of thermoelastic guided
waves in Si3N4 plates and cylindrical shells was reported in [Al-Qahtani and Datta 2004; Chitikireddy
et al. 2010]. Here, we present results for the frequency dependent displacements, stresses, temperature,
and thermal flux at an observation point due to the laser generated heating represented by (39).

We consider an infinite cylindrical tube with thickness 0.1 mm and inner radius 0.95 mm. Thus, the
nondimensional inner and outer radii are ri = 9.5 and ro = 10.5. The shell is discretized into N equally

Quantity Units Silicon nitride

ρ = ρ̄ kg/m3 3.20× 103

c11 N/m2 4.33× 1011

c12 N/m2 1.95× 1011

c13 N/m2 1.27× 1011

c33 N/m2 5.74× 1011

c44 N/m2 1.08× 1011

βrr N/m2 ◦K 2.71× 106

βzz N/m2 ◦K 3.22× 106

Krr W/m ◦K 43.5
Kzz = k̄ W/m ◦K 55.4
cE J/kg ◦K 0.67× 103

T0 = T̄ ◦K 296
τ0 s 4.32× 10−13

a µm 100
t0 µs 1.0
H mm 0.1
γ m−1 1 × 105

I0 Nm 1.0
c̄ N/m2 2 × 108

Table 1. Thermomechanical properties of Si3N4.
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thick coaxial circular cylinders, where N is allowed to take different values (25 and 50) in order to check
for the convergence of the results. As discussed later, numerical results indicate that the heat flux in the
radial direction, |qr |, has sharp gradients near the inner and outer surfaces of the cylinder. So, numerical
results are obtained also when the thickness is subdivided into 10 layers (5 at the outer end and 5 at the
inner), each of thickness 0.00175 mm, and 25 layers of thickness 0.0033 mm each in the middle.

As mentioned above, the material of the cylinder is Si3N4, whose properties, from [Al-Qahtani and
Datta 2004], are listed in Table 1. The symmetry axis of the material is aligned with the axis of the
cylinder. The localized heat source is represented by (39) with gz(z) taken as δ(z). As noted before,
once the response due to this source is known, that due to any other function gz(z) can be found by
convolution; see (43). In the frequency domain, the frequency spectrum of f (t) is shown in Figure 3. It
is seen that the dominant contribution comes from the interval 0≤ω∗ ≤ 5, that is, the dominant frequency
is between 0 and 1.99 MHz.

All the numerical results obtained here are in nondimensional forms. The nondimensional material
properties of the tube are given by

ρ∗ = 1.0, T ∗0 = 1.0, τ ∗0 = 1.081× 10−6, β∗rr = 70.03, β∗θθ = 70.03,

β∗zz = 83.21, k∗rr = 0.785, k∗θθ = 0.785, k∗zz = 1.00, c∗E = 967.50.
(52)

The nondimensional elastic stiffness tensor is given by

C∗ =



2165 975 635 0 0 0
975 2165 635 0 0 0
635 635 2870 0 0 0
0 0 0 540 0 0
0 0 0 0 540 0
0 0 0 0 0 765


. (53)

Dispersion curves for circumferential modes n = 0 are shown in Figure 4, and for n = 1 in Figure 5,
where γR and γI are the real and imaginary parts of the wavenumber k∗n . It is found that the elastic modes
are not affected significantly by the thermal effects within the frequency range considered here. This is
consistent with the findings reported in [Chitikireddy et al. 2010].

The computation of V (θ, z, ω) using (51) involves two summations: one over the number of axial
modes M for a fixed circumferential mode n and the other over circumferential modes n. The first is
determined by the number of finite elements Ne used to discretize the thickness of the cylinder. The
value of θ0, appearing in (45), has been chosen as 0.01 radians. The observation location is at θ = π/4
and z = rmean/4. Furthermore, gz(z) is taken to be δ(z) and γ appearing in (42) is chosen as 105 m−1

(see Table 1).
To test the convergence of the series with the number of elements Ne for an appropriate choice of |n|,

results were obtained for Ne as 15, 20, 35, and 50 keeping |n| fixed at 50. The value of ω∗ was taken
as 5. Figure 6 shows the variation of displacement, temperature, stress, and radial heat flux through
the thickness with the number Ne. It is seen that 35 elements are sufficient to assure convergence.
It is interesting to note the variation of |T | and |qr | through the thickness. The former decreases in
a nearly linear manner from the boundaries towards the middle of the shell. Note the sharp change
near the boundaries so that the slopes vanish at the boundaries to satisfy the zero heat flux conditions.
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Figure 4. Frequency spectra of silicon nitride cylinder for n = 0. The two-dimensional
diagram, corresponding to the plane γI = 0, shows the propagating (purely real) modes.

Figure 5. Frequency spectra of silicon nitride cylinder for n = 1. The two-dimensional
diagram, corresponding to the plane γI = 0, shows the propagating (purely real) modes.

Consequently, the radial heat flux is nearly flat through most of the thickness and then drops steeply to
zero at the boundaries. It is seen that convergence is achieved with both 35 and 50 elements.

Figures 7–9 show the changes in the distribution of the field quantities through the thickness at fre-
quencies ω∗ = 1, 3, and 5. They also show variations with increasing |n|, which was assumed to take the
values 20, 40, 50, and 60. The number of elements was kept at 35. It is seen that results converged when
|n| was 50. It is interesting to note that the rate of convergence increases with ω∗. This may be explained
by noting the fact that the amplitudes decrease (because of diffusion) as the frequency increases. This is
seen clearly in these figures.

Other features of these figures are as follows.



44 HAO BAI, RAVI CHITIKIREDDY, ARVIND H. SHAH AND SUBHENDU K. DATTA

9 .6 9 .8 1 0 .0 1 0 .2 1 0 .4

0 .3 0

0 .6 0

0 .9 0

1 .2 0

9 .6 9 .8 1 0 .0 1 0 .2 1 0 .4
0 .0 0

0 .0 3

0 .0 6

0 .0 9

9 .6 9 .8 1 0 .0 1 0 .2 1 0 .4
8 .8 2

8 .8 9

8 .9 6

9 .0 3

9 .1 0

9 .6 9 .8 1 0 .0 1 0 .2 1 0 .4
2 .1 0

2 .2 5

2 .4 0

2 .5 5

2 .7 0

|u
z
|u
1
0
�
5

 

 

r

N e  =  5 0

N e  =  3 5

N e  =  2 5

|T
|u
1
0
�
5

N e  =  5 0

N e  =  3 5

 

 

r

N e  =  2 5

|u
r|
u
1
0
�
5

 

 

r

N e  =  5 0

N e  =  3 5

N e  =  2 5

|u
T

|u
1
0
�
5

 

r

N e  =  5 0

N e  =  3 5

N e  =  2 5

9.6 9.8 10.0 10.2 10.4

0.00

0.60

1.20

1.80

2.40

9.6 9.8 10.0 10.2 10.4

0 .00

0.60

1.20

1.80

2.40

9.6 9 .8 10.0 10.2 10.4

0.00

0.25

0.50

0.75

1.00

9.6 9.8 10.0 10.2 10.4

0.00

0.05

0.10

0.15

0.20

|V
rz
|u
1
0
�
3

 

 

r

Ne = 50
Ne = 35

Ne = 25

|V
rT
|u
1
0
�
3

 

 

r

Ne = 50
Ne = 35

Ne = 25

|V
rr
|u
1
0
�
3

Ne = 50
Ne = 35

 

 

r

Ne = 25

|q
r|
u
1
0
�
5

 

r

Ne = 50
Ne = 35

Ne = 25

Figure 6. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 5.0 with 25, 35, and 50 elements. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 7. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 1.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 8. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 3.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 9. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 5.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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(1) At low frequencies, |uθ | decreases in a linear fashion from the inner to the outer surface. As the
frequency increases, it decreases first from the inner surface, reaches a minimum, and then increases
with increasing radius. Both |uz| and |T | also decrease first starting from the inner surface and then
increase as the radius increases. The former attains the highest value at the outer surface, whereas
the latter has the highest value at the outer surface at low frequencies; this feature is reversed at high
frequencies.

(2) The radial displacement component and all the traction components increase from the inner surface
(the latter being zero at both boundaries), reach maxima, and then decrease as the radius increases.

(3) Radial heat flux has the distinctive feature that it increases steeply from zero at the inner surface,
reaches a plateau (slightly sloping towards the outer surface), and then decreases steeply to zero.

6. Conclusion

Propagation of thermoelastic waves in a circular cylindrical shell excited by a concentrated heat input has
been studied in this paper. The generalized thermoelasticity theory developed by Lord and Shulman has
been adopted. This theory includes a single thermal relaxation time. The material of the cylinder has been
taken to be transversely isotropic Si3N4 as an illustrative example. However, the semianalytical finite
element (SAFE) method that has been used here can also be used for generally anisotropic materials.

The heat input resembles that due to heating by a pulsed laser. It is focused at r = ro, θ = 0, z = 0,
with a radial dependence that decays with decreasing r and acts on a small circular arc 2roθ0, where
θ0 = .01 radians. The solution can then be used for more general dependence on z and θ .

Although the solution presented here is for a concentrated heat source only, a concentrated mechanical
load can easily be incorporated in the SAFE computations. This will be communicated in a future paper.

The results presented here are for discrete frequencies and the emphasis is on a study of convergence
and distribution of the field quantities over the thickness of the cylinder. However, transient wave forms
can be obtained by converting the continuous frequency spectrum using an inverse Fourier transform.

Appendix

B1 =

n1,r n2,r n3,r

0 0 0
0 0 0

 , B2 =


0 0 0
n1
r

n2
r

n3
r

0 0 0

 , B3 =

 0 0 0
0 0 0
n1 n2 n3

 ,

D1 =



n1,r 0 0 n2,r 0 0 n3,r 0 0
n1
r

0 0 n2
r

0 0 n3
r

0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 n1,r 0 0 n2,r 0 0 n3,r

0 n1,r −
n1
r

0 0 n2,r −
n2
r

0 0 n3,r −
n3
r

0


,
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D2 =



0 0 0 0 0 0 0 0 0

0 n1
r
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r

0 0 n3
r
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r
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, D3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 n1 0 0 n2 0 0 n3

0 n1 0 0 n2 0 0 n3 0
n1 0 0 n2 0 0 n3 0 0
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
,

K jk =

∫
r

DT
j C Dk r dr ( j, k = 1, 2, 3), K0k =

∫
r

DT
j βN2r dr (k = 1, 2, 3),

M =
∫

r
ρNT

1 N1r dr, g j j =

∫
r

BT
j K B jr dr ( j = 1, 2, 3),

f j =

∫
r

T0 NT
2 β

T D jr dr ( j = 1, 2, 3), m0 =

∫
r
ρcE NT

2 N2r dr, f e
=

∫
r

NT
2 f r dr,

H1 =

[
M 0
τ0 f1 τ0m0

]
, H2 =

[
0 0
τ0 f2 0

]
, H3 =

[
0 0
τ0 f3 0

]
, H4 =

[
0 0
f1 m0

]
, H5 =

[
0 0
f2 0

]
,

H6 =

[
0 0
f3 0

]
, H7 =

[
K11 −K01

0 g11

]
, H8 =

[
K12− K21 K02

0 0

]
, H9 =

[
K13− K31 K03

0 0

]
,

H10 =

[
−K22 0

0 −g22

]
, H11 =

[
−(K23+ K32) 0

0 0

]
, H12 =

[
−K33 0

0 −g33

]
.
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DYNAMICAL CHARACTERIZATION OF MIXED FRACTAL STRUCTURES

LUIZ BEVILACQUA AND MARCELO M. BARROS

It is because of people like Marie-Louise and Charles that it is worth fighting for a better world.

We present a new technique to determine the fractal or self-similarity dimension of a sequence of curves.
The geometric characterization of the sequence is obtained from the mechanical properties of harmonic
oscillators with the same shape of the terms composing the given sequence of curves. The definition
of “dynamical dimension” is briefly introduced with the help of simple examples. The theory is proved
to be valid for a particular type of curves as those of the Koch family. The method is applied to more
complex plane curves obtained by superposing two generators of the Koch family with different fractal
dimensions. It is shown that this structure is composed by two series of objects one of which is fractal
and the other which is not rigorously a fractal sequence but approaches asymptotically a fractal object.
The notion of quasifractal structures is introduced. The results are shown to provide good information
about the structure formation. It is shown that the dynamical dimension can identify randomness for
certain fractal curves.

1. Introduction

The correlation between the form and the physical properties of certain objects and the fractal char-
acteristics of their geometry has called the attention of several researchers [Feder 1988; Gouyet 1996;
Mandelbrot 1982; Mauroy et al. 2004]. However the determination of the geometric fractal dimension
of a given sequence of objects using the associated sequence of a selected physical property has not yet
been explored as far as we know. In previous papers we have shown that coupling between physics and
geometry of fractal objects can be used to determine the fractal dimension of curves belonging to the
Koch family.

It was shown that dynamical properties of curves belonging to a fractal sequence can also be fractal.
Namely, the periods of a sequence of simple oscillators associated to a given Koch sequence have been
successfully used to determine the geometric fractal dimension of the given sequence [Bevilacqua et al.
2008]. We present below the more important results obtained for Koch curves that will help to understand
the numerical approach used here to deal with complex curves as explained later on.

We say that a sequence of curves belongs to the Koch family if the k-th order term contains Nk

segments with the same length λk . The number of segments and the respective lengths are given by
Nk = pk and λk = L0/qk where L0 is the initial basis or the initiator and p, q are integers. We will use
this definition throughout this paper.

Consider a sequence of springs consisting of wires folded in such a way as to reproduce the same
geometric shape of the corresponding terms of a given sequence of fractal curves. With these springs is

Research project partially funded by CNPq (Brazil) and FAPERJ..
Keywords: fractals, mixed fractals, dynamical dimension, random fractals.

51



52 LUIZ BEVILACQUA AND MARCELO M. BARROS

mm

V

H

M

V

H

M

L
0

L
0

MM

Figure 1. Top: two terms of the fractal geometric sequence. Bottom: Corresponding
dynamic oscillators used to characterize the geometric sequence. The mass attached at
the extremity of the spring is represented by m.

then possible to construct a simple spring-mass harmonic oscillators sequence by clamping one of the
extremities and attaching a mass m at the free extremity. This oscillator sequence as shown in Figure 1
will be called the dynamic characteristic sequence.

It can be shown that it is possible to derive relatively simple relations between the geometric fractal
dimension of Koch curves and the fundamental periods of the related harmonic oscillators. Note that the
fundamental periods refer to each oscillator as a single isolated spring mass system. That is for a sequence
comprising n terms each one defined by the pair (Nk, λk) k = 1, 2, . . . , n where Nk and λk stand for
the number of terms and their lengths respectively there will be n simple harmonic oscillators each one
characterized by the corresponding fundamental period T f

k . The superscript f stays for the respective
degree of freedom excited by the initial conditions induced by a horizontal force H , a vertical force V or
a moment M . Since Nk can be written as a function of λk it is therefore possible to plot the elementary
length λk against the fundamental frequency T f

k . Figure 2 illustrates the polygonal curve representing
the relation between the logarithm of the normalized variables λk/L0 and T H

k /T H
0 up to the sixth term

for a given Koch sequence corresponding to an initial excitation induced by a horizontal force H .
We claim that the slopes of the segments composing the polygonal curve tend to a fixed value s which

is correlated with the fractal dimension D of the Koch sequence. That is limk→∞ sk = s and consequently

s4

( )0log TT
H

k

( )04log TT
H

s2

s

( )4λ( )5λ( )6λ ( )2λ ( )0log L
k
λ( )1λ( )3λ

Figure 2. The vertices of the polygonal curve represent the relation between the terms
of order k and the normalized frequencies of the corresponding oscillators.
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Figure 3. Oscillator corresponding to a term k of the Koch triadic carrying a mass m at
the free end and excited by an initial displacement induced by a horizontal force H .

the slope of the last segment in the polygonal curve leads to the fractal dimension of the Koch sequence
with increasing precision.

In order to keep this paper as self-contained as possible we will reproduce the proof of the convergence
of the slopes sk to the slope s as k→∞ or equivalently as λk→ 0.

Consider the Koch triadic sequence. Figure 3 represents the simple oscillator corresponding to a
general term k in the sequence.

Let us assume that all the independent oscillators carry an equal mass m at the free end. Imposing an
initial displacement generated by a horizontal force H applied at the free end the motion is governed by
the elementary equation

m
d2wk

dt2 +
wk

c(k)11

= 0, (1)

where wk is the generalized displacement and c(k)11 is the compliance or the inverse of the rigidity. For
linear elastic structures the compliance is given by

c(k)11 =
∂Wk

∂H

∣∣∣
H=1

(2)

Wk stands for the stored elastic energy. For the system under consideration the elastic energy stored in
a general term k is primarily due to the bending moment distributed along the Nk segments with length
λk composing the term of order k in the Koch triadic. Therefore the stored bending energy for the k-th
order term is

Wk =
1
2

∫ L t

0

M2
k (s)
E I

ds =
1
2

1
E I

Nk∑
i=0

∫ λk

0
(M (k)

i−1,i (s))
2ds, (3)

where E is the Young modulus of the wire material and I the moment of inertia of the wire cross
section. Both will be assumed constant for all the oscillators. M (k)

i−1,i is the bending moment acting on
the elementary segment (i −1, i) as shown in Figure 4 and Nk is the total number of segments in the k-th
order term. We are disregarding the contribution of the shear and normal forces to the strain energy. Now
all the oscillators, for all k, fit into a box L0× h0 as can be seen from Figure 4. The bending moment
along a segment (i − 1, i) is

M (k)
i−1,i (s)= H [y(k)i−1+ (y

(k)
i − y(k)i−1)s] where 0≤ s ≤ 1. (4)
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Figure 4. Bending moment along the segment (i − 1, i) for a general term k of the
oscillator sequence.

Now introducing (4) into (3), integrating over all segments λk and summing up we get

Wk =
1
2

H 2

Ek Ik
λkh2

0 Nk�k,

where
�k =

1
Nk

Nk∑
i=1
αi (k)

and αi (k)= 1
3 [z

2
i−1+ zi−1zi + z2

i ] with z j = y j/h0.
From the definition of h0 clearly z j ≤ 1 for all j , and consequently αi (k)≤ 1.
The compliance can now be derived from the stored energy function Wk :

c(k)11 =
∂Wk

∂H

∣∣∣
H=1
=

h2
0

Ek Ik
Nkλk�(k). (5)

Introducing this expression into (1) we obtain

d2uk

dt2 +
1

(T H
k )

2
uk = 0, (6)

where the period T H
k is given by

T H
k =

(
mh2

0L0

E I
λk

L0
Nk�k

)1/2

. (7)

Now from the definitions of Nk and λk for curves of the Koch family there comes immediately

log Nk =− log
(
λk

L0

)
log p
log q

. (8)

Introducing the value of Nk given by the equation above into (7) and after some straightforward calcula-
tions we obtain

log
T H

k

T I
0
=

1
2

log�k +
1
2
(1− D) log

λk

L0
, (9a)
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where D = log p/ log q and T I
0 is a reference period:

(T I
0 )

2
=

m0h2
0L0

E0 I0
.

The parameter D is the dynamical fractal dimension. It coincides with the box and the Hausdorff fractal
dimensions provided that the mass, the Young modulus and the diameter of the wire cross section are all
constant.

Now, if the geometric fractal dimension of the Koch sequence can be determined through the sequence
of the periods of the corresponding oscillators, it is necessary that the (9a) plotted on the plane Yk × Xk ,
with Yk = log(Tk/T0) and Xk = log(λk/L0), approaches a straight line whose angular coefficient is equal
to (1−D)/2 as shown in Figure 2. Define the functional relation Yk⇔ Xk as a polygonal curve composed
by straight segments connecting the points (Xk, Yk); (Xk+1, Yk+1). Let us prove the asymptotic behavior
of the polygonal curve. The following lemma is proved in the Appendix.

Lemma. For curves belonging to the Koch family — class of curves defined by Nk = pk and λk/L0 =

1/qk — the first order differential form of the quadratic term �k with respect to λk is finite for increasing
values of k, or equivalently decreasing values of λk . That is,

lim
k→∞

(1�k/1λk)= lim
λk→0

(1�k/1λk)

is finite.

Now recalling (9a) and with Yk = log(Tk/T0) and Xk = log(λk/L0) the calculation of the differential
ratio 1Yk/1Xk after some simple operations gives

1Yk

1Xk
=

1
2�k

1�k

1λk
λk +

1
2(1− D).

Therefore from the lemma and since �k is finite and nonzero we have

lim
λk→0

1Yk

1Xk
=

1
2(1− D).

Proposition 1. As k→∞ the curve given by (9a) approaches asymptotically a straight line with slope
equal to (1− D)/2.

It was shown that the oscillation period sequence approaches asymptotically a fractal sequence whose
fractal dimension exhibits a simple correlation with the geometric fractal dimension for the case of an
excitation induced by a horizontal force. Similarly it can be shown that the sequences corresponding to
the other two initial conditions, triggered by a vertical force or a moment, are governed by similar laws,
namely

log
T V

k

T II
0
=

1
2 log9k +

1
2(1− D) log

λk

L0
(9b)

for a vertical force and

log
T M

k

T III
0
=

1
2(1− D) log

λk

L0
(9c)

for a moment.
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The parameter D is the fractal dimension of the primordial geometric sequence provided that the
mechanical properties of the wires acting as springs are the same for all elements.

Note that for the initial condition induced by a moment the sequence of the normalized periods of
the simple oscillators follow exactly a power law. The reason is that for this case the bending moment
is the same for all the elementary segments, that is, the strain energy is uniformly distributed along the
elements composing the respective curve.

Numerical experiments have clearly shown that the fractal dimension of a generalized Koch curve can
be determined by the periods of a related oscillator sequence provided that the wire cross section and
Young modulus remain the same for all oscillators. It can be shown that if the mass m at the free end is
not constant but proportional to the total curve length, for each oscillator, that is, for the k-th oscillator
mk = ρNkλk the factor multiplying log(λk/L0) in (9a)–(9c) should be 1− D instead of (1− D)/2.

The fractal dimension determined with the method introduce above will be called dynamical fractal
dimension irrespectively of the value of the mass, constant or not.

Now suppose we are given just one term, sufficiently large, of a hypothetically fractal sequence. The
problem now is to find out if the given sample really belongs to some fractal sequence and if so to
determine the respective fractal dimension. Let us call this first curve the reference term. Following the
same technique exposed before build a spring-mass system using a folded wire with the same shape as
the reference term carrying a mass m at one of the extremities and keeping the other clamped (Figure 5,
left). It is possible, as already discussed [Bevilacqua et al. 2008] to find three fundamental frequencies
corresponding to three selected excitation introduced by a horizontal force H , a vertical force V and a
concentrated moment M .

From the reference term — Figure 5, left — cut a piece off the extremity to obtain a new sample with
length Ln+1 = bLn where b < 1 is the scale factor. This operation may be repeated successively to
obtain a sequence of samples. Now to each sample corresponds a simple harmonic oscillator and the
corresponding periods for all three types of excitation can be determined. Performing this operation in
successive steps (Figure 5) it is possible to find a correlation between the periods and the lengths of the
sample projections on the horizontal axis. It is convenient, in order to simplify the calculations, to agree
on a constant reduction factor b = Lm/Lm−1 to cut the successive samples.

Call bm the variable representing the ratio Lm/Ln where Lm is the length of the horizontal projection
of the sample m and Ln is the length of the horizontal projection of the reference term. Therefore we
have bm = bm . For the classical Koch curves it is possible to show that:

λn λn λn

m

m m

Ln Lr Lm

(a) (c)

m

Figure 5. Sequence of three general samples (m > r > n) taken from the reference term
whose projections on the horizontal axis are Lm , Lr , Ln . The scale b is defined by
Lr−1 = bLr .
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(A) For oscillations induced by the action of a concentrated moment:(
log

Tn/m

Tn

)(M)
=

D
2

log(bm)+8
(M)
m . (10a)

(B) For oscillations induced by the action of a horizontal force or a vertical force we obtain the
equations (

log
Tn/m

Tn

)(H)
=

(
1+

D
2

)
log bm +8

(H)
m (10b)(

log
Tn/m

Tn

)(V )
=

(
1+

D
2

)
log bm +8

(V )
m . (10c)

The parameters 8(M,H,V )m in these equation can be interpreted as a kind of noise perturbation intrinsic
to the method. The interval of variation of the perturbation 8(M,H,V )m as function of m depends on several
conditions other than the scale factor b, as the type of the initial excitation and the geometry of the curves.
The analysis of 8(M,H,V )m as a function of m is rather complex even for simple Koch curves. It is possible
to show that a first estimation of the relative deviation of the sequence of normalized periods (Tn/m/Tn)

from the theoretical power law given by (bm)
(1+D/2) is

Tn/m/Tn

(bm)(1+D/2) ∝

√
1− 2mε0

1−m Dε0
, where ε0 = 1− b > 0.

Several numerical experiments were tried for different types of Koch curves. It has been observed that
for oscillations induced by a horizontal force the local perturbation is large while for the other two types
of excitation induced by vertical force and concentrated moment the noise is very small. In any case the
average values obtained with this technique for all boundary conditions are very good particularly for
ratios Lm/Ln > 0.6.

This paper is intended to show that the dynamical approach is equally applicable for a new class
of more complex curves that will be called mixed fractals. Numerical experiments with mixed fractal
geometries confirm that the theory developed for Koch curves presents just as good results. In other
words, Equations (9a)–(9c) and (10a)–(10c) can be extended to more complex curves.

2. Mixed fractals and quasifractal structures

Figure 6 shows two types of Koch curves CA and CB with self-similar or fractal dimensions DA and DB

respectively. From the definition of Koch curves we may write

log Nk = k log p

and
log

λk

L0
=−k log q.

Eliminating k we obtain

log Nk =−D log
λk

L0
, where D =

log p
log q

.
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Figure 6. Koch curves CA and CB used to generate a new object O . The fractal dimen-
sions are DA = log 4/ log 3 and DB = 1.5.

The parameter D is the self-similarity dimension or the fractal dimension. For the Koch triadic CA and
the Koch quadratic CB , we get DA = log 4/ log 3= 1.261859 and DB = log 8/ log 4= 1.5 respectively.

This paper deals with a series of objects O : {O1, O2, . . . , On, . . . } generated with the help of a
particular arrangement of two or more curves of the Koch type. We will call this class of objects mixed
fractal curves. In order to illustrate these ideas let us build a mixed fractal sequence with the help of two
particular curves, namely the Koch triadic (CA) and the Koch quadratic (CB).

The generation process of a mixed fractal curve using the Koch curves CA and CB with fractal dimen-
sions DA and DB respectively is governed by the following law of formation.

The first term O1 coincides exactly with the first term, the generator, of the CA series assembled
on a basis with length L0. That is O1 consists of N A

1 = pA segments with length λA
1 = L0/qA. The

second term of the O series is obtained by selecting pA generators of the series CB properly scaled such
that all of them fit to a basis of length λA

1 . This means that O2 consists of pA pB segments with length
λB

1 = λ
A
1 /qB = L0/qAqB . The next curves can be obtained repeating the procedure described above, that

is by using the elementary segments of the current curve as basis for the following generator of CA or of
CB properly downscaled. Switching these generators in successive steps all terms of the mixed fractal
sequence may be obtained.

Let CA be the Koch triadic and CB the Koch quadratic. Taking as initiator the generator of the Koch
triadic, ignoring the trivial initiator L0, the process is simply to switch step by step the generators of both
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Figure 7. Terms of the series O built up with the Koch curves CA and CB .

curves properly scaled to build up a new term of the series O as described above. Figure 7 depicts four
terms of the series.

Now, let us investigate the fractal characteristics of this new series built by overlaying alternatively the
generators of the triadic and of the quadratic Koch curves on each other properly scaled. Let us assume
that the mixed fractal curve belongs to the same class as Koch curves. Then we may write

D̄k =−
log N̄k

log(λ̄k/L0)
. (11)

If the mixed curve is really a self-similar fractal then D̄k is independent of k.
Recalling the formation law it is not difficult to calculate the number of segments N̄k = (pA)

i (pB)
j

and the segment length λ̄k = L0q−i
A q− j

B corresponding to the k-th order term. The integers i and j are
either equal or differ by one. That is,

{i, j} : [i − j = 0 or i − j = 1].

Clearly i + j = k. This can be expressed analytically by

i = b(k+ 1)/2c, j = bk/2c,

where the b c indicates the floor function (returning the integer part of a rational number). The expressions
for Nk and λk can be rewritten using these expressions:

log N̄k = i log pA+ j log pB (12)

and
log(λ̄k/L0)=−(i log qA+ j log qB). (13)

Now using (12) and (13) after some simple operations, the expression (11) becomes

D̄k =
k log pA+bk/2c(log pB − log pA)

k log qA+bk/2c(log qB − log qA)
. (14)
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Note that the dimension D̄k depends on the iteration order k. So it is not possible to say that a mixed
curve is fractal, further investigation is necessary. Let us separate the series O into two subsets, the odd
series Oodd and the even series Oeven.

For even iterations (14) reads

D̄even
=

log pA+ log pB

log qA+ log qB
. (15)

The sequence of even terms has a classical fractal structure with D̄even independent of k. For odd iterations
we have

D̄odd
k =

(k− 1) log pA+ (k− 2) log pB

(k− 1) log qA+ (k− 2) log qB
for k > 1. (16)

Then odd iterations are not strictly fractals. Clearly in the limit, when k→∞, the expression (16) tends
to expression (15) and we may say that the odd sequence approaches asymptotically a fractal sequence.
It is remarkable that the series O can be split into two series, Oeven which is a fractal series and Oodd

which is not strictly a fractal series, but we could say that it tends to a fractal object when k→∞. It is
possible to generalize the result above to include several fractal curves composing a mixed fractal.

Definition. An infinite set of curves {C1,C2, . . . ,Ck, . . . }with the same basis L0 is said to be a quasifrac-
tal Koch sequence if, letting N̄k be the number of segments — all of same length λ̄k — corresponding to
the term Ck , the sequence {D̄1, D̄2, . . . , D̄k, . . . } given by

D̄k =−
log N̄k

log(λ̄k/L0)
.

satisfies D̄i 6= D̄ j and has a limit

D̄ = lim
k→∞

D̄k .

Suppose that the number of elementary segments and the respective lengths corresponding to a general
term Ck are given by

N̄k = pi1
1 pi2

2 · · · p
im
m and (λ̄1/L0)= q−i1

1 q−i2
2 · · · q

−im
m i1+ i2+ · · ·+ im = k,

where the pair (p j , L0q−1
j ) j = 1, 2, . . . ,m corresponds to a simple generator K j belonging to the Koch

family and the exponents iα are integers function of k, iα = fα(k). Then the definition of D̄k gives

D̄k =
( f1(k)/ fβ(k)) log p1+ ( f2(k)/ fβ(k)) log p2+ · · ·+ log pβ + · · ·+ ( fm(k)/ fβ(k)) log pm

( f1(k)/ fβ(k)) log q1+ ( f2(k)/ fβ(k)) log q2+ · · ·+ log qβ + · · ·+ ( fm(k)/ fβ(k)) log qm
.

Now if at least one f j (k)/ fβ(k) 6= 1 and limk→∞[ f j (k)/ fβ(k)] → 1 then according to the previous
definition the sequence of curves Ck , k = 1, 2, . . . , n, . . . is quasifractal. �

According to this definition the odd sequence obtained with the process described above is clearly
quasifractal since from (16) we immediately obtain

lim
k→∞

D̄odd
k =

log pA+ log pB

log qA+ log qB
= D̄even.
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Figure 8. Normalized period log Tk/T0 versus the normalized length of segments
log λk/L0 for odd (left) iterations and even (right) iterations of the triadic-quadratic
mixed curve.

It is interesting to note that if qA is close to qB , that is, if

log qB

log qA
= 1+ ε,

the expression (15) can be written as

D̄even
k =

DA+ (1+ ε)DB

1+ (1+ ε)
.

When ε→ 0 we find that the fractal dimension tends to the mean value

D̄even
k ≈ (DA+ DB)/2.

3. Dynamical fractal dimension of mixed fractals

In this section we will use the technique presented in the previous section to investigate the fractal
characteristic of the mixed curve presented in the Section 2. The results obtained here, despite the fact
that we are dealing with a particular case, suggest that we may expect equally good results for other
mixed fractals belonging to the Koch family.

3.1. Test with a finite subset of consecutive terms removed from a mixed fractal sequence. Let us test
the dynamic fractal dimension method for mixed curves generated by the triadic-quadratic process given
the first eight terms. Let eight simple harmonic oscillators be built after the geometry presented in the
Figure 7. The eight terms are separated into two sets each one consisting of four terms corresponding
respectively to the even sequence and the odd sequence. For the first numerical experiment the oscillators
carry a constant mass and are excited by a moment, a horizontal force or a vertical force separately. The
results for four terms of each series, the odd series Oodd and the even series Oeven are presented in the
Figure 8-a and Figure 8-b. The approximated fractal dimension Dapprox was obtained with the slope
Ddyn of the segment joining the points on the graph of Figure 8 corresponding to the two highest order



62 LUIZ BEVILACQUA AND MARCELO M. BARROS

Exciting force Mass M0
Odd iterations Even iterations
Ddyn Dapprox Ddyn Dapprox

Couple −0.197354 1.394708 −0.197355 1.394710
Vertical force Constant −0.199822 1.399644 −0.200063 1.400126

Horizontal force −0.200496 1.400992 −0.200745 1.401490
Couple −0.394709 1.394709 −0.394711 1.394711

Vertical force Variable −0.397130 1.397130 −0.395132 1.395132
Horizontal force −0.398592 1.398592 −0.398576 1.398576

Table 1. Characterization using four terms of each sequence. Dynamic fractal dimen-
sion of odd and even iterations for the mixed triadic-quadratic Koch. Results for two
distinct assemblages: constant mass and variable mass proportional to the curve length.

terms in the sequence. According to the theoretical predictions (9a)–(9c), those slopes should relate with
the geometric fractal dimension as Dapprox = 1− 2Ddyn. The results are displayed on the Table 1 and
agree satisfactorily with the correct value of the geometric fractal dimension given by (15). Note that the
approximation of the fractal dimension for the odd sequence is indistinguishable from the approximation
for the even fractal sequence for practical proposes.

The results for a second numerical experiment with variable mass proportional to the total spring
length of the corresponding geometric term are also presented in the Table 1. For this case the fractal
geometric dimension expected from the theoretical results should be related to the dynamical fractal
dimension according to Dapprox = 1− Ddyn as stated before.

It is important to mention that the oscillator periods were calculated taking into account only the elastic
energy stored by the bending moment, disregarding shear and normal forces. The fractal dimension
relative to the even iterations is D̄even

0 = 1.39471 independent of k. As shown in the Table 1, the deviation
from this value is not more than 1.5%. The results are very consistent. It is also interesting to notice
that the results for the odd iterations are quite satisfactory if we think of the limit value as k→∞. The
numerical experiment corroborate the conjecture that the technique that has proved to work out for regular
Koch curves are also efficient to calculate the dynamical fractal dimension for mixed fractal objects. We
believe that this approach opens up a very rich topic for both theoretical and numerical investigation.

3.2. Test with a single term removed from the mixed fractal sequence. For this identification problem
just one term of the reference sequence is given to find out the respective fractal dimension. Let us take
the eighth order term of the Koch triadic-quadratic mixed fractal series. The projection of this curve on
the horizontal axis is therefore equal to the initiator length, that is Ln = L0. Figure 6 shows how the
normalized periods for 14 samples obtained from the reference curve as explained in the introduction
varies with respect to the successive length ratios. The cuts were made following a rather large scale
b = 1/2 reducing each sample successively according to the rate Lk = (Lk−1)/2.

Figure 9 shows the normalized periods versus the sample lengths for the three excitation types. The
Table 2 shows the slope Ddyn of interpolated straight lines corresponding to the points on the figure rep-
resenting the three excitation types and the derived approximated fractal dimension Dapprox. According
to the theoretical prediction (9a)–(9c), the relations between the geometric fractal dimension and the
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Exciting force Ddyn Dapprox

Couple 0.608081 1.397961
Vertical force 1.699156 1.398312
Horizontal force 1.710820 1.421658

Table 2. Slope of the lines which minimizes the sum of the square of the errors of the
respective data.
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Figure 9. The normalized period log(Tk/T0) versus the normalized horizontal projec-
tion of the length of the curve log(Lk/L0) for 14 samples obtained from the eighth order
term of the mixed triadic-quadratic Koch sequence, with b = 1/2.

dynamical fractal dimension should give Dapprox = 2Ddyn for the case of excitation induced by a moment
and Dapprox = 2(Ddyn − 1) for the case of excitation induced by a horizontal or vertical force. The
interpolated straight lines were adjusted to fit the point sets {Tk/T0, Lk/L0} displayed on the Figure 6
with the least mean square deviation method.

The mass was assumed constant for all oscillators. As shown in the Table 2 the maximum error ob-
tained with this technique is less than 3% and corresponds to the horizontal excitation. Clearly the points
corresponding to the horizontal excitation presents a large dispersion. For excitations corresponding to
a couple or a vertical force the errors do not exceed 1.2%.

3.3. Random mixed structures. It has been shown that the dynamical approach provides very good and
consistent results for regular, deterministic curves belonging to the Koch family. The method has also
proved to be successful in determining the fractal characteristics of mixed fractal curves.

For the classical Koch curves, besides providing means to determine the classical fractal dimension,
the dynamical approach tell us if the geometry is random or not. For the regular generation process,
the n-th order term is obtained from the (n − 1)-th term following a well determined rule. What we
call random geometry is that one obtained in a similar way except that the regular rule is replaced by a
random orientation procedure.
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Figure 10. The first two terms of two Koch triadic curves: the classical deterministic
curve (top) and a random generation (bottom). Both have the same Hausdorff dimension.

Figure 10 illustrates what we mean by a random fractal, taking as an example the classical Koch
triadic. Note that the cover set for both curves is the same and therefore they have the same Hausdorff
dimension. However note that the random series doesn’t present the self-similarity property. Also, if the
box counting technique were applied to compute the fractal dimension of these curves the results would
be the same for all curves. The dynamical approach however is able to identify the random character of
the curve.

Consider four terms of the triadic-quadratic odd series Oodd corresponding to five different random
generations. Consider the corresponding simple oscillators excited by a horizontal force. The results
correlating the normalized periods Tk/T0 and the relative lengths λk/L0 are displayed in Figure 11.
The curves obtained by connecting the point set {Tk/T0, λk/L0} for each random series clearly do not
coincide. However similar construction connecting the point set derived from the excitation induced by
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length of the elementary segment for five random triadic-quadratic sequences taking
only odd iterations with initial conditions induced by a horizontal force.
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a concentrated moment would lead to just one and the same curve. The reason is that for this particular
type of excitation, that is, a concentrated moment, the strain energy is uniformly distributed along the
curve which is the dynamical equivalent to the set covering introduced in the Hausdorff theory [Falconer
1990].

Indeed, recall that we are considering only the elastic energy induced by the bending moment. For
the case of a moment this energy is independent of the orientation of the segments in the oscillator and
consequently the results are the same for all random curves of the same order k. Now for excitations
due to a horizontal or a vertical force the bending moment distribution depends on the position of each
segment in the oscillator. This indicates that the elastic energy stored in the oscillator is sensitive to the
position of the segments in the structure and this is translated in the point set distribution identifying
the randomness of the structure formation. The slopes of the interpolated straight lines representing the
points {Tk/T0, Lk/L0} for each random series lead as expected to a unique value related closely to the
Hausdorff dimension. That is on the average the result coincides with the other classical methods but
the slight dispersion of the points reveals the random character of the series.

4. Conclusions

The technique proposed in a series of papers [Bevilacqua and Barros 2007; Bevilacqua et al. 2008] is
applied here to mixed structures. The results reproduce the expected output of the method. All the exper-
iments lead to the conclusion that this method is powerful and justify further exploration, encompassing
both theoretical and computational fields. What the method suggests is that the dynamical properties of
fractal, self-similar structures and random structures hide very rich information that need to be further
investigated. In order to detect details as that associated to multi-fractals structures, random formation,
mixed fractals and the like it would be convenient to use more complex oscillators for the identification
problem with several added masses, that is extend the method to multi-mass systems. Possibly the
frequency spectrum of those more complex structures will provide the information needed for the cor-
responding characterization. Application can be found in the determination of fractal dimension, if any,
of protein chains, tissues and biological membranes [Bassingthwaighte et al. 1994]. It is also important
to remark that this technique can be applied to physical objects, that is, characterization through labo-
ratory experimentation. Therefore laboratory experiments can be designed to determine the dynamical
properties of biological tissues or fibers and consequently the fractal characterization of the sample. The
fractal characterization of composite materials may also be obtained using samples of the material to be
analyzed and applying the procedure described above.

In [Bassingthwaighte et al. 1994, Chapter 12] the question is raised of “fractals where the physical
mechanism must be different at different scales”, referring to problems related to neural networks. The
analysis introduced here may give some clues to explain this kind of puzzling behavior. Indeed if the
mechanical properties of the oscillators are different at different scales then the sequence of periods of
the oscillators may follow a power law quite different from that characterizing the geometric sequence,
or even not be fractal at all. This means that for the general case the physical behavior may generate a
sequence of physical properties quite different from the geometric characteristics.
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Figure 12. Mean value ȳi−1·i and difference 1yi−1,i .

Finally we would like to remark the interesting property of mixed fractals formed by two Koch curves
that split up into two different sets. One is fractal and the other is quasifractal. To the best of our knowl-
edge this is a new result that needs further investigation and generalization for structures constructed
with more than two Koch curves.

Appendix

We show that the first derivative of the bilinear term �k with respect to λk is finite for increasing values
of k. Recall that

�k =
1

Nk

Nk∑
i=0

αi (k) and αi (k)= 1
3 [z

2
i−1+ zi−1zi + z2

i ].

First let us write αi (k) under the form

αi (k)= z̄2
i−1,i +

1
31z2

i−1,i , (17)

where
z̄i−1,i = (zi−1+ zi )/2 and 1zi−1.i = (zi − zi−1)/2.

Introducing (17) in the expression for �k we get

�k =
1

Nk

Nk∑
i=0

(z̄2
i−1,i +

1
31z2

i−1,i ). (18)

Clearly z̄i ≤ 1 and |1zi−1,i | ≤ 1.
Consider the second term on the right-hand side of (18). By definition 1yi−1,i = yi − yi−1 as shown

in Figure 12 and therefore it is possible to write

1yi−1,i = γi−1,iλk with γi−1,i ≤ 1.

From this it follows that

1zi−1,i =
1

2h0
1yi−1,i =

1
2h0

γ i−1,iλk = βi−1,iλk .
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Introducing this expression in (18) we get

�k =
1

Nk

Nk∑
i=0

(z̄2
i−1,i +

1
3β

2
i−1,iλ

2
k). (19)

Now define the vector functions

z̄T
k =

[
z̄(k)0,1 z̄(k)1,2 · · · z̄

(k)
i−1,i · · · z̄

(k)
Nk−1,Nk

]
and

βT
k =

1

2
√

3h0

[
β(k)

0,1
β
(k)
1,2 · · ·β

(k)
i−1,i · · ·β

(k)
Nk−1,Nk

]
.

Then (19) reads, in vector notation,

�k =
1

Nk
(zT

k zk + λ
2
kβ

T
k βk).

Since |zi−1,i | ≤ 1, |βi−1,i | ≤ 1 and λk ≤ M for all k, we conclude that �k remains bounded as k→∞.
Similarly the term of order k+ 1 can be written as

�k+1 =
1

Nk+1

(
z̄T

k+1 z̄k+1+
1
3λ

2
k+1β

T
k+1βk+1

)
,

where the components of zk+1 are proportional to the ordinates of the corners of the curve corresponding
to the term of order k+ 1. In general we may write

zT
k+1 =

1
h0

[
y(k+1)

0 y(k+1)
1 y(k+1)

2 · · · y(k+1)
Nk+1

]
.

Referring to the preceding term in the sequence as shown in Figure 13 we have

zT
k+1 =

1
h0

[
y(k)0 y(k)01 · · · y

(k)
0(p−1)y

(k)
1 · · · y

(k)
1(p−1) · · · y

(k)
Nk

]
Note that

y(k)Nk
= y(k+1)

pNk
,

y(k)i = y(k+1)
pi ,

y(k)i j = y(k+1)
pi+ j , i = 0, . . . , Nk − 1; j = 1, . . . , p− 1

represent respectively the ordinates of the corners of the k-th curve in the sequence and the ordinates of
the added corners for the (k+ 1)-th curve. It is possible then to decompose the vector zk+1 as

zk+1 =
U1

h0

[
y(k)0 y(k)1 · · · y

(k)
Nk

]T
+

U2

h0

[
y(k)01 · · · y

(k)
0(p−1)y

(k)
1 · · · y

(k)
1(p−1) · · · y

(k)
(Nk−1)(p−1)

]
,

where U1 and U2 are Boolean matrices.
Now, with this decomposition it is not difficult to show that the vector z̄k+1 can be written as

z̄k+1 = Rz̄k + R(1zk)+ λkρk+1, where |ρ(k+1)
i | ≤ 1
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Figure 13. Term of order k+1 attached to the previous term of order k. M N =λk Mm=
mn = no= or = r N = λk+1.

and R = [ri j ] is a Boolean matrix defined as follows (where i, j, p are integers):

ri j =

{
1 if p( j − 1) < i ≤ pj,
0 otherwise.

Now using the definition of �k+1 and recalling that (1zk)= λkβk we get

�k+1 =�
∗

k+1+
1

3Nk+1
λ2

k+1β
T
k+1βk+1,

where

�∗k+1 =
1

Nk+1
( z̄T

k RT Rz̄k + λ
2
kβ

T
k RT Rβk)

+
2

Nk+1
(λkβ

T
k RT Rz̄k + λkρ

T
k+1 Rz̄k + λ

2
kρ

T
k+1 Rβk)+

1
Nk+1

(λ2
kρ

T
k+1ρk+1).

Recalling that

|z(k)i | ≤ 1, |β(k)i | ≤ 1, |β(k+1)
i | ≤ 1, |ρ(k+1)

i | ≤ 1, Nk+1 = pNk, λk+1 = λk/q

and that R according to the definition above has the property RT R = p I we arrive at

�k+1 =
1

Nk+1

(
p( z̄T

k z̄k +
1
3λ

2
kβ

T
k βk)

)
+ λk R1(k, k+ 1)+ λ2

k R2(k, k+ 1),

where R1(k, k+ 1) and R2(k, k+ 1) are finite for all k, max(R1, R2) < M (finite). Finally recalling that
Nk+1 = pNk we get

�k+1 =�k + λk R1(k, k+ 1)+ λ2
k R2(k, k+ 1).

Now noting that

1λk = λk+1− λk = λk

(1
q
− 1

)
.

We may write
1�k

1λk
=

(1
q
− 1

)−1
(R1(k, k+ 1)+ λk R2(k, k+ 1)).
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Lemma. For curves belonging to the Koch family — the class of curves defined by Nk = pk and λk/L0 =

1/qk — the first order differential form of the quadratic term �k with respect to λk is finite for increasing
values of k, or equivalently decreasing values of λk . That is, the limit

lim
k→∞

(1�k/1λk)= lim
λk→0

(1�k/1λk)

is finite.
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TAPPING DYNAMICS FOR A COLUMN OF PARTICLES AND BEYOND
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This paper is respectfully dedicated to Marie-Louise and Charles Steele.

The dynamics of a vertical stack of particles subject to gravity and a sequence of small, periodically
applied taps is considered. First, the motion of the particles, assumed to be identical, is modeled as a
system of ordinary differential equations, which is analyzed with an eye to observing connections with
finite-dimensional Hamiltonian systems. Then, two approaches to obtaining approximate continuum
models for large numbers of particles are described: the long-wave approximation that yields partial
differential equations and the BSR method that employs integro-partial differential models. These
approximate continuum models, which comprise infinite-dimensional dynamical systems, are studied
with a focus on nonlinear wave type behavior, which naturally leads to investigating links to infinite-
dimensional Hamiltonian systems. Several examples are solved numerically to show similarities among
the solution properties of the finite-dimensional (lattice-dynamics), and the approximate long-wave and
BSR continuum models. Extensions to higher dimensions and more general dynamically driven particle
configurations are also sketched.

1. Introduction

There are several extant explanations of the dynamical behavior of configurations of particles subjected
to small periodic tapping forces, most of which are aimed at conforming to a number of empirically
derived formulas currently in use. Our primary intention is to apply fundamental principles of physics to
obtain dynamical models for the evolution of systems of particles subjected to such tapping perturbations,
and from them deduce simpler dynamical models - accessible to modern dynamical systems analysis —
that are capable of predicting some of the most important aspects of the evolution of these systems
with acceptable accuracy. Two of our main tools shall be the long-wave limit procedure, which has
been successfully applied to particle dynamics by researchers such as Nesterenko, Daraio and their
collaborators [Daraio et al. 2006; Nesterenko 1983; Nesterenko et al. 2005; Porter et al. 2009], and
simplified integro-differential dynamical models developed in [Blackmore and Dave 1997; 1999; 2000].
In this regard, one should mention that there also is the related direct lattice-dynamics of FPU-chains
approach of [Sen and Manciu 1999; 2001], which deals directly with the dynamics of long chains of
particles, without going to a limit, and provides many opportunities for comparison with the results of the
continuum approximation methods especially with regard to nonlinear wave type behavior of solutions.
In addition, we shall briefly consider possible generalizations of these approximate continuum modeling

D. Blackmore’s, A. Rosato’s and X. Tricoche’s work in this paper was supported in part by NSF Grant CMMI-1029809.
Keywords: Newtonian models, periodic taps, Hamiltonian system, long-wave limit, BSR approximation.
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approaches to higher-dimensional tapping problems and even more general granular flow phenomena.
Along the way, we shall indicate some of the most interesting dynamical systems aspects of the models
that are introduced and analyze them from a more theoretical perspective.

We begin in Section 2 with a continuous one-dimensional dynamical model for the vertical column
of particles (assuming Walton–Braun–Mindlin type interaction laws) expressed as a system of ordinary
differential equations (ODEs) in the usual Newtonian way. The initial system of second order equations
is converted to a system of first order equations emphasizing the comparison with the Hamiltonian system
obtained for perfectly elastic collisions. In Section 3, we illustrate the dynamics with numerical solutions
for a couple of cases with relatively small numbers of particles, and also deduce a theorem about the
existence of chaotic dynamics.

Then, in Sections 4 and 5, we use this system in two different ways to obtain approximate contin-
uum models for the tapping dynamics of a monodisperse column of particles in the form of infinite-
dimensional dynamical systems comprised of partial differential equations (PDEs) or integro-partial
differential equations (IPDEs). In particular, the PDEs are obtained using a standard long-wave limit,
such as in [Daraio et al. 2006; Nesterenko 1983; Nesterenko et al. 2005; Porter et al. 2009; Zabusky
and Kruskal 1965], as the number of particles goes to infinity, and then using the simplified model in
[Blackmore et al. 1999]. A monodisperse system of particles is chosen in the interest of simplicity, since
the dynamics of polydisperse systems are considerably more difficult to approximate using continuum
models, especially for the long-wave limit method. After developing approximate continuum models
for the tapping dynamics via the long-wave (L-W) and Blackmore–Samulyak–Rosato (BSR) methods,
we also formulate the associated boundary-initial value problems corresponding to the one-dimensional
vertical tapping regime under investigation in these sections, respectively.

In Section 6, we turn our attention to some of the mathematical properties of the L-W and BSR
dynamics, with a focus on the Hamiltonian and near Hamiltonian infinite-dimensional dynamical systems
associated with these continuum models. Some of the results for the approximate L-W and BSR models
have already been proved in the literature, and some related theorems shall only be stated since their
proofs, which shall be treated in forthcoming work, are a bit too technical to include in this paper. We
follow this in Section 7 with numerical solutions of the L-W and BSR approximations corresponding to
the numerical simulations of the tapping regimes considered in Section 3, and find good qualitative agree-
ment among the solutions of the exact and both approximate continuum models. Finally, in Section 7,
we summarize the work presented and outline some of our plans for future research — both with regard
to granular flow applications and infinite-dimensional dynamical system theory - for higher-dimensional
systems and more general particle configurations and forcing scenarios.

2. Newtonian model

We begin with a mathematical model for the tapping motion of the column of particles obtained using
Newtonian and Hamiltonian principles assuming that the particle-particle and particle-floor interaction
forces are of Walton–Braun–Mindlin type [Blackmore et al. 1999; MacKay 1999; Blackmore and Dave
1997; Daraio et al. 2006; Sen and Manciu 1999; Nesterenko 1983]. The results obtained have certain
aspects in common with the approaches of the last four works just cited and of [Blackmore et al. 2000;
Fermi et al. 1965; Nesterenko et al. 2005; Porter et al. 2009; Sen and Manciu 2001], among many
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other works. In particular, we consider a configuration of N particles pi , 1≤ i ≤ N , aligned along the
(vertical) positive y-axis, stacked one above the other starting with p1, under the action of gravity — with
constant gravitational acceleration g — and interacting inelastically (according to the Walton–Braun–
Mindlin model) with neighboring particles and a “container” bottom, denoted as y0, initially at the origin
that is moving in a manner that simulates a periodic nearly impulsive tapping force applied vertically to
the floor. The moving bottom and particle centers are located, respectively, at the points

0≤ y0(t) < y1 < · · ·< yN (1)

in the semi-infinite interval I := {y : 0 ≤ y}, and we assume that the particles have masses and radii
m1, r1, . . . ,m N , rN , respectively.

In order to model the periodic tapping, we assume that y0(t) is a periodic function of period T > 0
represented as

y0(t) :=
{

a sinωt if 0< t ≤ π/ω,
0 if t = 0 or π/ω ≤ t ≤ T

(2)

for 0≤ t ≤ T , where π/ω� T , and the amplitude a is a small positive number. Note that the derivative
of (2) with respect to t , denoted by a dot over the variable, is the discontinuous function given as

ẏ0(t) :=
{

aω cosωt if 0< t ≤ π/ω,
0 if t = 0 or π/ω ≤ t ≤ T .

(3)

Our intention is to determine the motion of the particles after each of a periodic sequence of taps, and
compare the positions of the particles after being given time to settle following each of the taps — say at
times .99T, 1.99T, 2.99T, . . ., in order to determine trends after many such taps, with the evolution of
the linear particle density being of particular interest.

We shall assume that the particles and bottom interact inelastically according to a simplified Walton–
Braun–Mindlin law, so that the equations of motion obtained from Newton’s second and third laws take
the form of a system of N second-order ODEs:

mi ÿi = Fi (1≤ i ≤ N ), (4)

where the forces on the particles are expressed as

Fi := −mi g+ f i−1
i + f i+1

i (5)

for 1≤ i ≤ N , where f i−1
i is the force exerted by pi−1 (or the bottom when i = 1) on pi and f i+1

i is the
force exerted by pi+1 on pi when 1≤ i ≤ N − 1. These interaction forces are given by

f 0
1 :=

(
K 0

1 − K̂ 0
1σ(ẏ1− ẏ0)

)(
r1− (y1− y0(t))

)
χ
(
r1− (y1− y0(t))

)
,

f i+1
i := −

(
K i+1

i − K̂ i+1
i σ(1ẏi )

)
(ri + ri+1−1yi )χ(ri + ri+1−1yi ), (6)

f N+1
N := 0,

for 1≤ i ≤ N − 1, with
f i−1
i =− f i

i−1 (7)

for 2≤ i ≤ N . Here
1yi := yi+1− yi , 1ẏi := ẏi+1− ẏi , (8)
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for 1≤ i ≤ N − 1, the K i+1
i and K̂ i+1

i are constants with 0< K̂ i+1
i ≤ K i+1

i for all 1≤ i ≤ N − 1, and σ
and χ denote the signum and step functions defined, respectively, by

σ(τ) :=


−1 if τ < 0,

0 if τ = 0,
1 if τ > 0,

and χ(τ) :=


0 if τ < 0,
1
2 if τ = 0,
1 if τ > 0.

(9)

With the definitions above, the system (4) may now be rewritten as

ÿi = Yi :=
1

mi
Fi =−g+ 1

mi
( f i−1

i + f i+1
i ) (1≤ i ≤ N ), (10)

which can be recast in vector form for y := (y1, . . . yN ) as

ÿ = Y( y, ẏ, t;µ), (11)

where Y := (Y1, . . . YN )=
(
−g+m−1

1 ( f 0
1 + f 2

1 ), . . . ,−g+m−1
N−1( f N−2

N−1 + f N
N−1),−g+m−1

N f N−1
N

)
, and

µ is a parameter (vector) incorporating a, ω, T , all the particle masses and radii, and all of the interaction
parameters K i+1

i and K̂ i+1
i . As is usual for such second-order systems, we shall find it convenient to

recast it as the following system of 2N first-order ODEs, which is better suited to direct numerical
solution by such schemes as a Runge–Kutta solver:

ẏi = vi , v̇i = Yi , (12)

for 1≤ i ≤ N . Of course, we can also write this succinctly in (the Hamiltonian related) vector form as

ẋ = X(x, t;µ), (13)

where

x := (x1, x2, . . . , x2N−1, x2N ) := (y1, v1, . . . , yN , vN ),

X := (X1, X2, . . . , X2N−1, X N ) := (v1, Y1, . . . , vN , YN ). (14)

Observe that only the second coordinate (component) of X depends explicitly on t , and by definition,
X is periodic of period T in the independent time variable t . Also, X2 is the only coordinate that depends
explicitly on the parameters a and ω. The forces defined above are chosen so that the inelasticity of the
particle-particle and particle-bottom interactions is manifested by a loss of energy upon impact that
is essentially represented by a spring constant of K i+1

i + K̂ i+1
i when the particles are approaching one

another or the bottom and a spring constant of K i+1
i − K̂ i+1

i when the particles are moving away from one
another or the bottom after impact. From this perspective, the case K̂ i+1

i = 0 represents a perfectly elastic
interaction. We also note that the discontinuities in (13) are somewhat inconvenient from a theoretical
standpoint, but they can easily be handled by a standard numerical scheme, such as a Runge–Kutta
solver, and the forces can also be approximated to any degree of accuracy by smooth (= C∞) functions
if necessary.

So in summary, we want to solve (13), and this can be accomplished numerically via say a variable
step size Runge–Kutta scheme subject to the initial condition

x(0)= (y1(0), 0, y2(0), . . . , 0, yN (0), 0), (15)
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which represents a stacked configuration of particles initially at rest. Here we have to determine the
values of the yk(0) by requiring that the stack of particles is initially at rest and in equilibrium, and
because the particles are assumed to be non-rigid we shall have to determine these values in a way that
guarantees that y0(t) < y1(t) < y2(t) < · · ·< yN (t) for all t ≥ 0, which we shall demonstrate in the sequel
for the monodisperse case. We also want to make comparisons of the positions of the particles at times,
say at .99T, 1.99T, 2.99T, . . . , k.99T for rather large positive integer values of k. In these simulations
it makes sense to simplify matters by taking all the K ′s equal and all the K̂ ′s equal, with 0≤ K̂ = eK ,
with 0< e < 1, and all the radii and masses equal or having at most a pair of possible values. Note that
in this context, the coefficient of restitution %, which is the standard measure of elasticity with 0≤ % ≤ 1
and the left (0) and right (1) extremes representing the perfectly inelastic and elastic cases, respectively,
is given as

%2
=

1− e
1+ e

, or, equivalently, e =
1− %2

1+ %2 . (16)

For the other parameters, some good choices are as follows: 20 ≤ N , T = 1, π/ω < 1/10, a ≤ 1/50,
ri = r and mi = m, with 0< r < 1/100 and 0< m < 1/20, and it makes sense to run several cases for
(13)–(15) for different parameter values satisfying these inequalities.

With the assumptions that all K ′s and K̂ ′s are the same and K̂ = eK , the equations of motion take
the form

ÿi = Yi := −g+
K
mi
( f i−1

i + f i+1
i ) (1≤ i ≤ N ), (17)

where

f 0
1 := [1− eσ(ẏ1− ẏ0(t))](r1− y1+ y0(t))χ(r1− y1+ y0(t)),

f i+1
i := −[1− eσ(1ẏi )](ri + ri+1−1yi )χ(ri + ri+1−1yi ), (18)

f N+1
N := 0.

Whence, the Newtonian equations of motion are

ÿ1 =−g− K
m1

(
[1−eσ(1ẏ1)](r1+r2−1y1)χ(r1+r2−1y1)

−[1−eσ(ẏ1− ẏ0(t))]
(
r1−y1+y0(t)

)
χ
(
r1−y1+y0(t)

))
,

ÿi =−g− K
mi

(
[1−eσ(1ẏi )]

(
ri+ri+1−1yi

)
χ
(
ri+ri+1−1yi

)
−[1−eσ(1ẏi−1)](ri−1+ri−1yi−1)χ(ri−1+ri−1yi−1)

)
(2≤ i ≤ N−1),

ÿN =−g+ K
m N
[1−eσ(1ẏN−1)](rN−1+rN−1yN−1)χ(rN−1+rN−1yN−1).

(19)

The natural initial conditions for the tapping dynamics are then

y1(0), y2(0), . . . , yN (0) determined by assuming initial equilibrium of column,

ẏ1(0)= ẏ2(0)= ẏ3(0)= · · · = ẏN (0)= 0.
(20)

It is instructive to observe that (13) can be written in the form

ẋ =8(x)+9(x, t;µ), (21)
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where
ẋ =8(x) (22)

is an autonomous Hamiltonian system that is completely integrable in the Liouville–Arnold sense (L-A
integrable) and 9 may be viewed as a (non-Hamiltonian) perturbation of the integrable system (22) that
goes to zero as e, a→ 0; see, for example, [Arnold 1978; Błaszak 1998; Guckenheimer and Holmes
1983; Katok and Hasselblatt 1995; Prykarpatsky et al. 1999]. We also note that the periodicity in t can
be used to recast (21) in the autonomous form

ẋ =8(x)+9(x, θ;µ), θ̇ = 2π/T (23)

on the (2N + 1)-dimensional cylinder R2N
×S1, where S1 is the unit circle.

2.1. Monodisperse particle configuration. In the interest of transparency and simplicity, we shall con-
fine our attention to a monodisperse column of particles, so that we assume now and hereafter that
m1 = · · · = m N := m and r1 = · · · = rN := r . This assumption naturally simplifies each of the equations
(17), (18) and (19); for example, (19) becomes

ÿ1 =−g−K
m

(
[1−eσ(1ẏ1)](2r−1y1)χ(2r−1y1)−[1−eσ(ẏ1−ẏ0(t))](r−y1+y0(t))χ

(
r−y1+y0(t)

))
,

ÿi =−g−K
m

(
[1−eσ(1ẏi )](2r−1yi )χ(2r−1yi )[1−eσ(1ẏi−1)](2r−1yi−1)χ(2r−1yi−1)

)
(1< i < N ),

ÿN =−g+K
m
[1−eσ(1ẏN−1)](2r−1yN−1)χ(2r−1yN−1),

(24)

and the initial conditions (20) reduce to

y1(0), y2(0), . . . , yN (0) to be determined and ẏ1(0)= · · · ẏN (0)= 0, (25)

and (21)–(23) are modified analogously.
To determine the initial positions, we assume that the configuration is initially at rest and in equilibrium,

so (24) implies that the following equations must be satisfied:

−2y1(0)+ y2(0)= r +M,

yk−1(0)− 2yk(0)+ yk+1(0)=M (1< k < N − 1),

yN−1(0)− yN (0)=−2r +M,

(26)

where
M :=

mg
K
.

It is straightforward to show that (26) has the solution

yk(0)= (2k− 1)r − (k/2)(2N − k+ 1)M (1≤ k < N − 1),

yN (0)= (2N − 1)r − (1/2)[(N − 1)N + 2]M.
(27)

As we naturally require that yk(0)− yk−1(0) > 0 for all 1≤ k ≤ N , this leads to the condition

M<
r
N
, or, equivalently, Ng

r
<

K
m
, (28)
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which must be imposed in order to maintain physical realism. We note here that the maximum height S
of the column of particles where they are all just touching one another is

S = 2Nr. (29)

We shall study the solutions of (24)–(25) directly, and also analyze the dynamics of the corresponding
first-order system (21)–(23), with the monodisperse assumption imposed to simplify the expressions.
One slightly troubling feature from a theoretical standpoint is the fact is that although (20), or (24), is
piecewise linear, it has jump discontinuities, which we should add can be easily handled using a numerical
scheme such as the Runge–Kutta method. Theoretically, we can always adjust the systems to be smooth
(= C∞) by using appropriate approximations of the signum and step functions. A rather good choice for
smooth approximations is

σ(s)∼= σα(s) := tanhαs, χ(s)∼= χα(s) := 1
2(1+ tanhαs), (30)

where α� 1.

3. Dynamics of Newtonian model

In this section we shall briefly investigate the dynamical properties of the system (21) using both nu-
merical simulation and analytical means. We begin with some numerical simulations of the solutions
of (24)–(25) employing a standard ODE solver of the type used in the molecular dynamics simulation
codes developed by Rosato and his collaborators, which have been applied to advantage in many studies
of granular flows, such as in simulations of examples in [Blackmore et al. 1999].

For these simulations, with monodisperse particle stacks, we fix T = 50, m = 1, r = 1.0 cm, a/2r =
0.53, e= 0.09, g= 980.67 cm/sec2, and following (29), K = (2Ng/r), and vary the number of particles N
over the values N = 5, 10. Note that the frequency ω= 2π0 is varied for the two cases, with 0 = 2.4019
for N = 5 and 0 = 3.8476 for N = 10, mainly to obtain better resolution for the particle configurations.
The dynamics for the five-particle and the ten-particle cases are illustrated in Figure 1, which plots of
y1(t) through yN (t) for all choices N over a time interval long enough to include four periodic taps.
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Figure 1. Particle trajectories for tapping of five (left) and ten (right) particle stacks.
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Observe that in order to more clearly establish the quiescent state, the formulas for the initial conditions
above are translated by 50 time steps in the numerical simulations. One can see from these time series
plots for the positions of the particles how the density of the particles varies with time by observing the
evolution of the interparticle distances.

From the perspective of modern dynamical systems theory, one can use the same arguments as en-
listed in [Blackmore and Dave 1997; Blackmore et al. 2000] to prove the following result (see also
[Guckenheimer and Holmes 1983; Prykarpatsky et al. 1999]).

Theorem 1. Fixing all parameters save the amplitude of the taps, there exist sufficiently large values of
a for which (21) has periodic solutions of arbitrarily large period, and ultimately there exist large values
of a such that the system of particles exhibits chaotic motion. Moreover, if all the parameters are fixed
but the period T of the taps, then there exist chaotic orbits when the period is sufficiently small.

Before moving on to continuum approximations for the system (24) for very large N , we should
mention a very important related body of work in the realm of lattice dynamics, which deals with a
direct analysis of these equations of motion — usually focusing on finding solutions of a particular wave
related form. Important representatives of this type of one-dimensional lattice dynamics research (which
has yielded the existence of solitary wave solutions, solitons and breathers, to name a few examples) can
be found in [Friesecke and Wattis 1994; MacKay 1999; MacKay and Aubry 1994; Poggi and Ruffo 1997;
Sen and Manciu 1999; 2001; Treschev 2004; Yoshimura and Doi 2007; Zolotaryuk et al. 2000]. There
are also some useful studies of the finite systems, such as in [Blackmore and Dave 1997; Blackmore
et al. 2000; Yang and Wylie 2010] devoted to finding special properties of certain orbits of the dynamical
systems of N particles, where N need not be particularly large.

4. Long-wave continuum approximation

We shall first use the standard long-wave continuum limit method to find an approximation for our discrete
system of particles in the form of a nonlinear partial differential equation (PDE). One of the most famous
examples of this approach is the continuum approximation of the Fermi–Pasta–Ulam (FPU) model [Fermi
et al. 1965] obtained by Zabusky & Kruskal [Zabusky and Kruskal 1965] that established a connection
between the FPU system and the Korteweg–de Vries equation that was a vital link in the chain leading
to an explanation of the existence of solitons and their connection with integrable PDEs.

Toward this end, we focus on the middle equation of (24) in the monodisperse case; namely

ÿi =−g−
K
m

(
[1−eσ(1ẏi )](2r−1yi )χ(2r−1yi )−[1−eσ(1ẏi−1)](2r−1yi−1)χ(2r−1yi )

)
. (31)

Next we introduce the alternative variable z for y to avoid confusion in our notation, and define h := 2r
to be the (mean) distance between the particles (“springs”). The underlying assumption in the long-wave
approximation method is that the wavelength L of the wave phenomena embodied in the motion of the
particles satisfies h� L , which as it turns out is quite a reasonable supposition for a wide range of granular
flow regimes, including the one under consideration here. Our intention is to find an approximate PDE
representing the dynamics of (31) as N →∞. For this we assume that yi represents the function y(z, t),
which is at least of class C4 in all of its variables, and

yi±1 := y(z± h, t), (32)
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which can be expanded in Taylor series up to the fourth order in h as

yi±1 := y(z± h, t)= yi ± yzh+ 1
2 yzzh2

±
1
6 yzzzh3

+
1

24 yzzzzh4
+ · · · , (33)

and we also have

ẏi±1 := yt(z± h, t)= ẏi ± yt zh+ 1
2 yt zzh2

±
1
6 yt zzzh3

+
1

24 yt zzzzh4
+ · · · . (34)

Substituting (32), (33) and (34) in (31), we find after a long and tedious but straightforward calculation
that up to the fourth order in h we have the fourth order PDE on (z, t) ∈ R+×R+ = [0,∞)×[0,∞):

yt t =−g+
K h2

m

(
1
3 A(+)yzz −

1
3 h[Byz + eσ ′(0)A(+)yt z]yzz

+ h2( 1
36 A(−)yzzzz + 2rσ ′(0)y2

z yzz + eσ ′(0)Byz yzz yt z +
1
6 eσ ′(0)A(+)yzz yt zz

))
, (35)

where
A(±) := 3χ(0)+ 6rσ ′(0)± 8r3σ ′′′(0) and B := σ ′(0)+ 4r2σ ′′′(0), (36)

and we have assumed that σ and χ are convenient smooth approximations of the signum and step func-
tions such as given in (30) and such that all even derivatives of σ and χ vanish at the origin. If we use
the approximation for σ in (31), then (35) takes the form

yt t =−g−
K h2

m

(
1
3 A(+)yzz −

1
3 h[Byz + eαA(+)yt z]yzz

+ h2( 1
36 A(−)yzzzz +α(2r y2

z yzz + eByz yzz yt z +
1
6 eA(+)yzz yt zz)

))
, (37)

with
A(±) := 3χ(0)+ 6rα∓ 16r3α3 and B := α(1− 8r2α2). (38)

We can take (37) as our long-wave continuum approximation for the dynamics of the particle system as
N →∞. Note that if we choose χ(0)= 1

2 and α = 1/h = 1/(2r), then

A(+) = 2.5, A(−) = 13.5 and B =−(1/h).

Observe that this is a highly nonlinear wave type equation. Of course, we shall need to impose
appropriate auxiliary conditions on (35) or (37) in order to obtain well-posedness, and also include the
periodic external (tapping) motion given by (2) and (3). Suitable initial and boundary conditions are

y(z, 0)= z, y(0, t)= y0(t), (39)

but more has to be done in order to (approximately) model the actual evolution of the system primarily
due to the vertical nature of the particle stack and the influence of gravity; something that makes analysis
of a horizontal particle configuration considerably easier to handle.

We shall now briefly explain these attendant difficulties, and describe the simplified method used
in this paper to deal with the intricacies of numerically solving (37). This problem is defined on the
semi-infinite first quadrant of the t, z-plane in a way that actually makes it analogous to a free boundary
problem that also necessitates an adjustment of the right-hand side of (37) consistent with evolution of
the lower and upper boundaries of the initial “particle interval”, 0≤ y(z, 0)= z ≤ S. What is required is
to find the evolution of the top point S of the vertical continuum of particle matter, 0≤ z ≤ S, defining a
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curve z = ϕ(t) in the in the t, z-plane, above which the force on the right-hand side of (37) has to be set
to zero. In addition, the gravity term g on the right-hand side of (37) must be set equal to zero along the
moving bottom y0(t), which defines the motion of the lower boundary point of the initial particle interval.
We choose to deal with these mathematical difficulties completely in a forthcoming paper dedicated to
just these matters, and use a much simpler hybrid method for our numerical treatment of the solution of
(37) in the sequel. In particular, we use our numerical solutions of the finite-dimensional initial value
problem (24)–(25) to track the (upper) “free boundary” of the evolution of the initial particle continuum
of height S, and then make the adjustments in (37) that we have just indicated.

As noted earlier, we also need to impose constraints on the parameters so that the initial stack of
particles, now approximated by a continuum of height S does not collapse. To this end, noting that we
are assuming h = 2r to be the average distance between the particles, it follows from (27) and (28) that
we must have

K h2

m
=

4Kr2

m
> 4Ngr = 2Sg. (40)

So, for example, K h2/m = 2.5 Sg would be a safe choice.
With regard to the PDEs (35) and (37), note that they represent (infinite-dimensional) integrable Hamil-

tonian dynamical systems when e = 0 (see [Ablowitz and Segur 1981; Błaszak 1998; Blackmore et al.
≥ 2011; Dickey 1991; Faddeev and Takhtajan 1987; Prykarpatsky and Mykytiuk 1998]), which is not
all that surprising since they are obtained as continuum approximations of the finite-dimensional system
(21), which can be rewritten as an L-A integrable Hamiltonian system when e = 0.

It is useful to observe that if (37) is solved imposing the auxiliary conditions described above, we can
then use the continuity equation to determine the particle density ρ via the equation

∂ρ

∂t
+ yt

∂ρ

∂z
+ yt zρ = 0, (41)

subject to the auxiliary (Cauchy) condition

ρ(z, 0)= constant=
m
2r
. (42)

5. Alternative continuum approximation: BSR model

There is another, more direct, method for finding continuum approximations of granular flow equations
that was developed in [Blackmore et al. 1999] and used in [Blackmore and Dave 1997] to approximate
the dynamics of a large number of particles moving along a horizontal line with one fixed boundary
(wall) and subject to a periodic forcing function. This approach leads first to the following integro-PDE
(IPDE) for the dynamics of the granular motion being considered:

ut + uuz =

−g−
K
m

∫
∞

0

(
[1−eσ(1ẏi )](2r−1yi )χ(2r−1kyi )−[1−eσ(1ẏi−1)](2r−1yi−1)χ(2r−1yi−1)

)
dz, (43)

where u is the velocity yt = zt . In order to obtain the correct expression for the integral, we need to
reinterpret the local force (appearing as the integrand) on a particle at the point y in the manner of
[Blackmore et al. 1999].
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The actual force expression at z ∈ [0,∞), which must be “averaged” over a neighborhood (z− y, z+ y)
corresponding to the near-neighbors in the lattice dynamics formulation in Section 2.1 is

−
K
m
[1− eσ(u(z+ y)− u(z))](2r − |y|)χ(2r − |y|),

and this suggests the following as a first approximation for the integrated force in (42):

−
K
m

∫ h

−h
[1− eσ(u(z+ y)− u(z))](2r − |y|)χ(2r − |y|) dy.

However, this does not account for the probabilities of an abutting particle (or bottom) that actually
causes the force on a particle centered at z. A reasonable choice is that of a normal distribution that
depends on z in a way that the force goes rapidly to zero as z→∞ having the form

2(y, z; b, c) :=
1

b
√

2π
exp

(
−
((z+ y)− b)2

2c2

)
, (44)

where a and b are positive constants that can be tuned to match results obtained by simulation or exper-
iment. For the sequel, we choose b = 7h and c = 3h. Whence, our IPDE becomes

ut + uuz =−g−
K
m

∫ h

−h
2(y, z; 7h, 3h)[1− eσ(u(z+ y)− u(z))](2r − |y|)χ(2r − |y|) dy. (45)

Again we require auxiliary conditions for well-posedness, and these take the form

u(z, 0)= 0, u(0, t)= ẏ0(t). (46)

Once again, it is worth noting that when e = 0, (45) represents an infinite-dimensional Hamiltonian
dynamical system, inasmuch as it can be written in the form

ut = θ ◦∇H(u), (47)

where H is a smooth function, called the Hamiltonian function, ∇ is the standard variational gradient
operator for functions and θ is what is called an implectic operator, which plays a role for infinite-
dimensional Hamiltonian systems analogous to that of the 2N × 2N matrix

J =
(

0 IN

−IN 0

)
,

where IN is the identity matrix of order N . These notions are all standard in the theory of Hamiltonian
dynamical systems, as found in texts such as [Ablowitz and Segur 1981; Arnold 1978; Blackmore et al.
≥ 2011; Błaszak 1998; Dickey 1991; Faddeev and Takhtajan 1987; Guckenheimer and Holmes 1983;
Katok and Hasselblatt 1995; Prykarpatsky and Mykytiuk 1998], but are a bit too mathematical to delve
into here.

Observe that in a manner analogous to that in the L-W formulation above, one also can use the solution
u = (z, t) to determine the density via

∂ρ

∂t
+ u

∂ρ

∂z
+ uzρ = 0, (48)

subject to the Cauchy data (46).



82 D. BLACKMORE, A. ROSATO, X. TRICOCHE, K. URBAN AND V. RATNASWAMY

6. Dynamics of continuum models

If, as indicated by our preliminary study here, the infinite-dimensional dynamical systems in the form of
PDEs and IPDEs obtained using the L-W and BSR methods, respectively, provide good approximations
to the behavior of a fairly rich variety of granular flows, it follows that we may be able to bring many of
the tools of nonlinear dynamics to bear on a multitude of related problems of practical interest. Here we
shall only give a couple of examples - in the form of theorems — related to wave propagation in granular
media.

First, we consider the L-W approximation (37) and the possible existence of the kind of persistent
stable wave structure associated with solitons, which were first described by Zabusky and Kruskal [1965]
and have since become an important fixture of the modern theory of dynamical systems, as indicated by
such treatments as [Ablowitz and Segur 1981; Blackmore et al. ≥ 2011; Błaszak 1998; Dickey 1991;
Faddeev and Takhtajan 1987; Prykarpatsky and Mykytiuk 1998]. And these solitons associated with
integrable systems have become increasingly important in applied research in general, and granular flow
investigations in particular. Nesterenko [1983] was the first to analytically show the existence of solitons
in L-W approximations of a horizontal chain of particles with perfectly elastic Hertzian interactions,
which he validated by observing soliton like behavior in actual physical experiments. His equations
were obtained by fourth order L-W approximations analogous to (37), except for the gravity term. He
showed that his equations can be transformed into the Korteweg–de Vries equation, which is well known
to be integrable and so admit soliton solutions. The transformation that he used can be readily modified
for our vertical, Walton–Braun rather than Hertzian interactions, to prove the following result.

Theorem 2. The infinite-dimensional Hamiltonian system (37) is integrable when e = 0; therefore it
admits soliton solutions.

Several years after Nesterenko’s pioneering work on solitons in L-W approximations of one-dimen-
sional Hertzian particle chains, Blackmore and Dave [1997] analyzed approximate models of the same
kind of particle chains assuming Walton–Braun particle-particle and particle-wall interactions using the
BSR method. They found that a further approximation using the BSR approach yielded Burgers’ equation,
which is another well-known example of an integrable PDE admitting soliton solutions. The Hamiltonian
system obtained from (45) when e = 0 is also integrable, and this can be proved by showing that there
exists another independent representation of the form (47) satisfying certain assumptions guaranteeing
that the system is bi-Hamiltonian (cf. [Błaszak 1998]) in a way that implies integrability. We shall only
state this result here, leaving the proof to a forthcoming paper.

Theorem 3. If e = 0, the BSR model (45) is an integrable Hamiltonian dynamical system.

7. Illustrative examples

Here we present examples of a numerical solution of the one-dimensional tapping equations (together
with auxiliary data) obtained using both the L-W and BSR methods. In each case we use the simplified
hybrid method — described for the L-W model in Section 4 and the BSR model in Section 5. The partial
differential operators in equations (37) and (45) are approximated using central differences with equal
time and distance steps of 0.01 and the integral in (45) is computed using the trapezoidal approximation.
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Figure 2. L-W (left) and BSR (right) approximations of tapping solution surface with
parameters in Figure 1, right.

We use the same parameters as in the ten-particle example in Figure 1, right, but consider a much longer
tap duration, so that we can compare the approximate numerical solutions of the continuum models to
the numerical solutions of the exact Newtonian initial value problem (24)–(25).

The solution surfaces of the approximate L-W and BSR solutions are shown in the two halves of
Figure 2. One can see that both approximate continuum solutions are very close to one another —
both qualitatively and quantitatively — and they show good qualitative agreement with the (numerical)
solution of the exact system of ODEs as depicted in Figure 1, right.

8. Concluding remarks and future research

We have shown that both the L-W and BSR approximate continuum models for the one-dimensional
tapping problem have solutions that are in rather good qualitative agreement with exact lattice solutions.
It seems reasonable to assume then that both of the approximate continuum approaches employed in this
paper are viable predictive tools for higher-dimensional and more varied granular flows. Consequently,
it just may be that a wealth of useful information can be mined from a dynamical systems oriented
investigation of these relatively simple continuum models. With this in mind, we plan, in our future
research, to investigate the potential of these infinite-dimensional models using a combined dynamical
systems, simulation and visualization approach.

From the dynamical systems perspective, we shall first generalize the two continuum approaches to
two- and three-dimensional tapping flows. Extension of the L-W method to two and three dimensions
is inherently more difficult than the BSR approximation, because the lattice equations from which it
is derived get quite a bit more complicated due to the increasing number of possible regular lattices
(square, hexagonal, cubic, tetrahedral and more) to choose from and the increased complexity of nearest-
neighbor dynamical equations, as indicated in [Ruiz-Ramírez and Macías-Díaz 2010; Zolotaryuk et al.
2000]. Naturally, we shall have to perfect our numerical treatment of the resulting boundary-initial value
problems (which we conveniently simplified using a hybrid method in this paper) in order to validate
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the dynamical predictions obtained from the continuum models. And having a rigorously formulated
and coded numerical simulation approach will be a must as we extend the continuum approximation
approach to additional types of (higher-dimensional) granular flow regimes.

We also expect the nonlinear dynamics approach to be especially useful in detecting and analyzing
such phenomena as jamming and force chains. Roughly speaking, jamming can be associated with nearly
invariant subregions of the dynamical systems, and force chains can be identified with connected nearly
invariant networks in the resulting stress tensor fields. From a more mathematical perspective, we envis-
age obtaining new theoretical results linking the integrability of the limiting continuum approximations
with the integrability of the exact finite systems, possibly yielding new examples of higher-dimensional
integrable systems and novel KAM theory type results for systems that are only nearly integrable to begin
with (see [Arnold 1978; Katok and Hasselblatt 1995; Kuksin 1993], for example) or results akin to those
in [Prykarpatsky et al. 1999] when slight inelasticity renders the dynamics only nearly Hamiltonian.

Our approach using dynamical systems theory is intended to go hand-in-hand with novel refinements
and extensions of existing simulation capabilities in a manner that both informs and validates the analysis.
One of the applications intended for the models we have discussed in this paper is that of “density
relaxation”, in which a vessel of granular materials subjected to vibrations or tapping experiences an
increase in its bulk density. Because the ability of granular materials to undergo this change in density
is an inherent property that is not well-understood, this remains a critical impediment in developing
predictive models of flowing bulk solids. We intend to address this issue in future studies by applying
the dynamical systems models described in this paper to a system of uniform spheres in an attempt to
determine how the various features of the motion scale with the total mass, and the details (e.g., amplitude
and frequency) of the floor motion. In particular, our recent stochastic and discrete element findings on
density relaxation, reported in [Dybenko et al. 2007; Rosato et al. 2010a; 2010b], have suggested the
importance of the tap amplitude in the evolution of granular microstructure, as well as a strong effect of
the bulk mass of the system.

An indispensable component of our future research is the kind of sophisticated dynamical systems
oriented computer visualization that has come to the fore in recent year in work such as [Haller 2001;
Lindeberg 1998; Tricoche et al. 2008]. As our theoretical and computational investigation moves toward
more complex, higher-dimensional, and larger-scale granular systems, the interpretation and analysis of
our models will become significantly more difficult and require dedicated tools that do not yet exist. We
are therefore initiating a research thrust in visual data analysis aimed at supporting the characterization
of salient structural and quantitative properties of the systems. Our work will explore an approach
connecting the dynamical systems perspective to differential geometric structure definitions. The latter
will then form the basis of abstract visual representations that address the visual clutter of large particulate
assemblies.

Specifically we will apply a topological framework [Tricoche et al. 2008] to characterize the structural
skeleton of the stress field acting upon the system and study its relationship with relaxation and jamming
behaviors. Moreover we will study invariant manifolds of the system’s dynamics by extending to the
discrete setting the notion of Lagrangian coherent structures that has been recently introduced in the non-
linear dynamics and fluid mechanics literature [Haller 2001]. Finally, we will devise a novel scale space
framework [Lindeberg 1998] suitable for the detection of salient core and edge manifolds in granular
assemblies and explore their relationship with observed physical properties of granular flows.
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REFLECTION OF TRANSIENT PLANE STEP-STRESS WAVES:
SOME CONSIDERATIONS OF ORTHOTROPY AND THERMOELASTICITY

LOUIS MILTON BROCK

To Charles and Marie-Louise Steele

Governing transient equations and (dimensionless) wave speeds for isotropic and orthotropic solids, and
for isothermal and thermoelastic cases, are presented. For the orthotropic solid, propagation occurs in
a principal plane. The thermoelastic cases treat Fourier heat flow and thermal relaxation, and stress-
and temperature-step waves of a class that does not exhibit attenuation and dispersion. Reflection of
incident step-waves by a half-space surface is then treated. Situations vary in the combinations of model
features noted above. Isotropic limit cases of orthotropic results are also examined, for isothermal and
thermoelastic situations. Finally, restrictions on angles of incidence and reflection due to anisotropy are
identified, and some related calculations presented.

1. Introduction

The reflection of transient plane waves by traction-free surfaces of elastic solids is an important consid-
eration in seismology [Cagniard 1962] and in models for layers and layered media [Brekhovskikh 1957;
Achenbach 1973; Miklowitz 1978]. The reflection process is more complicated in the orthotropic elastic
solid [Lindsay 1960] because elastic wave speeds depend on propagation direction. Similarly, isotropic
thermoelastic solids [Chadwick 1960; Lord and Shulman 1960; Green and Lindsay 1972; Ignaczak and
Ostoja-Starzewski 2010] exhibit waves both with and without dispersion and attenuation.

Whether isothermal [Scott and Miklowitz 1967] or thermoelastic [Sharma and Sidhu 1986], anisotropic
solids are often studied in terms of the plane harmonic wave. Thus effects of step-stress (shock) signals
in a reflection process are not as readily discerned as in transient analyses of, for example, isotropic
isothermal solids [Achenbach 1973; Miklowitz 1978]. Plane wave propagation without dispersion can
occur in an isotropic solid subject to thermal relaxation [Ignaczak and Ostoja-Starzewski 2010]. For
the orthotropic solid, a class of plane waves exhibits neither dispersion nor attenuation [Brock 2010],
whether Fourier conduction [Chadwick 1960] or thermal relaxation [Lord and Shulman 1960; Green
and Lindsay 1972] holds. The class includes the step-stress. For plane wave propagation in an arbitrary
direction, displacement and stress are in effect defined by the temperature change. For propagation in a
principal plane, out-of-plane displacement uncouples from temperature, and travels as a shear wave of
arbitrary form. In the isotropic limit both displacement components parallel to the wave fronts travel as
shear waves of arbitrary form.

This study examines problems of reflection of a transient plane step-wave by the traction-free sur-
face of a half-space. Two problems involve isotropic solids that are governed by the thermal relaxation

Keywords: orthotropy, coupled thermoelasticity, Fourier conduction, thermal relaxation, plane wave reflection.
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models of [Lord and Shulman 1960] and [Green and Lindsay 1972], respectively. The former exhibits
a single relaxation time, while the latter has two such times. A third problem involves an orthotropic
solid governed by the Fourier model [Chadwick 1960], and a fourth problem concerns an isothermal
orthotropic situation. For simplicity, orthotropic problems treat plane wave propagation in a principal
plane, and include the corresponding isotropic cases as limits. The incident wave in the fourth problem
is a step-stress. The first three problems consider incident stress- and temperature-step waves without
attenuation or dispersion [Brock 2010].

It should be noted, for the Fourier model in particular, that several problems involve restrictions on
the particular combination of natural boundary conditions imposed. Nevertheless, the solutions de facto
represent nonconventional thermoelastic processes [Ignaczak and Ostoja-Starzewski 2010], and allow in-
sight into propagation without dispersion and attenuation for plane waves with temperature or stress steps.

As indicated above, a substantial literature exists for isothermal wave propagation. For purposes of
illustration and the use of uniform definitions of parameters and functions, however, some key results
for these problems are included. It is also noted that a plane wave in an infinite isothermal solid is
obtained from the solution to an eigenvalue problem. That is, the solution defines the wave speeds and
couples components of displacement (and also stress). The work in [Brock 2010] differs only in that a
class of solutions — including the step-stress (shock) case — does not exhibit the typical attenuation and
dispersion of coupled thermoelasticity.

The study begins with a presentation of governing equations for the orthotropic isothermal and the
orthotropic thermoelastic solid. Corresponding equations for propagation of plane waves in a principal
plane are then extracted, and characteristic wave speeds for the isothermal and thermoelastic cases exam-
ined. The isotropic limit speeds are obtained, and asymptotic formulas for the speeds when orthotropy
is weak are then presented. Consideration of the four problems and isotropic limit cases follows.

2. Governing equations for orthotropic elasticity

In terms of principal Cartesian basis x = (x1, x2, x3) and time t , linear momentum balance requires that

∂k Tki = µ̄D2ui , D =
∂t

v̄
, v̄ =

√
µ̄/ρ (i, k = 1, 2, 3). (1)

Here ∂i and ∂t signify derivatives with respect to xi and t , and ui , Tik are the components of displacement
vector u and stress tensor T (x, t). For the isothermal case the components of T are[T11

T22

T33

]
= µ̄

[ C1 C12 C13

C12 C2 C23

C13 C23 C3

][∂1u1

∂2u2

∂3u3

]
, (2a)

T23 = µ̄C4(∂2u3+ ∂3u2), T31 = µ̄C5(∂3u1+ ∂1u3), T12 = µ̄C6(∂1u2+ ∂2u1), (2b)

µ̄Ci = ci i , µ̄Cik = cik (i 6= k). (2c)

Here ρ is mass density, the cik are the nine elastic constants for orthotropic elasticity [Sokolnikoff 1956;
Jones 1999], µ̄ is a reference shear modulus chosen for convenience from the set (c44, c55, c66), and v̄
is a corresponding reference speed that becomes the shear (rotational) wave speed in the isotropic limit
[Achenbach 1973]. A positive-definite elastic strain energy requires [Jones 1999] that the determinant
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of the coefficient matrix in (2a) be positive, and that

Ck > 0 (k = 1, 2, 3, 4, 5, 6), (3a)

Ci Ck −C2
ik > 0 (i, k = 1, 2, 3, i 6= k), (3b)

|Ci j Cik −Ci C jk |<

√(
Ci C j −C2

i j

)(
Ci Ck −C2

ik

)
(i, j, k = 1, 2, 3 all distinct). (3c)

The summation convention does not hold in (3c). Equations (1), (2b), (2c) and (3) hold for a thermoelastic
solid initially at uniform (absolute) temperature T0, but coupling of (u, T ) with the change in absolute
temperature θ(x, t) requires that (1) be augmented by

(hi∂
2
i − D̃D)θ − DD

( ε1

K1
∂1u1+

ε2

K2
∂2u2+

ε3

K3
∂3u3

)
= 0, (4)

with D, D̃, εi , hi defined below. The gradient column matrix in (2a) and (3) are also modified:[
∂1u1− K1 D̂θ
∂2u2− K2 D̂θ
∂3u3− K3 D̂θ

]
with

[K1
K2
K3

]
=

[ C1 C12 C13
C12 C2 C23
C13 C23 C3

][
α1
α2
α3

]
, (5a)

αi , Ki > 0 (i = 1, 2, 3). (5b)

For the Fourier model [Chadwick 1960], denoted by F, and the thermal relaxation models of [Lord and
Shulman 1960] and [Green and Lindsay 1972], denoted by I and II, respectively, the operators D, D̃, D̂
are

F : D, D̃, D̂ = 1, (6a)

I : D, D̃ = 1+ hI D, D̂ = 1, (6b)

II : D = 1, D̃ = 1+ hI D, D̂ = 1+ hII D. (6c)

Here εi , hi are dimensionless thermal coupling constants and hI, hII are thermal characteristic lengths;
their expressions are

εi =
T0

cV
(v̄Ki )

2, hi =
ki

cV
√
µ̄ρ
, hI = v̄ tI, hII = v̄ tII, (7)

where tI, tII are thermal relaxation times, with tII > tI, while ki , αi , cV are the conductivity, coefficient of
linear expansion, and specific heat at constant volume. In the isotropic limit, µ̄= µ reduces to the shear
modulus µ, while v̄ reduces to the isotropic shear (rotational) wave speed vS =

√
µ/ρ; we then have,

with λ the first Lamé constant and ν Poisson’s ratio,

C1,C2,C3 =
λ

µ
+ 2, C4,C5,C6 = 1, C12,C13,C23 =

λ

µ
=

2ν
1−2ν

, (8a)

K1, K2, K3 = K =
(

3 λ
µ
+ 2

)
α, ε1, ε2, ε3 = ε =

T0

cV

[
νr

(
3 λ
µ
+ 2

)
α
]2
, (8b)

h1, h2, h3 = h =
k

cV
√
µρ
. (8c)
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3. Plane wave propagation in arbitrary direction: formulation

The formulation for plane wave propagation in an arbitrary direction is given in [Brock 2010] for the
thermoelastic case. For purposes of this article, it is sufficient to consider propagation in the x1x2-
principal plane. Thus the Cartesian basis (x, y, z) is defined with respect to the principal basis x by the
transformation

x = x1 cosφ− x2 sinφ, y = x1 sinφ+ x2 cosφ, z = x3 (|φ|< π/2). (9)

Because propagation occurs in the x1x2-plane it is convenient to choose

µ̄= c66, v̄ = v6 =

√
c66
ρ
, τ = v6t, D = ∂τ . (10)

The temporal variable τ has dimensions of length, and D now signifies differentiation with respect to τ .
When propagation is in the x-direction and (y, z)-dependence is suppressed, (1) gives

∂x Txx = c66 D2ux , ∂x Tyx = c66 D2u y, ∂x Tzx = c66 D2uz. (11)

Similarly, in place of (2), [Txx

Tyx

Tzx

]
= c66

[ Cx Cxy 0
Cxy Cy 0
0 0 Czx

][∂x ux

∂x u y

∂x uz

]
, (12a)

[Tyy

Tzz

Tyz

]
= c66

[C x
y C y

y 0
C x

z C y
z 0

0 0 Cyz

][∂x ux

∂x u y

∂x uz

]
, (12b)

Txy =Tyx , Tyz = Tzy, Txz = Tzx . (12c)

In (12a) the dimensionless coefficients are

Cx = C1 cos4 φ+C2 sin4 φ+ (1+ 1
2C12) sin2 2φ, (13a)

Cy = cos2 2φ+ 1
4(C1+C2− 2C12) sin2 2φ, (13b)

Cxy =
1
2 [C2 sin2 φ−C1 cos2 φ+ (2+C12) cos 2φ] sin 2φ, (13c)

Czx = C5 cos2 φ+C4 sin2 φ. (13d)

In (12b) the coefficients are

C x
y = C12(cos4 φ+ sin4 φ)+ [14(C1+C2)− 1] sin2 2φ, (14a)

C y
y =

1
2 [C2 cos2 φ−C1 sin2 φ− (2+C12) cos 2φ] sin 2φ, (14b)

C x
z = C13 cos2 φ+C23 sin2 φ, C y

z = (C23−C13) sinφ cosφ, (14c)

Cyz = (C4−C5) sinφ cosφ. (14d)

The matrix in (12a) is symmetric but that in (12b) is not, and

Cxy +C y
y = (C2−C1) sinφ cosφ, Cx +Cy = 1+C1 cos2 φ+C2 sin2 φ. (15)
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For the thermoelastic case, (11) is coupled with

(hx∂
2
x − D̃D)θ − DD∂x

( εx

Kx
ux +

εy

K y
u y

)
= 0. (16)

The modifications of the gradient column matrices in (12a) and (12b) are[ ∂x ux−Kx D̂θ
∂x u y−K yx D̂θ

∂x uz

]
,

[∂x ux−K x
y D̂θ

∂x u y−K3 D̂θ
∂x uz

]
. (17)

In (16) and (17),

hx = h1 cos2 φ+ h2 sin2 φ, εx =
T0

cV
(v6Kx)

2, εy =
T0

cV
(v6K yx)

2. (18)

The K coefficients in (16)–(18) are given by

Kx = K1 cos2 φ+ K2 sin2 φ, K x
y = K1 sin2 φ+ K2 cos2 φ, (19a)

K yx = (K2− K1) sinφ cosφ, Kx + K yx = K1+ K2. (19b)

4. Isothermal plane waves

Studies of isothermal waves in isotropic, transversely isotropic and orthotropic solids are available in
[Achenbach 1973; Payton 1983; Lindsay 1960; Scott and Miklowitz 1967]. For the sake of transparency
and notational consistency, however, basic results are presented here: (11) can be uncoupled, and (12a)
then gives

(Czx∂
2
x − D2)uz = 0, (20a)[

Cx∂
2
x − D2 Cxy∂

2
x

Cxy∂
2
x Cy∂

2
x − D2

][
ux

u y

]
=

[
0
0

]
. (20b)

For plane wave propagation in the x-direction, (20) admits the general solutions

uξ =Uξ++ (c+τ − x)+Uξ−(c−τ − x), ξ = (x, y), (21a)

uz =Uz(czτ − x), cz = cz(φ)=
√

C5 cos2 φ+C4 sin2 φ . (21b)

The functions Uz and Uξ± are arbitrary but Uξ± is subject to either of two restrictions:

(Cx − c2
±
)U ′′x±+CxyU ′′y± = 0, CxyU ′′x±+ (Cy − c2

±
)U ′′y± = 0 (22)

Here a prime signifies differentiation. The dimensionless speed cz is defined in (21b); the dimensionless
speeds c = c± come from the roots of the secular equation

c4
− (Cx +Cy)c2

+CxCy −C2
xy = 0. (23)

Properties of quadratics [Abramowitz and Stegun 1972], together with (13), (14) and (15), give

c2
+
+ c2
−
= Cx + Cy = 1+C1 cos2 φ+C2 sin2 φ,

c2
+

c2
−
= CxCy −C2

xy = C1 cos2 φ+C2 sin2 φ+� sin2 φ cos2 φ.
(24)



92 LOUIS MILTON BROCK

Solution of (23) gives

2c± = 2c±(φ)= 0+±0−, (25a)

0± =

√
1+C1 cos2 φ+C2 sin2 φ± 2

√
C1 cos2 φ+C2 sin2 φ+� sin2 φ cos2 φ, (25b)

�= (C1− 1)(C2− 1)−m2
= γ−C1−C2, γ = 1+C1C2−m2, m = 1+C12. (25c)

It is noted that c± and cz are symmetric in φ. Parameters (γ,m) and �, respectively, are used by [Payton
1983] and [Brock and Georgiadis 2007] for transversely isotropic materials, but prove useful in the
present study as well. In the isotropic limit �= 0 and (21b) and (25) give

v6 = vr , cz = c− = cS = 1, c+ = cD =

√
λ

µ
+ 2> 1 (|φ|< π/2). (26)

Subscript D and S signify quantities associated with isotropic dilatational and shear waves. For ortho-
tropic materials, c+ > c− > 0 in any of these situations:

A1 : γ2
− 4C1C2 < 0, |φ|< π/2; (27a)

A2 : γ2
− 4C1C2 > 0, γ > 0, |φ|< π/2; (27b)

A3 : γ2
− 4C1C2 > 0, γ < 0, |φ|<8A−, 8A+ < |φ|< π/2, (27c)

where

8A± = tan−1 1
√

2C2

√
−γ∓

√
γ2− 4C1C2. (27d)

If in A3 we take instead |φ| =8A±, then 0+ = 0− > 0 and c+ > 0, c− = 0. If 8A−< |φ|<8A+, then
0+, 0− are complex conjugates with positive real parts, and c+ is positive real, but c− is imaginary.

5. Thermoelastic plane waves

Equation (1) again uncouples to produce (20a) and (21b). However, (ux , u y) and θ are coupled by (16);
as a consequence [Chadwick 1960; Achenbach 1973; Ignaczak and Ostoja-Starzewski 2010] we get for
isotropic materials a secular equation that gives complex dimensionless speeds c; that is, ux , u y, θ exhibit
dispersion and exponential decay.

However one can consider a restricted class of forms [Brock 2010]

θ =

N∑
k=1

2k−1(cτ − x)k−1 (cτ ≥ x) (28)

with N = 4 for F and N = 3 for I, II. Here the 2k are constants; the 20 term represents a propagating
temperature step. The secular equations then become

F : c4
− I F

1 c2
+ I F

2 = 0, (29a)

I : c6
− (lx + I F

1 )c
4
+ [lx(c2

+
+ c2
−
)+ I F

2 ]c
2
− lx c2

+
c2
−
= 0, (29b)

II : c6
− (lx + Ī1)c4

+ [lx(c2
+
+ c2
−
)+ Ī2]c2

− lx c2
+

c2
−
= 0. (29c)
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The coefficients in (29a) are

I F
1 = 1+ F1 cos2 φ+ F2 sin2 φ, I F

2 = F1 cos2 φ+ F2 sin2 φ+�F sin2 φ cos2 φ, (30a)

with

�F = (F1− 1)(F2− 1)−m2
F = γF− F1− F2, γF = 1+ F1 F2−m2

F, mF = 1+ F12, (30b)

F1 = C1+ ε1, F2 = C2+ ε2, F12 = C12+
√
ε1ε2. (30c)

In (29b) and (29c), c+ and c− are given by (25), and

Ī1 = l I F
1 + (1− l)(c2

+
+ c2
−
), Ī2 = l I F

2 + (1− l)c2
+

c2
−
, lx =

hx

hI
> 1, l =

hII

hI
> 1. (31)

The inequalities in (31) are based on data [Ignaczak and Ostoja-Starzewski 2010; Brock 2009]. The
roots of (29a), (29b) and (29c) give dimensionless speeds c = cF±, c = c1I, c2I, c3I and c = c1II, c2II, c3II

. Properties of quadratic and cubic equations [Abramowitz and Stegun 1972] show that
c2

F++ c2
F− = I F

1 , c2
F+c2

F− = I F
2 , (32a)

c2
1I+ c2

2I+ c2
3I = lx + I F

1 , c2
1II+ c2

2II+ c2
3II = lx + Ī1, (32b)

c2
1Ic

2
2I+ c2

2Ic
2
3I+ c2

3Ic
2
1I = lx I1+ I F

2 , c2
1IIc

2
2II+ c2

2IIc
2
3II+ c2

3IIc
2
1II = lx I1+ Ī2, (32c)

c2
1Ic

2
2Ic

2
3I = c2

1IIc
2
2IIc

2
3II = lx I2. (32d)

For model F, (29a) and (30) give symmetric real functions of φ:

2cF± = 2cF±(φ)= 0
+

F ±0
−

F , (33a)

0±F =

√
1+ F1 cos2 φ+ F2 sin2 φ± 2

√
F1 cos2 φ+ F2 sin2 φ+�F sin2 φ cos2 φ. (33b)

In the isotropic limit, �F vanishes and (30) and (33) give, for all |φ|< π/2,

v6 = vr , cz = cF− = cS = 1, cF+ = cF =
√

c2
D + ε > 1. (34)

The parameter set (γF,mF, �F) is the thermoelastic counterpart of (γ,m, �). For the orthotropic material,
the behavior of cF± is governed by conditions that can be obtained from (27) in Section 4 by replacing
c±, 0±, γ,m, �,C1,C2 with cF±, 0

±

F , γF,mF, �F, F1, F2, respectively.
Formal expressions for the roots c2

1I, c2
2I, c2

3I of (29b) and basic inequalities that guarantee positive real
values are given in [Brock 2010] for Model I. The isotropic case is of interest here, and it can be shown
that (29b) gives, for all |φ|< π/2,

v6 = vS, c1I = cI+, c2I = cI−, c3I = cz = cS = 1, (35a)

2cI± = 0
+

I ±0
−

I , 0±I =

√
(cD ±

√
lx)2+ ε. (35b)

Available data [Brock 2009] suggest that 1 < cI− < cD < cF < cI+. Equation (35a) shows that the
components of ux , u y corresponding to c3I uncouple from θ , i.e., are shear waves defined by arbitrary
functions of τ − x .
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Equation (29c) for Model II yields roots cz, c1II, c2II, c3II. Formal expressions for these, and basic
inequalities that guarantee positive real values, are given in [Brock 2010]. As with Model I the isotropic
case is of interest here:

v6 = vS, c1II = cII+, c2II = cII−, c3II = cz = cS = 1, (36a)

2cII± = 0
+

II ±0
−

II , 0II =

√
(cD ±

√
lx)2+ lε (36b)

Available data [Brock 2009] suggest that 1< cII− < cD < cF < cII+.
The components of ux , u y that correspond to cF−, c3I, c3II are seen from equations (34), (35a), (36a),

respectively, to uncouple from θ , and become shear waves that are arbitrary functions of τ − x . Moreover
(35) and (36) give the dimensionless speeds in transient two-dimensional studies that are valid for short
times (τ/hI� 1 and τ/hII� 1 respectively); see [Brock 2009].

6. Speeds in weakly orthotropic solids

The limit (26) of (25) can be defined in terms of dimensionless parameters C1 and �, and likewise the
limit (34) of (33) in terms of F1 and �F:

C1→ C2, �→ 0 : c+(φ)= cD, c−(φ)= 1, (37a)

F1→ F2, �F→ 0 : cF+(φ)= cF, cF−(φ)= 1, (37b)

In similar fashion, results from [Brock 2010] show that

C1→ C2, F1→ F2, h1→ h2, �,�F→ 0 :
{c1kI(φ)= cI+, c2I(φ)= cI−, c3I(φ)= 1, (38a)

c1II(φ)= cII+, c2II(φ)= cII−, c3II(φ)= 1, (38b)

When orthotropy is weak, i.e., when C1, F1, h1, �,�F are close to the limits indicated in (37) and (38),
asymptotic formulas can be derived. The derivation does not require explicit formulas such as (25a) and
(33a). A first-order variation of (24) and (29), under constraints (23) and (32), gives

c+(φ)≈ cD +
δC1

2cD
cos2 φ−

�

8mcD
sin2 2φ, c−(φ)≈ 1+

�

8m
sin2 2φ, (39a)

cF+(φ)≈ cF+
δF1

2cF
cos2 φ−

�F

8mFcF
sin2 2φ, cF−(φ)≈ 1+

�F

8mFcF
sin2 2φ, (39b)

[c1I(φ), c2I(φ)]≈cI±+
1

2cI±

cos2 φ

PIc2
I±+ QI

(l0�−c2
I±�F) sin2 φ+(c2

I±−1)
[
c2

I±δF1−l0δC1+(c2
I±−c2

D)
δh1
hI

]
,

(39c)

[c1II(φ), c2II(φ)] ≈ cII±+
1

2cII±

cos2 φ

PIIc2
II±+ QII

×[�(l0+ c2
II±(l − 1))− lc2

II±�F] sin2 φ

+(c2
II±− 1)

[
lc2

II±δF1+ (c2
II±(1− l)− l0)δC1+ (c2

II±− c2
D)
δh1

hI

]
, (39d)
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c3I(φ)≈ 1+
l0�−�F

1− c2
F+ml0

1
8

sin2 2φ, (39e)

c3II(φ)≈ 1+
(l0+ l − 1)�− l�F

1− lc2
F+ml0+ 2c2

D(l − 1)
1
8

sin2 2φ, (39f)

where l0 = h/hI is the limit value of lx , the parameters PI, PII, QI, QII are defined by

PI = 1+ c2
F− 2l0, PII = 1+ c2

D + lε− 2l0, (40a)

QI = 3l2
0 + l0[c2

F+ 2(ε− 1)] − 2c2
F, (40b)

QII = 3l0[l0+ ε(l − 1)] + l0[c2
F+ 2(ε− 1)] − 2(c2

D + lε), (40c)

and δC1, δF1, δh1, �,�F are small:

δC1 = C1−C2, δF1 = F1− F2, δh1 = h1− h2, (41a)∣∣∣∣C1

C2
− 1

∣∣∣∣� 1,
∣∣∣∣F1

F2
− 1

∣∣∣∣� 1,
∣∣∣∣h1

h2
− 1

∣∣∣∣� 1,
∣∣∣∣ γ

C1+C2
− 1

∣∣∣∣� 1,
∣∣∣∣ γF

F1+ F2
− 1

∣∣∣∣� 1. (41b)

7. Isotropic case: shear wave reflection for model I

The isotropic half-space x1 > 0 is initially at rest at uniform temperature T0. An incident plane shear
step-wave travels in the negative x-direction, and reaches surface point (x1, x2)= 0 at time t = 0 (τ = 0):

(ux , uz)= 0, Txy = Gi +G ′i (τ + x)(τ + x ≥ 0). (42)

Here Gi ,G ′i are given constants. In view of (9), the wave (42) generates, for x1 = 0 and τ + x2 sinφ ≥ 0,

θ = 0, (T12, T11)= (cos 2φ,− sin 2φ)[Gi +G ′i (τ + x2 sinφ)] (43)

Reflection of (43) generates plane waves governed by (11), (28), (29b) and (34). These travel away
from the surface, i.e., in positive x-directions whose angles differ from φ. In view of (9), (12) and (17),
therefore, we have, for x1 = 0 and τ − x2 sinφS ≥ 0,

θ = 0, (T12, T11)= (cos 2φS,− sin 2φS)[GS +G ′S(τ − x2 sinφS)]. (44)

For x1 = 0, cI±τ − x2 sin θ± ≥ 0 we have

θ =2±+2
′

±
(cI±τ − x2 sinφ±), (45a)

(T12, T11)=−
µK
d±

(sin 2φ±,C±)[2±+2′±(cI±τ − x2 sinφ±)], (45b)

C± = c2
I±− 2 sin2 φ±, d± = c2

I±− c2
D, d+d− =−εc2

D. (45c)

Here GS,G ′S,2±,2
′
±

are unknown constants. The half-space surface remains traction-free and is
governed by thermal convection [Chadwick 1960]:

x1 = 0 : T12 = T11 = 0, ∂1θ −βθ = 0 (46)
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Parameter β is related to the Biot number [Boley and Weiner 1985]. Satisfaction of (46) by the summation
of (43)–(45) requires that

φS =−φ, φ± =− sin−1(cI± sinφ) (cI± sinφ ≤ 1). (47)

It follows that (46) produces the equations

2′
±
=±

β

1
(2++2−), 1= cosφ+− cosφ−, (48a)

µK
(
2+
d+

sin 2φ++
2−
d−

sin 2φ−
)
+GS cos 2φS +Gi cos 2φ = 0, (48b)

−µK
(
2+
d+

C++
2−
d−

C−
)
+GS sin 2φS −Gi sin 2φ = 0, (48c)

µK β

1

(cI+
d+

sin 2φ+−
cI−
d−

sin 2φ−
)
(2++2−)+G ′S cos 2φS +G ′i cos 2φ = 0, (48d)

−µK β

1

(cI+
d+

C+−
cI−
d−

C−
)
(2++2−)+G ′S sin 2φS −G ′i sin 2φ = 0. (48e)

Equation (45a) implies a spike (Dirac) function δ(τ + x2 sinφ) at the wave intersection in the heat flux
term in (46). Therefore (48) is subject to the restriction

cI−2+ cosφ++ cI+2− cosφ− = 0. (49)

The equation set (48b)–(48e) is solved for (GS,G ′S,2±), whereupon (48a) yields 2′
±

. The surface
temperature change generated by reflection is of particular interest, and it can be shown that, for x1 = 0
and τ + x2 sinφ ≥ 0,

θ =
εc2

D

µK
G ′i N2I sin 4φ

R2I R3I

[1
β
+ (cI+− cI−)(τ + x2 sinφ)

]
, (50a)

RkI = d−ck
I+R+− d+ck

I−R−, NkI = d−ck
I+R++ d+ck

I−R− (k = 1, 2, 3), (50b)

R± = 2 sin 2φ sinφ
√

s2
I±− sin2 φ− cos2 2φ, sI± =

1
cI±

. (50c)

The function R± is of the Rayleigh type [Achenbach 1973] in the isothermal case, and R2I is a thermo-
elastic counterpart. Investigation of possible roots of functions (NkI, RkI) is beyond the scope of this
article, but is necessary to complete this analysis.

Equation (50a) represents the effects of heat production from a shear wave by mode conversion. It is
noted that the step-stress term Gi does not contribute to surface temperature. Moreover, restriction (49)
is satisfied only when the incident shear wave parameters (Gi ,G ′i ) are related by[

β
Gi

G ′i
(cI+ cosφ−− cI− cosφ+)+ 1− cosφ+ cosφ−

]
R3I− c2

I+c2
I−R1I sin2 φ = 0 (51)

That is, the surface in general exhibits a spike in the heat flux.
The restriction in (47) indicates that reflections moving at speed cI−vS travel parallel to the surface

when cI+ sinφ = 1. Therefore φ = sin−1 sI+ is the minimum grazing angle of incidence. For this angle
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cosφ+ = 0 and (50) gives

R+ =−(1− 2s2
I+)

2, R− = 4s2
I+

√
1− s2

I+

√
s2

I−− s2
I+− (1− 2s2

I+)
2. (52)

Use of (52) causes distinct changes in the forms of (50a) and (51). However, this does not give corre-
spondingly distinctive behavior.

8. Isotropic case: shear wave reflection for model II

Equations (29c) and (34) now govern. Thus (42)–(44) and (45a) hold, but with cI± replaced by cII±. In
place of (45b) and (45c) we have, for x1 = 0 and cII±τ − x2 sinφ± ≥ 0,

(T12, T11)=−
µK
d±

(sin 2φ±,C±)[2±+2′±(hIIcII±+ cII±τ − x2 sinφ±)], (53a)

d± = c2
II±− c2

D, d+d− =−ε
hII

hI
c2

D (53b)

Equations (48a), (48d), (48e) and (49) still hold, with cI± replaced by cII±. Equations (47), (48b) and
(48c) are replaced by

φr =−φ, φ± =− sin−1(cII± sinφ)(cII+ sinφ ≤ 1), (54a)

µK
(

p+
2+
d+

sin 2φ++ p−
2−
d−

sin 2φ−
)
+GS cos 2φS +Gi cos 2φ = 0, (54b)

−µK
(

p+
2+
d+

C++ p−
2−
d−

C−
)
+GS sin 2φS −G ′i sin 2φ = 0, (54c)

p+ = 1+ β
1

cII+hII, p− = 1− β
1

cII−hII. (54d)

In this case, for x1 = 0 and τ + x2 sinφ ≥ 0, we have

θ =
εc2

D

µK
hII

hI

G ′i N2II sin 4φ
R2II R3II

[
1

β
+ (cII+− cII−)(τ + x2 sinφ)

]
, (55a)

RkII = d− p+ck
II+R+− d+ p−ck

II−R−, NkII = d− p+ck
II+R++ d+ p−ck

II−R− (k = 1, 2, 3). (55b)

Equation (50c) still holds, with cI± replaced by cII±. The counterpart to (51) does not hold and a surface
heat flux spike will arise unless

β
Gi

G ′i
(cII− cosφ+− cII+ cosφ−)R3I+ (1− cosφ+ cosφ−)R3II− c2

II+c2
II−R1II sin2 φ = 0. (56)

Here R3I, R3II both appear, with cI± replaced by cII± in (50b). Completion of this analysis will require
study of possible roots of NkII, RkII. Equation (54a) shows that the minimum grazing angle is φ =
sin−1 sII+. Then (52) holds, with sI+ replaced by sII+. Equations (55a) and (56) do not exhibit distinctive
behavior for this angle.
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9. Orthotropic case: thermal wave reflection for model F

Consider the temperature change θ =2i , traveling as a plane step-wave with speed cF+v6 in the negative
x-direction toward the surface x1 = 0 of half-space x1 > 0. Arrival at surface point (x1, x2)= 0 occurs
at time t = 0 (τ = 0). The material is orthotropic and satisfies the Fourier model equations, and (33a)
for cF± = cF±(φ) in particular. This problem is treated in [Brock 2010], so only key steps are presented:

For x1 = 0, cF+(φ)τ + x2 sinφ ≥ 0 the incident wave generates

θ =2i , T12 =−c66
Q(cF+, φ)

S(cF+, φ)
2i , T11 =−c66

P(cF+, φ)

S(cF+, φ)
2i (57)

In (57) the functions Q, P are defined by

Q(c, φ)= (K1+ K2)c2(φ) sinφ cosφ+ Q12 sin2 φ(1+ 2 cos 2φ)+ Q21 cos2 φ(1− 2 cos 2φ), (58a)

Q12 = K1m cos2 φ− K2(C1 cos2 φ+ sin2 φ), (58b)

Q21 = K2m sin2 φ− K1(C2 sin2 φ+ cos2 φ), (58c)

P(c, φ)= [F1K1 cos2φ+(mF−1)K2 sin2φ]c2(φ)+ [F1 P1 cos2φ+(mF−1)P2 sin2φ] sinφ cosφ, (59a)

P1 = K1(m cos 2φ+ 1+ 2C2 sin2 φ)− K2(C1 cos 2φ+ 2m sin2 φ), (59b)

P2 = K2(m cos 2φ− 1− 2C1 cos2 φ)− K1(C2 cos 2φ− 2m cos2 φ). (59c)

The function S is defined by

S(c, φ)

= [c2(φ)−1](ε1 cos2 φ+ε2 sin2 φ)+[(C2−1)
√
ε1−m

√
ε2]
√
ε1+[(C1−1)

√
ε2−m

√
ε1]
√
ε2. (60)

Here only the condition that the half-space surface remains traction-free is imposed. In accordance with
(28) and (29a), reflected plane waves travel in positive x-directions that form angles φ± with the positive
x1-axis at speed cF±(φ±)v6. The temperature steps are 2±, Equations (58)–(60) hold with φ replaced
by φ±, and for x1 = 0 and cF±(φ±)τ − x2 sinφ± ≥ 0 we have

θ =2±, T12 =−c66
Q(cF±, φ±)

S(cF±, φ±)
2±, T11 =−c66

P(cF±, φ±)

S(cF±, φ±)
2±. (61)

Reflection requires that

cF+(φ) sinφ++ cF+(φ+) sinφ = 0, cF+(φ) sinφ−+ cF−(φ−) sinφ = 0. (62)

This equation is satisfied when

φ+ =−φ, φ− =− sin−1 sinφ
cF

12(φ)
, (63a)

cF
12(φ)=

1
√

F1

√

(1+ F1)c2
F+(φ)− F1 cos2 φ− (F2+�F) sin2 φ. (63b)
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Imposing a traction-free surface gives

2+ =−2i
Q(cF+, φ)P(cF−, φ−)− P(cF+, φ)Q(cF−, φ−)

Q(cF+,−φ)P(cF−, φ−)− P(cF+,−φ)Q(cF−, φ−)
, (64a)

2− =−2i
S(cF−, φ−)

S(cF+, φ)

P(cF+, φ)Q(cF+,−φ)− Q(cF+, φ)P(cF+,−φ)

Q(cF+,−φ)P(cF−, φ−)− P(cF+,−φ)Q(cF−, φ−)
. (64b)

It is noted that 2i +2++2− 6= 0, i.e., the Fourier model predicts surface temperature change. Moreover
a surface heat flux spike occurs in ∂1θ unless

(2i −2+) cosφ−2− cosφ− = 0. (65)

The nature of cF
12 depends on material categorization that differs from the counterpart to (27) mentioned

in Section 5, e.g., γF < 0 implies �F < 0, and �F−m2
F > 0 implies �F > 0. Therefore (63b) gives the

positive real results

cF
12(8A±)=

1
√

F1

√
1+ F1 cos28A±+ F2 sin28A± , (66a)

cF
12(8B±)=

√
F1 cos28B±+ (F2+�F cos28B±) sin28B± . (66b)

However, when (F1− F2)
2
−4�F < 0 and (1+ F1)(F1− F2)−2(F2+�F) > 0, the value of cF

12 vanishes
when |φ| =8± and is imaginary for 8− < |φ|<8+, where

8± = tan−1

√
F1

2

√
(1+ F1)[F1− F2±

√
(F1− F2)2− 4�F] − 2(F2+�F) (67)

This behavior implies that (63a) is subject to the restriction sin2 φ < [cF
12(φ)]

2. It can be shown that the
restriction is satisfied except in the following cases:

B1 : Q B > 0, 8B1 < |φ|< π/2 (68a)

B2 : P2
B + Q B > 0, PB < 0, Q B < 0, 8−2B < |φ|<8

+

2B, (68b)

with

81B = tan−1 1
√

Q B

√
PB +

√
P2

B + Q B, 8±2B = tan−1 1
√
−Q B

√
−PB ∓

√
P2

B + Q B, (68c)

PB = 1−
F1

2
(1+ F1)(1+ F2), Q B = F1 F2+�F(1+ F2). (68d)

For angles of incidence φ that lie outside of the ranges prescribed by B1 and B2, a reflected wave travels
in the negative x2-direction at speed cF+v6. In view of (68) and the thermoelastic counterpart to (27) in
Section 4, (61) and (64) are governed by two cases. A study of the various limits |φ| =8A±,81B,8

±

2B ,
as well as study of possible situations for which (61) and (64) vanish or become unbounded, is beyond
the scope of this single paper. Such efforts are planned for a longer format.
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As observed above the reflections uncouple as a thermal and a shear wave in the isotropic limit. Thus
for x1 = 0 the incident and reflected fields give

for cFτ + x2 sinφ ≥ 0 : θ =2i , T12 =−
µK Q(φ)

mFε
2i , T11 =−

µK P(φ)
mFε

2i ; (69a)

for cFτ − x2 sinφF ≥ 0 : θ =2F, T12 =−
µK Q(φF)

mFε
2F, T11 =−

µK P(φF)

mFε
2F; (69b)

for τ − x2 sinφS ≥ 0 : θ = 0, T12 = TS cos 2φS, T11 = TS sin 2φS. (69c)

Here TS is the unknown stress Txy due to the reflected shear wave, and

Q(φ)= c2
F sin 2φ− 1+ cos2 2φ, (70a)

P(φ)= c2
F(c

2
F− 2 sin2 φ)+ 8 sin3 φ cos3 φ. (70b)

A traction-free surface now requires that

φF =−φ, φS =− sin−1 sinφ
cF

, (71a)

TS =
2µK2i

mF D0ε
[4(1− 2 cos2 2φ)+ c2

F(c
2
F− 2 sin2 φ)] sin 2φ, (71b)

2F =2i

[
− 1+ 4

D0
(c2

F sinφS cosφS − sin2 2φ cos 2φS) sin 2φ
]
, (71c)

D0 = Q(−φ) sin 2φS − P(−φ) cos 2φS. (71d)

On the surface we have 2F+2i 6= 0, and a heat flux spike occurs unless

(2i −2F) cosφ = 0. (72)

The parameter c12(φ) equals cF when F1 = F2 and �F = 0, and for the weakly orthotropic case

cF
12(φ)≈ cF+ (1+ cos2 φ)

δF1

2cF
−

cF

mF
�F sin2 φ. (73)

Here δF1, �F are governed by (41).

10. Orthotropic isothermal case: stress wave reflection

Consider the situation in Section 9, except that material response is isothermal, and an incident plane
wave moves with speed c+(φ)v6 toward the half-space surface. In terms of the traction Ti , the wave is
defined in accordance with (20)–(22) as step-stresses

Txx = Ti c2
+
(φ)[cos2 2φ+ (C1+C2− 2C12) sin2 φ cos2 φ− c2

+
(φ)], (74a)

Txy =−Ti c2
+
(φ)[C2 sin2 φ−C1 cos2 φ+ (2+C12) cos 2φ] sinφ cosφ, (74b)

Tyy = Ti c2
+
(φ)[C12 cos2 2φ+ (C1+C2+ 2C12− 4) sin2 φ cos2 φ] − Ti (C12+� sin2 φ cos2 φ). (74c)

For x1 = 0 and c+(φ)τ + x2 sinφ ≥ 0, the step-stresses Txx , Txy, Tyy generate traction

T11 = Ti P(c+, φ), T12 = Ti Q(c+, φ), (75)
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where P, Q are defined by

P(c, φ)= c2(φ)[C12 cos2 2φ+ 2C2 sin2 φ−C1 cos 2φ− 8 sin2 φ] sin2 φ

+ (C1 cos2 φ+C2 sin2 φ) cos2 φ+� cos 2φ sin2 φ cos2 φ−C12 sin2 φ, (76a)

Q(c, φ)=−c2(φ)[(C1+C2) sin2 φ cos2 φ+C12(cos4 φ+ sin4 φ)+ cos2 2φ] sin 2φ

+ [C12+C1 cos2 φ+C2 sin2 φ+ 2� sin2 φ cos2 φ] sinφ cosφ. (76b)

(Thus P is symmetric and Q is antisymmetric in φ.) Reflection generates plane waves Txx , Txy, Tyy that
travel away from the surface with speed c±(φ±)v6, so that for x1 = 0 and c±(φ)τ − x2 sinφ± ≥ 0 we
have

T11 = T±P(c±, φ±), T12 = T±Q(c±, φ±). (77)

In this case a traction-free surface requires that

φ+ =−φ, φ− =− sin−1 sinφ
c12(φ)

, (78a)

T+ = Ti
Q(c+, φ)P(c−, φ−)− Q(c−, φ−)P(c+, φ)
Q(c+, φ)P(c−, φ−)+ Q(c−, φ−)P(c+, φ)

, (78b)

T− =−2Ti
Q(c+, φ)P(c+, φ)

Q(c+, φ)P(c−, φ−)+ Q(c−, φ−)P(c+, φ)
, (78c)

c12(φ)=
1
√

C1

√
(1+C1)c2

+
(φ)−C1 cos2 φ− (C2+�) sin2 φ . (78d)

The behavior of (78d) is analogous to that of (63b), so that (78a) must be subject to the restriction sin2 φ <

c2
12(φ). Condition (68) in Section 9 again holds, but with (cF

12, �F, F1, F2) replaced by (c12, �,C1,C2).
Consistent with the observations in Sections 7, 8 and 9, study of (78a) in light of (27), (68) and their
analogues, and consideration of cases for which (78b) and (78c) vanish or become unbounded, is reserved
for future work.

However, for some insight into both (27) in Section 4 and the isothermal analogue to (68) given
in Section 9, Table 2 in the Appendix provides calculations for four orthotropic wood materials (see
Table 1) under isothermal conditions. The table entries show that c± exists for these materials, i.e., there
are no angles 8A± that restrict angle of incidence φ. Similarly, the entries show that only the isothermal
counterpart of restriction B1 governs reflection; that is, 8B1 exists, but 8±2B does not.

The isotropic limit case is a standard problem [Achenbach 1973]. However, for completeness some
results are presented here:

φD =−φ, φS =− sin−1 sinφ
cD

, TD = Ti
N
R
, TS =−

Ti

R
sin 2φ(c2

D − 2 sin2 φ), (79a)

N = 2 sin 2φ sinφ
√

c2
D − sin2 φ− (c2

D − 2 sin2 φ)2, (79b)

R = 2 sin 2φ sinφ
√

c2
D − sin2 φ+ (c2

D − 2 sin2 φ)2. (79c)
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The isothermal counterpart to (73) is

c12(φ)≈ cD + (1+ cos2 φ)
δC1

2cD
−

cD

m
� sin2 φ. (80)

Here δC1, � are governed by (41).

11. Some observations

The results of Sections 7 and 8 illustrate the alteration in half-space temperature that occurs when an
isothermal (shear) step-stress wave is reflected from its surface, and only the wave class studied in [Brock
2010] is considered. In Section 7 thermal relaxation with a single relaxation time [Lord and Shulman
1960] governs. The [Green and Lindsay 1972] model, with an additional thermal relaxation time, governs
in Section 8, and this time is coupled with the convection parameter β in the solution. A minimum grazing
angle of incidence arises in both Sections, but distinctive changes in solution behavior do not seem to
occur at this angle.

Section 9 treats an incident temperature step-wave that propagates without dispersion or attenuation
[Brock 2010] in an orthotropic half-space governed by the Fourier law [Chadwick 1960]. Only two cor-
responding reflection waves arise, so that only the requirement of a traction-free surface is met. Formulas
for reflection angles are also presented. In the isotropic limit one reflection becomes an isothermal shear
wave, and an asymptotic reflection angle formula valid for weak orthotropy is given.

Section 10 involves the commonly studied isothermal wave reflection process in an orthotropic half-
space. For comparison with Section 9 the incident wave is a step-stress. In the isotropic limit the
two waves generated by reflection reduce to the standard dilatational/shear wave pair. As in Section 9,
distinctive behavior does not seem to occur at the minimum grazing angle. The reflection angle, its
isotropic limit, and an asymptotic form for weak orthotropy are also given.

These results can in general be predicted by work in Sections 4 and 5. There governing equations
and associated (dimensionless) speeds for plane wave propagation in a principal plane of isothermal
and thermoelastic orthotropic solids are examined. Only the wave class discussed in [Brock 2010] is
treated in the latter instance. Isotropic limits for the dimensionless wave speeds are also given, as well
as asymptotic formulas for weakly orthotropic solids.

Sections 7, 8 and 9 demonstrate the limited applicability of thermoelastic plane wave ensembles that
travel without dispersion or attenuation [Brock 2010], both for isotropic and orthotropic solids. Because
the Fourier model allows only two signals, stress-free surfaces can result only if a prescribed uniform
temperature and associated heat flux spite form the thermal boundary conditions. General time-harmonic
[Chadwick 1960] or transient [Brock 2005; Brock and Hanson 2006] studies admit three, so the “missing”
signal corresponds to the Fourier paradox of infinite speed.

However, Sections 7, 8 and 9 also demonstrate that there are combinations of speed, wave profile and
angle of incidence that do not couple prescribed stress and thermal boundary conditions. As implied at the
outset, moreover, problems that do couple conditions represent in effect special cases of nonconventional
thermoelastic processes [Ignaczak and Ostoja-Starzewski 2010]. Such boundary conditions are artificial.
Nevertheless, the problems discussed here do illustrate that the transient response of thermoelastic solids
subject to surface reflection can differ from that described by analyses based on time-harmonic waves,
dispersion and attenuation.
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Finally, it is noted again that the restrictions imposed on wave travel by orthotropic elastic solids,
whether thermoelastic or isothermal, need to be examined in more detail. The work by Kraut [1963] and
Payton [1983] in isothermal transversely isotropic cases, and by Ignaczak and Ostoja-Starzewski [2010]
in isotropic thermoelasticity with relaxation, are models in this regard. At present work is also proceeding
on thermoelastic plane waves that exhibit a particular form of attenuation, but without dispersion.

Appendix

Data for four orthotropic wood materials — balsa (B), yellow birch (YB), Douglas fir (DF) and Sitka
spruce (SS) — are taken from [Crandall and Dahl 1959, pp. 224–228] and summarized here:

S22/S11 S33/S11 S12/S11 S23/S11 S13/S11 S44/S11 S55/S11 S66/S11

B 20 70 −0.3 −15 −0.5 18 200 27
DF 13 20 −0.5 −9 −0.5 14 60 15
YB 15 20 −0.4 −7 −0.5 16 140 13
SS 13 23 −0.4 −6 −0.5 16 20 16

Table 1. Compliance ratios.

The dimensionless constants C1,C2,C12 can be obtained from [Jones 1999]:

C1 =
S66

S11s

[
S22

S11

S33

S11
−

( S23

S11

)2
]
, C2 =

S66

S11s

[
S33

S11
−

( S13

S11

)2
]
, C12 =

S66

S11s

[
S13

S11

S23

S11
−

S33

S11

S12

S11

]
,

s =
S22

S11

S33

S11
−

( S23

S11

)2
−

S22

S11

( S13

S11

)2
−

S33

S11

( S12

S11

)2
+ 2

S12

S11

S13

S11

S23

S11
.

Equations (25), (27) and the isothermal analogue of (68) then give results in Table 2 for the various
dimensionless parameters.
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ON THE MYSTERY OF CALDERÓN’S FORMULA
FOR THE GEOMETRY OF AN INCLUSION IN ELASTIC MATERIALS

HUY DUONG BUI

I write this paper to pay homage to Marie-Louise Steele and in honor of Charles R. Steele. I have had the pleasure and the
honor to serve their journals IJSS and JoMMS, with George Herrmann. They have made Solids & Structures and now

Material Sciences a subject of nobility to all of us.

We consider the nonlinear inverse problem of determining an inclusion in an elastic body, in antiplane
shear loading. The perturbation of the shear modulus due to the inclusion was determined by Calderón
(1980) in the case of a small amplitude of perturbation. For the general nonlinear case, the problem is
decomposed into two linear problems: a source inverse problem, which determines the geometry of the
inclusion, and a Volterra integral equation of the first kind for determining the amplitude. In this paper,
we deal only with the determination of the inclusion geometry in the two-dimensional problem. We
derive a simple formula for determining the inclusion geometry. This formula enables us to investigate
the mystery of Calderón’s solution for the linearized perturbation h0, raised by Isaacson and Isaacson
(1986), in the case of axisymmetry. By using a series method for numerical analysis, they found that
the supports of the perturbation, in the linearized theory and the nonlinear theory in the axisymmetric
case, are practically the same. We elucidate the mystery by discovering that both theories give exactly
the same support of the perturbation, supp(h0)≡ supp(h), for the general case of geometry and loadings.
Then, we discuss an application of the geometry method to locate an inclusion and solve the source
inverse problem, which gives an indication of the amplitude of the perturbation.

1. Introduction

Inverse problems for defect and crack identification in elasticity have many applications in medicine
and the mechanics of materials. In medicine, tomography techniques using mechanical loads such as
an antiplane shear loading on animal tissue, are worked out in [Catheline et al. 2004]. Cancer tumors
are expected to have higher density and higher stiffness or shear modulus than sound tissues, so the
difference in material properties between sound and malicious tissues is detected by mechanical loads
and responses. Auscultation by a doctor is nothing but a rudimentary method of endoscopy relying on
the same principle.

In the mechanics of materials, damage is known to result from microcracks which lower locally the
elastic constants. New topics in mechanical tomography have recently been the subjects of several works.
For example, solutions to crack inverse problems in two and three dimensions are known in elasticity
[Andrieux and Ben Abda 1992; Andrieux et al. 1999; Bui et al. 2005] and in viscoelasticity [Bui et al.
2009], in statics as well as in dynamics, under the assumption of small frequencies. In elastodynamics,
solutions of inverse crack problems are obtained in [Bui et al. 2005] where the solution to an earthquake

Keywords: nonlinear inverse problem, inclusion geometry, antiplane problem.
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inverse problem to recover the faulting process was proposed. A review of several exact solutions to
inverse problems is found in [Bui 2006].

The case of distributed defects was first studied in [Calderón 1980] for the scalar elastic equation, then
in [Bui and Chaillat 2009] for the case of dynamic viscoelasticity in the low frequency domain. Most of
the works mentioned used reciprocity functional techniques for solving the following inverse problem.
Find functions h and u satisfying the field equation and two superabundant boundary data f and g:

div
[(

1+ h(x)
)

grad u
]
= 0 in �, (1-1)

u = f and ∂u
∂n
= g in ∂�. (1-2)

The pair of data ( f, g) is compatible with the perturbation h. We consider normalized constants so that
the shear modulus of an homogeneous body is 1 and the inhomogeneity is characterised by the material
constant 1+ h(x). We assume nonzero measure of support of h which excludes the hair line inclusion
case. For small amplitude of the perturbation h, Calderón [1980] derived explicitly the solution, denoted
hereafter by h0(x).

In this paper, we shall reconsider the nonlinear Calderón inverse problem for identifying distributed
defects in elasticity of arbitrary geometry. First we give a formula for the geometry inclusion. This
nonlinear problem has been solved numerically in [Isaacson and Isaacson 1989] for data corresponding to
a circular geometry of the inclusion and body, under axisymmetric radial loads. They used a series method
to solve the equation in the axisymmetric case, with data ( f, g) corresponding to h(r) not necessary of
small amplitude. The data for the numerical test is obtaining first by solving a Dirichlet boundary value
with condition u = f on the boundary and with a given h on the inclusion. Then the boundary value of
the gradient g = ∂u/∂n is calculated. They have shown by numerical experiments (with a series method)
that the support of the inclusion function h0(x) from Calderón’s formula is almost indiscernible from
the circle introduced for ( f, g). This is the mystery of Calderón’s solution, which seems to work for
the nonlinear case as well. It is incredible that a formula derived for a small amplitude perturbation still
works for the general case. We shall clarify the mystery by comparing the geometry inclusions in both
theories. Then we discuss an application to the source inverse problem.

2. The nonlinear Calderón equation for h and the linearized solution

We consider the identification of internal defects in the antiplane problem of elasticity, or stationary
heat/mass transfer phenomena, or electricity conduction. In the antiplane problem the shear modulus is
of the form µ(x)= 1+ h(x). The shear modulus in the absence of defect (h = 0) is normalized to unity.

We assume that the defect is characterized by the function h(x) with compact support C ⊂ � and
h = 0 on the boundary ∂�, see Figure 1. Defects may not be necessarily unique.

Consider an adjoint problem for the sound solid h = 0 to determine the function ϕ:

div gradϕ = 0 in �, (2-1a)

∂ϕ

∂n
= a(x) on ∂�, (2-1b)

with the equilibrium condition
∫
∂�

a d S = 0, and let b(x) be the boundary value of ϕ.
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Figure 1. Identification of an inclusion C represented by a perturbation of the material
constant. A mesh for numerical analysis with data U and ∂U/∂n =:U,n .

Combining (1-1) and (2-1a), after multiplying (1-1) by ϕ and (2-1a) by u, integrating by parts and
taking account of h = 0 on ∂�, we obtain the Calderón equation for h for any ϕ∫

C
h(x) grad u(x; h) · gradϕ(x)d2x =

∫
∂�

(gb− f a)d S =: R( f, g;ϕ), ∀ϕ. (2-2)

The right-hand side of (2-2) is known from the boundary data ( f, g) of the current field u and the data
(a, b) of the adjoint function ϕ. In the following, it will be denoted by R( f, g;ϕ) or simply R(ϕ). We
remark that (2-2) is nonlinear in h, firstly because function u(x; h) is yet unknown and secondly because
the integration domain C is unknown. Equation (2-2) constitutes the nonlinear variational equation for
h. The arbitrariness of ϕ is the key point to solve the nonlinear problem, as shown in several examples
given in [Bui 2006]. An important case is when u(x; h) as well as the geometry of C are known, for
which (2-2) becomes linear.

Following [Calderón 1980] we can linearize (2-2) by replacing the unknown function u by the function
u0 which satisfies the harmonic equation

div grad u0
= 0 in �. (2-3)

We obtain ∫
C

h(x) grad u0(x) · gradϕ(x)d2x = R( f, g;ϕ). (2-4)

Whatever the extended function grad u outside the domain may be, (2-2) can also be written with the
integral over the whole plane because the extended function h̃ vanishes outside the domain:∫

R2
h̃(x) grad u(x; h) · gradϕ(x)d2x = R( f, g;ϕ), ∀ϕ. (2-5)

In this case boundary data a, b of the harmonic function ϕ may not be specified. We consider the
adjoint harmonic function, which depends on parameters ξ of the ξ -plane:

ϕ(x, ξ)= exp
(
−i(x1ξ1+ x2ξ2)

)
exp(−x1ξ2+ x2ξ1). (2-6)

Calderón assumed a small amplitude of h and expanded the unknown function in the form u(x; h)=
u(x; 0)+ O(h). By taking u(x; 0) = ϕ(x, ξ), given in (2-6), he obtained explicitly the solution with
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R(ξ)=: R( f, g;ϕ(x; ξ)):

h̃0(x)=−
1

4π2

∫
R2

2
‖ξ‖2

R(ξ) exp(i x · ξ)d2ξ. (2-7)

Strictly speaking, (2-7) is derived for ( f, g) compatible with small perturbation. What happens when
one applies this formula to the general case of arbitrary h? It seems, from [Isaacson and Isaacson 1989]
with their example of a circular inclusion in a circular domain, that the support of the solution given by
(2-7) is indiscernible from the circle introduced for obtaining data f, g. To clarify this mystery, we need
to derive the solution for the inclusion geometry, in the general nonlinear theory.

3. Reduction to two successive simpler problems

Let us rewrite (1-1) in the following form:

div grad u+ S(x)= 0 in �, (3-1)

where S(x)= div(h(x) grad u(x; h)); see also [Bui and Chaillat 2009].
Determining S with boundary data u = f and ∂u/∂n = g is a classical source inverse problem; see

[Isakov 1990; Alves and Ha-Duong 1997]. Here, we consider the source inverse problem already solved,
to obtain the source S(x), its support C , and the true displacement field denoted by U (x) := u(x; h),
even if h(x) is unknown. We obtain also the strain, but not the stress because h is yet unknown. It
is interesting to remark that the solution of the source inverse problem (3-1) provides the geometry or
support of the unknown h(x). As a matter of fact, since the true displacement is known as U , we have

S(x)= div
(
h(x) grad U (x)

)
. (3-2)

The source term (3-2) is a linear combination of derivatives of h in the distributional sense. Its support
is the inclusion itself, supp(S) ≡ supp(h) = C . Therefore, we have a first method to derive only the
geometry by solving a source inverse problem. We will discuss next a simpler method. It is based on the
nonlinear Calderón equation rewritten as∫

C
h(x) grad U (x) · gradϕ(x; ξ)d2x = R

(
ϕ(ξ)

)
. (3-3)

With appropriate choice of ϕ, for example given by (2-6), we obtain a Volterra equation of the first kind
for h, with kernel K (x, ξ) := grad U (x) · gradϕ(x, ξ) which determines both geometry and amplitude
of the perturbation. However, we do not solve the Volterra integral equation, but show how we derive
the support of h directly.

4. The mystery of Calderón’s solution

The adjoint function (2-6) as well as its gradient gradϕ(x; ξ) are analytic in the whole x-space and
ξ -space (except at infinity), and thus can be expanded into infinite series of xr and ξh . We expand
gradϕ(x; ξ)= exp(−i(x · ξ)) exp(−x1ξ2+ x2ξ1)

(
(−iξ1− ξ2)e1

+ (−iξ2+ ξ1)e2
)

as

gradϕ(x; ξ)=
( 2∑

h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq(iξh)

n(iξk)
m x p

r xq
s

)
exp

(
−i(x · ξ)

)
, (4-1)
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with constant complex vectors ahkrs
nmpq . We extend h(x) to the infinite plane R2 by putting h = 0 outside

C and denote its extension by h̃ and obtain the nonlinear Calderón equation in the form (the dot means
a scalar product between vectors)∫

R2
h̃(x) grad U (x) ·

( 2∑
h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq(iξh)

n(iξk)
m x p

r xq
s

)
exp(−i x · ξ)d2x = R

(
ϕ(ξ)

)
, (4-2)

or equivalently (using the properties of the Fourier transform)∫
R2

2∑
h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq ·

∂n

∂xn
h

∂m

∂xm
k

(
x p

r xq
s h̃(x) grad U (x)

)
exp(−i x · ξ)d2x = R

(
ϕ(ξ)

)
. (4-3)

Let us define the function appearing in the above series by F(x):

F(x)=
2∑

h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq ·

∂n

∂xn
h

∂m

∂xm
k

(
x p

r xq
s h̃(x) grad U (x)

)
, (4-4)

∫
R2

F(x) exp(−i x · ξ)d2x = R
(
ϕ(ξ)

)
. (4-5)

Because the function F(x) is a linear combination of h̃(x) and its partial derivatives, it has the same
support C = supp(F)= supp(h). Therefore we get the inclusion geometry C by the support of F which
satisfies (4-5). It follows that function F(x) is the inverse Fourier transform of R(ϕ(ξ)). The inclusion
geometry for the nonlinear theory is solved by

F(x)=
1

4π2

∫
R2

R
(
ϕ(ξ)

)
exp(+i x · ξ)d2ξ. (4-6)

This exact solution for the geometry of the inclusion enables us to investigate the mystery of Calderón’s
linearized solution which seems to work well for any perturbation. Let us make first a remark about
function F given in terms of R(ϕ(ξ)). From the expression of R(ϕ(ξ)) we can easily check, for a
bounded solid, that R is of the “exponential type”, that is, the complex extension R(z) of R(ξ), obtained
by the substitution ξ = (ξ1, ξ2)→ (ξ1+ iη1, ξ2+ iη2)=: z in R(ξ), has the bound ‖R(z)‖≤C exp(a‖z‖)
with C > 0 and a > 0. According to the Paley–Wiener theorem [Schwartz 1966], the function R(ξ) is
the Fourier transform of a function with compact support. Therefore F(x) given by (4-6) is a compactly
supported function.

Consider now the linearized solution (2-7) for h̃0(x) which we recall below:

h̃0(x)=−
1

4π2

∫
R2

2
‖ξ‖2

R(ξ) exp(i x · ξ)d2ξ. (4-7)

Using the properties of the Fourier transform, we can rewrite (4-7) in the form

−
1
2

(
∂2

∂x2
1
+
∂2

∂x2
2

)
h̃0(x)=

1
4π2

∫
R2

R(ξ) exp(i x · ξ)d2ξ ≡ F(x). (4-8)
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The left-hand side of this equation is a function having the same support as h̃0(x). Therefore we conclude
that both functions h̃0(x) of the linearized theory and h(x) of the nonlinear theory have the same geometry
as supp(F). The mystery revealed by [Isaacson and Isaacson 1989] is finally elucidated. It is amazing that
Calderón’s linearized theory gives the exact solution for the geometry of the inclusion, whatever the per-
turbation may be. Of course, the amplitude of function h(x) has to be determined by the Volterra integral
equation, by a standard numerical approach. In the next section, we shall discuss a numerical procedure
to determine not the function h(x) itself, which can be found by standard techniques for the Volterra
integral equation, but the source term S(x), which is directly related to the amplitude of the perturbation.

5. A numerical approach to the source inverse problem by moving windows

It is known that the Volterra integral equation (3-3) is an ill-posed problem. Numerically it is difficult to
recover exactly a function h which is strictly equal to zero outside the inclusion, which is assumed here to
be unique. Therefore, it is of interest to consider a small moving window which is discretized in regular
meshes and to solve numerically the source inverse problem for N point sources S(x)=

∑N
i=1 λiδ(x−ai ),

with source points at the centers of finite elements, and unknown amplitudes λi . With a chosen window,
we enforce the condition h = 0 outside it. For a large window enclosing the solid, it is shown in [El Badia
and Ha-Duong 2000] that the solution for a finite number N of sources approaching the source S(x) exists
and is unique. By choosing a particular window inside the solid domain, we search a solution which
vanishes outside it. If the window does not contain entirely the source, we get a wrong solution and
the corresponding image of the numerical solution is then blurred. Only in the case where the window
contains the inclusion is a sharp image obtained. This procedure resembles echography imaging of a
body. For example, by trial and error, one moves the echography device on the body of an expectant
mother in order to search the right location to reveal a sharp image of her fetus. In our examples of the
source problem, studying a tumor in live tissue or a damaged zone in materials, the moving window is
a 4× 5 mesh. For example, in Figure 2, the image on the left corresponds to the wrong solution, while
the one on the right is correct.

Therefore it is of great interest to know the right location of the initial mesh. This is precisely provided
by the support of the function F given in (4-6).

Figure 2. Imaging of a defect. Left: bad window, wrong solution. Right: right window,
good solution.
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6. Conclusions

In this paper, we consider the problem of finding the perturbation of a material constant in elastic solids
which satisfies the nonlinear Calderón equation. The nonlinear problem reduces to two successive ones:
a source inverse problem and a Volterra integral equation of the first kind. The first problem provides the
inclusion geometry supp(h) explicitly. The second provides the magnitude of h. We make a comparison
between the geometry of an inclusion in the small perturbation case and the geometry in the nonlinear
case and find that both inclusion geometries are identical for arbitrary loading and geometry of the solid.
Our result elucidates the mystery of the linearized Calderón solution for geometry which works well for
the nonlinear case, as revealed numerically in the axisymmetric example given in [Isaacson and Isaacson
1989].

References

[Alves and Ha-Duong 1997] C. J. S. Alves and T. Ha-Duong, “On inverse scattering by screens”, Inverse Problems 13:5 (1997),
1161–1176.

[Andrieux and Ben Abda 1992] S. Andrieux and A. Ben Abda, “Identification de fissures planes par une donnée de bord unique:
un procédé direct de localisation et d’identification”, C. R. Acad. Sci. Paris Sér. I Math. 315:12 (1992), 1323–1328.

[Andrieux et al. 1999] S. Andrieux, A. Ben Abda, and H. D. Bui, “Reciprocity principle and crack identification”, Inverse
Problems 15:1 (1999), 59–65.

[Bui 2006] H. D. Bui, Fracture mechanics: inverse problems and solutions, Springer, Dordrecht, 2006.

[Bui and Chaillat 2009] H. D. Bui and S. Chaillat, “On a nonlinear inverse problem in viscoelasticity”, Vietnam J. Mech. 31:3-4
(2009), 211–219.

[Bui et al. 2005] H. D. Bui, A. Constantinescu, and H. Maigre, “An exact inversion formula from determining a planar fault
from boundary measurements”, J. Inverse Ill-Posed Probl. 13:6 (2005), 553–565.

[Bui et al. 2009] H. D. Bui, S. Chaillat, A. Constantinescu, and E. Grasso, “Identification of a planar crack in Zener type
viscoelasticity”, Ann. Solid Struct. Mech. 1:1 (2009), 3–8.

[Calderón 1980] A.-P. Calderón, “On an inverse boundary value problem”, pp. 65–73 in Seminar on Numerical Analysis and
its Applications to Continuum Physics (Rio de Janeiro, 1980), Coleção Atlas 12, Soc. Brasil. Mat., Rio de Janeiro, 1980.

[Catheline et al. 2004] S. Catheline, J. L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli, “Mea-
surement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach”, J.
Acoust. Soc. Am. 116:6 (2004), 3734–3741.

[El Badia and Ha-Duong 2000] A. El Badia and T. Ha-Duong, “An inverse source problem in potential analysis”, Inverse
Problems 16:3 (2000), 651–663.

[Isaacson and Isaacson 1989] D. Isaacson and E. L. Isaacson, “Comment on A.-P. Calderón’s paper: ‘On an inverse boundary
value problem’ ”, Math. Comp. 52:186 (1989), 553–559.

[Isakov 1990] V. Isakov, Inverse source problems, Mathematical surveys and monographs 34, American Mathematical Society,
Providence, RI, 1990.

[Schwartz 1966] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

Received 9 Aug 2010. Revised 4 Oct 2010. Accepted 6 Oct 2010.

HUY DUONG BUI: hdbui37@yahoo.fr
Laboratoire de Mécanique des Solides, École Polytechnique, Route de Saclay, 91128 Palaiseau CEDEX, France

mathematical sciences publishers msp





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

msp

SINGULAR HARMONIC PROBLEMS AT A WEDGE VERTEX:
MATHEMATICAL ANALOGIES BETWEEN ELASTICITY,

DIFFUSION, ELECTROMAGNETISM, AND FLUID DYNAMICS

ALBERTO CARPINTERI AND MARCO PAGGI

Dedicated to the memory of Marie-Louise Steele.

Multimaterial wedges are frequently observed in composite materials. They consist of two or more
sectors of dissimilar materials joined together, whose interfaces converge at the same vertex. Due to the
mismatch in material properties such as Young’s modulus, thermal conductivity, dielectric permittivity,
or magnetic permeability, these geometrical configurations can lead to singular fields at the junction
vertex. This paper discusses mathematical analogies, focused on singular harmonic problems, between
antiplane shear problem in elasticity due to mode III loading or torsion, the steady-state heat transfer
problem, and the diffraction of waves in electromagnetism. In the case of a single material wedge, a
mathematical analogy between elasticity and fluid dynamics is also outlined. The proposed unified math-
ematical formulation is particularly convenient for the identification of common types of singularities
(power-law or logarithmic type), the definition of a standardized method to solve nonlinear eigenvalue
problems, and the determination of common geometrical and material configurations allowing the relief
or removal of different singularities.

1. Introduction

Singular stress states occur in many boundary value problems of linear elasticity where different materials
are present (see [England 1971; Paggi and Carpinteri 2008; Sinclair 2004a; 2004b] for a broad overview).
In this context, problems involving multimaterial wedges or junctions have received a great attention from
the scientific community, since they are commonly observed in composite materials. In linear elasticity,
most research has been directed toward the characterization of stress singularities for in-plane loading,
where the problem is governed by a biharmonic equation. Out-of-plane loading, also referred to as the
antiplane shear problem, is governed by a simpler harmonic equation. Stress singularities due to antiplane
loading were firstly addressed by Rao [1971]. Afterwards, Fenner [1976] examined the mode III loading
problem of a crack meeting a bimaterial interface using the eigenfunction expansion method proposed
by Williams [1952]. More recently, Ma and Hour [1989; 1990] analyzed bimaterial wedges using the
Mellin transform technique, whereas Pageau et al. [1995] investigated the singular stress field of bonded
and debonded tri-material junctions according to the eigenfunction expansion method.

Mathematical analogies among elasticity, electromagnetism, and conductivity have been known and
exploited for a long time (see [Hashin and Shtrikman 1962; Duan et al. 2006], for instance). Sinclair
[1980] pointed out the mathematical analogy between the singular steady-state heat transfer and the

Keywords: singularities, multimaterial wedges, elasticity, diffusion, electromagnetism, fluid dynamics.
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singular antiplane loading of composite regions (see also [Paggi and Carpinteri 2008] for a detailed
discussion of the boundary conditions). In [Paggi et al. 2009; 2010] we have established an analogy
between elasticity and electromagnetism in the case of singular fields. In the solution of diffraction
problems, in fact, Bouwkamp [1946] and Meixner [1972] found that the electromagnetic field vectors
may become infinite at the sharp edges of a diffracting obstacle. For in-plane problems, a mathematical
analogy between elasticity and dynamics of viscous fluids also exists; see [Dean and Montagnon 1949;
Paggi and Carpinteri 2008; Carpinteri and Paggi 2009] for more details.

This paper presents mathematical analogies between antiplane shear problem in elasticity due to mode
III loading or torsion, the steady-state heat transfer problem, and the diffraction of waves in electromag-
netism. In the case of a single material wedge, a mathematical analogy between antiplane elasticity
and fluid dynamics of incompressible fluids characterized by a potential flow will also be outlined. The
proposed unified mathematical formulation will be based on the eigenfunction expansion method, which
has been proven in [Paggi and Carpinteri 2008] to be mathematically equivalent to the Muskhelishvili
complex function representation and to the Mellin transform technique for the characterization of elastic
singularities at multimaterial junctions. As a main outcome, the order of the stress singularities of various
geometrical and mechanical configurations already determined in the literature can be adopted for the
analogous diffusion, electromagnetic, and fluid dynamics problems, without the need of performing
new calculations. Finally, the possibility to extend the dimensionless numbers used in elasticity to the
other analogous physical problems is discussed. In particular, as the brittleness number related to the
stress-intensity factor rules the competition between brittle crack propagation and plastic flow collapse,
a turbulence number that rules the competition between laminar and turbulent flow is proposed for fluid
dynamics. The use of this new dimensionless number, in addition to the classical Reynolds number, is
expected to be of paramount importance.

2. Stress singularities in antiplane elasticity

The geometry of a plane elastostatic problem consisting of n − 1 dissimilar isotropic, homogeneous
sectors of arbitrary angles perfectly bonded along their interfaces converging to the same vertex O is

Γn

Γ1

Γ2

Γ3

Γ4

Γn -1

O

Ω1

Ω2

Ω3

Ω4
Ω5

Ωn -1

γ1

θ

Γ5

r

Figure 1. Geometry of a multimaterial wedge.
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shown in Figure 1. Each of the material regions is denoted by�i with i = 1, . . . , n−1, and it is comprised
between the interfaces 0i and 0i+1.

Antiplane shear (mode III) due to out-of-plane loading on composite wedges can lead to stresses that
can be unbounded at the junction vertex O . When out-of-plane deformations only exist, the following
displacements in cylindrical coordinates can be considered with the origin at the vertex O:

ur = 0, uθ = 0, uz = uz(r, θ), (2-1)

where uz is the out-of-plane displacement, which depends on r and θ . For such a system of displacements,
the strain field components become

εr = εθ = εz = γrθ = 0, γr z =
∂uz

∂r
, γθ z =

1
r
∂uz

∂θ
. (2-2)

From the application of the Hooke’s law, the stress field components are given by:

σ i
r = σ

i
θ = σ

i
z = τ

i
rθ = 0, τ i

r z = Giγ
i
r z = Gi

∂ui
z

∂r
, τ i

θ z = Giγ
i
θ z =

Gi

r
∂ui

z

∂θ
, (2-3)

where Gi is the shear modulus of the i-th material region. The equilibrium equations in absence of body
forces reduce to a single relationship between the tangential stresses:

∂τ i
r z

∂r
+

1
r
∂τ i
θ z

∂θ
+

1
r
τ i

r z = 0 for all (r, θ) ∈�i . (2-4)

Introducing (2-3) into (2-4), the Laplace condition upon uz is derived:

∂2ui
z

∂r2 +
1
r
∂ui

z

∂r
+

1
r2

∂2ui
z

∂θ2 =∇
2ui

z = 0 for all (r, θ) ∈�i . (2-5)

In the framework of the eigenfunction expansion method [Paggi and Carpinteri 2008], the following
separable variable form for the longitudinal displacement ui

z can be adopted, for all (r, θ) ∈�i :

ui
z(r, θ)=

∑
j

rλ j fi, j (θ, λ j ), (2-6)

where the λ j are the eigenvalues and fi, j the eigenfunctions of the problem. Summation over j is
introduced in (2-6) since it is possible to have more than one eigenvalue and the superposition principle
can be applied.

Introducing (2-6) into (2-5), we find the following relation, holding for each eigenvalue λ j :

rλ j−2
(

d2 fi, j

dθ2 + λ
2
j fi, j

)
= 0. (2-7)

Hence, the coefficients of the term in rλ j−2 must vanish, implying that the eigenfunctions fi, j are a linear
combination of trigonometric functions:

fi, j (θ, λ j )= Ai, j sin(λ jθ)+ Bi, j cos(λ jθ). (2-8)
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If we introduce the series expansion (2-6) into (2-3), the longitudinal displacement and the tangential
stresses can be expressed in terms of the eigenfunction and its first derivative:

ui
z = rλ j fi, j = rλ j

[
Ai, j sin(λ jθ)+ Bi, j cos(λ jθ)

]
, (2-9a)

τ i
r z = Giλ jrλ j−1 fi, j = Giλ jrλ j−1 [Ai, j sin(λ jθ)+ Bi, j cos(λ jθ)

]
, (2-9b)

τ i
θ z = Girλ j−1 f ′i, j = Giλ jrλ j−1 [Ai, j cos(λ jθ)− Bi, j sin(λ jθ)

]
. (2-9c)

The determination of the power of the stress singularity, λ j − 1, can be performed by imposing the
boundary conditions (BCs) along the edges 01 and 0n and at the bimaterial interfaces 0i , with i =
2, . . . , n− 1. Along the edges 01 and 0n , defined by the angles γ1 and γn , we consider two possibilities:
one corresponding to unrestrained stress-free edges

τ i
θ z(r, γ1)= 0, τ i

θ z(r, γn)= 0, (2-10)

and the other for fully restrained (clamped) edges

ui
z(r, γ1)= 0, ui

z(r, γn)= 0. (2-11)

At the interfaces, the following continuity conditions of displacements and stresses have to be imposed
(i = 1, . . . , n− 2):

ui
z(r, γi+1)= ui+1

z (r, γi+1), τ i
θ z(r, γi+1)= τ

i+1
θ z (r, γi+1). (2-12)

In this way, a set of 2n− 2 homogeneous equations in the 2n− 1 unknowns Ai, j , Bi, j , and λ j can be
symbolically written as:

3 v = 0, (2-13)

where 3 denotes the coefficient matrix which depends on the eigenvalue, and v represents the vector
that collects the unknowns Ai, j and Bi, j . More specifically, the coefficient matrix appearing in (2-13) is
characterized by a sparse structure:

3=



N1
γ1

M1
γ2
−M2

γ2

M2
γ3
−M3

γ3
. . .

. . .

M i−1
γi
−M i

γi
. . .

. . .

Mn−2
γn−1
−Mn−1

γn−1

Nn−1
γn


(2-14)

where the nonnull elementary matrix M i
θ related to the interface BCs is given by

M i
θ =

 sin(λ jθ) cos(λ jθ)

Gi cos(λ jθ) −Gi sin(λ jθ)

 (2-15)
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and the components of the vector v are

v = {v1, v2, . . . , vi , . . . , vn−2, vn−1
}, (2-16)

with vi
= {Ai, j , Bi, j }

T . The two remaining terms N i
θ depend on the BCs along the edges 01 and 0n . For

stress-free edges we have
N i
θ = {cos(λ jθ),− sin(λ jθ)}, (2-17)

whereas for clamped edges it is given by

N i
θ = {sin(λ jθ), cos(λ jθ)}. (2-18)

A nontrivial solution of the equation system (2-13) exists if and only if the determinant of the coefficient
matrix vanishes. This condition yields an eigenequation which has to be solved for the eigenvalues λ j

that, in the most general case, do depend on the elastic properties of the materials.

3. Heat flux singularities in diffusion problems

The analogy between steady-state heat transfer and antiplane shear in composite regions was discovered
by Sinclair [1980]. In both problems, the field equations for the longitudinal displacement, ui

z , and for the
temperature, T i , are harmonic. As a result, the following correspondences between these two problems
can be set down:

∇
2T i
= 0 ⇐⇒ ∇

2ui
z = 0,

q i
r =−ki

∂T i

∂r
⇐⇒ τ i

r z = Gi
∂ui

z

∂r
,

q i
θ =

ki

r
∂T i

∂θ
⇐⇒ τ i

θ z =
Gi

r
∂ui

z

∂θ
,

(3-1)

where q i
r and q i

θ are the heat flux in the radial and circumferential directions and ki is the thermal
conductivity in the i-th material region. Therefore, the analogy is straightforward: the temperature field
is analogous to the out-of-plane displacement field, whereas the heat flux components are the analogous
counterparts of the stress field components, diverging to infinity as r→ 0.

As far as the BCs are concerned, the free-edge conditions (2-10) correspond to insulated edges in
diffusion problems, provided that the elastic variables are replaced by the steady-state heat transfer
variables according to (3-1). Similarly, the clamped BCs (2-11) in elasticity correspond to zero tem-
perature prescribed along the edges. Finally, the continuity of the longitudinal displacement uz and of
the tangential stress τθ z in (2-12) at the interfaces corresponds to the continuity of temperature, T , and
heat-flux, qθ . The eigenvalue problem for the diffusion problem has therefore the same coefficient matrix
as in (2-13).

4. Singularities in the electromagnetic fields

Consider the multimaterial wedge shown in Figure 2. Each material is isotropic and has a dielectric
permittivity εi and a magnetic permeability µi . We also admit the presence of a perfect electric conductor
(PEC) in the region labeled 1 and defined by the interfaces 01 and 0n .
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Figure 2. Geometry of a multimaterial wedge including one made of a perfect electric conductor.

For periodic fields with circular frequency ω, the Maxwell’s equations for each homogeneous angular
domain read as follows [van Bladel 1991]:

jωεi Ei
=∇ × H i , −jωµi H i

=∇ × Ei , (4-1)

where Ei and H i are, respectively, the electric and magnetic fields, and the symbol j stands for the
imaginary unit.

In cylindrical coordinates r, θ, z, with the z axis perpendicular to the plane of the wedge, and consid-
ering electromagnetic fields independent of z, Maxwell’s equations reduce to the following conditions
upon the components of the electric and magnetic fields:

jωεi E i
r =

1
r
∂H i

z

∂θ
, jωεi E i

θ =−
∂H i

z

∂r
, jωεi E i

z =
1
r
∂

∂r
(r H i

θ )−
1
r
∂H i

r

∂θ
,

−jωµi H i
r =

1
r
∂E i

z

∂θ
, −jωµi H i

θ =−
∂E i

z

∂r
, −jωµi H i

z =
1
r
∂

∂r
(r E i

θ )−
1
r
∂E i

r

∂θ
.

(4-2)

It is easy to verify that the E i
z and H i

z components satisfy the Helmholtz equation [van Bladel 1991]:

∂2 E i
z

∂r2 +
1
r
∂E i

z

∂r
+

1
r2

∂2 E i
z

∂θ2 + k2
i E i

z = ∇
2 E i

z + k2
i E i

z = 0,

∂2 H i
z

∂r2 +
1
r
∂H i

z

∂r
+

1
r2

∂2 H i
z

∂θ2 + k2
i H i

z =∇
2 H i

z + k2
i H i

z = 0,

(4-3)

where ki = ω
2εiµi .

In close analogy with the antiplane problem in linear elasticity, the following separable form for E i
z

and H i
z can be postulated for all (r, θ) ∈�i [Meixner 1972]:

E i
z(r, θ)=

∑
j

rλ j fi, j (θ, λ j ), H i
z (r, θ)=

∑
j

rλ j Fi, j (θ, λ j ) (4-4)

where λ j are the eigenvalues, and fi, j , and Fi, j are the eigenfunctions.
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We can introduce (4-4) into (4-3), obtaining the equalities

rλ j−2
(

d2 fi, j

dθ2 + λ
2
j fi, j

)
= 0, rλ j−2

(
d2 Fi, j

dθ2 + λ
2
j Fi, j

)
= 0. (4-5)

Hence, we find that the eigenfunctions fi, j and Fi, j are linear combinations of trigonometric functions,
in perfect analogy with the eigenfunction fi, j in antiplane elasticity (see (2-8)):

fi, j (θ, λ j )= Ai sin(λ jθ)+ Bi cos(λ jθ), Fi, j (θ, λ j )= Ci sin(λ jθ)+ Di cos(λ jθ). (4-6)

These eigenfunctions are responsible for the singular behavior of the components E i
r , E i

θ , H i
r and H i

θ

of the electric and magnetic fields near the wedge apex. In particular, from (4-2), we observe that

E i
r =

1
r jωεi

∂H i
z

∂θ
=

1
jωεi

∑
j

λ jrλ j−1 F ′i, j ∼ O(rλ j−1),

E i
θ =−

1
jωεi

∂H i
z

∂r
=−

1
jωεi

∑
j

λ jrλ j−1 Fi, j ∼ O(rλ j−1),

H i
r =−

1
r jωµi

∂E i
z

∂θ
=−

1
jωµi

∑
j

λ jrλ j−1 f ′i, j ∼ O(rλ j−1),

H i
θ =

1
jωµi

∂E i
z

∂r
=

1
jωµi

∑
j

λ jrλ j−1 f ′i, j ∼ O(rλ j−1).

(4-7)

Hence, E i
z ∼ O(rλ j ) and H i

z ∼ O(rλ j ) are the analogous counterparts of ui
z and remain finite as r→ 0.

Moreover, the radial components of the electric and magnetic fields, E i
r and H i

r , are analogous to τ i
θ z

and the circumferential components, E i
θ and H i

θ , are analogous to τ i
r z . More specifically, we have

E i
r = τ

i
θ z/(jωεi Gi ), H i

r = −τ
i
θ z/(jωµi Gi ), E i

θ = −τ
i
r z/(jωεi Gi ) and H i

θ = τ
i
r z/(jωµi Gi ). All of these

components diverge when r→ 0 with a power-law singularity of order −1< (λ j − 1) < 0.
Regarding the BCs, the tangential components of the electric field vanish along the edges 01 and 0n

of the PEC:

E1
z (r, γ1)= 0, E1

r (r, γ1)= 0, En−1
z (r, γn)= 0, En−1

r (r, γn)= 0, (4-8)

On the PEC surface also Hθ = 0, but this condition does not need be enforced, since it is a consequence
of the previous ones. Along each bimaterial interface (i = 1, . . . , n− 2), the tangential components of
the electric and magnetic fields are continuous:

E i
z(r, γi+1)= E i+1

z (r, γi+1), E i
r (r, γi+1)= E i+1

r (r, γi+1),

H i
z (r, γi+1)= H i+1

z (r, γi+1), H i
r (r, γi+1)= H i+1

r (r, γi+1).
(4-9)

Using the equations (4-7), the BCs (4-8) become

E1
z (r, γ1)= 0, En−1

z (r, γn)= 0,
∂H 1

z

∂θ
(r, γ1)= 0,

∂H n−1
z

∂θ
(r, γn)= 0, (4-10)
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whereas those defined by (4-9) become (i = 1, . . . , n− 2)

E i
z(r, γi+1)= E i+1

z (r, γi+1),
1
εi

∂H i
z

∂θ
(r, γi+1)=

1
εi+1

∂H i+1
z

∂θ
(r, γi+1)

H i
z (r, γi+1)= H i+1

z (r, γi+1),
1
µi

∂E i
z

∂θ
(r, γi+1)=

1
µi+1

∂E i+1
z

∂θ
(r, γi+1).

(4-11)

It is interesting that (4-3), (4-10) and (4-11) can be separated into two independent sets of equations,
one involving only Hz and another involving only Ez . Hence, the electromagnetic field for this problem
can be decomposed into two distinct independently evolving fields, the so-called transverse electric (TE)
and transverse magnetic (TM) fields. The TE (resp. TM) field has vanishing electric (resp. magnetic) but
nonzero magnetic (resp. electric) components parallel to the cylinder axis z.

Considering the series expansion for Ez and Hz , along with the expressions for the eigenfunctions fi, j

and Fi, j , the boundary value problem consists of two sets of 2n− 2 equations in 2n− 1 unknowns, one
for Ez and another for Hz . The former equation set (TM case) involves the coefficients Ai, j , Bi, j and λ j

and can be symbolically written as
3v = 0, (4-12)

where 3 denotes the coefficient matrix which depends on the eigenvalue and v represents the vector which
collects the unknowns Ai, j and Bi, j . The coefficient matrix in (4-12) has exactly the same structure as
that for the elasticity problem in (2-13), provided that we consider N i

θ = {sin(λ jθ), cos(λ jθ)} and we
set Gi = 1/µi .

The latter equation set (TE case) involves the coefficients Ci, j , Di, j and λ j and can be symbolically
written as:

3w = 0, (4-13)

where 3 is the coefficient matrix which depends on the eigenvalue and w represents the vector which
collects the unknowns Ci, j and Di, j . Again, the coefficient matrix in (4-13) has exactly the same structure
as that for the elasticity problem in (2-13), provided that we consider N i

θ = {cos(λ jθ),− sin(λ jθ)} and
we set Gi = 1/εi .

For the existence of nontrivial solutions, the determinants of the coefficient matrices must vanish,
yielding two eigenequations that, for given values of εi and µi , determine the eigenvalues λT E

j and λT M
j .

Hence, this proves that the analysis of the singularities of the electromagnetic field is mathematically
analogous to that for the elastic field due to antiplane loading.

5. Singularities in fluid dynamics

In fluid dynamics, a large class of problems can be described by a potential flow. In such cases, a stream
function, 9, can be introduced such that the flow velocity v can be determined from its curl:

v =∇ ×9, (5-1)

where, in polar coordinates and for 2D problems, we have v= (vr , vθ , 0)T and 9 = (0, 0, 9)T . Moreover,
if the flow is irrotational, the curl of the velocity is zero [Batchelor 1973]:

∇ × v = 0. (5-2)
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Figure 3. Geometry of a flow meeting a sharp obstacle: analogy between fluid dynamics
and antiplane elasticity.

As a result, introducing (5-1) into (5-2), after some algebra we obtain the Laplace condition upon the
stream function 9:

∇ × (∇ ×9)=∇29 = 0. (5-3)

For a problem where a fluid flow meets a sharp obstacle, as shown in Figure 3, the flow may have
singularities in the velocities. The power of the singularity can be determined according to an asymptotic
analysis, adopting the eigenfunction expansion method for the stream function 9:

9(r, θ)=
∑

j

rλ j f j (θ, λ j ), (5-4)

where, again, λ j are the eigenvalues of the problem and f j (θ, λ j ) are the eigenfunctions. The Laplace
condition upon 9 implies that the functions f j (θ, λ j ) are a combination of trigonometric functions, as
in (2-8):

f j (θ, λ j )= A j sin(λ jθ)+ B j cos(λ jθ). (5-5)

The velocity field components in polar coordinates, vr and vθ , can be obtained by differentiating the
stream function 9:

vr =
1
r
∂9

∂θ
=

∑
j

rλ j−1 f ′j (θ, λ j ), vθ =−
∂9

∂r
=−

∑
j

λ jrλ j−1 f j (θ, λ j ), (5-6)

where f ′j (θ, λ j ) are the angular derivatives of the eigenfunctions f j (θ, λ j ).
Hence, the following correspondences between fluid dynamics and antiplane elasticity can be set down:

∇
29 = 0 ⇐⇒ ∇

2uz = 0,

vθ =−
∂9

∂r
⇐⇒ τr z = G

∂uz

∂r
,

vr =
1
r
∂9

∂θ
⇐⇒ τθ z =

G
r
∂uz

∂θ
.

(5-7)
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The boundary conditions along the edges of the obstacle correspond to a vanishing velocity in the
direction normal to the interface. According to Figure 3, this corresponds to the following conditions:

vθ (θ = 0)= 0, vθ (θ = γ1)= 0. (5-8)

Introducing (5-6)2 into (5-8), as well as the expression of the eigenfunction in (5-5), the boundary con-
ditions (5-8) reduce to

f j (0, λ j )= B j = 0, f j (γ1, λ j )= A j sin(λ jγ1)+ B j cos(λ jγ1)= 0. (5-9)

Note that the analogous of these boundary conditions in antiplane elasticity corresponds to the clamped
boundary conditions (2-11) along 00 and 01 (see Figure 3). Therefore, it is possible to state that the
singularities in fluid dynamics correspond to those in antiplane elasticity, provided that clamped-clamped
BCs are considered along the edges of the elastic wedge. More specifically, since (5-9)1 leads to B j = 0
and we are looking for nontrivial solutions, the eigenequation of the problems is

sin(λ jγ1)= 0, (5-10)

from which we determine the lowest eigenvalue

λ1 =
π

γ1
. (5-11)

Hence, a singularity exists (λ1 < 1) for γ1 > π , i.e., when the fluid domain �1 presents a reentrant
corner. Some notable eigenvalues can be found in [Batchelor 1973] and match exactly those provided
in [Sinclair 1980] for the antiplane problem of a single material wedge. For instance, a flow around a
right corner (γ1 = 3π/2) has λ1 =

2
3 , whereas a uniform flow (γ1 = π) is nonsingular. The case of a flow

around a thin obstacle (γ1 = 2π) leads to λ1 =
1
2 , as for an anticrack (rigid line inclusion) in antiplane

elasticity [dal Corso et al. 2008; Bigoni et al. 2008].

6. Discussion and conclusion

In the present paper, we have compared and unified the mathematical formulations for the asymptotic
characterization of the singular fields at multimaterial wedges in antiplane elasticity, diffusion problems,
and electromagnetic diffraction. For a single and homogeneous material sector, we have also established
the analogy between fluid dynamics and antiplane elasticity.

The asymptotic analysis of the stress singularities at the vertex of multimaterial wedges and junctions
in antiplane elasticity is perfectly analogous to the corresponding diffusion problem. The temperature
field plays the same role as the out-of-plane displacement field and the heat fluxes correspond to the
tangential stresses. On the other hand, the analogy with electromagnetism is more complex. In particular,
when an isotropic multimaterial wedge with PEC boundaries is considered, we have shown that two
independent problems can be defined, one for TE fields, associated to an eigenequation for Hz , and one
for TM fields, associated to an eigenequation for Ez . The eigenequation for Ez corresponds exactly to
that obtained for the same geometrical configuration in antiplane elasticity by setting Gi = 1/µi and
replacing the PEC region with an infinitely stiff material leading to clamped edge BCs along 01 and 0n .
Similarly, the other eigenequation for Hz can be obtained in antiplane elasticity for the same geometrical
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configuration by setting Gi = 1/εi and replacing the PEC region with an infinitely soft material leading
to stress-free BCs along 01 and 0n .

As far as the analogy for fluid dynamics is concerned, we have found that the stream function 9
plays the same role as uz and that the singularities in fluid dynamics correspond to those in antiplane
elasticity, provided that clamped-clamped BCs are considered along the edges of the elastic wedge. These
analogical results are also important for stress concentration problems. For instance, in the case of a flux
around a circular cylinder, the velocity concentration factor is equal to 2, that is the velocity of the
fluid at the border of the cylinder is twice higher than the velocity at infinity. Analogously, the stress
concentration factor for a plate in uniaxial tension with an infinitely stiff round inclusion tends also to 2
[Duan et al. 2005].

Finally, the presence of singularities in diffusion, electromagnetism, and fluid dynamics suggests
extending to these fields the dimensional analysis considerations we have proposed for the scaling of
structural strength in [Carpinteri 1981; 1982a; 1982b; 1983; 1987; Carpinteri and Paggi 2006; 2009]. In
solid mechanics, the presence of a stress singularity of power λ− 1 requires the use of a generalized
stress-intensity factor, K ∗, which has anomalous physical dimensions:

σi j = K ∗rλ−1 fi j (θ, λ) ⇒ K ∗ = σb1−λg, (6-1)

where σ is a nominal applied stress, b is the characteristic structural size, and g is a shape factor de-
pending on the geometry of the structure and the topology of the junction. The same reasoning can
therefore be applied to the other analogous fields, defining generalized heat-intensity, electromagnetic-
intensity, and velocity-intensity factors. In structural mechanics, the anomalous physical dimensions of
K ∗ lead to size-scale effects on the nominal strength, i.e., the material strength becomes a function of the
structural size [Carpinteri 1987; Carpinteri and Paggi 2006]. Therefore, size-scale effects in diffusion,
electromagnetism, and fluid dynamics are also expected and can be analyzed using the same mathematical
formalism as in structural mechanics.

Finally, it is well-known that elastic singularities are usually a mathematical artifact and that plasticity
relieves the singularities in elastoplastic materials. Similarly to plasticity, a saturation of the electromag-
netic fields at the sharp tip of an antenna is experimentally found in electromagnetism. In fluid dynamics,
a possible analogous mechanism could be the occurrence of turbulence. In structural mechanics, the
competition between crack propagation and plastic flow collapse is ruled by the brittleness number s
(see [Carpinteri 1981; 1982a; 1982b] for more details):

s =
K I C

σcb1/2 , (6-2)

where K I C , σc and b are, respectively, the fracture toughness, the material strength, and the structural
size. Brittle failure, characterized by small scale yielding, takes place when the brittleness number is
lower than a threshold value. Above that, large scale yielding takes place and plastic flow collapse
prevails over brittle failure. Generalizing these concepts to fluid dynamics, it is possible to define a
similar dimensionless number in the case of a fluid against a thin obstacle. We shall call it turbulence
number, st , and it is given by:

st =
KC

vcb1/2 , (6-3)
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where KC and vc are, respectively, a critical velocity-intensity factor and a critical velocity for the appear-
ance of turbulence. This resembles the Reynolds number, Re= vcb/ν, where ν is the kinematic viscosity
of the fluid, although the proposed turbulence number comes directly from the presence of singularities.
The use of st in addition to the Reynolds number has never been explored so far. Therefore, further
developments of this work will regard the assessment of the applicability of these concepts to interpret
the laminar-turbulent flow transition in fluid mechanics, a still open problem nowadays.
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DEEP PENETRATION AND LIQUID INJECTION INTO ADIPOSE TISSUE

KERSTYN COMLEY AND NORMAN FLECK

The subcutaneous injection of porcine adipose tissue by a hypodermic needle involves two stages: tissue
penetration followed by the delivery of liquid into the tissue. The force required to penetrate adipose
tissue by a series of conically tipped and flat-bottomed circular punches has been measured. Scanning
electron microscopy and light microscopy are used to observe the mechanism of crack formation during
penetration. The experiments reveal that penetration by either a flat bottomed or 45◦ conically tipped
punch involves the formation of a mode II ring crack. The predicted penetration pressure according
to the Shergold–Fleck model (Proc. R. Soc. Lond. A 460 (2004), 3037–3058) is in good agreement
with the measured pressure on the punch. The subsequent delivery of liquid into adipose tissue by the
hypodermic needle has also been examined: the injection pressure for phosphate buffered saline has
been measured for a range of flow rates. X-ray images of the injected liquid suggest that micro-cracks
are formed by the fluid pressure within the tissue and this leads to an increase in permeability. A seepage
model is developed, based on the Darcy flow law, to relate the volumetric flow rate to the injection
delivery pressure. Finally, a model of hydraulic fracture is used to assess the toughness associated with
the formation of the micro-cracks during injection.

1. Introduction

A wide range of medical devices exist for the injection of liquid-based drugs into the subcutaneous layer
of adipose tissue. These include a hypodermic needle and a needle-free syringe. Injection involves
two stages: (i) a needle or liquid jet penetrates the tissue to a desired depth (intradermal, subcutaneous,
intramuscular and so on); and (ii) the liquid drug is delivered from the syringe into the tissue. Needle-free
devices achieve control of tissue penetration and liquid delivery through control of the pressure versus
time characteristic of the jet. For example, when subcutaneous injection occurs by a needle-free device,
the dermal and subcutaneous layers are first penetrated by a high pressure jet (static head of order 25 MPa
for 5 ms). Subsequent delivery of the bulk of the liquid into the subcutaneous layer follows at a lower
jet pressure (static head of approximately 5 MPa) and typically takes 100 ms [Shergold et al. 2006].

Consider first the penetration stage. Shergold and Fleck [2004] have recently developed two pene-
tration models for soft solids; a model based on the formation of a planar crack and a model based
on the formation of a ring-crack. They demonstrated that the force to penetrate dermis with a sharp
metal punch depends upon the Young’s modulus and toughness of the tissue, and upon the diameter
and tip geometry of the punch. They argue that both a sharp tipped needle and a liquid jet penetrate
a soft solid by the formation and opening of a planar crack, whereas penetration by a flat-bottomed
punch involves the formation of a ring crack. The predicted pressure for penetration of the dermis by a
liquid jet is of similar value to the pressures employed in needle-free injectors [Shergold et al. 2006]. The

Keywords: adipose tissue, soft solids, deep penetration, injection, fracture mechanics, toughness.
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Shergold-Fleck model gives the penetration pressure but no explicit information on the penetration depth.
The depth of penetration achieved by high speed liquid jet injections has been measured by Baxter and
Mitragotri [2005]: The depth of penetration into dermis and subcutaneous adipose tissue was a function
of both the diameter and velocity of the jet.

Second, consider the liquid-delivery stage. To date, research into the mechanisms governing the
delivery of liquid injected into soft tissue has been confined to an examination of the depth of the injection
and the degree of dispersion of the liquid within the tissue. Differences in the dispersion behaviour of
liquid injected at low and high speed may affect the rate at which a drug is absorbed and may result
in the formation of different types of wound within the tissue. Cooke et al. [1980] have compared the
bioavailability from a needle-free injection and from a hypodermic needle and syringe for subcutaneous
and intramuscular injections of lignocane into humans. For both injection methods, the injectate was
dispersed to a similar degree within the tissue. More recently, Schramm-Baxter and Mitragotri [2004]
have performed liquid jet injections into human dermis and observed that the shape and dispersion of
the liquid depends upon nozzle diameter and upon the jet velocity. Barry et al. [1995] have developed
a poroelastic model for the seepage of a liquid into a spherical cavity, and have included the effect of
the fluid pressure upon the small-strain elastic deformation of the porous medium. The relevance of this
model to fluid delivery must await an experimental observation of the injection mechanism.

Scope of the paper. The aim of the current study is to investigate the penetration and delivery of liquid
into subcutaneous adipose tissue. We begin by reviewing the microstructure and mechanical properties
of adipose tissue. The study is split into two parts: penetration of adipose tissue by a solid punch,
and liquid injection by hypodermic syringe. In Section 2, penetration tests by conically tipped and flat-
bottom punches are reported, and scanning electron microscopy, light microscopy are used to reveal the
mechanisms of penetration. The results are compared with existing models in Section 3. The response
of adipose tissue to hypodermic injection is described in Section 4. X-ray techniques are used to reveal
the mechanisms of liquid delivery and are combined with the results from the injection tests to motivate
a seepage model in Section 5. Concluding remarks are stated in Section 6.

Review of the microstructure and mechanical properties of adipose tissue. Subcutaneous adipose tissue
is a connective tissue comprising lipid-filled cells called adipocytes and resides directly under the dermal
layer of human skin. The lipid is a triacylglyceride of molecular weight on the order of 900 g mol−1 and
viscosity of 40 mPa s at 37◦ C [Comley and Fleck 2010a]. The adipocytes are of diameter 80µm and
are supported by two interpenetrating collagen-based structures: (i) a reinforced basement membrane in
the form of a collagen mesh, containing primarily type I and IV collagen, surrounds each cell, and (ii) a
type I collagen fibre network, termed the interlobular septa [Björntorp and Martinsson 1966; Nakajima
et al. 1998]. The reinforced basement membrane resembles a closed cell foam with a unit cell dimension
of 80µm and walls of thickness 2µm. In contrast, the interlobular septa take the form of an open cell
foam with cell edge length 1 mm and a cell wall thickness of 10µm [Comley and Fleck 2010a]. The
macroscopic stiffness and toughness derive primarily from the reinforced basement membrane.

Additional structures such as blood vessels exist within the tissue, but have negligible influence on the
overall mechanical properties. The intervening space is filled with ground substance. Overall, 60–80%
(by mass) of adipose tissue is lipid, 5–30% is water and the remaining 2–3% is protein [Greenwood
and Johnson 1983]. The large liquid content enforces material incompressibility [Samani et al. 2003].
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Histology of adipose tissue suggests that it is approximately isotropic in structure and is thereby isotropic
in mechanical properties, to a first approximation [Samani et al. 2003; Comley and Fleck 2010a].

Uniaxial compression tests of adipose tissue suggest that at low strain rates (on the order of 10−3 s−1)
the tissue has a Young’s modulus of approximately E = 1 kPa, whereas at strain rates of order 1000 s−1

the modulus increases by more than three orders of magnitude to E = 3 MPa [Miller-Young et al. 2002;
Nightingale et al. 2003; Gefen and Haberman 2007; Comley and Fleck 2009]. Comley and Fleck [2011]
demonstrates that the stress versus strain behaviour of adipose tissue can be adequately described by a
one term Ogden strain energy density function [1972] with a shear modulus µ= E/3 and strain hardening
exponent α = 20 of the form

φ =
2µ
α2 (λ

α
1 + λ

α
2 + λ

α
3 − 3) (1)

Here, φ is the strain energy density per undeformed unit volume and λi are the three principal stretch
ratios.

2. Penetration tests using a solid punch

Test method. Deep penetration tests were performed on samples of adipose tissue using circular, cylindri-
cal punches of conical and flat bottomed headshape. Fresh porcine adipose tissue from the jowl of a pig
was obtained (Dalehead Foods, Linton, Cambridgeshire, UK), cut into rectilinear blocks of approximate
dimension 30 mm×30 mm by 10 mm thick and stored in phosphate buffered saline (PBS) prior to testing.
Testing always commenced within four hours of slaughter.

Cylindrical steel punches of diameter in the range 2R = 0.4 mm to 2R = 3.9 mm were machined with
either a flat bottom or a conical tip of semi-included apex angle 45◦. The punches were then mounted on
the cross-head of a screw-driven tensile test machine. A block of adipose tissue was placed on a PMMA
plate (thickness 10 mm), placed in turn on the test-machine platen. The penetration force F versus
displacement u was measured at selected displacement rates in the range 0.05 mm s−1 to 10 mm s−1. The
cross-head was displaced until the punch made contact with the PMMA plate. Three tests were performed
for each configuration of punch and displacement speed. Measurements of the friction force between
the side wall of the punch and the tissue following full penetration of the specimen were additionally
made as follows. A specimen was placed on a PMMA block containing a through hole of diameter three
times that of the punch. The centre-line of the hole was in line with that of the punch and the punch was
depressed until its tip penetrated the lower surface of the tissue and passed into the hole in the support
block. Continued pushing of the punch through the tissue required a friction force Ffric.

Force versus displacement results. A representative set of F versus u results for punches with a diameter
2R= 0.6 mm is shown in Figure 1. The response is qualitatively the same for the flat-tipped punch and the
punch with the 45◦ conical tip. For both headshapes, the force increases steadily with punch displacement
until the front surface of the tissue is penetrated. After penetration of the front face, the punch enters the
tissue and the force oscillates about a mean (plateau) value Fp. These oscillations in force are associated
with the propagation of the crack ahead of the punch tip. Similar profiles of force versus displacement
were seen for all punch diameters tested, according to their tip type. Displacement rate was not found
to have a significant effect on the measured force. These additional curves are omitted for the sake of
brevity.
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Figure 1. Force F versus displacement u for the penetration of porcine adipose tissue
with 0.6 mm diameter metal punches with either a flat-bottom (solid line) or a 45◦ conical
tip (dashed line). The displacement rate was 0.1 mm s−1.

The frictional force Ffric between the shaft of the punch and the tissue, following full penetration of
the specimen, was less than 5% of the average plateau force Fp. This is consistent with the observation
that the penetration force oscillates about a mean value Fp, with no observable rise in Fp due to frictional
effects.

Observations of hole formation. Observations of the hole formation in the tissue were made as follows.
Upon removal of the punch the surfaces of a selection of samples were examined with an optical micro-
scope. A separate set of samples were fixed in glutaraldehyde, sectioned along the diametral plane of the
hole and prepared for viewing in a scanning electron microscope (SEM). See [Comley and Fleck 2010a]
for full details of sample preparation.

The hole generated by each punch was observed by both light microscopy and a scanning electron
microscope (SEM). The residual hole at the front face of the tissue is shown in Figure 2, for a range
of punch diameters and headshapes. In all cases, the residual hole was almost circular in shape and of
diameter about 20% less that that of the punch.

SEM images of the fracture surface following penetration are shown in Figure 3 for both the flat-
bottomed punch and the 45◦ conical tipped punch. Adipocyte cells have ruptured and septa fibres have
pulled out and torn, as labelled in the figure. Reinforced membrane and septa fibres are compacted at
the bottom of each hole.

3. Discussion of the penetration behaviour

The nominal penetration pressure p is now examined for the full range of punch diameters and headshapes
that have been tested. Penetration pressure is a useful quantity for comparison with the penetration models
of [Shergold and Fleck 2004] and for comparison with the pressures required for liquid injection. It is
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Figure 2. Images of the puncture site at the tissue surface following puncture by a range
of metal punches of varying headshape at 0.1 mm s−1.
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Figure 3. SEM images of the fracture surface of adipose tissue punctured by two
punches of diameter 2.4 mm and tip geometry. Left: 45◦ conical tipped. Middle and
right: flat-bottomed (A: compacted interlobular septa and reinforced basement mem-
brane; B: interlobular septa fibres; C: reinforced basement membrane surrounding an
adipocyte.
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Figure 4. Comparison of the average pressure p required to penetrate adipose tissue
with a range of solid punches of varying headshape. A prediction is shown for the
pressure required to puncture adipose tissue with a flat tipped punch calculated from
(3). The following parameter values were used in the calculations: JC = 4.1 kJ m−2,
b/R = 0.5, a/R = 0.8, µ= E/3= 0.3 kPa.

defined by

p =
Fp

πR2 (2)

in terms of punch force Fp and punch radius R. For each headshape, the average penetration pressure
p (taken from the pooled set of pressure results across all the displacement rates tested) is plotted as a
function of punch diameter 2R (see Figure 4). For a given punch diameter 2R the penetration pressure
for the flat-bottomed punch exceeds that for the 45◦ tipped punch.

We note in passing that the pressure to penetrate adipose tissue with a flat-bottomed punch is half the
magnitude of the pressure to penetrate dermal tissue (a related collagen based connective tissue) with
a similar punch. Pressures of 60 MPa were recorded in [Shergold and Fleck 2005] during tests in vivo
on human dermis with a 0.3 mm diameter flat-bottomed punch. This compares to 30 MPa needed to
penetrate adipose with a 0.4 mm diameter flat-tipped punch.

Shergold and Fleck [2004] have developed two models for the deep penetration of a soft solids (see
Section 1). In order to select the appropriate Shergold-Fleck penetration model for comparison with
the measured penetration pressures it is necessary to determine the mode of hole formation, during
penetration. The light microscopy and SEM images of Figures 2 and 3 suggest that both the flat-bottomed
and the 45◦ conical tipped punches compact a circular cylindrical slug of tissue beneath the punch (see
Figures 3 and 5a). This indicates that a mode II ring crack is generated in adipose tissue during penetration
by either a flat-bottomed or 45◦ conical tipped punch. The characteristics of the puncture force response,
shown in Figure 1, are consistent with force response observed in [Shergold et al. 2006] for punches that
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Figure 5. Sketches of (a) the hole formation in adipose tissue following deep penetration
by a flat tipped or 45◦ conical tipped punch, and (b) the hole formation of the Shergold-
Fleck ring-crack model.

generate ring cracks. Also the lack of a frictional component to the measured penetration force provides
further evidence of ring-cracking. It now remains to briefly review the model and then compare the
predictions from the model with the observed penetration pressures reported in Figure 4.

Application of the Shergold-Fleck ring-cracking model. Shergold and Fleck [2004] observed that a flat-
bottomed punch generated a mode II ring crack below the punch. Their model is sketched in Figure 5b.
They predicted that the pressure p f scaled with the toughness JC and shear modulus µ according to

pF

µ
=

[
1−

(
b
R

)2]−1[2b
R

JC

µR
+ f

(
b
R

)]
(3)

where b is the radius of the ring crack in the relaxed configuration (Figure 5b). The function f (b/R) does
not exist in closed form but is defined in Equation (3.17) of [Shergold and Fleck 2004]; the details are
omitted here. The pressure given by (3) attains a minimum for a particular value of b/R and, following
that paper, we take the minimum value to be the penetration pressure for ring cracking. Upon assuming
that JC = 4.1 kJ m−2, from the trouser-tear tests of [Comley and Fleck 2010b], and taking µ= E/3=
0.3 kPa and α = 20 (as discussed in the introduction) we find that as 2R increases from 0.4 mm to
3.9 mm, b/R increases from approximately 0.48 to 0.53, whereas p f decreases from 17 MPa to 3 MPa.
For simplicity a single value of b/R = 0.5 is used for the remainder of the study.
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The Shergold-Fleck model is now compared to the measured data. Using the values for toughness
JC , shear modulus µ and b/R given above predictions for the penetration pressure calculated from (3)
are compared to the measured data in Figure 4. The ring-cracking model is in good agreement with the
experimental data for punches of diameter 2R less than 1 mm. The pressure to penetrate adipose tissue
with punches of diameter greater than 1 mm is underestimated by the ring-cracking model. Further
measurements from punches of diameter greater than 10 mm are required in order to establish whether
this discrepancy is a statistical artefact or a physical effect.

Finally the prediction of b/R = 0.5 can be compared to the measured diameter of the holes, created by
punch penetration, divided by the corresponding punch radius. Recall that the diameters of the holes were
on average 80% smaller than the corresponding punch radius, suggesting an observed b/R of 0.8. The
model assumes non-linear elastic behaviour whereas viscoelastic effects would lead to stress relaxation
within the adipose tissue in the vicinity of the penetrator. It is unclear, however, whether viscoelastic
effects are significant in these tests, as no time dependence of residual hole diameter was observed over
a period of minutes following the penetration test. In a parallel study, Comley and Fleck [2009] have
explored the sensitivity of uniaxial response of adipose tissue to strain rate. They found that the response
is independent of strain rate in the range 10−4 to 1 s−1, implying that viscoelastic effects are minor over
this regime.

4. Injection tests

Test methods. Measurements were made of the force to inject PBS into blocks of adipose tissue (di-
mension 20 mm× 20 mm× 10 mm) using a hypodermic syringe. A plastic 5 ml syringe was clamped
directly beneath the cross-head of a screw driven tensile test machine (see Figure 6). The syringe body
was clamped at the top, above the rubber seal of the plunger, to prevent distortion of the portion of the
syringe barrel containing the PBS. The syringe was fitted with either a gauge 27 hypodermic needle
(internal orifice diameter D = 0.21 mm, needle length L = 20 mm) or a gauge 21 hypodermic needle
(internal orifice of D = 0.51 mm, needle length L = 25 mm). The internal cross-sectional area of the

F, u

Adipose tissue

Clamp
Hypodermic needle

& syringe

Saline

Platen
10 mm

20 - 25 mm

Ø 11.5 mm

Figure 6. Experimental setup for injection tests into adipose tissue.
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Figure 7. Force F versus the volume of saline injected q using a 0.4 mm diameter
hypodermic syringe with a cross head displacement rate of 0.1 mm s−1.

syringe was AS = 103 mm2. In each injection test, the plunger was depressed into the syringe by the
cross-head and the force F versus cross head displacement u were recorded in two stages, as follows:

Stage 1: The force to inject 1 ml PBS into free air was measured.

Stage 2: The syringe was re-filled with PBS. A fresh piece of adipose tissue was placed on the platen
of the test-machine. The clamped syringe was manually lowered to insert the needle into the tissue to a
depth of 4 mm (see Figure 6). The force to inject 1 ml PBS into the tissue was then measured.

Tests were conducted at a cross-head displacement speed in the range of 0.05 mm s−1 to 1 mm s−1. A
fresh needle and syringe was used for each test.

Test results. Representative results for both stage 1 and stage 2 of an injection test are shown in Figure 7,
for a 27 gauge needle and a cross-head displacement rate of 0.1 mm s−1. Injection into air requires a
level of force FA, equal to 1 N for the data shown. In contrast, the force to inject PBS into the tissue
increases with injected volume to an approximately constant level FI , equal to 5.5 N for the data shown.
The pressure to inject into adipose tissue pD is calculated as

pD =
(FI − FA)

AS
(4)

where AS is the cross-sectional area of the syringe. The dependence of pD upon the volumetric flow
rate q̇ is shown in Figure 8. A least squares regression reveals a linear relation between pD and q̇ of the
form

pD = cq̇ + p0 (5)

where c and p0 are independent of the needle diameter. Values for the coefficients were found to be
c = 740 GPa s m−3 and p0 = 23 kPa, with a measure of fit R2

= 0.9. An explanation for the origins of
(5) is given below.
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Figure 8. The mean pressure pd± s.d. versus volumetric flow rate q̇ for the injection of
PBS into adipose tissue using a 27 gauge needle and a 21 gauge needle. A least squares
regression fit overlays the data.

X-ray imaging of injected liquid. Adipose tissue was injected with 0.5 ml of Urografin 150 (Bayer Plc,
UK) radio-opaque fluid (viscosity similar to water) using a hypodermic syringe with a 21 gauge needle.
Following injection the specimen was immediately placed in an x-ray inspection scanner (HMX160,
X-Tech, Metris, Tring, UK) and 720 images were taken at 0.5◦ intervals about a 360◦ rotation. Image
reconstruction software was used to generate a 3D representation from the 2D images.

X-ray images of the injection sites are shown in Figure 9. Examination of cross sections from the 3D
reconstruction of the x-ray images show an ellipsoid shaped bolus of liquid embedded within the tissue.
The injectate is distributed within micro-channels of maximum length 1 mm. The volume of the bolus
is approximately 2300 mm3. Recall that 0.5 ml Urografin fluid was injected. Consequently the average
volume fraction of Urografin fluid in the overall bolus equals 0.23.

5. Discussion of injection response

The delivery pressure required to injected a liquid at low injection velocity is 103 times less than the
pressure required for deep penetration by a solid punch. This suggests that different fracture mechanisms
are involved. A seepage model for the delivery pressure and a hydraulic fracture model of the micro-
cracks formed during liquid delivery are now assessed.

A model for delivery pressure. A model is now developed which describes the flow of a fluid from a
spherical reservoir at the tip of the needle into micro-cracks that are created within the tissue during
an injection. It is suggested that the dependence of delivery pressure pD on volumetric flow rate q̇ can
be modelled by Darcy’s law [Wang 2000]. Measurements of delivery pressure pD are used to estimate
the permeability k of the tissue during an injection, and possible mechanisms for the formation of the
micro-cracks are assessed.



DEEP PENETRATION AND LIQUID INJECTION INTO ADIPOSE TISSUE 137

Figure 9. X-ray images of injection of 0.5 ml radio opaque dye (150 Urografin) into
porcine adipose tissue by a hypodermic needle and syringe. Image (i) is a composite
x-ray image. Images (ii) and (iii) are cross sections from a 3D reconstruction of 720
images taken at 0.5◦ around 360◦ of the sample.

First we examine the use of Darcy’s law to model delivery pressure pD. Darcy’s law describes the
nominal flow rate per unit area u̇ as a function of the pressure gradient ∇p and the permeability of the
solid k, where

u̇ =−k∇p (6)

A model of the permeation of the injected fluid can be established as follows, see Figure 10. A fluid
at a volumetric flow rate q̇ is injected into adipose tissue. Assume that a fluid-filled reservoir of radius
rD and pressure pD is formed at the tip of the needle, and the surrounding solid is of permeability k (see
Figure 10). The volumetric flow rate q̇ is related to the flow per unit area u̇(r) according to

u̇(r)=
q̇

4πr2 (7)

Substitution of (7) into (6) gives

−k
∂p
∂r
=

q̇
4πr2 (8)
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Figure 10. A sketch of the injection of a liquid into adipose tissue.

and thereby leads to an injection pD at r = rD of

pD =
q̇

4πkrD
(9)

In order to perform an order of magnitude calculation for the permeability k it is assumed that 2rD =

800µm. This value matches the width of the fluid-filled channels observed in the x-ray images of Figure 9.
Upon matching the regression coefficient c = 740 GPa s m−3 of (5) to the constant of proportionality in
(9) one obtains

c =
(
4πkrD

)−1 (10)

and consequently k = 2.7× 10−10 m4 N−1 s−1.
How does this value compare with data reported in the literature? The permeability of adipose tissue

for quasi-static flow is reported elsewhere to be between 1.8× 10−12 and 1× 10−13 m4 N−1s−1 [Guyton
et al. 1966; Reddy et al. 1981]. These values are 102 and 103 times smaller than the permeability
observed during the current injection tests. This indicates that injection of a pressurised fluid increases
the permeability of the tissue by the creation of a connecting network of micro-cracks as observed in
Figure 9. This phenomenon is analogous to hydraulic fracture of rocks where pumped fluid leads to the
formation of a connecting network of cracks [Wang 2000].

Hydraulic fracture model. It is suggested that during injection the fluid tunnels through pathways of
low resistance, possibly between lobules of adipocytes The mode I toughness JC associated with the
tunnelling fracture of a micro-crack of width h (see Figure 10), within a tissue of Young’s modulus E
and under a pressure p0 is given in [Hutchinson and Suo 1991] as

JC =
p2

0h
1.27E

(11)
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A measure of the pressure required to generate micro-cracks within the tissue is given by the value of
p0 = 23 kPa, taken from the least squares regression fit of the pressure data; see (5). Let the Young’s
modulus of adipose tissue be equal to E = 1 kPa [Comley and Fleck 2009]. Then for a crack of width
h = 800µm (matching the width of the observed micro-cracks in Figure 9) the corresponding fracture
toughness is of the order JC = 330 Jm−2. This is an order of magnitude lower than the fracture toughness
of adipose tissue JC = 4.1 kJ m−2, as measured via trouser tear test [Comley and Fleck 2010b]. This
result indicates that the pressurised fluid seeks out relatively brittle interfaces within the adipose tissue.
Further work is required to examine the injection site within the tissue via microscopy, in order to confirm
(or refute) our conjecture of hydraulic fracture along weak paths.

6. Concluding remarks

Measurements have been made of the pressure to penetrate adipose tissue by a solid punch and the
pressure to inject adipose tissue with a low viscosity liquid. The punch pressure is about three orders of
magnitude greater than the injection pressure, indicating that different fracture mechanisms are involved.
It is shown that the deep penetration pressure can be adequately modelled by the Shergold-Fleck model
for ring-cracks. A seepage model based on Darcy flow is presented to account for the linear dependence
of delivery pressure on volumetric flow rate. The seepage model reveals that the permeability of the
tissue is significantly increased during the injection event. X-ray images of the injected bolus within the
tissue indicate the presence of micro-cracks, formed during injection. A hydraulic fracture model reveals
a low value of toughness, JC = 330 J m−2 associated with the formation of these micro-cracks.
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ON SMALL AZIMUTHAL SHEAR DEFORMATION OF FIBRE-REINFORCED
CYLINDRICAL TUBES

MOHAMED A. DAGHER AND KOSTAS P. SOLDATOS

The problem of azimuthal shear deformation of a transversely isotropic elastic circular cylindrical tube
is considered and studied in the small deformation regime. The preferred direction of the transverse
isotropy is assumed to lie on the plane of the tube cross-section and is due to the existence of a single
family of plane spiral fibres. Consideration of the manner that either the tube material or the fibres may
be constrained gives rise to four different versions of the problem which are all susceptible to an exact
closed form solution when fibres are perfectly flexible. Particular attention is paid to the special case of
straight fibres aligned along the radial direction of the tube cross-section, where comparisons are made
between the aforementioned solution obtained when fibres are perfectly flexible and a corresponding
solution obtained when fibres posses bending stiffness. It is found that the conventional linear elasticity
considerations associated with the perfectly flexible fibre assumption cannot adequately account for the
effects of material anisotropy. In contrast, effects of material anisotropy can be accounted for when
fibres posses bending stiffness, by taking into consideration the action of couple-stress and therefore
asymmetric stress. Moreover, an intrinsic material length parameter which appears naturally in the
associated governing equations may be chosen as a representative of the fibre thickness in this case.
It is also seen that deformation patterns of fibres possessing bending stiffness as well as corresponding
stress distributions developed within the tube cross-section fit physical expectation much closer than
their perfectly flexible fibre counterparts.

1. Introduction

The classical version of the problem of azimuthal shear deformation of an elastic circular cylindrical tube
of infinite extent is due to Rivlin [1949] and, in several forms and variations, has been considered and
studied afterwards by several investigators. This refers to a particular, plane-strain type of finite strain
which is applied on the cross-section of an incompressible isotropic hyper-elastic circular cylindrical tube
of infinite extent. Accordingly, under the action of an appropriate set of boundary conditions, the tube
cross-section is subjected to pure azimuthal shear strain during which it remains circular while its inner
and outer radii do not change. A comprehensive review of the relevant literature was presented recently
in [Kassianidis et al. 2008], which introduced further and dealt with a new version of this problem;
namely the case in which the incompressible material of the tube exhibits some kind of anisotropy. In
some detail, the tube cross-section was considered to be reinforced by a single family of unidirectional
extensible fibres; this consideration furnished the tube material with properties of transverse isotropy.
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Most recently, a second family of plane extensible fibres was placed on the tube cross-section [Dorf-
mann et al. 2010], thus assuming that the anisotropy of the material of interest proceeds beyond the
relatively simple symmetries of transverse isotropy. As already implied, the directions of preference
considered in either this latter paper or [Kassianidis et al. 2008] were assumed capable to extend or
contract considerably, allowing thus the incompressible material of the tube to withstand the imposed
conditions of pure azimuthal shear deformation.

A relevant problem was also considered recently in [Soldatos 2010], as an application of a study having
as principal purpose to investigate the influence that some new, second gradient effects have on finite plane
deformations of ideal fibre-reinforced hyper-elastic solids. That problem dealt with azimuthal shear strain
of an incompressible hyper-elastic circular cylindrical tube having its cross-section reinforced by a single
family of inextensible fibres (see also [Soldatos 2009a]); recall that an incompressible material which
is further reinforced by one or more families of inextensible fibres is known as ideal fibre-reinforced
material (see [Spencer 1972], for example). The new development in [Soldatos 2009a; 2010] made clear
that pure azimuthal shear strain is not possible when the incompressible material of the tube contains
an inextensible direction of transverse isotropy. Unlike [Kassianidis et al. 2008] where extension or
contraction of fibres is assumed possible, a single family of inextensible fibres causes change of both
the inner and outer tube radii in a manner that preserves the area of the tube cross-section. It is noted in
passing that, since the cross-sectional area remains also unchanged under conditions of pure azimuthal
shear strain, the latter kind of deformation [Rivlin 1949; Kassianidis et al. 2008; Dorfmann et al. 2010]
becomes essentially a particular case of the outlined “area-preserving” azimuthal shear strain of a circular
cylindrical tube.

The new, second gradient deformation effects that [Soldatos 2010] is mainly interested on are relevant
with the ability of fibres to resist bending. However, the described “area-preserving” azimuthal shear
deformation was found attainable by the ideal fibre-reinforced material considered in [Soldatos 2010]
regardless of whether the inextensible fibres involved possess bending stiffness or not (in the latter case
fibres are assumed perfectly flexible). The analysis in [Soldatos 2009a; 2010] revealed further that, if the
inextensible fibres involved are initially straight and aligned along the radial direction of the tube cross-
section, they remain straight during deformation and force the tube to undergo area-preserving azimuthal
shear strain by changing their slope only. Some link was therefore observed between the strength of fibres
in extension or contraction and their ability to resist bending. It was accordingly concluded that, if the
direction of transverse isotropy is due to the existence of strong fibres, the tube should be expected
to resist the conditions of pure azimuthal shear deformation. Instead, tendency will be observed for
creation of a deformation pattern that couples azimuthal shear strain and radial stretching. Moreover,
fibre bending stiffness should be dominant in the formation of such a pattern.

It is instructive at this point to mention that the principal problem met in nature is essentially the
problem in which the transversely isotropic material of the tube is completely unconstrained. Hence,
by employing the concept of the ideal fibre-reinforced material, the references [Soldatos 2009a; 2010]
dealt essentially with a first approximation to the solution of the finite azimuthal shear strain problem
of a fibre-reinforced cylindrical tube. Many materials are of course nearly incompressible and, similarly,
many kinds of natural or structural fibres are nearly inextensible. Hence, in many cases of interest, either
the incompressible material considered in [Kassianidis et al. 2008] or a compressible material reinforced
by inextensible fibres yields a realistic and plausible simplification of the principal problem. Either case
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is regarded as an intermediate step between the latter problem and that considered in [Soldatos 2009a;
2010] for a corresponding doubly constrained material. Further progress in the subject should therefore
consider to dismiss one or both of the material constraints involved in these two references.

Dismissal of the fibre inextensibility constraint leads to the comprehensive relevant study presented
already in [Kassianidis et al. 2008] where attention was focused on the particular case of pure azimuthal
shear deformation only. In this context, dismissal of either the material incompressibility constraint only
or both of the constraints involved in [Soldatos 2009a; 2010] produces two additional versions of the
problem. Solution to either of those two versions in the finite strain regime seems to be a more difficult
task as compared with the solutions achieved in all three of these references. Nevertheless, the outlined
hierarchical manner of approaching difficult problems met in finite elasticity assists enormously the effort
of achieving basic understanding of associated complicated issues.

Another plausible way for achieving basic understanding of some of those issues is by restricting
initially attention to the small deformation regime within which the material is regarded as linearly
elastic. There exists in fact an extensive literature of linear anisotropic elasticity solutions, most of
which are associated or can become relevant to the mechanics of fibre-reinforced solids. In this context,
the present study adds a new contribution to that literature by focusing attention to the linear elasticity
counterpart of each one of the aforementioned four versions of the azimuthal shear strain problem of a
transversely isotropic circular cylindrical tube. Based on the outlined history of the problem considered,
this investigation aims therefore to identify which of the four versions of the problem anticipate that
within the small strain regime (i) existence of possible coupling between azimuthal shear strain and radial
stretching can cause change of the inner and outer radii of the tube; and/or (ii) the initial deformation
pattern is or may still be interpreted as that of pure azimuthal shear strain, in the sense that the tube inner
and outer radii do not tend to changed during deformation. Moreover, (iii) the particular case of straight
fibres aligned along the radial direction of the tube cross-section is treated separately and, in the light of
the relevant studies initiated in [Soldatos 2009a; 2010], comparisons are made between corresponding
solutions and results obtained when fibres are either perfectly flexible or possess bending stiffness.

Under these considerations, section 2 formulates the problem of axially symmetric plane strain of a
transversely isotropic, linearly elastic, annular disc (the tube cross-section) subjected to external boundary
conditions that may cause pure azimuthal shear strain. It is noted that the formulation detailed in section 2
is based on symmetric elasticity considerations which concur with the assumption that fibres are perfectly
flexible. For the case that the direction of transverse isotropy is due to fibres of a certain spiral shape,
section 3 outlines next the exact, closed form solution obtained for each one of the aforementioned four
versions of the azimuthal shear strain problem; namely, the case in which (i) the material of the tube
is completely unconstrained and therefore compressible, (ii) the material is assumed incompressible but
the fibres can extent or contract, (iii) the material of the tube is compressible but the fibres are assumed
inextensible, and (iv) the material of the tube is incompressible and the fibres are inextensible (ideal fibre-
reinforced material). Section 4 deals separately with the particular case of perfectly flexible straight fibres
aligned along the radial direction of the tube cross-section. This case, along with its counterpart that
considers fibres resistant in bending, was discussed also separately in [Soldatos 2010] for the purposes
of the area-preserving finite azimuthal shear strain problem introduced and studied there.

When the perfectly flexible radial fibres considered in section 4 are replaced with radial fibres that
posses bending stiffness the linear theory of elasticity is required to account further for possible effects of
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couple-stress and therefore asymmetric stress. Moreover, micromechanics considerations reveal that, due
to the natural appearance of an intrinsic material length parameter which is of the fibre thickness scale,
the manner in which fibres are supported on the tube boundaries can also be accounted for, with use of
appropriate boundary conditions. This is the case discussed and resolved completely in section 5, where
the principal governing differential equation of the problem is solved exactly with use of the power-series
method as well as the successive approximate method introduced in [Soldatos and Hadjigeorgiou 1990];
see also [Shuvalov and Soldatos 2003]. Relevant numerical results are presented in section 6, where the
differences between conventional linear elasticity and the new developments introduced in section 5 are
also discussed in detail. Finally, section 7 summarises the main results, observations and conclusions
drawn in this investigation.

2. Problem formulation for perfectly flexible fibres

Consider a circular cylindrical hollow tube defined by

B0 ≤ r ≤ B1, 0≤ θ ≤ 2π, −∞≤ z ≤∞, (2-1)

where r, θ and z are appropriate cylindrical polar coordinate parameters and the nonnegative constants
B0 and B1 represent the inner and outer radii of the tube, respectively. It is assumed that the tube is made
of a transversely isotropic linearly elastic material and that the preferred direction of transverse isotropy
lies on the plane of the tube cross-section. Accordingly, the preferred material direction is described as
follows (e.g., [Kassianidis et al. 2008]):

θ = G(r)+ θ0, G(B0)= 0, G(B1)= θ1− θ0 ≥ 0, (2-2)

where 0 ≤ θ0 ≤ 2π and θ1 − θ0 is fixed regardless of the value of θ0. Here, the scalar function G(r)
defines the direction of transverse isotropy which is due to the existence of a single family of plane fibres
making an angle α(r) with the radial direction. It is convenient to assume that 0 ≤ α(r) < π/2 and,
hence, that the family of fibres (the a-curves) have the form shown in Figure 1.

Figure 1. Left: schematic representation of the tube cross-section and associated nota-
tion. Right: illustration of normal in-plane stress components in both the local and polar
coordinate systems.
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The unit tangent a and the unit normal n of this family of material curves form the base of a local
rectangular curvilinear coordinate system. In components, these unit vectors are represented as

a = (ar , aθ )T , n= (−aθ , ar )
T , (2-3)

where
ar =

[
(rG ′(r))2+ 1

]−1/2 aθ = rG ′(r)
[
(rG ′(r))2+ 1

]−1/2
, (2-4)

and a prime denotes differentiation with respect to r . It follows that

tanα = rG ′(r), (2-5)

and, therefore, G ′(r)≥ 0.
The material of the tube is assumed to be linearly elastic and, hence, the plane strain version of Hooke’s

law has the form taa

tnn

tan

=
C11 C12 0

C12 C22 0
0 0 C66

 eaa

enn

2ean

 , tzz = C12eaa +C23enn, (2-6)

where taa, tnn, tan, tzz and eaa, enn, ean represent the nonzero components of the stress and the strain
tensors respectively, in the aforementioned curvilinear local coordinate system (see also Figure 1, right);
C11,C12,C22,C23 and C66 are appropriate nonzero elastic moduli (e.g., [Jones 1998]) which are assumed
constant in what follows. In polar coordinates, (2-6)1 takes the formtrr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 C̄66

 err

eθθ
2erθ

 , (2-7)

where trr , tθθ , trθ and err , eθθ , erθ are the corresponding polar components of the stress and strain tensors,
respectively. In general, it is α 6= 0 and, hence, the stiffness matrices [C] and [C̄] appearing in (2-6)1

and (2-7) are related according to
[C̄] = [T ]−1

[C][T ]−T , (2-8)

where (e.g., [Jones 1998])

[T ] =

 cos2 α sin2 α sin 2α
sin2 α cos2 α − sin 2α
−1
2 sin 2α 1

2 sin 2α cos 2α

 , (2-9)

and a superscript −T denotes the inverse of a transposed matrix. It is noted for later use, that both matrices
[C] and [C̄] are required to be positive definite, in order for the strain-energy of the system to be positive
(e.g., [Ting 1996]).

For the axially symmetric plane deformations of interest, the strain components appearing in (2-7) are

err = u′(r), eθθ =
u(r)

r
, 2erθ = v

′(r)−
v(r)

r
, (2-10)

where u(r) and v(r) are the cross-sectional radial and the azimuthal displacement components, respec-
tively. The set of available equations is completed with the equations of equilibrium. In the present case,
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these take the form

r t ′rr + trr − tθθ = 0, (r2trθ )′ = 0,
∂tzz

∂z
= 0, (2-11)

and, since plane strain assumes that stresses are independent of z, equation (2-11)3 is satisfied identically.
The description of the azimuthal strain problem considered is completed by associating to it appropri-

ate sets of boundary conditions. Accordingly, the boundary conditions imposed in the azimuthal direction
of the tube inner and outer boundaries are

v(B0)= 0, v(B1)= ψ. (2-12)

Since the inner boundary is assumed restrained from rotation, the azimuthal displacement ψ , which
is imposed on the tube outer boundary, is assumed to be the cause of the axially symmetric plane-
strain deformation of interest. If positive (negative), the known displacement ψ causes an anticlockwise
(clockwise) rotation on the outer boundary of the tube cross-section; the azimuthal boundary traction is
considered unknown on both boundaries and should therefore be determined from the analysis.

Anticipation of possible coupling between azimuthal shear strain and radial stretching is associated
with the ability of the inner and outer tube radii to change during deformation, thus leading to the
additional boundary conditions

trr (B0)= trr (B1)= 0. (2-13)

However, when pure azimuthal shear strain becomes the principal deformation of interest, the tube radii
remain unchanged during deformation and, hence, the natural boundary conditions (2-13) are replaced
by the geometrical boundary conditions

u(B0)= u(B1)= 0. (2-14)

3. Spiral fibres

For simplicity, it is now considered that α is constant and, hence, the fibres have the form of a logarithmic
spiral; namely, a curve described by the function

G(r)= tanα ln
r
B0
. (3-1)

With this relatively simple choice of G(r), the components of the stiffness matrix [C̄] become indepen-
dent of the polar distance, r . It is seen next that, as a consequence, an exact closed form solution of the
problem is possible regardless of whether the material of the tube is unconstrained or is subjected to any
combination of the aforementioned incompressibility and inextensibility constrains.

In what follows, equations are made nondimensional with use of the main nondimensional quantities

r∗ =
r
B0
, β =

B1

B0
, u∗ =

u
ψ
, v∗ =

v

ψ
,

t∗i j =
B0ti j

ψC̄66
(i, j = r, θ), C̄∗i j =

C̄i j

C̄66
(i, j = 1, 2, 6). (3-2)
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It is also noted that the additional nondimensional quantities

p∗ =
B0 p
ψC̄66

, T ∗ =
B0T
ψC̄66

(3-3)

will be employed latter in sections 3.2, 3.3 and 3.4 in order to represent nondimensional forms of the
arbitrary pressure and tension, respectively, introduced there. It is however noted that, for convenience,
asterisks are dropped in all equations met next in sections 3 and 4. Hence, the form of the in-plane
equilibrium equations (2-11)1,2 remains unchanged under the implied nondimensional analysis while the
corresponding nondimensional form of the boundary conditions (2-12), (2-13) and (2-14) is, respectively,

v(1)= 0, v(β)= 1, (3-4)

trr (1)= trr (β)= 0, (3-5)

u(1)= u(β)= 0. (3-6)

3.1. Unconstrained material. Use of the kinematic equations (2-10) and the Hooke’s law (2-7) yields
the nondimensional Navier-type form of the equilibrium equations (2-11)1,2 as follows:

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)= 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v = 0. (3-7)

This is a system of two second-order simultaneous, Euler-type ordinary differential equations (ODEs)
which admit solutions of the form u(r)= c1rn, v(r)= c2rn .

Accordingly, the general solution of equations (3-7) is found to be

u(r)= γ1 Ā1r−1
+ Ā2rη+ Ā3r−η,

v(r)= Ā4r + Ā1r−1
+ γ2 Ā2rη+ γ3 Ā3r−η, (3-8)

where Ā1, Ā2, Ā3 and Ā4 are arbitrary constants of integration, the constants γ1, γ2 and γ3 are given in
the Appendix and

η2
=

C̄22− C̄2
26

C̄11− C̄2
16

. (3-9)

It can be shown that, due to the positive definiteness of [C̄], both the numerator and the denominator
appearing in the right-hand side of (3-9) are positive and, therefore, η is always a real constant. Use of
Hooke’s law yields further the associated in-plane nondimensional stress components as follows:

trr = Ā1 F1r−2
+ Ā2 F2rη−1

+ Ā3 F3r−η−1,

tθθ = Ā1 F4r−2
+ Ā2 F5rη−1

+ Ā3 F6r−η−1,

trθ = Ā1
(
γ1(C̄26− C̄16)− 2

)
r−2, (3-10)

where the constants Fk (k = 1, 2, . . . , 6) are given explicitly in the Appendix.
The form of the solution (3-8) makes immediately understood that change of both the inner and outer

radii of the tube is generally always possible in this case, in which the material of the tube is completely
unconstrained. For, if the particular set of boundary conditions (3-4) and (3-5) is considered, all four of
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the arbitrary constants appearing in (3-8) and (3-10) acquire the unique nonzero values given explicitly
in equations (A-3); hence, u(r) 6= 0 for all 1≤ r ≤ β. In this case, the radial displacement of the inner
and outer boundary of the tube is determined by setting r = 1 and r = β in (3-8)1, respectively.

If, on the other hand, the set of boundary conditions (3-4) and (3-6) is taken instead into consideration,
the alternative set of unique nonzero values associated with the aforementioned arbitrary constants — see
equations (A-5) — suggests that, although u(r) 6= 0 for 1< r <β and, therefore, there is coupling between
azimuthal shear and radial stretching in the interior of the tube, the boundary radii of the tube can be
kept unchanged during deformation. Conditions of pure azimuthal shear can therefore also be observed
in this case, although these require simultaneous action of appropriate nonzero normal tractions on the
tube inner and outer boundaries; those tractions are determined by setting r = 1 and r = β in (3-10)1.

It should be finally noted that in the particular case that α = 0 (radial fibres), equations (3-7) become
uncoupled and, as a result, azimuthal shear strain and radial stretching become completely uncoupled
deformations. It will be seen in what follows that this result is valid regardless of whether the material
is constrained or not and, hence, this particular case, in which the fibres are aligned along the radial
direction of the tube cross-section, is discussed separately in Section 4.

3.2. Incompressible material. Incompressibility is a kinematic constraint which requires an arbitrary
hydrostatic pressure p(r) to be superimposed on the stress field; p(r) does no work in any deformation
which is compatible with the incompressibility constraint (tr e= 0). In this case, Hooke’s law (2-7) is
modified and its in-plane part takes the nondimensional form (e.g., [Spencer 1972; 1984])trr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 1

 err

eθθ
2erθ

− p

1
1
0

 , (3-11)

where, as already mentioned, the appearing quantities are all nondimensionalized according to (3-2) and
(3-3) before asterisks are dropped. The nondimensional form of the corresponding Navier-type governing
equations then becomes

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)− r2 p′ = 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v = 0, (3-12)

and are accompanied by the incompressibility constraint err + eθθ = 0, which yields the additional
equation

u′+
u
r
= 0. (3-13)

Solution of (3-13) yields u(r) which is then inserted into (3-12)2. The latter yields thus an inhomo-
geneous Euler ODE which is solved in the standard manner for the determination of v(r). Solution of
(3-12)1 becomes next possible for p(r) and, hence, the general solution of the system of simultaneous
ODEs (3-12) and (3-13) is found to be

u(r)= Ã1r−1, v(r)= Ã2r+ Ã3r−1, p(r)= Ã4−
1
2

(
Ã1(C̄11− C̄22)+2 Ã3(C̄16+ C̄26)

)
r−2, (3-14)
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where Ã1, Ã2, Ã3 and Ã4 are arbitrary constants of integration. Use of the constitutive equation (3-11)
yields further the associated in-plane nondimensional stress components:

trr =
( 1

2 Ã1(2C̄12− C̄11− C̄22)+ Ã3(C̄26− C̄16)
)
r−2
− Ã4,

tθθ =
(
−

1
2 Ã1(2C̄12− C̄11− C̄22)− Ã3(C̄26− C̄16)

)
r−2
+ Ã4,

trθ =
(

Ã1(C̄26− C̄16)− 2 Ã3
)
r−2. (3-15)

By considering the particular set of boundary conditions (3-4) and (3-5), Ã1, Ã2 and Ã3 take unique
nonzero values — see (A-7) — while Ã4 = 0. Hence, u(r) 6= 0 for all 1≤ r ≤ β and a change of both the
inner and outer radii of the tube is generally again possible in this case. It is also noted that, despite the
nonzero values of both Ã1 and Ã3, trr = tθθ = 0 throughout the tube cross-section. Finally, if α = π/4,
then C̄16 = C̄26 and, therefore, u(r) = 0 throughout the tube cross-section, thus causing conditions of
pure azimuthal shear strain in this particular case.

Conditions of pure azimuthal shear strain are also possible for α 6= 0, if only one of the two boundary
conditions (3-6) is satisfied along with (3-4). Due to the form of (3-14)1, the unused of the geometri-
cal boundary conditions (3-6) is satisfied automatically and should therefore be replaced by its natural
boundary condition counterpart detailed in (3-5). If, for instance, the set of mixed boundary conditions

u(1)= trr (β)= 0, (3-16)

is chosen to replace (3-6), while (3-4) still hold, then Ã1 = 0 and, therefore, u(r) = 0 throughout the
tube cross-section ( Ã2, Ã3 and Ã4 are given by (A-8)). Nevertheless, a nonzero normal traction should
act in this case in the radial direction of the tube inner boundary; this is determined by setting r = 1 in
(3-15)1. Similar arguments hold true if (3-16) are replaced by trr (1)= u(β)= 0. Pure azimuthal shear
strain is observed again in this case, though a normal traction should be applied radially on the outer
tube boundary.

In the particular case that α = 0, equation (3-12)2 becomes uncoupled from the set of equations (3-12)1

and (3-13). Hence, azimuthal shear strain and radial stretching become again completely uncoupled
deformations. Moreover, since the incompressibility constraint is associated with radial stretching only,
the azimuthal strain problem becomes identical with its unconstrained material counterpart; this is the
case discussed separately in Section 4.

3.3. Inextensible fibres. The constraint of fibre inextensibility (aT ea = 0) requires an arbitrary tension
T (r) to be superimposed on the stress field; this acts along the fibre direction and does no work in any
deformation which conforms with this constraint. In this case Hooke’s law takes the nondimensional
form (e.g., [Spencer 1972; 1984])trr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 1

 err

eθθ
2erθ

+ T

 cos2 α

sin2 α

sinα cosα

 , (3-17)

where the appearing quantities are again nondimensionalized according to (3-2) and (3-3) before aster-
isks are dropped. The nondimensional form of the corresponding Navier-type governing equations then
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becomes

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)+ r(rT )′ cos2 α− rT sin2 α = 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v+ 1
2 sin 2α(r2T )′ = 0. (3-18)

These are accompanied by the inextensibility constraint err cotα+ eθθ tanα+ 2erθ = 0 which, with use
of (2-10), yields the additional equation

u′ cotα+
u
r

tanα+ v′−
v

r
= 0. (3-19)

Equation (3-18)2 can immediately be integrated once. A subsequent elimination of v(r) and T (r)
from the resulting equations yields an inhomogeneous second-order Euler-type ODE for u(r) which can
be solved in the standard manner. The general solution of the system of simultaneous ODEs (3-18) and
(3-19) can then be obtained with relative ease, to yield

u(r)=
Â1

γ̂1(1−m2)
r−1
+ Â2rm

+ Â3r−m,

v(r)= Â4r −
Â1 cot 2α
γ̂1(1−m2)

r−1
− Â2β1rm

− Â3β2r−m,

T (r)=
2 Â1

sin 2α

(
1+

C̄16− C̄26− 2 cot 2α
γ̂1(1−m2)

)
r−2

+
2 Â2

sin 2α

(
β1(m− 1)−mC̄16− C̄26

)
rm−1

+
2 Â3

sin 2α

(
mC̄16−β2(m+ 1)− C̄26

)
r−m−1, (3-20)

where Â1, Â2, Â3, Â4 are arbitrary constants of integration, the constants β1, β2, γ̂1 and γ̂2 are given
explicitly in the Appendix and

m2
=
γ̂2

γ̂1
. (3-21)

It can be shown that, due to the positive definiteness of the matrix [C] and the fact that 0 ≤ α < π/2,
both the numerator and the denominator in the right-hand side of (3-21) are positive and, therefore,
the constant m is always real. Use of (3-17) yields next the associated in-plane nondimensional stress
components as follows:

trr =
Â1

γ̂1(1−m2)
H1r−2

+ Â2 H2rm−1
+ Â3 H3r−m−1,

tθθ =
Â1

γ̂1(1−m2)
H4r−2

+ Â2 H5rm−1
+ Â3 H6r−m−1,

trθ = Â1r−2, (3-22)

where the constants Hk (k = 1, 2, . . . , 6) are given explicitly in (A-10).
If the set of boundary conditions (3-4) and (3-5) is associated with this solution, all four arbitrary

constants appearing in (3-20) and (3-22) take unique nonzero values (see (A-11)); hence, u(r) 6= 0
for all 1 ≤ r ≤ β. It follows that a solution anticipating that both the inner and the outer tube radii
change is again possible in this case. If, on the other hand, the alternative set of boundary conditions
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(3-4) and (3-6) is instead considered, the corresponding set of unique nonzero values associated to those
constants — see (A-13) — suggests that conditions of pure azimuthal shear strain can instead also be
observed. Nevertheless, although the boundary radii of the tube do not change during the observed pure
azimuthal shear deformation, it is again u(r) 6= 0 for 1< r < β and, therefore, there is again coupling
between azimuthal shear strain and radial stretching in the interior of the tube. It is again anticipated that
appropriate nonzero normal tractions should be applied on the tube inner and outer boundaries; these are
determined by setting r = 1 and r = β in (3-22)1.

In the case α = 0, radial stretching and azimuthal shear strain become again uncoupled deformations.
The fibre inextensibility constraint becomes associated with radial stretching in this case, so the azimuthal
shear strain problem becomes again identical with its unconstrained material counterpart; see Section 4.

3.4. Ideal fibre-reinforced material. In this case, the material is assumed to be incompressible and also
reinforced by inextensible fibres. Hence, Hooke’s law takes the nondimensional form (e.g., [Spencer
1972; 1984]) trr

tθθ
trθ

=
C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 1

 err

eθθ
2erθ

+
T cos2 α− p

T sin2 α− p
T sinα cosα

 , (3-23)

where the appearing quantities are all nondimensionalized according to (3-2) and (3-3), before aster-
isks are dropped. The nondimensional form of the corresponding Navier-type governing equations then
becomes

C̄11r(ru′)′− C̄22u+ C̄16r2v′′− C̄26(rv′− v)+ r2(T ′ cos2 α− p′)+ rT cos 2α = 0,

C̄16(r2u′)′+ C̄26(ru)′+ r2v′′+ rv′− v+ 1
2 sin 2α(r2T )′ = 0, (3-24)

and are accompanied by both constraint equations (3-13) and (3-19), thus forming a system of four
simultaneous ODEs for a total of four unknown functions, namely u, v, p and T .

Solution of Equation (3-13) yields u(r), which is then inserted into (3-19) for the determination of v(r).
With the form of u(r) and v(r) becoming thus known, T (r) and p(r) are next obtained by consecutively
solving (3-24)2 and (3-24)1, respectively. Hence, the general solution of the system of simultaneous
ODEs (3-24), (3-13) and (3-19) is found to be

u(r)= A1r−1,

v(r)= A2r − A1r−1 cot 2α,

p(r)= A3+
1
2

(
A4− A1(C̄11− C̄22− 2(C̄16+ C̄26) cot 2α)

)
r−2,

T (r)= A4r−2, (3-25)

where A1, A2, A3, A4 are arbitrary constants. Use of (3-23) yields next the associated in-plane nondi-
mensional stress components as follows:

trr =
( 1

2 A1(2C̄12− C̄11− C̄22+ 2(C̄16− C̄26) cot 2α)+ 1
2 A4 cos 2α

)
r−2
− A3,

tθθ =
(
−

1
2 A1(2C̄12− C̄11− C̄22+ 2(C̄16− C̄26) cot 2α)− 1

2 A4 cos 2α
)
r−2
+ A3,

trθ =
(

A1(2C̄66+ C̄26− C̄16)+
1
2 A4 sin 2α

)
r−2. (3-26)
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If the solution (3-25) is associated with the set of boundary conditions (3-4) and (3-5), A1, A2 and
A4 take unique nonzero values — (A-15) — while A3 = 0. Hence, u(r) 6= 0 for all 1 ≤ r ≤ β and a
change of both the inner and outer radii of the tube is again possible; it is also noted that, despite of
the nonzero values of A1 and A4, trr = tθθ = 0 throughout the tube cross-section. On the other hand,
pure azimuthal shear strain deformation is not possible in this case. For, simultaneous satisfaction of the
boundary conditions (3-4)1 and (3-6)1 yields u(r)= v(r)= 0 throughout the tube cross-section.

It is again seen that in the particular case that α = 0, radial stretching and azimuthal shear strain
become again uncoupled problems, while both constraints involved associate themselves with radial
stretching. Hence, the azimuthal shear strain problem becomes again identical with its unconstrained
material counterpart which is discussed in the next section.

4. Perfectly flexible radial fibres

Interest is now focused in the particular case in which the fibres are straight and aligned along the
radial direction of the tube cross-section. This corresponds to the choice G(r) = α = 0 and, since the
local and the polar coordinate systems coincide, the elastic behaviour of the material is described by
(2-6), provided that the appearing local in-plane stress and strain components are replaced by their polar
counterparts appearing in (2-7). It is already seen that, when α = 0, radial stretching and azimuthal shear
strain become completely uncoupled deformations regardless of whether the material is constrained or
not. Restricting, for instance, attention to the unconstrained material case discussed in Section 3.1, one
finds that equations (3-7) become uncoupled when α = 0 and, hence, the resulting azimuthal shear strain
problem is completely described by the Euler differential equation

r2v′′+ rv′− v = 0. (4-1)

This second-order ODE can describe pure azimuthal shear deformation only and, hence, it is associated
with the pair of boundary conditions (3-4) only. Solution of this boundary value problem yields

v(r)=
β

β2− 1

(
r − r−1) , (4-2)

and Hooke’s law (2-6)1 reveals further that the nondimensional azimuthal shear stress

trθ =
2β

β2− 1
r−2, (4-3)

is the only nonzero stress component associated with this deformation.
Interestingly enough, when the tube material is constrained in the manner suggested in Section 3,

every single one of the problems discussed in sections 3.2, 3.3 and 3.4 provides precisely the same
description for the pure azimuthal shear strain problem, namely (4-1) and (3-4); hence, in each case,
it yields precisely the same solution with the outlined above on the basis of the unconstrained material
version of the problem. It also becomes evident that, since material anisotropy does not enter the outlined
problem description, the obtained solution (4-2) and (4-3) is identical to its isotropic material counterpart.
However, it is already known [Soldatos 2009a; Soldatos 2010] that pure azimuthal shear deformation of
a radially reinforced tube made of ideal fibre reinforced material (see Section 3.4) is not possible in the
finite deformations regime. In contrast, finite pure azimuthal shear strain is indeed possible if the tube
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material is incompressible but the radial fibres involved are free to extend or contract [Kassianidis et al.
2008]. Moreover, the material incompressibility constraint affects in a clear and obvious manner the
relevant finite elasticity solution obtained in this latter reference, whereas this fact is not observed in the
present case of small deformations (Section 3.2). It is instead observed that conventional linear elasticity
theory cannot adequately account for the effects that material anisotropy and/or either of the constraints
of material incompressibility and fibre inextensibility have on the azimuthal shear deformation problem
considered when the tube is reinforced along the radial direction of its cross-section. In what follows, the
infinitesimal strain problem described by (4-1) and (3-4), as well as its relatively simple solution given
by (4-2) and (4-3), will therefore be mainly associated with the case discussed in Section 3.1, where the
material is assumed completely unconstrained.

5. Radial fibres with bending stiffness

When the perfectly flexible fibres considered in the previous sections are replaced with fibres possess-
ing bending stiffness, the theory is required to account further for possible action of couple-stress and
therefore asymmetric stress [Spencer and Soldatos 2007]. The linearized version of the relevant hyper
elasticity theory presented in that paper is considered for a study of the effects that fibre bending stiffness
has on the azimuthal shear strain problem discussed in the preceding section. For convenience, the
restricted part of that linearized theory, which requires use of only one additional elastic modulus, is
employed here.

5.1. Problem formulation. The form of Hooke’s law presented in Section 2 for α = 0, before the nondi-
mensional quantities (3-2) were introduced, is now suitable only for description of the symmetric part of
the stress tensor. Hence,  trr

tθθ
t(rθ)

=
C11 C12 0

C12 C22 0
0 0 C66

 err

eθθ
2erθ

 , (5-1)

where t(rθ) denotes the symmetric part of the shear stress component trθ , the matrix [C] is identical to
its counterpart involved in (2-6) and the appearing strain components are given according to (2-10).

The antisymmetric part of trθ is caused by the action of a relevant couple-stress component, mr z ,
arising when fibres resist bending. In terms of a notation similar to that adopted in [Soldatos 2009b], this
couple-stress component is given according to

mr z = d f k f
θ , k f

θ = v
′′(r), (5-2)

where d f is the aforementioned additional elastic modulus (fibre bending stiffness) and k f
θ represents

the in-plane curvature component of the fibre in the linear elasticity regime. The antisymmetric part of
the shear stress component is then expressed as

t[θr ] =−t[rθ] = 1
2 m′r z =

1
2 d f v′′′(r). (5-3)

It thus becomes immediately understood that radial stretching and azimuthal shear strain remain com-
pletely uncoupled deformations regardless of whether the material is constrained or not. Hence, the
azimuthal equation of equilibrium (2-11)2, which is again the only governing equation to be considered,



154 MOHAMED A. DAGHER AND KOSTAS P. SOLDATOS

yields
d f

2C66
(r2v

′′′′

+ 2rv′′′)− (r2v′′+ rv′− v)= 0, (5-4)

and makes obvious that the existing material anisotropy is indeed accounted for in this case.
Equation (5-4) is a fourth-order ODE for the azimuthal displacement component v(r) and a unique

determination of its solution requires specification of four boundary conditions. Two of them are evi-
dently (2-12) while two more boundary conditions can be deduced from the relevant discussion detailed
in [Soldatos 2009b]. Accordingly, the outer boundary (r = B1) is assumed free of couple-stress, thus
leading to the additional boundary condition

mr z(B1)= 0, (5-5)

while the inner boundary (r = B0) may be assumed either restrained against rotation or free of couple
stress. It follows that the last of the four boundary conditions sought is one of the following alternatives:

either v′(B0)= 0 or mr z(B0)= 0. (5-6)

It is observed that unlike its perfectly flexible fibres counterpart in (4-1), Equation (5-4) depends on
the tube material properties. In this regard, the notation

d f

C66
= 2l(B1− B0), (5-7)

introduces an intrinsic material length parameter l, which may be considered relevant to the fibre thick-
ness. It is evident that when l = 0, (5-4) reduces to its perfectly flexible fibres counterpart. The role of
nonzero values of l will become clearer in what follows.

5.2. Nondimensional form of governing equations. The Navier-type governing differential equation
(5-4) and the boundary conditions associated to it are next nondimensionalized with use of the nondi-
mensional quantities introduced in (3-2) and the additional nondimensional parameter

λ=
l

B0
=

d f

2C66 B0(B1− B0)
. (5-8)

Nevertheless, asterisks are again dropped for convenience and, hence, all relevant quantities appearing
without an asterisk in the remaining of this section, as well as Section 6, are those defined in (3-2).
Accordingly, with use of (5-2), the nondimensional version of the present boundary value problem is
found to be

λ(β − 1)(r2v
′′′′

+ 2rv′′′)− (r2v′′+ rv′− v)= 0,

v(1)= 0, v(β)= 1, v′′(β)= 0, (5-9)

and
either v′(1)= 0 or v′′(1)= 0. (5-10)

It is worth noting that, with simultaneous consideration of (5-9)2, either condition in (5-10) resembles the
boundary condition imposed at the end of an elastic slender beam which is clamped or simply supported,
respectively, at β = 1.
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With l = 0 in the case of perfectly flexible fibres, the conventional (symmetric) theory of linear elastic-
ity (Sections 2–4) implied that the tube cross-section contains an infinite number of fibres. By associating
the intrinsic length parameter l with the fibre thickness, the nonsymmetric stress theory employed in this
section implies that the number of fibres as well as their density within the cross-section may be accounted
for. Accordingly, if a fibre in the present plane strain case is thought of as a slender rectangle of length
B1− B0, then its area may be represented by the product l(B1− B0) and, hence, the finite number of
fibres, N f , that can be fitted into the tube cross-section is estimated to be

N f
=

2πB0

l
=

2π
λ
. (5-11)

It follows that the value of total fibre area is 2πB0(B1 − B0) and this is independent of the fibre
thickness. It is also of interest to note that, by dividing the total fibre area by the tube cross-sectional
area, the fibre area fraction is estimated to be

S f
=

2B0

B1+ B0
=

2
β + 1

, (5-12)

and depends solely on the value of β. It is, therefore, seen that the value of β is indicative of the density
(sparsity) of the fibre distribution within the tube cross-section. This result is illustrated in Table 1, where
the total fibre area is calculated as a percentage of the area of the tube cross-section. It is finally noted
that (5-11) implies λ ≤ 2π . With l � B0 and, therefore, λ � 1 in many practical applications, this
inequality may be perceived as a natural consequence of the fact that thickness of common structural
fibres is much smaller than the inner tube radius. However, since B0 may in principle be smaller than
l even if the fibre thickness is of the order of 10µ, values of λ > 1 are also anticipated by the present
theory. In this context, the right-hand-side of (5-8) suggests that different physical interpretations of λ
and/or l might also be possible, particularly when O(λ)= 1.

β 1 1.5 2 2.5 3 4 5 7.5 10 20 50 100
S f % 100 80 66.7 57.1 50 40 33.3 23.5 18.2 9.5 3.9 2

Table 1. Estimated total area of radial fibres with bending stiffness as a percentage of
the area of the tube cross-section.

Solution of the boundary value problem (5-9) and (5-10) is next achieved analytically, via the power
series method, and computationally, with use of the successive approximation method (SAM) introduced
in [Soldatos and Hadjigeorgiou 1990] (see also [Shuvalov and Soldatos 2003; Ye 2003; Soldatos 2003]).

5.3. Power series solution. Application of the power series method is based on the following Taylor-type
series expansion of the solution sought around r = 1:

v(r)=
∞∑

n=0

an(r − 1)n, (5-13)

where the constant coefficients an (n = 0, 1, 2, . . . ) are to be determined. Introduction of (5-13) into
(5-9)1, followed by nullification of the coefficients of like powers of r−1, leads to the recurrence
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relations

a4 =
a1+ 2a2− 2λ(β − 1)3!a3

λ(β − 1)4!
,

a5 =−
a0+ 4a1+ 6a2− (6λ(β − 1)+ 1)3!a3

λ(β − 1)5!
,

an+4 =
(n− 1)(n+ 1)!
λ(β − 1)(n+ 4)!

an +
(2n+ 1)(n+ 1)!
λ(β − 1)(n+ 4)!

an+1

−

(
(n+ 1)!
(n− 1)!

−
1

λ(β − 1)

)
(n+ 2)!
(n+ 4)!

an+2−
2(n+ 1)
(n+ 4)

an+3, n ≥ 2, (5-14)

where a0, a1, a2 and a3 are arbitrary constants. Use of the boundary conditions (5-9)2 and (5-10)1 yields

a0 = 0, a1 = 0, (5-15)

while use of (5-9)2 and (5-10)2 yields

a0 = 0, a2 = 0. (5-16)

In both cases, the values of the remaining constants are then determined numerically with use of the
boundary conditions (5-9)3,4, after the series expansion (5-13) is truncated to an appropriate number of
terms that guarantee convergence of the obtained numerical results to a desired accuracy.

5.4. Successive approximation solution. Application of the well established successive approximation
method introduced in [Soldatos and Hadjigeorgiou 1990] requires initially the conversion of (5-9)1 into
a system of four simultaneous first-order linear ODEs. In matrix form, these may be arranged as

{X (r)}′ = [D(r)]{X (r)}, {X (r)}T = {v, v′, v′′, v′′′}, (5-17)

where the nonzero elements of the matrix [D(r)] are

D12 = D23 = D34 = 1, D43 = r D42 =−r2 D41 =
1

λ(β − 1)
, D44 =−

2
r
. (5-18)

For sufficiently thin tubes, an approximate solution is obtained by replacing the variable r appearing
in (5-18) with the nondimensional cross-sectional middle-radius parameter R = (β + 1)/2. The resulting
approximate system of four simultaneous linear ODEs with constant coefficients may then be written in
the form

{X (r)}′ = [D(R)]{X (r)}, (5-19)

and its general solution can be expressed as follows:

{X (r)} = [K (r)]{X (1)}, 1≤ r ≤ β. (5-20)

Here {X (1)} denotes the value that the vector {X} takes at the inner boundary of the tube, while the
elements of the exponential matrix [K (r)] = exp[(r − 1)D(R)] can be evaluated analytically in the
manner detailed in [Ye 2003].

If the tube is thick, it is divided in N fictitious, successive and coaxial layers having the same constant
thickness, represented by the nondimensional thickness parameter h = (β − 1)/N , and the same material
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properties. Upon choosing a suitably large value of N , each individual layer becomes itself a sufficiently
thin elastic tube and, as a result, an approximate solution of the form (5-20) is considered satisfactory for
the study of its behaviour. The approximate solutions thus obtained for all fictitious layers are then suit-
ably connected by means of appropriate continuity conditions imposed on their fictitious interfaces, thus
providing an arbitrarily close solution to that of the exact system (5-17) — see [Shuvalov and Soldatos
2003]. For an illustration of the relevant algorithm, consider the j-th such individual fictitious layer
( j = 1, 2, . . . , N ), the nondimensional middle-radius parameter of which is given by

R( j)
= 1+ (h/2)(2 j − 1), (5-21)

giving thus rise to the exponential matrix

[K ( j)(r)] = exp[(r − R( j)
+ h/2)D(R( j))], R( j)

− h/2≤ r ≤ R( j)
+ h/2. (5-22)

By requiring continuity of the azimuthal displacement component, the in-plane rotation component
and the nonzero components of the stress and couple-stress tensors, one obtains the following continuity
conditions on the N − 1 fictitious interfaces:

{X ( j)(R( j)
+ h/2)} = {X ( j+1)(R( j+1)

− h/2)}, j = 1, 2, . . . , N − 1. (5-23)

Hence, with recursive use of (5-20), (5-22) and (5-23), the solution sought is constructed as follows:

{X (N )(R(N )+ h/2)} = [K (N )(R(N )+ h/2)]{X (N−1)(R(N−1)
+ h/2)}

= [K (N )(R(N )+ h/2)][K (N−1)(R(N−1)
+ h/2)]{X (N−2)(R(N−2)

+ h/2)}

= · · · = [K̄ ]{X (1)(R(1)− h/2)}, (5-24)

where

[K̄ ] =
[ 1∏

j=N

[K ( j)(R( j)
+ h/2)]

]
. (5-25)

With further use of the boundary conditions (5-9)2,3,4 and (5-10), Equation (5-24) leads to a linear al-
gebraic system (see [Soldatos and Ye 1995], for example), whose solution yields the distribution of
the azimuthal displacement component throughout the tube cross-section. Note that the solution of the
problem has been obtained by making use of algebraic manipulations involving 4× 4 matrices only.

6. Numerical results and discussion

Equations (4-2) and (4-3) make clear that a convenient way for presentation of numerical results when
fibres are perfectly flexible (λ= 0) is associated with the use of the nondimensional quantities

v̄(r)=
β2
− 1
β

v(r)= r − r−1, t̄rθ (r)=
β2
− 1
β

trθ (r)= 2r−2. (6-1)

It is observed that neither of these nondimensional quantities depends on the nondimensional radius
parameter β of the tube outer boundary. This observation suggests that both v̄ and t̄rθ maintain the same
distribution profile regardless of the tube thickness. This is of course not the case when fibres resist
bending but, for convenience in the presentation of numerical results, the azimuthal displacement and
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the shear stress distributions predicted in Section 5 are also nondimensionalized further in accordance
with (6-1). In this context the additional nondimensional stress parameter

t̄θr =
β2
− 1
β

tθr

is also employed where necessary. It should be emphasized that the profiles of the nondimensional
displacement and stress distributions employed do depend on β when fibres resist bending. For a straight-
forward interpretation of the presented numerical results, it is convenient to assume that ψ > 0 and, hence,
that the cause of the deformation is applied anticlockwise on the outer tube boundary.

Most of the numerical results shown next are related with relatively thick tubes and they are mainly
produced by solving equation (5-9)1 on the basis of the SAM outlined in Section 5.4. It is worth noting
that corresponding numerical results obtained on the basis of the power series method (Section 5.3) are
practically identical to those based on SAM and, hence, in line with the conclusions made in [Shuvalov
and Soldatos 2003], the two methods are found to be computationally equivalent. However, due mainly
to its slow convergence, the power series method seems to be computationally reliable for relatively thin
tubes only. In contrast, SAM converges faster and is computationally reliable for a much wider range
of the tube thicknesses. Very satisfactory convergence of SAM and accuracy of the obtained results was
achieved by choosing h/R( j) < 0.01 where h and R( j) are defined in Section 5.4; this fact is also in
agreement with similar observations made in previous studies that were based on SAM (e.g., [Soldatos
and Ye 1995]). It is convenient at this point to also note that numerical results shown in Figures 2–5
are obtained under the assumption that the geometric boundary condition (5-10)1 is applied at the fibre
root, r = 1, while corresponding results plotted in Figures 6-8 are obtained by assuming that the natural
boundary condition (5-10)2 is applied there.

Figure 2 depicts the first quadrant of the tube cross-section and, for different values of λ, shows the
deformation pattern of a fibre initially aligned along the horizontal radius of the tube cross-section having
its outer boundary at β = 2.5. It is recalled that λ= 0 represents the deformation pattern of a perfectly
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Figure 2. Deformation pattern of a fibre initially aligned along the horizontal radius of
the tube cross-section. The fibre is assumed clamped in the inner tube boundary.
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flexible fibre described by (4-2). As already mentioned, this pattern is identical to that attained by the
horizontal radius of a corresponding isotropic material; having no bending stiffness, a perfectly flexible
radial fibre just seems to follow passively the deformation pattern of an isotropic material. Corresponding
deformation patterns for a fibre that resists bending (λ 6= 0) are plotted in Figure 2 under the assumption
that the additional boundary condition (5-10)1 is applied on the tube inner boundary; hence, the fibre is
essentially assumed clamped there. It is observed that the slope of the perfectly flexible fibre is nonzero
at the inner boundary of the tube cross-section and is monotonically decreasing with increasing β. Hence,
a deformed perfectly flexible fibre is concave downwards. In contrast, in their deformed configuration,
fibres with bending stiffness are initially concave upwards and, hence, they resist the applied azimuthal
shear deformation. This resistance increases with λ and reflects on the slope of the deformed fibre which
is initially increasing from its zero value imposed on the inner tube boundary. Although the slope of the
fibre begins afterwards to decrease again when λ is small, the region of monotonically increasing slope
values becomes larger with increasing λ and, therefore, with increasing fibre bending resistance, in line
with physical expectation. For sufficiently large values of λ, the slope of the fibre deformation pattern
seems to become monotonically increasing throughout the tube cross-section (1≤ r ≤ 2.5) and, hence,
the whole fibre is concave upwards. It is finally noted that the deformed fibre pattern shown in Figure 2
for λ= π remains practically unchanged if λ is increased further.

The dimensionless azimuthal displacement v̄ is plotted in Figure 3 against r , for different values of β
and for λ= 0.1. As already mentioned, in the perfectly flexible fibres case (λ= 0), v̄ maintains the same
distribution profile regardless of the value of β. However, each one of the dashed lines (λ 6= 0) begins at
the tube inner boundary, as required by the boundary condition (5-9)2, and ends at some different point
of the solid line; namely, at the point β where the external azimuthal displacement ψ is applied on. It is
seen that, for λ 6= 0, v̄ is decreasing at the vicinity of the tube inner boundary with increasing β. This
is in line with the expectation that, upon increasing the tube outer radius, the effect of the external cause
of the deformation is decreasing at the root of the clamped fibre where the highest bending resistance is
observed.

1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6.
r

1

2

3

4

5

v
�

Λ = 0.1, Β = 5

Λ = 0.1, Β = 2.5

Λ = 0

Figure 3. Nondimensional displacement v̄ as a function of r for different values of β
(λ= 0.1).
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Figure 4. Symmetric part of nondimensional shear stress t̄(rθ) and nondimensional cou-
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mr z as a function of r for different values of λ (β = 2.5).

For different values of λ and for β = 2.5, Figure 4 shows the variation of the symmetric part of the
nondimensional shear stress t̄rθ and the nondimensional couple-stress m̄r z against r . It is recalled that
t̄rθ = t̄θr for the perfectly flexible fibre case (λ= 0); this fact is represented by the solid line in the figure.
As a result of the displacement boundary conditions (5-9)2 and (5-10)1, t̄(rθ) is zero at the inner tube
boundary; see also (5-1). It follows that the couple-stress m̄r z and, therefore, the antisymmetric part of
the shear stress, t̄[rθ ], are dominant at the vicinity of the inner tube boundary; in fact the couple-stress
takes naturally its maximum value at the inner tube boundary where highest fibre bending resistance is
observed. However, as distance from the inner tube boundary is increasing, the contribution of t̄(rθ) is
increasing while that of m̄r z and t̄[rθ ] is decreasing fast and becomes gradually negligible. As λ increases,
t̄(rθ) decreases within the inner part of the tube cross-section. This decrease of t̄(rθ) is compensated by
the increasing contribution of m̄r z while the outlined trend is reversed within the outer part of the tube
cross-section.

For different values of λ and for β = 2.5, Figure 5, top, shows the distribution of the shear stresses t̄rθ
and t̄θr within the tube cross-section. It is seen that, maximum absolute shear stress occurs always at the
inner tube boundary, though t̄rθ and t̄θr take opposite values there for λ 6= 0; this is due to the fact that
t̄(rθ) = 0 at r = 1, as observed in Figure 4. The absolute value of maximum shear stress increases with
increasing the value of λ but, away from the fibre root, t̄rθ decreases gradually from its maximum positive
value while t̄θr increases sharply from its corresponding negative minimum value. This is due to the fact
that fibre bending resistance has not a dominant effect away from the inner tube boundary. Hence, the
stress tensor becomes nearly symmetric outside a certain layer in the vicinity of the inner tube boundary,
where negative t̄θr values of large magnitude are observed; the width of that layer is naturally increasing
with increasing the fibre bending stiffness. For different values of β and for λ= 0.1, Figure 5, bottom,
shows the distribution of t̄rθ and t̄θr within the tube cross-section. As already mentioned, t̄rθ maintains
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Figure 5. Distribution of shear stresses t̄rθ and t̄θr for β = 2.5 and different values of λ
(top), and for λ= 0.1 and different values of β (bottom).

again the same distribution profile in the perfectly flexible fibres case (solid line) regardless of the value
of β. The figure shows that, when fibres resist bending (λ 6= 0), t̄rθ is increasing while t̄θr is decreasing
near the tube inner boundary with increasing β. It is observed that, the thicker is the tube the nearer the
dashed lines approach the solid line at the outer tube boundary. Hence, for sufficiently thick tubes, the
effects of fibre bending resistance are essentially confined within the aforementioned layer formed in the
neighbourhood of the inner tube boundary; they are not felt in the vicinity of the outer tube boundary.
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Figure 6. Deformation pattern of a fibre initially aligned along the horizontal radius of
the tube cross-section; the fibre is assumed simply supported in the inner tube boundary.

When the geometrical boundary condition (5-10)1 is replaced by the natural boundary condition
(5-10)2, the numerical values and the physical trends of the results plotted in Figures 2, 4 and 5, top,
change dramatically and transform into those depicted in Figures 6, 7 and 8, respectively. Since the root
of the fibre is essentially subjected to a simply supported type of boundary condition, the slope of the
fibre is nonzero at r = 1; see Figure 6. However, the fibre still exhibits signs of bending resistance which,
according to Figure 7, seem to emerge slightly further away from the fibre root, as soon as nonzero values
of m̄r z become influential. Nevertheless, the total bending resistance of the fibre influences considerably
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Figure 7. Symmetric part of nondimensional shear stress t̄(rθ) and nondimensional cou-
ple stress m̄r z =

β2
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mr z as a function of r for different values of λ (β = 2.5).
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Figure 8. Distribution of shear stresses t̄rθ and t̄θr for different values of λ (β = 2.5).

the value of the fibre slope at r = 1; see Table 2. As a result, the main difference between the values
of t̄rθ and t̄θr is again confined within the aforementioned layer near the inner tube boundary (Figure 8).
It is also seen (Figure 6) that the maximum possible deviation of the deformed fibre from the deformed
shape of its perfectly flexible counterpart is now naturally smaller than that observed in Figure 2.

λ 0 0.005 0.03 0.1 π

v′(1) 0.952 0.887 0.825 0.771 0.674

Table 2. The value of the boundary slope of a fibre supported according to (5-10)2.

It is worth observing in this regard that for large values of λ (e.g., λ = π in Figure 6) the shape of
the deformed fibre is approximately still that of a straight line (that shape remains practically unchanged
if the value of λ is increased further). A connection is therefore made between this observation and a
conclusion drawn in [Soldatos 2009a; 2010], according to which, in the case of an ideal fibre-reinforced
material, the inextensible radial fibres involved do not bend during azimuthal shear deformation; instead
they remain straight during deformation and they force the tube cross-section to undergo area-preserving
azimuthal shear strain, by changing their slope only. Nevertheless, small area-preserving and small pure
azimuthal shear strain are essentially identical deformations in the present case of interest. Hence, radial
fibres possessing high bending resistance (λ≥ π ) appear to remain practically straight during deformation
but they also extend in a manner that satisfies the conditions of pure azimuthal shear strain. If the fibres
were inextensible, they would necessarily force the inner and outer tube boundaries to move, as observed
in those same references, where the tube material was also assumed to be incompressible. However,
as already mentioned, linear elasticity cannot adequately account for the effects that the constraints, of
material incompressibility and/or fibre inextensibility have on the azimuthal shear deformation when the
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tube is reinforced along the radial direction of its cross-section. In this regard, recall that the relevant area
preserving azimuthal shear deformation observed in [Soldatos 2009a; 2010] for ideal fibre-reinforced
materials takes place only in the finite elastic deformation regime.

7. Closure

In dealing with the principal questions addressed in the Introduction, it has been found that, when spiral
fibres are perfectly flexible, both the inner and the outer radii of the tube exhibit a change for all four
versions of the azimuthal shear strain problem considered in Section 3; this change is caused by the
existence of coupling between azimuthal shear strain and radial stretching. Nevertheless, it has been
also observed that conditions of pure azimuthal shear are possible in all but one of the cases considered
and studied in Section 3, though different relevant conditions and/or requirements may apply to different
versions of the problem. The only version of the problem for which small pure azimuthal shear strain
is not possible is that of the ideal fibre-reinforced material discussed in Section 3.4. This result is in
complete agreement with the relevant conclusion made in [Soldatos 2009a; 2010] according which, a
tube made from an ideal fibre-reinforced material should instead be expected to undergo area preserving
azimuthal shear strain. It is however also noted that area preserving azimuthal shear strain for ideal
fibre-reinforced materials [Soldatos 2009a; 2010] is possible only within the finite elastic deformation
regime.

When the fibres are straight and aligned along the radial direction of the tube cross-section, radial
stretching and azimuthal shear strain become completely uncoupled deformations regardless of whether
the tube material is constrained or not, and regardless of whether fibres are perfectly flexible or resist
bending. In the perfectly flexible fibres case, the description and, hence, the solution of the problem
becomes identical to that met in isotropic elasticity. It is therefore observed that conventional linear
elasticity theory cannot adequately account for the effects that the material anisotropy and/or either of
the constraints of material incompressibility and fibre inextensibility have on the azimuthal shear strain
problem considered when the tube is reinforced along the radial direction of its cross-section.

On the other hand, effects of material anisotropy can be accounted for when fibres posses bending
stiffness, by taking into consideration the action of couple-stress and therefore asymmetric stress. It is
also seen that the natural appearance of an intrinsic material length parameter, which is representative
of the fibre thickness, provides ability for consideration of the manner in which the fibres are supported
on the tube boundaries. Hence, when the fibres are assumed clamped in the tube inner boundary, con-
siderable fibre bending resistance is observed within a certain layer in the neighbourhood of the inner
tube boundary; there, the fibres appear concave against the imposed deformation, which is in line with
physical expectations. It is also observed that the absolute maximum values of the couple-stress and the
shear stresses occur at the inner tube boundary where highest bending resistance is anticipated; these
values stay influential within the aforementioned layer near the inner tube boundary. When the fibres are
assumed simply supported at the inner tube boundary, their slope is naturally nonzero there. However,
the fibres still exhibit bending resistance which emerges slightly further away from the fibre root, as
soon as nonzero values of the couple-stress become influential. It is also seen that the maximum possi-
ble deviation of the deformed simply supported fibre from the deformed shape of its perfectly flexible
counterpart is naturally smaller than that observed in the clamped fibre case.
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It is also observed that, for large values of fibre bending stiffness, the deformed simply supported radial
fibre remains approximately straight. This observation is in line with a conclusion drawn in [Soldatos
2009a; 2010] according to which, in the case of an ideal fibre-reinforced material, the inextensible radial
fibres involved do not bend during azimuthal shear deformation; instead they remain straight during
deformation and they force the tube cross-section to undergo area-preserving azimuthal shear strain by
changing their slope only. Nevertheless, small area-preserving and small pure azimuthal shear strain
are essentially identical deformations. Hence, radial fibres possessing high bending resistance appear
to remain practically straight during deformation but they also extend in a manner that satisfies the
conditions of pure azimuthal shear strain. If the fibres were inextensible, they would necessarily force
the inner and outer tube boundaries to move, as observed in [Soldatos 2009a; 2010], where the tube
material was also assumed to be incompressible.

Appendix: Explicit form of auxiliary parameters and formulas

The constants γ1, γ2 and γ3 appearing in (3-8) are as follows:

γ1 =
2(C̄16+ C̄26)

C̄22− C̄11
, γ2 =−

(ηC̄16+ C̄26)

η− 1
, γ3 =−

(ηC̄16− C̄26)

η+ 1
. (A-1)

The constants Fk (k = 1, 2, . . . , 6) appearing in (3-10) are as follows:

F1 = γ1(C̄12− C̄11)− 2C̄16, F4 = γ1(C̄22− C̄12)− 2C̄26,

F2 = C̄12+ ηC̄11+ γ2C̄16(η− 1), F5 = C̄22+ ηC̄12+ γ2C̄26(η− 1),

F3 = C̄12− ηC̄11− γ3C̄16(η+ 1), F6 = C̄22− ηC̄12− γ3C̄26(η+ 1). (A-2)

For the set of boundary conditions (3-4) and (3-5), the arbitrary nonzero constants appearing in (3-8) are
found to be

Ā1 =
βF2 F3(β

2η
− 1)

Ā
, Ā2 =

βF1 F3(β
η−1
− 1)

Ā
, Ā3 =

−βηF1 F2(β
η+1
− 1)

Ā
,

Ā4 =
βF3(F2− γ2 F1)−β

2η+1 F2(F3− γ3 F1)+β
ηF1(γ2 F3− γ3 F2)

Ā
, (A-3)

where

Ā = β2 F3(F2− γ2 F1)(β
2η−2
+ 1)− F2(F3− γ3 F1)(β

2η+2
+ 1)+ 2βη+1 F1(γ2 F3− γ3 F2). (A-4)

For the set of boundary conditions (3-4) and (3-6), the corresponding nonzero constants are found to be

Ā1 =
−β(β2η

− 1)
Ā

, Ā2 =
γ1β(β

η−1
− 1)

Ā
, Ā3 =

βη(βη+1
− 1)

Ā
,

Ā4 =
β(γ1γ2− 1)−βηγ1(γ2− γ3)+β

2η+1(1− γ1γ3)

Ā
, (A-5)

where
Ā = β2γ1γ2(β

η−1
− 1)2− γ1γ3(β

η+1
− 1)2+ (β2

− 1)(β2η
− 1). (A-6)
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For the set of boundary conditions (3-4) and (3-5), the arbitrary constants appearing in (3-14) are
found to be

Ã1 =
2β(C̄16− C̄26)

(β2− 1)(C̄11+ C̄22− 2C̄12)
, Ã2 =

β

β2− 1
, Ã3 =

−β

β2− 1
. (A-7)

For the set of the boundary conditions (3-4) and (3-16), these constants are found to be

Ã2 =
β

β2− 1
, Ã3 =

−β

β2− 1
, Ã4 =

C̄16− C̄26

β(β2− 1)
. (A-8)

The constants β1, β2, γ̂1 and γ̂2 appearing in (3-20) are as follows:

β1 =
m cotα+ tanα

m− 1
, β2 =

m cotα− tanα
m+ 1

,

γ̂1 =
C22

2
sin 2α+

cos3 α

sinα
(cos4 α+ sin4 α),

γ̂2 =
C22

2
sin 2α+

sin3 α

cosα
(cos4 α+ sin4 α). (A-9)

The constants Hk (k = 1, 2, . . . , 6) appearing in (3-22) are as follows:

H1 = C̄12− C̄11+ 2C̄16 cot 2α+ cotα
(
C̄16− C̄26− 2 cot 2α+ γ̂1(1−m2)

)
,

H2 = mC̄11+ C̄12− C̄16β1(m− 1)+m cot2 α+ 1− cotα(mC̄16+ C̄26),

H3 = C̄12−mC̄11+ C̄16β2(m+ 1)+ 1−m cot2 α+ cotα(mC̄16− C̄26),

H4 = C̄22− C̄12+ 2C̄26 cot 2α+ tanα
(
C̄16− C̄26− 2 cot 2α+ γ̂1(1−m2)

)
,

H5 = mC̄12+ C̄22− C̄26β1(m− 1)+m+ tan2 α− tanα(mC̄16+ C̄26),

H6 = C̄22−mC̄12+ C̄26β2(m+ 1)+ tan2 α−m+ tanα(mC̄16− C̄26). (A-10)

For the set of boundary conditions (3-4) and (3-5), the arbitrary constants appearing in (3-20) are found
to be

Â1 =
βγ̂1 H2 H3(1−m2)(β2m

− 1)

Â
,

Â2 =
−βH1 H3(β

m−1
− 1)

Â
, Â3 =

−βm H1 H2(β
m+1
− 1)

Â
,

Â4 =
β
(
H2 H3(β

2m
− 1) cot 2α−βm−1 H1(H3β1− H2β2)− H1(β

2m H2β2− H3β1)
)

Â
, (A-11)

where

Â = H1(β
2m H3β1− H2β2)+ H2 H3(β

2
− 1)(β2m

− 1) cot 2α

−β2(2βm−1 H1(H3β1− H2β2)+ H1(β
2m H2β2− H3β1)

)
. (A-12)
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For the set of boundary conditions (3-4) and (3-6), these constants are found to be

Â1 =
βγ̂1(1−m2)(β2m

− 1)

Â
, Â2 =

−β(βm−1
− 1)

Â
, Â3 =

−βm(βm+1
− 1)

Â
,

Â4 =
βm(β1−β2)−β(β1− cot 2α)+β2m+1(β2− cot 2α)

Â
, (A-13)

where
Â = β1β

2(βm−1
− 1)2−β2(β

m+1
− 1)2+ (β2

− 1)(β2m
− 1) cot 2α. (A-14)

For the set of boundary conditions (3-4) and (3-5), the arbitrary nonzero constants appearing in (3-25)
are found to be

A1 =
β tan 2α
β2− 1

, A2 =
β

β2− 1
,

A4 =
β sec 2α tan 2α

β2− 1

(
C̄11+ C̄22− 2C̄12− 2(C̄16− C̄26) cot 2α

)
. (A-15)
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MEDIA WITH SEMIHOLONOMIC INTERNAL STRUCTURE

MARCELO EPSTEIN

This article is dedicated to the memory of Marie-Louise Steele.

The notions of semiholonomic and quasiholonomic Cosserat media are introduced and their differences
outlined. Contrary to the classical holonomic and nonholonomic counterparts, the definition of semi and
quasiholonomic media is not kinematic but constitutive. Possible applications include granular media
embedded in a rigid matrix and colloidal suspensions in an ideal incompressible fluid.

1. Introduction

The publication in 1909 of the French version of the second volume of Chwolson’s Traité de physique
was generally well received by the scientific establishment of the time. Nevertheless, we find in the issue
of Nature of July 21, 1910, a remark to the effect that a “note” by MM. E. and F. Cosserat at the end
of this volume is 220 pages long and “does not in any sense harmonise” with Chwolson’s work, which
is “emphatically experimental in character”, while the note is “strikingly mathematical”. The remark
concludes with the suggestion that “MM. Cosserat’s note is a distinct and useful treatise, and should be
able to stand on its own feet.” And so it was, although the author of the review didn’t seem to have
taken notice. The celebrated book by the Cosserat brothers [1909], was, in fact, identical to that long
note plus an additional 67 pages, which had already appeared in the previous volume of Chwolson’s
treatise. A similar critical remark can be found two years later in a review by Edwin B. Wilson of the
Massachusetts Institute of Technology published in the Bulletin of the American Mathematical Society
(July 1912, pp. 497–508), although six months later (February 1913, pp. 242–246) the same reviewer
found it necessary to publish a separate review of the stand-alone book. Both the detailed content and
the title of this review (“An advance in theoretical mechanics”) demonstrate clearly that the quality of
the enterprise of the brothers Cosserat did not go unnoticed.

Today we mainly recognise the contribution of the Cosserats to the modelling of media with internal
structure. But this does not seem to have been the main intention of the authors, who had in mind
a much wider scope. Their fundamental idea was to try to encompass all physical theories (including
perhaps relativity) under the umbrella of a single principle of Euclidean action, a quantity that is invariant
under Euclidean transformations. They also advanced the notion of the formal equivalence between a
static theory of a deformable n-dimensional manifold and a dynamic theory of a deformable manifold of
dimension n+ 1, whereby the action is interpreted as a space-time entity. Another striking feature of the
work is its error-free geometrically nonlinear formulation, particularly in view of the many mistakes made
by succeeding generations, for example, in the realm of shell theory. To recover the conventional theory

Keywords: micromorphic nonholonomic media, Cosserat symmetries, colloids, semiholonomic jets, quasiholonomic Cosserat
media, macromedium, micromedium.
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of elasticity, the Cosserats propose the idea of the hidden triad (“trièdre caché”). Similarly, theories
with particular constraints can be recovered by means of the concept of hidden action. Thus, rigid-body
mechanics arises as a particular case of their theory. Had they not insisted on the rigidity of the triad,
they could have also recovered the theory of second-grade materials by considering what we would call
today second-order holonomic frames. Between these frames and the completely nonholonomic frames
(corresponding to a micromorphic, rather than micropolar, continuum), there exists an intermediate type
consisting of the semiholonomic frames. An intriguing question is whether the “hidden action” corre-
sponding to this type of frames might lead to a physically meaningful interpretation. In this short article
it is shown that this is indeed the case if one is willing to consider a material consisting entirely of a
micromedium supported by an incoherent matrix. A distinction is drawn between strictly semiholonomic
Cosserat media and a related category referred to as quasiholonomic. The presentation is intended to be
as self-contained as possible.

2. A one-dimensional picture

The variety of possible Cosserat media1 resists any attempt at a simple pictorial representation, and this
deficiency is exacerbated when the picture is limited to the one-dimensional realm. Thus, for example,
rigid-body motions in one dimension are unable to convey the possibility of rotations. Nevertheless, a
picture may be of help in providing some insight and motivating further rigorous investigations:

- - -

- - -

uiui−1 ui+1

vivi−1 vi+1
h h

k − h k − h

l l l

The lower row of material points (represented by the lower three elongated rectangles) symbolizes the
macromedium, while the upper counterpart is the micromedium. The corresponding degrees of freedom
are indicated, respectively, with the letters ui and vi , where the subscript runs over the number of particles.
An eventual passage to the continuous limit is suggested, but not directly described. For simplicity, we
represent the constitutive equations by means of linear elastic springs, so that, measured from an assumed
stress-free reference configuration (which may or may not exist), the elastic energy is given, up to an
irrelevant additive constant, by the expression

W = 1
2

∑
i (k− h)(ui+1− ui )

2
+ l(vi − ui )

2
+ h(vi+1− vi )

2. (2-1)

The following particular values of the stiffness constants k, h, and l are of interest:

• Arbitrary k, l, and h: This is the case of the micromorphic medium, also called the nonholonomic
Cosserat medium.

1Although the terminology “Cosserat medium” is usually reserved for the particular case of a rigid triad (or micropolar
continuum), in this paper we use it to denote the general case.



MEDIA WITH SEMIHOLONOMIC INTERNAL STRUCTURE 171

• h = 0: This case can be designated as a first-grade macromedium carrying a zero-grade micromedium.
The grains, so to speak, do not interact elastically with each other. Note that the same physical result is
obtained by specifying h = k instead of h = 0.

• l→∞: In this case we must necessarily have ui = vi , for all i . This condition spells the disappearance
of the micromedium. The energy expression reduces to the standard form,

W = 1
2

∑
i k(ui+1− ui )

2, (2-2)

of an elastic first-grade material. In the one-dimensional case, the specification l→∞, by making it
rigid, renders the micromedium superfluous. Clearly, in a two- or three-dimensional situation, to achieve
the same effect one would need to also specify h = 0. Otherwise, the mere rigidity of the micromedium
would still allow for an interaction between rigidly rotating microparticles (or grains). This is, in fact, the
definition of a micropolar medium, which is the material originally conceived by the Cosserat brothers
in their magnum opus.

• l = 0: For the system to remain connected, we attach (in the unstressed state) the (upper) grain to the
midpoint of the corresponding lower spring. The energy expression is given by

W = 1
2

∑
i 2(k− h)

(
(vi+1− ui+1)

2
+ (ui+1− vi )

2
)
+ h(vi+1− vi )

2. (2-3)

The lower springs (now double in number) connect between contiguous particles, while the upper springs
connect between every second particle. This is the standard representation of a second-grade material.
Notice that in this case the elastic energy (2-3) can also be written more suggestively as

W = 1
2

∑
i 2k

(
(vi+1− ui+1)

2
+ (ui+1− vi )

2
)
− h(vi+1− 2u+1+ vi )

2. (2-4)

• k→∞: This is the case of a rigid macromedium. We will soon demonstrate that this situation may
correspond mathematically to a genuinely semiholonomic Cosserat medium.

• k = 0: Physically, this case corresponds to an incoherent matrix within which the micromedium
provides the only degree of elastic coherence. We will use also the terminology quasiholonomic medium
to refer to this type of material.

3. Cosserat bodies

In continuum mechanics, a material body B is defined as a three-dimensional differentiable manifold
that can be covered with a single coordinate chart. A configuration κ is defined as an embedding of B

into the three-dimensional Euclidean space E3:

κ :B−→ E3. (3-1)

In terms of coordinate charts X I (I = 1, 2, 3) and x i (i = 1, 2, 3) in the body and in space, respectively,
the configuration κ is given by three smooth functions:

X I
7→ x i

= κ i (X I ). (3-2)

To convey the presence of extra kinematic degrees of freedom, however, these definitions need to be
expanded so that the differential geometry can properly reflect the existence of the microstructure and its
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possible deformability. We recall that, given an m-dimensional differentiable manifold M, its principal
frame bundle FM is obtained by adjoining at each point x ∈M the collection Fx M of all the possible bases
of its tangent space Tx M. The set thus obtained has a canonical structure of a differentiable manifold of
dimension m+m2. It is endowed with the natural projection map

πM : FM−→M, (3-3)

which assigns to each point p ∈ FM the point π(p) ∈M to which it is attached. If x i (i = 1, . . . ,m) is
a coordinate chart on U ⊂M with natural basis ei = ∂/∂x i , we can construct an associated chart in FM

by assigning to each point p ∈ π−1
M (U ) the numbers {x i , pi

j }, where pi
j is the i-th component of the j -th

vector of the frame p in the natural basis {e1, . . . , em}. Expressed in terms of coordinates, the natural
projection is given by

x i , pi
j 7→ x i . (3-4)

We define a Cosserat body as the principal frame bundle F B of an ordinary material body B. The
physical intent is that, while the underlying body B represents the macromedium, each fibre Fx B repre-
sents the microparticle or grain at x ∈ B.

Concomitantly with the enlargement of the scope of material bodies, we need to introduce a more
general definition of the notion of configuration. To this end, we consider fibre-preserving maps

K : F B−→ F E3 (3-5)

such that K is a fibre-bundle morphism between F B and its image. By fibre preservation, we mean the
commutativity of the diagram:

F B
K //

πB
��

F E3

πE��
B

κ // R3,

(3-6)

where κ is a well-defined map between the base manifolds. Thus, a Cosserat deformation K automati-
cally implies the existence of an ordinary deformation κ , representing the deformation of the macrostruc-
ture. By fibre-bundle morphism we imply that, fibre by fibre, each of the restrictions K |X (X ∈ B)
commutes with the multiplicative right action of the general linear group GL(3;R). In terms of coor-
dinates, this means that there exists an X -dependent matrix K i

I such that any Cosserat configuration is
completely defined by twelve smooth functions

x i
= κ i (X J ) (3-7)

and
K i

I = K i
I (X

J ). (3-8)

The physical meaning of these assumptions is that each grain can undergo only homogeneous deforma-
tions, as represented by the local matrix K i

I . In other words, each grain behaves as a pseudorigid body.
A more detailed treatment can be found in [Epstein and de León 1996; 1998; Epstein and Elżanowski
2007].

Remark 3.1. As already pointed out, the original formulation by the Cosserat brothers considered the
case in which K i

I is orthogonal. In the terminology of [Eringen 1999], this case corresponds to the
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micropolar continuum. The more general case in which K i
I is an arbitrary nonsingular matrix corresponds

to the micromorphic continuum of Eringen. We use the term “Cosserat body” in this more general sense.

We can see that in a Cosserat body there exist two, in principle independent, mechanisms for dragging
vectors by means of a deformation: The first mechanism is the ordinary dragging of vectors by means of
the deformation gradient of the macromedium, represented by the matrix with entries F i

I = x i
,I . The sec-

ond mechanism is the one associated with the deformation of the microparticle or grain, and is represented
by the matrix with entries K i

I . Note that in a second-grade body these two mechanisms are identified with
each other, thus suggesting that different kinds of Cosserat media may be obtained by either kinematic
restrictions of this kind or by constitutive restrictions. In fact, the Cosserat brothers themselves already
advanced these possibilities and introduced the outmoded terminology of “trièdre caché” (hidden triad)
and “W caché” (hidden strain-energy function) to refer, respectively, to these kinematic or constitutive
restrictions. We will follow in their steps.

4. Nonholonomic, semiholonomic, and holonomic jets

Given two smooth manifolds, M and N, of dimensions m and n, respectively, we say that two maps
f, g :M−→ N have the same k-jet at a point X ∈M if: (i) f (X)= g(X), and (ii) in a coordinate chart
in M containing X and a coordinate chart in N containing the image f (X), all the partial derivatives of
f and g up to and including the order k are respectively equal.

Although the above definition is formulated in terms of charts, it is not difficult to show by direct
computation that the property of having the same derivatives up to and including order k is in fact
independent of the coordinate systems used in either manifold. Notice that, in order for this to work, it
is imperative to equate all the lower-order derivatives. If, for example, we were to equate just the second
derivatives, without regard to the first, the equality of the second derivatives would not be preserved
under arbitrary coordinate transformations.

The property of having the same k-jet at a point is, clearly, an equivalence relation. The corresponding
equivalence classes are called k-jets at X . Any function in a given k-jet is then called a representative of
the k-jet. The k-jet at X of which a given function f :M−→ N is a representative is denoted by j k

X f .
The collection of all k-jets at X ∈M is denoted by J k

X (M,N). The point X is called the source of j k
X f

and the image point f (X) is called its target.
Let a smooth map f :M−→N be given in terms of coordinates X I (I = 1, . . . ,m) and x i (i = 1, . . . , n)

in M and N, respectively, by the functions

x i
= x i (X1, . . . , Xm), i = 1, . . . , n. (4-1)

The jet j2
X f , for example, is then given by the coordinate expressions

x i (X1, . . . , Xm),
[
∂x i

∂X I

]
X
,

[
∂2x i

∂X J∂X I

]
X
, (4-2)

a total of n+mn+m2n numbers.
We are particularly interested in the case of 1-jets. Let us evaluate, accordingly, the coordinate expres-

sion of j1
X K , where K is a Cosserat configuration, as defined in coordinates by (3-7) and (3-8). Notice

that the dimension of both the source and the target manifolds in this case is 12. Following the definition,
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we conclude that j1
X K consists of the elements

x i , K i
I ,

[
∂x i

∂X I

]
X
,

[
∂K i

I

∂X J

]
X
, (4-3)

which we can abbreviate as
x i , K i

I , F i
I = x i

,I , K i
I,J . (4-4)

If no further restrictions are imposed on K , we speak of the components (4-4) as the representatives of
a nonholonomic 1-jet at X ∈ B. It is possible, however, to demand in an intrinsic manner, independent of
the coordinates, that the functions K under consideration satisfy the following compatibility requirement
in a neighbourhood of X :

K i
I ≡ x i

,I . (4-5)

In this case, the collection of 1-jets obtained is smaller. Not only are the second and third entries in (4-4)
the same, but also, by virtue of the identical satisfaction of (4-5) in a neighbourhood of X , we must have:

K i
I,J = x i

,I J = K i
J,I . (4-6)

In other words, the last element of the jet is symmetric with respect to its lower indices. We will indicate
the coordinate expression of these holonomic jets as follows:

x i , F i
I , K i

I,J = K i
J,I . (4-7)

Finally, there exists a third type of jet, somewhat intermediate between the two extremes just presented.
It is obtained when the potential representatives K are restricted to satisfy the condition

K i
I (X)= x i

,I (X). (4-8)

Thus, we demand the satisfaction of (4-5) not identically in a neighbourhood of X , but just at the point
X itself. The 1-jets thus obtained are known as semiholonomic jets. The coordinate expression of a
semiholonomic jet is

x i , K i
I , K i

I,J . (4-9)

Notice that the last entry is no longer necessarily symmetric.

Remark 4.1. Given an actual arbitrary configuration K , it will give rise automatically to point-wise
nonholonomic jets. If the configuration is restricted so that condition (4-5) is satisfied over the whole
base manifold B, it will give rise to everywhere holonomic jets. In this sense, it is possible to speak of
nonholonomic or holonomic configurations, respectively. On the other hand, it is not possible to define
semiholonomic configurations. Indeed, if condition (4-8) were to be imposed at each point, we would
immediately revert to condition (4-5), thus obtaining a holonomic configuration.

5. Semiholonomic Cosserat media

The last section ended in a definitely pessimistic note. Indeed, if semiholonomic configurations cannot
be properly defined, there seems to be no point in attempting a definition of semiholonomic media. This
kinematic impasse, however, can perhaps be resolved by means of a constitutive statement. We could
say, for example, that a nonholonomic Cosserat medium is semiholonomic if its constitutive equation
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involves only the semiholonomic part of the 1-jet of the configuration. Physically, this would correspond
to a response that is in some sense oblivious of the presence of the macromedium. In this section, we
look into this and other possibilities with some care.

Since we are contemplating a particular case of nonholonomic Cosserat media, it will be useful to
record the law governing the change of constitutive law of such a medium under a change of reference
configuration. For specificity, we will limit ourselves to a single scalar constitutive law, such as the
free-energy density per unit mass ψ . Let the constitutive law with respect to a reference configuration
K0 be given in a coordinate system X I by the expression

ψ = ψ0(K i
I , F i

I , K i
I,J ; X I ), (5-1)

and let the counterpart for a reference configuration K1 with coordinates Y A be given by

ψ = ψ1(K i
A, F i

A, K i
A,B; Y

A), (5-2)

with an obvious notational scheme. The deformation from K0 to K1 is given by twelve quantities, written

Y A
= Y A(X I ), K A

I (X
J ). (5-3)

By the law of composition of jets (or derivatives), we obtain between the constitutive expressions the
relation

ψ1(K i
A, F i

A, K i
A,B; Y

A(X J ))= ψ0(K i
A K A

I , F i
A F A

I , K i
A,B K A

I F B
J + K i

A K A
I,J ; X J ), (5-4)

where F A
I = Y A

,I .
The point of bringing this transformation equation to bear is the following result, whose proof is an

immediate consequence of the transformation law (5-4).

Proposition 5.1. If the constitutive law (5-1), in the reference configuration K0, is independent of the sec-
ond argument (F i

I ), so is the expression of the same constitutive law in any other reference configuration
K1 independent of the second argument (F i

A).

As a direct corollary of this proposition, we can propose the following definition.

Definition 5.2. A nonholonomic Cosserat medium is said to be semiholonomic at X if its constitutive
law at X is independent of the deformation gradient of the macromedium.

From the mathematical standpoint, it is necessary to note that this definition does not imply the ex-
istence of a canonical projection of a nonholonomic jet onto a semiholonomic part. In fact, such a
canonical projection does not exist. What the definition implies is that once a noncanonical choice is
effected in one particular reference configuration, this choice can be convected to all other configurations
by means of the correct application of the transformation (5-4). In particular, this convection involves the
gradient of the change of reference configuration (F A

I ). Another way to state the choice of a particular
“projection” is to say that a particular parallelism (whose physical meaning may, for example, be related
to the existence of some particular stress-free configuration) must be chosen as part and parcel of the
constitutive law of a semiholonomic Cosserat medium.

From the physical point of view, a semiholonomic Cosserat medium may be said to consist of an
incoherent matrix upon which a coherent micromedium has been installed. The interaction between the
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grains, however, “remembers” the existence of a particular configuration of the macromedium as the only
remaining physical trace of its existence. It is interesting to remark that, since the macromedium plays
no other role, the configuration space of a semiholonomic medium may be, in a possible application,
assumed to be rigid.

The converse of the above statement is not true: a nonholonomic Cosserat medium with a rigid matrix
is not automatically semiholonomic. Indeed, by a direct application of the principle of frame indifference,
the constitutive law (5-1) can be reduced to the form

ψ = ψ(RT K ,U, RT
∇K ; X), (5-5)

where the polar decomposition F = RU has been exploited and where block letters stand for the collec-
tions of homonymous indexed quantities used in previous formulas. Using now the polar decomposition

K = R ′U ′, (5-6)

we may write (5-5) as
ψ = ψ(rU ′,U, r R ′T∇K ; X), (5-7)

where
r = RT R ′ (5-8)

is the (referential) relative rotation of the grain with respect to the macromedium. If the macromedium
is rigid, we must have necessarily U = I . But for a semiholonomic body the constitutive law must be
independent of both components U and R of the polar decomposition of F. It follows, therefore, that
rigidity alone does not imply semiholonomy. If, on the other hand, the constitutive law of a rigid-matrix
Cosserat medium is independent of the rotation R, we may choose R = R ′ (or, equivalently, r = I),
thereby leading to the following reduced equation of a semiholonomic Cosserat body:

ψ = ψ(U ′, R ′T∇K ; X). (5-9)

In the physical interpretation, we may say that the grains are attached to the rigid macromedium by
means of ideal frictionless pins, so that there is no energetic cost to produce a relative rotation between
them. In the admittedly imperfect pictorial representation of the figure below, the grains in the reference
configuration are depicted as squares pin-jointed at their centres to the rigid matrix and connected to their
neighbours by means of springs (represented by broken lines) designed to detect differential stretches

r r r
r r r
r r r

r r r
r r r
r r rgrain

pin

spring

���*
-

-

A rigid-matrix semiholonomic Cosserat medium.



MEDIA WITH SEMIHOLONOMIC INTERNAL STRUCTURE 177

and rotations between contiguous grains. The grains themselves behave as pseudorigid bodies, so that
their deformed versions are represented by parallelograms.

The reduced form (5-9) of the constitutive law of a semiholonomic Cosserat material applies whether
or not the matrix is rigid, since in either case the response is independent of both U and R.

6. Quasiholonomic Cosserat media

As defined, a semiholonomic Cosserat medium may not necessarily have any material symmetries. We
want to contrast the above definition with the following one that, by demanding the maximum possible
symmetry of the macromedium, appears to carry the same physical meaning.

Definition 6.1. A nonholonomic Cosserat medium is said to be quasiholonomic at X if, for some (local)
reference configuration, its symmetry group H at X contains the subgroup given by

G=
{
{I,G, 0}

∣∣ G ∈ GL(3;R)
}
, (6-1)

where I is the unit of GL(3;R).

The reason to suspect that this definition might be equivalent to the previous one is that, due to the
assumed arbitrariness of G, it seems to imply that the deformation of the macromedium plays no role in
the constitutive response. A direct application of the definition of a nonholonomic symmetry, however,
leads to the conclusion that a quasiholonomic medium must have a constitutive law of the form

ψ = ψ(K i
I , K i

I,J F−J
j ; X I ) (6-2)

in the special reference configuration used in the definition2.
Physically, this means that the price to pay for this large symmetry group is, surprisingly, the reap-

pearance of the deformation gradient of the macromedium in the last argument of the constitutive law so
as to permit the interaction between the grains to take into account their relative spatial locations (rather
than those pulled back to some putative, perhaps unstressed, reference configuration).

The purpose of the following simple example is to shed light on the subtle difference between semi-
holonomic and quasiholonomic media, as conceived in Definitions 5.2 and 6.1, respectively. To this
end, we consider the successive application of two deformations, the first of which can be regarded as
a change of reference configuration so as to bring the notation in line with that of the previous section.
The (Cartesian) coordinate systems X I , Y A, and x i are assumed to coincide with each other. The first
deformation is a uniaxial contraction along the X1-axis, namely

Y 1
= 0.8X1, Y 2

= X2, Y 3
= X3, K A

I = δ
A
I . (6-3)

The second deformation is a microrotation about the Y 3 axis that increases linearly with Y 1. Specifically:

x1
= Y 1, x2

= Y 2, x3
= Y 3, {K i

A} =


cos

(
π

3
Y 1
)
− sin

(
π

3
Y 1
)

0

sin
(
π

3
Y 1
)

cos
(
π

3
Y 1
)

0

0 0 1

 . (6-4)

2In any other reference configuration, the symmetry group will contain a conjugate of the group G and the form of the
constitutive law will be, accordingly, somewhat more involved.
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First deformation (top), second deformation (middle), and their composition (bottom).

The effect of each of the two deformations on a unit-width strip in the X1, X2 and Y 1, Y 2 planes is
shown in the figure above (top and middle parts), together with their composition (bottom part). Notice
that, at the moment of composition, it is the already contracted strip that encounters the values of the
rotation field already in place (as dictated by the second deformation), thus resulting in a maximum
value for the rotation of the grain in the deformed strip of 48◦ rather than 60◦, which was the value at the
right-hand end of the strip as far as the second deformation alone was concerned. If the Cosserat body is
semiholonomic, the gradient of the rotation would be obtained by dividing 48◦ by the original unit width.
On the other hand, if the Cosserat body is quasiholonomic, it is the width measured in the final deformed
configuration that matters in the calculation of the gradient. Since this width is of 0.8, we verify that
the rotation gradient in the composite deformation turns out to be identical to the gradient in the second
deformation. In other words, the preapplication of the first deformation (in this case a contraction of the
macromedium) is irrelevant for a quasiholonomic medium.
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Among various possible physical applications of both semiholonomic and quasiholonomic Cosserat
media, beyond those with a rigid matrix, we mention the modelling of aggregates [Zhang et al. 2006],
such as colloidal suspensions [Moosaiea and Atefia 2007], when the underlying continuum upon which
the interacting particles dwell is, say, an ideal incompressible fluid. The choice of model depends on the
physical nature of the interactions between the dispersed particles.
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DIAGNOSIS OF CONCRETE DAMS BY FLAT-JACK TESTS AND
INVERSE ANALYSES BASED ON PROPER ORTHOGONAL DECOMPOSITION

TOMASZ GARBOWSKI, GIULIO MAIER AND GIORGIO NOVATI

Dedicated to the memory of Marie-Louise Steele and to Charles Steele.

Flat-jack tests have been employed for decades for the assessment of stresses and Young moduli in
possibly deteriorated concrete dams and masonry structures. We propose a procedure for such tests
that includes several innovations: identification of Young moduli and shear modulus in the presence
of orthotropy, of pre-existing normal and shear stresses, and of tensile and compressive strength and
fracture energy; use of full-field displacement measurements by digital image correlation (instead of
extensometers); computer simulations performed once-and-for-all and productive of results which are
subsequently processed out by proper orthogonal decomposition and its truncation; and identification
of parameters in situ, soon after the tests, by portable computer with software able to perform inverse
analyses by mathematical tools newly introduced into this context. The proposed procedure is validated
by means of pseudoexperimental numerical exercises, by employing comparatively, as central computa-
tional tools, artificial neural networks and a trust region algorithm implying only first-order derivatives
(with respect to the sought parameters) of the discrepancy function to minimize.

1. Introduction

Many concrete dams built up several decades ago in developed countries are at present deteriorated, with
possible consequent decrease of safety margins with respect to limit states or collapses. A relatively
frequent cause of damage in dam concrete is the physicochemical process called alkali-silica reaction:
after a dormant period of several years from casting, a substantial decay of mechanical properties and
an expansion generating self-stresses may occur slowly along a period of, say, thirty or forty years, with
nonuniform distribution over the dam volume and sometimes without external visible manifestations of
aging; see, for example, [Swamy 1992; Ahmed et al. 2003; Comi et al. 2009]. Such possible occurrences
clearly require a rather large number of diagnostic analyses on a possibly damaged dam.

Structural diagnostic procedures of a mechanical nature employed in state-of-the-art dam engineering
can be classified as follows (see [Maier et al. 2004], for instance): (a) quasi-nondestructive experiments
by flat jacks on the dam surface [Fedele and Maier 2007]; (b) in depth coring or overcoring tests (similar to
those which are traditional in geomechanics), usually with extraction of specimens for the laboratory (and,
hence, destructive) [Goodman 1989; Fedele et al. 2005; Leite and Corthesy 2001]; (c) overall dynamical
inverse analyses based on excitations by vibrodynes or by ambient vibrations and measurements by

This research was carried out in a PRIN project supported by the Italian Ministry of University and Research (MIUR) on the
subject “Structural monitoring, diagnostic inverse analyses and safety assessments of existing concrete dams”.
Keywords: concrete dams, flat-jack test, inverse analysis, proper orthogonal decomposition, radial basis functions, artificial

neural networks.
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accelerometers [Loh and Wu 2000]; (d) statical overall inverse analyses under loading due to ad hoc
changes of water level in the reservoir, with measurements of consequent displacements by means of
pendulums, collimators and/or interferometric radar [Fedele et al. 2006]; (e) same as (d), but with loading
provided by seasonal, in-service variation of reservoir level (such alternative is much more economical
than (d), however it requires more complex inverse analyses taking into account thermal effects as well
[Ardito et al. 2008]).

Diagnostic procedures (c), (d) and (e) lead to the assessment of Young modulus only. Method (b)
is clearly destructive and expensive. The limitations of procedure (a), traditionally applicable only to
the estimation of the Young modulus and normal stresses, have been recently mitigated, so far only
theoretically, in [Fedele et al. 2005] by recourse to test simulations and inverse analysis.

A step ahead in the development of structural diagnosis based on flat-jack tests and inverse analysis
is provided in this paper, where the following novelties are presented and proposed to the engineering
practice: (i) less destructive geometric configuration of the slots; (ii) use of digital image correlation
(DIC) as full-field displacement measurement technique which economically provides much more exper-
imental data than extensometers; (iii) assessment of inelastic parameters additional to elasticity and of
the existing stress state (assumed as uniform, locally); (iv) parameter identification performed in a fast
and inexpensive fashion (possibly in situ, using a portable computer) by a numerical procedure resting on
proper orthogonal decomposition (POD), radial basis functions (RBF) interpolations and a trust region
algorithm (TRA) or by an alternative procedure based on an artificial neural network (ANN).

Section 2 is primarily devoted to the operative sequence of the procedure to be carried out in situ,
namely in selected locations on the dam surface. The computational procedures proposed for the esti-
mation of elastic moduli and stresses are described, with some details and numerical validations, in the
successive two sections: the techniques centered on POD–RBF–TRA in Section 3, and those based on
POD–ANN in Section 4. In Section 5 preliminary research results are presented on the identification of
plastic and fracture parameters. Section 6 is primarily devoted to prospects of further research.

2. Experimental procedure and its modeling

2.1. Constitutive models. Simple traditional constitutive models, still popular nowadays in dam engi-
neering practice, have been adopted for the present investigation and validation exercises on the proposed
parameter identification methods. Let the x-axis be horizontal on the dam free surface, assumed vertical
for simplicity, let the z-axis be orthogonal to that surface, and, hence, axis y vertical as well. Anisotropy,
specifically orthotropy with transversal isotropy in the horizontal plane, may be generated in dam concrete
by the casting process, especially in roller compacted concrete, more and more frequently adopted in the
last decade. In this case linear elasticity can be described as follows:

εx

εy

εz

γxy

γyz

γxz


=



1/EH −νVH/EV −νH/EH 0 0 0
−νHV/EH 1/EV −νHV/EH 0 0 0
−νH/EH −νVH/EV 1/EH 0 0 0

0 0 0 1/GV 0 0
0 0 0 0 1/GV 0
0 0 0 0 0 1/GH




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σy

σz
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τxy

τxz


, (1)
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νHV = νVH
EH

EV
, GH =

EH

2(1+ νH)
. (2)

The material parameters in (1) are the horizontal and vertical Young moduli, EH and EV; the in-plane (hor-
izontal) and out-of-plane shear moduli, GH and GV; and the Poisson ratios νH, νVH and νHV, constrained
by the relationships (2) due to the symmetry of the elastic compliance matrix and to the in-plane elastic
energy balance (same as in the isotropic case), respectively. Therefore only five of these parameters
are independent. The identification procedures developed in Section 3 and 4 will concern the three
parameters EH, EV and GV, which are the ones reasonably expected to play the main role in the system
response in the hypothesis of transversal isotropy (in the horizontal plane) for the dam concrete. We
assume a priori that νH = νVH = 0.2; the other parameters in (1) depend on the previous ones through (2).

Isotropy reduces to two the independent elastic parameters, say E and G (since EV = EH = E , GV =

GH = G, νH = νHV = νVH = E/(2G)− 1). The isotropy hypothesis will be used in Section 5 when focus
is set on the identification of inelastic parameters.

The stress field pre-existing to the test and sought for by the identification procedure can be reasonably
assumed to be a plane stress state (σz = τzx = τzy = 0), assumed as uniform over the whole volume affected
by the test, hence governed by the three components σH (= σx), σV (= σy) and τHV (= τxy).

For the plastic behavior of concrete the classical Drucker–Prager model is adopted here (perfect plas-
ticity with nonassociated flow rule), depicted in Figure 1a. Fracture is supposed to be first-mode only
and reducible to a cohesive crack model with linear softening, as shown in Figure 1b in terms of normal
stress σ versus opening displacement v. The assumptions above on the inelastic behavior of concrete
lead to the following mathematical model formulation

F = t − p tanβ − d ≤ 0, d =
(
1+ 1

3 tanβ
)

ft (3)

(see [Lubliner 1990; Jirasek and Bazant 2001], for instance). The meanings of the symbols in these
formulas and in the figure are as follows: F is the yield function in the plane (Figure 1a) of the average
normal stress p (compression positive) and of the equivalent shear t (I1 being the first invariant of
the stress tensor, J2 the second invariant of the deviatoric stress tensor); the angles β and ψ represent
internal friction and dilatancy of plastic flow, respectively; the cohesion d and the uniaxial strength ft

are related to each other by (3)2, as a consequence of (3)1. The dilatancy ψ is assumed to be ψ = 40◦, a
value frequently adopted in overall analyses of concrete dams in engineering practice. Thus the inelastic

β

v

ft

Gf

23t J= ⋅

1

3

I
p =

ψ
dεpl

d

(a) (b)

σ

Figure 1. Material models and parameters relevant to diagnostic purposes: (a) Drucker–
Prager no-hardening plasticity; (b) cohesive crack model with linear softening.
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Figure 2. Sequence of steps in the parameter identification procedure: (a) positioning
and (b) cutting of the slots (recording of displacements over the large ROI); (c) jacks
inserted and pressurized (recording of displacements over the large ROI); (d) depressur-
ization of jacks and change of ROI; (e) vertical jack pressurized to higher pressure level
(displacements recorded over the smaller ROI).

parameters to estimate turn out to be three only: the internal friction β, the tensile strength ft , and
the fracture energy G f . The uniaxial compressive strength fc can be computed after model calibration
through the following relationship, consequence of (3) for F = 0:

fc =
d

1− 1
3 tanβ

=

(
1+ 1

3 tanβ
)

ft

1− 1
3 tanβ

. (4)

2.2. The test and its simulation. The sequence of operative steps of the proposed diagnostic procedure
based on flat-jack tests is outlined below with reference to Figure 2.

(a) In the selected place on the structure surface, the position of two future orthogonal slots (T-shaped
geometry) is marked and a first photograph is taken by the DIC instrument over the region of interest
(ROI) which is depicted in Figure 2a. In the DIC jargon (see [Hild and Roux 2006; Avril et al. 2008],
for example), ROI is the area over which full-field measurements are performed; zone of interest (ZOI)
is the image subset used by the image matching routine as a correlation window: comparing photos
taken before and after the deformation, every ZOI of the initial image can be located in the deformed
image through its “signature” in terms of gray-level values characterizing the pixel subset in point, as
schematically illustrated in Figure 3. The displacement of the center point of a ZOI is computed as
average of the displacements of the pixels inside the subset. A suitable grid is defined over the ROI,
grid-nodes displacements being measurable by means of subsequent DIC photos.

(b) The two slots are cut (Figure 2b) and a second photo is shot by the DIC equipment so that, as men-
tioned, the displacements due to the release of the pre-existing stresses in the cut can be measured at all
grid nodes and can be dealt with as accurately representative of the displacement full-field over the ROI.

(c) Two flat-jacks are inserted and pressurized by a piston-pumped liquid up to a pre-established
pressure (Figure 2c). This pressure should correspond to a compromise between the needs to generate
large enough, well measurable displacements in the ROI and to avoid nonnegligible inelastic strains.
Again a DIC photo is taken over the ROI in order to capture the new displacement full-field.

(d) The horizontal jack is removed from its slot and the vertical one is depressurized. The original ROI
employed in the preceding steps is replaced by a smaller ROI appropriate for focusing on one of the two



DIAGNOSIS OF CONCRETE DAMS BY FLAT-JACK TESTS AND INVERSE ANALYSES 185

x

y

Undeformed state

Zone of interest 

(ZOI)

f(x,y)

Region of interest  (ROI)

x

y

Deformed state

f(x,y)

y’

x’

g(x’,y’)

ℓ

δx

δy

Figure 3. Schematic visualization of the DIC measurement procedure. The functions
f and g are gray-level values; x , y are pixel coordinates in the ROI, and δx , δy are the
displacement coordinates of the ZOI central point.

zones, located near the tips of the vertical slot, where inelastic deformations are expected (Figure 2d). A
reference photo is taken of this ROI.

(e) The single flat-jack placed in the vertical slot is highly pressurized in order to generate plastic strains
and a quasi-brittle fracturing process near the tips of the loaded slot where stress concentrations occur
(Figure 2e). A sequence of DIC photos is taken to capture the nonlinear evolution of the displacements
over the ROI, due to such pressure loading. The crack propagation is assumed as confined to the central
vertical plane and to be stable, despite the softening in the cohesive crack behavior. Such localized
fracture can be regarded as quasi-nondestructive in engineering terms. A possible provision to be adopted
which can be beneficial in phase (e) for inelastic material characterization is the following one: two
additional vertical slots (shown in Figure 2f) are cut in order to practically remove the influence on the
fracture process of the horizontal stress; this, however, would make the test slightly more destructive.
This variant is not investigated herein.

Based on these DIC measurements, the parameters identifications are performed according to the
following sequence of phases (see caption of Figure 2): (I) elastic moduli, on the basis of experimental
data concerning transition from stage (b) to (c); (II) stresses, on the basis of the elastic moduli estimates
achieved in phase (I) and of data acquired at stages (a) and (b); (III) inelastic parameters, on the basis
of data concerning the transition from stage (d) to the various deformation stages represented in the
sequence of DIC photos taken in phase (e).

The finite element (FE) model here adopted for the subsequent computer simulations of the tests is
depicted in Figure 4a as for the overall geometry and in Figure 4b as for the mesh. The FE discretization
exhibits the following features: 97,600 tetrahedral elements with linear shape functions for displacements;
57,280 degrees of freedom; boundary conditions with vanishing displacements on the borders separating
the domain from the surrounding volume supposed to be not perturbed by the test. It is worth noting that
the ROI for DIC measurements is significantly reduced in moving from the identification of elastic moduli
and stresses to the estimation of inelastic parameters: in fact for the latter inverse analyses concerning
less uniform and more localized strains field, it is useful to exploit a higher density of the available DIC
pixels.
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Figure 4. Finite element model for test simulations: (a) overall geometry and (b) mesh.

The simplicity of both the constitutive models and of the FE discretization for the numerical exer-
cises presented in the two subsequent sections is motivated by the following circumstances: the present
purpose is limited to a first numerical validation of novel procedures; consistency is pursued here with
the assumptions and approximations at present adopted for real-life structural analyses of large concrete
dams in view of inevitable uncertainties of several data.

A further simplification of test modeling concerns the flat-jacks: their configurations adopted at present
would suggest to model the two steel laminae and the circumferential welds. Here uniform compressive
traction is assumed throughout the concrete walls of the slot. Such assumption is reasonable: first,
because it represents an acceptable approximation to the present purposes; second, because a new kind
of flat jack based on textile laminae supported by a circumferential rod, now under investigation, is likely
to be adopted in the future, thus making the assumption above more realistic.

For the numerical validation of the novel diagnostic procedures the adopted jack dimensions and test
geometry are similar to those which are at present usual in traditional applications, consistent with usual
sizes of aggregate in concrete. Clearly, larger dimensions with equal procedures can be adopted for dam
concrete when the average aggregate size turns out to be larger.
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3. Identification of elastic moduli and stresses by a POD–RBF–TRA procedure

3.1. The inverse analysis procedure. As usual in diagnostic inverse analyses, the domain in space over
which the search for the material parameters can be confined should be preliminarily chosen according to
expert judgment. For the present purposes, at first with reference to the estimation phase (I), the “feasible
domain” is defined within the three-dimensional space of the elastic parameters in Table 1 by means of
lower and upper bounds. Adopting the step values specified in this table, a grid with M = 1089 nodes is
generated over the feasible domain.

For each of these sets of parameters the test simulation provides, by the FE model of Figure 4, the
displacements measurable by DIC (over the ROI shown in Figure 2) relevant to the operative steps from
(a) to (c), namely the displacements due to slot cutting and jack pressurization up to p = 5 MPa in the
elastic range. The relative large size of the ROI makes immaterial, for identification by elastic modeling,
the possible initial development of inelastic strains, localized near the slot tips, as the jack pressure
approaches the maximum value (p = 5 MPa).

The DIC instruments here considered measure (and provide in digitalized form) N = 2086 displace-
ment components (along horizontal and vertical axis on the dam surface, Figure 2a) at the nodes of the
FE model (Figure 4) which coincide with the DIC grid nodes contained in the ROI (Figure 3).

The POD–RBF procedure. The clearly massive and heavy sequence of direct analyses based on the
parameter vectors pi (i = 1, . . . ,M) corresponding to grid nodes has been carried out by a commercial
FE code (ABAQUS). Let the results be gathered in an N ×M matrix U : its i-th column ui is a vector,
or snapshot, containing the N pseudoexperimental data belonging to the (now elastic) response to the
pressure loading of the system with elastic moduli gathered in vector pi .

Clearly, since the differences among the system responses arise only from variations of the sought
parameters within the preselected domain in their space, the snapshots turn out to be correlated: they
can be represented by “almost parallel” vectors in their space of N = 2086 dimensions. This correla-
tion suggests the use of approximation, or compression, in the information contained in the snapshot
matrix U = [u1 · · · uM ] relevant to the elastic behavior of the system, by recourse to a proper orthogonal
decomposition (POD) and truncation based on it.

The mathematical theory and computational procedures related to POD have origins remote in time
and in application fields, and are now presented in a vast and still growing literature, of which we mention
[Chatterjee 2000; Wu et al. 2003; Ostrowski et al. 2008]. Here only the specific procedure selected and
applied to the present purposes is outlined, without analytical details.

Starting from the matrix U defined above, preliminarily obtained from M test simulations by FEM,
the symmetric, positive semidefinite or definite matrix D = U T U is generated. Its (real, nonnegative)

phase (I) phase (II)
EH/GPa EV/GPa GV/GPa EH/GPa EV/GPa GV/GPa σH/MPa σV/MPa τHV/MPa

min 10 15 4 10 15 4 −6 −7 −2.5
step 1 1 1 5 5 4 1 1 0.5
max 20 25 12 20 25 12 −2 −1 −0.5

Table 1. Grid in parameter space for phases (I) and (II) of the identification procedure.
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eigenvalues λi and the relevant normalized eigenvectors vi are computed and employed to obtain the
orthonormal basis

8=
[
81 · · · 8M

]
, with 8i = Uviλ

−1/2
i . (5)

In view of orthonormality, the M × M matrix A encoding the amplitudes a of the snapshots u is
characterized by the relations

A=
[

a1 · · · aM
]
=8T U, U =8A. (6)

The correlation among the snapshots (earlier noticed and reasonably expected for measurable re-
sponses to tests at varying parameters over the domain) make negligible many amplitudes ai in the new
basis 8. It was mathematically proved (see e.g., [Nabney 2002; Liang et al. 2002]) that the eigenvalues
λi quantify the negligibility of such amplitudes. By preserving only the M largest eigenvalues, with
M� M , an approximation U is achieved of the N ×M snapshot matrix U by means of a truncated basis
8 (N ×M) and the relevant truncated M ×M amplitudes A, namely

U =8 A∼= U, whence A=8T U . (7)

The approximation in (7)1 is regarded as acceptable and negligible in subsequent developments, so
that the amplitudes in A are henceforth computed by (7)2.

These developments often turn out to be computationally heavy but need to be done once-and-for-all
as preparatory work generating matrices 8 and A: these condense (“compress”) the information on the
system behavior contained in the much larger matrix U and can be accommodated in a small computer
to be employed “in situ”.

The snapshot u corresponding to any “new” parameter vector p (new because not included as node
in the preselected grid over the feasible domain in the parameter space) now can be assessed through
(7) by means of its “amplitude” M-vector ā( p). This amplitude can be expressed by means of radial
basis function (RBF) interpolation (see, e.g., [Wu 1995; Buhmann 2003; Hassing et al. 2010]) using the
known amplitude vectors āi ( pi ) corresponding to grid-nodes vectors pi , i = 1, . . . ,M :

āk( p)=
M∑

i=1

bk
i g( p, pi )= gT( p)bk k = 1, . . . ,M, (8)

where āk( p) is the k-th component of ā( p), the bk
i are the interpolation coefficients and g( p, pi ) are

the radial functions; the vectors gT( p) and bk gather functions and coefficients, respectively. The cubic
RBFs

g( p, pi )= ‖ p− pi‖
3 (9)

where ‖ · ‖ is the Euclidean norm, are adopted here for the interpolation above. For each component k,
Equation (8), enforced at the j -th node ( j = 1, . . . ,M) of the parameter grid, takes the form [ā j ( p j )]k =

gT( p j )bk . Assembling all M equations of this type, the following linear system is obtained, with the
coefficients bk

i as unknowns:

Gbk
= [ k-th row of matrix Ā ]T , k = 1, . . . ,M, (10)

where G = (G j i ) with G j i = g( p j , pi ). All the M linear equation systems to be solved share the same
coefficient matrix (which is independent of k).
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When matrix B= [b1 . . . bk . . . bM
] is available, the interpolation, (8), provides the truncated amplitude

vector ā corresponding to any new parameter vector p: āk( p)= [ g( p)]T bk ; and, hence, (7) leads to the
snapshot u of the N measurable quantities, namely to an approximation consistent with the preceding
POD process. Formally:

u( p)∼=8 ā( p)=8 BT g( p) (11)

where the M−vector g contains the values of the considered RBFs at the parameter node p.
Clearly, (11) may replace with substantial savings test simulations (direct analyses) by FE computer

codes or by other computing tools. This circumstance becomes very meaningful and practically advan-
tageous in inverse analysis of the present kind.

In the present context parameter identification means minimization of a traditional discrepancy func-
tion ω of the residuals R (differences between experimental data us and their computed counterparts uc).
Traditionally, the function ω is formulated as quadratic form with the inverse of the covariance matrix C
of the experimental measures:

min p ω ( p)=min p
{

RT ( p)C−1 R ( p)
}

(12)

where
R ( p)= us − uc ( p) . (13)

In view of the “pseudoexperimental” approach of the present investigation, it is assumed herein C = I
(identity matrix) without methodological limitations.

In order to numerically solve the problem formulated by (12), the popular trust region algorithm (TRA)
is employed in this section and it is outlined below (for details see e.g., [Coleman and Li 1996; Conn
et al. 2000]).

The Jacobian J , the gradient ∂ω/∂ p of the objective function ω and an approximation of the Hessian
H read, respectively:

J ( p)=
∂R
∂ p

,
∂ω

∂ p
= J T R , H ( p)=

∂2ω

∂ pT ∂ p
' J T J . (14)

In each iteration, say the j-th one starting from the current point p j , the following two-variable math-
ematical programming problem has to be solved:

min
α,β

{
1
2 sT

j J T J s j +

(
∂ω

∂ p

)T
s j ,

∥∥s j
∥∥≤1 j

}
, (15)

where
s j = α J T

j R j −β(J T
j J j )

−1 ∂ω

∂ p . (16)

In (15) 1 j defines the “trust region” to be possibly adjusted after check according to criteria specified
e.g., in [Nocedal and Wright 1999; Conn et al. 2000].

The iteration j of the first-order TRA described by (15) and (16) requires a multiplicity of first deriva-
tives specified in (14) and numerically approximated here by forward finite differences. Therefore a high
number of direct analyses are necessary in each application of TRA to the present inverse problem.

As for TRA and similar sequential mathematical programming technique, the computational burden
is increased by possible nonconvexity (namely by possible local minima) of the objective function
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ω ( p) which may require different initializations (even if once-and-for-all for a specific kind of tech-
nical situations). In parameter identification problems where lack of discrepancy function convexity is
expected, genetic algorithms may be an advantageous alternative (not examined herein) to mathematical
programming, and the preliminary POD–RBF procedure above becomes very desirable for practical
applications in view of the high number of required direct analyses. Computational savings may arise
from POD–RBF also for sensitivity analysis of many measurable quantities (see [Kleiber et al. 1997],
for example); however, we will not consider this topic further.

In the present diagnostic method the inevitably sequential estimation of parameters (elastic-stresses-
inelastic, Section 2, Figure 2) implies an increase of the parameter space dimensionality and hence a
growth (exponential at equal density) of the number M of grid nodes (and snapshots).

The advantages achievable by the procedure POD–RBF–TRA proposed herein in association with
DIC and flat-jack tests for the identification, in sequence, of elastic moduli and stresses, are evidenced
by numerical examples in Section 3.2.

In the POD–RBF procedure just outlined, truncation represents a clearly important step. The choice
of number M of the preserved eigenvalues of matrix D (much below the number M of snapshots) can
be decided by various criteria (besides the one based on eigenvalues λi , here without a direct physical
meaning), two of which are particularly suitable to the present context: (i) meaningful difference between
a snapshot resulting from a test simulation by FE analysis and the corresponding snapshot computed by
POD–RBF with truncations; (ii) assessment of intrinsic accuracy of POD–RBF at varying the dimen-
sionality M of the new basis 8. The latter has been adopted in the present study and is outlined in what
follows.

Outside the nodes grid but still within the preselected domain, M̂ parameter vectors p̂ j are randomly
generated (here M̂ = 100), and corresponding snapshots of pseudoexperimental data are computed
through FE simulations of the same test. Random noise (here ±5µm) is added to each snapshot which
thus becomes û j ( j = 1, . . . , M̂). The amplitude vector corresponding to û j is computed using (7):

ā j ( p̂ j )=8T û j ( p̂ j ), j = 1, . . . , M̂ . (17)

Now an approximation to such amplitude vector has to be attainable by RBF interpolation through (8)
(employing the matrix B) in correspondence with some p:

āRBF( p)= B g( p). (18)

Such p can be singled out by defining (for each j-th off-grid node) a residual

R j ( p)= ā j ( p̂ j )− āRBF( p) (19)

and then by solving the problem

p∗j = value of p that minimizes RT
j ( p) R j( p). (20)

The j-th parameter vector p̂ j originally considered is now compared to its counterpart p∗j resulting
from minimization (20). Their difference can be regarded as representative of the RBF approximation in
this j -th numerical test. An overall quantification of such error for the whole set of M̂ off-grid nodes, i.e.,
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Figure 5. Errors, according to (21), in the elastic moduli due to the POD–RBF prelim-
inaries as a function of the adopted truncation index M .

the mean error according to (21) below, can be regarded as an assessment of the approximation induced
by the POD–RBF scheme:

(mean error)l =
1

M̂

M̂∑
j=1

∣∣∣∣∣( p̂ j )l − ( p∗j )l
( p̂ j )l

∣∣∣∣∣ (21)

where subscript l denotes the l-th component of the parameters vectors. Figure 5 shows the mean error
resulting for the elastic constants as a function of POD truncation index M .

3.2. Validation by computational examples. This subsection gathers a sequence of selected numerical
checks of potentialities and limitations of the (deterministic, least squares) diagnostic method presented
in what precedes.

(A) First, inverse analyses have been carried out comparatively by TRA only, with the following
provisions: (i) various initializations in order to check the well-posedness of the problem and, particularly,
absence of local minima; (ii) random perturbations of the (pseudo) experimental input data in order to
check their consequences on the estimates; (iii) same estimation procedure applied comparatively on the
basis of DIC data and on the basis of extensometric data which are traditionally acquired with standard
flat-jack tests.

The reference values of the parameters used in identification examples, carried out by TRA only,
concerning phase (I) and phase (II), are as follows:

elastic parameters: EH = 15GPa EV = 20GPa GV = 8GPa νH = νVH = 0.2

pre-existing stresses: σH =−3 MPa σV =−5 MPa τHV =−1 MPa

All three kinds of evaluations led to positive and encouraging results starting from these reference
values, with pseudomeasurements by DIC and by the FE model (Figure 4) same as those specified in
Section 2; pressure of 5 MPa in both jacks; random noises on input data over intervals of ±2.5µm and
then of ±5.0µm, with uniform probability distribution.

Figure 6 indicates satisfactory stability of the TRA identification with respect to realistic random errors
of DIC pseudoexperimental data considered. For comparison purposes, Figure 7a shows possible mea-
surements by extensometers (specifically, linear variable differential transducers) employed at present
in dam engineering. The elongation of 8+ 8 segments between marks are intended to be monitored
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Figure 6. Identification of elastic parameters by TRA with different random perturba-
tions of input data: (a) ±2.5µm; (b) ±5.0µm.
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Figure 7. (a) Extensometric measurements and (b) consequent identification of elastic
parameters (normalized by the reference values) by TRA inverse analysis.

and affected by ±5.0µm random errors. Actually the considered noise and measurement number are
rather optimistic when compared to the current practice based on extensometers. A TRA inverse analysis
similar to the one leading to Figure 6 has been performed, but now on the basis of snapshots consisting
of the 16 extensometric measurements shown in Figure 7a. Lack of convergence turns out to occur with
extensometers in the comparative example illustrated by Figures 6b and 7b.

(B) The potentiality and accuracy of the whole procedure POD–RBF–TRA have been tested by numerical
exercises like those summarized here below.

With reference to phase (I) of the identification procedure, Table 1 specifies the uniform grid chosen
over the three-dimensional domain of the elastic parameters: the number of nodes amounts to M =
1089. Using this grid, the snapshots u (over the ROI) are computed by FE simulation as response
to jack pressurization at 5 MPa of the two slots, and the corresponding matrices 8 and B are generated
according to the POD–RBF procedure described in Section 3 (see page 187). Here the truncation adopted
is quantified by M = 3. On this basis, for any parameter vector p in the feasible domain, the corresponding
snapshot u can be obtained in a fast way by (11) once the vector g( p) is computed.
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Subsequently a set of M̂ = 100 off-grid parameter vectors p̂ j is randomly generated and the corre-
sponding snapshots û j (over the ROI) are computed through FE simulations analogous to the previous
ones. Such snapshots, after perturbation by random noise addition, are used as pseudoexperimental data
relevant to the transition from step (b) to step (c) of the test, Figure 2. For each p̂ j , the minimization
(12) is carried out, with û j (now noised) playing the role of us , vector uc( p) being expressible via (11)
on the basis of the chosen grid. Here the adopted noise value is ±5µm.
The j-th parameter vector p̂ j originally considered is now compared to its counterpart p∗∗j identified
through the minimization (12) and the accuracy of the estimation of each elastic parameter is assessed.
For the j-th identification, the error of the computed estimate ( p∗∗j )l takes the form

(error) jl =

∣∣∣∣∣( p̂ j )l − ( p∗∗j )l
( p̂ j )l

∣∣∣∣∣ , j = 1, . . . , 100, l = 1, . . . , 3. (22)

Figure 8a shows the results obtained for the three elastic moduli by means of the 100 inverse analyses
discussed above. In each histogram, the abscissa gives a range for the error of the estimate (in percent),
and the ordinate gives the percentage of cases in which the error lies in the corresponding interval. The
mean error, for the set of M̂ identifications, amounts to 1.02%, 0.99% and 1.87% for the moduli EH, EV

and GV, respectively.

We next discuss phase (II) of the diagnostic procedure, the estimation of the pre-existing stresses. The
preliminary POD–RBF procedure must concern not only the three stress components, but also the three
elastic moduli. The six-dimensional grid is specified in Table 1 and has M = 3375 nodes. To avoid too
high a value of M and consequent high computational burden for the preliminary POD–RBF, the steps
adopted for EH, EV and GV in phase (II) are much larger than those in phase (I), as shown in the table.
As for the truncation leading to the new basis 8, (7), the present choice is M = 4.

Similarly to what was described above for phase (I), M̂ = 100 off-grid parameter vectors are considered
and for each of them pseudoexperimental results are generated and utilized to perform an identification
by minimizing function ω of (12). It is worth noting that such minimization is to be performed not in the
six-dimensional parameter domain over which the grid is defined, but in its three-dimensional subdomain
of the stress parameters.
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Figure 8. Performance of POD–RBF–TRA procedure for parameter identification
based on pseudoexperimental DIC measurements affected by random noise of ±5µm.
In the abscissa, intervals of relative errors; in the ordinate, the percentage of errors found
to fall within each such interval. Estimates of elastic moduli (first three diagrams) and
stresses (remaining diagrams).
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Figure 8b provides a visualization of the accuracy checks now concerning the POD–RBF–TRA estima-
tion of the stresses σH σV τHV by means of N = 2086 measurements (over the ROI) of displacements, in
transition from step (a) to step (b) (see Figure 2), after having introduced as preliminary data the estimates
achieved for the elastic moduli by the preceding identification. The resulting mean error equals to: 0.65%,
0.96% and 1.51% for σH, σV and τHV, respectively.

The conclusion of the computations described (and other omitted for brevity) is rather encouraging:
the devised method centered on POD, RBF and TRA, confined to elastic behavior, turns out to provide
parameter estimations of both elastic moduli and pre-existing stresses which are expected to be fairly
satisfactory in practical applications.

4. Identification of elastic moduli and stresses by a POD–ANN procedure

4.1. The inverse analysis procedure. Soft-computing methods, particularly artificial neural networks
(ANN), are more and more frequently employed in engineering also to solve economically parameter
identification problems (see e.g., [Waszczyszyn 1999; Fedele et al. 2005]). To the present purposes a
conventional feed-forward neural network is adopted and optimized, in order to comparatively investigate
an alternative to the POD–RBF–TRA procedure presented in what precedes. To achieve computational
economies similar to those described in Section 3, POD is adopted again, and the compression of the
information contained in the set of preliminary test simulations turns out to be useful for the reduction
of the ANN input and for its useful “balance” with corresponding output.

The ANN is intended to provide the sought parameters p starting from the M-dimensional amplitude
vector ā which corresponds to the N -dimensional experimental data vector u (snapshot) in the truncated
basis 8 with M � M , if M is the number of snapshots preliminarily computed by a FE code, like in the
POD–RBF–TRA of Section 3. Since orthonormality is preserved in 8 after truncation, (7) gives rise to
the relationship

A=8T U . (23)

This equation can be specialized to the link between any snapshot uh (corresponding, through exper-
iment or its simulation, to a parameter vector ph) and its compacted amplitude āh , namely

āh ( ph)=8T uh ( ph) where h = 1, . . . ,M. (24)

The N ×M matrix 8 (where N is the number of experimental or pseudoexperimental data and M
the number of preserved eigenvalues of the matrix D = U T U) is computed once and for all by the same
POD procedure presented in Section 3. Equation (24) is essential for the generation of an ANN able to
routinely estimate, fast and possibly in situ, the parameters p on the basis of input ā representative of
measurements u through (24) again.

The kind of ANN adopted here is a traditional one and can be outlined as follows (details in [Bishop
1995; Hagan et al. 1996; Bishop 2006])

The chosen ANN category is usually called feed-forward multilayer perceptron. Its architecture con-
sists of a sequence of neurons layers (input, hidden, output). The transformation performed by each
neuron in each active layers (not in the input layer) on received signals consists of a linear combination
(by coefficients to be calibrated, called weights and biases, all gathered in a vector w) and a sigmoid
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transform. The vector w is computed by minimizing a function � that quantifies the discrepancy be-
tween expected parameters ph (targets) related to the amplitude āh through (24), and their counterparts
generated by the ANN to be trained and, hence, related to the vector w of the minimization variables.
Namely, the problem to solve for the ANN calibration is

min
w
�(w)=min

w

{ M∑
h=1

∥∥ ph (āh)− p′h (w, āh)
∥∥}. (25)

The preselected parameter nodes p in the grid over the domain chosen in the p-space, and the cor-
responding, preliminarily computed, snapshots u together with the associated amplitudes ā after POD,
provide, without additional computations, a set of M patterns (pairs of āh and corresponding targets ph).
These patterns are employed partly for ANN training as above (see (25)), and also partly for testing and
validating the ANN. These computational processes are carried out once-and-for-all in order to optimize
the architecture of the ANN for routine later use. ANN optimization is here intended, as usual, to avoid
overfitting and roughness in the parameter estimations.

The solution w∗ of problem (25) is achieved by the popular Levenberg–Marquardt algorithm, i.e.,
by first order mathematical programming in its back-propagation version, often employed for training
feed-forward ANNs; see [Haykin 1998; Waszczyszyn 1999; Bishop 2006], for example.

4.2. Validation by numerical examples. The chosen domain in the parameter space and grid are again
those specified in Table 1. Therefore the N ×M matrices U containing DIC pseudoexperimental data
preliminarily computed once-and-for-all by FE simulations (Figure 4) have dimensions N = 2086, M =
1089 and N = 2086, M = 3375 for the identification of elastic moduli and of stresses, respectively.

Also the two POD procedures are the same as in Section 3 but now they are intended to compress
the information contained in the snapshots in order to provide amplitudes in a new truncated basis 8 as
input for a suitably trained ANN. The set of snapshots is subdivided into three subsets for various roles
in ANN calibration: 70% for training; 15% for testing; 15% for validation. All pseudoexperimental data
in U are modified by random errors in the range ±5µm.

The number of amplitude components and the number of neurons in the ANN hidden layer (after a
priori choice of an ANN with a single hidden layer architecture) are here established by the following
optimization procedure: the mean error is assessed as a function of the neuron number in the hidden
layer H and in the input layer I. The latter neuron number coincides with the dimensionality M of the
amplitude vector generated by the truncated POD.

Figure 9 shows the influence of H with I = 3 and I = 6 on the ANN devoted to estimation of elastic
parameters. The mean errors in Figure 9 are the averages in percentage of the differences between the
expected exact parameters (called targets) and their values resulting from ANN training and testing. As
a conclusion, the process of generating and checking the computational tool POD-ANN for later routine
estimation of the three elastic parameters, leads to the choice of I = 3 neurons in input layer and H = 6
in hidden layer.

As for the identification of stresses σH, σV and τHV by means of the DIC measurements in phase (b)
of the flat-jack test (Figure 2), the input layer of the second ANN must include three additional neurons
to receive the estimates of elastic parameters based on DIC data from phase (c), besides the neurons that
receive the amplitude M-vector generated by the truncated POD, (23)+(24), of the snapshot u provided
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Figure 10. Performance of POD–ANN procedure for parameter identification based on
pseudoexperimental DIC measurements affected by random noise of ±5.0µm. In the
abscissa, intervals of relative errors; in the ordinate, the percentage of errors found to fall
within each such interval. Estimates of elastic moduli (first three diagrams) and stresses
(remaining diagrams).

by DIC. Now M = 3375, consistently with Table 1, and, hence, matrix U has dimensions N × M =
2086× 3375. The design of the ANN for stresses, through considerations similar to those outlined above
for elastic properties (again with random noise ±5µm) here omitted for brevity, leads to the following
ANN architecture: 7–14–3. The set of 100 samples employed for the final accuracy checks of the
POD–RBF–TRA inverse analysis procedure developed in Section 3, has been used for similar checks on
the alternative procedure POD–ANN described in the present section. Results concerning elastic moduli
and stresses are presented in Figure 10. A comparison of these results with those achieved in Section 3
and illustrated in Figure 8 leads to the conclusion that both procedures POD–RBF–TRA and POD–ANN
associated with flat-jack test with T-geometry and to DIC full-field measurements are adequate to the
identification of orthotropic elasticity parameters and pre-existing plane-stress state. Computer efforts
and estimation accuracy are comparable.

5. Estimation of inelastic parameters

Inelastic parameters, not estimated by flat-jack tests in the state-of-the-art diagnostic methodology, are
the objectives of the operative steps (d) and (e) and of the identification phase (III) in the present method
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(Section 2.2 and Figure 2). A simplification which is adopted herein for inelastic parameter identification
consists of the following two assumptions: (i) elastic isotropy, consistently with the isotropy attributed
to the inelastic model; (ii) a pre-existing plane stress state in which σH is the only nonvanishing stress
component. The elastic modulus E and the stress σH are supposed to have been identified in the previous
phases of the procedure.

The concrete inelastic parameters to identify are internal friction angle β, tensile strength ft and
fracture energy G f ; the dilatancy ψ = 40◦ is regarded as assumed a priori.

The experimental data supposed to be provided by a DIC photo, now over the smaller area (ROI)
shown in Figure 2d-e, consist of N = 210× 2= 420 displacement components on the dam surface. The
reduction of the ROI implies a higher resolution in measuring the displacements due to inelastic strains
and quasi-brittle fracture which occur when pressure is increased beyond the elastic threshold. Here it
is assumed that the flat-jack pressure is increased up to the value of 10 MPa and that a sequence of 6
photos is taken at pressure levels p = 5, . . . , 10 MPa (with increments of 1 MPa).

The inverse problem, (12), is now reformulated so that the displacements monitored at distinct load
levels be all involved in the definition of the residual R and, hence, of the discrepancy function to
minimize. To this purpose vector u becomes a vector consisting of 6 subvectors, each one representing
the displacements of the ROI grid-nodes at one of the considered pressure levels. Therefore, henceforth
in this section, the term snapshot will denote a vector u with 6N = 2520 components. It is worth
noting that the response of the system, now nonlinear under the applied pressure, is influenced by the
effects (mainly the self-stresses) generated during the slot cutting, i.e during the operative step (b) of the
experimental procedure (see Section 2.2). Such effects are accounted for in the FE simulations of the
whole experimental procedure.

The FE model is substantially the same as the one employed for the preceding simulations, Figure 4a
and Figure 4b; only a local mesh refinement is carried out over a volume in the vicinity of the free surface
where the ROI is located, in order to accurately compute displacements at the ROI grid-nodes.

The expert-preselected domain for the three parameters sought is defined as follows:

1≤ ft ≤ 6 MPa, 50≤ G f ≤ 300 Nm−1, 40◦ ≤ β ≤ 80◦. (26)

In view of the novelty of flat-jack diagnostic tests and of inverse analyses based on them beyond the
elastic range, the identifiability of the three parameters β, ft and G f has been investigated by various
numerical exercises, some of which are outlined in what follows.

(A) Using the trust region algorithm (TRA) outlined in Section 3 (but here without POD preliminar-
ies), parameter identifications are carried out using the following reference values of the constitutive
parameters and the stress σH:

elastic parameters and stress: EH = 15GPa ν = 0.2 σH =−3 MPa

inelastic parameters: ft = 3 MPa β = 68◦ G f = 180 N/m

The input consists of all 2520 pseudoexperimental DIC data generated by a simulation with the FE model
of Figure 4, with the material model of Section 2; first inverse analysis is performed and illustrated in
Figure 11a, starting from input data perturbed by a random noise governed by uniform probability density
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Figure 11. Convergence of TRA applied to inelastic parameter identification with input
perturbed by random noise of (a) ±0.25µm and (b) ±0.5µm.

function over the interval ±0.25µm. With the same initialization and similar input perturbation amplified
to ±0.5µm the TRA consequence is shown in Figure 11b.

This computational exercise (and others not considered here) shows stability of the estimation proce-
dure with respect to (expected) experimental inaccuracies.

(B) In order to endorse the identification of inelastic parameters with the advantages of POD exhibited
by the methodology presented in the preceding sections, the extended POD–ANN procedure (Section 4)
is presented here below by means of a numerical exercise.

Clearly, in the present context, the ANN to design must be fed not only with the amplitude ā (in the
truncated basis 8; see (6)) of the new experimental data vector u, but also with the results of the preceding
identifications of the elastic modulus E (isotropic case) and of the pre-existing stress σH. Therefore a five-
dimensional parameter space has to be considered; by choosing in such space the preselected domain and
grid specified in Table 2, the number of grid nodes and the of corresponding snapshots (to be computed
by FE test simulations once-and-for-all) reach now 5346.

Only M = 6 eigenvalues of the matrix D = U T U of order M = 5346 are preserved in the POD
compression (i.e., after POD truncation). Therefore, each snapshot vector u containing N = 2520 com-
ponents is replaced by its amplitude ā of 6 components only; the ANN input layer consists of 6+ 2= 8
neurons the additional two being grid values of E and σH.

The 5346 available patterns (node parameters p emerging from Table 2 and compressed amplitudes ā
of the corresponding snapshot u) have been employed to train (using 3742 randomly selected patterns),
test (using 802 patterns) and validate (using 802 patterns) an ANN of the kind specified in Section 4,

E/GPa σH/MPa ft/MPa G f /(N/m) β/ ◦

min 10 −6 1 50 40
step 5 2 1 25 5
max 20 −2 6 300 80

Table 2. Grid in parameter space for phase (III) of the identification procedure.
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by the same procedure outlined there. The optimal architecture turned out to consist of a single hidden
layer with 12 neurons; see Figure 12.

The following numerical exercise (among others omitted for brevity) carried out by the POD–ANN
procedure above, not only tests it but also provides motivation for further developments in terms of
experimental techniques.

Over the five-dimensional domain specified by Table 2, a set of 100 points is randomly chosen. The
corresponding snapshots are computed by the same FE and constitutive material models described in
Section 2. Inverse analyses are performed, with perturbation noise of ±0.25µm and ±0.50µm, by
POD–ANN calibrated in what precedes. The resulting estimates of inelastic parameters are compared to
their “exact values” employed as input for the direct analyses which led to the snapshots. The differences
are shown in Figure 13, in a fashion similar to that of Figures 8 and 10 for comparisons.

Clearly, the scatter of the estimation error for the fracture energy G f is rather large. Such undesirable
circumstance can be explained as follows: when preexisting horizontal compression σH or tensile strength
ft are rather large within the selected domain, with the assumed jack pressure the fracturing process is
very limited and, therefore, fracture energy has small influence on the DIC measurable displacements;
hence, larger becomes the sensitivity of its estimate to perturbations (including experimental errors and
round-off errors in the numerical identification procedure).
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Possible remedies, consistent with desirable progress in dam monitoring practice, are the following
provisions: (i) an assessment of the crack opening displacement near the slot tip is extracted from the
DIC measurements and employed to control the pressure growth in the flat-jack; the test is performed
when the assessed displacement exceeds a pre-established threshold; (ii) two additional vertical slots are
cut as shown in Figure 2f in order to practically eliminate the horizontal compressive stress.

Provision (i) would imply that the jack pressure is no longer selected a priori, once and for all, but
becomes variable and represents an additional input into the ANN. The geometry change (ii) obviously
makes the test somewhat more costly and more destructive. Both of these prospects could be worth of
further investigations.

6. Closing remarks

The procedure resulting from this study on diagnostic analysis of concrete dams based on flat-jack tests,
exhibits the following main advantages with respect to the present practice and also with respect to recent
results achieved on the same subject (see e.g., [Fedele and Maier 2007]): (a) less damaging slots, due to
the T-shaped geometry adopted here; (b) more experimental data which can be economically acquired
by digital image correlation (DIC) and which regularize the inverse problem to solve; (c) assessment of
inelastic properties of concrete, besides the elastic ones and the stress state considered so far; (d) compu-
tational efforts concentrated in a preparatory stage of multiple test simulations (say by a finite element
commercial code) and much alleviated in applications, which can now be performed routinely in situ,
either by soft computing, specifically by means of artificial neural networks (ANN), or by a popular
mathematical programming procedure (TRA).

Besides obvious improvements of FE modeling and of constitutive models, meaningful further devel-
opments (which are partly in progress and partly desirable in the near future) can be listed as follows:
(i) experimental validation in real-life engineering circumstances, particularly, as for the operative aspects
of DIC measurements, on a concrete dam surface, after selection of suitable instruments and supports;
(ii) improved jacks, with suitable textile instead of steel sheet in order to reduce friction and weld effects,
and with larger radius complying with possible large size of aggregate in dam concrete; (iii) extension of
the present approach and methodology to inhomogeneous periodic materials such as masonry, on which
traditional flat-jack tests are frequently adopted to structural diagnosis purposes; (iv) transition from the
present deterministic batch estimation methodology to the stochastic one (methodologically like, e.g., in
[Fedele and Maier 2007] for a first step in this direction), with elaboration of both experimental data and
their random errors in order to reach estimates accompanied by their covariance matrices.

An inverse analysis performable in situ with economy and brevity by exploiting preliminary computa-
tional results (and their POD approximation) achieved in a computing center, as proposed in this paper,
turns out to be promising for structural diagnosis and for mechanical characterization, in dam engineering
as well as in other technologies.
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A ZERO-STIFFNESS ELASTIC SHELL STRUCTURE

SIMON D. GUEST, ELIZBAR KEBADZE AND SERGIO PELLEGRINO

A remarkable shell structure is described that, due to a particular combination of geometry and initial
stress, has zero stiffness for any finite deformation along a twisting path; the shell is in a neutrally stable
state of equilibrium. Initially the shell is straight in a longitudinal direction, but has a constant, nonzero
curvature in the transverse direction. If residual stresses are induced in the shell by, for example, plastic
deformation, to leave a particular resultant bending moment, then an analytical inextensional model of
the shell shows it to have no change in energy along a path of twisted configurations. Real shells become
closer to the inextensional idealization as their thickness is decreased; experimental thin-shell models
have confirmed the neutrally stable configurations predicted by the inextensional theory. A simple model
is described that shows that the resultant bending moment that leads to zero stiffness gives the shell a
hidden symmetry, which explains this remarkable property.

1. Introduction

A novel zero-stiffness structure is described. The structure is a thin shell that is initially straight in a
longitudinal direction, but has a uniform, nonzero curvature in the transverse direction. The structure is
prestressed, and the interaction of the elastic properties with the prestress is such that the structure can
be deformed without any applied load; this is not a local phenomenon — the structure can continue to
be deformed in a finite closed path. Equivalently, the structure is neutrally stable: there is no change in
total internal strain energy as the structure is deformed, even though any particular component of strain
energy will vary. An experimental model of this structure, made from a sheet of copper beryllium of
thickness 0.1 mm and width 30 mm, is shown in Figure 1.

The ability to deform a structure without load is quite unexpected when initially observed, and is
clearly a function of the prestress that the shell carries. Certainly it is well known that the stiffness
of structures changes with applied load. Stable structures can become unstable when loaded: a simple
example is the buckling of a strut through the application of axial load. At the cusp between stability
and instability there may then be a point of neutral stability, where a structure has zero stiffness: to first
order, there is no change in load with displacement. However, while typically for buckling phenomena
this point of neutral stability/zero stiffness is isolated, it is also possible to engineer systems which, when
they buckle, are neutrally stable for large deformations [Tarnai 2003].

The stiffness of structures also changes through prestress, where the structure is loaded against itself.
A classical example of this behaviour is provided by tensegrity structures [Calladine 1978; Guest 2011],
which typically rely on prestress in order to be able to act as structures at all. However, even for tenseg-
rities with rigid compression members, increasing the relative level of prestress can reduce the stiffness

Keywords: zero-stiffness, morphing structure, reconfigurable structure.

203



204 SIMON D. GUEST, ELIZBAR KEBADZE AND SERGIO PELLEGRINO

Figure 1. A series of different configurations of the same zero-stiffness shell structure.
In each configuration, the shell is held in place by no more than the friction with the
underlying surface. The shell can be transformed between configurations in both direc-
tions, clockwise and anticlockwise. The analytical model in Section 2 predicts that the
shell will, in each case, be wrapped around an underlying cylinder (see Figure 3) of
constant radius, and it can be seen that this is the case here.

of some modes of deformation, and for extreme levels of prestress, can also lead to structures with zero
stiffness, even for large deformations [Schenk et al. 2007].

The present paper deals with thin shell structures that are straight longitudinally, but uniformly curved
in the transverse direction, as shown in Figure 2a. Shell structures of this type are used in steel tape
measures and also as lightweight deployable booms for spacecraft [Rimrott 1965]. The mechanics of

(a) (b) (c)

R 1/κx

−1/κx

Figure 2. (a) A shell that is straight longitudinally, but curved transversely, with two
coiling modes, (b) and (c). A configuration change from (a) to (b) involves same-sense
bending: the centres of curvature are on the same side of the shell. A configuration
change from (a) to (c) involves opposite-sense bending: the centres of curvature are on
opposite sides of the shell.
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such structures has been studied extensively [Mansfield 1973; Seffen and Pellegrino 1999], although
until recently most studies have focussed on structures that are both isotropic and initially unstressed.

Recently, it has become clear that interesting properties, and in particular bistability, can be engendered
if these curved thin shell structures are made to be anisotropic [Guest and Pellegrino 2006], or if the
structures are prestressed [Kebadze et al. 2004]. If the shells are given the correct set of anisotropic
bending properties, for example, through being manufactured in fibre-reinforced plastic, then the shell
can be made bistable so that the second stable state has the same sense of bending, as shown in Figures
2a and 2b. Alternatively, if an isotropic shell is correctly prestressed, then the shell can be made bistable
with the second stable state having the opposite sense of bending, as shown in Figures 2a and 2c. In
this case, in the initial configuration, the shell is prestressed in bending, so that it wishes to coil up, but
this is prevented by the structural depth of the curved shape. In [Pellegrino 2005] a shell is described
that exploits this mode while ensuring that the two states have the same stored strain energy, so that a
partially coiled shell can coil and uncoil without change of energy, and is neutrally stable. This is the
only previous example of a zero-stiffness shell of which we are aware.

The present paper explores the case of an isotropic shell which is prestressed in the opposite sense to
that studied in [Kebadze et al. 2004], so that the prestress favours same-sense bending. It will show that
bistability cannot be engendered, but remarkably, for a particular value of prestress, the structure can be
left without any torsional stiffness.

2. Analytical model

The basic analytical model that we use is essentially identical to that described in [Kebadze et al. 2004;
Guest and Pellegrino 2006]. We make two geometric assumptions: that the shell is inextensional, and
that the curvature of the shell is uniform across its midsurface. The inextensional assumption is valid for
thin shells, where the energy required to stretch the shell dwarfs the energy required to bend the shell.
A consequence of our assumptions is that we are neglecting boundary effects; for further discussion of
this, see [Galletly and Guest 2004]. The two geometric assumptions together imply that we can consider
the shell midsurface as lying on an underlying cylindrical surface, as shown in Figure 3. The (uniform)
curvature of the surface can then be described in terms of two parameters, the nonzero principal curvature
of the underlying cylinder, C , and the orientation of the local axes (x, y) with respect to the axis of the
cylinder, defined by an angle θ .

q = p/4

q = 0

q = p/2

1/C
x

y x
yxy

Figure 3. Definition of the geometry of the shell in terms of an underlying cylinder with
curvature C . The angle θ specifies the orientation of the shell with respect to the cylinder.
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The curvature of the shell can thus be described by the curvature vector κ :

κ =

 κx

κy

2κxy

= C
2

1− cos 2θ
1+ cos 2θ

2 sin 2θ

 . (1)

The curvature components are given by κx = −∂
2w/dx2, κy = −∂

2w/dy2, and κxy = −∂
2w/dx dy,

where w is the relative displacement out of the plane defined by x and y. The transformation to the x, y
curvilinear coordinates is obtained from, for example, a Mohr circle construction, as described in [Guest
and Pellegrino 2006]. Note that the definition κxy =−∂

2w/dx dy for the twisting curvature is standard
in the plates and shells literature, including [Kebadze et al. 2004], but is only half the value commonly
used in the composites literature, including [Guest and Pellegrino 2006].

We assume an initial configuration for the shell with θ0 = 0 and C0 = 1/R, so the change in curvature
to any other configuration is given by

1κ =
C
2

 1− cos 2θ

1+ cos 2θ − 2
C R

2 sin 2θ

 . (2)

We also assume that the shell is prestressed in the initial configuration. As the shell is straight in the
x-direction, it cannot sustain any moment/unit length along the edge normal to the y-axis, so in the
initial configuration m y = mxy = 0. However, because of the curvature in the y-direction, the depth of
the cross-section allows a uniform initial moment mx = m to be equilibrated by midplane forces in the
shell, as shown in Figure 4.

In a general configuration we define the moment/unit length carried by the shell as a vector m,

m =

 mx

m y

mxy

 , (3)

m

Figure 4. Initial prestress in the shell. The uniform moment/unit length mx = m is
equilibrated by a distribution of midplane forces in the shell. The moment m is uniform
throughout the shell, except for a narrow boundary layer at the free ends.
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with an initial value

m0 =

m
0
0

 . (4)

We assume linear-elastic material behaviour, and therefore in a general configuration, the moment will
be given by

m = D1κ +m0. (5)

The bending stiffness matrix D is given by

D = D

1 ν 0
ν 1 0
0 0 (1− ν)/2

 , (6)

where ν is the Poisson’s ratio of the material, and D is the shell bending stiffness, defined in terms of
the Young’s modulus E , thickness t , and the Poisson’s ratio as

D =
Et3

12(1− ν)2
. (7)

We define the strain energy U as the energy stored in the shell per unit area due to its deformation away
from the initial configuration, and so

U = 1
21κT D1κ +1κTm0. (8)

Finally, we write everything in a nondimensional form (with a hat, ˆ ) in terms of the bending stiffness,
D, and initial radius of curvature R:

Û = U R2

D
, D̂= D

D
, κ̂ = Rκ, m̂ = R

D
m, Ĉ = C R.

In [Kebadze et al. 2004] the behaviour of this system was explored when the initial moment m̂ =
m R/D is positive, which leads to bistable behaviour. The present paper notes the remarkable behaviour
associated with the value

m̂ =−(1− ν). (9)

Figure 5 shows the variation of Û with Ĉ and θ for three values of m̂: m̂ = 0, m̂ = −(1− ν), and
m̂ =−2(1− ν).

The key plot is Figure 5b. For m̂ =−(1−ν), there is no change in stored energy Û with θ . Thus, from
the initial configuration, a series of new twisted configurations with the same underlying curvature Ĉ = 1
are possible, and these are clearly shown in the experimental results shown in Figure 1. The structure is
in a state of neutral equilibrium, and has zero stiffness, even for large excursions along this deformation
path.

Figures 5a and 5c represent the behaviour of the shell for values of m̂ respectively greater or smaller
than the critical value of −(1− ν). Figure 5a shows the case where m̂ = 0, and is hence identical to the
isotropic plot in [Guest and Pellegrino 2006]. There are two equilibrium configurations, marked M and
N: M is the stable initial configuration, and N is an unstable coiled configuration, where θ = π/2. In
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2θ = 02θ = π

2θ = π/2

2θ = 3π/2

Ĉ = 1

Ĉ = 2

N M 2θ = 02θ = π

2θ = π/2

2θ = 3π/2

Ĉ = 1

Ĉ = 2

M

(a) m̂ = 0 (b) m̂ =−(1− ν)

2θ = 02θ = π

2θ = π/2

2θ = 3π/2

Ĉ = 1

Ĉ = 2

N M

(c) m̂ =−2(1− ν)

Figure 5. Polar plots of the nondimensional energy Û plotted as a function of Ĉ and
θ for three values of initial moment m̂. The initial configuration is labelled as M, and
Û = 0 at this point. Contours are plotted for Û = . . . ,−0.1, 0, 0.1, . . . , with Û = 0
plotted as a dashed line.

fact, for any value of m̂ in the range 0≥ m̂ >−(1− ν) similar behaviour is observed, with a stable initial
configuration, and an unstable coiled configuration.

Figure 5c shows the case where m̂ is twice the critical value of −(1 − ν). Again there are two
equilibrium configurations, marked M and N: M is the initial configuration, which is now unstable, and
N is a coiled configuration with θ = π/2, which is now stable. In fact, for any value of m̂ <−(1− ν)
similar behaviour is observed, with an unstable initial configuration, and a stable coiled configuration.
The energy Û is negative at N, but this is simply a consequence of arbitrarily setting Û = 0 at the original
configuration M.
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Note that in each of the plots, there appears to be a maximum in Û at Ĉ = 0, but this is simply an
artefact of the way the data is plotted: Û will continue to increase for Ĉ < 0, but this portion of the
data is not plotted in the present paper, as no interesting behaviour is observed in this regime (unlike in
[Kebadze et al. 2004], where additional stable states are found with Ĉ < 0 for m̂ positive).

3. Experimental results

Experimental verification of the zero stiffness behaviour was obtained through models made from a thin
sheet of copper beryllium (CuBe). The basic manufacturing protocol was as described in [Kebadze et al.
2004]. The shells were formed in a curved initial state from annealed CuBe with t = 0.1 mm and a width
of 30 mm, and were then age-hardened to give a stress-free curved shell.

The prestress moment was imposed by passing the unstressed shell through a set of rollers, which leads
to a residual moment m through the mechanism described in [Kebadze et al. 2004]. Although Section 2
gives a precise value of m for zero stiffness, it is actually difficult to predict the rolling parameters that
will give this value of m, as this depends on the precise strain-hardening characteristics of the CuBe
as it yields. Thus, in practice we proceeded by trial and error to fine-tune the rolling process to give
shells that had no torsional stiffness. The final result of this process is shown in Figure 1, where a series
of configurations of the same shell is shown, each with an underlying curvature C ≈ 1/12.5 mm. In
each configuration, the shell is only held in place by friction with the underlying surface. We have not
attempted any detailed experimental measurements on these models.

4. Conceptual disk model

This section describes a simple conceptual model that has two aims: firstly it will reveal a “hidden”
symmetry that provides an explanation for the particular value of prestress moment m that provides zero
stiffness; and secondly, it describes a zero-stiffness shell structure that doesn’t require an assumption that
the shell is so thin that it can be considered to be inextensional.

Consider a thin circular bimetallic flat disk — for example, one made of brass and steel, as in Figure 6a.
As the disk is heated from its initial flat stress-free state, the brass will want to expand more than the steel,

brass

steel

(a) (b) (c)

Figure 6. A conceptual model of the formation of a zero-stiffness shell from a bimetallic
disk. As the disk is heated from (a), it will initially form a domed structure, as in (b).
After further heating, the bending response will bifurcate and become nonisotropic; and
in the limit the structure will become cylindrical; see (c). The principal directions of
bending in (c) are arbitrary — any other choice of bending direction would lead to a
twisted form of the structure having the same stored internal energy.
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and if the disk is to remain flat, this will lead to a uniform residual moment in the shell. In practice, the
disk will dome slightly, as shown in Figure 6b, but to do this the surface changes its Gaussian curvature,
which requires in-plane stretching [Calladine 1988]. At some point (which depends on the thickness
of the shell) a bifurcation will take place, following which the curvature will no longer be uniform
in all directions: in some arbitrary principal direction the curvature will decrease, while the curvature
will increase in the perpendicular direction. As heating is further increased, the disk will approach a
cylindrical configuration, as shown in Figure 6c; this process is described in more detail in [Freund
2000; Seffen and McMahon 2007].

It is clear that the process of heating a bimetallic disk must lead to a zero-stiffness shell at any point
after the disk has bifurcated. The bifurcation takes place about an arbitrary axis, and whichever axis is
chosen the stored strain energy will be the same. Deforming the shell on the continuous path through
states with varying axes of bifurcation will not change the stored energy, and hence it can be concluded
that the path is neutrally stable. We shall see that in the extreme case of a thin shell with no in-plane
deformation, this will reproduce the mode described in Section 2; but the bifurcated bimetallic disk does
not require any assumption about being thin, or about boundary conditions, to have zero stiffness.

For the assumption of a thin inextensional shell, the bimetallic disk model can be used to calculate the
critical value of prestress moment found in Section 2. Consider a preliminary state of the disk where the
disk has been heated, but is held flat. In this state, there will be a uniform (negatively valued) moment
due to the temperature change, mt , but no curvature:

mi =

mt

mt

0

 , κi =

0
0
0

 . (10)

Consider now that the disk is released, and is allowed to increase its curvature in the y-direction until the
moment m y becomes zero, at which point it has reached the initial state (m0, κ0) considered in Section 2.
As the change from the preliminary to the initial state is elastic, we can write

m0 = D(κ0− κi )+mi , (11)

and hence m
0
0

= D

1 ν 0
ν 1 0
0 0 (1− ν)/2

  0
1/R

0

+
mt

mt

0

 . (12)

To satisfy this equation in the y-direction, we must have

mt =−
D
R
, (13)

and hence
m = Dν

R
−

D
R
. (14)

Thus, the residual prestress moment, written in nondimensional form,

m̂ = m R
D
=−(1− ν), (15)

is exactly the critical moment identified in Section 2.
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5. Conclusion

The disk model presented in Section 4 has shown that the zero-stiffness mode identified in Section 2
can be explained simply by consideration of a hidden symmetry of the shell structure: if the structure is
flattened, then the resultant moment in the shell doesn’t vary with direction, and bending about any axis
is equally preferable. There may be minor effects associated with boundary conditions, but these didn’t
have a noticeable effect on the experimental structures that we manufactured, and they will certainly not
be present for a circular shell structure.
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MODAL ANALYSIS OF LAMINATED BEAMS WITH FUZZY CORE
STIFFNESS/FUZZY INTERLAYER SLIP
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Dedicated to the memory of the late Marie-Louise and in the honor of Professor Charles R. Steele

It is mainly the matrix in composite structures that exhibits fuzzy randomness of the material parameters.
When extending the work on two-layer and symmetric, three-layer viscoelastic beam, plate, and shell
structures based on the definition of an equivalent effective homogeneous model, to include either fuzzy
pure elastic interface slip or fuzzy core stiffness, by means of modal analysis we succeed in working out
the effects on the dynamic properties of these fuzzy structures. Modal coupling by the light damping
forces is neglected. Fully analyzed within the scope of this paper is a simply supported sandwich beam
with fuzzy elastic core material parameters. The analysis of this illustrative example is based on the
interval representation (that is, on the set of α-cuts) with a triangular membership function of the core
shear stiffness prescribed. Membership functions of the undamped natural frequencies are defined using
fuzzy set theory, however, avoiding artificial uncertainties. Under time-harmonic excitation, the dynamic
magnification factors and, with light and deterministic modal structural damping taken into account, the
fuzzy phase angles of the steady modal response are evaluated. Where appropriate, envelope functions
are defined.

1. Introduction

The material of the matrix in composite lightweight structures has a large volume fraction and thus should
be of low density and low cost: as a consequence of the technological processes its material parameters
are less standardized when compared to high-strength fibers or reinforcing sheets. To predict the safe
limits of the structural response and to account for such a variety of the structural properties a fuzzy
randomness in the material parameters is prescribed. Thus generally, analyses require application of
the fuzzy finite element method; see, for example, [Hanss and Willner 2000; Möller and Beer 2004].
Alternatively, for the formulation using stochastic finite elements, see, for example, [Dasgupta 2008].
When extending the work on two-layer and symmetric viscoelastic three-layer beam, plate, and shell
structures based on the essential definition of an effective equivalently homogenized model, see [Adam
et al. 2000; Irschik et al. 2000; Hansen et al. 2005; Heuer 2007], to include either fuzzy pure elastic
interface slip (the physical interface exhibits a large variability in the material parameters differing from
those of the neighboring layers) or fuzzy core stiffness (the lightweight core material is of similar con-
sistency to a matrix material), we can avoid numerical analysis schemes and analytically work out the
effects on the dynamic properties of these fuzzy thin-walled structures. Within the scope of this paper,
a simply supported sandwich beam with fuzzy elastic core material parameters is fully analyzed by way
of example. It should be mentioned that the solution technique remains applicable to even polygonal

Keywords: layered beams, fuzziness, interlayer slip, modal analysis, isosceles uncertainty.
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composite plates since a decomposition into two “membranes” has been explored [Heuer et al. 1992;
Heuer 2007].

The analysis of the illustrative example, mentioned above, is based on the interval formulation by
referring to the set of α-cuts with a (triangular) membership function of the core shear stiffness prescribed.
Another interpretation of such an interval number in a closed set is a random variable whose probability
density function is unknown but nonzero only in the range of the interval. A recent interval dynamic
modal analysis of an uncertain cantilevered shear beam with prescribed lower and upper bounds of the
closed set of the shear modulus, [Modares et al. 2010], transformed the deterministic natural frequencies
to their inclusive set values. Similarly, membership functions of the more complex undamped natural
frequencies of the fuzzy layered beam are defined using fuzzy set theory [Zadeh 1965; Dubois and
Prade 1997; Viertl and Hareter 2006], however, avoiding artificial uncertainties. Under time-harmonic
excitation the problem is solved in closed form: the dynamic magnification factors and, with light modal
structural damping taken into account (thereby neglecting the effects of modal coupling by the light
damping forces), the fuzzy phase angles of the modal response are evaluated. Where possible, envelope
functions are defined. Such modal response studies of layered beams within the interval formulation
allow us to consider the worst case, by either putting the lower limit of the shear modulus of the core
material to zero or by taking into account fully delaminated layers. Thus, with the deterministic assigned
stiffness known, the lower branch of the membership function can be defined without the requirement
of additional data. However, precision engineering may require narrowing the limits of the set of α-cuts
of selected natural frequencies: the consequence on the allowable material variability (lower and upper
bounds) is addressed. Subsequently, some practically important effects caused by asymmetric uncertainty
of the material parameters with respect to the upper branch of the membership function are discussed.
Consequently, it can be concluded that the fuzzy set of the core material provides the most appropri-
ate model: starting with the worst-case scenario, all more restrictive bounds can be considered in an
inversely taken step of rather simple additional computation without prior knowledge of material data.
Since the action of imposed eigenstrains (for example, in the case of nonstationary thermal loads or
in the case of piezoelectric strains in smart layers) is considered in the homogenized equivalent fuzzy
beam, a fuzzy controller can be designed to annihilate the forced vibrations even under the condition
of no additional stress or, relaxed, of no additional stress resultants (see [Ziegler 2005] for “impotent
eigenstrains”); the definition is given by [Mura 1991]. To explore the variability of the (light) damping
effects related to a fuzzy retardation time of the linear viscous model is left for future investigations since
modal decomposition is crucial for the analytical results presented in this paper.

2. Linear viscoelastic layered beams

2.1. Three-layer beams. Sandwich structures are commonly defined as three-layer type constructions
consisting of two thin face layers of high-strength material attached to a moderately thick core layer
of low strength and density [Plantema 1966; Stamm and Witte 1974; Altenbach et al. 2004]. Dynamic
response analyses require higher-order theories. A review of the equivalent single layer and layerwise
laminate theories is provided by [Reddy 1993]; see also [Irschik 1993; Backström and Nilsson 2005].
The effects of interlayer slip have been discussed for elastic bonding in [Hoischen 1954; Goodman and
Popov 1968; Chonan 1982], and for more general interlayer slip laws in [Murakami 1984]. In [Heuer
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2004], complete analogies are presented between various models of viscoelastic sandwich structures,
with or without interlayer slip, with homogenized single-layer structures of effective parameters.

Figure 1 shows the free-body diagram of a three-layer beam. Introducing the parameter

d = h1+h2
2

(1)

and applying conservation of angular momentum to all three layers gives the relations

M1,x − Q1− T1
h2
2
− N1,x d = 0,

M2,x − Q2+ (T1+ T2)
h2
2
= 0,

M3,x − Q3− T2
h2
2
+ N3,x d = 0,

(2)

where T1 and T2 denote the interlaminar shear forces per unit length, and Qi is the transverse shear force
in the i-th layer. The bending moments Mi refer to the individual layer axes. Conservation of momentum
in the axial and transverse directions renders

N1,x + T1 = 0, N2,x − T1+ T2 = 0, N3,x − T2 = 0, (3)
3∑

i=1

Qi,x + p = µẅ, µ=

3∑
i=1

ρi Ai . (4)

Summation of (2) yields the global, classical conservation of momentum:

M,x − Q = 0, (5)

where

M =
3∑

i=1

Mi − (N1− N3)d, Q =
3∑

i=1

Qi . (6)
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Figure 1. Geometry and stress resultants of a laterally loaded symmetric three-layer beam.
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Considering the kinematic assumptions according to the first-order shear-deformation theory applied
to each layer, the displacement field in the i-th layer is of the form[

ui

wi

]
=

[
u(0)i + ziψi

w

]
, i = 1, 2, 3, (7)

where u(0)i and ψi are respectively the axial deformation and cross-sectional rotation of the i-th layer.
Applying the linearized strain-displacement relations together with a linear viscoelastic constitutive law,
and denoting by ϑ the retardation time of the single parameter viscous model,(

σxx(x, z; t)
τxz(x, z; t)

)
=

(
E(zi )[εxx(x, zi ; t)+ϑε̇xx(x, zi ; t)− ε∗xx(x, zi ; t)]

G(zi )[γxz(x, zi ; t)+ϑγ̇xz(x, zi ; t)]

)
, (8)

the stress resultants of each layer are determined fromNi

Mi

Qi

=
Di 0 0

0 Bi 0
0 0 Si


 u(0)i,x +ϑ u̇(0)i,x − e∗i

ψi,x +ϑψ̇i,x − κ
∗

i

ψi +w,x +ϑ(ψ̇i + ẇ,x)

 , i = 1, 2, 3, (9)

where

e∗i =
1
Ai

∫
Ai

ε∗xx dA, κ∗i =
1
Ji

∫
Ai

ε∗xx z dA, (10)

and

Di = Ei Ai = Ei bhi , Bi = Ei Ji = Ei
bh3

i

12
, Si = κ

2Gi Ai = κ
2Gi bhi ; (11)

ε∗xx , e∗i , and κ∗i are the imposed strain, the imposed mean strain, and the curvature (of thermal nature
or resulting from electromagnetic fields applied to smart layers), respectively. The dimensions b and hi

denote a constantly assumed width and the individual layer thickness, respectively; κ2 stands for a shear
factor.

For symmetrically three-layer beams with perfect bonds the following assumptions are made:

(1) The thin faces of high strength material are rigid in shear:

ψ1 = ψ3 =−w,x ,

u(0)1 = u(0)2 +
1
2 (h1w,x − h2ψ2),

u(0)3 = u(0)2 −
1
2 (h1w,x − h2ψ2).

(12)

(2) The individual bending stiffness of the faces are not neglected:

Bi = Ei
bh3

i

12
6= 0, i = 1, 3. (13)

(3) The bending stiffness of the core (its material is of low density and strength) is neglected:

B2 = 0 H⇒ M2 = B2(ψ2,x +ϑψ̇2,x − κ
∗

2 )= 0. (14)
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Alternatively, for sandwich beams with viscoelastic interlayer slip [Adam et al. 2000], the classical
assumption of all three layers being rigid in shear is made, with the shear traction in the physical interfaces
of vanishing thickness being proportional to the displacement jumps with a viscoelastic interface stiffness
understood. Hence, contrary to perfectly bonded laminates, elastic interlayer slips, 1u1 between upper
face and core and 1u2 between lower face and core, are considered. The displacement field in the i-th
layer is of the form [

ui

wi

]
=

[
u(0)i − ziw,x

w

]
, i = 1, 2, 3, (15)

where the axial deformations u(0)i can be written as

u(0)1 = u(0)2 + (dw,x −1u1), u(0)3 = u(0)2 − (dw,x −1u2). (16)

The relative horizontal displacement between two layers causes linear viscoelastic shear tractions at
the interfaces,

Ti = k(1ui +ϑ1u̇i ), (17)

where the parameter k denotes the slip modulus and

1u1 = dw,x + u(0)2 − u(0)1 , 1u2 = dw,x − u(0)2 + u(0)3 . (18)

Differentiating (17) with respect to the axial coordinate x by taking into account (18) and substituting
(3) and (9) renders

N1,xx − N3,xx −
k

D1
(N1− N3)+ 2kd(w,xx +ϑẇ,xx)− k(e∗1 − e∗3)= 0. (19)

Furthermore, by means of (6)1 and (9), the difference of the axial forces can be expressed by

N1− N3 =−
1
d
[B0(w,xx +ϑẇ,xx + κ

∗(0))+M], B0 =

3∑
i=1

Bi , κ∗(0) =
1
B0

3∑
i=1

Biκ
∗

i . (20)

Inserting (20) into (19) and using (4) and (5) to eliminate the bending moment M , the equation of
motion takes on the desired form, namely of an exact homogenization of the viscoelastic composite
beam,

(w,xxxxxx +ϑẇ,xxxxxx)− λ
2(w,xxxx +ϑẇ,xxxx)+

µ

B0
ẅ,xx − λ

2 µ

B∞
ẅ

=−
λ2

B∞
p+ 1

B0
p,xx + λ

2κ∗,xx − κ
∗(0)
,xxxx . (21)

In (21), p denotes the lateral load per unit of length. In smart layers, we may impose eigenstrains ε∗x ,
for example, piezoelectric strain, for control purpose. Consequently, the eigencurvature terms have been
considered in (21) for the sake of completeness in the case of nonstationary thermal loads and further
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investigations of vibration control and smart piezoelectric layers,

κ∗(0) =
1
B0

3∑
i=1

12Bi

h3
i

∫
hi

ε∗x zi dz,

κ∗ =
1

B∞

[
2D1d

(
1
h3

∫
h3

ε∗x dz− 1
h1

∫
h1

ε∗x dz
)
+

3∑
i=1

12Bi

h3
i

∫
hi

ε∗x zi dz
]
.

(22)

In addition, with the self-explanatory effective parameters — see Figure 1 and Equation (1) for the
notation — we have

µ= 2ρ1h1+ ρ2h2, D1 = D3 = E1bh1, B1 = B3 = E1
bh3

1

12
,

B0 = B1+ B3, B∞ = B0+ 2D1d2, B0/B∞ = [1+ 3(1+ h2/h1)
2
]
−1
≤

1
4 .

(23)

The shear coefficient in (21) is either proportional to the core’s shear modulus G2 in the case of
perfectly bonded interfaces, i.e., (see [Heuer 2004])

λ2
= (κ2G2)

2b
h2

B∞
D1 B0

, (24)

or, for the symmetric three-layer beam with elastic interlayer slip, it becomes proportional to the elastic
stiffness k when common to both physical interfaces:

λ2
= k

B∞
D1 B0

. (25)

Thus, (24) and (25) when substituted in (21) render qualitatively one and the same result with, for
example, hard-hinged supports of a single-span beam understood.

For completeness we note also the gross bending moment and the shear force related to the deflection
w and its derivatives:

M =−B∞(w,xx +ϑẇ,xx + κ
∗)+

B∞
λ2

(
w,xxxx +ϑẇ,xxxx +

µ

B0
ẅ+ κ∗(0),xx

)
, Q = M,x . (26)

Since (26) contains high-order spatial derivatives, numerical calculations require further considera-
tions: the deflection should be partitioned into its quasistatic part and the (modally expanded and trun-
cated) complementary dynamic response. The quasistatic solution is either evaluated in exact closed form
or determined by means of the method of influence functions. For details of the partitioning procedure
see again [Adam et al. 2000].

2.2. Two-layer beams with interlayer slip. In the following section the governing homogenized equation
(21) given above for symmetric three-layer sandwich beams is modified for asymmetric two-layer elastic
beams exhibiting the important defect of viscoelastic interlayer slip. Such a model refers to the practically
very important case of a single-span compound bridge consisting, for example, of a steel girder connected
(elastically) to the concrete deck; for details see, for example, [Girhammar and Pan 1993]. Figure 2 shows
the free body diagram of such a two-layer beam with marked centroids, S1 and S2, of the individual
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Figure 2. Geometry and stress resultants of a laterally loaded two-layer beam with linear
(visco)elastic interlayer slip.

cross-sections, and, as well, global elastic center, S∞, of the gross composite cross-section. The partial
cross-sectional areas are denoted by A1 and A2; thus, the lateral coordinate of S∞ is determined by

z∞ =
D2

D0
d, D0 = D1+ D2, Di = Ei Ai , i = 1, 2. (27)

Neglecting the effect of rotational inertia, the conservation of the angular momentum about the lateral
y-axis yields the classical relationship

M,x = Q, M = M1+M2− N1d, (28)

where M is the gross bending moment (see again Figure 2). In the case of no external axial forces the
equilibrium condition becomes simply

N1+ N2 = 0. (29)

Conservation of momentum in the axial direction, when applied in the free body diagram to both indi-
vidual layers, gives

N1,x =−T1, N2,x = T2, (30)

and the continuity condition of the interfacial shear force T renders

T = T1 = T2. (31)

T is the shear force per unit of length continuously transmitted through the interface between the two
layers.

Due to the interlayer slip to be considered between the layers (see again Figure 2), the Bernoulli–Euler
hypothesis is not applicable for the cross-section as a whole. However, the assumption that plane sections
remain plane after deformation is still valid for either layer, respectively. Considering geometrically
linearized conditions for both, the lateral and the axial deformations yield

w = w1 = w2, 1u = u(0)2 − u(0)1 + dw,x . (32)
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The relative horizontal displacement between the two layers causes shear tractions at the interface,
where again a linear viscoelastic relation is assigned, see Equation (17),

T = k(1u+ϑ1u̇), (33)

where k is the elastic slip modulus [Hoischen 1954; Girhammar and Pan 1993]. Differentiating (33) with
respect to the axial coordinate x and substituting (29), (30), and (32)2 lead to

N1,xx − k N1

( 1
D1
+

1
D2

)
+ kd(w,xx +ϑẇ,xx)− k(e∗1 − e∗3)= 0. (34)

The axial force is expressed by means of (28)2 with cross-sectional resultants of the constitutive
relations inserted,

N1 =−
1
d
[B0(w,xx +ϑẇ,xx + κ

∗(0))+M], B0 =

2∑
i=1

Bi , κ∗(0) =
1
B0

2∑
i=1

Biκ
∗

i . (35)

Finally, the exactly homogenized equation of motion results qualitatively in the form of (21); however
the definitions (22) and (23) must be properly adapted to account for the beam with two layers — see
(38) below — and essentially, this new parameter is to be substituted in (21):

λ2
→ λ2

2 = k
( 1

D1
+

1
D2
+

d2

B0

)
. (36)

3. The linear elastic layered beam with fuzzy stiffness

To explore the effects of fuzzy elastic material parameters and to make a modal analysis possible, the
viscous effects in the homogenized equation (21) are neglected. Fuzziness of the light damping forces
can be based on (21) but needs a separate investigation and thus is left for future consideration. Since no
attempts are made within this paper to control the vibrations and no thermally driven vibrations are ana-
lyzed, the terms in (21) referring to imposed strains are no longer taken into account. Consequently, (21)
takes on the simpler form, see also [Heuer et al. 2003], however, generalized by its explicit dependence
on a fuzzy parameter,

w,xxxxxx − λ
2w,xxxx +

µ

B0
ẅ,xx − λ

2 µ

B∞
ẅ =−

λ2

B∞
p+ 1

B0
p,xx . (37)

Thus, the shear coefficient in (37) is considered proportional to the fuzzy core shear modulus G2

either in the case of perfectly bonded interfaces of a symmetric three-layered beam, when (24) applies,
or in the practically even more important case of a two-layer beam with fuzzy elastic interface slip, with
(36) substituted. In addition, the latter case requires a change in the expression of the limiting flexural
stiffness given in (23); it becomes

B∞ = B0+
D1 D2

D1+ D2
d2. (38)

Fuzziness in (37) is thus simply introduced by inserting, for example, a triangular membership function
either for the core’s shear modulus in (24) or for the physical interface stiffness in (36). Consequently
the analysis of the illustrative example of a simply supported beam, as mentioned above, is based on
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the interval representation, that is, the set of α-cuts. In both cases, the analysis can be based on the
structurally relevant worst-case assumption of the lower bound, that is, of a maximum width of the fuzzy
set by the cut at α = 0, to include either the classical sandwich beam of vanishing core stiffness or no
bond at the interface between two layers (fully delaminated), thereby avoiding the use of unreliable data
on the variability of the material parameters.

Subsequently, we consider the fuzzy core stiffness of the three-layer beam in some detail.

3.1. Modal analysis of the elastic three-layer beam, hard-hinged support. For the single-span beam
with hard hinged support, the homogeneous equation (37) yields the simple orthonormalized mode shapes
of free vibrations:

φn(x)= An sinβ1nx, β1n = nπ/ l, An =

[
µl
2

(
λ2

B∞
+
β2

1n
B0

)]− 1
2

, (39)

with λ2 in that case substituted from (24).
The corresponding (undamped) circular natural frequencies are(ωn(α)

ωn∞

)2
=
(B0/B∞)+ γ2,nk2(α)

1+ γ2,nk2(α)
, (40)

when referred to
ω2

n∞ = β
4
1n B∞/µ (41)

with the fuzzy nondimensional elastic material constant of the core (typically made of a low-density,
low-cost matrix material) substituted:

k2(α)= [κ
2
2 G2(α)]/(κ

2
2 G2)0. (42)

The assigned constants are referred to the mean shear rigidity of the core (see again Figure 1):

(κ2
2 G2)0 = [κ

2
2 G2(α = 1)], γ2,n = (κ

2
2 G2)0

2b
β2

1n D1h2
. (43)

In this relation, the shear coefficient κ2 must not be numerically specified. The monotonic behavior of
the eigenfrequencies of positive-definite mechanical systems was proven by [Mullen and Modares 2009];
see (40).

The normalizing factor in (39) becomes fuzzy too. The largest level set at α = 0 may include the worst
case of a core with vanishing stiffness (or a delaminated composite). Due to the lack of reliable core
material data, such a choice is recommended for the analysis. Putting constraints on the fuzziness of the
dynamic parameters inversely results in a more narrow specification of the allowable largest parameter
interval of the core material (see Section 4.2 for details):

1k2,0 =1(κ
2
2 G2)0/(κ

2
2 G2)0 ≤ 1. (44)

The linear functions plotted in Figure 3, both intersecting at α= 1, arise when, for the sake of simplicity,
an isosceles triangular membership function is assumed:

min k2(α)= 1−1k2,0(1−α), max k2(α)= 1+1k2,0(1−α). (45)
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Figure 3. Three-layer beam: uncertainty of the core shear stiffness, under the assump-
tion of an isosceles membership function.

These two equations are substituted into (40), when considering the fuzzy set in Figure 3, giving
respectively the lower and upper branches of the membership functions of the natural frequencies.

Since light modal damping is commonly considered in the steady-state response of the modal oscil-
lators to time-harmonic forcing (thus neglecting any modal coupling resulting from the viscous defor-
mations) the dynamic magnification factor and the phase angle for every assigned forcing frequency
(ω/ωn∞) become uncertain functions with the parameter α. For the sake of simplicity, constant light
modal damping coefficients are assumed, ξ = ξn � 1, n = 1, 2, 3, . . . . The dynamic magnification factor
can be delineated in the proper form (see, for example, [Ziegler 1998]),

χn =

{
1− 2(1− 2ξ 2)

(
ω

ωn(α)

)2

+

(
ω

ωn(α)

)4}−1/2

. (46)

However, clearly any set of light modal damping coefficients ζ1 ≤ ζ2 ≤ · · · ≤ ζn ≤ ζn + 1 can be
accounted for in (46) when estimated according to a design class of the beam.

The phase angle is given for every assigned nondimensional forcing frequency (ω/ωn∞) as a function
of α, as follows (see [Ziegler 1998]):

tanφn = 2ξ
ω

ωn∞

[
ωn(α)/ωn∞−

( ω

ωn∞

)2 ωn∞

ωn(α)

]−1

. (47)

When (40) is substituted in (46) and (47), these equations become explicitly dependent on the fuzzy
variable, (42); in particular, we get

tanφn = 2ξ ω

ωn∞

[√
(B0/B∞)+ γ2,nk2(α)

1+ γ2,nk2(α)
−

(
ω

ωn∞

)2
√

1+ γ2,nk2(α)

(B0/B∞)+ γ2,nk2(α)

]−1

. (48)

Again, considering the fuzzy set in Figure 3, (45) is respectively substituted in (40), (46), and (47), to
yield explicitly the envelope functions of the fuzzy dynamic magnification factor and of the fuzzy phase
angle as well.

4. Numerical results: fuzzy sandwich beam
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Figure 4. Three-layer beam. Left: uncertainty of the fundamental frequency ratio for
various widths of fuzzy core stiffness. Right: uncertainty of the natural frequencies
relative to the natural frequencies of the same order for α = 1, for largest width of fuzzy
core stiffness.

4.1. Isosceles uncertainty. (See Figure 3.) Two basic parameters are assigned for the elastic three-layer
beam of Section 3, with constant light modal damping ξn = ξ = 0.05 understood throughout:

B0/B∞ = 0.1< 1
4 , γ2,n=1 = 0.25. (49)

In the course of numerical analyses, it was found to be most illustrative to refer the frequencies to the
deterministic natural circular frequencies at α = 1. With �n = ωn(1), Equation (40) reads( �n

ωn∞

)2
=
(B0/B∞)+ γ2,n

1+ γ2,n
. (50)

This equation is evaluated first to explore the influence of the width of uncertainty on the fundamental
frequency; see Figure 4, left. Considering the largest structurally possible uncertainty in the isosceles
membership function of Figure 3, the intervals of uncertainty of the natural frequencies of higher order,
n ≤ 10, are depicted in Figure 4, right, relative to their values at α = 1, (50). These membership functions
become more informative when referred to the assigned fundamental frequency �1: see Figure 5.

The envelope function of the dynamic magnification factor of the basic mode, that is, putting n = 1
in (46), is plotted in Figure 6 varying the width of uncertainty according to Figure 3 in the α = 0.2 cut;
the forcing frequency is referred to �1. Considering maximum uncertainty (the worst-case scenario) but
taking into account the whole range of parameter α gives the envelope surfaces in Figure 7. The α = 0.2
cut yields the envelope functions of the first three modes as plotted in Figure 8.

Complementary to Figure 6, the variations of the range of uncertainty of the phase angle of the basic
mode with the width of uncertainty according to Figure 3 in the α = 0.2 cut are shown in Figure 9; the
forcing frequency is again referred to the assigned fundamental frequency �1. To complement Figure 8,
the ranges of uncertainty of the first three phase angles are plotted in Figure 10.

4.2. Constraints affecting the uncertain natural frequencies. Constraints on the design uncertainty,
say on the uncertainty of the core shear stiffness of the three-layered beam, are often based on limiting
the maximum allowable variability of the natural frequencies in a given frequency window, see [Massa
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et al. 2008]. By inspection of Figure 5 it is easily recognized that such constraints can be expressed in
assigning fractions of the frequency intervals (where the maximum structural width of uncertainty has
been considered) that are maximum at α = 0. Thus, a 50% reduction of that maximum result interval is
chosen and, we refer to the assigned fundamental frequency �1,

ωn,max(α)−ωn,min(α)

�1
≤ [ωn,max(α = 0)−ωn,min(α = 0)]/2�1, n = 1, 2, . . . , 5. (51)

The frequency window includes and is limited by the mode number 5 for some practical reasons.
Hence, the resulting α-cut is determined by solving the equation

ω5,max(α)−ω5,min(α)

�1
= [ω5,max(α = 0)−ω5,min(α = 0)]/2�1. (52)

with (45) substituted.
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Figure 5. Three-layer beam: uncertainty of the first five natural frequencies relative to
the fundamental frequency for α = 1; increasing fuzziness observed.
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Figure 6. Three-layer beam: uncertainty of the first dynamic magnification factor for
the single α = 0.2 cut, varying the maximum interval of the fuzzy core stiffness.
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Figure 7. Three-layer beam: uncertainty surfaces of the dynamic magnification factor
of the fundamental mode, light modal damping assigned.
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Figure 8. Three-layer beam: envelopes of the first three dynamic magnification factors
for the single α = 0.2 cut; increasing fuzziness observed.

Alternatively, it might fit the needs of precision design to limit the uncertainty relatively to the sure
natural frequency of the same order of the mode (see Figure 6). We thus refer to �n:

ωn,max(α)−ωn,min(α)

�n
≤ [ωn,max(α = 0)−ωn,min(α = 0)]/2�n, n = 1, 2, 3, . . . . (53)

In that case of relative uncertainty, the fundamental frequency interval gives the maximum tolerable
uncertainty in the core shear stiffness if we solve for α the equation

ω1,max(α)−ω1,min(α)

�1
= [ω1,max(α = 0)−ω1,min(α = 0)]/2�1. (54)
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Figure 9. Three-layer beam: uncertainty of the first phase angle for the single α = 0.2
cut, maximum interval of the fuzzy core stiffness varied; complement of Figure 6.
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Figure 10. Three-layer beam: the envelopes of three phase angles for the single α = 0.2
cut: complementing Figure 8; increasing fuzziness observed.

Since the largest width of uncertainty of the core shear stiffness is considered in Figures 5 and 6, the
constraints allow the definition of the allowable α-cuts by solving either (52), to render α(n = 5) .= 0.50,
or alternatively, (54), to yield the less stringent condition at α(n = 1) .= 0.44. The maximum bases of
the allowable isosceles membership functions of the uncertainty of the core shear stiffness in the more
precise designs are plotted in Figure 11.

4.3. Some effects of nonsymmetric uncertainty. We consider the extreme (worst) case of 1k2,0 = 1,
that is, (45) when generalized reduces to min k2(α) = α, max k2(α) = 1 + 3(1 − α), where 3 > 1
renders the maximum core stiffness enlarged in Figure 3. The extremes of upper and lower bounds of
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the neighboring natural frequencies thus are obtained for the α = 0 cut, (42) is properly adapted,

max
(
ωn

ωn,∞

)2

α=0
=
(B0/B∞)+ γ2,1(1+3)/n2

1+ γ2,1(1+3)/n2 , ω2
n,∞ = n4β4

1,1(B∞/µ),

min
(
ωn+1

ωn+1,∞

)2

α=0
= (B0/B∞)≤ 1/4, ω2

n+1,∞ = (n+ 1)4β4
1,1(B∞/µ).

(55)

A first effect of asymmetric uncertainty in an ensemble of fuzzy beams is observed by putting maxω2
n =

minω2
n+1 rendering the coefficient of asymmetry,

3=3(n)=
(B0/B∞)
γ2,1

n2
[(n+1

n

)4
− 1

][
1− (B0/B∞)

( n+1
n

)4] − 1> 0. (56)

The parameters assumed in Section 4.1, (B0/B∞)= 0.1 and γ2,1 = 0.25, exclude a solution of (56) for
n = 1 and yield the coefficients of asymmetry: 3(n = 2)= 12.16, 3(n = 3)= 10.37, 3(n = 4)= 11.20,
3(n = 5)= 12.54, 3(n = 6)= 14.07, 3(n = 7)= 15.68, . . .. Equation (56), when virtually considered
for continuous order n exhibits a singularity at n = 1.28. It is moved to n = 1 for the smaller ratio of the
flexural stiffness B0/B∞ = 1/16 ≈ 0.063. Since max B0/B∞ = 0.25, reported in (23), the singularity
at n = 2 is still possible for the flexural stiffness ratio B0/B∞ = 0.198, but no effect on higher modes
is observed for n ≥ 3. Consequently, for these two ratios of the flexural stiffness, a violation of the
assumption of a triangular membership function of uncertainty is observed and consequently the solution
for the coefficient of asymmetry becomes invalid.

5. Conclusions

For symmetric three-layer slender beam, thin plate and thin shell structures, and for a two-layer com-
posite an exact homogenization exists, which is worked out in detail for the hard hinged supported

1

1

0.50

0.44

α

k2 (α )

Δk
2 ,0
(n = 5)

Δk
2 ,0
(n = 1)

Figure 11. Three-layer beam: reduction of the intervals of uncertainty under the condi-
tions of 50% constraints of either uncertainty of the first five natural frequency intervals,
n = 5, or of the relative natural frequency intervals, n = 1.
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beam. Consequently, interval mathematics becomes applicable to the solution of the sixth-order result-
ing homogenized equation with a fuzzy parameter either of a fuzzy core shear stiffness and/or fuzzy
stiffness of the physical interface between layers to define the intervals of the dynamic response. A
detailed study of a three-layer simply hard supported beam with fuzzy core of an isosceles membership
function is performed, giving lower and upper bounds of the natural frequencies and providing deep
insights into level-sets of the dynamic magnification factors and of the phase angles in forced time
harmonic vibrations. Fuzziness of dynamic parameters like natural frequencies, dynamic magnification
factors, and modal phase angles increases with frequency as expressed by the modal order. This efficient
analysis can be performed without reliable knowledge of the uncertainty of the material parameters
by considering structurally inherent worst-case scenarios. It yields exact and robust results, preserves
the problem’s physics, and obtaining bounds does not require expensive stochastic procedures such as
Monte Carlo simulations. Putting constraints on the variability, say of the natural frequencies, leads to
the maximum tolerable uncertainty in the core shear stiffness and/or that of the stiffness of the physical
interface. Effects within an ensemble of such beams, for example, overlapping of the intervals of their
natural frequencies, however, under the assumption of a nonsymmetric triangular membership function
of the core stiffness uncertainty, are shown to be limited to the first and second modes. Either fuzzy
modal superposition or fuzzy control of vibrations can be based on the results of this paper. However,
since the normalizing factor of the orthogonal mode shapes turns out to be fuzzy too, the complexity of
modal superposition is increased. Thus, modal superposition of forced vibrations becomes fuzzy in both
time records and amplitude response. Superposition of the modal maxima by considering the square root
of sum of squares yields the (approximate) total displacement response even in this more complex case.
The analysis of a fuzzy retardation time of viscoelastic layers (such a fuzzy parameter is included in the
homogenized equation) leads to coupled modal equations even in a Ritz–Galerkin approximation and is
out of the scope of this paper. It is left to future investigations.
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PATH-INDEPENDENT H-INTEGRAL FOR INTERFACE CORNERS UNDER
THERMAL LOADINGS

CHYANBIN HWU, TAI-LIANG KUO AND CHUN-CHIH HUANG

It is well known that the path-independent H-integral is an appropriate tool for calculating the mixed
mode stress intensity factors for the interface corners between dissimilar elastic materials. To extend the
applicability of the H-integral from the mechanical loading condition to the thermal loading condition,
a modified H-integral is proposed in this paper. This modified H-integral possesses an extra domain
integral which needs the input of temperature field. Moreover, this domain integral contains singular
functions that come from the strain components of the auxiliary system, and a special treatment should
be made for the accurate computation of stress intensity factors. The near-tip solutions and auxiliary
solutions of displacements, stresses, and temperature required in the calculation of H-integral are all pro-
vided in this paper. The validity and versatility of the proposed approach are then shown by carrying out
several numerical examples such as cracks under mixed-mode thermal loadings, interface cracks/corners
under uniform heat flow or uniform temperature change, and an electronic package, in which the chip
has a heat generation rate, placed at a constant temperature ambiance.

1. Introduction

Many engineering objects, for example electronic packages, engines of power vehicles, solar panels,
and so on, are operated in thermal environments. Temperature changes, heat flux on the object sur-
face, and heat generation in the interior can deform the object and induce stress when restrictions on
deformation are imposed, such as a clamped boundary condition or a perfect-bonded condition along an
interface between dissimilar materials. Interface corners commonly appear in these engineering objects
and failures initiate from these critical regions due to discontinuities of geometry and material properties.
Hence, methods of fracture analysis for estimating the potential of failure and the mode of fracture
of interface corners in elastic materials subjected to thermal loading are of great importance. Orders
of stress singularity and stress intensity factors are two commonly used parameters when we perform
fracture analyses within the category of linear elastic fracture mechanics.

This paper provides an accurate, efficient, and systematic solution technique to calculate these two
parameters for interface corners between dissimilar elastic materials subjected to thermal loading.

Studies of fracture analysis of interface cracks subjected to thermal loadings include [Erdogan 1965;
Brown and Erdogan 1968; Hwu 1990; 1992; Ikeda and Sun 2001; Banks-Sills and Dolev 2004; Nagai
et al. 2007]. Relatively few studies have dealt with interface corners; they include [Munz and Yang
1992; 1993; Banks-Sills and Ishbir 2004; Hwu and Lee 2004; Nomura et al. 2009]. To understand the

The authors thank the National Science Council, Taiwan, for support through Grant NSC 98-2221-E-006-121-MY3.
Keywords: interface corner, order of stress singularity, order of heat flux singularity, stress intensity factor, Stroh formalism,

thermoelasticity.
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mechanical behavior of anisotropic elastic materials under thermal environments, Stroh formalism [Stroh
1958; Ting 1996; Hwu 2010] for two-dimensional linear anisotropic thermoelasticity has been employed
in many works [Clements 1973; Hwu 1990]. By this formalism, analytical closed-form solutions for the
orders of heat flux/stress singularity and near-tip solutions of multimaterial anisotropic wedges under
thermal loadings have been obtained in [Hwu and Lee 2004]. To understand the fracture behavior of
interface corners, a unified definition of stress intensity factors for connecting cracks, corners, interface
cracks, and interface corners was proposed in [Hwu and Kuo 2007]. In that work, in order to avoid the
oscillatory singular problems of interface corners a path-independent H-integral [Bueckner 1973; Stern
1976] was suggested to calculate the stress intensity factors. Based on these works, in this paper the
H-integral is further modified to be suitable for the thermal loading condition.

The modified H-integral contains an additional domain integral that is not included in the H-integral
for pure mechanical loading. The integrand in this domain integral contains singular functions that come
from the strain components in the auxiliary system. Considerable numerical error will be induced if we
perform this domain integral via normal numerical methods, for example, Simpson’s rule and Gaussian
quadrature. To deal with this problem, the domain integral is separated into two parts. One is the
near-tip part, to be integrated analytically, and the other is the adjacent part, to be calculated numerically.
A similar approach has been proposed by [Banks-Sills and Ishbir 2004; Nomura et al. 2009].

Several numerical examples are analyzed for the purpose of verification: a center crack under mixed-
mode thermal loading, a center interface crack under uniform heat flow, edge interface cracks under
uniform temperature change, and interface corners under uniform temperature change. In addition, an
example about electronic packages is analyzed to show the feasibility and practicability of the modified
H-integral.

2. Thermoelastic analysis of interface corners

In a fixed rectangular coordinate system xi , i = 1, 2, 3, let ui , σi j , εi j , T , and hi be, respectively,
the displacement, stress, strain, temperature, and heat flux. The heat conduction, energy equation,
strain-displacement relation, constitutive law, and equilibrium equations for the uncoupled steady state
thermoelastic problems can be written as [Nowacki 1962]

hi =−ki j T, j , hi,i = 0, εi j =
1
2 (ui, j +u j,i ), σi j =Ci jksεks−βi j T, σi j, j = 0, i, j, k, s = 1, 2, 3, (1)

where repeated indices imply summation, a comma stands for differentiation, and Ci jks , ki j , and βi j are,
respectively, the elastic constants, heat conduction coefficients, and thermal moduli. Ci jks are assumed
to be fully symmetric, that is, Ci jks = C j iks = Ci jsk = Cksi j , and are required to be positive definite due
to the positiveness of the strain energy. βi j and ki j are also assumed to be symmetric, that is, βi j = β j i

and ki j = k j i .
Consider an interface corner between two dissimilar anisotropic elastic materials (Figure 1) in which

a local polar coordinate system (r, θ) is specified at the corner tip. Assume a perfect bond along the
interface. The displacement, traction, temperature, and heat flux continuity across the interface θ = 0
can be written as [Hwu and Lee 2004]

u1(0)= u2(0), φ1(0)= φ2(0), T1(0)= T2(0), h∗1(0)= h∗2(0), (2a)
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Figure 1. A closed contour 0 and its domain V for the H-integral of an interface corner.

where u and φ are, respectively, the displacement vector and stress function vector; h∗ is the heat flux
in the direction normal to the interface; the subscripts 1 and 2 stand for the values related to materials
1 and 2; and the argument 0 denotes the value on the interface. The corner flanks are both assumed to
be traction-free which can be expressed by the stress function as

φ1(θ0)= φ2(θ2)= 0. (2b)

Four different thermal conditions on the corner flanks are considered in this paper:

isothermal-isothermal: T1,r (θ0)= T2,r (θ2)= 0,

insulated-insulated: h∗1(θ0)= h∗2(θ2)= 0,

insulated-isothermal: h∗1(θ0)= T2,r (θ2)= 0,

isothermal-insulated: T1,r (θ0)= h∗2(θ2)= 0.

(2c)

Note that the components of stress function vector, φi , i = 1, 2, 3, are related to the stresses σi j and
the surface traction ti by

σi1 =−φi,2, σi2 = φi,1, ti = σi j n j =
dφi

ds
, (3)

where ni is the normal of the surface and s is the tangential.

3. Near-tip solutions

The near-tip solutions satisfying all the basic equations (1) and boundary conditions (2) were obtained
in our previous study [Hwu and Lee 2004] as

v(r, θ)=−δ(1− δ)r−1−δ0(θ)v0, w(r, θ)= r1−δ
{−δ(1− δ)F(θ)v0+ E(θ)w0}, (4a)
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where

w(r, θ)=
{

u(r, θ)
φ(r, θ)

}
, v(r, θ)=

{
T,r (r, θ)
h∗(r, θ)

}
, w0 =

{
u0

φ0

}
, v0 =

{
T0,r

h∗0

}
. (4b)

In (4), δ is the singular order and 0(θ), F(θ), and E(θ) are the matrices related to the material properties
and corner angles and have different expressions for materials 1 and 2 (given in the Appendix). The
eigenvectors associated with the singular order δ are w0 and v0, and can be determined by

K (3)
e u0 = 0, φ0 = 0, v0 = 0, (5a)

where K (3)
e is a 3× 3 submatrix of Ke defined by

Ke =

[
K (1)

e K (2)
e

K (3)
e K (4)

e

]
, Ke = N̂1−δ

2 (θ2, θ1)N̂1−δ
1 (θ1, θ0), (5b)

and N̂ is the key matrix introduced in [Hwu et al. 2003]. In (4) and hereafter, the subscript k denoting
the values related to the k-th material is dropped to lighten the notation.

In (5a), the equalities K (3)
e u0 = 0 and φ0 = 0 come from the traction-free boundary condition set in

(2b), and v0 = 0 comes from the requirement that the temperature is not allowed to be singular near the
corner tip. From (4a) we see that if v0 6= 0, both temperature and heat flux will be singular if the stresses
are singular. If the stresses are singular and the strain energy cannot be unbounded, only the singular
orders located in 0< Re(δ) < 1 are considered in this paper.

With v0 = 0, the near-tip solutions (4a) become

v(r, θ)= 0, w(r, θ)= r1−δE(θ)w0, (6)

which are the solutions without considering thermal effects. Since the singular order δ may be distinct
or repeated, real or complex, combination of all the possible solutions associated with the most critical
singular order whose real part δR is maximal leads, as in [Hwu and Kuo 2007; Hwu and Ikeda 2008],
from (6) to

T (r, θ)= 0, hi (r, θ)= 0,

u(r, θ)=
1
√

2π
r1−δR V (θ) <<(1− δR + iεα)−1(r/ l)iεα >> 3

−1k,

φ(r, θ)=
1
√

2π
r1−δR3(θ) <<(1− δR + iεα)−1(r/ l)iεα >> 3

−1k.

(7)

In (7) the angular brackets << >> stand for a diagonal matrix in which each component is varied according to
the subscript α, for example, << zα>> = diag[z1, z2, z3]; δR and εα are, respectively, the real and imaginary
parts of the most critical singular order δc determined by (5a) with 0< Re(δ) < 1; l is a length parameter
which may be chosen arbitrarily as long as it is held fixed when specimens of a given material pair are
compared; V (θ) and 3(θ) are eigenfunction matrices related to E(θ)w0; 3=3(0), detailed expressions
for which can be found in [Hwu and Kuo 2007; Kuo and Hwu 2010]; and k is a vector containing different
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modes of stress intensity factors and is defined by

k =


KII

KI

KIII

= lim
r→0
θ=0

√
2πr δR3 <<(r/ l)−iεα

>> 3
−1


σrθ

σθθ

σ3θ

 . (8)

4. Path-independent H-integral for thermoelastic problems

According to the definition of stress intensity factors (8), to calculate their values we need to know
the stresses near the tips of interface corners. However, due to the singular and possibly oscillatory
behaviors of the near-tip stresses, it is not easy to get convergent values for the stress intensity factors
directly from the definition (8). To overcome this problem, several path-independent integrals have been
proposed for crack problems such as the J-integral [Rice 1968], the L-integral [Choi and Earmme 1992],
the M-integral [Im and Kim 2000], and the H-integral [Bueckner 1973; Stern 1976; Sinclair et al. 1984;
Chen 1985]. For corner problems that are usually in the status of mixed-mode intensity, the H-integral
was suggested by [Hwu and Kuo 2007] for two-dimensional interface corners, and modified by [Kuo
and Hwu 2010] for three-dimensional interface corners, which are valid for pure mechanical loading
conditions. For interface corners under thermal loadings, the H-integral was modified by [Banks-Sills
and Ishbir 2004; Nomura et al. 2009]. However, some important details that should be clarified were
not interpreted in their works, such as the near-tip temperature field and the reason why the thermal
effect disappears in near-tip solutions of displacements and stresses. Their H-integral cannot calculate
the mixed-mode stress intensity factors via one expression. To have a complete picture of the H-integral
for thermoelastic problems, in this section we first prove the path-independence property for the proposed
modified H-integral, then provide a special treatment for the extra domain integral added in the modified
H-integral.

4.1. Path-independence of the modified H-integral. If an elastic body is subjected to two different
thermal loading systems (indicated by a hat or its absence), the constitutive laws shown in (1) give∫

V
σ̂i jεi j dV =

∫
V
(Ci jks ε̂ksεi j −βi j T̂ εi j )dV, (9a)∫

V
σi j ε̂i j dV =

∫
V
(Ci jksεks ε̂i j −βi j T ε̂i j )dV . (9b)

Subtracting (9a) from (9b) and using the symmetry property of elastic constants, we get a conservative
integral for thermoelastic problems,∫

V
(σ̂i jεi j − σi j ε̂i j )dV +

∫
V
βi j (T̂ εi j − T ε̂i j )dV = 0. (10a)

If one prefers the use of stresses instead of strains, (10a) can be rewritten as∫
V
(σ̂i jεi j − σi j ε̂i j )dV +

∫
V
αi j (T̂σi j − T σ̂i j )dV = 0, (10b)

where αi j are the thermal expansion coefficients which are related to the thermal moduli βi j by

βi j = Ci jksαks . (11)
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By using the strain-displacement relation (1)3, the symmetric property of stresses, Cauchy’s formula
ti = σi j n j , and Gauss’s divergence theorem

∫
V (. . . ), j dV =

∫
0
(. . . )n j d0,the first domain integral in

(10a) can be further reduced to a path integral, and consequently the following relation can be obtained∫
0

(t̂i ui − ti ûi )d0+
∫

V
βi j (T̂ εi j − T ε̂i j )dV = 0. (12)

In (12), 0 can be any positively oriented closed contour in a simply connected region. If 0 is selected
to be −0ρ +01+0R +02 and V (= VR − Vρ) is the domain enclosed by 0 (see Figure 1), due to the
traction-free condition on the corner flanks, that is, ti = t̂i = 0 along 01 and 02, (12) now leads to∫

0ρ

(t̂i ui − ti ûi )d0+
∫

Vρ
βi j (T̂ εi j − T ε̂i j )dV =

∫
0R

(t̂i ui − ti ûi )d0+
∫

VR

βi j (T̂ εi j − T ε̂i j )dV, (13)

which means that the following modified H-integral is path-independent:

H =
∫
0R

(uT t̂ − ûT t)d0+
∫

VR

βi j (T̂ εi j − T ε̂i j )dV . (14)

The superscript T denotes a transpose; 0R is a counterclockwise integral path with arbitrary shape which
emanates from the lower corner flank (θ = θ0) and terminates on the upper flank (θ = θ2); u and t are the
displacement and traction vectors of the actual system, which can be obtained through any method, for
example, finite element analyses, boundary element analyses, or even experimental measurement, while
û and t̂ are those of the auxiliary system with singular order 2− δ.

In order to use the path-independence property of the modified H-integral to calculate the stress inten-
sity factors, we can first select 0R to be a circular path which passes the region dominated by the singular
field. Along the circular path, we have

t = φ,θ/r and d0 = r dθ;

and hence (14) can be rewritten as

H =
∫ θ2

θ0

(uT φ̂,θ − ûTφ,θ )dθ +
∫

V
βi j (T̂ εi j − T ε̂i j )dV, (15)

in which u, φ, εi j , and T are the near-tip solutions given in (7), and û, φ̂, ε̂i j , and T̂ are the auxiliary
solutions, which can be obtained by

û(r, θ)= r δR−1V̂ (θ) <<r−iεα
>> ĉ, φ̂(r, θ)= r δR−13̂(θ) <<r−iεα

>> ĉ, T̂ (r, θ)= 0. (16)

Since the temperature fields in both the near-tip and auxiliary solutions are zero, the H-integral passing
through the singular field will be exactly the same as that for the pure mechanical loading problems.
Since the relation between the stress intensity factors k and the H-integral is obtained from the results
of the H-integral passing through the singular field, it can now be written by referring to the relation
obtained for the pure mechanical loading problem [Hwu and Kuo 2007], that is,

k =
√

2π3 <<(1− δR + iεα)l iεα
>> H∗−1h, (17a)
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where

H∗ =
∫ θ2

θ0

[3̂′T (θ)V (θ)− V̂ T (θ)3′(θ)]dθ, h =


H1

H2

H3

 . (17b)

In (17b), the prime ′ denotes differentiation with respect to θ ; Hi , i = 1, 2, 3, are the values of H
calculated from (14) using the auxiliary solutions given in (16) with ĉi = 1 and ĉ j = 0, i 6= j . Since
the path-independence property has been proved through (13), the integral path calculating Hi can be
chosen arbitrarily and u, t , and T of the actual system can be provided through any method, such as
finite element analysis.

4.2. Special treatment of the extra domain integral. The difference between the modified H-integral
(14) and the H-integral for the pure mechanical loading problem is the additional domain integral in the
second term of (14). By selecting the auxiliary temperature field T̂ = 0, the domain integral becomes

−

∫
VR

Tβi j ε̂i j dV . (18)

From the auxiliary solutions given in (16), we see that the auxiliary strain ε̂i j has a strong singularity as
r δ−2, where 0< Re(δ) < 1. This term will cause tremendous numerical error and hence should be treated
with special attention. Banks-Sills and Ishbir [2004] proposed that the domain VR can be separated into
two parts: one is close to the corner tip, Vρ in Figure 1, which can be integrated analytically, and the
other adjacent part, V = VR − Vρ in Figure 1, can be calculated numerically. However, in their study no
analytical solution has been provided for the near-tip solution of temperature field, and hence no further
analytical solution was provided for the integration. In [Nomura et al. 2009], this domain integral was
calculated analytically for a circular integral path in which the circular sector domain is divided into
several small elements whose temperature is assumed to be constant in each element. In the present
study, the analytical integration is further simplified by using the near-tip solution of the temperature
field.

Based upon the analytical solutions given in (4a) we see that the near-tip solution of the temperature
field can be obtained by integrating (4a)1 with respect to r , which will lead to

T (r, θ)= (1− δh)r−δhγ (θ)c1+ c2, (19)

where γ (θ) is a function related to 0(θ) of (4a); c1 and c2 are the coefficients to be determined via the
actual temperature field which can come from analytical solution or numerical analysis. Here, δh is the
singular order of heat flux, which is located in the region of −1 < Re(δh) < 0 and will not induce a
singularity in temperature or stresses.

According to the thermal conditions on the corner flanks (2c), the singular orders of heat flux have
been obtained from the following relations [Hwu and Lee 2004]:

isothermal-isothermal: K (2)
T = 0, insulated-insulated: K (3)

T = 0,

insulated-isothermal: K (1)
T = 0, isothermal-insulated: K (4)

T = 0,
(20)

where K (i)
T , i = 1, 2, 3, 4, are the components of KT , which is a 2×2 matrix related to the heat conduction

coefficients and corner angles.
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To evaluate (18) analytically for the part of Vρ , the auxiliary strain ε̂i j obtained from (16) can be
expressed as

ε̂11 = i T
1 û,1, ε̂22 = i T

2 û,2, ε̂33 = 0,

ε̂12 =
1
2 (i

T
2 û,1+ i T

1 û,2), ε̂23 =
1
2 i T

3 û,2, ε̂13 =
1
2 i T

3 û,1,
(21a)

where
û,1 = r δR−2(cos θe1− sin θe2), û,2 = r δR−2(sin θe1+ cos θe2),

i T
1 =

[
1 0 0

]
, i T

2 =
[
0 1 0

]
, i T

3 =
[
0 0 1

]
,

(21b)

and
e1 = V̂ (θ) <<(δR − 1− iεα)r−iεα

>> ĉ, e2 = V̂ ′(θ) <<r−iεα
>> ĉ. (21c)

Substituting (19) and (21) into (18), and letting dV = r drdθ for Vρ , we get∫
VR

Tβi j ε̂i j dV = Iρ +
∫

VR−Vρ
Tβi j ε̂i j dV, (22a)

where Iρ is the integral that has been integrated analytically with respect to r in the near-tip domain Vρ
whose result is

Iρ = ρδR

∫ θ2

θ0

e0(ρ, θ)dθ, (22b)

in which

e0(ρ, θ)= β
∗

1
T
(θ)V̂ (θ) <<(δR − 1− iεα)gα(ρ, θ)>> ĉ+β∗2

T
(θ)V̂ ′(θ) << gα(ρ, θ)>> ĉ, (22c)

and

gα(ρ, θ)=
{

c1(1− δh)ρ
−δh

δR − δh − iεα
γ (θ)+

c2

δR − iεα

}
ρ−iεα , (22d)

β∗1 (θ)= cos θ β1+ sin θ β2, β∗2 (θ)=− sin θ β1+ cos θ β2, β1 =


β11

β12

β13

, β2 =


β21

β22

β23

. (22e)

In (22a)–(22c), ρ is the radius of a small circle ahead of the corner tip. Since 0 < δR < 1 and
−1< Re(δh) < 0, from the results of (22a)–(22e) we see that the singular problem of (18) has been
solved through the analytical integration Iρ . To have a proper choice of ρ, the convergent test about ρ
should be done in a numerical calculation, which will be illustrated by an example shown in the next
section. Since the singular problem in the near-tip domain occurs from approaching zero distance, that
is, r→ 0, whether to obtain the analytical integration with respect to θ is not the main concern of our
study. Therefore, due to the complexity of γ (θ) and V̂ (θ) in e0(ρ, θ), the analytical integration of Iρ
shown in (22b) is only for the variable r not including θ .

5. Numerical examples

To provide a stable and efficient computing approach for the general mixed-mode stress intensity factors
under thermal loadings, the path-independent H-integral proposed in the literature [Hwu and Kuo 2007]
has been modified by adding an extra domain integral as shown in (14). This integral is applicable to
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cracks, interface cracks, corners, and interface corners, and the materials containing the cracks/corners
can be any kinds of anisotropic materials, including degenerate materials such as isotropic materials. The
stress intensity factors calculated through the H-integral include the pure mode and mixed mode, and also
the factors associated with lower singular orders [Kuo and Hwu 2010]. The main feature of the present
approach is that one unified H-integral can deal with several different kinds of thermal problems which
are generally discussed separately. Thus, to provide an enhanced comparison, several different kinds of
materials and cracks/corners considered in the literature are shown in the following examples. In order to
show that the modified H-integral is path-independent, the data shown below will be presented by stress
intensity factors with different radius of integral path.

All the examples presented in this section consider the state of plane strain. The physical quantities of
the actual system, u, t , and T , needed for the calculation of the H-integral in (14) are obtained from the
commercial finite element software ANSYS. A two-dimensional 4-node thermal element PLANE55 is
adopted to perform the thermal analyses, and then the temperature results are read into a two-dimensional
4-node structural solid element PLANE42 and treated as the body force to proceed with the stress anal-
yses. Since the numerical output will depend on element meshes, the convergent test needs to be done
before performing all the following examples. In our numerical implementation, the number of elements
for the most refined mesh is 29574 for modeling the electronic package, and 7484 for modeling the
interface crack. For convenience, the H-integral path doesn’t need to pass through nodal points, while
the integration points can be arbitrary points whose numerical data are produced by extrapolating the
results of their surrounding nodal points [Lancaster and Salkauskas 1981; Nomura et al. 2009] and
then integrated by Gaussian quadrature. Note that although the path-independence property of the H-
integral has been proved theoretically in Section 4, when using the H-integral to calculate the stress
intensity factors we still have to avoid taking the numerical results overly close to the corner tip due to
the incorrect stress information in the neighborhood of the corner tip provided by finite element analysis.
Also note that although the solution techniques proposed in this paper are applicable to the most general
two-dimensional problems, such as the generalized plane strain and generalized plane stress, due to the
limitation of two-dimensional elements provided by the finite element software ANSYS only the plane
strain condition is considered in our examples.

5.1. Comparison with existing solutions. In order to prove the path-independence property numerically,
to verify the correctness of the stress intensity factors calculated by the proposed H-integral and to show
the versatility of the present unified approach, six different kinds of cracks/corners under thermal loadings
are implemented and compared with the existing solutions presented in the literature. They are:

Case 1: A center crack under mode I thermal loading (Figure 2, left).

Case 2: A center crack under mixed-mode thermal loading (Figure 2, right).

Case 3: A center interface crack under uniform heat flow (Figure 3, left).

Case 4: Edge interface cracks under uniform temperature change (Figure 3, right).

Case 5: Edge interface corners under uniform temperature change (Figure 4, left).

Case 6: An interface corner under uniform temperature change (Figure 4, right).

Point A in Figures 2–4 stands for the corner or crack tip we are concerned with in these problems.
The geometry, loading, and material properties of these problems are collected in Table 1. The results of
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Figure 2. A center crack in a square plate under mode I (left, Case 1) and mixed-mode
(right, Case 2) thermal loadings.
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a bimaterial plate.
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Case 1 (Figure 2, left) Center crack under mode I thermal loading, isotropic material
a = 4 mm w = 10a Tin = 0 ◦C Tout = 100 ◦C
E = 1 MPa ν = 0.3 α = 10−4 ◦C−1 k = 1 W/m ◦C

Case 2 (Figure 2, right) Center crack under mixed-modes thermal loading, orthotropic material (γ = 0◦),
anisotropic material (γ = 30◦)

a = 1 mm w = 30a q = 103 W/m2

E11 = 144.23 GPa E22 = E33 = 9.65 GPa G12 = 4.14 GPa α11 = 0.88× 10−6 ◦C−1

ν12 = ν13 = 0.301 ν23 = 0.49 G13 = 4.14 GPa α22 = 31× 10−6 ◦C−1

k11 = 4.48 W/m ◦C k22 = k33 = 3.21 W/m◦C G23 = 3.45 GPa α33 = 31× 10−6 ◦C−1

Case 3 (Figure 3, left) Center interface crack under uniform heat flow, isotropic bimaterials
a = 4 mm w = 20a q = 105 W/m2

E1 = 1000 GPa ν1 = 0.3 α1 = 10−6 ◦C−1 k1 = 100 W/m ◦C
E2 = 100 GPa ν2 = 0.3 α2 = 10−7 ◦C−1 k2 = 100 W/m◦C

Case 4 (Figure 3, right) Edge interface crack under uniform temperature change, isotropic bimaterials
a = 1 mm w = 100a Tc = 100 ◦C
E1 = 1000GPa ν1 = 0.3 α1 = 10−6 ◦C−1

E2 = 100GPa ν2 = 0.3 α2 = 10−7 ◦C−1

Case 5 (Figure 4, left) Edge interface corner under uniform temperature change, isotropic bimaterials
w = 1000 mm w1 = 461 mm w2 = 359 mm Tc =−100 ◦C
E1 = 72 GPa ν1 = 0.3 α1 = 18.95× 10−6 ◦C−1

E2 = 280 GPa ν2 = 0.26 α2 = 2.5× 10−6 ◦C−1

Case 6 (Figure 4, right) Interface corner under uniform temperature change, anisotropic bimaterials
a = 1.6 mm, d = 0.1 mm, h = 7.5 mm, w = 3 mm, β = 20◦, Tc =−20 ◦C,

CGSO =

 223 108 98.5 0 84 0
150 102 0 33.3 0

251 0 −6 0
78.8 0 6.6

sym. 68.8 0
82.7

 [GPa], Caragonite =

 87.8 26.3 36.6 0 18.75 0
87 26.3 0 10.35 0

87.8 0 18.75 0
42 0 0.7

sym. 60.27 0
42

 [GPa],

αGSO =

[
4.4 0 0
0 14 0
0 0 6.8

]
[10−6 ◦C−1], αaragonite =

[
22.5 0 0

0 17 0
0 0 22.5

]
[10−6 ◦C−1],

Table 1. Geometries, loading, and material properties of numerical examples.

the order of stress singularity δ, the order of heat flux singularity δh , the stress intensity factors KI and
KII versus the radius of path integral r/a, and the reference solutions are all shown in Table 2.

From this table we see that the results calculated by the present approach are not only path-independent
but also agree well with those presented in the literature for all different cases, for example, Case 1 [Sumi
and Katayama 1980; Maiti 1992; Mukhopadhyay et al. 1999], Case 2 [Hwu 1990], Case 3 [Banks-Sills
and Dolev 2004], Case 4 [Erdogan 1965], and Case 5 [Banks-Sills and Ishbir 2004]. In Case 6, due to
the limitations of two-dimensional elements of ANSYS only the plane strain condition is considered, and
hence in our example the thermal expansion coefficient α13 considered in the reference paper [Nomura
et al. 2009], which may induce deformation in the third direction, is neglected. With this neglect, as
shown in Table 2 our results are slightly different from those presented in [Nomura et al. 2009]. Table 3



242 CHYANBIN HWU, TAI-LIANG KUO AND CHUN-CHIH HUANG

Silicon die 

EMC 

BT substrate 0.27mm

0.30mm

0.60mm5.657mm 

19.092mm 

17.192mm 

1
x

2
x

45
D

E 

D 

clamped edge 

A 

F 

B 

C 

Figure 5. A sample electronic package.

Case
Singular order

r/a
KI (MPa × mm δR ) KII (MPa × mm δR )

δ δh Present Reference Present Reference

1 0.5 −0.5
0.3 0.01722 0.01739[1] 0

00.6 0.01722 0.01695[2] 0
0.8 0.01722 0.01722[3] 0

2 0.5 −0.5

(Orthotropic material)

0.3 0
0

−0.02699
−0.02693[4]0.6 0 −0.02702

0.8 0 −0.02700

(Anisotropic material)

0.3 0.01147
0.01150[4]

−0.03375
−0.03357[4]0.6 0.01148 −0.03375

0.8 0.01148 −0.03376

3∗ 0.5+ 0.076i −0.5
0.3 −1.611× 105

−1.636× 105 [5]
−8.890× 103

−8.908× 103 [5]0.6 −1.615× 105
−8.850× 103

0.8 −1.615× 105
−8.817× 103

4∗ 0.5+ 0.076i −0.5
0.3 −1.559

−1.526[6]
10.65

10.07[6]0.6 −1.577 10.69
0.9 −1.537 10.63

5∗∗ 0.111 −1
0.03 1.867× 103

1.848× 103 [7]
−317.6

–0.06 1.869× 103
−317.9

0.09 1.867× 103
−317.5

6∗∗∗ 0.482+ 0.041i –
0.6 3.540

3.278[8]
16.67

22.90[8]
0.8 3.572 16.47

δ: order of stress singularity; δh : order of heat flux singularity; δR : real part of stress singular order;
∗: reference length l is selected to be 2a; ∗∗: normalized factor a is replaced by w = 1000 mm in Figure 4, left;
∗∗∗: reference length l is selected to be 10µm and normalized factor a is replaced by d = 0.1 mm in Figure 4,

right; [1] [Sumi and Katayama 1980]; [2] [Maiti 1992]; [3] [Mukhopadhyay et al. 1999]; [4] [Hwu 1990];
[5] [Banks-Sills and Dolev 2004]; [6] [Erdogan 1965]; [7] [Banks-Sills and Ishbir 2004]; [8] [Nomura et al. 2009].

Table 2. Comparison of stress intensity factors.
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ρ/a
(r/a = 0.3) (r/a = 0.6)

KI(GPa×mm0.5) KII(GPa×mm0.5) KI(GPa×mm0.5) KII(GPa×mm0.5)

0.0001 −161.2 −9.093 −161.4 −8.942
0.001 −161.3 −9.075 −161.5 −8.925
0.005 −161.1 −8.910 −161.5 −8.880
0.01 −161.1 −8.890 −161.5 −8.850
0.05 −161.2 −8.878 −161.5 −8.813
0.1 −161.4 −8.952 −161.6 −8.801
0.2 −161.6 −8.861 −161.8 −8.710
0.3 −161.9 −8.672
0.4 −162.3 −8.236
0.5 −162.5 −7.856
0.6 −162.7 −7.381

Table 3. Effects of radius ρ on the stress intensity factors for Case 3.

shows the effects of the radius ρ of the small circle chosen for the analytical area integral of (22b). From
this table, we see that the effect of ρ is very trifling on the results of the stress intensity factors when
ρ/a ≤ 0.2, and this phenomenon is consistent with the results presented in [Banks-Sills and Ishbir 2004].
Note that the bigger ρ is, the more mesh and computation time we can save, and this vindicates to the
use of analytical integration in (22b).

5.2. Application to electronic packages. A typical example of electronic packages is shown in Figure 5.
This package consists of three different parts: silicon die, epoxy molding compound (EMC), and bis-
maleimide triazine (BT) substrate. Their mechanical properties are shown in Table 4. Due to the dis-
continuity of geometries and/or material properties, stress concentration usually occurs at the corners or
interface corners, such as points A, B, C, D, E, and F shown in Figure 5. To know which corner is the
most critical corner, we first calculate the orders of stress/heat flux singularity. Table 5 shows the results
of singular orders of these corners, in which the values of points A, B, and F are calculated from (5a)

Material E [GPa] ν α [10−6 ◦C−1] k [W/m ◦C]

Silicon die 131 0.3 2.8 300
EMC 16 0.25 8 14
BT substrate 26 0.11 15 0.95

Table 4. Material properties of the sample electronic package.

Singular order
Location

A B C D E F

δ 0.280 0 0.143 0.277 0.253 0
δh −0.979 −1 −1 −0.894 −0.699 −1

Table 5. Orders of stress/heat flux singularity of the sample electronic package.
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Figure 6. Stress intensity factors versus environmental temperature (top) and versus
heat generation rate (bottom).

and (20), for stress and heat flux singularity respectively. For points C, D, and E, whose corner edges
are not traction-free, related formulae can be found in [Hwu and Lee 2004]. From Table 5, we see that
point A is the most critical point.

To study the effects of thermal environment on the stress intensity factors, we now consider two
different thermal conditions: (1) the package is placed within an environmental temperature maintained
at a constant temperature Tc, and the chip (silicon die) has a heat generation rate of 10 W; (2) the package
is placed amid an environment with reference temperature Tref = 25 ◦C before the chip begins to generate
heat, convection with heat transfer coefficient 10 W/m2◦C is imposed on all the outer edges, and the chip
(silicon die) has a heat generation rate Q. It is assumed that this package doesn’t deform at 0 ◦C. By using
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the modified H-integral proposed in this paper, the stress intensity factors associated with the singular
order δ = 0.28 of point A are calculated by varying Tc for the first case and varying Q for the second
case. Figure 6 shows that both of the mode I and mode II stress intensity factors vary linearly with
environmental temperature Tc and heat generation rate Q.

6. Conclusions

In this investigation, the modified H-integral is proposed to calculate the stress intensity factors of in-
terface corners subjected to thermal loadings, and its required near-tip solutions and auxiliary solutions
of displacements, stresses, and temperature are all provided. Through several different material types,
corner types, and thermal loading types used in the numerical examples, the H-integral proves its va-
lidity and versatility in thermal problems. Moreover, the path-independence property of the modified
H-integral in thermal problems has been proved both theoretically and numerically. A special treatment
for the strongly singular function in the domain integral of the modified H-integral saves us a lot of
computational time and also raises the accuracy for the calculation of stress intensity factors.

Appendix: Explicit expressions of the near-tip solutions

Under thermal effects, the field solutions near the tip of multimaterial wedges has been shown in Equation
(53) of [Hwu and Lee 2004]. To explicitly show the r-dependent relation of the near-tip solutions by
using Equation (27) of the same reference, we may let the solutions along the wedge surface θ = θ0 be

v1(θ0)=−δ(1− δ)r−1−δv0, w1(θ0)= r1−δw0. (A-1)

Substituting (A-1) into [Hwu and Lee 2004, (53)], the near-tip solutions can be expressed as those shown
in (4a) and (4b), in which

0(θ)=

{
0∗1(θ) when θ0 ≤ θ ≤ θ1,

0∗2(θ)(KT )1 when θ1 ≤ θ ≤ θ2,

E(θ)=

{
E∗1(θ) when θ0 ≤ θ ≤ θ1,

E∗2(θ)(Ke)1 when θ1 ≤ θ ≤ θ2,

F(θ)=

{
F∗1 (θ) when θ0 ≤ θ ≤ θ1,

F∗2 (θ)(KT )1+ E∗2(θ)(Kc)1 when θ1 ≤ θ ≤ θ2,

(A-2)

where

0∗k (θ)=2k << τ̂
−δ
β (θ, θk−1)>> k2

−1
k , E∗k (θ)= N̂1−δ

k (θ, θk−1),

F∗k (θ)=
1

δ(1− δ)
{N̂1−δ

k (θ, θk−1)Uk −Uk << τ̂
1−δ
β (θ, θk−1)>> k} << τ̂

1−δ
β (θk−1, 0)>> k2

−1
k , k = 1, 2,

(A-3)
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and

(KT )1 = 0
∗

1(θ1), (Ke)1 = E∗1(θ1), (Kc)1 = F∗1 (θ1),

2k =

[
1 1
−ik0 ik0

]
k
, Uk =

[
ck c̄k

dk d̄k

]
,

N̂1−δ
k (θ, θ ′)=

[
Ak Ak

Bk Bk

][
<< µ̂

1−δ
α (θ, θ ′)>> k 0

0 << µ̂
1−δ
α (θ, θ ′)>> k

][
BT

k AT
k

BT
k AT

k

]
,

µ̂α(θ, θ
′)= cos(θ − θ ′)+ sin(θ − θ ′)µα(θ ′), µα(θ

′)=
µα cos θ ′− sin θ ′

µα sin θ ′+ cos θ ′
, α = 1, 2, 3,

τ̂β(θ, θ
′)= cos(θ − θ ′)+ sin(θ − θ ′)τβ(θ ′), τβ(θ

′)=
τβ cos θ ′− sin θ ′

τβ sin θ ′+ cos θ ′
, β = 1, 2,

(A-4)

In (A-2)–(A-4), subscript k (taking the values 1, 2) denotes the quantities related to the k-th wedge,
whereas subscript α and β denote the diagonal components of the diagonal matrix. i =

√
−1 is an

imaginary unit; a bar above a letter denotes complex conjugation; k0 is a real constant related to the heat
conduction coefficients ki j by

k0 =

√
k11k22− k2

12; (A-5)

µα and τβ are the elastic eigenvalues and thermal eigenvalues; and A, B and c, d are the elastic eigen-
vector matrices and thermal eigenvectors of the Stroh formalism of anisotropic elasticity; see [Ting 1996;
Hwu 2010].
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THREE-DIMENSIONAL ISOFIELD MICROMECHANICS MODEL
FOR EFFECTIVE ELECTROTHERMOELASTIC PROPERTIES

OF PIEZOELECTRIC COMPOSITES

SANTOSH KAPURIA AND POONAM KUMARI

A fully coupled three-dimensional micromechanics model based on the isofield method is developed
for the effective electrothermoelastic properties of piezoelectric fiber-reinforced composite (PFRC) ma-
terials with poling and an electric field applied normal to the fiber direction. In the isofield method,
the strain and electric field components parallel to the plane connecting two phases are assumed to be
uniform across both phases, and likewise for the stress and electric displacement components normal to
the connecting plane. The model employs the isofield assumptions for two possible connectivities, which
are then combined so as to yield transverse isotropy of the effective properties when both constituents are
transversely isotropic. The assumption of uniform electric field across two phases made by some existing
theories can be achieved as a special case of the present formulation when the dielectric constants of the
fiber and matrix phases are equal. The effects of the fiber volume fraction and dielectric ratio on the
effective properties are studied for two PFRC systems, PZT-7A/epoxy and PZT-5H/epoxy. The results
are compared with those available in the literature based on uniform electric field assumptions. It is
found that the dielectric ratio has a very significant effect on the electromechanical and electrothermal
coupling constants of PFRCs.

1. Introduction

Piezoelectric materials are being increasingly used as distributed sensors and actuators in structural health
monitoring [Park et al. 2010] and control [Dong et al. 2006] applications. Their advantages over other
available smart materials include easy commercial availability, efficient conversion of energy, relatively
linear electromechanical behavior (at low fields), and large useful bandwidth [Chopra 2002]. However,
for large-scale structural control applications such as in aerospace, automotive, and ship structures, mono-
lithic piezoelectric actuators and sensors suffer from shortcomings with regard to tailorable anisotropic
actuation, that is, directional actuation, robustness against damage during use and handling, ability to
cover the entire structure for distributed actuation and sensing, and conformability to curved shell-type
structural members. To address these concerns, piezoelectric fiber-reinforced composites (PFRCs) have
been developed recently by embedding piezoceramic fibers in a resin matrix system, which, in addition
to overcoming all the above-mentioned shortcomings, also possess higher specific stiffness, toughness,
operating voltage range (from −1500 to +2800 V), and lifespan (200 million cycles) than the bulk
material [Uchino 2000]. For designing such PFRC sensors and actuators as well as smart laminates
integrated with these, it is necessary to have micromechanics models capable of estimating the effective
electrothermoelastic properties of a unidirectional PFRC layer from the properties of its constituents.

Keywords: micromechanics, piezoelectric composite, electrothermoelastic, isofield method.
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A number of micromechanics models have been proposed for piezoelectric composites in which the
piezoelectric fibers are oriented along the thickness direction (Figure 1a). In this case, the poling and
electric field directions are parallel to the fiber axis, causing a d33 effect, which is useful in ultrasonic
transducer applications. These micromechanics models have been developed based on the Voigt-type
isofield method [Chan and Unsworth 1989; Smith and Auld 1991], the Mori–Tanaka method [Dunn and
Taya 1993], the self-consistent method [Dunn and Taya 1993; Levin et al. 2000], the generalized method
of cells [Aboudi 1998], and the asymptotic homogenization method [Sabina et al. 2001; Levin et al.
2008].

Commonly used piezoelectric materials such as PZT and PVDF are transversely isotropic about their
poling axes (class mm6 symmetry). Thus, when the piezoelectric fibers are aligned along the poling
direction and the matrix is also transversely isotropic about the fiber direction, the transverse isotropy
is retained in the composite system. All the above micromechanics models are thus concerned with
transversely isotropic effective properties. In [Kar-Gupta and Venkatesh 2005], a unit cell-based finite
element model was employed to obtain the electromechanical effective properties of a 1-3 piezoelectric
composite system. In this system, the fibers are oriented along the thickness direction, while the fiber and
matrix phases are poled along different directions (parallel or normal to the fiber direction) to generate
a wide range of specific acoustic impedances.

For structural applications, however, the stiff piezoceramic fibers must be oriented in the plane of
the structures (Figure 1b) and the poling as well as the electric field directions are perpendicular to
the fiber axis, resulting in a d31 effect. In this case, the composite system is no longer transversely
isotropic about the fiber axis, particularly with regard to the piezoelectric properties. Very few studies
have been reported on the micromechanics of PFRC laminas of this type. The first such model was
presented in [Bent 1994] using the isofield method for computing effective electroelastic properties. In
that work, even though a general methodology was briefly outlined for calculation of effective material
properties for the three-dimensional (3D) stress field considering two possible connectivity planes of the
constituent phases, the detailed closed-form solutions and the results for effective material properties
were presented by considering the uniaxial stress field only. The results for the 3D stress field based on
this method have been presented only recently [Kapuria and Kumari 2010]. In [Mallik and Ray 2003;

(a) (b)
Figure 1. Schematic representation of PFRC with poling and electric field directions
(a) parallel and (b) normal to fiber.
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Ray 2006] a simpler model was presented using the uniform fields concept with a single connectivity
plane (parallel to the fiber axis) for computing the effective electroelastic properties of PFRCs, which
has been recently extended to the thermoelectroelastic case in [Kumar and Chakraborty 2009]. In this
formulation, however, the electric field is assumed to be uniform across both the piezoelectric fiber and
elastic matrix phases, which is not achievable when the electric field is applied across the thickness of
the lamina, due to large difference in the dielectric constants of the two phases. The assumption is valid
only when the two phases have the same dielectric constants, which is not the case for the materials
commonly used for the purpose. Their formulation thus gives unrealistically high values (upper bounds)
of the effective piezoelectric constants.

This paper presents a coupled 3D isofield model for estimating the effective electrothermoelastic
properties of a unidirectional PFRC lamina with in-plane fibers and poling and electric field applied along
the thickness direction. The effective properties are obtained for representative volume elements (RVEs)
with two possible connectivity planes for the piezoelectric fiber and matrix phases, namely, parallel
and normal to the fiber plane. The two models are combined in a way which maintains the transverse
isotropy in the effective properties when both constituents are transversely isotropic about the fiber axis.
Results are presented for two PFRC systems comprising, respectively, PZT-7A and PZT-5H fibers with
an epoxy matrix. The results are compared with those of [Ray 2006; Kumar and Chakraborty 2009]
obtained based on the uniform electric field assumption. The effect of the ratio of transverse dielectric
constants of the fiber and matrix phases (hereafter called the dielectric ratio) on the effective piezoelectric
and pyroelectric constants is illustrated. It is revealed that both effective piezoelectric and pyroelectric
constants are maximal when the dielectric ratio is unity, and reduce drastically as the ratio increases. The
effective thermoelastic properties are also compared with simplified models such as the rule of mixtures
(ROM) and the modified rule of mixtures (MROM) [Gibson 2007] so as to ascertain their validity.

2. 3D isofield micromechanics model

2.1. Constitutive relations. The effective thermoelectroelastic constants of PFRC materials are deter-
mined from the properties of individual phases (fiber and matrix) by generalizing the 3D isofield ap-
proach of [Bent 1994; Kapuria and Kumari 2010] for the electrothermomechanical field. In order to
have a unified treatment, both fiber and matrix are assumed to be piezoelectric materials, which are of
orthotropic class mm2 symmetry, with principal material axes x1, x2, and x3, and are polarized along the
thickness direction x3. The 3D linear constitutive equations of such a piezoelectric continuum are given
by [Auld 1973] 

ε1

ε2

ε3

γ23

γ31

γ12

D1

D2

D3


=



s11 s12 s13 0 0 0 0 0 d31

s12 s22 s23 0 0 0 0 0 d32

s13 s23 s33 0 0 0 0 0 d33

0 0 0 s44 0 0 0 d24 0
0 0 0 0 s55 0 d15 0 0
0 0 0 0 0 s66 0 0 0
0 0 0 0 d15 0 ε11 0 0
0 0 0 d24 0 0 0 ε22 0

d31 d32 d33 0 0 0 0 0 ε33





σ1

σ2

σ3

τ23

τ31

τ12

E1

E2

E3


+



α1

α2

α3

0
0
0
0
0
q3


T, (1)
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where εi and γi j denote the normal and shearing strain components, σi and τi j denote the normal and
shear stress components, Di denotes the electric displacements, Ei denotes the electric field components
in the principal material axis system, and T denotes the temperature change over the reference stress-free
temperature. Constants si j , di j , εi j , αi , and q3 are the elastic compliances, piezoelectric strain constants,
dielectric constants, thermal expansion coefficients and pyroelectric constant, respectively.

The physical background of the isofield micromechanics model including its assumptions is described
in Appendix A. In the generalized 3D isofield approach, the effective properties are first obtained for
RVEs of two possible connectivities for the piezoelectric fiber and matrix phases: models A and B with
material connectivity on the x1-x2 and x1-x3 planes respectively, as shown in Figure 2. The strain and
electric field components parallel to the connecting plane of the two phases in a given RVE are assumed to
be uniform across both phases (isofield condition), while isostress and isoelectric displacement conditions
are assumed to exist along the direction normal to the connecting plane. The computations for the
effective properties for the two models A and B are described below followed by the procedure of
combining the two.

2.2. Model A. In model A, the connecting plane is x1-x2, and hence the strain components (ε1, ε2, γ12)
and electric field components (E1, E2) which are parallel to the connecting plane are assumed to be
uniform across both phases, and isostress and isoelectric displacement conditions are assumed to exist

Figure 2. RVEs for isofield model (p: piezoceramic, m: matrix).
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for (σ3, τ23, τ13) and D3, which are normal to the connecting plane. The electric field is considered to be
applied along the thickness direction only, and the in-plane electric field components that may be used
due to direct piezoelectric effect is neglected being small in comparison to E3, that is, E1 ' E2 ' 0.
It follows from (1) that, for this case, γ31 and γ12 become electromechanically uncoupled and hence
the expressions for the effective shear compliances s55 and s66 (both normal to the fiber axis) will be
similar. Hence, only one strain components γ12 is included in the following derivation, without any loss
in generality. Thus, the isofield conditions for this case can be written as

Ū a
=U a

p =U a
m with U a

=
[
ε1, ε2, σ3, τ23, γ12, D3

]T
. (2)

The superscript a corresponds to model A. An overbar denotes the average value, and subscripts p
and m (also used as superscripts elsewhere) denote piezoelectric fiber and matrix phases, respectively.
Temperature change is assumed to be uniform over fiber and matrix phases, that is, T̄ = Tp = Tm . The
average value of the complimentary field components σ1, σ2, ε3, γ23, τ12, and E3 will have contributions
from each phase in proportion to their volume fractions v p

3 and vm
3 (= 1− v p

3 ) measured along the x3

direction:
V̄ a
= v

p
3 V a

p + v
m
3 V a

m with V a
=
[
σ1, σ2, ε3, γ23, τ12, E3

]T
. (3)

The dependent field variables V a can be expressed in terms of the independent variables U a using the
constitutive equation (1) as

V a
γ = AγU a

γ + Aγt T̄ with Aγ =



a11 –a12 a13 0 0 a16

–a12 a22 a23 0 0 a26

–a13 –a23 a33 0 0 a36

0 0 0 a44 0 0
0 0 0 0 a55 0

a16 a26 –a36 0 0 a66



γ

, Aγt =



at1

at2

at3

0
0

at6



γ

, (4)

where γ = p,m and the constants aγi j and aγt j are given by

aγ11 =
s ′22

δ
, aγ12 =

s ′12

δ
, aγ13 = ps

2, aγ16 = pd
2 , aγ22 =

s ′11

δ
, aγ23 = ps

1, aγ26 = pd
1 ,

aγ33 = ps
2s ′13+ ps

1s ′23+ s33− d33d ′33, aγ36 = pd
2 s ′13+ pd

1 s ′23+ d ′33, aγ44 = s44, aγ55 =
1

s66
,

aγ66 =−pd
2 d ′31− pd

1 d ′32+
1
ε33
, d ′3 j =

d3 j

ε33
, s ′i j = si j − d3i d ′3 j , δ = s ′11s ′22− s ′12

2
,

aγt1 = pt
2, aγt2 = pt

1, aγt3 = pt
3, aγt6 = pt

6, α′j = α j − d ′3 j q3,

pt
3 = s ′13 pt

2+ s ′23 pt
1+α

′

3, pt
6 =−d ′31 pt

2− d ′32 pt
1−

q3

ε33
, pt

i = (s
′

i1α
′

2− s ′2iα
′

1)
(−1)i

δ
,

ps
i = (s

′

i1s ′23− s ′2i s
′

13)
(−1)i

δ
, pd

i = (s
′

i1d ′32− s ′2i d
′

31)
(−1)i

δ
, i = 1, 2, j = 1, 2, 3.

(5)

Substituting (4) for γ = p and m into (3) and applying (2) yields

V̄ a
= (v

p
3 Ap
+ vm

3 Am)Ū a
+ (v

p
3 Ap

t + v
m
3 Am

t )T̄ = AŪ a
+ At T̄ , (6)
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and therefore

Ū a
= ÂV̄ a

+ Ât T̄ , Â = A−1, Ât =−A−1 At . (7)

Rearranging (7) in the form of (1), the effective constitutive equation and hence the effective material
properties of PFRC for model A are obtained as



ε̄1

ε̄2

ε̄3

γ̄23

γ̄12

D̄3


=



s11 s12 s13 0 0 d31

s12 s22 s23 0 0 d32

s13 s23 s33 0 0 d33

0 0 0 s44 0 0
0 0 0 0 s66 0

d31 d32 d33 0 0 ε33



A 

σ̄1

σ̄2

σ̄3

τ̄23

τ̄12

Ē3


+



α1

α2

α3

0
0
q3



A

T̄ , (8)

where s A
i j , d A

i j , ε
A
33, αA

i , and q A
3 are the effective material properties for model A, given by

s A
i3 = âi3/â33, s A

33 = 1/â33, d A
33 = â36/â33,

s A
i j = âi j − s A

i3s A
j3/s

A
33, d A

3 j = â6 j − d A
33s A

j3/s
A
33, for i, j = 1, 2,

s A
44 = 1/â44, s A

66 = â55, εA
33 = â66− (d A

33)
2/s A

33,

αA
1 = ât1− â13ât3/â33, αA

2 = ât2− â23ât3/â33,

αA
3 =−ât3/â33, q A

3 = ât6− â63ât3/â33.

(9)

2.3. Model B. In this case, the connecting plane being x1− x3, the isofield condition over both phases
is assumed to exist for ε1, σ2, ε3, τ23, γ31, τ12, and E3, and their complimentary counterparts, σ1, ε2, σ3,
γ23, τ23, γ12, and D3 are averaged over the two phases

Ū b
=U b

p =U b
m, U b

=
[
ε1, σ2, ε3, τ23, τ12, E3

]T
, (10)

V̄ b
= v

p
2 V b

p + v
m
2 V b

m, V b
=
[
σ1, ε2, σ3, γ23, γ12, D3

]T
, (11)

where v p
2 is the volume fraction of the fiber phase measured in model B along the x2 direction (see

Figure 2) and vm
2 = 1− v p

2 . Using the constitutive equation (1), the dependent variables V b
γ can be

expressed in terms of the independent variables U b
γ as

V b
γ = BγU b

γ + Bγt T̄ with Bγ =



b11 –b12 b13 0 0 –b16

b12 b22 b23 0 0 b26

b13 –b23 b33 0 0 –b36

0 0 0 b44 0 0
0 0 0 0 b55 0

b16 b26 b36 0 0 b66



γ

, Bγt =



bt1

bt2

bt3

0
0

bt6



γ

, (12)
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where γ = p,m and the elements bγi j and bγt j are given by

bγ11 = s33/δ1, bγ12 = (s33s12− s13s23)/δ1, bγ22 = s22− s21b12− s23b23,

bγ13 =−s13/δ1, bγ16 = (s33d31− s13d33)/δ1, bγ26 = d32− s21b16− s23b36,

bγ33 = s11/δ1, bγ23 = (s11s23− s13s12)/δ1, bγ66 = ε33− d31b16− d33b36,

bγ44 = s44, bγ36 = (s11d33− s13d31)/δ1, bγt1 = (−s33α1+ s13α3)/δ1,

bγ55 = s66, bγt2 = (s21bt1+ s23bt3+α2), bγt3 = (−s11α3+ s13α1)/δ1,

δ1 = s33s11− s2
13, bγt6 = d31bt1+ d33bt3+ q3.

(13)

Substituting (13) for γ = p and m into (11) and applying (10) yields

V̄ b
= (v

p
2 B p
+ vm

2 Bm)Ū b
+ (v

p
2 B p

t + v
m
2 Bm

t )T̄ = B̄Ū b
+ B̄t T̄ . (14)

Rewriting (14) in the original form of (1) yields the effective constitutive equation for model B as

ε̄1

ε̄2

ε̄3

γ̄23

γ̄12

D̄3


=



s11 s12 s13 0 0 d31

s12 s22 s23 0 0 d32

s13 s23 s33 0 0 d33

0 0 0 s44 0 0
0 0 0 0 s66 0

d31 d32 d33 0 0 ε33



B 

σ̄1

σ̄2

σ̄3

τ̄23

τ̄12

Ē3


+



α1

α2

α3

0
0
q3



B

T̄ , (15)

where the effective coefficients for model B are obtained as

s B
11 = b̄33/δ2, s B

44 = b̄44, s B
12 = (b̄33b̄12− b̄13b̄23)/δ2, s B

13 =−b̄13/δ2,

s B
33 = b̄11/δ2, s B

66 = b̄55, s B
22 = b̄22+ s B

23b̄23+ s B
12b̄12, s B

23 = (−b̄12b̄13+ b̄23b̄11)/δ2,

d B
31 = (−b̄36b̄13+ b̄16b̄33)/δ2, d B

32 = b̄26+ d B
31b̄12+ d B

33b̄23, d B
33 = (−b̄16b̄13+ b̄36b̄11)/δ2,

δ2 = b̄33b̄11− b̄2
13, q B

3 = b̄16α
B
1 + b̄36α

B
3 + b̄t6, εB

33 = b̄66+ d B
31b̄16+ d B

33b̄36,

αB
1 = (−b̄33b̄t1+ b̄13b̄t3)/δ2, αB

2 = b̄21α
B
1 + b̄23α

B
3 + b̄t2, αB

3 = (b̄13b̄t1− b̄11b̄t3)/δ2,

(16)

2.4. Combined model. For the case of the combined model AB, the material properties of the piezo-
electric fiber phase in model B are replaced with the effective properties from model A. Since the shear
stresses are uncoupled, it is readily possible to obtain the closed-form expressions for the effective s44

and s66 from model AB using (9) and (16) as

s AB
44 = v f s p

44+ vmsm
44, s AB

66 =
v

p
2 s p

66sm
66+ v

m
2 sm

66(v
p
3 sm

66+ v
m
3 s p

66)

(v
p
3 sm

66+ v
m
3 s p

66)
, (17)

where v f = v
p
2 v

p
3 , vm = 1− v f . Similarly, s AB

55 can be obtained as

s AB
55 =

(v
p
3 s p

55+ v
m
3 sm

55)s
m
55

v
p
2 sm

55+ v
m
2 (v

p
2 sm

55+ v
m
2 s p

55)
. (18)
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Usually v p
2 is taken as equal to v p

3 , in which case v p
2 = v

p
3 =
√
v f , where v f is the overall volume fraction

of fiber.
For fiber and matrix phases which are transversely isotropic about the fiber direction x1, the effective

material properties of the combined model should exhibit transverse isotropy. However, it can be seen
from (17) and (18) that s AB

66 and s AB
55 will not be equal for this case. A similar inequality is observed among

the other pairs of effective constants such as s12 and s13, and s22 and s33, which should also be equal for
the transversely isotropic case. This discrepancy exists in the electromechanical micromechanics model
of [Bent 1994]. To eliminate it, the effective properties of the combined model BA are obtained by
replacing the properties of the fiber phase of model A with the effective properties from model B. The
final effective properties Pe

i are then obtained by averaging those of models AB and BA:

Pe
i = (P

AB
i + P B A

i )/2. (19)

While the expression for s B A
44 is the same as for model AB given in (17), the expressions for s B A

55 and
s B A

66 are obtained by interchanging their expressions for model AB given by (17) and (18).

2.5. Thermal conductivity. The 3D heat conduction, according to Fourier’s law, is governed by

Qi =−ki T,i for i = 1, 2, 3, (20)

where ki , Qi , and T,i denote respectively the thermal conductivities, heat flux, and temperature gradient
along the xi direction. To obtain the effective thermal conductivities using the isofield method, the
temperature gradients parallel to the connecting plane of two phases and the heat flux along the normal
to the connecting plane are assumed to be uniform over the two phases. The remaining complementary
field variables are averaged over the two phases. For models A and B, this yields:

Model A:
H̄a
= Ha

p = Ha
m, Ha

=
[
T,1, T,2, Q3

]T
,

M̄a
= v

p
3 Ma

p + v
m
3 Ma

m, Ma
=
[
Q1, Q2, T,3

]T
.

(21)

Model B:
H̄ b
= H b

p = H b
m, H b

=
[
T,1, Q2, T,3

]T
,

M̄b
= v

p
3 Mb

p + v
m
3 Mb

m, Mb
=
[
Q1, T,2, Q3

]T
.

(22)

Using (20), the dependent variables Ma
γ and Mb

γ (γ = p,m) are expressed, respectively, in terms of the
independent variables Ha

γ and H b
γ , and the resulting equations are arranged in the form of (20), to yield

the effective thermal conductivities for models A and B. As before, the effective thermal conductivities
k AB

i of the combined model AB are then obtained by using the effective thermal conductivities obtained
from model A in model B as the conductivities of its fiber phase, which yields

k AB
1 =v f k p

1 +vmkm
1 , k AB

2 =
v

p
3 k p

2 km
2 + v

m
3 (k

m
2 )

2

v
p
2 km

2 + v
m
2 (v

p
3 k p

2+v
m
3 km

2 )
, k AB

3 =
v

p
2 k p

3 km
3 + v

m
2 km

3 (k
m
3 v

p
3+v

m
3 k p

3 )

v
p
3 km

3 + v
m
3 k p

3
. (23)

In the combined model BA, the expression for the effective k1 is the same as for model AB, and the
expressions for the effective k2 and k3 get interchanged. The final effective ke

i are obtained using (19).
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3. Results and discussion

Numerical results for the effective thermoelectroelastic properties are presented for two PFRC systems
made, respectively, of PZT-7A and PZT-5H fibers and an epoxy matrix. The material properties of the
fibers and the matrix are listed in Table 1. The following nondimensional parameters are introduced to
compare the effective properties of the PFRC materials with the corresponding piezoelectric fibers:

Re
3i =

ee
3i

ep
3i
, Rd

3i =
de

3i

d p
3i
, ᾱi =

αe
i

α
p
i
, k̄i =

ke
i

k p
i

for i = 1, 2, 3;

s̄i j =
se

i j

s p
i j

for i = 1, 2, 6; Rε33 =
εe

33

ε
p
33
, Rq

3 =
qe

3

q p
3
.

The effective elastic stiffness constants ce
i j of the PZT-7A/epoxy system are plotted in Figure 3 against

the fiber volume fraction v f and compared with those predicted by [Ray 2006]. Due to two-way elec-
tromechanical coupling, the effective stiffness is affected by the piezoelectric coupling constants di j . In
order to ascertain this effect, the elastic constants ce

i j computed considering di j = 0 are also compared in
Figure 3. It is observed that the electromechanical coupling has a stiffening effect on PFRC resulting in
greater values for constants ce

11, ce
33, and ce

12. While the ce
11 predicted by [Ray 2006] match closely with

the present estimate with di j = 0, there are appreciable differences between the two results for ce
33, ce

12, and
ce

23. The difference increases for all constants, when the di j are not considered zero in the present model.
The variations of nondimensional effective piezoelectric stress constants Re

3i with fiber volume fraction
are plotted in Figure 4 for the same PFRC system for different values of the dielectric ratio (DR= ε p

33/ε
m
33).

The DR was varied by varying the matrix property (εm
33) keeping the fiber property fixed. The case of

DR= 1 leads to uniform electric field E3 across both fiber and matrix phases, a condition assumed by

Material c11 c22 c33 c12 c23 c31 c44 c55 c66

PZT-7A1 148 148 131 76.2 74.2 74.2 25.4 25.4 35.9
PZT-5H2 126 126 117 79.5 84.1 84.1 23 23 23.25
epoxy1 3.86 3.86 3.86 2.57 2.57 2.57 0.645 0.645 0.645

e31 e32 e33 e14 e24 ε33

PZT-7A1 –2.1 –2.1 9.5 9.2 9.2 2.07
PZT-5H2 –6.5 –6.5 23.3 17 17 30.42
epoxy1 0 0 0 0 0 0.079

α1 α2 α3 k11 k22 k33 p3

PZT-7A1 1 1 1 – – – 2
PZT-5H3 9.64 9.64 3.96 50 50 75 5.483
epoxy1,4 24 24 24 0.18 0.18 0.18 0.0

Table 1. Material properties: ci j in GPa, ei j in C m−2, ε33 in 10−9 C V−1 m−1, αi in
10−6 K−1, ki j in W K−1 m−1, pi in 10−5 C m2 K−1.
1 [Kumar and Chakraborty 2009] 2 [Kapuria and Hagedorn 2007] 3 [Chen 2006]
4 [Gibson 2007, Table 3.2, p. 106].



258 SANTOSH KAPURIA AND POONAM KUMARI

Figure 3. Variation of effective stiffness constants of PZT-7A/epoxy with fiber volume fraction.

[Ray 2006]. While the value of Re
31 predicted by the present model for DR = 1 is in close agreement

with the reference solution, values of Re
32 and Re

33 predicted by the later model are much lower than the
present solution. In the present model, ε2 and σ3 are uniform over two phases in model A, while σ2 and
ε3 are uniform in model B, according to the respective connecting planes, which are consistent with the
actual boundary conditions of the RVE. However, in the model of [Ray 2006], both σ2 and σ3 are assumed
to have a uniform variation over the two phases, simultaneously. This explains the difference between
the two results even though both correspond to the uniform electric field case. Figure 4 also reveals
that the effective piezoelectric constants of PFRC are highly sensitive to the DR and reduce drastically
with its increase. This is because the ratio of electric field across the fiber phase to that applied across
the PFRC thickness decreases with the increase in DR. Even though both constituents exhibit transverse
isotropy about axis x3, effective values of e31 and e32 differ, since the connectivity between the fiber and
matrix phases does not follow symmetry about axis x3. This difference between e31 and e32 in PFRC
enables directional (anisotropic) in-plane actuation, which is desirable in many control applications. The
effective thermal stress coefficients β1 and β3 for the PZT-7A/epoxy system for varying v f , computed
with and without making di j = 0, are compared with those of [Kumar and Chakraborty 2009] in Figure 5.
Once again, the present results match with the reference solution, when computed with di j = 0, but
otherwise differ considerably for intermediate values of v f .

In Figures 6 and 7, nondimensionalized compliances (s̄11, s̄12, s̄66) and coefficients of thermal expan-
sion (ᾱ1, ᾱ2) are compared with the simple rule of mixtures (ROM)/inverse rule of mixtures (IROM)
and the modified rule of mixtures (MROM) given in Appendix B. The effective values of the thermoe-
lastic constants predicted by the present model are close to those predicted by the ROM for longitudinal
constants se

11 and αe
1 and by the MROM for the transverse constants se

66 and αe
2, but are not so for the

transverse compliance constants se
22 and se

33. The nondimensionalized effective thermal conductivities k̄e
1

and k̄e
3 are also plotted in Figure 7.

The variations of the ratios Rd
3i (i = 1, 2, 3) of effective values of piezoelectric strain constants d3i to the

corresponding values for the bulk PZT are plotted in Figure 8 for both PZT-7A/epoxy and PZT-5H/epoxy
systems for different values for DR ranging from 1 to 100. Similar to constants e3i , the effective values
of d3i are maximum for DR= 1, when the electric field is uniform across piezoelectric and matrix phases,
and decrease sharply with the increase in DR, as happens for commonly used matrix materials. Even



MICROMECHANICS FOR PIEZOELECTRIC COMPOSITES 259

Figure 4. Variation of effective piezoelectric stress constant ratios of PZT-7A/epoxy
with fiber volume fraction.

Figure 5. Variation of effective thermal stress coefficients of PZT-7A/epoxy with fiber
volume fraction.
∗ [Kumar and Chakraborty 2009].

Figure 6. Variation of effective compliance coefficients of PZT-5H/epoxy with fiber
volume fraction.
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Figure 7. Variation of effective thermal expansion coefficients and conductivities of
PZT-5H/epoxy with fiber volume fraction.

(a)

(b)

Figure 8. Effect of DR on effective piezoelectric strain constants of PFRCs, for
(a) PZT-7A/epoxy and (b) PZT-5H/epoxy.
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at a low fiber volume fraction of 10%, there is a large difference between the results of de
3i at DR = 1

and DR = 5. This is because the electric field E p
3 across the piezoelectric phase in model A is only a

fraction of the overall electric field Ē3 and is dependent on both v p
3 and DR. For example, ignoring the

electromechanical coupling, E p
3 in model A can be easily obtained, using (2)–(8), as

E p
3

Ē3
=

1
v

p
3 + v

m
3 (DR)

.

Thus, E p
3 is more sensitive to DR at a lower value of the fiber volume fraction. The performance of these

PFRCs can thus be improved either by using suitable matrix materials with dielectric constant εm
33 of the

order of ε p
33 or by directly applying electric fields across the piezoelectric fibers. It is also revealed from

Figure 8 that above 90% of the value of d31 of the bulk PZT can be achieved in the PFRC with a fiber
volume fraction of only 25% for the uniform field case. While the values of effective piezoelectric strain
constants de

3i vary from zero to those of the piezoelectric fibers, the effective values of piezoelectric stress
constants e3i can exceed those of the bulk piezoelectric material at an intermediate value of v f (Figure 4).
The latter leads to an impression that a higher electromechanical coupling can be achieved in PFRC than
the bulk piezoelectric material [Ray 2006], which is clearly not true. Thus, the fundamental constants di j

(and not ei j ) should be used for evaluating the effective electromechanical coupling property of PFRC.
The variations of nondimensionalized effective dielectric and pyroelectric constants with v f are plot-

ted in Figure 9. The effective pyroelectric constant almost follows the ROM for DR of unity, but

Figure 9. Variation of effective dielectric and pyroelectric constants of PFRCs with fiber
volume fraction: PZT-7A/epoxy (left column) and PZT-5H/epoxy (right column).
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PZT-5H/epoxy PZT-7A/epoxy
Entity 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

se
11 65.12 34.76 23.91 18.56 43.25 22.59 15.39 11.83

se
22 233.7 141.3 85.06 45.60 222.8 132.8 77.99 39.37

se
33 225.1 135.1 80.58 43.16 212.6 125.3 72.20 35.28

se
12 –30.39 –16.63 –11.27 –8.15 –21.75 –11.66 –7.79 –5.61

se
13 –20.84 –10.33 –7.08 –6.07 –10.73 –4.39 –2.60 –2.11

se
23 –89.88 –39.37 –17.06 –8.07 –86.29 –35.26 –13.16 –4.28

se
44 1250 950 650 345 1250 950 640 340

se
55 1010 680 420 215 1010 680 420 210

se
66 1010 680 420 214 1000 670 410 200

de
31 –33.15 –41.25 –57.01 –94.32 –5.24 –6.39 –8.88 –15.14

de
32 –19.33 –33.07 –51.94 –91.40 –3.36 –5.48 –8.45 –14.99

de
33 50.38 73.52 111.2 195.3 8.72 12.70 19.56 35.81
εe

33 2.27 3.30 5.16 9.49 0.12 0.18 0.28 0.53
qe

3 –0.99 –2.00 –3.74 –7.78 0.44 1.15 2.47 5.71
αe

1 11.07 10.24 9.94 9.77 3.09 2.19 1.84 1.59
αe

2 25.33 21.53 17.46 13.48 25.12 19.06 12.93 7.01
αe

3 22.02 17.03 12.32 7.96 24.12 17.55 11.23 5.40
ke

1 11.20 20.90 30.60 40.30 1.56 1.62 1.68 1.74
ke

2 0.78 1.18 1.95 4.14 0.63 0.80 1.01 1.33
ke

3 0.79 1.19 1.97 4.26 0.63 0.80 1.01 1.33

Table 2. Effective electrothermoelastic properties for PFRCs: se
i j in 10−12 Pa−1, de

3 j in
pm V−1, εe

33 in nF m−1, qe
3 in µC m−2 K−1, αe

i in 10−6 K−1, ke
i in W m−1 K−1.

drops sharply as the DR increases. Effective material properties for PZT-5H/epoxy with DR= 20 and
PZT-7A/epoxy with DR = 26.2 are presented in Table 2 for four values of the fiber volume fraction
(v f = 0.2, 0.4, 0.6, 0.8). These properties are directly useful for 1D/2D/3D thermoelectromechanical
analysis of smart laminated structures integrated with these PFRCs.

4. Conclusions

A coupled 3D isofield-based micromechanical model is presented for calculating effective electrother-
moelastic properties of piezoelectric fiber-reinforced composite (PFRC) materials with poling and elec-
tric field applied along the normal to the fiber direction. The model employs the isofield method on
representative volume elements (RVEs) of two possible connectivities, A and B, for the fiber and matrix
phases. The two RVEs are combined in sequences AB and BA, so as to achieve transverse isotropy in the
effective properties when both the constituents are transversely isotropic. The model considers differen-
tial electric fields in fiber and matrix phases due to their different dielectric constants. The assumption of
uniform electric field across the two phases made by some existing theories can be achieved as a special
case of the present formulation when the dielectric ratio (DR) is unity.
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Results presented for two PFRC systems, PZT-7A/epoxy and PZT-5H/epoxy, reveal that it is possi-
ble to achieve effective piezoelectric strain constant d31 of magnitude greater than 90% of that of bulk
piezoelectric material with even a low fiber volume fraction of 25%, if the DR is close to unity. The
effective piezoelectric constants, however, reduce drastically as the DR increases. While the magnitudes
of effective d3i of PFRC vary from zero to those of the piezoelectric fiber, the effective e3i can exceed its
value for the fiber at an intermediate value of v f , giving a false notion of improved performance, for DR
close to unity. Therefore, constants di j should be used to evaluate electromechanical coupling of PFRCs.
The effective pyroelectric constant nearly follows the rule of mixtures for DR of unity, but reduces as
DR increases.

Appendix A

The isofield micromechanics model, also known as the uniform field model, is basically a generalization
of the strength of materials approach of estimating overall properties of two-phase composite materials.
The basic assumption, as the name implies, is that all fields are uniform within each material phase. This
assumption makes the model independent of the geometry of its microstructure, and it is possible to refer
to the two phases in a RVE as two cuboidal blocks connected at a plane. This forms the basis of the
RVE representation in Figure 2. The model actually violates some of the compatibility and equilibrium
conditions at the interface. However, it has been successfully used in the past (see, for example, [Jones
1975]) for estimating mechanical and transport (conductivity, thermal expansion coefficient) properties
of fiber-reinforced composite materials. The large mismatch in the material properties makes the method
particularly well suited for modeling such fibrous composites. Its accuracy largely depends on the spatial
scale of the phase distributions. For finely distributed phases, it is expected to yield good estimates of
the averaged response. A major advantage of this method is that it provides simple analytical solutions
for the effective properties, which allows physical insight into the problem.

For uniaxial fields, the uniform field assumption leads to the well-known rules of mixtures, compris-
ing of parallel and series (Voigt and Reuss) additions for estimating the effective properties along and
perpendicular to the fiber direction, respectively. For the 3D fields, however, it is not as straightforward.
Typically, the conventional model with parallel connectivity yields very good estimates of longitudinal
properties, but the series model at best yields a lower bound of the transverse properties. This is improved
by using a combination model, wherein the two phases in the RVE are connected at two orthogonal planes
(x1-x2 and x1-x3) parallel to the fiber direction (x1), instead of only one plane as in the conventional
model, as shown in Figure 2 (combined model). The combination model is treated as follows: blocks of
piezoelectric (p) and matrix (m) phases are connected at the x1-x2 plane and they together are connected
to a matrix phase at the x1-x3 plane, and vice versa. Thus, models A and B with the two phases connected
at the x1-x2 and x1-x3 planes, respectively, form the building blocks of the combination model.

The other assumptions in the present model are that

• the two material phases are perfectly bonded,

• deformation and electric fields are small enough that linear constitutive equations can be applied,
and

• the piezoelectric materials are uniformly polarized along the x3 direction.



264 SANTOSH KAPURIA AND POONAM KUMARI

Appendix B

The expressions for the effective Young’s moduli Y e
i , shear modulus Ge

12, and thermal expansion coef-
ficients αe

i according to the rule of mixtures (ROM)/inverse rule of mixtures (IROM) and the modified
rule of mixtures (MROM) based on the strength of materials approach can be found in [Gibson 2007].
These are given below:

• ROM/IROM
Y e

1 = Y p
1 v f + Y m

1 vm, αe
1 =

Y p
1 α

p
1 v f + Y m

1 α
m
1 vm

Y p
1 v f + Y m

1 vm
,

1
Y e

2
=
v f

Y p
2
+
vm

Y m
2
,

1
Ge

12
=
v f

G p
12
+
vm

Gm
12
.

• MROM

Y e
2 = Y m

2

[
(1−
√
v f )+

√
v f

1−√v f (1− Y m
2 /Y p

2 )

]
,

Ge
12 = Gm

12

[
(1−
√
v f )+

√
v f

1−√v f (1−Gm
12/G p

12)

]
,

αe
2 = (1+ νm)α

m
2 vm + (1+ νp)α

p
2 v f −α1ν

e
12, where νe

12 = ν
p
12v f + ν

mvm .
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ACCURATE SIMULATION OF MIXED-MODE COHESIVE CRACK
PROPAGATION IN QUASI-BRITTLE STRUCTURES USING EXACT

ASYMPTOTIC FIELDS IN XFEM: AN OVERVIEW

BHUSHAN LAL KARIHALOO AND QI-ZHI XIAO

The extended finite element (XFEM) enriches the standard local FE approximations with known infor-
mation about the problem, with the use of the partition of unity. This allows the use of meshes that do not
conform to a discontinuity and avoids adaptive re-meshing as the discontinuity grows as required with the
conventional FEM. When the crack tip asymptotic field is available and used as the enrichment function,
XFEM is more accurate than FEM allowing the use of a much coarser mesh around the crack tip. Such
asymptotic fields have been known for a long time for traction-free cracks (the Williams expansions)
but have only recently been derived for cohesive cracks (Karihaloo–Xiao expansions). In this paper an
overview of latter expansions is given for a range of cohesive laws and their usefulness in the simulation
of cohesive crack propagation is demonstrated on two examples of concrete and fibre-reinforced concrete
flexural members.

1. Introduction

The cohesive zone (or crack) model of Hillerborg et al. [1976] has been extensively used in the study
of localization and failure in quasi-brittle materials (such as concrete and fibre-reinforced concrete) and
structures. Borst et al. [2004] have given a concise overview of the various ways for the numerical
implementation of the cohesive zone methodology.

The knowledge of the asymptotic crack tip displacement fields is especially useful in the recently
developed extended finite element methodology (XFEM) (see [Moës et al. 1999; Strouboulis et al. 2001;
Babuška et al. 2003; Karihaloo and Xiao 2003], for example). XFEM enriches the standard local FE
approximations with known information about the problem, with the use of the partition of unity (PU). It
avoids meshes conforming with the discontinuity and adaptive re-meshing as the discontinuity grows as
is the case with the FEM. In [Karihaloo and Xiao 2003] we demonstrated that for a crack with traction-
free faces, when the crack tip asymptotic field is available and used as enrichment function, XFEM not
only avoids using a mesh conforming with the crack but is also more accurate than FEM. Hence XFEM
can use a much coarser mesh around the crack tip. However, when the enrichment function differs from
the true asymptotic crack tip field, the mesh needs to be refined in the same manner as in the FEM. Thus
it is necessary to know the true asymptotic displacement field around a cohesive crack tip in order to
exploit fully the advantages of XFEM.

The application of XFEM to the simulation of the growth of cohesive cracks in quasi-brittle materials
has received considerable attention. However, adjacent to the cohesive crack tip, the enrichment function
is chosen as the jump function [Wells and Sluys 2001; Hansbo and Hansbo 2004; Zi and Belytschko 2003]

Keywords: Asymptotic displacement field, asymptotic stress field, cohesive crack, extended finite element (XFEM).
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or a (branch) function which does not represent the true asymptotic nature of the displacement/stress field
there [Moës and Belytschko 2002]. Since there is no singularity at the tip of a cohesive crack, a stress
criterion is often used to judge the initiation and propagation of the crack. Therefore a reliable analysis
of cohesive crack propagation requires an accurate knowledge of the crack tip field. However, although
no singularity exists at the tip of a cohesive crack, the stresses obtained by direct differentiation of the
displacements are not accurate, and cannot be used to predict accurately the growth of the tip, exactly as
in the traction-free cracks.

In [Xiao and Karihaloo 2006a; Karihaloo and Xiao 2008; 2010] we have obtained universal asymptotic
expansions at a cohesive crack tip, analogous to the Williams expansions at a traction-free crack tip
for any normal cohesion-separation law (softening law) that can be expressed in a special polynomial
with integer or fractional powers. This special form ensures that the radial and angular variations of
the asymptotic fields are separable as in the Williams expansions. The coefficients of the expansions
of course depend nonlinearly on the softening law and the boundary conditions. They demonstrated
that many commonly used cohesion-separation laws, e.g., rectangular, linear, bilinear and exponential,
can indeed be expressed very accurately in this special form. They also obtained universal asymptotic
expansions when the cohesive crack faces are subjected to Coulomb friction. In [Liu et al. 2004; Xiao
and Karihaloo 2006b; Xiao et al. 2007] we used this true crack tip asymptotic displacement field as
a crack tip enrichment function in XFEM for the simulation of mode I cohesive crack propagation in
quasi-brittle materials to improve the prediction of the stress field ahead of the cohesive crack even with
a coarse mesh.

In cohesive cracks, the friction is considered for a finite opening. In this sense frictional cohesive
cracks are different from the frictional contact of crack faces, where the crack faces are in contact and
not open. However, in cohesive cracks, although the crack faces are not in contact because of the applied
cohesive stresses, frictional forces can come into play between the faces when there is relative sliding.
Many studies on the mixed mode cohesive cracks can also be found in the literature, but there is doubt
about the accuracy of the cohesion-sliding relation because it is difficult to isolate it from frictional forces
between the rough cohesive crack faces in quasi-brittle materials such as concrete.

In this paper, the Karihaloo–Xiao asymptotic expansions are reviewed for a range of cohesive laws
and their usefulness in the simulation of cohesive crack propagation by XFEM is demonstrated on two
examples of concrete and fibre-reinforced concrete flexural members.

This paper is organised as follows: Section 2 gives cohesive laws of concrete and fibre-reinforced
concrete suitable for the asymptotic analysis of cohesive cracks; Section 3 gives a brief overview of
the mathematical formulation and boundary conditions and of the asymptotic fields for several cases;
Section 4 discusses the implementation of the asymptotic fields in XFEM. Two illustrative examples of
concrete and fibre-reinforced concrete flexural members are given and discussed in Section 5.

2. Cohesive laws for concrete and fibre-reinforced concrete

Cornelissen et al. [1986] introduced the following exponential relation to fit their results from uniaxial
tests on double edge notched normal and lightweight concrete panels:

σ

ft
= f

(
w

wc

)
−
w

wc
f (1), f

(
w

wc

)
=

[
1+

(
C1
w

wc

)3
]

e−C2w/wc (1)
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It fits their experimental results with a high degree of accuracy. In (1), σ and ft are the stress normal to the
cohesive crack face and the uniaxial tensile strength, respectively; w and wc are the opening displacement
of the cohesive crack faces, and the critical opening displacement of the pre-existing macrocrack tip at
which the cohesive crack tip begins to grow; and C1 and C2 are fitting parameters. Details of the test set
up as well as the cohesive relation (1) can be found in [Karihaloo 1995]. Other widely used softening
laws for concrete are the linear relation

σ̂ = 1− ŵ, (2)

the bilinear relation

σ̂y =


1− (1− f̂1)

ŵ

ŵ1
if 0≤ σ̂y ≤ f̂1,

f̂1
1−ŵ1

(1− ŵ) if f̂1 < σ̂y ≤ 1,
(3)

and the power-law relationship
σ̂m

y + ŵ
2m
= 1. (4)

In (2)–(4) we have σ̂y = σy/ ft , ŵ = w/wc, f̂1 = f1/ ft , ŵ1 = w1/wc, and m ranges from 0.20 to 0.27
for different concrete grades. Moreover, the two linear parts of (3) can be rewritten into two linear laws.
The first part can be written into (2) using a new definition of wc as

wc =
w1

1− f̂1
. (5)

The second part can be written into (2) using a new definition of ft as

ft =
f1

1− ŵ1
. (6)

We shall also consider two further cohesion-separation laws not commonly associated with concrete,
namely

σ̂y = 1 (7)

and
σ̂y = 1− ŵ2(L+1), L = 1, 2, 3, . . . . (8)

The cohesion-separation law (7) is akin to the Dugdale [1960] model of plasticity in thin metallic sheets,
which is also frequently used in fibre-reinforced polymeric materials, whereas the law (8) is commonly
used in studying the fracture process zone embedded within the large plastic zone in metals.

For the high-performance fibre-reinforced concrete CARDIFRC [Benson and Karihaloo 2005], tensile
tests showed that the post-peak cohesion-separation curve can be accurately represented by the polyno-
mial

σ̂y = 116.76ŵ7
− 468.08ŵ6

+ 738.12ŵ5
− 612.10ŵ4

+ 272.71ŵ3
− 59.33ŵ2

+ 2.89ŵ+ 1, (9)

in which ft = 16 MPa and wc = 6.5 mm.
In [Xiao and Karihaloo 2006a] we showed that the polynomial

σ̂y = 1+
L∑

i=1

αi ŵ
(2/3)i
−

(
1+

L∑
i=1

αi

)
ŵ(2/3)(L+1) (10)
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not only fits the experimental results of Cornelissen et al. (Equation (1) above), but also many commonly
used cohesion-separation laws, including the rectangular (7), linear (2), and bilinear (3).

The choice of the special form of the cohesion-separation relation (10) involving as it does fractional
powers of ŵ may seem strange but it ensures that the asymptotic fields at the cohesive crack tip are
separable into radial and angular variations exactly as Williams expansions at a traction-free crack tip.

In [Karihaloo and Xiao 2008] we showed that separable asymptotic crack tip fields are also obtainable
for the following cohesion-separation relation not involving fractional powers of ŵ:

σ̂y = 1+
L∑

i=1

αi ŵ
2i
−

(
1+

L∑
i=1

αi

)
ŵ2(L+1), (11)

where L is an integer.

3. Mathematical formulation

The mathematical formulation is fully described in [Karihaloo and Xiao 2008], so that only a very brief
overview will suffice here. For plane problems, the stresses and displacements in the Cartesian coordinate
system centred at the cohesive crack tip can be expressed in terms of two analytic functions φ(z) and
χ(z) of the complex variable z = reiθ :

σx + σy = 2
[
φ′(z)+φ′(z)

]
,

σx − σy + 2iτxy = 2
[
zφ′′(z)+χ ′′(z)

]
,

2µ(u+ iv)= κφ(z)− zφ′(z)−χ ′(z),

(12)

where a prime denotes differentiation with respect to z and an overbar the complex conjugate. In (12),
µ = E/[2(1+ ν)] is the shear modulus; the Kolosov constant is κ = 3− 4ν for plane strain or κ =
(3− ν)/(1+ ν) for plane stress; E and ν are Young’s modulus and Poisson’s ratio, respectively.

For a general plane mixed mode I + II problem, the complex functions φ(z) and χ(z) can be chosen
as series of complex eigenvalue Goursat functions

φ(z)=
∑
n=0

Anzλn =

∑
n=0

Anrλn eiλnθ , χ(z)=
∑
n=0

Bnzλn+1
=

∑
n=0

Bnrλn+1ei(λn+1)θ , (13)

where the complex coefficients are An = a1n + ia2n and Bn = b1n + ib2n . The eigenvalues λn and
coefficients a1n , a2n , b1n , b2n are real.

Substitution of the complex functions (13) into (12) gives the complete series expansions of the dis-
placements and stresses near the tip of the crack. For details, see [Karihaloo and Xiao 2008].

These solutions need to satisfy the proper symmetry conditions along the line of extension ahead of
the cohesive crack, and boundary conditions on the cohesive crack faces. Considering frictional cohesive
crack faces, the boundary conditions on the cohesive crack (0= r = lp) are

σy|θ=π = σy|θ=−π 6= 0, τxy|θ=π = τxy|θ=−π =−µσy|θ=±π , (14)

where µf equals the positive or negative value of the coefficient of kinetic friction, which is assumed to be
constant, depending on the relative sliding direction of the two crack faces. Specifically, µf > 0 when the
sliding displacement δ is positive and µf < 0 when δ < 0. The length of the process (cohesive) zone lp is
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either prescribed (i.e., an initial cohesive zone exists before the loading is applied, and does not propagate
under the present loading) or is determined by the condition ŵ = 1 in the normal cohesion-separation
relation (10) or (11) at the instant of growth of the pre-existing traction-free crack.

The separated crack tip asymptotic solutions can be obtained after satisfying the boundary conditions
(14). The complete asymptotic solutions are composed of two parts, corresponding to integer (λn = n+1)
and noninteger (λn = (2n+ 3)/2) eigenvalues, respectively. These solutions are given in [Karihaloo and
Xiao 2008].

The displacements corresponding to the first integer eigenvalue are

2µu = r{[a I
10(κ − 1) cos θ − 2µf sin θ ] − a I

20(κ + 1) sin θ − 2bI
10(cos θ +µf sin θ)},

2µv = r{[a I
10(κ − 1) sin θ + 2µf cos θ ] − a I

20(κ + 1) cos θ + 2bI
10(sin θ −µf cos θ)}.

(15)

The displacements corresponding to the second integer eigenvalue are

2µu = r2
{a I

11(κ cos 2θ − 2− 3µf sin 2θ)+ a I
21[−(κ+1) sin 2θ+2] − 3bI

11(cos 2θ +µf sin 2θ)},

2µv = r2
{a I

11(κ sin 2θ − 2− 3µf cos 2θ)+ a I
21[(κ + 1) cos 2θ + 2] + 3bI

11(sin 2θ −µf cos 2θ)}.
(16)

The displacements corresponding to the first noninteger (fractional) eigenvalue are

2µu = r3/2
{a f

10[(κ +
1
2) cos 3

2θ −
3
2 cos 1

2θ ] + a f
20[−(κ +

5
2) sin 3

2θ −
3
2 sin 1

2θ ]},

2µv = r3/2
{a f

10[(κ −
1
2) sin 3

2θ −
3
2 sin 1

2θ ] + a f
20[(κ −

5
2) cos 3

2θ +
3
2 cos 1

2θ ]}.
(17)

The displacements corresponding to the second noninteger eigenvalue are

2µu = r5/2
{a f

11[(κ +
3
2) cos 5

2θ −
5
2 cos 1

2θ ] + a f
21[−(κ +

7
2) sin 5

2θ +
5
2 sin 1

2θ ]},

2µv = r5/2
{a f

11[(κ −
3
2) sin 5

2θ +
5
2 sin 1

2θ ] + a f
21[(κ −

7
2) cos 5

2θ +
5
2 cos 1

2θ ]}.
(18)

Here superscript I distinguishes coefficients associated with integer eigenvalues, whereas superscript f
distinguishes coefficients associated with noninteger (fractional) eigenvalues.

For integer eigenvalues the opening displacement (COD) behind the cohesive zone tip and the sliding
displacement of the cohesive crack faces vanish

w = v|θ=π − v|θ=−π = 0, δ = u|θ=π − u|θ=−π = 0, (19)

while σy and τxy are nonzero along the cohesive crack faces with

σ̂y =
σy

ft

∣∣∣ θ=±π
0≤r≤lp

=

∑
n=0

cnrn
= 1+

∑
n=1

cnrn, (20)

where

cn =
(n+ 1)(n+ 2)(a I

1n + bI
1n) cos nπ

ft
(21)

with

c0 =
2(a I

10+ bI
10)

ft
, (22)

since σy|θ=±π = ft at r = 0.
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For noninteger eigenvalues,

σy|θ=±π = 0, (23)

ŵ =
w

wc

∣∣∣∣
0≤r≤lp

=

∑
n=0

d̄nr (2n+3)/2
= d̄0r3/2

+

∑
n=1

d̄nr (2n+3)/2, (24)

δ|0≤r≤lp =−
κ+1
µ

∑
n=0

a f
2nr (2n+3)/2 sin 2n+3

2
π, (25)

d̄n =
κ+1
µwc

a f
1n sin 2n+3

2
π. (26)

Set d0 = d̄0 and dn = d̄n/d0 for n ≥ 1. Then

d0 =−
κ+1
µwc

a f
10, dn =−

a f
1n

a f
10

sin 2n+3
2

π (27)

By enforcing the cohesion-separation law (10) or (11), nonlinear relationships between dn and cn are
obtained. The general relationships can be found in [12]. In [13], these general relationships have been
explicitly derived for the simpler cohesion-separations laws (7) and (8).

4. Implementation in XFEM

To model the cohesive cracks in XFEM [Moës et al. 1999; Strouboulis et al. 2001; Babuška et al. 2003;
Karihaloo and Xiao 2003], a standard local FE displacement approximation around the crack is enriched
with discontinuous Heaviside functions along the crack faces behind the crack tip including the open
traction-free part, and the crack tip asymptotic displacement fields at nodes surrounding the cohesive
crack tip using the PU. The approximation of displacements for an element can be expressed in the form

{
uh(x)
vh(x)

}
=

∑
i∈I

φi (x)
{

u0i

v0i

}
+

∑
j∈J∩I

φ j (x)H(x)
{

b1 j

b2 j

}
+

∑
m∈Mk∩I

φm(x)
{

um

vm

}(tip,κ)
, (28)

where I is the set of all nodes in the element, (u0i , v0i ) are the regular degrees of freedom at node i , φi

is the FE shape function associated with node i , J is the subset of nodes whose support is intersected by
the crack but do not cover any cohesive crack tips, the function H (x) is the Heaviside function centred
on the crack discontinuity, and (b1 j , b2 j ) are the corresponding additional degrees of freedom. Mk is
the subset of nodes that are enriched around the cohesive crack tip k with the asymptotic displacements
u(tip,κ) and v(tip,κ).

The general asymptotic field for each integer eigenvalue has three independent terms, e.g., (15)–(16),
and each noninteger (fractional) eigenvalue has two independent terms, e.g., (17)–(18). The fields for
integer and noninteger eigenvalues need to be used together to produce the crack opening and non-
vanishing tractions.



ACCURATE SIMULATION OF COHESIVE CRACK PROPAGATION USING EXACT ASYMPTOTIC FIELDS 273

In order to improve the accuracy of stresses, we may use eight terms corresponding to one noninteger
eigenvalue and two integer eigenvalues as crack tip enrichment functions in (28){u

v

}(tip)
=8(r, θ)q(tip) (29)

where q(tip) = [a I
10, a I

20, bI
10, a f

10, a f
20, a I

11, a I
21, bI

11]T are additional nodal degrees of freedom at the
enriched nodes to be solved together with nodal displacements of conventional FEM.

In (29), 8 is the matrix formed by (r , θ) terms dependent on the additional unknown coefficients in
(15)–(18).

For a mode I frictionless cohesive crack, the leading asymptotic displacement terms which correspond
to a first noninteger eigenvalue adopted in [Xiao and Karihaloo 2006a] that gives a normal displacement
discontinuity over the cohesive-crack faces can be used as crack tip enrichment functions:

u = r3/2

2µ
a1[(κ +

1
2) cos 3

2θ −
3
2 cos 1

2θ ], (30)

v =
r3/2

2µ
a1[(κ −

1
2) sin 3

2θ −
3
2 sin 1

2θ ]. (31)

There are two possible ways to implement the above expansions in the XFEM. The first is to con-
sider directly the nonlinear relationships between dn and cn and to obtain the cohesive stresses from
the expansions. This avoids iterations on the cohesion-separation law, but requires solution of a system
of algebraic equations with nonlinear constraints. The second way is to treat cn and dn as independent
variables, and satisfy the cohesion-separation law (10) or (11) iteratively. The cohesive stresses in this
case are obtained from the cohesion-separation law but not the expansions. However, these expansions
can be used to smooth the numerically computed results. This way is generally more convenient to
implement [11-13], and will also be used in the two examples below.

5. Examples, results and discussion

In this section, we will analyze typical mode I cohesive cracking problems of plain and fibre-reinforced
concrete using the above asymptotic fields and XFEM. We consider three-point bend beams without any
initial crack (Figure 1, left) made of plain concrete with the constant softening law (7), and of CARDIFRC
with the softening law (9). We actually assume a very small initial crack of length 0.1 mm at the bottom
midpoint of the beam. A state of plane strain is considered for all specimens. The geometrical parameters
are l = 4b, and t = b, where t is the specimen thickness in the out-of-plane direction. The x-direction
of nodes with coordinates (0, 0) and (0, l) and y-direction of the node with coordinates (b, l/2) are
constrained; the central “point” load is distributed over two elements.

We consider first the three-point bend plain concrete beams with b= 150 mm. This problem was solved
in [11] with XFEM using the enrichment functions (30) and (31) for the linear and bilinear cohesion
separation relations (2) and (3). It was shown that very accurate results could be obtained in this way
with a coarse mesh (Figure 1, right) that would have required a much finer mesh with conventional FEM.

We have re-analysed the three-point bend beam using the constant traction law (7) with

ft = 3.14 MPa, wc = 0.03886 mm, G F = 122 N/m (32)
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Figure 1. Left: three-point bend beam. Right: coarse mesh for one half of the specimen
to the left of midspan (note rotation).

in order to study the influence of the shape of the cohesion-separation law on the global response. We
have used the same coarse mesh as before (Figure 1, right). However to improve the accuracy further,
we have used (15)–(18) as crack tip enrichment functions instead of the leading asymptotic displacement
terms of a mode I frictionless cohesive crack (30) and (31) adopted in [Xiao and Karihaloo 2006a].
The nondimensional load-midspan deflection curve is shown in Figure 2 and compared with that of the
bilinear law (loc. cit.). It is clear that although the tensile strength ft and specific fracture energy G F

are the same, the initial branch of the cohesion-separation law produces very different responses: the
constant traction law produces a higher peak load but a more brittle overall response with a significant
snapback.
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Figure 2. The nondimensional load-midspan deflection curves of the three-point bend
beam with constant traction and bilinear softening laws.
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Three-point bend fibre-reinforced concrete beam. We now consider a smaller three-point bend beam
b = 100 mm made of CARDIFRC. We found it convenient to approximate the polynomial form of
its cohesion separation relationship (9) by the bilinear relationship (3) with the material parameters
E = 48 GPa, ft = 16 MPa, w1 = 2.29 mm, f1 = 3.9088 MPa and the Poisson’s ratio ν equals 0.2. The
constraint and loading conditions are identical to the plain concrete beam. The discretised mesh is also
identical to that shown in Figure 1, right, after scaling the coordinates by a factor of 2/3. The asymptotic
displacements (30) and (31) are used as crack tip enrichment functions.

In the simulation, the first increment of the cohesive crack is 2.9 mm; thereafter the cohesive crack
propagates by a segment of length 2 mm after each step. When the cohesive crack has developed over the
entire depth of the specimen at a midspan deflection of about 3 mm, jump functions are used to enrich
all nodes on the crack faces. The simulation is continued by increasing the deflection by 0.5 mm in each
step. The load-midspan deflection curves are shown in Figure 3. The overall shape of the curve, peak
load and the corresponding displacement from the XFEM simulation using the bilinear law (figure inset)
agrees very well with the experiment (thin curve). The effect of large deformation has been ignored in
the present simulation, which may be significant at the final stage. If this effect is taken into account, the
agreement may be further improved.
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Figure 3. Large graph: load-deflection curves from experiments (thin curve) compared
with an approximate method (thick curve/squares) in which the cohesive zone is regarded
as a “hinge” in the central plane. Inset: load-deflection curve from the XFEM simulation.
The agreement with the experimental curve is excellent both in terms of the shape and
the maximum load carrying capacity.



276 BHUSHAN LAL KARIHALOO AND QI-ZHI XIAO

References

[Babuška et al. 2003] I. Babuška, U. Banerjee, and J. E. Osborn, “Survey of meshless and generalized finite element methods:
a unified approach”, Acta Numer. 12 (2003), 1–125.

[Benson and Karihaloo 2005] S. D. P. Benson and B. L. Karihaloo, “CARDIFRCTM - Development and mechanical properties,
III: uniaxial tensile response and other mechanical properties”, Mag. Concrete Res. 57:8 (2005), 433–443.

[Borst et al. 2004] R. Borst, M. G. Gutierrez, G. N. Wells, J. J. C. Remmers, and H. Askes, “Cohesive-zone models, higher-
order continuum theories and reliability methods for computational failure analysis”, Int. J. Numer. Methods Eng. 60:1 (2004),
289–315.

[Cornelissen et al. 1986] H. A. W. Cornelissen, D. A. Hordijk, and H. W. Reinhardt, “Experimental determination of crack
softening characteristics of normalweight and lightweight concrete”, Heron 31:2 (1986), 45–56.

[Dugdale 1960] D. S. Dugdale, “Yielding of steel sheets containing slits”, J. Mech. Phys. Solids 8:2 (1960), 100–104.

[Hansbo and Hansbo 2004] A. Hansbo and P. Hansbo, “A finite element method for the simulation of strong and weak discon-
tinuities in solid mechanics”, Comput. Methods Appl. Mech. Eng. 193:33-35 (2004), 3523–3540.

[Hillerborg et al. 1976] A. Hillerborg, M. Modeer, and P. E. Petersson, “Analysis of crack formation and crack growth in
concrete by means of fracture mechanics and finite elements”, Cement Concrete Res. 6:6 (1976), 773–781.

[Karihaloo 1995] B. L. Karihaloo, Fracture mechanics and structural concrete, Longman, Harlow, Essex, 1995.

[Karihaloo and Xiao 2003] B. L. Karihaloo and Q. Z. Xiao, “Modelling of stationary and growing cracks in FE framework
without remeshing: a state-of-the-art review”, Comput. Struct. 81:3 (2003), 119–129.

[Karihaloo and Xiao 2008] B. L. Karihaloo and Q. Z. Xiao, “Asymptotic fields at the tip of a cohesive crack”, Int. J. Fract. 150
(2008), 55–74.

[Karihaloo and Xiao 2010] B. L. Karihaloo and Q. Z. Xiao, “Asymptotic fields ahead of mixed mode frictional cohesive cracks”,
ZAMM Z. Angew. Math. Mech. 90:9 (2010), 710–720.

[Liu et al. 2004] X. Y. Liu, Q. Z. Xiao, and B. L. Karihaloo, “XFEM for direct evaluation of mixed mode SIFs in homogeneous
and bimaterials”, Int. J. Numer. Methods Eng. 59:8 (2004), 1103–1118.

[Moës and Belytschko 2002] N. Moës and T. Belytschko, “Extended finite element method for cohesive crack growth”, Eng.
Fract. Mech. 69:7 (2002), 813–833.

[Moës et al. 1999] N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing”, Int.
J. Numer. Methods Eng. 46:1 (1999), 131–150.

[Strouboulis et al. 2001] T. Strouboulis, K. Copps, and I. Babuška, “The generalized finite element method”, Comput. Methods
Appl. Mech. Eng. 190:32-33 (2001), 4081–4193.

[Wells and Sluys 2001] G. N. Wells and L. J. Sluys, “A new method for modelling cohesive cracks using finite elements”, Int.
J. Numer. Methods Eng. 50:12 (2001), 2667–2682.

[Xiao and Karihaloo 2006a] Q. Z. Xiao and B. Karihaloo, “Asymptotic fields at frictionless and frictional cohesive crack tips
in quasibrittle materials”, J. Mech. Mater. Struct. 1:5 (2006), 881–910.

[Xiao and Karihaloo 2006b] Q. Z. Xiao and B. L. Karihaloo, “Improving the accuracy of XFEM crack tip fields using higher
order quadrature and statically admissible stress recovery”, Int. J. Numer. Methods Eng. 66:9 (2006), 1378–1410.

[Xiao et al. 2007] Q. Z. Xiao, B. L. Karihaloo, and X. Y. Liu, “Incremental-secant modulus iteration scheme and stress recovery
for simulating cracking process in quasi-brittle materials using XFEM”, Int. J. Numer. Methods Eng. 69:12 (2007), 2606–2635.

[Zi and Belytschko 2003] G. Zi and T. Belytschko, “New crack-tip elements for XFEM and applications to cohesive cracks”,
Int. J. Numer. Methods Eng. 57:15 (2003), 2221–2240.

Received 28 May 2010. Revised 27 Aug 2010. Accepted 8 Sep 2010.

BHUSHAN LAL KARIHALOO: karihaloob@cardiff.ac.uk
School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom

QI-ZHI XIAO: qizhi.xiao@lusas.com
LUSAS FEA Ltd, Forge House, 66 High Street, Kingston-upon-Thames, KT1 1HN, United Kingdom

mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

msp

MECHANICS OF MATERIALS AND STRUCTURES:
A SIMULATION-DRIVEN DESIGN APPROACH

LENNART KARLSSON, ANDREAS PAHKAMAA, MAGNUS KARLBERG,
MAGNUS LÖFSTRAND, JOHN GOLDAK AND JONAS PAVASSON

Engineering product development has developed considerably over the past decade. In order for industry
to keep up with continuously changing requirements, it is necessary to develop new and innovative
simulation methods. However, few tools and methods for simulation-driven design have been applied in
industrial settings and proven to actually drive the development and selection of the ideal solution. Such
tools, based on fundamental equations, are the focus of this paper.

In this paper the work is based on two cases of mechanics of materials and structures: welding and
rotor dynamical simulations. These two examples of simulation-driven design indicate that a larger
design space can be explored and that more possible solutions can be evaluated. Therefore, the approach
improves the probability of innovations and finding optimal solutions.

A calibrated block dumping approach can be used to increase the efficiency of welding simulations
when many simulations are required.

1. Introduction

Engineering product development has evolved considerably over the past decade. The vision of the
sustainable society and a global context for many industries is now forcing manufacturing companies
to develop innovative ways of developing their products. In addition, the product life-cycle will likely
be shorter in the future, partly because customers will demand shorter delivery times. Suppliers will
have to be more efficient than today and be able to assemble products from a large number of parts
from subsuppliers. Increasingly, the value of the product originates outside the physical artifact (the
hardware), in the form of services and add-ons. Instead of hardware ownership, other needs such as
availability, productivity and risk minimization increasingly need to be catered for. In such a challenging
environment and in order for industry to keep up with demand, it is necessary to develop new and
innovative simulation methods, knowledge management methods and tools and methods for distributed
work, to name a few.

In this paper, the focus is mainly on simulation-driven design applied on welding simulations (me-
chanics of materials) and rotor dynamical design (mechanics of structures). Below, the basic equations
for modeling and simulation of welding and the basic equations for modeling and simulation of nonlinear
dynamics are solved. For these two important problems, the way in which this fundamental modeling
can effectively be used in simulation-driven product development is demonstrated.

Keywords: simulation-driven design, calibrated block dumping, welding simulations, rotor dynamical simulations.
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Planning // Concept
development

// System-level
design

// Detail
design

// Testing and
refinement

// Production
ramp-up

Figure 1. An example of a product development process.

Most industrial companies of any size follow some development process when developing their prod-
ucts. Figure 1 shows an example of such a development process from planning to production ramp-up
[Ulrich and Eppinger 1995].

Product development literature provides a broad view of how to understand customer needs, develop
and sell products, and includes discussions concerning best practices [Ulrich and Eppinger 1995; Wheel-
wright and Clark 1992; Cross 2000]. For example, Smith and Reinertsen [1998] offer a general view and
aim to describe methods for generating a product to meet customer needs. Recently, product development
processes have been extended to cover the whole process from needs to recycling.

Within the hardware product development domain, numerous tools have been developed to support
the creation of excellent goods; e.g., computer aided engineering for geometric representation [LaCourse
1995] and the finite element method for stress calculation, exemplified in this paper. Typically, this
work has been about making knowledge explicit and expressible and support tools have over time been
developed to aid the creation of the hardware.

Simulations are ideally supposed to be used in the earliest stages of the development process. Often,
however, there are few analyses involved until the detailed design stage is reached. At this stage simula-
tions are often used in a verifying sense, meaning that the designer submits a model to the analysts who
perform the analysis and then deliver the results to the designer. The results are used by the designer to
verify whether or not the proposed design will meet the criteria. If not, the designer needs to upgrade
the initial design, and then propose a new design for the analysts who perform a new simulation and so
on, see Figure 2.

This sequential simulation usage workflow in combination with little usage of simulations in the earli-
est stages of the development process gives an ineffective product development process. To overcome this
problem strategies for simulation-driven development have been proposed by some researchers [Courter
2009; Sellgren 1995; Wall 2007]. Naturally, such work has been ongoing for a relatively long time, as
exemplified by [Hansen 1974] and [Gero 1981]. The development processes discussed in literature are
often analyzed from an abstract point of view, while few reports exist on how simulation tools shall be
designed and used to enable such methodologies. That is, few tools and methods have been applied in
industrial settings and proven to actually drive the development and selection of the ideal solution.

Given these challenges, this paper is focused on briefly introducing the area of simulation driven
design (SDD) [Courter 2009], and based on that approach describing a block dumping technique applied
in welding simulations. Another application of the SDD approach is presented in the application area of
rotor dynamical design.

Proposed
detailed design

// Analysis // Redesign // Analysis // Redesign

Figure 2. Sequential verifying simulation usage workflow.
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Thus, the objective of this paper is to show how tools for modeling and simulation of mechanics of
materials and structures shall be designed and used to enable simulation-driven product development.
The objective is exemplified through two cases of mechanics of materials and structures: welding and
rotor dynamical simulations.

2. Simulation-driven design methodology

In this paper a simulation-driven methodology is used [Bylund 2004; Goldak et al. 2007]. Bylund states
that one way of reaching simulation-driven design is by providing simulation tools that can be used by
the designers themselves. Designers thereby avoid having to send models and results back and forth,
often among several different people. For designers not used to analysis work to be able to perform the
necessary analyses, tools that are intuitive and include expert knowledge through equations of mechanics
of materials and structures are required. The results from the analyses must further be derived quickly
and must be easy to interpret. Hence, the demands on the simulation tools affect the preprocessing, the
solver and the postprocessing.

3. Simulation-driven design of welded structures

Welding is one of the most commonly used methods of joining metal pieces. In fusion welding, the
metal pieces are heated until they melt together, resulting in strong coupling between thermal, mechan-
ical and metallurgical (microstructural) properties. Due to the complexity of the welding applications,
the governing equations as well as the thermal, mechanical and metallurgical couplings, computational
support is necessary for prediction of distortions and residual stresses. The development of the field
of computational welding mechanics has been described in, for example, [Karlsson 1986; Goldak and
Akhlaghi 2005; Lindgren 2001a; 2001b; 2001c; 2007]. Much research has focused on predictions of
residual stresses and distortions [Chen and Sheng 1992; Lee et al. 2008; Ueda et al. 1988; Ueda and
Yuan 1993].

Several reports exist regarding validation of predictions of residual stresses and deformation [Barroso
et al. 2010; Karlsson et al. 1989; Mochizuki et al. 2000; Ueda et al. 1986]. The European Network
on Neutron Techniques Standardization for Structural Integrity (NeT) has a benchmark problem for a
single weld bead-on-plate specimen [Truman and Smith 2009]. By using finite element simulations, NeT
members have predicted and measured residual stresses and thermal fields of this benchmark problem by
different methods, the results of which have been compiled [Smith and Smith 2009a; 2009b]. In those
reports, different sources of errors are discussed, and it was also found that “there is much room for
improvement” regarding prediction accuracy.

In product development, residual stresses and distortions often need predicting to verify alignment
tolerances, strength demands, fatigue requirements, etc. It is important, for example, to keep track of the
residual stress- and deformation history when simulating a sequence of manufacturing processes [Deng
et al. 2009; Åström 2004]. Different approaches have been developed for how to use welding simulations
to predict suitable sequences of weld paths. Troive et al. [1998] compared different predefined paths,
while Voutchkov et al. [2005] used surrogate models to solve a combinatorial weld path planning problem.
Efforts have further been made to show effects of deposition sequences regarding, for instance, residual
stresses and distortions [Ogawa et al. 2009]. Although a lot of research has been conducted on welding
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simulations, there is still a need for development of more efficient welding simulations and methodologies
for using such simulations to support design processes.

In this article, a strategy for improved efficiency of welding simulations is used as proposed in [Pahka-
maa et al. 2010], aiming at developing a simulation-driven design methodology for welding simulations.
In this work, the modeling and simulation software VrWeld from Goldak Technologies Inc. [Goldak
Technologies 2010] has been used to demonstrate the proposed strategy.

3.1. Welding simulation theory. The field of welding simulations described in this paper (computational
welding mechanics) is partially built upon earlier work within the fields of thermal, mechanical and metal-
lurgical (microstructural) properties of materials. The principles and applications of welding simulations
have been described in [Goldak and Akhlaghi 2005; Lindgren 2001b]. Welding simulation is a good
example of how mechanics of materials and structures can be put to practical use with the support of
computers. The essential features of computational weld mechanics (CWM) are [Goldak 2009]:

• It requires solving the nonlinear, coupled 3D transient partial differential equations (PDEs) for heat
flow (conservation of energy), microstructure evolution and stress-strain evolution (conservation of
momentum).

• The material properties are temperature, history dependent and involve phase changes.

• The welding process usually adds material (filler metal), making the geometric domain a time-
dependent free surface problem.

• The boundary conditions applied by fixtures, clamps and tack welds are complex and transient.

• The geometry of welded structures is often complex with many parts.

• Modeling the heat source of the arc is itself complex.

3.1.1. Welding simulation software (VrWeld). VrWeld, part of the VrSuite software package, is a finite
element program used to simulate welding processes. VrSuite [Goldak Technologies 2010] uses operator
splitting to solve the system of equations needed to model manufacturing processes such as welding and
heat treating and the in-service behavior of assemblies of such manufactured parts. Each equation in
the system is solved with the algorithm, domain, parameters, initial conditions, boundary conditions,
length scale and time scale that best approximate the physics of the phenomena that the equation models.
Maps are created to map data from this equation to each equation that it is coupled to. Each equation
is solved iteratively using solvers such as frontal, multifrontal, ICCG, GMRES, MG and AMG [Saad
1996]. Limits and bifurcation points are computed using the Wriggers–Simo algorithm [Wriggers and
Simo 1990]. A version of Crisfield’s arc-length method [Ramm 1981] is used to follow the path of the
solution in nonlinear analysis. The meshing is largely automated. Domain decomposition and adaptive
meshing play an important role. Solvers run in-core using processors with 8 GB of RAM. The CPU-
intensive code is written in C++. The high-level code is written in a scripting language such as Tcl/Tk
or HTML.

3.1.2. Block dumping (fast simulations in VrWeld). Traditional transient welding simulations often use
a moving heat source such as the Gaussian double ellipsoid [Goldak and Akhlaghi 2005]; see Figure 3.
This approach has proved to accurately predict the temperature history, residual stresses and welding
distortions [Goldak and Akhlaghi 2005; Lindgren 2001a; 2001b; 2001c; 2007]. It is suggested that the



MECHANICS OF MATERIALS AND STRUCTURES: A SIMULATION-DRIVEN DESIGN APPROACH 281

Figure 3. Double ellipsoid heat source with Gaussian heat distribution [Goldak and
Akhlaghi 2005].

heat source may move no more than half of the weld pool length to function properly in three dimensional
welding simulations [Goldak et al. 1986]. This suggestion causes a transient welding simulation that
uses a moving heat source to be quite time consuming, even with present-day computational power.
The problem gets even more difficult when a large design space is to be explored, meaning that many
simulations are required.

A faster way to simulate the thermal history of a weld is the block dumping method [Goldak et al.
1986], also referred to as the prolonged Gaussian heat source [Cai and Zhao 2003]. The block dumping
approach heats the whole weld, or large pieces of it, in a single time step. This approach can reduce
the number of time steps in the welding simulation significantly and thereby reduce the total calculation
time without any appreciable decrease in accuracy [Pahkamaa et al. 2010]. With the block dumping
technique, the same parameters as the Gaussian Ellipsoid heat source are used to calculate the amount
of heat distributed to each element, i.e., voltage, current, efficiency, welding speed and parameters a1,
a2, b and c in Figure 3. The total amount of heat distributed to the model is identical to the heat input
of a traditional transient simulation. The difference is the time in which the heat is diffused. In each
block dump, the amount of heat added is exactly the same as the heat that would be added in a transient
analysis for this length of weld, and it is added in exactly the same way with the same transient time steps.
However, no heat diffusion is done until all heat has been added for this length of weld. Then one heating
time step is done with these applied nodal thermal loads to heat this length of weld. Following this heating
time step, the heat equation is solved for the structure as it cools with exponentially increasing length of
time steps. Usually, 4 to 6 cooling time steps are applied. The designer can choose to allow each block
dump to cool to ambient temperature or use a shorter cooling time in which the structure does not fully
cool, the latter approach is used in this paper. In the heating and cooling steps, the thermal-elastoplastic
stress analysis problem is solved. This process is applied for each block dump in the sequence of block
dumps specified by the designer.

3.2. Simulation strategy. The welding simulation strategy proposed in [Pahkamaa et al. 2010] (Figure 4),
which will be verified in this study, reduces the calculation time for welding simulations by replacing the
traditional moving heat source with a calibrated block dumping heat source. The block dumping heat
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1. Welding and material parameters. Gather information about the real welding process such as welding
method, welding speed, welding power and welding efficiency. The material parameters include thermal
and mechanical properties.

��

2. Geometry and preprocessing. Create CAD geometries of welded parts and possibly each weld and
import them into the welding simulation software (STL-files in VrWeld) where the initial simulation mesh
is created. Another approach is to create the initial mesh with external software and then import it into the
welding simulation software (ABAQUS is one example of a mesh format supported in VrWeld). Define me-
chanical and thermal constraints, material models and weld paths. Apply boundary conditions and external
loads.

��

3. Heat source and mesh calibration. (a) Calibrate the moving heat input model, for example, by results
from thermocouple measurements or weld cross-section samples. (b) Calibrate the mesh for a suitable com-
promise between accuracy and calculation time. This is normally done by running 3 or more simulations
with varying mesh density, and then evaluating how the result converges.

��

4. Block dump calibration. Run a series of block dump weld simulations with varying numbers of block
dumps. Compare the results from a moving heat source simulation with the block dump simulation results
to evaluate how many block dumps are needed to achieve the needed accuracy of the simulation. If a moving
heat source simulation will be too time consuming, the needed number of block dumps can be decided by
observing result convergence for an increasing number of block dumps. The level of accuracy is often
case-specific. Therefore, the decided number of block dumps can be applicable for similar products.

��

5. Design Space Exploration (DSE). Use the calibrated block dumping simulation to explore the design
space: welding sequences, welding parameters, weld geometries, designs, and so on. The use of design of
experiments (DoE) or optimization can further increase the efficiency of the DSE.

��

6. Verifying results with moving heat source simulation. Compare a portion of the result from the DSE
to corresponding simulations with a moving heat source or with an increased number of block dumps to
ensure that results obtained in the previous step are accurate enough.

��

7. Physical testing and/or manufacturing. Proceed with physical testing and/or manufacturing based on
the results achieved from the welding simulations. The amount of physical testing should at this stage have
been reduced compared to a situation where no welding simulations have been performed.

Figure 4. Suggested welding simulation strategy for simulation-driven design. From
[Pahkamaa et al. 2010].
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Figure 5. Rear frame and rear axle bridge.

source is calibrated to give a good compromise between simulation accuracy and calculation time, thus
allowing a larger design space to be explored during a given period of time. A rear axle bridge from
a Volvo Construction Equipment wheel loader is used as a demonstrator case to show that steps 1–6
work on an industrial application. Twenty different welding sequences are compared to find the welding
sequence that gives the smallest welding distortion at key positions.

3.3. Welding case study. The object of this case study is a rear axle bridge from a Volvo Construction
Equipment wheel loader. The axle bridge is positioned in the rear frame as in Figure 5. An axle working
as a pivot for the rear axle assembly is mounted in the two holes in the axle bridge. The axle is supported
by journal bearings, which are lubricated with oil from the rear axle differential. The concentricity
between the two holes and the parallelism and perpendicular alignment between the plates are two im-
portant tolerance demands for the axle bridge. Due to these requirements, it is important that the welding
process used to manufacture the axle bridge does not introduce excessive deformations. Therefore, the
aim of this case study is to derive a suitable welding sequence that minimizes the welding distortion in
the axle bridge. Identifying the proper welding sequences is done by use of the proposed simulation
strategy; see Figure 4.

3.3.1. Welding and material properties. The three plates are joined by welds, marked a–d in Figure 6;
the welds have a throat size of 6 mm. The axle bridge is manually tack-welded with 40 mm long tack
welds at start, mid and end of the four welds. The tack welding is performed in a separate fixture; the
tack welded axle bridge is then positioned in the welding fixture shown in Figure 6. An automated MAG
welding process then applies the four welds, with the following parameters:

Power : 10880 W (34 V, 320 A)
Efficiency : 85%

Welding speed : 37 cm/min

3.3.2. Geometry and preprocessing. A CAD model of the axle bridge assembly was provided by the
manufacturer. This CAD model was imported to Siemens PLM NX6, where small features were re-
moved to ease the meshing process. The idealized part shown in Figure 7 was exported to the welding
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Figure 6. Real axle bridge placed in its welding fixture. The weld joints (a–d) are
marked with white lines; welds a and c are placed underneath the center plate.

simulation software (VrWeld) in STL-format. The simulation model was then created in VrWeld by
defining weld joints, assigning materials, creating an initial mesh and assigning initial conditions and
boundary conditions, etc. The material model described in [Andersson 1978] was used for both plates
and filler metal. The used fixture shown in Figure 7 prevents rigid body motions (locks six DOFs)
without restraining the growth/shrinkage of the plates. This fixture modeling method was used, since the
real fixture only clamps one of the plates, and should therefore not have a large impact on the welding
distortions. The welding distortion in the rear axle bridge was measured as the global displacement of
points P1 and P2. The global ambient temperature is set to 300◦ K.

Figure 7. Idealized axle bridge, evaluation points and constraints.
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Figure 8. Comparison of weld cross section photograph and simulated heat input.

3.3.3. Moving heat input calibration. The moving heat input model was calibrated by use of a weld
cross section photograph, see Figure 8. The trial and error method was used to find suitable heat input
parameters that describe the shape of the Double Ellipsoid heat source. The calibrated parameters are as
follows (see Figure 3):

a1 = 10 mm a2 = 6 mm b = 6 mm c = 8 mm

3.3.4. Mesh and block dump calibration. Three models with different mesh density were created, as
follows:

Mesh # Volume elements Elements in weld joint (cross-section)
1 13237 5
2 27142 7–9
3 42665 12–15

For each of them, seven welding simulations were run, with an increasing number of block dumps (4,
8, 15, 20, 30, 40, 50). Ten cooling time steps were used in each block dump simulation. The “Fast
Simulation” option in VrWeld uses the same number of block dumps for all welds. Therefore, a full-
length weld will be welded with the same number of block dumps as a half-length weld. Thus, a welding
sequence with full-length welds and, for example, 20 block dumps will be simulated in 90 time steps
(4 welds × 20 block dumps + 10 cooling time steps), while a welding sequence with half-length welds
will be simulated in 170 time steps (8 welds × 20 block dumps + 10 cooling time steps). The case used
to calibrate the mesh and number of block dumps has four half-length welds and two full-length welds
(see Appendix).

The absolute displacement of points P1 and P2 (see Figure 7) was used to evaluate the results. Figure 9
shows results for point P1, similar results were obtained for point P2. From Figure 9 it can be concluded
that there is little difference in results between mesh 2 and 3, while the results from mesh 1 deviate
significantly. The difference between mesh 2 and 3 is only 0.1 mm when 40 block dumps are used. Based
on these results, mesh number 2 and 40 block dumps will be used for the DSE. The chosen simulation
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Figure 9. Mesh and block dump calibration. There is a difference of 0.1 mm between
Mesh 2 and Mesh 3 when 40 block dumps are used.

Figure 10. The chosen simulation mesh has 8 elements across the weld joint and 27142
elements in total.

mesh is shown in Figure 10. To verify predictions made by use of the chosen mesh and number of block
dumps, the results should be compared with the results from simulations with a moving heat source. If
the same best welding sequence is being predicted by the two models, the chosen mesh and number of
block dumps are considered to be sufficient.

3.3.5. Design space exploration. A structure that has four welds, such as the axle bridge, can be welded
in 384 (24

× 4!) different ways. The large number of combinations is possible when allowing the welds
to be laid in any order (4!) and in both directions (24). If only half welds are allowed, the number of
possible welding combinations grows to about 10 million possible combinations (28

× 8!). Design space
exploration (DSE) refers to exploring the set of possible welding combinations and selecting a subset
which meets the requirements. In this case, it is not practical to explore the entire design space. To
show how welding sequences influence the displacements in P1 and P2, twenty different sequences are



MECHANICS OF MATERIALS AND STRUCTURES: A SIMULATION-DRIVEN DESIGN APPROACH 287

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10
Displacement P1

Sequence number

D
is

p
la

c
e

m
e

n
t 

[m
m

]

 

 

x
y
z
abs

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10
Displacement P2

Sequence number

D
is

p
la

c
e

m
e

n
t 

[m
m

]

 

 

x
y
z
abs

Figure 11. Comparison of displacement of points P1 (top) and P2 (bottom) for welding
sequences 1–20. The displacement is plotted as x-, y- and z-components and absolute
displacement.

simulated; see the Appendix. The results from the twenty welding sequences are shown in Figure 11.
Here, the displacement in the x-, y- and z-directions as well as the absolute value is presented for points
P1 and P2 for each welding sequence. These results show that welding sequences 9, 10, 16 and 17 give
the smallest displacements for P1 and P2, while welding sequences 14, 15, 18 and 19 give the largest
displacements in these points. To further illustrate the difference between the welding sequences, the
sum of the absolute displacement of points P1 and P2 is shown in Figure 12. This figure shows that
welding sequences 16 and 17 give the smallest total displacement (3.8 mm), while welding sequences 15
and 19 give the largest total displacement (13.0 mm). Figure 13 shows the displacement field amplified
20 times for welding sequences 17 and 15.

3.3.6. Verification of simulation strategy. To ensure that the chosen number of block dumps gives suf-
ficient accuracy, it is suggested that a small number of moving heat source simulations are performed.
In this case, to show that high accuracy has been achieved with the block dumping method, simulations
with a moving heat source for all twenty welding sequences were conducted. It was found that the block
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Figure 12. Total displacement calculated as the sum of the absolute displacement of
points P1 and P2. Notice that welding sequences 16 and 17 give the smallest total dis-
placement (4 mm), while welding sequences 15 and 19 give the largest total displacement
(13 mm).

Figure 13. Comparison of best (#17) and worst (#15) welding sequences. Colors indi-
cate displacements, given in mm on the scale on the right and magnified 20 times in the
geometric representation.

dumped simulations deviate by 0.7 mm (mean value) compared to the moving heat source simulations.
Both simulation approaches predict the same welding sequences to give the smallest and largest welding
distortions in P1 and P2. Welding sequences 1–4 are welded with full-length welds only and simulated
in 170 time steps. Welding sequence 20 is welded with two full-length welds and four half-length welds
and simulated in 250 time steps. Welding sequences 5–19 are welded with eight half-length welds and
simulated in 330 time steps. The moving heat source is simulated in 450 time steps. Hence, the number
of time steps has then been reduced by 60% (welding sequences 1–4), 45% (welding sequence 20) and
25% (welding sequences 5–19).

3.4. Welding case discussion. This case study has shown that calibrated block dumping simulations
can reduce the calculation time compared to moving heat source simulations. The results from the block
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Figure 14. Comparison between block dumped and moving heat source simulations.

dumped simulations were able to point out the best (16 and 17) and worst (15 and 19) welding sequences
(Figure 14), which was identical to the results obtained with the moving heat source simulations. The
block dump calibration and mesh calibration for this case study was performed by running 21 simulations.
Thus, using the calibrated block dump method to simulate as few as twenty welding sequences will not
save much time. The strength of this method becomes obvious when a larger design space is explored,
when hundreds or thousands of welding simulations are performed.

This work is done on the assumption that the 3D transient welding simulations approach used in this
paper is able to predict residual stresses and welding distortions correctly. Future work should involve
validation of the simulation results obtained in this paper.

This case study has shown that it should be possible to use a simulation-driven design approach in
the design process regarding welded structures. Twenty different welding sequences were compared,
showing that welding sequences 16 and 17 gave the smallest welding distortions in P1 and P2 and could
therefore be considered as the best suited for this structure.

Future work should explore the possibilities of combining the calibrated block dumping simulations
with design of experiments or optimization routines to further rationalize the design process of welded
structures. A computer program made to generate suitable welding sequences to be explored would
significantly decrease designer manual labor. The welding sequences listed in Table 2 where defined
manually, which was a quite time consuming task.

It would also be valuable to perform a similar case study where the block dumps are defined by their
length instead of the number of block dumps per weld.

4. Simulation-driven rotor dynamical design

Few CAE systems support rotor dynamical analysis, and if they do they have restricted functionality.
Therefore, specialized software is commonly used when designing rotating machinery. These specialized
rotor dynamical codes often include a lot of functionality, but for nonexperts, they can be difficult to use.
In order to facilitate simulation-driven design, an in-house rigid body rotor dynamical demonstrator code
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called RESORS has been developed at Luleå University of Technology, Division of Computer Aided
Design. The aim is to enable nonexperts to conduct advanced nonlinear rotor dynamical analyses very
early in the product development process. By this strategy, sending analysis requests to experts can be
avoided, allowing possibilities for exploring a larger part of the design space.

4.1. Rotor dynamical theory. Rotor dynamical theory was basically developed during the last century,
but started earlier, with Rankine [1869], who incorrectly predicted that the first critical speed could not
be exceeded. In the late nineteenth century, de Laval practically proved (see [Childs 1993]) that rotating
machinery can run supercritically, which was later verified by Jeffcott [1919]. Since it was introduced, the
Jeffcott rotor model has been widely used for different scientific purposes; see for example [Childs 1982;
Karlberg and Aidanpää 2003; Karlberg and Aidanpää 2004]. In linear rotor dynamics, eigenfrequencies
depend on the spin speed due to the gyroscopic effect. In addition, the direction of the vibration is
important, and forward whirl therefore has to be distinguished from backward whirl [Genta 1999]. Some
rotor dynamical systems become strongly nonlinear due to for example clearances [Chu and Zhang 1997;
Edwards et al. 1999; Ganesan 1996; Goldman and Muszynska 1995; Muszynska and Goldman 1995],
processes [Karlberg and Aidanpää 2007], bearings [Harris 1991] etc. Hence, in rotor dynamical software,
it is important to enable predictions of linear as well as nonlinear analysis of rotating machinery

4.2. Simulation strategy. To show how RESORS rationalizes a design process at early stages of the
product development process, an SDD approach is applied on an industrial development case. The SDD
approach can (in this example) be divided into three steps, starting with gathering of information —
requirements, limitations, parameter ranges, etc. Even if nonlinear systems are to be designed, the
designer should start with a linearized simulation model. This model is primarily used to decide the mesh
density and to set suitable damping but also to get an understanding of critical speeds and mode shapes
(which may be of interest even in nonlinear systems). To avoid vibration problems due to nonlinearities,
at the final step, a fully nonlinear simulation model is studied. Since common postprocessing methods
fail in nonlinear systems (Campbell diagrams, critical speeds, mode shapes, etc.), other methods are
required.

4.3. Rotor dynamical case study. In every product development project there are limits to the design
space. Before starting modeling and simulation work, information regarding design space boundaries
needs to be gathered.

4.3.1. Information gathering. In the industrial case used for this paper an overhung rotor system will
be designed. The shaft will be supported by radial bearings in order to enable axial displacement during
operation. The machinery will be powered by an electrical motor running at 1500 rpm. Earlier concepts
were subcritical, but in the scenario presented here a supercritical machine is to be developed.

In previous designs, bearings without clearance were used. Table 1, on the next page, lists the needed
properties from the latest design, which will be used as a starting point.

The damping ratios are between 0.6% and 16% when considering all vibration modes. In this scenario
it is assumed that all parameters shown in Table 1 are fixed except for the rotor mass, the pedestal stiffness,
the clearance and the allowed rotor mass. The rotor mass is allowed to be varied between 1800 kg and
2200 kg, the pedestal stiffness between 107–109 N/m and the clearance between 0.01–0.1 mm.
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Shaft : Density 7800 kg/m3

Young’s modulus 200 GPa
Length 1 m
Radius 0.1 m

Pedestals : Shaft position 0 / 0.8 m
Type Radial, no clearance
Isotropic stiffness 108 N/m (both)

Rotor : Shaft position Right end
Mass 2000 kg
Polar mass I 200 kg m2

Transversal mass I 100 kg m2

Load : Rotor unbalance 10−4 m
Gravity 9.8 m/s2

Table 1. Properties of latest design (I = moment of inertia).

4.3.2. Analysis by use of linearized simulation model. To rapidly converge on suitable solutions a lin-
earized simulation model, without clearance, is initially used. The objective of this analysis is to find
suitable pedestal stiffness and rotor mass that give a supercritical system.

Preprocessing. Figure 16a (next page) shows the graphical user interface (GUI) for the preprocessing
step in RESORS. Here, the designer is requested to enter data for the model (concept) to be analyzed.
The GUI is designed so that the in-data fields are directly coupled to physical properties, and thus easy to
understand. The designer enters data about the shaft, the rotor (disc), the pedestals (supporting structure),
the load, the spin speed and damping. To simplify implementation of pedestal data, different types of
supporting structures (stiffness matrices) are predefined for the designer to test (see Figure 16b). Another
common issue to deal with is damping. In RESORS (and other commercial software) proportional damp-
ing is implemented and hence two parameters, α and β, can be chosen to get suitable damping. The choice
of α and β usually requires some experience; therefore, a procedure has been implemented in RESORS
showing the minimum and maximum damping ratio for each set of parameters. This gives direct feedback
to the designer, who can then choose suitable ranges for the damping ratios (see Figure 16c). Entering
all in-data to the preprocessor typically takes a few minutes.

Mesh convergence. In the next step of the design process it is suggested that the mesh density is checked
by means of variation of eigenvalues. Figure 15 shows the preprocessed model (by use of in-data from
Table 1) with three different mesh densities: two, seven and fifteen elements.

Eigenfrequencies are derived without numerical simulation in time domain. In RESORS, the deriva-
tion of Campbell diagrams is therefore implemented directly in the postprocessor and is usually obtained
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Figure 16. (a) Preprocessing GUI in RESORS. (b) Pedestal selection. (c) Damping ratio selection.

within a few seconds. Figure 17 (page 293) shows how the eigenfrequencies as a function of spin speed
(Campbell diagram) depend on the mesh density of the case studied (the black dots, triangles and plus
markers). From this figure it can be concluded that, except for the second forward whirl mode at large
spin speeds, the eigenfrequencies show little mesh density dependency.

In this scenario, a machine running just above the first forward whirl frequency is to be designed and,
hence, even the coarsest mesh gives enough accuracy and will therefore be used henceforth.

Selection of pedestal stiffness and rotor mass. When a suitable mesh density has been obtained, the
designer can test different concepts by changing parameters in the preprocessor, conduct numerical sim-
ulation (when needed) and postprocess and analyze the results. The blue ring in Figure 17 shows that the
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Figure 17. Campbell diagram for different mesh densities.

first critical speed, i.e., the intersection between the unbalance excitation frequency and the first forward
whirl frequency (dashed line and black dotted line in Figure 17), is somewhere between 25Hz and 30 Hz.
Since a supercritical machine will be designed, the critical speed must be decreased below 25 Hz. The
red lines in Figure 17 show the Campbell diagram when increasing the mass to 2100 kg and decreasing
the pedestal stiffness to 5×107 N/m. The gray ring in Figure 17 shows that, by these design justifications,
the critical speed is around 20 Hz and, hence, the machine will run supercritically. A set of parameters
that give a suitable Campbell diagram can typically be found in a few minutes.

4.3.3. Analyses by use of fully nonlinear simulation model. Karlberg [2010] showed that the pedestal
stiffness may depend on the amount of clearance in bearings. Karlberg et al. [2010] showed that this
clearance can give rise to a significant decrease in resonance frequencies. It was also shown that due
to clearance, the unbalance may excite both forward and backward whirl motion. Hence, in order to
indicate that the machine will run supercritically as predicted by the linearized model, a fully nonlinear
analysis including the clearance must be conducted.

Analysis of clearance dependency. In this step of the analysis process, the designer returns to the prepro-
cessor and changes the linear pedestals with pedestals including bearings with clearance, which is done
from drop-down lists. In RESORS the possibility of varying parameters has been implemented. This
is done by choosing the parameter to be varied from a drop-down list, and then entering the parameter
ranges and where on the model to store the data. Since the system is nonlinear, regular analysis measures
such as eigenfrequencies cannot be used. Therefore, a transfer function approach has been implemented
in RESORS, where random load is applied to the model leading to vibrations, which are measured.
Figure 18 shows the transfer function of θ̇ as a function of the bearing clearance at the rotor when a
random load was applied in the x-direction at the rear bearing. Red indicates high vibration amplitudes,
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Figure 18. Resonance frequencies as a function of bearing clearance.

while blue indicates low vibration amplitudes. The model has a spin speed of 25 Hz Figure 18 shows
that the first four eigenfrequencies at zero clearance are 16 Hz, 18 Hz, 58 Hz and 92 Hz.

Figure 18 shows that when the clearance in the bearings is increased to 0.2 mm the resonance frequen-
cies decrease up to 20 Hz. The resonance frequencies within this clearance range do not coincide with
the spin speed, but a clearance below 0.1 mm is still recommended, since the first multiple of the spin
speed (50 Hz) may also excite the system and hence cause resonance. In order to verify that a suitable
design has been developed, in the final step the designer runs an unbalance response simulation of the
fully nonlinear model. The dashed line in Figure 19 is the unbalance response for the largest acceptable
clearance (0.1 mm). As a reference, the unbalance response of the linearized model is also shown (solid
line in Figure 19). Unlike the linear model, analysis of the nonlinear unbalance response shows that
critical speeds can occur at more intersections than between the spin speed and the first forward whirl
frequency.

The time needed to conduct the nonlinear analysis described above is usually around one hour.

4.4. Rotor dynamical case discussion. To show how simulation-driven rotor dynamical design can be
conducted a tool named RESORS has been developed and evaluated. The proposed methodology consists
of three steps: gathering of information, analysis by use of linearized models, and by use of nonlinear
models.

In RESORS, information based on expert knowledge has been implemented, such as different pedestal
types, choice of damping parameters, postprocessing tools as transfer functions for nonlinear systems,
etc., meaning that the designer does not have to bother about rotor dynamical details. The GUI of
RESORS has further been designed to be intuitive and easy to use, featuring e.g., clear descriptions
of in-data fields and units, drop-down lists for specific choices, few steps in pre and postprocessing,
etc. The post processor in RESORS is designed so that important engineering measures are directly
derived without further data processing, e.g., Campbell diagrams, mode shapes, transfer functions and
load responses (maximum vibration amplitudes).
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Figure 19. Unbalance response of linearized model (solid line) and nonlinear model
(dashed line).

For the specific case used in this paper an overcritical rotating machine including bearings with clear-
ance was to be developed, meaning that the system becomes strongly nonlinear and, hence, traditional
analysis fails. By comparing the results from the linearized model (used to derive a suitable mesh den-
sity) with the results from the fully nonlinear model it was found that the resonance frequencies have a
strong dependency on the clearance. Hence, a nonlinear analysis is necessary when designing rotating
machinery supported on bearings with clearance. Although advanced equations and simulation strategies
are required for this type of analysis, with RESORS, analysis is still easy for the designer.

The total time to finish one loop of the proposed three-step methodology is typically around one and
a half hours, to be compared with traditional “over the wall” strategies, which usually take days or even
weeks per iteration. Hence, by use of the proposed simulation-driven design methodology and effective
and intuitive simulation software, a lot of time is saved (days or even weeks). This time can instead
be used to test other possible solutions to the problem — in other words, a larger design space can be
explored, thereby improving the innovation probability.

5. Conclusions

To show how tools for modeling and simulation of mechanics of materials and structures can be designed
and used to enable simulation-driven product development two case studies have been used. In both cases,
fundamental equations as discussed in Sections 3.1 and 4.1, serve as basis for the software design and
development in this paper.

The first case study concerned welding simulations of a Volvo Construction Equipment wheel loader
rear axle bridge (mechanics of materials), while the second case study concerned design of a supercritical
rotating machine (mechanics of structures).

In the welding case study, a simulation-driven design methodology is applied in order to find suitable
welding sequences for a Volvo Construction Equipment wheel loader rear axle bridge. It can be concluded
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that by use of a calibrated mesh density and block dumping heat source, the efficiency of the welding
simulations was improved with sufficient simulation accuracy.

A program (RESORS) enabling simulation-driven design has been developed and used for the rotor
dynamical case study. This software has been designed for improved usability compared to commercial
codes used for rotor dynamical analysis through the GUI, being developed purposely for the specific
application. The software has been found to be intuitive, efficient and easy to use for designers and
improves postprocessing and analysis even for challenging, nonlinear problems.

The methodology used in the two widely different cases both shows that the efficiency in the analysis
of challenging problems can be significantly improved through developing advanced tools suitable for use
by design engineers. Important features for enabling simulation design by designers are (i) a graphical
use interface enabling simulation-driven design; (ii) software built on ambient expert knowledge, made
usable for the designer; (iii) significantly decreased time from preprocessing to analysis compared to
commercially available codes; and (iv) postprocessing and analysis made easy for designers.

These two examples of simulation-driven design by designers indicate that a larger design space can
be explored and that more possible solutions can be evaluated. Therefore, the approach improves the
probabilities of innovation and finding optimal solutions.

Furthermore, the calibrated block dumping results presented in Section 3.3 can be used to increase
the efficiency of welding simulations when many simulations are required.
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Appendix: Design space exploration: simulated welding sequences

Sequence 

number 

Welding sequence WeldPath nbSubPasses StartWF 

1st | 2nd 

EndWF 

1st | 2nd 

StartTime (s) 

1st | 2nd 

 

Dump  and 

Mesh 

Calibration 

 

 

a (1) 

b (2) 

c (3,4) 

d (5,6) 

 

1 

1 

2 

2 

 

 

0.0 

1.0 

0.0 | 1.0 

0.0 | 1.0 

 

1.0 

0.0 

0.5 | 0.5 

0.5 | 0.5 

 

0 

158 

317 | 396 

475 | 554 

1  

a (1) 

b (2) 

c (3) 

d (4) 

 

1 

1 

1 

1 

 

0.0 

0.0 

0.0 

0.0 

 

 

1.0 

1.0 

1.0 

1.0 

 

 

0 

158 

317 

475 

2 

 

 

a (1) 

b (3) 

c (2) 

d (4) 

 

1 

1 

1 

1 

 

0.0 

0.0 

0.0 

0.0 

 

 

1.0 

1.0 

1.0 

1.0 

 

 

0 

317 

158 

475 

3 

 

 

a (1) 

b (2) 

c (3) 

d (4) 

 

1 

1 

1 

1 

 

0.0 

1.0 

0.0 

1.0 

 

 

1.0 

0.0 

1.0 

0.0 

 

 

0 

158 

317 

475 

4 

 

 

a (1) 

b (3) 

c (2) 

d (4) 

 

1 

1 

1 

1 

 

0.0 

1.0 

0.0 

1.0 

 

 

1.0 

0.0 

1.0 

0.0 

 

 

0 

317 

158 

475 

5 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554  

6 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554 

7 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

0.5 | 0.5 

0.5 | 0.5 

0.0 | 1.0 

0.0 | 1.0 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.5 | 0.5 

0.5 | 0.5 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554 

 

8 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

0.5 | 0.5 

0.0 | 1.0 

0.5 | 0.5 

0.0 | 1.0 

 

 

0.0 | 1.0 

0.5 | 0.5 

0.0 | 1.0 

0.5 | 0.5 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554 

 

9 

 

 

a (1,3) 

b (2,4) 

c (5,7) 

d (6,8) 

 

2 

2 

2 

2 

 

0.0 | 1.0 

1.0 | 0.0 

0.0 | 1.0 

1.0 | 0.0 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

    0 | 158 

  79 | 237 

317 | 475 

396 | 554 
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10 

 
 

 

a (1,3) 

b (2,4) 

c (5,7) 

d (6,8) 

 

2 

2 

2 

2 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

0.0 | 1.0 

1.0 | 0.0 

0.0 | 1.0 

1.0 | 0.0 

 

 

    0 | 158 

  79 | 237 

317 | 475 

396 | 554 

 

11 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

 

0.5 | 0.0 

0.5 | 0.0 

0.5 | 0.0 

0.5 | 0.0 

 

 

1.0 | 0.5 

1.0 | 0.5 

1.0 | 0.5 

1.0 | 0.5 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554 

 

12 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

 

0.5 | 1.0 

0.5 | 1.0 

0.5 | 0.0 

0.5 | 0.0 

 

 

0.0 | 0.5 

0.0 | 0.5 

1.0 | 0.5 

1.0 | 0.5 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554 

 

13 

 

 

a (1,2) 

b (3,4) 

c (5,6) 

d (7,8) 

 

2 

2 

2 

2 

 

 

0.5 | 1.0 

0.5 | 0.0 

0.5 | 1.0 

0.5 | 0.0 

 

 

0.0 | 0.5 

1.0 | 0.5 

0.0 | 0.5 

1.0 | 0.5 

 

 

  0 | 79 

158 | 237 

317 | 396 

475 | 554 

 

14 

 

 

a (1,3) 

b (2,4) 

c (5,7) 

d (6,8) 

 

 

2 

2 

2 

2 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

    0 | 158 

  79 | 237 

317 | 475 

396 | 554 

 

15 

 

 

a (1,3) 

b (2,4) 

c (5,7) 

d (6,8) 

 

2 

2 

2 

2 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

    0 | 158 

  79 | 237 

317 | 475 

396 | 554 

 

16 

 

 

a (1,4) 

b (2,3) 

c (5,8) 

d (6,7) 

 

2 

2 

2 

2 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

    0 | 237 

  79 | 158 

317 | 554 

396 | 475 

 

17 

 

 

a (1,4) 

b (2,3) 

c (5,8) 

d (6,7) 

 

2 

2 

2 

2 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

    0 | 237 

  79 | 158 

317 | 554 

396 | 475 

 

18 

 

 

a (1,5) 

b (2,6) 

c (3,7) 

d (4,8) 

 

2 

2 

2 

2 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

    0 | 317 

  79 | 396 

158 | 475 

237 | 554 

19 

 

 

a (1,5) 

b (2,6) 

c (3,7) 

d (4,8) 

 

2 

2 

2 

2 

 

 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

0.5 | 0.5 

 

 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

0.0 | 1.0 

 

     

0 | 317 

  79 | 396 

158 | 475 

237 | 554 

20 

 

 

a (1) 

b (2) 

c (4,6) 

d (3,5) 

 

1 

1 

2 

2 

 

1.0 

0.0 

1.0 | 0.0 

1.0 | 0.0 

 

 

0.0 

1.0 

0.5 | 0.5 

0.5 | 0.5 

 

 

0 

158 

396 | 554 

317 | 475  
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DISSIPATION ENERGY AS A STIMULUS FOR CORTICAL BONE ADAPTATION

NATARAJAN CHENNIMALAI KUMAR, IWONA JASIUK AND JONATHAN DANTZIG

We present a finite element study of a poroelastic rectangular beam subjected to oscillatory bending
loads. This geometric model is chosen for simplicity, as an idealized representation of cortical bone. We
then propose the use of the dissipation energy of the poroelastic flow as a mechanical stimulus for bone
adaptation, and show that it can predict the effect of frequency of the applied load. Surface adaptation
in the model depends on the weighted average of the mechanical stimulus in a “zone of influence” near
each surface point, in order to incorporate the non-locality in the mechanotransduction of osteocytes
present in the lacunae. We show that the dissipation energy stimulus and the resulting increase in second
moment of inertia of the cross section increase linearly with frequency in the low frequency range (less
than 10 Hz) and saturate at the higher frequency range (greater than 10 Hz). Similar non-linear adaptation
frequency response also has been observed in numerous experiments. Our framework is readily extended
to the modeling of cortical bone using actual bone geometries.

1. Introduction

Bone is a mechanically sensitive biological tissue, which adapts its size, shape, mass and density based
on its mechanical environment [Cowin 2001]. It has been long recognized that a dynamic stimulus is re-
quired for bone adaptation [Rubin and Lanyon 1984; Turner 1998; Lanyon and Rubin 1984]. Researchers
have shown that the adaptation depends on a combination of different mechanical stimuli such as the
magnitude [Rubin and Lanyon 1984; Burr et al. 2002; Lanyon et al. 1982] and frequency of applied load
[Burr et al. 2002; Lanyon et al. 1982; Hsieh and Turner 2001; Warden and Turner 2004], number of cycles
[Rubin and Lanyon 1984; Turner 1998], and bouts of the applied loading [Robling et al. 2000; Robling
et al. 2001; 2002]. The adaptation response is initiated when the applied strain exceeds a threshold value,
and increases with the magnitude of applied strain [Rubin and Lanyon 1984; Lanyon et al. 1982]. Turner
et al. [1994] observed significant cortical bone adaptation when the loading frequency exceeded 0.5 Hz.
At low frequencies (between 0.5 and 10 Hz), it has been observed that adaptation in rat ulnae follows an
approximately linear dose-response relationship with frequency [Hsieh and Turner 2001]. Warden and
Turner [2004] found no significant increase in the adaptation response when the frequency of loading
was increased beyond 10 Hz. Rubin and coworkers investigated the effect of very low magnitude high
frequency (greater than 30 Hz) loading on sheep standing on a vibrating plate 20 minutes per day for a
year. Trabecular bone volume increased more than 30%, but no significant changes were found in the
cortical bone [Rubin et al. 2001; 2002]. Qin et al. [2001; 2000; 1999] showed that cortical bone responds
to applied pressure gradients in the intermedullary fluid through periosteal bone formation, without any
applied mechanical loading.

Keywords: poroelasticity, dissipation energy, interstitial fluid flow, cortical bone adaptation, finite element modeling, evolution
law.
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Several groups have examined the relationship between mechanical loading on bone and the associated
fluid flow inside the various internal porosities. Knothe Tate and Knothe observed the fluid flow in and
out of cortical bone in sheep forearms under applied load [Knothe Tate and Knothe 2000]. Knothe Tate
et al. showed similar load-induced fluid flow in rat tibia subjected to bending, and also indicated the role
of the fluid flow in mechanotransduction [Knothe Tate et al. 2000]. Numerous mechanisms have been
proposed to explain the effect of fluid flow on the osteocytes e.g., via shear stress on the cell surface
[Reich et al. 1990], drag force on the transverse fibrils that tether the osteocyte to the canalicular walls
[Weinbaum et al. 1994], strain generated electric potentials [Pollack et al. 1984; Salzstein and Pollack
1987], or biochemical diffusive gradients [Robling et al. 2008].

Weinbaum and co-workers developed an analytical model that describes the hierarchical nature of
the lacunocanalicular porosity in the cortical bone, using the results from Zhang and Cowin [Zhang and
Cowin 1994] at the macroscale, coupled to mechanical model at the cellular length-scale [Zhang and
Cowin 1994; You et al. 2001; Han et al. 2004]. These works demonstrated that the fluid-induced shear
stress and drag force on the osteocyte process tethering fibers can amplify local strains by more than 50
times compared to the tissue level strains [Han et al. 2004]. They also showed that the strain amplification
factor varies non-linearly with respect to the loading frequency, in a similar way as the adaptation re-
sponse observed in the experiments mentioned earlier. Fritton and Weinbaum’s extensive review [2009]
provides a more complete description of fluid flow induced mechanotransduction in cortical bone.

In [Chennimalai Kumar et al. 2010] we developed a framework for modeling cortical bone adapta-
tion which included: elastic finite element (FE) analysis of loading applied to geometrically accurate
models of bone, extraction of a mechanical stimulus from the FE results to be used in an adaptation
law, and simulation of adaptation by direct modification of the FE model. The adaptation procedure is
implemented in a generic way so that it can be used to simulate the effect of the different mechanical
loading parameters such as magnitude, frequency, number of bouts of loading, time between bouts, and
other factors. We showed that an elastic material model and a simple growth law using strain energy
density as the mechanical stimulus could predict the effect of load magnitude and the number of bouts of
loading on adaptation of rat ulnae [Chennimalai Kumar et al. 2010]. In this paper, we extend that work to
incorporate poroelastic analysis. Previous works have included poroelasticity in the adaptation equation,
using the fluid shear stress and octahedral strain to compute the tissue phenotype for fracture [Lacroix and
Prendergast 2002; Prendergast et al. 1997]. We propose a new mechanical stimulus based on the viscous
dissipation energy due to the fluid flow as the stimulus for adaptation. We show that this stimulus can
simulate the dependence of adaptation on loading frequency similar to the adaptation response observed
experimentally. We consider the idealized bone geometry in the shape of a rectangular beam (following
[Zhang and Cowin 1994]). This allows us to focus on the frequency trends by conducting a parametric
study with relatively small computational resources.

The paper is organized as follows: We begin with a brief description of the theory of poroelasticity
as it applies to bone, and identify a problem with an analytical solution to test our formulation. We then
develop a measure of the mechanical stimulus to be used in an adaptation law. The results of simulations
performed for a range of frequencies are presented, and these results are then interpreted in the context
of mechanotransduction.
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2. Theory of poroelasticity

Cortical bone is a porous structure with different porosities at different length scales [Cowin 1999], the
most important being:

Vascular porosity: which is comprised of the cylindrical pathways of blood flow in the Haversian
and Volkmann canals that form the osteonal structure of the cortical bone. The fluid permeability
at this scale is of the order of 10−12 m2 [Zhang et al. 1998a]. This porosity plays an important role
in adaptation by delivering nutrients to the cells that form or resorb bone. Since the blood flow is
from the vascular system, the pressure of the fluid in the vascular porosity is of the order of the
physiological blood pressure.

Lacunocanalicular porosity: consisting of the porous regions of the lacunae surrounding the center
of the osteon and the interconnecting canaliculi. The stimuli-sensing osteocyte cells reside within
the pores of the lacunae and their processes are housed in the canaliculi. Zhang et al. [1998b]
estimated permeability at this scale of porosity to be 10−18

− 10−21 m2.

Collagen-apatite porosity: is seen at the nanostructural scale. This porosity contains water which is
considered to be part of bone’s collagen-apatite nanostructure. The flow of water through the pores
between the organic collagen and the apatite mineral can be neglected [Cowin 2001].

It has been shown in a number of experimental and analytical works that the mechanical loading acting
on bone induces the flow of fluid in and out of these different porosities [Knothe Tate 2001]. Weinbaum
and co-workers showed the importance of the lacunocanalicular porosity for mechanotransduction in
bone, where they hypothesize that osteocytes are deformed through the viscous shear stress due to the
fluid flow inside the canaliculi [Weinbaum et al. 1994; You et al. 2001; Han et al. 2004]. These studies
motivate the use of a poroelastic material model for the cortical bone with lacunocanalicular porosity.

We provide here a short overview of the theory of poroelasticity to establish the context for the poro-
elastic analyses presented in this paper, and refer the interested reader to more comprehensive treatments
in the literature, such as [Biot 1941; Biot and Willis 1957; Coussy 1995; Detournay and Cheng 1993].
A poroelastic medium is made up of a solid matrix and pores. We consider saturated media, in which
all of the pores are filled with fluid. There are four field variables: stress tensor σ , strain tensor ε, pore
pressure p, and the variation in fluid content ζ . The medium is characterized by its porosity n p, the
bulk modulus of the solid Ks , shear modulus of the solid G, Poisson’s ratio for the solid ν, and the bulk
modulus of the fluid K f . The constitutive equations for an isotropic linear poroelastic material are

2Gεi j = σi j −

(
ν

ν+1

)
σkkδi j +α

(1−2ν
1+ν

)
pδi j , 2Gζ = α

(1−2ν
1+ν

)(
σkk +

3p
B

)
,

where we have introduced two additional parameters: the Willis coefficient α, and Skempton’s coefficient
B. The Willis coefficient can be thought of as the ratio of fluid volume gained (or lost) in a poroelastic
element due to volume change when loaded under drained condition (p = 0). It can be shown that
α = 1− K/Ks , where K is the drained bulk modulus. Similarly, Skempton’s coefficient B is obtained
from the undrained condition (ζ = 0) as p =−Bσkk/3.

The fluid flow rate is computed from the pressure using Darcy’s law,

qi =−κ
∂p
∂xi

(1)
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Figure 1. Schematic of the four-point bending setup of the rectangular poroelastic beam:
isometric view (top left) and orthographic view with boundary conditions.

where the subscript i represents the coordinate direction, and qi is the fluid mass flow rate and κ is the
hydraulic permeability (κ = k/µ, where k is the isotropic intrinsic permeability with units of m2 and µ
is the dynamic viscosity of the fluid). The fluid mass flow rate qi is related to the fluid flow velocity vfl

i
as qi = n pv

fl
i , where ρfl is the density of the fluid.

Inserting the constitutive equations and Darcy’s law into the mass and momentum balance equations
leads to the following equation for the pore pressure:

c∇2
(
σkk +

3
B

p
)
=
∂

∂t

(
σkk +

3
B

p
)

(2)

where c is the hydraulic diffusivity, defined as

c =
2G B2κ(1− ν)(1+ νu)

2

9(1− νu)(νu − ν)
(3)

where νu is the undrained Poisson’s ratio. Scaling the length in all directions by a characteristic length
d (that is, X∗ = x/d), and scaling time using the frequency ω(T ∗ = ωt), Equation (2) becomes

c∇∗
2
(
σkk +

3
B

p
)
= Fo ∂

∂T ∗
(
σkk +

3
B

p
)
, (4)

where Fo = ωd2/c is the Fourier number, which represents the ratio of the timescale for hydraulic
diffusion (d2/c) to the timescale of the applied load (1/ω). For small Fourier number (Fo� 1), the
transient term on the right hand side can be neglected in comparison to the left hand side, and the pressure
solution will be essentially quasi-static. For large values of Fourier number (Fo� 1), the Laplacian on
the left hand side of the equation can be neglected and the pore pressure follows the stress solution.
When Fo is of order one, the two sides balance. This observation will help us explain the results of our
simulations.
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The objective of this paper is to establish a frequency-dependent mechanical stimulus. To this end, we
use as a test problem the bending of a poroelastic rectangular beam, similar to that considered in [Zhang
and Cowin 1994]. Since our eventual goal is to analyze geometrically accurate bone models, we solve
this problem using the finite element (FE) method, as implemented in the commercial software ABAQUS
[2008]. We consider a beam of length L , width b, and thickness d , subjected to a cyclic 4-point bending
load of the form P = P0/2(1− cosωt). The geometry and boundary conditions (BC) are illustrated in
Figure 1. In order to simulate the BCs of a 4-point beam bending, we set u y = 0 at both ends of the
beam, and constrain one point, such that ux = 0 and uz = 0 as well to avoid rigid body motion. The
bending loads are at a distance l from each end of the beam, as shown. The periosteal (outer) surface
of a long bone is highly impermeable and the endosteal (inner) surface is highly permeable [Steck et al.
2003]. To simulate these properties in our model, we apply a zero pressure BC on the bottom surface,
and zero flow BC on the top surface. We note that the latter BC is actually implemented via Darcy’s law
(1) as ∇ p · n= 0, where n is the normal vector.

3. Development of the stimulus for the growth law

The general form of the growth law used to model the bone adaptation is

db
dT
= A(φ−φref) (5)

where b is a material characteristic (such as density, mass or shape), T is the growth timescale,A is a
proportionality constant which we refer to as “gain”, φ is a mechanical stimulus, and φref is the reference
stimulus that must be exceeded to trigger bone growth. Different types of growth stimuli have been
proposed in the literature, such as strain energy density [Weinans et al. 1992; Huiskes et al. 2000], strain
[Cowin and Hegedus 1976], daily stress [Carter et al. 1989; Carter et al. 1996], and others. In [Chenni-
malai Kumar et al. 2010] we used the strain energy density as the mechanical stimulus to numerically
model the bone growth response in a rat ulna using the growth algorithm shown in Figure 2. We describe
the approach here briefly.

Mechanical
Loading

FEM model

Adaptation

Compute

Smoothing
Procedure

dbi

dT
= A (φ − φref)φ

bT+∆T
i = bT

i +
dbi

dT
∆T
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Figure 2. Flowchart describing the implementation of the adaptation procedure.
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Figure 3. Schematic of the spherical zone of influence on a typical bone cross section.
The shading is intended to show the decreasing influence of stimulus with distance from
the surface node.

The FE model of the bone is created from micro-CT images, and a set of nodes on the outermost
surface are identified as movable. An elastic analysis is carried out to compute the stresses and strains in
the bone under an applied load. The strain energy densities in each finite element, including all surface
nodes, are determined, and the displacement of a surface node is calculated based on the growth law

dbi

dT
=

{
A(φi −φref) if φi ≥ φref,

0 if φi < φref.
(6)

where bi is the displacement of the surface node i and φi is the local strain energy density at node
i . Resorption was not observed in the experiments that were simulated [Robling et al. 2002], so we
precluded resorption in our model. Note that the growth-timescale T is much longer than the timescale
of loading (t in the poroelastic field equations). Once the rates of change of the position of the surface
nodes are computed, the new positions of the nodes are computed using a forward Euler scheme for (6),
followed by application of a smoothing filter. See [Chennimalai Kumar et al. 2010] for details. The new
FE model is then constructed and the procedure is repeated. We were able to find significant agreement
between the model and experiments using the strain energy density stimulus, for an elastic material
model and quasi-static loading. However, the strain energy density cannot simulate the effect of loading
frequency. Our goal in this work is to develop a stimulus similar to the strain energy density that is
dependent on frequency.

We would like to have a stimulus that captures the fluid flow in the bone, and reduces it to a convenient
scalar quantity. To that end, we choose the dissipation due to the viscous fluid flow [Coussy 1995], defined
as

φ =−n pv
fl
· ∇ p = 1

2

(
n pv

fl)
· κ−1
·
(
n pv

fl) (7)

where vfl is the fluid velocity vector, ∇ p is the pressure gradient, and κ is the hydraulic permeability
tensor. We choose this form because it has been shown in a number of experiments, and hypothesized
in analytical models, that the shear stress exerted by the fluid flow on the osteocyte cells is a possible
candidate for mechanotransduction. Note that in the work that follows, we will take κ to be isotropic.
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Osteocytes are interconnected through the processes inside the canalicular space. We hypothesize
that they can communicate with each other through these processes and exchange information on the
current state of the stimulus at each location. To simulate this non-local behavior, we propose the use
of a spatially averaged stimulus over a “zone of influence” (ZOI), shown schematically in Figure 3. For
the sake of simplicity, we choose a spherical zone of influence of radius r . The stimulus that triggers the
growth response at a surface node i is then defined as

φi =

∫
V

(∫ T

0

1
2 n pv

fl
· κ−1
· n pv

fl dt
)

f (|x|) dV∫
V f (|x|) dV

(8)

where f (|x|) is a function that weights the dissipation potential at an inner node by its distance |x| from
the surface node i , and V is the volume of the zone of influence. Mullender et al. [1994] introduced
a similar zone of influence in a study of internal remodeling, in which they used the strain energy in
the neighborhood of each point, weighted by an exponential function, as the stimulus for remodeling.
In the results presented below, we chose the form, f (|x|)= exp(−5|x|/d), where d is the thickness of
the beam. The factor five was selected to ensure that any spurious high velocities at the inner surface,
resulting from the boundary condition, do not affect the response. Numerical experiments showed that
the results were not very sensitive to this factor, as long as it was larger than five.

4. Simulation details

The various material parameters used in the rectangular beam simulations, tabulated in Table 1, were
chosen to be similar to properties of rat bone. The material properties given in the table are similar to
those used in [Zhang and Cowin 1994]. The permeability of the lacunocanalicular porosity is reported to
be in the range of 10−18 to 10−21 m2 [Weinbaum et al. 1994; Salzstein and Pollack 1987]. Permeability
will be shown to be a very important parameter in this problem, which directly affects the timescale of
fluid diffusion in the poroelastic medium. The value of permeability we chose results in a significant
range of Fourier numbers (from 12 to 380) for the physiological range of frequencies (1 Hz to 30 Hz).
The hydraulic diffusivity corresponding to the permeability given in Table 1 is c = 0.5606 mm2/s. One
can then estimate the characteristic time for hydraulic diffusion in a 1 mm thick beam to be of the order
of one second.

Property Value Units
Young’s modulus of bone E 12.0 GPa
Fluid bulk modulus K f 2.3 GPa
Solid bulk modulus Ks 17.0 GPa
Porosity n p 0.05 –
Drained Poisson’s ratio ν 0.3 –
Intrinsic permeability k 3× 10−20 m2

Table 1. Values of different poroelastic parameters used in the analysis.
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Figure 4. Finite element mesh of the rectangular beam. Note the biased mesh across
the cross-section.

The FE mesh for our analyses, shown in Figure 4, consists of 18,821 nodes and 4000 triquadratic
hexahedral elements. The elements are graded along the y-axis in order to accurately enforce the zero-
flow boundary condition. A grid convergence study showed that this grid resulted in velocities of the order
10−4 mm/s on the top surface, which when compared to velocities in the bulk (of the order of 1 mm/s)
were judged to be sufficiently small. The poroelastic solver in ABAQUS [2008] uses an unconditionally
stable backward Euler integration scheme to solve (2). The accuracy of the solution still depends on the
size of the timestep. We performed a convergence study to establish the timestep size as well, and we
found that accurate results were obtained for 1t < 0.5h2/c, where h is the characteristic length of the
smallest element. For the grid and properties used in the simulations reported below, this criterion gives
1t = 5× 10−4 s. The applied load P0 was chosen as 100 N.

5. Results

Figure 5 shows the time evolution of pore pressure and the fluid velocity at different points in the rectan-
gular cross section for several different frequencies. In each case, there is an initial transient in both the
pore pressure and fluid velocity that dies out after about 0.5 sec, which is of the order of the timescale
of hydraulic diffusion noted earlier. After this time, pore pressure and velocity at each point follow a
sinusoidal profile with the same frequency as the applied load. This is important, because it allows us
to extrapolate the pore pressure and velocity solutions at the end of the initial transient to the entire
duration of the experiments, which may be several minutes [Warden and Turner 2004], thus reducing the
computational cost significantly. The velocities are maximal at the bottom surface, falling to zero at the
top. Note that both the pore pressure at the upper surface, and the velocity at the lower surface, are out
of phase with their respective values at the neutral axis.

Figure 6 shows the pore pressure and velocity profiles through the thickness for frequencies at 1 Hz,
5 Hz and 30 Hz, at different times within a single load cycle after the initial transient. We denote the
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Figure 5. Plots of pore pressure (left column) and fluid flow velocity (right column)
solutions as a function of time for three frequencies: 5 Hz, 10 Hz, and 20 Hz.
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Figure 6. Plots of pore pressure (left column) and fluid flow velocity (right column)
solutions across the cross-section at different points of time in a loading cycle (shown
here as the phase angle) for three frequencies: 1 Hz, 5 Hz and 30 Hz.
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Figure 7. Plot of pore pressure solution across the cross-section for different frequencies
at the end of a loading cycle.

various times within the cycle in degrees, where zero corresponds to the maximum in the load cycle.
At 1 Hz (Figure 6, top left), the slope of the pore pressure distribution reaches zero midway between
the bottom surface and the neutral axis, indicating zero flow velocity there. Figure 6, top right, which
shows the corresponding fluid velocity, indicates that the velocity on the bottom surface is of a higher
magnitude and has a smooth variation throughout the profile. The zero velocity solution is observed at
the same location throughout the loading period.

At 5 Hz (Figure 6, middle), the pore pressure remains very close to zero at the neutral axis throughout
the load cycle. The location of the zero-slope in the pressure solution (zero velocity by Darcy’s law)
varies with time of loading, and the velocity is nearly uniform over much of the beam cross-section
above the neutral axis for parts of the load cycle. These effects are more pronounced at 30 Hz (Figure 6,
bottom). There is very large variation in pore pressure near the bottom surface, which then falls to almost
zero at the neutral axis. The velocity is also very large near the bottom surface, and then nearly uniform
(and much smaller) over most of the remainder of the cross-section. Note that the computed velocities
and pore pressures are considerably larger than those reported in [Rémond et al. 2008; Nguyen et al.
2010]. This is due to the application of a much larger load in our analysis. These quantities should be
proportional to the magnitude of the applied load, because the problem is linear. We will address this
issue in a future paper, in which we apply the current analysis to the deformation of a rat ulna.

The results of our calculations are summarized in Figures 7 and 8, which compare the pore pressure and
fluid velocity through the thickness for different frequencies. As the frequency increases, the variation
in pore pressure increases near the bottom surface, and becomes close to linear between y =−0.3 mm
to y = 0.3 mm of the thickness. It should also be noted that the magnitude of pore pressure near the
top surface (where the pressure gradient is zero) increases for frequencies from 1 to 10 Hz, but starts
decreasing for frequencies greater than 10 Hz. Figure 8 shows that for frequencies less than 10 Hz, the
flow is significant to about 50% of the thickness, i.e., up to the neutral axis, whereas at higher frequencies,
even though the velocity at the bottom surface increases, the flow velocity becomes very small before
reaching 25% of the thickness.
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Figure 8. Plot of the fluid velocity pressure solution across the cross-section for different
frequencies at the end of a loading cycle.

The dissipation energy, given by the time integral of the dissipation potential (7), was then computed
from the solutions extrapolated to 100 s using the results at the end of the initial transient. Figure 9 shows
that the dissipation energy in the beam follows a similar trend as the fluid velocity. The dissipation energy
at the bottom surface increases with frequency. Since the bottom surface is farthest from the top surface,
where significant adaptation occurs, we hypothesize that the effect of the dissipation energy at the bottom
surface will be very small on the adaptation at the top. To implement this hypothesis in our analysis, we
choose the exponential weighting function described earlier, and also shown in Figure 9.
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Figure 9. Plot of dissipation energy (time integral of dissipation potential) as a function
of the y-coordinate for different frequencies. The influence function is also superim-
posed on the plot. We chose exp(−5‖x‖/d) as the influence function for our simulations.
We have zoomed in on the plot to show the variation in the dissipation energy inside the
beam, and so the very high values near y =−0.5 mm are cut off.
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Figure 10. Left: plot of dissipation energy stimulus at a surface node as a function of
loading frequency. Right: plot of percentage increase in the moment of inertia of the
rectangular cross section due to adaptation as a function of frequency.

Figure 10, left, shows the adaptation stimulus (8) at a top surface node at the midspan of the beam as
a function of the frequency of loading. We can see clearly that the adaptation stimulus increases rapidly
at low frequencies, then saturates at about 10 Hz. We then used the growth law (6) to simulate growth
of the rectangular beam for two growth timesteps, using a sensitivity φref = 1000 N/mm2 and a gain
A = 0.01 mm3/N/timestep. We express the results as the percentage change in the moment of inertia
of the rectangular cross section due to the adaptation. Figure 10, right, shows that the growth depends
on frequency in a manner similar to the stimulus. This behavior is typical of that observed in numerous
experiments; see [Burr et al. 2002; Lanyon et al. 1982; Hsieh and Turner 2001], and especially [Warden
and Turner 2004].

6. Discussion

We have proposed the dissipation energy of the poroelastic flow induced by mechanical loading as the
stimulus to trigger adaptation in cortical bone. We implemented this model using a rectangular beam
because: (a) the geometry is simple and so the pressure and velocity solutions can be understood in
greater detail; (b) and the problem has an analytical solution, which makes it easier to understand the
role of the various physical parameters.

We found that at low frequencies, the flow first increases with loading frequency, but that as the
frequency increases beyond 10 Hz, the amount of fluid that penetrates through the thickness of the beam
decreases. This means that at the higher frequencies, there is less flow seen by the osteocytes in the
lacunae, and hence they experience smaller shear and drag forces. The dissipation energy represents
the work done by these forces, and thus at higher frequencies, the dissipation energy stimulus saturates,
and hence one can expect the adaptation to saturate as well. Weinbaum and co-workers [Zhang and
Cowin 1994; You et al. 2001; Han et al. 2004] analyzed the shear and drag forces on the osteocyte cell
membrane due to the poroelastic flow at the cellular level, and showed that the amplification of the strains
on the osteocyte cell membrane has a similar frequency response to our results for dissipation energy
stimulus and increase in moment of inertia (Figure 10). The proposed dissipation energy stimulus that
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we have put forth in this paper is thus qualitatively consistent with the strain amplification hypothesis
and experimental observations.

We have also proposed the use of a “zone of influence” in order to simulate the effect of the distributed
network of osteocytes and their communication. Osteocytes have been identified as the mechanosensory
cells in the cortical bone. It has not yet been proven experimentally whether the osteocytes communicate
with each other, and if so, what their mode of communication is. A series of experiments by Turner
and coworkers on the expression of the sclerostin protein in response to in vivo mechanical loading
suggest that there is such osteocyte communication, and also suggest the existence of a zone of influence.
Robling et al. [2008] found that the expression of sclerostin protein, which is found almost exclusively in
the osteocyte cells, is reduced considerably by in vivo mechanical loading, and further that the reduction
in the sclerostin expression is much greater in the regions experiencing higher strains. The most pertinent
observation for our work is that the expression of sclerostin is reduced on a group of osteocyte cells near
the regions where higher bone growth is observed. This is a possible indication of the existence of a
zone of influence within a real bone. Further experimental investigation of the expression of sclerostin
at the scale of the osteocyte network could be used to inform the model as to the shape of the zone of
influence.

7. Conclusions

We have performed poroelastic analyses on a simplified geometric model using the commercial FE soft-
ware ABAQUS. We investigated the variations in pore pressure and fluid velocity with time and location
in the beam, and their dependence on frequency. Based on these results, we propose the use of the
dissipation energy as a mechanical stimulus for adaptation that can accommodate the effect of frequency.
We also included the effect of non-locality of mechanotransduction of osteocytes present in the lacunae
in the cortical bone through the use of a zone of influence. The dissipation energy stimulus evaluated
in this manner is shown to increase linearly with frequency in the low frequency range, and saturate at
the higher frequency range. The implementation of the poroelastic material model and the dissipation
energy stimulus can be seamlessly integrated into our framework to simulate adaptation response on
cortical bone. We are in the process of extending the poroelastic material model and the dissipation
energy stimulus to the actual rat ulna FE model, and to quantitatively validate the numerical model with
experimental observations.
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Exogenous environmental changes are known to affect the intrinsic characteristics of biological organ-
isms. For instance, the synthesis rate of the morphogen decapentaplegic (Dpp) in a Drosophila wing
imaginal disc has been found to double with an increase of 5.9◦C in ambient temperature. If not compen-
sated, such a change would alter the signaling Dpp gradient significantly and thereby the development
of the wing imaginal disc. To learn how flies continue to develop “normally” under such an exogenous
change, we formulate in this paper a spatially two-dimensional reaction-diffusion system of partial dif-
ferential equations (PDE) that accounts for the biological processes at work in the Drosophila wing disc
essential for the formation of signaling Dpp gradient. By way of this PDE model, we investigate the effect
of the apical-basal thickness and anteroposterior span of the wing on the shape of signaling gradients
and the robustness of wing development in an altered environment (including an enhanced morphogen
synthesis rate). Our principal result is a delineation of the role of wing disc size change in maintaining
the magnitude and shape of the signaling Dpp gradient. The result provides a theoretical basis for the
observed robustness of wing development, preserving relative but not absolute tissue pattern, when the
morphogen synthesis rate is significantly altered. A similar robustness consideration for simultaneous
changes of multiple intrinsic system characteristics is also discussed briefly.

1. Morphogen gradients and temperature change

Morphogens (also known as ligands in biochemistry and developmental biology) are molecular sub-
stances that bind to cell surface receptors and other molecules. The concentration gradients of different
morphogen-receptor complexes [Entchev et al. 2000; Gurdon and Bourillot 2001; Teleman and Cohen
2000] are known to be responsible for cell differentiation and patterning of biological tissues during the
developmental phase of a biological organism. For a number of morphogen families, including Dpp in the
wing imaginal disc of fruit flies of the genus Drosophila, it is well established experimentally and by anal-
yses of appropriate mathematical models that the signaling gradients are formed by morphogens being
transported from a localized source and binding to cell surface receptors downstream (see references cited
in [Lander et al. 2002; 2005a; 2005b]). However, biochemical processes leading to morphogen gradient
formation are influenced by highly cooperative events such as protein folding and membrane fluidity, and

The research was supported in part by NIH grants P50-GM076516, R01-GM067247 and R01-GM075309. The two NIH R01
grants were awarded through the Joint NSF/NIGMS Initiative to Support Research in the Area of Mathematical Biology.
Keywords: morphogen gradients, robust development, environmental changes, Dpp.
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exhibit considerable idiosyncratic effects from exogenous (external environmental) changes. More specif-
ically, it has been observed that the wing size of an adult Drosophila may differ by about 15% for substan-
tially different ambient temperature, with larger fly parts in a colder climate and smaller near the equator
[de Moed et al. 1997; French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. However,
similar data on Drosophila wing imaginal discs relevant to our investigation do not seem to be available.
(An imaginal disc is a group of undifferentiated cells that develops, at the (later) pupa stage, into a specific
adult structure such as eyes, antennae, limbs and wings, with the developmental fate of cells in different
zones of such a disc determined by a different combination of morphogen gradients.) At the molecular
level, we expect correspondingly that rate constants for diffusion, protein synthesis, binding, internaliza-
tion, degradation, etc., of fruit flies to change in varying degrees in response to such a temperature change.
How significant would such rate constant changes be over the temperature ranges organisms encounter
in the wild? Surprisingly little data on this subject (at least for insect cells) can be found in the literature.
Preliminary results by metabolic labeling of Drosophila S2 cells (through the efforts in A. D. Lander’s
lab, particularly by his student S. Zhou) showed that overall protein synthesis rate doubles approximately
every 5.9◦C. In the absence of analogous data on biochemical processes other than protein synthesis rate,
we cannot explicitly explore the effects of temperature on any of the known morphogen gradient systems.

The necessity to accommodate temperature (or any other exogenous environmental) change is a major
performance objective of morphogen systems. A thorough quantitative analysis of the effects of such
a change on the signaling morphogen gradients is imperative. It is therefore important to be clear the
reasons why we do not (and cannot) undertake such an endeavor at this time. These include:

• Experimental and field study data are available for adult Drosophila while the impact of ambient
changes (including signaling morphogen gradient formation) starts at the embryonic stage.

• An ambient change typically affects many systems characteristics including the various rate con-
stants and synthesis rates) but there is a lack of data on most such effects.

Still, we may obtain some insights from exact or approximate analytical solutions, qualitative analyses,
and numerical simulations of mathematical models for these systems. For example, we have recently
looked at effects of perturbations in which every protein synthesis rate, every endo- and exocytotic rate
constant, and every degradation rate constant is doubled, but diffusion and binding constants remain
unchanged [Lander et al. 2005c]. We consider such changes to constitute a crude model of the effects
due to a 5.9◦C temperature increase, and define robustness measures to quantify the sensitivity of the
system to the changes made.

In contrast to the work in [Lander et al. 2005c] and in [Khong and Wan 2007] on the effect of a
Hill-type feedback (in Dpp synthesis rate) on the signaling Dpp gradient, we pursue a different and more
limited objective prompted by the observations in the works cited at the top of the page. Specifically, we
determine (by analyzing appropriate mathematical models) whether and how adjusting the size of the
wing disc (an abbreviation for “wing imaginal disc” henceforth) would maintain the morphogen gradient
shape and thereby provide optimal, or near-optimal, strategies for meeting the performance objective of
ensuring a normal development. For this more limited goal, we take as our starting point the available
experimental evidence (from the Lander lab) that the Dpp synthesis rate doubles with a 5.9◦C temperature
increase. With all other system characteristics fixed, a change in synthesis rate would cause a change
in the steady state signaling morphogen gradient, possibly substantial and unacceptable from the view
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point of normal development as quantified herein (see Section 8 and also [Lander et al. 2005c]). We
determine whether a particular aspect of system architecture, namely the size of wing disc, confers the
potential for the biological development to be robust to such change. More specifically, the principal aim
of our research is to understand
• the reason for the exaggerated slenderness of the wing disc cells in the apical-basal direction, and
• the role of a size change of the wing disc in its development.

In the process, how the signaling Dpp gradient may be maintained in the face of significant Dpp synthesis
rate changes (due to a temperature or any other exogenous environmental change) is delineated.

An interesting, but challenging aspect of robustness of biological development comes from the known
interrelationships between temperature, growth, and morphogen signaling. At colder temperature, flies
grow slower but end up larger, including having larger but otherwise normal wings; in contrast flies
grow faster and are smaller in a hotter climate [de Moed et al. 1997; French et al. 1998; Bitner-Mathé
and Klaczko 1999; Azevedo et al. 2002]. The remarkably normal patterning that they display [Bitner-
Mathé and Klaczko 1999] is only normal in the context of their altered size. This strongly suggests that
the objective of development is to preserve relative, not absolute, pattern. At the very least we need
to examine our models to see if they would allow for temperature-dependent scaling of field sizes and
size-normalized measures of robustness.

The effect of size on the robustness of biological species development has been investigated recently —
see [Umulis et al. 2008] and references therein — for general models in the form of partial differential
equations of the reaction diffusion type with Neumann or mixed conditions at the boundary of the solu-
tion domain. Their main concern is uncovering conditions on the biological system characteristics that
would ensure the corresponding model problem to be scale-invariant. Within a scale-invariant species,
a common structure in individuals of different size develops in proportion to size. (We will refer to such
size-mediated developments of a common biological structure as relative (or size-mediated) robustness
as the development of structural proportion is insensitivity to size changes.) Our concern here is with a
specific model of the Drosophila wing imaginal disc in the plane of the proximal-distal and apical-basal
axes which is not scale-invariant and does not satisfy the conditions for scale-invariance developed in
[Umulis et al. 2008]. Nevertheless, we show how size changes may still be exploited for such a system to
maintain near relative robustness for size-normalized development in the presence of a significant change
in its system characteristics caused by environmental perturbations. Specific quantitative measures of
(relative) robustness are adopted for determining (different levels of) robustness. We investigate at first
only a change in the Dpp synthesis rate for which we have experimental data, and then also simultaneous
changes in several system parameters including degradation and binding rate constants for multifactor
robustness. The results are consistent with the observations of smaller Drosophila melanogaster flies
near the earth’s equator and larger one in colder climates away from the equator.

Still, we may obtain some insights from exact or approximate analytical solutions, qualitative analyses,
and numerical simulations of mathematical models for these systems. As mentioned earlier, we have re-
cently looked at effects of perturbations in which every protein synthesis rate, every endo- and exocytotic
rate constant, and every degradation rate constant is doubled, but diffusion and binding constants remain
unchanged [Lander et al. 2005c]. We consider such changes to constitute a crude model of the effects
due to a 5.9◦C temperature increase, and define robustness measures to quantify the sensitivity of the
system to the changes made.
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2. A spatially two-dimensional formulation

We take advantage of the approximate symmetry between the anterior compartment and posterior com-
partment of the Drosophila wing imaginal disc and consider here an extracellular model of the posterior
compartment. With the Dpp synthesis rate taken to be uniform in the distal-proximal direction, the
development is essentially uniform along the distal-proximal axis (Y -axis) except possibly for layer
phenomena near the edges (see [Vargas 2007]). Our model of the Dpp gradient formation focuses on
the uniform development. This allows us to consider a typical cross section of the wing imaginal disc
as in Figure 1 idealized as a rectangle orthogonal to the Y -axis away from the distal and proximal ends.
We take for this rectangle X -and Z -axis to be in the anteroposterior direction and the apical-proximal
direction, respectively.

The new model is essentially an extended version of the one-dimensional model in [Lander et al.
2005b] to allow for variations in the apical-basal direction including biologically realistic Dpp leakage
through the basement membrane. In this new two-dimensional model, morphogen is introduced into
the extracellular space at a rate VL through a localized source uniform in the plane perpendicular to the
anteroposterior direction. The localized source spans a small interval (−Xmin, 0), where −Xmin is the

Figure 1. Wing imaginal disc and posterior compartment of Drosophila. Courtesy
Dr. Oana Marcu of NASA Ames.
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location of the border between (and the line of symmetry of) the anterior compartment and the posterior
compartment of the wing disc. The morphogen produced in this localized region diffuses throughout the
extracellular space in the posterior compartment (according to Fick’s second law), between Z = 0 and
Z = Zmax in the apical-basal direction and from X =−Xmin toward the sink at the edge X = Xmax of the
posterior compartment. Along the way, some morphogen molecules bind themselves with cell surface
bound receptors at the binding rate kon[L][R], where [L(X, Z , T )] and [R(X, Z , T )] are, respectively,
concentration of free Dpp and unoccupied signaling receptor Thickvein (Tkv) at time T and location
(X, Z). The resulting morphogen-receptor complexes of concentration [LR(X, Z , T )] are bound to cell
surface membrane since the receptors are. These complexes in turn dissociate at the rate koff[LR] and
degrade at the rate kdeg[LR].

The time evolution of concentrations of free morphogen, morphogen-receptor complexes and unoccu-
pied receptors is then described by the partial differential equations (1)–(3) below governing the rate of
change of [L], [LR] and [R], respectively, with kon, koff, and kdeg known as the binding rate constant, the
dissociation rate constant, and the degradation rate constant, respectively. Altogether, the three (time)
rate of changes in (1)–(3) account for the reversible binding, degradation (of both bound and unoccupied
receptors), and synthesis of new morphogen and receptors, analogous to the one-dimensional system of
[Lou et al. 2004; Lander et al. 2005b]:

∂[L]
∂T
= D

(
∂2
[L]
∂X2 +

∂2
[L]
∂Z2

)
− kon[L][R] + koff[LR] + VL(X, Z , T ), (1)

∂[LR]
∂T
= kon[L][R] − (koff+ kdeg)[LR], (2)

∂[R]
∂T
= VR(X, Z , T )− kon[L][R] + koff[LR] − kR[R], (3)

for −Xmin < X < Xmax, 0 < Z < Zmax, and T > 0, where VL(X, Z , T ) and VR(X, Z , T ) are the rate
at which the morphogen Dpp and receptors Tkv are synthesized, respectively, and kR is the degradation
rate constant for unoccupied Tkv. As in [Lander et al. 2005b], we are interested principally in the [LR]
gradient in the portion of the wing disc corresponding to X > 0 where there is no morphogen production
(so that VL(X, Z , T )= 0 for X > 0). In this paper, we focus on a time-invariant morphogen and receptor
synthesis rates so that VL(X, Z , T )= VL(X, Z) and VR(X, Z , T )= VR(X, Z).

With −Xmin being the midpoint of the Dpp production region, we have by symmetry

at X =−Xmin:
∂[L]
∂X
= 0, (4)

for T > 0 and 0< Z < Zmax. At the far end, the edge of the posterior compartment is taken to be a sink,
so that

at X = Xmax: [L] = 0 (5)

for T > 0 and 0< Z < Zmax. We also investigate the limiting case of Xmax =∞ since the edge at Xmax

is not strictly absorbing. In the apical-basal direction, we have an essentially sealed wall at the apical
face Z = 0, so that

at Z = 0:
∂[L]
∂Z
= 0, (6)
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for T > 0 and −Xmin < X < Xmax,while at the basal face, there is leakage of free morphogens at a rate
proportional to its concentration:

at Z = Zmax:
∂[L]
∂Z
+

γz

Zmax
[L] = 0, (7)

for T > 0 and −Xmin < X < Xmax. Here, the dimensionless constant γz ≡ 1/σz = Zmax0z is a prescribed
leakage parameter. In one extreme case γz = 0, we have ∂[L]/∂Z = 0 so that the end is sealed without
leakage. At the other extreme σz = 0, the end Z = Zmax is absorbing. For a finite nonzero γz , the larger
the γz value the higher is the flux across the end surface.

At the onset of the morphogen synthesis (at T = 0), we have the initial conditions

[L] = [LR] = 0, [R] = R0(X, Z) (8)

for −Xmin ≤ X ≤ Xmax and 0≤ Z ≤ Zmax, reflecting the fact that there was no Dpp in the system and the
receptor concentration is in a steady state (as a consequence of a time-invariant receptor synthesis rate).

The extracellular model above is adequate for our purpose. The model can be extended to incorporate
the effects of internalization of [LR] complexes through endocytosis prior to degradation as was done in
[Lander et al. 2006; Lou et al. 2004] for one-dimensional studies. However, the corresponding system for
steady state gradients of interest here has been shown to reduce to the same BVP with modified system
rate constants (loc. cit.).

To reduce the number of parameters in the problem, we introduce a reference unoccupied receptor
concentration level R̄0 (to be specified later) and the normalized quantities

t =
D

Z2
max

T, {x, `M , xm, z} =
1

Zmax
{X, Xmax, Xmin, Z}, (9)

{vL , vR} =
Z2

max

DR̄0
{VL , VR}, {a, b, r, r0} =

1
R̄0
{[L], [LR], [R], R0}, (10)

{ fz, gz, gr , hz} =
1

D/Z2
max
{koff, kdeg, kR, kon R̄0}. (11)

In terms of these new quantities, we write the initial-boundary value problem (IBVP) (1)–(8) in the
normalized form

∂a
∂t
=∇

2a− hzar + fzb+ vL(x, z) (x, z) ε �, (12)

∂b
∂t
= hzar − ( fz + gz)b,

∂r
∂t
= vR(x, z)− hzar − grr + fzb, (x, z) ε �̄, (13)

where � is the rectangular domain {−xm < x < `M , 0< z < 1} and �̄= {−xm ≤ x ≤ `M , 0≤ z ≤ 1} is
its closure. The auxiliary conditions supplementing the differential equations become

at x =−xm :
∂a
∂x
= 0 at x = `M : a = 0 (0< z < 1), (14)

at z = 0:
∂a
∂z
= 0 at z = 1:

∂a
∂z
+ γza = 0 (−xm < x < `M), (15)
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for t > 0 and
at t = 0: a = b = 0, r = r0(x, z) (16)

for all (x, z) in �̄.

3. Time-independent steady state behavior

3.1. Time-independent synthesis rates. With both morphogen and the receptor synthesis rates uniform
in time, the possibility of a time-independent steady state behavior exists for our model. The two synthesis
rates VL and VR are to a good approximation uniform in Z so that VL = VL(X) and VR = VR(X). For the
present investigation, we ignore possible feedback effects and, unless indicated otherwise, approximate
VL to be a step function with VL(X)= V̄L H(−X) for some constant V̄L . Correspondingly, we have with

vL = vL(x)= v̄z H(−x)=
{
v̄z

0
with v̄z =

V̄L/R̄0

D/Z2
max

. (17)

We also take the nonnegative receptor synthesis rate to be

VR = V̄n H(−X)+ V̄p H(X)= V̄p
{
ρ2 H(−X)+ H(X)

}
,

for T > 0 with 0≤ ρ2
= V̄n/V̄p ≤ 1, unless indicated otherwise. In that case, we have

vR = vR(x)= v̄p
{
ρ2 H(−X)+ H(X)

}
≡ v̄pr0(x) (t > 0). (18)

where

v̄p =
V̄p/R̄0

D/Z2
max

, r0(x)=
{
ρ2 (x < 0),
1 (x > 0).

(19)

In the extreme case ρ2
= 0, there is no receptor synthesized in the morphogen production region. At the

other extreme, ρ2
= 1, the receptor synthesis rate is uniform through out the posterior compartment, i.e.,

for all (x, z) in �̄. With the initial receptor concentration taken to be the steady state receptor distribution
prior to the onset of morphogen production, R0(x)= VR(X)/kR = V pr0(x)/kR , we take

R̄0 =
V̄p

kR
, (20)

so that
v̄p = gr , R0(x)= R̄0r0(x)= R̄0{ρ

2 H(−X)+ H(X)}. (21)

We are interested in a time-independent steady state solution ā(x, z), b̄(x, z), and r̄(x, z) for the system
(12)–(16). For such a solution, we may set all time derivatives in these equations to zero to get

0=∇2ā− hz ār̄ + fz b̄+ vL(x), (22)

and
0= hz ār̄ − ( fz + gz)b̄, 0= vR(x)− hz ār̄ − gr r̄ + fz b̄, (23)

for (x, z) ∈�. The nonlinear system of ODE (22)–(23) is augmented by the boundary conditions (14)–
(15). With vL(x) and vR(x) both piecewise constant, the form of the (22)–(23) requires that ā and its
first derivative to be continuous at x = 0.
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3.2. Reduction to a single equation for ā(x). The two equations in (23) may be solved for b̄ and r̄ in
terms of ā to obtain

r̄ =
αzr0(x)
αz + ζ ā

, b̄ =
r0(x)ā
αz + ζ ā

, (24)

where

ζ =
gz

gr
=

kdeg

kR
, αz =

gz + fz

hz
. (25)

The expressions in (24) are now used to eliminate r̄ and b̄ from (22) to get a second-order PDE for ā
alone:

∇
2ā−

gzr0(x)ā
αz + ζ ā

+ vL(x)= 0 (x, z) ∈�. (26)

Equation (26) is supplemented by the four boundary conditions (14)–(15) applied to ā, keeping in mind
also the continuity conditions on the unknown and its normal derivative at x = 0.

For our choice of synthesis rates VL and VR , we have vL = 0 and r0(x)= 1 for the range 0< x < `M

so that

∇
2ā =

gz ā
αz + ζ ā

=
gr ā
αr + ā

, αr =
gr

gz
αz (27)

for (x, z) in �0= {0< x <`M , 0< z< 1}. In the complementary range �m = {−xm < x < 0, 0< z< 1},
we have vL = v̄z and r0(x)= ρ2 so that

∇
2ā−

gzρ
2ā

αz + ζ ā
+ v̄z = 0, (28)

for (x, z) in �m and for some known ρ2 in the range 0≤ ρ2
≤ 1.

3.3. Existence and uniqueness of steady state behavior. The governing PDE (26) for the present extra-
cellular model is similar to the corresponding ODE investigated in [Lander et al. 2005b]. This observation
effectively allows us to extend the results for the one-dimensional model there to show existence and
uniqueness for the two-dimensional model of this paper.

Proposition 1. There is a unique set of nonnegative steady state concentration gradients ā(x, z), b̄(x, z)
and r̄(x, z) characterized by the two-point boundary value problem (14), (15), (26) and the continuity
conditions on ā and ∂ ā/∂x at x = 0.

To prove existence, we observe that a`(x, z)≡ 0 is a lower solution of the BVP for ā(x, z) [Sattinger
1972] since it satisfies the inequality

−∇
2
[a`] +

gzr0(x)a`
αz + ζa`

− vL(x)=−vL(x)=−v̄z H(−x)≤ 0, (x, z) ∈�

and the four relevant boundary conditions, the latter exactly. Also,

au(x, z)= v̄z
{
(`M − x)xm +

1
2(`

2
M − x2)

}
with

(i) au(x)≥ 0, (i i)
∂au

∂x
(x)=−v̄z(x + xm) < 0 (−xm < x ≤ `M), .
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is an upper solution [Sattinger 1972]. Note that property (ii) ensures 0≤ au(x)≤ au(−xm) in [−xm, `M ].
With au(x) > 0 for −xm ≤ x < `M , we have

−∇
2
[au] +

gzr0(x)au

αz + ζau
− vL(x)= v̄z +

gzau

αz + ζau
− vL(x)≥

gzau

αz + ζau
≥ 0 (x, z) ∈�

and [
∂au

∂x

]
x=−xm

= 0, au(`M)= 0,[
∂au

∂z
+ γzau

]
z=1
≥ 0,

[
∂au

∂z

]
z=0
= 0.

There exists then a solution ā(x, z) of the BVP (26), (14) and (15) with

0= a`(x)≤ ā(x, z)≤ au(x),

for (x, z) ∈� (see [Amann 1972], [Sattinger 1972], and [Smoller 1983]). It follows that ā(x, z) must be
nonnegative in the whole solution domain.

To show that there is only one solution, suppose a1(x, z) and a2(x, z) are two (nonnegative) solutions
and a(x, z)= a1(x, z)− a2(x, z). Then as a consequence of the differential equation (26) for a1 and a2,
the difference a(x, z) satisfies the differential equation

−∇
2a+

gzζαzr0(x)a
(αz + ζa1)(αz + ζa2)

= 0.

Form the following double integral of the PDE above over the solution domain to get∫ 1

0

∫ `M

−xm

[
−∇

2a+
gzζαzr0a

(αz + ζa1)(αz + ζa2)

]
a dx dz = 0. (29)

Upon integration by parts (by way of Green’s theorem), observing continuity of ā and its first derivatives,
and application of the boundary conditions in (14) and (15), the relation (29) may be transformed into∫ `M

−xm

[
a2

σz

]
z=1

dx +
∫ 1

0

∫ `M

−xm

{
| E∇a|2+

gzζαzr0a2

(αz + ζa1)(αz + ζa2)

}
dx dz = 0. (30)

All terms in the integrands in (30) are nonnegative; therefore we must have a(x)≡ 0 and uniqueness is
proved. �

Note that there is no restriction on the magnitude of the (dimensionless) morphogen production rate
v̄z or the (dimensionless) degradation rate gz for the existence of steady state concentration gradients.
Accordingly, Proposition 1 allows us to obtain exact or approximate solution of the BVP by any choice
of analytical or numerical methods.

4. Linear stability

4.1. A nonlinear eigenvalue problem. In addition to the existence of unique steady state concentrations
ā(x, z), b̄(x, z),and r̄(x, z), it is important for these concentrations to be asymptotically stable (at least
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with respect to small perturbations). To investigate the stability of the steady state solution known to
exist from Proposition 1, we consider small perturbations in the form

{a, b, r} = {ā(x, z), b̄(x, z), r̄(x, z)}+ e−ωt
{â(x, z), b̂(x, z), r̂(x, z)}. (31)

After linearization, the differential equations (12)–(13) become

−ωâ =∇2â− hz(r̄ â+ ār̂)+ fz b̂, (32)

−ωb̂ = hz(r̄ â+ ār̂)− ( fz + gz)b̂, (33)

−ωr̂ =−hz(r̄ â+ ār̂)− gr r̂ + fz b̂. (34)

The relations (33) and (34) are then solved for b̂ and r̂ in terms of â making use of b̄=
gr ā

gz(ā+αr )
to get

r̂ =
hz(ω− gz)r̄(x, z)â

(gr −ω)( fz + gz −ω)+ hz ā(x, z)(gz −ω)
, (35)

b̂ =
hz(gr −ω)r̄(x, z)â

(gr −ω)( fz + gz −ω)+ hz ā(x, z)(gz −ω)
. (36)

The expressions (36) and (35) are used to eliminate b̂ and r̂ from (32) to obtain

∇
2â+ [ω− qr (x; z, ω)] â = 0, (37)

where

qr (x; z, ω)=
hz r̄(x, z)(gr −ω)(gz −ω)

(gr −ω)(gz + fz −ω)+ hz ā(x, z)(gz −ω)
(38)

=
1

1+ ζ β̄m A
hzr0(x)(gr −ω)(gz −ω)

(gr −ω)(gz + fz −ω)+ (gz + fz)(gz −ω)β̄m A
(39)

≡
1

1+ ζ β̄m A(x, z)
Nr (x; z, ω)
Dr (x; z, ω)

, (40)

where we have set
ā(x, z)= αzβ̄m A(x, z), (41)

with A(−xm, 0)= 1 so that ā(−xm, 0)= αzβ̄m . Note that β̄m is known to be positive from the solution
of the steady state problem of the previous section. Let

β̄m =
βm

ρ2− ζβm
or equivalently βm =

ρ2β̄m

1+ ζ β̄m
; (42)

then βm = b̄(−xm, 0) is positive.
The PDE (37) is supplemented by the boundary conditions (14)–(15) applied to â(x, z). Together, (37),

(14) and (15) define an eigenvalue problem with ω as the eigenvalue parameter. Though the PDE for
â(x, z) is linear, the eigenvalue problem is nonlinear since ω appears nonlinearly in qr (x; z, ω) so that the
homogeneous boundary value problem defined by (37), (14) and (15) is not a Sturm–Liouville problem.
Given that r0(x) (and hence also r̄(x, z) and b̄(x, z)) may have at most a simple jump discontinuity at
x = 0, we expect â and ∂ â/∂x to be continuous at x = 0. In the next subsection, we show that the
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eigenvalues of the homogeneous boundary value problem must be positive. The steady state gradients
ā(x, z), b̄(x, z), and r̄(x, z) are therefore asymptotically stable by linear stability theory. Since the proof
is based on the same technique as that used for one-dimensional models (see [Lander et al. 2005b] for
example), we give it below for the simpler case of uniform receptor synthesis rate which can be easily
extended to a discontinuous vR(x) (leading to a discontinuous r0(x)).

4.2. Positive eigenvalues and asymptotic stability. For ρ2
= 1, so that r0(x) = 1 for (x, z) ∈ �̄, the

various gradient concentrations are continuous across x = 0.

Proposition 2. All the eigenvalues of the nonlinear eigenvalue problem (37), (14) and (15) are real.

To prove this assertion, suppose ω is a complex eigenvalue and aω(x) an associated nontrivial (gen-
erally complex) eigenfunction, then ω∗ is also an eigenvalue with eigenfunction a∗ω(x), where ∗ denotes
complex conjugation. The bilinear relation∫ 1

0

∫ `M

−xm

[a∗ω∇
2aω− aω∇2a∗ω] dx dz = 0

(which can be established by integration by parts and applications of the boundary conditions in (14) and
(15)) requires ∫ 1

0

∫ `M

−xm

{
(ω−ω∗)−

[
qr (x; z, ω)− qr (x; z, ω∗)

]}
(a∗ωaω) dx dz = 0. (43)

It is straightforward to verify qr (x; z, ω)− qr (x; z, ω∗)=−(ω−ω∗)8(x; z, ωω∗), where

8(x, z;ωω∗)=
hz{ fz Q(gp, ω)+ (gz + fz)β̄m A(x, z)Q(gz, ω)}

(1+ ζ β̄m A)Dr (x; z, ω)Dr (x; z, ω∗)
,

with Dr (x; z, ω) as defined in (40) and

Q(y, ω)= [y−Re(ω)]2+ [Im(ω)]2 > 0.

In that case, the condition (43) becomes

(ω−ω∗)

∫ 1

0

∫ `M

−xm

aωa∗ω[1+8(x; z, ωω
∗)] dx dz = 0. (44)

Since the double integral is positive for any nontrivial function aω(x, z;ω), we must have ω−ω∗ = 0.
Hence, ω does not have an imaginary part.

Proposition 3. All eigenvalues of the nonlinear eigenvalue problem (32)–(34), (14) and (15) are positive
and the steady state concentrations ā(x, z), b̄(x, z) and r̄(x, z) are asymptotically stable by a linear
stability analysis.

If the assertion is false and ω ≤ 0, let âω(x) be a nontrivial eigenfunction of the homogeneous BVP
(37), (14) and (15) for the nonpositive eigenvalue ω =− |ω|. Multiply (37) by âω and integrate over the
solution domain to get∫ 1

0

∫ `M

−xm

{
âω∇2âω− qr (x; z, ω)(âω)2

}
dx dz =−ω

∫ 1

0

∫ `M

−xm

(âω)2 dx dz.
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After integration by parts and applications of the homogeneous boundary conditions (14) and (15), we
obtain

ω

∫ 1

0

∫ `M

−xm

(âω)2 dx dz =
∫ 1

0

∫ `M

−xm

∣∣∣ E∇âω
∣∣∣2 dx dz+

∫ 1

0

∫ `M

−xm

qr (x; z, ω)(âω)2 dx dz. (45)

With ω =− |ω| ≤ 0, we have

qr (x; z,− |ω|)=
r̄(x, z)hz(gz + |ω|)(gp + |ω|)

(gr + |ω|)(gz + fz + |ω|)+ hz ā(x, z)(gz + |ω|)
> 0

in �. For any nontrivial solution of the eigenvalue problem under the assumption ω ≤ 0, the right-hand
side of (45) is positive, which contradicts the assumption ω =− |ω| ≤ 0. Hence the eigenvalues of the
eigenvalue problem for â must be positive and the proposition is proved.

5. Perturbation solution for ζ < 1 and gradient robustness

For Dpp gradients in Drosophila wing disc, kdeg is typically smaller than the degradation rate constant
kR of the signaling receptor Tkv so that ζ < 1. For this case, a perturbation solution in ζ is appropriate
for moderate Dpp synthesis rate resulting in low receptor occupancy (see [Bender and Orszag 1999]):

ā(x, z; ζ )=
∞∑

k=0

āk(x, z)ζ k . (46)

For sufficiently small values of ζ so that ζ ā� αz , the leading term ā0(x, z), determined by the linear
PDE

∇
2ā0−µ

2
zr0(x)ā0+ vL(x)= 0, µ2

z =
gz

αz
(47)

and the four boundary condition (14)–(15) applied to ā0, is an adequate approximation of the exact
solution. Here, we have, in terms of the Heaviside unit step function H( · ), r0(x)= {H(x)+ ρ2 H(−x)}
and vL(x) = v̄z H(−x) with v̄z = (V̄L/R̄0)/(D/Z2

max). The omission of the ζ ā term in (26) to get the
leading term approximation (47) may also be viewed as a case of low receptor occupancy resulting from
a sufficiently high receptor synthesis rate (or a sufficiently low morphogen synthesis rate). With plenty
of unoccupied receptors available to capture any free Dpp, the normalized morphogen concentration ā
would be sufficiently low for ζ ā to be negligible compared to αz .

The linear BVP (47), (14)–(15) can be solved by Fourier cosine series in the z variable:

{ā0(x, z), vL(x)} =
∞∑

n=1

{An(x), vn v̄z H(−x)} cos (λnz) (48)

where {λn} are roots of

cot(λ)= σzλ, σz =
1
γz
, (49)

so that ā0(x, z) satisfies the boundary condition at both z = 0 and z = 1. Orthogonality of the eigenfunc-
tions {cos (λnz)} requires

vn =
4 sin(λn)

2λn + sin(2λn)
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and
A′′n −3

2
n An + vn v̄z H(−x)= 0, 32

n = λ
2
n + r0(x)µ2

z , (50)

where µ2
z = gz/αz , with

A′n(−xm)= 0, An(`M)= 0 (51)

for n = 1, 2, 3, . . . . When ρ2
= 1, we expect An(x) and A′n(x) to be continuous at x = 0.

Remark 1. The leading term perturbation solution in the small parameter ζ is generally an accurate
characterization of the actual nonlinear phenomenon. If ζ ā(x, z) should not be small compared to αz ,
the gradient [LR] for ρ = 1 would be nearly uniform in the anteroposterior direction except for a boundary
layer near the edge of the wing disc. Such [LR] gradients are not biologically realistic for patterning. We
may therefore focus our attention on the low receptor occupancy case (with ζ ā(x, z)� αz) independent
of the magnitude of ζ to investigate the effects of size on the signaling morphogen gradient.

To extract useful information from the Fourier cosine series solution (48)–(51), we deduce below a
simple but adequate approximation of the leading term perturbation solution, focusing on the special
case ρ(x)= 1 so that r0(x)= 1 and give special attention to the limiting case of `M =∞.

5.1. Finite `M . For special case ρ(x)= 1, the exact solution for A j (x) is

A j (x)=


v̄zv j

32
j

(
1−

cosh(3 j`M)

cosh(3 j (`M + xm))
cosh(3 j (xM + x))

)
(−xm ≤ x ≤ 0),

v̄zv j sinh(3 j xm)

32
j cosh(3 j (`M + xm))

sinh(3 j (`M − x)) (0≤ x ≤ `M).

(52)

Correspondingly, we have

ā(0, z)∼ ā0(0, z)= v̄z

∞∑
j=1

v j

32
j

sinh(3 j xm) sinh(3 j`M)

cosh(3 j (`M + xm))
cos(λ j z),

ā(−xm, z)∼ ā0(−xm, z)= v̄z

∞∑
j=1

v j

32
j

(
1−

cosh(3 j`M)

cosh(3 j (`M + xm))

)
cos(λ j z).

With (v j/3
2
j )/(v1/3

2
1)� 1 for j > 1, we have as a leading term approximation

b(x, z)∼ 1
αz

ā(x, z)∼ 1
αz

ā0(x, z)≈
1
αz

A1(x) cos(λ1z)

=
v̄zv1

αz3
2
1

sinh(31xm)

cosh(31(`M+xm))
sinh(31(`M − x)) cos(λ1z).

(53)

5.2. The limiting case of `M = ∞. For the wing imaginal disc of Drosophila species, Xmax� Zmax so
`M � 1. It often suffices for our purpose to consider the limiting case of `M =∞ (and ρ = 1) for which

A j (x)=


v̄zv j

32
j
{1− e−3 j xm cosh(3 j (x + xm))} (−xm ≤ x ≤ 0),

v̄zv j

32
j

sinh(3 j xm)e−3 j (x+xm) (0≤ x <∞).
(54)
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with

ā(0, z)∼ ā0(0, z)= v̄z

∞∑
j=1

v j

32
j
e−3 j xm sinh(3 j xm) cos(λ j z), (55)

ā(−xm, z)∼ ā0(−xm, z)= v̄z

∞∑
j=1

v j

32
j

(
1− e−3 j xm

)
cos(λ j z). (56)

To a leading term approximation, we have for `M =∞

b(x, z)∼
1
αz

ā(x, z)∼
1
αz

ā0(x, z)≈
1
αz

A1(x) cos(λ1z)

=
v̄zv1

αz3
2
1

sinh(31xm)e−31(x+xm) cos(λ j z) (0≤ x <∞). (57)

For an [LR] gradient to be biologically useful in developing tissue patterns, its graph must be neither
nearly uniform nor a boundary layer phenomenon near the source. It follows that the concentration of
signaling Dpp–Tkv complexes [LR] should be in a state of low receptor occupancy throughout the wing
disc with both free and bound Dpp approximately in a state of simple exponential decay from the source
end to the sink at the edge of wing disc. With the free Dpp expression exponentially small away from
the source, the actual location of the absorbing edge should not have a significant effect on the signaling
Dpp gradient and may be taken to be far away at infinity.

6. Approximate expressions for the eigenvalues {λn}

6.1. A sealed basement membrane (γz = 0). For the limiting case of γz = 0, both apical and basal faces
are sealed (see (15)) given that [

∂ ā(x, z)
∂z

]
z=1
=

[
∂ ā(x, z)
∂z

]
z=0
= 0. (58)

Upon writing the equation (49) for the eigenvalues as

γz cos(λ)= λ sin(λ),

we have for γz = 0
λn = (n− 1)π (n = 1, 2, . . . ). (59)

It follows that
v1 = 1, vn = 0 (n ≥ 2).

The concentration gradient is therefore a uniform distribution in z. In that case, the solution for the
(normalized) free morphogen concentration ā is uniform in z so that

ā(x, z)∼ ā0(x){1+ O(ζ )}

and ā0(x) is just the corresponding solution for the spatially one-dimensional problem previously treated
in [Lander et al. 2005b].
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For the case `M =∞ (and ρ = 1), we have from (57)

[LR(x, z)]
R̄0

∼
ā0(x)
αz
=

{
(v̄z/gz){1− e−µz xm cosh(µz(x + xm))} (−xm ≤ x ≤ 0),

(v̄z/gz) sinh(µzxm)e−µz(x+xm) (0≤ x <∞).
(60)

with

µ2
z =

gz

αz
' hz, v̄z =

V̄L/R̄0

D/Z2
max

,
v̄z

gz
=

V̄L/R̄0

kdeg
. (61)

With hz = O(10−1) for typical wing disc parameter values, we have µzxm � 1 and therewith

e−µz xm sinh(µzxm)' µzxm{1+ O(µ2
z x2

m)},

so

[LR(x, z)]∼
R̄0

αz
ā0(x)≈

V̄L

kdeg
µzxme−µz x

=
V̄L Xmin

kdeg
k̄one−k̄on X (62)

for the signaling region 0≤ x <∞, with k̄on =
√

kon R̄0/D.
We know from biological evidence that the basal end is not sealed, so that the limiting case of γz = 0

only demonstrates the validity and consistency of our more general solution, but is otherwise biologically
unrealistic and of no relevance to the actual problem. The analytical consequences of a sealed end, as seen
from (62), are shown in the next section to be also unacceptable from the view point of size adjustment
for robustness with respect to a substantial change in the Dpp synthesis rate.

6.2. An absorbing basement membrane (σz = 0). At the other extreme, Equation (49) in the case of
σz = 1/γz = 0 becomes cot(λ)= 0, so that

λn = (n− 1
2)π (n = 1, 2, 3, . . . ). (63)

It follows that, for the limiting case of `M =∞ and ρ = 1,

A j (x)=

{
(v̄zv j/3

2
j ){1− e−3 j xm cosh(3 j (x + xm))} (−xm < x < 0),

(v̄zv j/3
2
j ) sinh(3 j xm)e−3 j (x+xm) (0< x <∞).

(64)

where

32
n = λ

2
n +µ

2
z = (n−

1
2)

2π2
+µ2

z , vn = (−)
n−1 2

λn
, (n = 1, 2, 3, . . . ).

Correspondingly, we have for the signaling region 0< x <∞

[L]
R0
∼ A1(x) cos (λ1z)=

v̄zv1

32
1

sinh(31xm)e−31(x+xm) cos (λ1z) , (65)

[LR]
R0
∼

A1(x)
αz

cos (λ1z)=
v̄zv1

αz3
2
1

sinh(31xm)e−31(x+xm) cos (λ1z) . (66)

With fz � gz , the expression for µ2
z is accurately approximated by hz = kon R̄0/(D/Z2

max)= O(10−1).
Since µ2

z is small compared to π2/4 (and much smaller than (n− 1
2)

2π2 for n ≥ 2) and λ1xm � 1, we
have the following accurate approximation for the various Fourier components of the Dpp concentration:



336 ARTHUR D. LANDER, QING NIE, BENJAMIN VARGAS AND FREDERIC Y. M. WAN

32
n = λ

2
n +µ

2
z ' λ

2
n = (n−

1
2)

2π2, sinh(λ1xm)e−λ1xm ≈ λ1xm, (67)

A j (x)'
v̄zv j

λ2
j

sinh(λ j xm)e−λ j (xm+x) (0< x <∞) (68)

so that

[L]∼ R̄0ā0(x, z)≈ R̄0 A1(x) cos(λ1z)'
R̄0v̄zv1xm

λ1
e−λ1x cos(λ1z), (69)

[LR] ∼
R̄0

αz
ā0(x, z)'

R̄0v̄zv1xm

αzλ1
e−λ1x cos(λ1z), (70)

for 0< x <∞. Upon observing (67) and setting 32
n ≈ λ

2
n , (69) and (70) become

[L] ∼
V̄L Xmin Zmax

D

[ 8
π2 e−πx/2 cos( 1

2π z)
]
, (71)

[LR] ∼
V̄L Xmin Zmax

D

[ 8
αzπ2 e−πx/2 cos( 1

2π z)
]
, (72)

for 0 < x <∞. The signaling Dpp gradient given in (70) and (72) is qualitatively different from that
in (62) and (72). While the limiting case of σz = 0 is also not biologically realistic as the basement
membrane is neither completely sealed nor absorbing [Dowd et al. 1999], the consequences of (70) are
more characteristic of the [LR] gradient than those of (62) in the actual range of γz as we shall see in the
next subsection.

It may seem rather remarkable that (the leading term asymptotic behavior of) [LR] does not depend
on the receptor synthesis rate. However the inherent assumption of low receptor occupancy in effect
corresponds to (an abundance of receptors resulting from) a sufficiently high receptor synthesis rate to
make its magnitude inconsequential in a first approximation theory.

6.3. Eigenvalues for small and large σz. We now turn to the biologically more realistic case of a leaky
basement membrane at Z = Zmax with a finite γz = 1/σz . For the wing disc problem, we have 0< σz < 1
and a perturbation solution for λ in a power series in σz gives

λn =
(
n− 1

2

)
π
[
1− σz + O(σ 2

z )
]
, (73)

for n = 1, 2, 3, . . . . No new eigenpairs arise from nonpositive integers n. We conclude (as in the limiting
case of an absorbing basal end):

Proposition 4. For 0< σz = 1/γz < 1, the expression (70) is an accurate leading term approximation for
the signaling Dpp gradient outside the Dpp production region where the [LR] gradient is instrumental
for the wing disc development. Thus, with a permeable (leaky) basement membrane with 0 < σz < 1,
the slope and convexity (but not the magnitude) of the signaling Dpp gradient in both X and Z direction
depends only on the parameter σz for the biologically realistic case of low receptor occupancy.

It appears that a leaky basement membrane serves the purpose of regulating the availability of Dpp
at a level that maintain the signaling Dpp gradient shape. That is, the slope and convexity of the [LR]
concentration gradient are not sensitive to the synthesis rate V̄L as it changes with significant environ-
mental perturbations. On the other hand, the magnitude of the bound morphogen concentration is seen
from (72) to be proportional to V̄L (as well as the two length quantities Xmin and Zmax and inversely
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proportional to the diffusion coefficient D and the composite parameter αz = (koff+ kdeg)/R̄0kon of the
binding, dissociation and degradation rate constants).

For completeness, consider also the low leakage case of σz � 1 or 0< γz � 1. For this case, we may
seek a singular perturbation solution for λ in γz to obtain

λ1 ∼
√
γz
[
1− 1

6γz + O(γ 2
z )
]
, λk+1 ∼ kπ

[
1+ 1

(kπ)2
γz + O(γ 2

z )
]

(74)

for k = 1, 2, . . . , with no new eigenpair arising from negative square roots and negative k. The results
reduce to those of the limiting case of γz = 0 given in (59) with leading term approximation for [LR(x, z)]
for `M =∞ and ρ = 1 as previously given in (62). For this (biologically unrealistic) low leakage case,
the signaling gradient shape is much more sensitive to the leakage parameter γz and the degradation-to-
binding rate ratio (but not the Dpp synthesis rate V̄L ) since we have now

32
1 = λ

2
1+µ

2
z ∼ γz +µ

2
z .

7. Signaling gradient and wing disc size change

The need to accommodate exogenous environmental changes is a major performance objective of mor-
phogen systems. Given a lack of information on the change in system characteristics caused by such
changes, we pursue in this and the next section a more limited objective by investigating the change of
signaling morphogen gradient in response to a doubling of Dpp synthesis rate (whatever the cause may
be) while all system characteristics remain unchanged. We determine here whether a specific aspect of
system architecture, namely, the wing disc size, offers the potential of meeting the performance objective
by maintaining the [LR] concentration magnitude and its gradient shape (and thereby preserving tissue
pattern) relative to the new size. The concept of robustness is quantified in the next section (see also
[Lander et al. 2005c; Vargas 2007]) and used to analyze the sensitivity of the signaling Dpp gradient to
the morphogen synthesis rate change and how wing disc size changes may ameliorate this sensitivity. In
this section, robustness is taken informally to mean no biologically or functionally significant change in
the magnitude and shape of the signaling Dpp gradient [LR] under a significant change in Dpp synthesis
rate. (More quantitative measures of robustness will be discussed in the next section.)

We begin by focusing on the case `M =∞ and recalling the following four observations from the
results of the previous sections:

1. The apical-basal height of wing disc cells of Drosophilas is considerably larger than the lineal di-
mension of its cross section in the plane of the wing disc. Typically, we have of xm = Xmin/Zmax =

O(10−1)� 1 or smaller so that 0< λ1xm � 1, resulting in sinh(λ1xm)e−λ1xm ≈ λ1xm .

2. The basal membrane is in reality neither sealed nor completely absorbing; instead there is a significant
amount of leakage with γz = 1/σz > 1. Consequently, the approximate expression (73) for the
eigenvalues {λ j } and Proposition 4 for the signaling gradient apply.

3. With µ2
z accurately given by hz = kon R̄0/(D/Z2

max)= O(10−1)� 1< π2/4 for a wing imaginal disc
with a relatively high leakage through the basal membrane, it follows from (67) that

32
1 = λ

2
1+µ

2
z ' λ

2
1 = O

(
π2

4

)
(75)

for γz = 1/σz > 1 so that λ1xm � 1 and sinh(31xm)e−31xm ' λ1xm .
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4. Anticipating the need to reduce wing disc span (Xmax and Xmin) and cell height (Zmax) to maintain
robustness, we note that the approximation 32

1 ≈ λ
2
1 for the relevant range γz = 1/σz > 1 improves

with smaller wing disc size. It follows from the fact that a reduction in Zmax further reduces the
effect of µ2

z (which was already minimal according to Proposition 4). This allows us to make the
same approximation for smaller Zmax (or Xmin and Xmax). For Z̃max = Zmax/

√
2, we have

3̃1

31
=

√
1+ µ̃2

z/λ
2
1√

1+µ2
z/λ

2
1

=

√
1+µ2

z/2λ
2
1√

1+µ2
z/λ

2
1

≈ 1−
µ2

z

4λ2
1

(76)

so that the approximation 3̃2
1 ≈3

2
1 is accurate to within than 4%.

Given that the higher harmonic terms in the eigenfunction expansion for ā0(x, z) are negligibly small
compared to the leading term, the four observations above lead to the following accurate approximate
expression for the signaling gradient

[LR] ≈ L R0
v1

αzλ1
e−λ1x cos(λ1z), L R0 =

V̄L Xmin Zmax

D
(77)

in the range 0< x <∞ as was found earlier in (70). Averaging [LR] over the interval [0, Zmax] gives

[LR] ≡
1

Zmax

∫ Zmax

0
[LR]d Z =

∫ 1

0
[LR]dz ≈ L R0

v1

αzλ1
e−λ1x sin(λ1)

λ1
(78)

with λ1 ≈ π(1− σz)/2 for 0≤ σz <
1
2 .

We now arrive at the key development of this paper. Suppose the Dpp synthesis rate is doubled from
V̄L to ṼL = 2V̄L . The maximum magnitude of the signal morphogen gradient (which, for the signaling
range [0,∞), occurs at x = 0) would then be doubled since the signaling gradient is proportional to
V̄L . The factor (v1/αzλ1)e−λ1x in (77) does not depend on Xmin and Zmax explicitly, so the magnitude of
[LR]z=0 (at least the leading term approximation) may be brought back down to the same level prior to the
synthesis rate doubling by reducing either Xmin or Zmax by half. Either change would lead to a significant
distortion of the developed wing disc. There is however the biologically more realistic alternative of
reducing both size parameters by a factor of

√
2. Given X̃min= Xmin/

√
2 and Z̃max= Zmax/

√
2 along with

observation (4) above, the new signaling gradient with the modified parameters of this option becomes

[L̃R]z=0 ≈ L̃ R0
v1

αzλ1
e−λ1x

= L R0
v1

αzλ1
e−λ1x (0< x <∞), (79)

with L̃ R0 = ṼL X̃min Z̃max/D = V̄L Xmin Zmax/D = L R0. The right-hand side is just the expression for
[LR]z=0 in (77). Since the signaling gradient [LR] remains a decaying exponential with the same mag-
nitude at the same scaled proximal-distal location, the size-normalized signaling gradient is identical to
the corresponding gradient prior to morphogen synthesis rate doubling (though the wing disc size has
been reduced). We refer to such preservation of signal gradient shape as size-normalized robustness in
subsequent developments. Note that the apical-basal average of [LR] as given in (78) is clearly also
size–normalized robust.

Among the three options for maintaining the signaling gradient shape after Dpp synthesis rate doubling,
halving the anteroposterior span (and hence Xmin and Xmax) alone would mean a more drastic reduction
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in the wing disc span in the distal-proximal direction. The resulting new wing disc would be skewed
in one direction. At the other extreme, halving Zmax alone would change the shape of the gradient for
x > 0, given that the exponential factor e−λ1x becomes e−λ1 X/Z̃max = e−λ1(X/Zmax)/2. Neither is consistent
with the often observed consequence of a substantial increase in ambient temperature: a smaller wing
disc that is essentially similar to the normal wing imaginal disc in tissue patterning [de Moed et al. 1997;
French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. Hence, we are led to the
following proposition (for `M =∞):

Proposition 5. When there is a significant increase in the Dpp synthesis rate by a factor M with ṼL =

MV̄L and the approximation (77) for [LR] holds, the Drosophila wing imaginal disc patterning is pre-
served by the size reduction X̃min = Xmin/

√
M and Z̃max = Zmax/

√
M.

The reduction of Xmin and Zmax (as well as Xmax in the case of a finite `M ) by the same amplification
factor 1/

√
M is known as self-similar size reduction. With such a size reduction, the development of

the wing disc is insensitive to an M fold increase in Dpp synthesis rate and is therefore size-normalized
robustness.

It is worth digressing to comment briefly on the biologically unrealistic case γz = 0. Had the basal
end been sealed so that (62) applies with

[LR(x, z)]∼
V̄L Xmin

kdeg
k̄one−k̄on X , (80)

the only way to maintain the concentration magnitude [LR(0, z)] by a size change when V̄L is doubled
would be to reduce Xmin by half (instead of by

√
2 as in the case of a leaking basal membrane). The

size reduction would not be self-similar unless Zmax is also reduced by half. In this latter case, the size
reduction would be self-similar size but substantially more drastic than those observed. Thus a porous
basement membrane appears to serve an important function in the robust development of the wing disc.

For the case of a large but finite Xmax, the expression (53) simplifies to

[LR(x, z)] ∼
R̄0

αz
ā(x, z)∼

R̄0

αz
ā0(x, z)≈

R̄0

αz
A1(x) cos(λ1z)

' L R0
v1e−λ1x

αzλ1

(
1− e−2λ1(`M−x)) cos(λ1z),

(81)

for 31xm ' λ1xm � 1 (keeping in mind that L R0 = V̄L Xmin Zmax/D). We have from this the following
extension of Proposition 5:

Proposition 6. For a finite (dimensionless) anteroposterior span `M , the signaling Dpp gradient is (size-
normalized) robust after a Dpp synthesis rate doubling provided that Xmax is also reduced by the same
factor

√
2 (as Xmin and Zmax).

We emphasize that there are at least three advantages in changing both Xmin and Zmax (as well as
Xmax) by the same factor to maintain the shape (that is, slope and convexity) of the signaling gradient
[LR] when the Dpp synthesis rate is doubled:

1. The size of the wing disc is reduced in all dimensions but the physical shape remains geometrically
similar before and after the reduction.
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2. The reduction is less drastic, by only a factor of
√

2 instead of half.

3. Most importantly, it is consistent with the observation that fly wings are smaller physically in all
directions under the higher temperature, not just in the direction of the anteroposterior axis.

8. Robustness of signaling gradients

We saw from the eigenfunction expansion for the leading term perturbation solution that the signaling
[LR] gradient is generally sensitive to system parameter changes. Yet actual biological systems are
generally robust to such changes (up to a self-similar size change [de Moed et al. 1997; French et al.
1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]). The analysis of the previous section
showed that the magnitude and shape of the signaling gradient [LR] can be maintained even when the
Dpp synthesis rate increases substantially by changing the anteroposterior span (including the width of
the localized Dpp synthesis region) and apical-basal cell height of the wing disc. In this section we
quantify this observation by way of either of the two robustness indices to be introduced below and
generalize the mechanism of self-similar size reduction for more flexible applications. To be concrete,
we focus on robustness with respect to a two-fold change in the Dpp synthesis rate in our model problem
as in [Lander et al. 2005c]. The general methodology developed for this parameter change is extended
to allow for multifactor changes and robustness with respect to other parameter changes in Section 9.

With a doubling of the morphogen synthesis rate ṼL = 2V̄L , we have chosen in the previous section an
“amplification” (or a “diminution”) factor κ (with X̃min= κXmin, Z̃max= κZmax as well as X̃max= κXmax)
to be 1/

√
M = 1/

√
2 to maintain the order of magnitude of A1(0). However, the shape of the new

signaling gradient is preserved by such a change only after the approximation 3̃2
n ≈ 3

2
n . For γz = 2

however, the error incurred for the dominant n = 1 term in the eigenfunction expansion is about 15%.
We explore in this section how we may limit the effects on 32

1 (and more generally 32
n) resulting from

more general size changes of Zmax and Xmin when γz = O(1) (but < 2).
For the particular case of Dpp synthesis rate doubling, there is nothing canonical about reducing Zmax

and Xmin by a factor
√

2 to minimize the change in [LR(0, z)]. If we should reduce Zmax (as well as
Xmin and Xmax) by a different factor κ instead,

{X̃min, Z̃max, X̃max} = κ {Xmin, Zmax, Xmax} , (82)

(e.g., κ = 1/
√

3), the new concentration parameter L̃ R0 would generally not be the same as L R0 as
desired, smaller if κ2 < 1

2 (e.g., L̃ R0 = 2L R0/3 when κ = 1/
√

3) and greater if κ2 > 1
2 . While neither

appears ideal for maintaining the magnitude of [LR] at x = 0 after synthesis rate doubling, the added
flexibility may offer alternative benefits for x > 0 given that (75) is only an approximate relation and
(73) only holds for the biologically realistic range σz � 1. This flexibility is explored in the next two
subsections. For those developments, it should be noted that the ratio (76) describing the change in the
gradient shape factor 31 is modified to become

3̃1

31
=

√
1+ κ2µ2

z/λ
2
1√

1+µ2
z/λ

2
1

≈ 1+ (κ2
− 1)

µ2
z

2λ2
1
, (83)
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which remains nearly 1 for a basal membrane with high leakage. The possibility of specifying κ enables
us to choose it to minimize the effect of size changes on two robustness indices that measures the relative
change in the magnitude and shape of the signaling [LR] gradient downstream.

8.1. Root-mean-square differential signaling. To quantify the advantage of a smaller κ (than 1/
√

2),
we let b̄(x, z) and b̃(x, z) be the normalized signaling morphogen-receptor gradients for morphogen
synthesis rate V̄L andṼL = 2V̄L , respectively. We have, for the low receptor occupancy case,

{b̄(x, z), b̃(x, z)} ∼ 1
αz
{ā0(x, z), ã0(x, z)} ≈ cos(λ1z)

αz
{A1(x), Ã1(x)}

where A1(x) (for ρ = 1 and `M =∞) is as in (54) and Ã1(x, z) is A1(x) with v̄z = (V̄L/R̄0)/(D/Z2
max)

replaced by ṽz = (ṼL/R̄0)/(D/Z̃2
max), for Z̃max = κZmax (and {X̃min, X̃max} = κ{Xmin, Xmax}). Con-

sider the following measure of deviation from the signaling Dpp concentration [LR], namely, the signal
robustness index Rb defined by

Rb(κ)=
(1b)rms

bh − b`
=

1
bh − b`

√
1

x`− xh

∫ x`

xh

[b̃(x, 0)− b̄(x, 0)]2dx (84)

where 0< b` = b̄(x`, 0) < bh = b̄(xh, 0)≤ b̄(0, 0), with 0≤ xh < x` ≤ `M . It is just the root-mean-square
deviation from b̄(x, 0), the normalized signaling gradient [LR]/R̄0 along the apical face over a relevant
span of the wing disc. The quantities x` and xh (or b` and bh) may be chosen away from the extremities
to minimize the effects of outliers. (A more encompassing measure would be to use the average value
of b̃(x, z) and b̄(x, z) over the interval 0< z < 1 instead of their respective value at z = 0. However, it
suffices to use the simpler expression (84) in a proof of concept discussion.)

With the doubling of the morphogen synthesis rate from V̄L toṼL = 2V̄L , we reduce both Xmin and
Zmax (as well as Xmax) by an amplification factor κ to make Rb(κ) as small as possible to minimize the
sensitivity of the signaling gradient to the synthesis rate doubling (and size changes). Alternatively, we
may choose instead a value for κ so that Rb(κ) is in an acceptable range of values, say Rb(κ) < 0.1, in
order for the root mean square deviation to be effectively less than 10% of the gradient prior to the Dpp
synthesis rate doubling.

For the low receptor occupancy case, an explicit expression can be obtained for Rb. For xh = 0 and
x` = 2 (for which e−23̃1x` is negligibly small), we have

Rb(κ)'
1
√

10

(
4κ4

3̃3
1

+
1
33

1

−
8κ2

313̃1(3̃1+31)

)1/2

. (85)

The minimum value for this Rb expression is attained at

κ2
min =

ξ 2

1+ ξ
, ξ =

3̃1

31
. (86)

Table 1 on the next page shows some results for κmin and several other values of κ for x`= 2, xh = 0 and
the typical set of system parameter values used in [Lander et al. 2005c] (with the dimensionless parameter
values gz = 0.002, fz = 0.00001, hz = 0.1, gr = 0.01 and xm = Xmin/Zmax = 0.1). For the three values of
the leakage parameters used, σz = 0.2, 0.5, and 1.0, the corresponding first eigenvalue being λ1 ' 1.31,
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σz = 1/γz

1/κ2 1.0 0.5 0.2

1 0.5223 0.4720 0.4301
2 0.0258 0.0153 0.0095
2.025 0.0198 0.0099 0.0048
2.05 0.0144 0.0057 0.0034
2.10 0.0084 0.0094 0.0119
2.15 0.0147 0.0191 0.0213
3 0.1522 0.1444 0.1354

Table 1. Values of Rb.

1.08, and 0.86, respectively. These results are calculated from the leading term approximation of the
eigenfunction expansion for [LR] obtained in a previous subsection. Their accuracy has been confirmed
by numerical simulations of the nonlinear IBVP in [Vargas 2007].

If the organism size remains unchanged (κ = 1), the signal robustness index well into the unacceptable
range as specified in [Lander et al. 2005c]. A reduction factor of κ = 1/

√
2 reduces Rb by a factor greater

than 20 to well below the acceptable range of 10%. A slightly smaller κ would reduce Rb toward the
minimum point but not practical. Beyond κmin given in (86), further reduction would only worsen the
robustness index (and hence the gradient differential).

8.2. Root-mean-square signal displacement. The signal robustness index Rb is not the only measure
of the deviation of the modified signaling gradient from the original one prior to Dpp synthesis rate
doubling. Given an existing genetic program for individual cells, a more relevant measure of robustness
may be the displacement of the same level of morphogen-receptor complex concentration due to a change
of morphogen synthesis rate. Let b̄(x, 0) and b̃(x, 0) again be the normalized signaling morphogen-
receptor gradients at location x on the apical cell surface, z = 0, for morphogen synthesis rate V̄L and
ṼL = 2V̄L , respectively. Let x and x̃ be the corresponding location where they attain the value b, i.e.,
b̄(x, 0) = b̃(x̃, 0) = b. With a change of ligand synthesis rate, x̃ is generally different from x with
x̃ − x =1x . The root-mean-square of 1x over the range of b would be another meaningful measure of
robustness:

Rx =
(1x)rms

x`− xu
=

1
x`− xu

√
1

bu − b`

∫ bu

b`
(1x)2db. (87)

To minimize the effects of outliers, we may limit the range of b to be the interval (b`, bu) with 0≤ b` <
bu ≤ b̄(0). (We may take b` = 1

10 b̄(0) and bu =
9

10 b̄(0), for instance.)
In general, the dependence of displacement 1x on κ is through the expression

b̄(x, 0)∼
1
αz

A1(x)≈
v̄zxmv1

αz31
exp(−31x)

for x ≥ 0 and the corresponding expression for b̃(x, 0). Inverting these relations, we obtain

x ≈−
1
31

ln (η31b) , x̃ ≈−
1

3̃1
ln(η̃3̃1b), (88)
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where
η =

αz

v̄zxmv1
=

1
βzxmv1µ2

z
, η̃ =

η

2κ2 , βz =
v̄z

gz
. (89)

From these we obtain

1x = 1
31

ln(η31b)− 1
3̃1

ln(η̃3̃1b)≡ c0(31, 3̃1)+ c1(31, 3̃1) ln b, (90)

with

c0(31, 3̃1)=
1
31

ln(31η)−
1

3̃1
ln(3̃1η̃), c1(31, 3̃1)=

(
1
31
−

1

3̃1

)
. (91)

It follows that

Rx =
(1x)rms

x`− xu
=

1
x`−xu

√
1

bu−b`

∫ bu

b`

[
c0(31, 3̃1)+ c1(31, 3̃1) ln b

]2db

=
1

x`−xu

√
1

bu−b`

[
c2

0b+ 2c0c1b(ln b− 1)+ c2
1

(
b(ln b)2− 2b(ln b− 1)

)]bu

b`

For sample calculations, we take bu = b(0) and b` = b(5)≈ 0, so that

Rx =
1
5

√
c2

0+ 2c0c1(ln bu − 1)+ c2
1

(
(ln bu)2− 2(ln bu − 1)

)
(92)

Evidently, Rx should be as small as possible to minimize the deviation from the normal gradient with
Rx = 0 being no change. Alternatively, we may choose κ so that Rx(κ) is in an acceptable range of
values. Below are some results for Rx(κ) for several choice values of κ for the same typical set system
parameter values used for Table 1. However, unlike Rb, the parameter v̄z now appears explicitly (through
η in c0, see (92), (89) and (91); it was taken so that βz = v̄z/gz =

1
4 for the results in Table 2. These results

are calculated from the leading term approximation of the eigenfunction expansion for [LR] obtained in
a previous subsection. Again, their accuracy has been confirmed by numerical simulations [Strikwerda
1989] of the nonlinear IBVP in [Vargas 2007].

If the organism size remains unchanged, the value of the signal robustness index is well above the
acceptable range (see also [Lander et al. 2005c]). An amplification factor κ = 1/

√
2 reduces Rx by at least

an order of magnitude to well within the acceptable range for (size-normalized) robustness. Beyond the

σz = 1/γz

1/κ2 1.0 0.5 0.2

1 0.7564 0.6177 0.5130
1/2 0.0761 0.0407 0.0231
1/2.025 0.0649 0.0316 0.0156
1/2.05 0.0546 0.0239 0.0109
1/2.10 0.0392 0.0200 0.0185
1/2.15 0.0373 0.0331 0.0340
1/2.16 0.0388 0.0365 0.0373
1/3 0.3713 0.3229 0.2783

Table 2. Values of Rx .
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exact linear
1/κ2 Rb Rx Rb Rx

1 0.3833 0.2488 0.3873 0.2460
2 0.1477 0.1570 0.1422 0.1652
2.75 0.0627 – 0.0543 –
3 0.0503 0.1017 0.0467 0.939
3.75 – 0.0687 – 0.0757
4 0.0661 0.0736 0.0701 0.1206

Table 3. Comparison of exact and approximate values of Rb and Rx (linear approximation).

minimum point (slightly smaller than 1/
√

2), a further reduction in κ does not improve Rx but worsens
it instead.

8.3. General receptor occupancy. The analysis and numerical results presented in the previous subsec-
tions are based on the leading term perturbation solution for the steady state problem though confirmed by
numerical simulation of the corresponding nonlinear IBVP for the low receptor occupancy case. Without
the assumption of low receptor occupancy, numerical simulations for the nonlinear BVP (14), (15), and
(26) have been carried out in [Vargas 2007] to show that

• size–normalized robustness persists for typical sets of biologically realistic system parameter values,
and

• linearized theory is adequate in estimating appropriate self-similar size reduction for size-normalized
robustness for the same sets of system parameter values.

Some sample results are shown in Table 3 for v̄z = 10−3 and `M = 5 with the remaining parameter
values identical to those used for Tables 1 and 2.

9. Multifactor robustness

An exogenous change affects more than just one intrinsic characteristic of a biological organism. While
we do not have experimental data to document the effects of a temperature change on other system
parameters beside the Dpp synthesis rate, we generally expect the rate constants kdeg, koff, kg and V̄R to
increase with temperature, but are less certain about the effect on the remaining system parameters such
as D and kon. We examine here how simultaneous (hypothetical) changes in several system parameters
(in response to an external change) may alter the wing disc gradient, at least as dictated by our model. For
simplicity, we assume the effect of the external change on the diffusion coefficient D to be negligible in
the range of the change considered. Typically, we proceed with the analytical results for the biologically
realistic case of low receptor occupancy which enable us to explore how size changes may ameliorate the
net effects of the changes in several system characteristics on the signaling gradient. Such an investiga-
tion constitutes a first attempt to address theoretically the multifactor robustness of temperature change
beyond its effects through the single parameter of Dpp synthesis rate.

Some observations can be made immediately about the effect of changing two of the system parameters.
First, the dissociation rate constant koff is known to be much smaller than kdeg so that αz = (gz+ fz)/hz '

gz/hz . The following is an immediate consequence of this observation and (26):
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Proposition 7. Changes in the dissociation rate constant koff have negligible effect on the signaling Dpp
gradient [LR].

This conclusion is not restricted to the low receptor saturation case, since (26) holds in general.
Next, with µ2

z = gzhz/(gz + fz)' hz = O(10−1), the approximate expression (67) applies as long as
the change in hz is not larger by an order of magnitude. In that case, Proposition 4 continues to hold and,
upon rewriting (70) as

[LR] ∼
V̄L Xmin Zmax

D(kdeg+ koff)/kon R̄0

v1

λ1
e−λ1x cos(λ1z)'

V̄L

kdeg

V̄R

kg

kon

D/(Xmin Zmax)

v1

λ1
e−λ1x cos(λ1z) (93)

for 0< x <∞, which shows the magnitude of [LR] to increase with the binding rate constant kon, we
have the following observation:

Proposition 8. A substantial change in the binding rate (such as doubling its magnitude) would have an
effect only on the magnitude of the signaling [LR] gradient.

With many rate constants playing a substantive role in the magnitude of the signaling Dpp gradient
[LR], many scenarios are possible depending on relative effects of a particular kind of exogenous per-
turbation (such as a temperature change) on these constants, resulting in the new rate constants ṼL , ṼR ,
k̃deg, k̃g, etc., with mL = ṼL/VL , mdeg = k̃deg/kdeg, and so on. An attempt will be made below to identify
some reasonable scenarios and their consequences.

One possible scenario involves the degradation rate constants kdeg and kg changing at the same rate
as the corresponding protein synthesis rate V̄L and V̄R , respectively. In that case, the following is an
immediate consequence of (93), with the diffusion rate constant D assumed to be unaffected by the
exogenous change:

Proposition 9. For the low receptor occupancy case, if

mL

mdeg
≡

ṼL/V̄L

k̃deg/kdeg
= 1,

m R

mg
≡

ṼR/V̄R

k̃g/kg
= 1,

then a size-normalized robust gradient is attained by a self-similar reduction (of all spatial lengths, Xmin,
Zmax and Xmax) by a factor of

√
2 when the binding rate doubles (in response to a substantial exogenous

change).

More generally, when mL 6= mdeg and m R 6= mg, the situation is more complicated. Upon making use
of (93) to form the ratio

[L̃R]
[LR]
'

mL

mdeg

m R

mg

mon

κ2 (94)

where mon = k̃on/kon and where all wing dimensions are changed by the same factor κ so that X̃min =

κXmin, etc., the next proposition also follows from (93):

Proposition 10. With m D = D̃/D = 1, size-normalized robustness is attained by changing all wing disc
dimension by

κ2
= mon

mL

mdeg

m R

mg
. (95)
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Evidently, a more optimal κ can be found with the help of the robustness indices Rb and Rx as was
done in a previous section on the change for the rate constant V̄L alone. While the observations in the
last two propositions are based on the analytical results, numerical simulations show that they continue
to hold for the general model for typical sets of realistic system parameter values.

10. Patterning of a smaller wing disc

It is of some interest to determine also how a higher Dpp synthesis rate and a self-similar size-reduction
of the wing imaginal disc may affect the elapsed time to a steady state gradient. Note that the lowest
eigenvalue, ω(0), of the nonlinear eigenvalue problem (37)–(41) provides a good first estimate of this half-
life measure. An asymptotic solution for this lowest eigenvalue can be obtained by a regular perturbation
solution for ω(0) in powers of the parameter ζ = gz/gr < 1,

ω(0) = ω0+ ζω1+ ζ
2ω2+ · · · .

Consistent with the low receptor occupancy assumption of this paper (and similar to the development in
[Lander et al. 2005b] for the one-dimensional model), the leading term ω0 is determined by the simpler
eigenvalue problem

∇
2a0+ [ω0− q0(x; z, ω0)] a0 = 0, (96)

where

q0(x; z, ω0)=
hzr0(x, z)(gz −ω0)

gz + fz −ω0
, r0(x, z)= ρ2 H(−x)+ H(x), (97)

with the four boundary conditions (14)–(15) applied to a0(x, z;ω0).
To solve this simpler eigenvalue problem, we note that q0(x; z, ω0) is independent of z given that the

receptor synthesis rate is chosen so that r0 depends only on x . We can then separate out the z-dependent
part by setting

a0(x, z)=
∞∑
j=1

A j (x) cos(λ j z),

where {λ j } are the solutions of (49). Orthogonality of the functions {cos(λ j z)} leads to the eigenvalue
problem

A′′j +
(
ω0− λ

2
j − q0(x;ω0)

)
A j = 0, A′j (−xm)= 0, A j (`M)= 0, (98)

where a prime ′ indicates differentiation with respect to x and j = 1, 2, 3, . . . . For ρ2
= 1 so that

r0(x, z)= 1 for all (x, z) ∈ �̄, the solutions of the eigenvalue problem (98) are the eigenpairs

Ak j (x)= ak j cos(πk(x + xm)), πk =
π(2k− 1)

2(`M + xm)
(99)

for k, j = 1, 2, . . . , with

ω0 = π
2
k + λ

2
j +

hz(gz −ω0)

gz + fz −ω0
. (100)
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The relation (100) is a quadratic equation for ω0; finding its two roots, denoted by ω(1)k j and ω(2)k j , is
straightforward. Given fz � gz � hz < 1, these roots are approximated by

ω
(1)
k j ≈ ξk j ≈ π

2
k + λ

2
j + hz, ω

(2)
k j ≈

δk j

ξk j
≈ gz. (101)

with gz ≈ ω
(2)
k j � ω

(1)
k j ≈ π

2
k +λ

2
j +hz . The decay rate is dominated by the smallest (lowest) ω(2)k j , namely

ω
(2)
k j ≈ ω

(2)
11 ≈ gz . With

ω
(2)
k j t ≈ gzt = kdegT,

the expression e−gz t
= e−kdegT gives a half life of 1/kdeg which does not vary with size changes in Zmax,

Xmin or Xmax. We have then the following result on time to steady state gradient:

Proposition 11. Starting with some small initial (perturbation from the steady) state, the time to a time-
independent steady state is determined by the lowest member of the second family of frequencies, which
is approximately gz . Moreover, the corresponding actual half-life is independent of size changes and
depends only on kdeg.

It follows that the half life of transients would vary only with a change in kdeg (caused by some
exogenous change) and a size change (self-similar or not) would have no effects on this change. In
particular, doubling the magnitude of kdeg (caused by a temperature rise) would reduce by half the half
life of transients independent of any size changes.

We note that the situation is not the same for the other family {ω(1)k j }. With

ω
(1)
k j ≈ ω̃

(1)
k j ≡ π

2
k + λ

2
j

(which is also independent of the size parameters {Zmax, Xmin, Xmax}) and with t = DT/Z2
max, a size

change via Zmax by an amplification factor κ leads to

T =
t
D

Z̃2
max, ω

(1)
k j t =

Dω(1)k j

Z̃2
max

T =
D

κ2 Z2
max

T (π2
k + λ

2
j ). (102)

Hence, it would take less time for all harmonics of a smaller disc associated with the first family of
(faster) decay rates ω(1)k j to reach the same level of concentration of [LR]. As previously mentioned, size
changes have no effect on the actual time to steady state given (102). The main purpose in discussing the
family {ω(1)k j } at all is to show that its effect on half life is in the same direction as that of ω(2)k j ' gz and
hence preserving the size-normalized robust nature of the latter when there is a significant exogenous
change.

While a reduction of half life of transients is not synonymous with the speed of growth observed
in nature, e.g., faster growth of fruit flies in hotter temperature [de Moed et al. 1997; French et al.
1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002], it certainly is not inconsistent with such
observations and may very well contribute to its realization.

11. Concluding remarks

Exogenous (environmental) changes, such as a substantial change in ambient temperature, are expected
to affect multiple intrinsic system characteristics such as morphogen and receptor synthesis rates, various
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binding, dissociation and degradation rate constants, and diffusion rates, of a biological organism. If the
effects are substantial as in the case of a 6◦C change in ambient temperature on the Dpp synthesis rate
in the Drosophila wing imaginal disc, they could alter the biological development of the organism. The
temperature–Dpp synthesis rate relation, being the only known data of this type, prompted us to initiate an
investigation, of at first limited scope, on the effects of exogenous changes on biological development by
examining the effect of the synthesis rate change on the signaling Dpp–Tkv concentration gradient. For
biologically realistic gradients occurring in the low receptor occupancy range, we show that a signaling
gradient is approximately proportional to the Dpp synthesis rate. It is then shown that the effect of a
synthesis rate change may be ameliorated by self-similar size changes to result in a (size-normalized)
robust development as measured by several different robustness indices introduced in Section 8.

To the extent that a single exogenous perturbation affects generally more than a single system char-
acteristic, the paper also investigates briefly, in the absence of experimental data, how the effects of
multiple system characteristic changes on the signaling gradient can also be ameliorated by self-similar
size changes, resulting again in size-normalized robustness.

Changes in morphogen gradient shape with temperature and changes in wing disc size with tempera-
ture are probably not independent phenomena, given that Dpp and its receptor Tkv control not just cell
identity, but also proliferation [Martin et al. 2004; Martin-Castellanos and Edgar 2002]. Indeed, we do
not know whether the primary effect of temperature is to change the size of a morphogen field, and then
the morphogen gradient responds by re-scaling to fit the new size, or if the primary effect of temperature
is on the morphogen gradient, and the patterned field changes its size in response to the morphogen
gradient. Most likely reality lies somewhere between these extremes. (We do know, however, that the
wing disc BMP gradient can re-scale to fit alterations in disc size imposed by perturbations other than
temperature [Teleman and Cohen 2000].)

Clearly, there is much we do not know about the effects of temperature on biological development or,
more fundamentally, its interaction with morphogen gradients. Given how important temperature effects
are likely to have been in evolution, there is a great need to gather some of the basic information that
will be required to understand these effects. The effort of this paper is a step in this direction. Our results
have shown that, whether synthesis rate change is a direct or downstream effect of a temperature change,
a (self-similar) change of wing disc size would nearly offset the effects of a doubling of morphogen
synthesis rate on the signaling gradient to orchestrate a size-normalized development of wing discs.

At the organismic level, flies grow slower at low temperature and to larger size including having
larger wings; they have smaller wings and grow faster (but smaller) at higher temperatures [de Moed
et al. 1997; French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. The faster
growth rate of the flies at higher temperature is probably related to faster biochemical reactions not
addressed by the mathematical model of the present investigation. While the molecular mechanisms
that lead to a speed up of the relevant biochemical reactions are unknown to the authors, faster growth
may simply be a consequence of (self-similar) size reduction (to maintain size-normalized development
robustness) requiring less biological constituent parts for a smaller fly. Time to a steady-state signaling
gradient is not synonymous with biological growth rate. Nevertheless, it seems reasonable that the half
life to steady state signaling gradient should be consistent with the different growth rate. Given the
result of the previous section, it would appear that degradation rate constants kdeg should also change
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with exogenous temperature perturbations in order to affect the time to a steady state signaling Dpp–
Tkv complex gradient (which should contribute to but is unlikely to be completely responsible for the
speed of general development and growth). As there are no measurements available to validate the size-
normalized multifactor robustness of development (and growth) predicted by our analysis and numerical
simulations, it is hoped that observations made herein would stimulate experimental work for measuring
the effects of a significant change in temperature on the various rate constants as was done for the Dpp
synthesis rate V̄L (in the Lander lab) mentioned in the first section of this paper.

References

[Amann 1972] H. Amann, “On the existence of positive solutions of nonlinear elliptic boundary value problems”, Indiana Univ.
Math. J. 21:2 (1972), 125–146.

[Azevedo et al. 2002] R. B. R. Azevedo, V. French, and L. Partridge, “Temperature modulates epidermal cell size in Drosophila
melanogaster”, J. Insect. Physiol. 48:2 (2002), 231–237.

[Bender and Orszag 1999] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers, I:
Asymptotic methods and perturbation theory, Springer, New York, 1999.

[Bitner-Mathé and Klaczko 1999] B. C. Bitner-Mathé and L. B. Klaczko, “Plasticity of Drosophila melanogaster wing mor-
phology: effects of sex, temperature and density”, Genet. 105:2 (1999), 203–210.

[Dowd et al. 1999] C. J. Dowd, C. L. Cooney, and M. A. Nugent, “Heparan sulfate mediates bFGF transport through basement
membrane by diffusion with rapid reversible binding”, J. Biol. Chem. 274:8 (1999), 5236–5244.

[Entchev et al. 2000] E. V. Entchev, A. Schwabedissen, and M. González-Gaitán, “Gradient formation of the TGF-β homolog
Dpp”, Cell 103:6 (2000), 981–991.

[French et al. 1998] V. French, M. Feast, and L. Partridge, “Body size and cell size in Drosophila: the developmental response
to temperature”, J. Insect. Physiol. 44:11 (1998), 1081–1089.

[Gurdon and Bourillot 2001] J. B. Gurdon and P.-Y. Bourillot, “Morphogen gradient interpretation”, Nature 413:6858 (2001),
797–803.

[Khong and Wan 2007] M. Khong and F. Y. M. Wan, “Negative feedback in morphogen gradients”, pp. 29–51 in Frontiers of
applied mathematics (Proc. of 2nd International Symposium) (Beijing, 2006), edited by D.-Y. Hsieh et al., World Scientific,
Singapore, 2007.

[Lander et al. 2002] A. D. Lander, Q. Nie, and F. Y. M. Wan, “Do morphogen gradients arise by diffusion?”, Dev. Cell 2:6
(2002), 785–796.

[Lander et al. 2005a] A. D. Lander, Q. Nie, B. Vargas, and F. Y. M. Wan, “Aggregation of a distributed source in morphogen
gradient formation”, Stud. Appl. Math. 114:4 (2005), 343–374.

[Lander et al. 2005b] A. D. Lander, Q. Nie, and F. Y. M. Wan, “Spatially distributed morphogen production and morphogen
gradient formation”, Math. Biosci. Eng. 2:2 (2005), 239–262.

[Lander et al. 2005c] A. D. Lander, F. Y. M. Wan, and Q. Nie, “Multiple paths to morphogen gradient robustness”, preprint,
Center for Complex Biological Systems, University of California, Irvine, CA, 2005, available at https://eee.uci.edu/11s/45869/
home/Draft5.pdf.

[Lander et al. 2006] A. D. Lander, Q. Nie, and F. Y. M. Wan, “Internalization and end flux in morphogen gradient formation”,
J. Comput. Appl. Math. 190:1-2 (2006), 232–251.

[Lou et al. 2004] Y. Lou, Q. Nie, and F. Y. M. Wan, “Nonlinear eigenvalue problems in the stability analysis of morphogen
gradients”, Stud. Appl. Math. 113:2 (2004), 183–215.

[Martin-Castellanos and Edgar 2002] C. Martin-Castellanos and B. A. Edgar, “A characterization of the effects of Dpp signaling
on cell growth and proliferation in the Drosophila wing”, Dev. 129:4 (2002), 1003–1013.

[Martin et al. 2004] F. A. Martin, A. Pérez-Garijo, E. Moreno, and G. Morata, “The brinker gradient controls wing growth in
Drosophila”, Dev. 131:20 (2004), 4921–4930.



350 ARTHUR D. LANDER, QING NIE, BENJAMIN VARGAS AND FREDERIC Y. M. WAN

[de Moed et al. 1997] G. H. de Moed, G. de Jong, and W. Scharloo, “Environmental effects on body size variation in Drosophila
melanogaster and its cellular basis”, Genet. Res. 70:1 (1997), 35–43.

[Sattinger 1972] D. H. Sattinger, “Monotone methods in nonlinear elliptic and parabolic boundary value problems”, Indiana
Univ. Math. J. 21:11 (1972), 979–1000.

[Smoller 1983] J. Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften
258, Springer, New York, 1983. 2nd ed. published in 1994.

[Strikwerda 1989] J. C. Strikwerda, Finite difference schemes and partial differential equations, Wadsworth & Brooks/Cole,
Pacific Grove, CA, 1989.

[Teleman and Cohen 2000] A. A. Teleman and S. M. Cohen, “Dpp gradient formation in the Drosophila wing imaginal disc”,
Cell 103:6 (2000), 971–980.

[Umulis et al. 2008] D. M. Umulis, M. B. O’Connor, and H. G. Othmer, “Robustness of embryonic spatial patterning in
Drosophila melanogaster”, Curr. Top. in Dev. Biol. 81 (2008), 65–111.

[Vargas 2007] B. Vargas, Leaky boundaries and morphogen gradient formation, Ph.D. thesis, University of California, Irvine,
CA, 2007.

Received 16 May 2010. Revised 4 Oct 2010. Accepted 6 Oct 2010.

ARTHUR D. LANDER: adlander@uci.edu
Department of Developmental and Cell Biology, University of California, Irvine, 2638 Biological Science III,
Irvine, CA 92697-2300, United States
http://lander-office.bio.uci.edu/

QING NIE: qnie@uci.edu
Department of Mathematics, University of California, Irvine, 510B Rowland Hall, Irvine, CA 92697-3875, United States
http://www.math.uci.edu/~qnie/

BENJAMIN VARGAS: paryvargas@hotmail.com
Department of Mathematics, Irvine Valle College, 5500 Irvine Center Drive, Irvine, CA 92618-0300, United States

and

Department of Mathematics, University of California, Irvine, 510B Rowland Hall, Irvine, CA 92697-3875, United States

FREDERIC Y. M. WAN: fwan@uci.edu
Department of Mathematics, University of California, Irvine, 510B Rowland Hall, Irvine, CA 92697-3875, United States
http://www.math.uci.edu/~fwan/

mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

msp

FRACTALS IN THERMOELASTOPLASTIC MATERIALS

JUN LI AND MARTIN OSTOJA-STARZEWSKI

Fractal patterns are observed in computer simulations of elastic-plastic transitions in linear, locally
isotropic thermoelastic-hardening plastic heterogeneous materials. The models involve 2D aggregates
of homogeneous grains with weak random fluctuations in thermal expansion coefficients, equivalent to
modeling the effects of random residual strains. The spatial assignment of material randomness is a
nonfractal, strict-white-noise random field on a 256× 256 square lattice. The flow rule of each grain
follows associated plasticity with loading applied through either one of three macroscopically uniform
boundary conditions admitted by the Hill–Mandel condition. Upon following the evolution of a set of
grains that become plastic (plastic set), we find that it has a fractal dimension increasing smoothly from 0
towards 2. Transitions under various types of model randomness and combinations of material constants
are examined. While the grains possess sharp elastic-plastic stress-strain curves, the overall stress-strain
responses are smoothly curved and asymptote toward plastic flows of reference homogeneous media.
As the randomness decreases to zero, they turn into conventional curves with sharp kinks of homoge-
neous materials. Overall, the fractal dimension D of the plastic set is a readily accessible parameter to
investigate transition patterns in many materials.

1. Background

Given that many materials display fractal characteristics (see [Mandelbrot 1982; Feder 1988], for in-
stance), fractal concepts have been used in the geometric characterization as well as morphogenesis
models of spatial patterns. Numerous such phenomena, both in natural and artificial materials, include
phase transitions and accretion, fracture surfaces and dislocation patterns; see, e.g., [Sornette 2006].
However, very little work was done on fractals in elasto-plasticity, except for the research on plastic
ridges in ice fields [Ostoja-Starzewski 1990; Overland et al. 1995] and on shear bands in rocks of Mohr–
Coulomb type [Poliakov et al. 1994]. More recently we observed fractal patterns under two-dimensional
plane strain loadings at elastic-to-plastic transitions in random, linear elastic-perfectly (or hardening)
plastic materials [Li and Ostoja-Starzewski 2010a; 2010b] made of homogeneous, isotropic or anisotropic
grains. This paper focuses on thermoelastic-hardening plastic homogeneous materials, where the thermal
expansion coefficients are assigned from a (nonfractal) strict-white-noise random field. The reason for
this type of a random field assumption is that the evolution of plastic zones would very likely be fractal
should the material properties be fractally distributed at the outset. In all the cases we study, it turns out
that the elastic-to-plastic transition occurs through a fractal set of plastic grains, gradually plane-filling
the entire material domain under monotonic loading. We also study several related cases by varying
model configurations.

Keywords: random heterogeneous materials, thermoelastoplasticity, elastic-plastic transition, fractal pattern.
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2. Model formulation

As conventionally done in mechanics of random media, we consider the random heterogeneous material
to be a set B= {B(ω);ω ∈�} of realizations B(ω), defined over the sample space �, each one evolving
in a deterministic fashion [Ostoja-Starzewski 2008]. That is, for an elementary event ω ∈ � we have
a realization of deterministic media B(ω), each taken as an aggregate of crystals (or grains). With B

embedded in a physical space, the aggregate is essentially modeled by a random field. Any material
property, say G, is required to be mean-ergodic, that is

G(ω)≡ lim
L→∞

1
V

∫
V

G(ω, x) dV =
∫
�

G(ω, x) d P(ω)≡ 〈G(x)〉 (2-1)

where the overbar means the volume average and 〈 〉 indicates the ensemble average. P(ω) is the
probability measure assigned to the ensemble {G(ω, x);ω ∈ �, x ∈ V } and its σ -algebra. In general,
the grains are homogeneous, isotropic, linear (thermo)elastic-hardening-plastic materials, where the ran-
domness just resides in either the moduli, or plastic limits, or thermal expansion coefficients. Thus, the
constitutive response of each grain is

• when f < c (thermoelastic region):

εi j = Si jklσkl +αi j (ω, x)θ; (2-2)

• when f ≥ c and d f ≥ 0 (plastic region):

dε′i j =
dσ ′i j

2G
+ λ ·

∂ f
∂σi j

, dε =
dσ
K

(
dε = 1

3 dεi i , dσ = 1
3 dσi i

)
. (2-3)

Here primes indicate deviatoric tensor components, Si jkl is the compliance tensor, αi j (ω, x) is the thermal
expansion coefficient (randomly specified in each grain), θ = (T −T0) is the temperature change, f is the
yield function following the associated J2 flow theory, c is the yield limit, λ is a consistency parameter,
and G and K are the shear and bulk moduli, respectively. Clearly, the randomness in thermal expansion
coefficients effectively models random residual strains (εR

i j (ω, x)= αi j (ω, x)θ).
Regarding the loading of B, we recall the Hill–Mandel condition, which guarantees the equivalence

of energetically and mechanically defined effective responses:

σ : dε = σ̄ : d ε̄ ⇐⇒

∫
∂Bδ
(t − σ̄ · n) · (du− d ε̄ · x) d S = 0, (2-4)

where ∂Bδ is the boundary of a given specimen Bδ of size δ, see also [Hazanov 1998]. This equation
suggests three special types of uniform boundary conditions (BCs):

(i) uniform displacement BC:
du = d ε̄ · x (2-5)

(ii) uniform traction BC:
t = σ̄ · n (2-6)

(iii) uniform mixed-orthogonal BC:

(t − σ̄ · n) · (du− d ε̄ · x)= 0 (2-7)
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3. Fractal patterns from computational mechanics

Given the lack of analytical solutions for study of patterns in random (thermo)inelastic materials, a nu-
merical simulation of the elastic-plastic transition, in plane strain, is carried out with the ABAQUS FEM
software. The domain comprises 256× 256 square-shaped grains, i.e., the domain is sufficiently large to
compute fractal dimensions. Each grain is homogeneous and isotropic, its thermal expansion coefficient α
being a uniform random variable (r.v.) from a range up to±2.5% about the mean and other material param-
eters being constant. The mean values are taken from the ABAQUS Example Manual 5.1.2: E = 93.5 GPa,
h = 76.5 GPa, c= 153 MPa, α= 11.7×10−6 /K, ν = 0.27. The temperature change is set to be θ = 20 K.
We apply shear loading through one of three types of uniform BC consistent with (2-5)–(2-7):

Displacement : d ε̄11 =−d ε̄22 = dε0, d ε̄12 = 0, (3-1)

Traction : σ̄11 =−σ̄22 = σ
0, σ̄12 = 0, (3-2)

Mixed : d ε̄11 = dε0, σ̄22 =−σ
0, d ε̄12 = σ̄12 = 0. (3-3)

In the following, for the sake of clarity in the figures, we do not show results from loading under
mixed-orthogonal boundary conditions because they are bounded by those from (3-1) and (3-2), which
already provide very tight bounds. As these two loadings are applied, the material domains evolve from
fully elastic to fully plastic by exhibiting gradually growing sets of plastic grains. We call such a set the
plastic set. Furthermore, define the elastic set as the set of all the remaining grains, i.e., those that have
not yet gone through the elastic-plastic transition.

Figure 1 shows elastic-plastic transition patterns for increasing stress σ 0 under traction BC. The figures
use a binary format in the sense that elastic grains are white, while the plastic ones are black. As the
loading increases, the plastic set grows with an apparently disordered geometry. Its fractal dimension D
is estimated using the box-counting method [Feder 1988]. The fractal character of sets of plastic grains is

ε̄p = 0.0001 ε̄p = 0.00025 ε̄p = 0.00125 ε̄p = 0.0025
D = 1.8502 R = 0.9970 D = 1.9477 R = 0.9995 D = 1.9984 R = 0.9999 D = 1.9999 R = 1.0000

Figure 1. Field images of sets of grains that have become plastic (black) at the elastic-to-
plastic transition in a 256× 256 domain of square-shaped grains under uniform traction
BC at four consecutive levels of normalized average plastic strain ε̄p. Each white pixel
represents one elastic grain, and each black pixel a plastic grain. The values of the fractal
dimension D and the correlation coefficient R for linear fits of log Nr ∼ log r , where Nr

is the number of boxes with size r required to cover the object, are also given.
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Figure 2. Response curves for monotonic loading under different BCs: (a) averaged
stress∼strain; (b) fractal dimension of the plastic set versus strain; (c) fractal dimension
of the elastic set versus strain.

evident. The same type of results is obtained for each BC (2-5)–(2-7) and each particular material model,
whereby the spread of plastic grains is always fastest under (2-5), slower under (2-7), and slowest under
(2-6). Furthermore, as the noise in the material coefficient decreases from the range ±2.5% to, say, ±1%,
the transition simply occurs more rapidly. i.e., over a shorter interval of the loading parameter such as
applied stress. As the noise tends towards 0, the transition occurs instantaneously, in kink-like fashion.

Figure 2a shows response curves under these two BCs in terms of volume-averaged stress versus strain.
They have been nondimensionized as normalized stress or strain (divided by yield stress or yield strain)
for later comparative studies among materials. The responses of single grain homogeneous phases are
also given for reference. Clearly, the responses of random heterogeneous materials all display smooth
curves tending towards the line of homogeneous phases, which, in fact, is more realistic, since in real
materials (always possessing small scale randomness) the elastic-plastic transition develops smoothly
rather than through a kink-transition. Also note that the constitutive response is bounded from above
(resp. below) by that under displacement (traction) BCs. This is consistent with the scale-dependent
hierarchies of bounds for elastic-inelastic composites reviewed in [Ostoja-Starzewski 2008].
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Figure 3. Comparison of elastic-plastic transitions for uniform and Gaussian random
material distributions: (a) averaged stress∼strain; (b) fractal dimension of the plastic set
versus strain.

Figures 2b and 2c show evolutions of fractal dimensions of the plastic and elastic sets versus strain,
respectively. As expected, the first of these grows from 0 towards 2, while the second decreases from 2
towards 0 although we do not show the entire range since as the box-counting estimation of fractal
dimension is not reliable for very sparse set. In general, these two fractal dimensions do not add up to 2.

Next, the sensitivity of the model to various types of randomness is studied through a comparison of a
uniform as opposed to a Gaussian noise; the latter is truncated at ±6σ . Figure 3 shows that this is a sec-
ondary effect only both, in terms of stress-strain curves and in terms of fractal dimension evolution. Since
uniform randomness is effectively equivalent to Gaussian and it is simpler to implement, we examine in
Figure 4 two further cases in uniform distribution with different variances. Note that, according to (2-2),
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Figure 4. Comparison of elastic-plastic transitions for uniform distribution with differ-
ent variances: Case A1 has uniform r.v. α up to ±2.5% about the mean, and θ = 20 K;
Case A2 has uniform r.v. α up to ±12.5% about the mean, and θ = 20 K. Case A3 has
the same variance of α as in A1, but θ = 100 K. For A2 and A3, 1(αθ) is the same but
the mean value of αθ is higher in A3.
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Figure 5. Comparison of elastic-plastic transitions with different material yield limits:
material A1 is the same as before; material B1 has E = 207 GPa, α = 13.5× 10−6 /K
(from ABAQUS Benchmark 4.7.2), E/h, α/(c/E) are the same as in A1, i.e., h =
169.36 GPa, c = 390.84 MPa; material B2 is the same as B1 but with c reduced by
half; material B3 is the same as B1 but with c doubled.

the response is affected by the multiplicity αθ as a whole. Cases A2 and A3 are thus assigned the same
variance 1(αθ) but for the latter the mean αθ is higher. We find that different random variances in the
model configuration lead to quantitatively, but not qualitatively different transition patterns. Basically,
a lower randomness results in a narrower elastic-plastic transition, and the mean value of αθ takes a
stronger effect when the absolute variance is fixed, both in curves of the average stress as well as the
fractal dimension versus the average strain.

We next examine the elastic-to-plastic transition under differing material parameters. First, we study
the effect of material yield limits on (a) the stress-strain curves and (b) the fractal dimension-strain curves.
This involves a comparison of the original material A1 with three other hypothetical materials (B1, B2,
B3) defined in the caption of Figure 5. Overall, we see that higher α/(c/E) result in a slower elastic-
plastic transition, a fact which is understandable, since under these circumstances the thermal fluctuation
has a stronger influence on the elasto-plastic response (ratio of residual strain versus yield strain). Our
investigation culminates in Figure 6 which shows the influence of plastic hardening on the stress and
fractal dimension as functions of the volume averaged plastic strain. In general, the larger is the E/h
(ratio of elastic moduli to plastic moduli), i.e., the weaker are the relative hardening effects, the slower is
the transition. Also, note that the homogeneous responses in stress-strain curves are distinct for materials
B1, B4 and B5. The trends to approaching homogeneous response curves in conventional stress-strain
calibrations are not easy to discern among different materials. On the other hand, the fractal dimension
always increases from 0 to 2 during the transition, thus providing a practical parameter to assess the
transition process.

4. Mesh dependence

One more issue which we address is that of mesh dependence. Namely, how would the results change
if we used a different resolution of a single grain than by modeling up until now as one finite element?
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Figure 6. Comparison of elastic-plastic transitions with different hardening properties:
materials A1 and B1 are the same as before; material B4 is the same as B1, but with h
reduced by half; material B5 is the same as B1 but with h doubled.
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Figure 7. (a) Comparison of effective, normalized stress-strain curves in a 128× 128
lattice with one grain = one finite element or one grain = 2× 2 elements. (b) A corre-
sponding comparison for the fractal dimension versus the normalized plastic strain.

Given the computer limitations, we can only use a twice finer finite element mesh, thus using a 256×256
mesh to represent a 128× 128 grain lattice. As shown in the resulting Figure 7, the stress-strain curves
display a bit softer response, while the fractal dimension seems to be lower in bigger mesh. The first result
is explained by noting that a finer mesh offers more degrees of freedom to the given grain microstructure,
whereas the second observation is understood by noting that a larger mesh leads to the possibility of
partial plasticity in one grain, now modeled by four finite elements as opposed to one element equal one
grain which may be either fully elastic or plastic.
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5. Conclusion

The key result of this study is that a nonfractal random field of thermal expansion coefficients results in
the set of plastic grains growing as a fractal through the elastic-plastic transition, and gradually filling
the entire material domain. Parallel to this, the set of elastic grains evolves as another fractal, gradually
diminishing to a set of zero measure. These results are obtained under three types of monotonic loadings
(either displacement, traction, or mixed-orthogonal) consistent with the Hill–Mandel condition. Notably,
a gradual transition of the material from elastic type to plastic type, where plasticity spreads in a plane-
filling fashion, is far more realistic than the idealized homogeneous medium model in which the transition
is an immediate process, characterized by a kink in the stress-strain curve. With the fractal dimension pa-
rameter we explore transition patterns by varying material constants’ means and/or types of randomness.
In the particular thermoelastoplastic model studied here, when the effect of random thermal fluctuations
increases, as represented by a higher coefficient of variation of α/(c/E), the elastic-plastic transition
process becomes slower. Considering that the magnitude of plastic strain is reflected in the strength of
slip-lines and shear bands, we see that even very weak material randomness in material parameters of
elastic-ductile materials causes plastic slip-lines and shear bands to evolve as fractals. Given the need
to simulate very large lattices so as to obtain as reliable estimates of fractal dimensions as possible, all
the results have been obtained by representing each grain by one finite element; a twice finer resolution
has been found to have very minor effects only. Finally, we argue that the fractal dimension D, being
a much more easily observable parameter than the stress state, can conveniently be used to grasp the
state of loading in any given material and to describe the transition patterns in a unified way for many
different materials.
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RATE-TYPE ELASTICITY AND VISCOELASTICITY
OF AN ERYTHROCYTE MEMBRANE

VLADO A. LUBARDA

The rate-type constitutive theory of elastic and viscoelastic response of an erythrocyte membrane is
presented. The results are obtained for an arbitrary isotropic strain energy function, and for its particular
Evans–Skalak form. The explicit representations of the corresponding fourth-order tensors of elastic
moduli are derived, with respect to principal axes of stress, and an arbitrary set of orthogonal axes. The
objective rate-type viscoelastic constitutive equations of the cell membrane are then derived, based on
the Maxwell and Kelvin models of viscoelastic behavior.

1. Introduction

The study of the mechanical response of a red blood cell (erythrocyte) membrane has received a great
amount of attention from both classical mechanics and bio-chemo-mechanical points of view [Evans and
Skalak 1980; Fung 1993; Agre and Parker 1989; Boal 2002]. Recent studies have addressed the evolution
of mechanical properties of the cell membrane, associated with dynamic remodeling and reorganization
of the membrane structure during large deformations of the cell, in response to mechanical, thermal, and
chemical forces [Gov 2007; Li et al. 2007; Park et al. 2010]. Once the evolution equations for such
structural changes are constructed, their incorporation in the constitutive theory can be accomplished
through the rate-type constitutive equations, analogous to the existing theories of biological remodeling
or growth of soft tissues [Lubarda and Hoger 2002; Garikipati et al. 2006; Taber 2009]. Since the rate-
type constitutive theories relate the rates of stress and deformation, an essential ingredient of such theories
is the elastic constitutive expression in the rate-type (incremental) form. The objective of this paper is
to develop such rate-type constitutive expression, corresponding to an arbitrary isotropic strain energy
function, and its Evans–Skalak particular form. The explicit expressions are derived for the components
of the fourth-order tensor of elastic moduli, which relate the objective rates of the conjugate stress and
strain tensors. The derived rate-type elasticity equations are then used to construct the objective rate-
type viscoelastic constitutive equations for erythrocyte membrane, based on the Maxwell and Kelvin
viscoelastic models.

Since the red blood cell membrane is only about 100 Å thick, it is assumed that the model of continuum
mechanics applies only within the plane of the membrane. The applied forces are thus considered to be
distributed along the length, with the membrane stresses defined by the force/length ratios. The upper
bound on the in-plane Poisson ratio is equal to 1, rather than 1

2 , as in the three-dimensional isotropic
elasticity. When modeled as infinitesimally thin, the erythrocyte membrane has no buckling resistance,
and thus can support only noncompressive loadings, which give rise to nonnegative principal stresses

Keywords: elastic modulus, erythrocyte, membrane elasticity, rate theory, viscoelasticity.
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[Lubarda and Marzani 2009; Lubarda 2010]. The incorporation of small, but finite bending stiffness (pro-
portional to the square of the membrane thickness) is needed to address other features of the membrane
response, such as the size and shape of membrane wrinkles which may form during large deformations
[Haughton 2001; Géminard et al. 2004], the membrane adhesive interactions [Agrawal and Steigmann
2009], or the resting shape of the cell and the skeleton/bilayer interactions in optical tweezer stretching
and micropipette aspiration tests [Peng et al. 2010].

The content of the paper is as follows. Section 2 contains the kinematics and kinetics of the membrane
in-plane deformation. The Evans–Skalak form of the elastic strain energy is adopted, as in most other
recent work on the mechanics of red blood cell, (e.g., [Mills et al. 2004; Zhu et al. 2007]). The rate-type
elasticity equations, which relate the Jaumann rate of the Kirchhoff stress to the rate of deformation tensor,
are derived in Section 3. The explicit representation of the elastic moduli tensor is given for an arbitrary
isotropic strain energy function, and for its special Evans–Skalak form. The results are given for the
coordinate axes parallel to the principal axes of stress, and for the arbitrary set of orthogonal axes. Since
the areal modulus of the erythrocyte cell is several orders of magnitude higher than the shear modulus, for
some applications it may be appropriate to model the membrane as infinitely stiff to its area change; in
Section 4 we accordingly present the rate-type elastic constitutive analysis for isoareal membranes. The
derived rate-type elasticity equations are used in Section 5 to derive the objective rate-type viscoelasticity
equations, corresponding to the Maxwell and Kelvin viscoelastic models. The results are given explicitly
for an arbitrary isotropic strain energy function and for its particular Evans–Skalak form. Concluding
remarks are given in Section 6. For completeness of the analysis, the appendices contain the results
of the rate-type elastic analysis based on the Lagrangian strain and its conjugate Piola–Kirchhoff stress
(Appendix A), and the deformation gradient and its conjugate nominal stress (Appendix B).

2. Kinematic and kinetic preliminaries

The deformation gradient associated with in-plane deformation of a thin plane membrane is

F = λ1 n1⊗ N1+ λ2 n2⊗ N2, (1)

where λ1 and λ2 are the principal stretches, Ni are the unit vectors along the principal directions of the
right stretch tensor U in the undeformed configuration, and ni = R ·Ni are the unit vectors in the deformed
configuration, along the principal directions of the left stretch tensor V . The polar decomposition of the
deformation gradient is F = V · R = R ·U , where R = n1⊗ N1+ n2⊗ N2 is the rotation tensor. The
dyadic product of two vectors is denoted by ⊗.

The strain energy (per unit initial area) of an isotropic membrane is a function of the principal stretches,
φ= φ(λ1, λ2). An infinitesimal change of the strain energy is equal to the work done by the true (Cauchy)
stress components σ1 and σ2 on the incremental stretches dλ1 and dλ2, which gives

dφ = σ1λ2 dλ1+ σ2λ1 dλ2. (2)

By taking the differential of φ = φ(λ1, λ2), the comparison with (2) establishes the constitutive expres-
sions

σ1 =
1
λ2

∂φ

∂λ1
, σ2 =

1
λ1

∂φ

∂λ2
. (3)
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The corresponding Kirchhoff stress components, τi = (det F) σi = (λ1λ2) σi , are

τ1 = λ1
∂φ

∂λ1
, τ2 = λ2

∂φ

∂λ2
. (4)

2.1. Evans–Skalak form of the strain energy. The strain energy of an isotropic membrane must be
a symmetric function of λ1 and λ2. Evans and Skalak [1980] proposed that φ = φ(α, β), where the
deformation measures

α = λ1λ2− 1, β =
1
2

(
λ1
λ2
+
λ2
λ1

)
− 1 (5)

are constructed so that α = β = 0 in the undeformed configuration. The parameter α is the area change
per unit undeformed area, while β is a measure of the distortional deformation. The Evans–Skalak model
of a nonlinear elastic membrane corresponds to φ = 1

2κα
2
+µβ, i.e.,

φ = 1
2 κ(λ1λ2− 1)2+µ

[
1
2

(
λ1
λ2
+
λ2
λ1

)
− 1

]
, (6)

where κ and µ are the areal (bulk) modulus and the shear modulus of the membrane, respectively. From
(3), the stress components are

σ1,2 = κ(λ1λ2− 1)± 1
2 µ(λ

−2
2 − λ

−2
1 ), (7)

σ1+ σ2 = 2κ(λ1λ2− 1), σ1− σ2 = µ(λ
−2
2 − λ

−2
1 ). (8)

Numerous experiments have been conducted in the past to measure the elastic and viscous properties
of the human erythrocyte membrane. For example, from the micropipette aspiration tests of red blood
cells, it has been estimated that the shear modulus (µ) of the erythrocyte membrane is in the range 4−10
µN/m, while the areal modulus (κ) is on the order 103

− 104 higher than that [Evans and Skalak 1980;
Boal 2002]. Such a large difference in two stiffnesses is because the areal modulus of the cell membrane
is controlled mostly by the phospholipidic bilayer, while the shear modulus is determined by the elastic
properties of the cytoskeleton, a two-dimensional network of spectrin strands bound to the bilayer. The
viscous properties of the cell are due to glycoproteins, lipid integral and peripheral membrane proteins,
lipid rafts, and transmembrane cholesterol. Based on the measurements of the characteristic time for
relaxation, the shear viscosity has been estimated to be in the range 0.6–2.7µN·s/m [Hochmuth 1987].

If the Kirchhoff stress components are used, the expressions (7)–(8) can be rewritten as

τ1+ τ2 = 2κλ1λ2(λ1λ2− 1), τ1− τ2 = µ

(
λ1
λ2
−
λ2
λ1

)
. (9)

For the later purposes of the rate-type theory of viscoelasticity and the incremental solution of the bound-
ary value problems, it is important to invert (9), and express λ1λ2 and λ1/λ2 in terms of stress components.
The resulting expressions are

λ1λ2 =
1
2

[
1+

(
1+ 2 τ1+τ2

κ

)1/2
]
,

λ1

λ2
=
τ1− τ2

2µ
+

[
1+

(τ1− τ2

2µ

)2
]1/2

,
λ2

λ1
=−

τ1− τ2

2µ
+

[
1+

(τ1− τ2

2µ

)2
]1/2

.

(10)
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The sum and difference of the Kirchhoff stress components can be expressed in terms of the Cauchy
stress components as

τ1± τ2 =

(
1+

σ1+ σ2

2κ

)
(σ1± σ2), (11)

because, from (9), λ1λ2 = 1+ (σ1+ σ2)/2κ , and τi = (λ1λ2)σi , for i = 1, 2.

2.2. Stress response on arbitrary axes. The strain energy of an isotropic membrane can be expressed
as a function of two independent invariants of the left Cauchy–Green deformation tensor B = V 2, i.e.,

φ = φ(IB, IIB), IB = tr B = λ2
1+ λ

2
2, IIB = det B = λ2

1λ
2
2. (12)

where IB is the trace, and IIB the determinant of B. Since İB = Ḃkk = 2Bi j Di j , İI B = 2IIB Dkk , and
φ̇ = τi j Di j , by taking the time-rate of (12), if follows that

τi j = 2
(
∂φ

∂ IB
Bi j + IIB

∂φ

∂ IIB
δi j

)
, (13)

where δi j is the Kronecker delta. The invariants IB and IIB are related to the invariants α and β by

α = II 1/2
B − 1, β =

IB

2II 1/2
B

− 1; IB = 2(1+α)(1+β), IIB = (1+α)2. (14)

Consequently,

∂φ

∂ IB
=

1
2

II−1/2
B

∂φ

∂β
,

∂φ

∂ IIB
=

1
4

II−1/2
B

(
2
∂φ

∂β
− IB II−1

B
∂φ

∂β

)
, (15)

and the substitution into (13) gives an alternative representation of the stress response

σi j =
∂φ

∂α
δi j +

1
det B

∂φ

∂β
B ′i j , (16)

where B ′i j = Bi j − Bkkδi j/2 is the deviatoric part of Bi j .
If φ is given by the Evans–Skalak form φ = 1

2κα
2
+µβ, (16) reduces to

σi j = κα δi j +
µ

det B
B ′i j . (17)

The first term on the right-hand side of (16) and (17) is the spherical part, σkkδi j/2, and the second term
is the deviatoric part of the stress, σ ′i j . If the coordinate axes are parallel to the principal axes of B, (17)
reduces to (7).

3. Rate-type constitutive analysis

In this section we derive the rate-type form of the elastic constitutive equations, expressed with respect to
the principal axes of stress and the constitutive structure (4), and with respect to arbitrary set of orthogonal
axes and the constitutive structure (13) or (16).
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3.1. Rate of deformation and spin tensors. For the rate-type constitutive analysis, the rates of deforma-
tion need to be considered. To that goal, we first introduce the spin tensors

�=�(N1⊗ N2− N2⊗ N1), ω = ω(n1⊗ n2− n2⊗ n1), (18)

such that Ṅi =� · Ni and ṅi = ω · ni (i = 1, 2). In particular,

Ṅ1 =−� N2, Ṅ2 =�N1, ṅ1 =−ω n2, ṅ2 = ωn1, (19)

where −� is the rate of the counterclockwise rotation of the dyad (N1, N2), while −ω is the rate of the
counterclockwise rotation of the dyad (n1, n2). Consequently, by differentiating (1), and by using (19),
the rate of the deformation gradient becomes

Ḟ = λ̇1 n1⊗ N1+ λ̇2 n2⊗ N2+ (λ2ω− λ1�)n1⊗ N2− (λ1ω− λ2�)n2⊗ N1. (20)

Since the inverse of the deformation gradient is

F−1
=

1
λ1

N1⊗ n1+
1
λ2

N2⊗ n2, (21)

the substitution of (20) and (21) into the expression for the velocity gradient L = Ḟ · F−1 gives

L =
λ̇1

λ1
n1⊗ n1+

λ̇2

λ2
n2⊗ n2+ω(n1⊗ n2− n2⊗ n1)−�

(
λ1

λ2
n1⊗ n2−

λ2

λ1
n2⊗ n1

)
. (22)

Its symmetric and antisymmetric parts are the rate of deformation tensor

D =
λ̇1

λ1
n1⊗ n1+

λ̇2

λ2
n2⊗ n2+�

λ2
2− λ

2
1

2λ1λ2
(n1⊗ n2+ n2⊗ n1), (23)

and the spin tensor

W =
(
ω−�

λ2
1+ λ

2
2

2λ1λ2

)
(n1⊗ n2− n2⊗ n1). (24)

The components of the rate of deformation and spin tensors, on the current axes ni , are

D11 =
λ̇1

λ1
, D22 =

λ̇2

λ2
, D12 =�

λ2
2− λ

2
1

2λ1λ2
(25)

and
W = ω−�

λ2
1+ λ

2
2

2λ1λ2
, (26)

so that

D =
2∑

i, j=1

=Di j ni ⊗ n j , W =W (n1⊗ n2− n2⊗ n1). (27)

3.2. Rate-type constitutive equations. A comprehensive treatment of the three-dimensional rate-type
(incremental) elasticity can be found in Haughton and Ogden [1978] and Ogden [1984]. Some of the
results in this section can be deduced from this theory directly, but some require a separate analysis. The
rate of the Kirchhoff stress τ = τ1n1⊗ n1+ τ2 n2⊗ n2 is

τ̇ = τ̇1 n1⊗ n1+ τ̇2 n2⊗ n2−ω(τ1− τ2)(n1⊗ n2+ n2⊗ n1), (28)
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from which we conclude that

τ̇12 = τ̇21 =−ω(τ1− τ2). (29)

Observing, from (25) and (26), that

ω =W −
λ2

1+ λ
2
2

λ2
1− λ

2
2

D12, (30)

the expression (29) can be rewritten as

τ̊12 = (τ1− τ2)
λ2

1+ λ
2
2

λ2
1− λ

2
2

D12. (31)

The Jaumann rate τ̊ is defined by τ̊ = τ̇ −W ·τ +τ ·W . Since, instantaneously, on the axes ni , the shear
stress τ12 = 0, the components of the Jaumann rate of the Kirchhoff stress are

τ̊11 = τ̇11, τ̊22 = τ̇22, τ̊12 = τ̇12+W (τ1− τ2), (32)

which was used in the transition from (29) to (31).
Having regard to constitutive expressions (4), the rates of the Kirchhoff stress components are

τ̇1 =

(
∂φ

∂λ1
+ λ1

∂2φ

∂λ2
1

)
λ̇1+

(
λ1

∂2φ

∂λ1∂λ2

)
λ̇2, τ̇2 =

(
λ2

∂2φ

∂λ1∂λ2

)
λ̇1+

(
∂φ

∂λ2
+ λ2

∂2φ

∂λ2
2

)
λ̇2. (33)

Consequently, by using (25), the objective rate-type constitutive expressions for elastic deformations of
a thin membrane are

τ̊11 = λ1

(
∂φ

∂λ1
+ λ1

∂2φ

∂λ2
1

)
D11+

(
λ1λ2

∂2φ

∂λ1∂λ2

)
D22,

τ̊22 =

(
λ1λ2

∂2φ

∂λ1∂λ2

)
D11+ λ2

(
∂φ

∂λ2
+ λ2

∂2φ

∂λ2
2

)
D22, (34)

τ̊12 =

(
λ1
∂φ

∂λ1
− λ2

∂φ

∂λ2

)
λ2

1+ λ
2
2

λ2
1− λ

2
2

D12.

3.3. Elastic moduli tensor. The tensor representation of the constitutive expressions (34) is

τ̊ =L : D, τ̊i j = Li jkl Dkl, (35)

where the components of the fourth-order tensor of the elastic moduli

L= L1111 n1⊗ n1⊗ n1⊗ n1+L2222 n2⊗ n2⊗ n2⊗ n2

+L1122 (n1⊗ n1⊗ n2⊗ n2+ n2⊗ n2⊗ n1⊗ n1)

+L1212 (n1⊗ n2+ n2⊗ n1)⊗ (n1⊗ n2+ n2⊗ n1) (36)
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are

L1111 = λ1

(
∂φ

∂λ1
+ λ1

∂2φ

∂λ2
1

)
, L2222 = λ2

(
∂φ

∂λ2
+ λ2

∂2φ

∂λ2
2

)
,

L1122 = λ1λ2
∂2φ

∂λ1∂λ2
, L1212 =

1
2

(
λ1
∂φ

∂λ1
− λ2

∂φ

∂λ2

)
λ2

1+ λ
2
2

λ2
1− λ

2
2
,

(37)

with the obvious symmetry properties

L1122 = L2211, L1212 = L2121 = L1221 = L2112. (38)

The components of the tensor LLL, as well as the components of the tensors τ̊ and D, relative to the fixed
base vectors, can be easily obtained by the tensor transformation rules. An alternative, direct derivation
is presented in section 3.4.

If the strain energy is given by (6), the elastic moduli become

L1111 = L2222 = κλ1λ2(2λ1λ2− 1)+µ
λ2

1+ λ
2
2

2λ1λ2
,

L1122 = κλ1λ2(2λ1λ2− 1)−µ
λ2

1+ λ
2
2

2λ1λ2
, L1212 = µ

λ2
1+ λ

2
2

2λ1λ2
.

(39)

3.4. Elastic compliances tensor. The inverted form of (35), giving the rate of deformation tensor in
terms of the Jaumann rate of the Kirchhoff stress, is

Di j =Mi jkl τ̊kl . (40)

The nonvanishing components of the elastic compliances tensor are

M1111 =
L2222

1
, M2222 =

L1111

1
, M1122 =M2211 =−

L1122

1
, M1212 =

1
4L1212

, (41)

where
1= L1111L2222−L2

1212. (42)

If the strain energy is given by the Evans–Skalak form (6), the determinant 1 is

1= 2κµ(2λ1λ2− 1)(λ2
1+ λ

2
2), (43)

while the elastic moduli Li jkl (on the principal axes of stress) are given by (39).

3.5. Rate-type elasticity on arbitrary axes. The objective rate form of the constitutive expression (13)
can be obtained directly by applying to it the Jaumann derivative. Since B̊ = B · D+ D · B, İB = 2B : D,
and İI B = 2IIB tr D, it readily follows that

τ̊i j = Li jkl Dkl, (44)

where

Li jkl = c1δi jδkl + c2(δi j Bkl + Bi jδkl)+ c3 Bi j Bkl + c4(δik B jl + Bikδ jl + δ jk Bil + B jkδil) (45)



368 VLADO A. LUBARDA

are the components of the fourth-order tensor of elastic moduli with respect to arbitrary orthogonal axes,
and

c1 = 4IIB

(
∂φ

∂ IIB
+ IIB

∂2φ

∂ II 2
B

)
, c2 = 4IIB

∂2φ

∂ IB∂ IIB
, c3 = 4

∂2φ

∂ I 2
B
, c4 =

∂φ

∂ IB
. (46)

If the strain energy is expressed in terms of the invariants α and β, rather than IB and IIB , the param-
eters ci become

c1 = (1+α)2
∂2φ

∂α2 + (1+β)
2 ∂

2φ

∂β2 − 2(1+α)(1+β)
∂2φ

∂α∂β
+ (1+α)

∂φ

∂α
+ (1+β)

∂φ

∂β
,

c2 =
∂2φ

∂α∂β
−

1
1+α

[
(1+β)

∂2φ

∂β2 +
∂φ

∂β

]
,

c3 =
1

(1+α)2
∂2φ

∂β2 , c4 =
1

2(1+α)
∂φ

∂β
.

(47)

In the case of the Evans–Skalak strain energy, this simplifies to

c1 = κ(1+α)(1+ 2α)+µ(1+β), c2 =−µ(1+α)−1, c3 = 0, c4 =−c2/2. (48)

If the coordinate axes are parallel to the principal axes of B, (45) with (48) reduces to (39). In this case,
L1111 = L2222 = c1, L1122 = c1− 2L1212, and L1212 = µ(1+β).

4. Isoareal membranes

As discussed in the introduction, the areal modulus of the red blood cell is several orders of magnitude
higher than the shear modulus, and for some applications it may be appropriate to model the membrane
as infinitely stiff to the area change (κ →∞, ν = 1). In this case, there is a deformation constraint
λ1λ2 − 1 = 0, so that D11 + D22 = 0. The rate of work is φ̇ = (σ1 − σ2)λ̇1/λ1, and by differentiation
φ = φ(λ1) with respect to time, there follows

σ1− σ2 = λ1
dφ
dλ1

. (49)

The average normal stress is undetermined by the constitutive analysis, and denoting it by −p0, we can
write

σ1+ σ2 =−2p0. (50)

Therefore, the principal stresses are

σ1 =
1
2
λ1

dφ
dλ1
− p0, σ2 =−

1
2
λ1

dφ
dλ1
− p0. (51)

The function p0 = p0(x1, x2) is determined by solving a specific boundary-value problem under consid-
eration. If the strain energy is

φ = µβ = µ
( 1

2(λ
2
1+ λ

−2
1 )− 1

)
, (52)

the stresses become

σ1 =
1
2 µ(λ

2
1− λ

−2
1 )− p0, σ2 =−

1
2 µ(λ

2
1− λ

−2
1 )− p0. (53)
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4.1. Rate theory for isoareal membranes. For isoareal membranes the Cauchy and Kirchhoff stress are
equal to each other, so that (31) becomes

σ̊12 = λ1
dφ
dλ1

λ2
1+ λ

−2
1

λ2
1− λ

−2
1

D12. (54)

Furthermore, by differentiating (50) and (51),

σ̊11+ σ̊22 =−2 ṗ0, σ̊11− σ̊22 =

(
λ1

dφ
dλ1
+ λ2

1
d2φ

dλ2
1

)
D11. (55)

If φ is given by (52), the rate-type constitutive expressions, on the principal stress axes, become

σ̊i j =− ṗ0δi j +µ(λ
2
1+ λ

−2
1 )Di j . (56)

4.2. Expressions on arbitrary axes. The strain energy of an isotropic isoareal membrane is a function
of only one strain of stretch invariant, e.g., φ = φ(IB). Its rate is

φ̇ = 2
dφ
dIB

B ′i j Di j , (57)

because İB = 2B ′i j Di j , the rate of deformation being deviatoric, so that Bi j Di j = B ′i j Di j . Since the rate
of work is φ̇ = σi j Di j = σ

′

i j Di j , again because Dkk = 0, the comparison with (57) gives

σ ′i j = 2
dφ
dIB

B ′i j , (58)

and thus the stress response is

σi j =−p0δi j + 2
dφ
dIB

B ′i j , (59)

To derive the rate-type form of (59), it is convenient to first rewrite (59) as

σi j =−

(
p0+ IB

dφ
dIB

)
δi j + 2

dφ
dIB

Bi j . (60)

The application of the Jaumann derivative to (60), having regard to İB = 2Bi j Di j and B̊i j = Bik Dk j +

Dik Bk j , then yields

σ̊i j =− ṗ0 δi j +
[
c0δi j Bkl + c3 Bi j Bkl + c4(δik B jl + Bikδ jl + δ jk Bil + B jkδil)

]
Dkl . (61)

The parameters c0, c2, and c4 are

c0 =−2
(

dφ
dIB
+ IB

d2φ

dI 2
B

)
, c3 = 4

d2φ

dI 2
B
, c4 =

dφ
dIB

. (62)

If the strain energy is of the Evans–Skalak form

φ = µβ = µ
( 1

2 IB − 1
)
, (63)

the parameters (62) reduce to c0 =−µ, c3 = 0, and c4 = µ/2, while (61) simplifies to

σ̊i j =− ṗ0 δi j +
1
2 µ
(
δik B jl + Bikδ jl + δ jk Bil + B jkδil − 2δi j Bkl

)
Dkl . (64)
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When coordinate axes coincident with the principal directions of B are used, (64) reduces to (56).

5. Rate theory of viscoelasticity

To study the time-dependent aspiration of an erythrocyte cell membrane into a micropipette [Evans
and Hochmuth 1976], or the cell recovery upon its deformation by optical tweezers [Dao et al. 2003;
Mills et al. 2004], viscoelastic constitutive models have been employed. In this section, we extend
the constitutive models their considered by constructing the objective rate type viscoelastic constitutive
equations of both Maxwell and Kelvin type, based on an arbitrary isotropic strain energy function, and its
special Evans–Skalak form. For an integral type of viscoelastic constitutive equations for thin membranes,
we refer to [Tözeren et al. 1982; Wineman 2007].

5.1. Maxwell viscoelastic model. In the Maxwell viscoelastic model, the rate of deformation is assumed
to be the sum of the elastic and viscous parts, i.e.,

Di j = De
i j + Dv

i j . (65)

The elastic part is related to the objective Jaumann rate of the Kirchhoff stress by the constitutive expres-
sion (36), in which φ = φe(I e

B, II e
B), so that

τ̊i j = Le
i jkl De

kl, De
i j =Me

i jkl τ̊kl . (66)

The viscous part is assumed to be deviatoric and governed by the Newton viscosity law

Dv
i j =

1
2η
σ ′i j , σ ′i j = σi j −

1
2
σkkδi j . (67)

The coefficient of membrane viscosity η is assumed to be constant, although it could vary with the
amount of stretching [Evans and Hochmuth 1976]. The experimentally reported values for η are in the
range between 0.6 and 2.7 µN·s/m, being strongly influenced by the concentration of hemoglobin in the
cytoplasm, which binds to the membrane of the cell [Hochmuth 1987; Hochmuth and Waugh 1987]. By
substituting (66) and (67) into (65), there follows

τ̊i j = Le
i jkl

(
Dkl −

1
2η
σ ′kl

)
, Di j =Me

i jkl τ̊kl +
1

2η
σ ′i j . (68)

When expressed on the principal axes of the current stress, Le
i jkl is given by (37), and (68) becomes

τ̊i j = Le
i jkl Dkl −

1
4η
(Le

i j11−L
e
i j22)(σ1− σ2). (69)

If the elastic response is governed by the Evans–Skalak form of the elastic strain energy, the elastic
moduli Le

i jkl are given by (39), in which λ1 and λ2 are replaced by λe
1 and λe

2. Since the viscous part of
the rate of deformation is assumed to be deviatoric, the membrane area change is entirely due to elastic
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deformation, so λ1λ2 = λ
e
1λ

e
2. Consequently, from Equations (10)–(11),

λe
1λ

e
2 =

1
2

[
1+

(
1+ 2 τ1+τ2

κ

)1/2
]
= 1+ σ1+σ2

2κ
,

λe
1
λe

2
=
τ1−τ2

2µ
+

[
1+

(
τ1−τ2

2µ

)2
]1/2

,
λe

2
λe

1
=−

τ1−τ2
2µ
+

[
1+

(
τ1−τ2

2µ

)2
]1/2

,

(70)

where τ1± τ2 is given in terms of stress by (11). This specifies the components of the elastic moduli
tensor Le

i jkl in terms of the current stress state, as needed in the incremental procedure of solving the
path-dependent viscoelastic boundary value problems.

If the membrane is modeled as an isoareal membrane, by using (56), we obtain (on the current principal
axes of stress)

σ̊i j =− ṗ0δi j + 2µ
[

1+
(
σ1−σ2

2µ

)2
]1/2 (

Di j −
1

2η
σ ′i j

)
(71)

and

D′i j =
1

2µ

[
1+

(
σ1−σ2

2µ

)2
]−1/2

σ̊ ′i j +
1

2η
σ ′i j . (72)

5.2. Kelvin viscoelastic model. An alternative, Kelvin-type viscoelastic model can be constructed by
assuming that the deviatoric part of stress is the sum of the elastic and viscous contributions, σ ′i j =

σ ′ei j + σ
′v
i j . By using the elastic constitutive expression (16) and the Newton viscosity law, this gives

σ ′i j =
1

det B
∂φ

∂β
B ′i j + 2ηD′i j . (73)

The average normal stress is assumed to be due to elastic deformation only, so that, from (16),

σkk = 2
∂φ

∂α
. (74)

The total stress is

σi j =
∂φ

∂α
δi j +

1
det B

∂φ

∂β
B ′i j + 2ηD′i j . (75)

When expressed on the principal stress axes, this is

σ1 =
∂φ

∂α
+

1
2
∂φ

∂β
(λ−2

2 − λ
−2
1 )+ η

(
λ̇1

λ1
−
λ̇2

λ2

)
,

σ2 =
∂φ

∂α
+

1
2
∂φ

∂β
(λ−2

1 − λ
−2
2 )+ η

(
λ̇2

λ2
−
λ̇1

λ1

)
.

(76)

A version of (76), corresponding to an isoareal Evans–Skalak model with φ = µβ, was used by [Mills
et al. 2004] in their finite-element evaluation of cell stretching by optical tweezers.

We next determine the expressions for the components of the rate of deformation tensor, which is
particularly important if the Kelvin model is combined in series with the Maxwell model to obtain a
more complex or capable viscoelastic model. The deviatoric part of the rate of deformation follows from
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(73) as

D′i j =
1

2η

(
σ ′i j −

1
det B

∂φ

∂β
B ′i j

)
. (77)

For a prescribed history of stress, it remains to determine the rate of the area change, i.e., Dkk =

d(ln dA)/dt . This can be accomplished by differentiating (74), which gives

σ̇kk = 2
(
∂2φ

∂α2 α̇+
∂2φ

∂α∂β
β̇

)
. (78)

It can be readily shown that
α̇ = II 1/2

B Dkk, β̇ = II−1/2
B B ′i j Di j , (79)

so that the substitution into (78) yields

σ̇kk = 2
∂2φ

∂α2 II 1/2
B Dkk + 2

∂2φ

∂α∂β
II−1/2

B B ′i j D′i j . (80)

The trace product B ′i j D′i j can be eliminated from (80) by using (77), with the result

B ′i j D′i j =
1
η

(
1
2 σi j B ′i j −β(β + 2) ∂φ

∂β

)
. (81)

In the derivation, the Frobenius norm of B′ is expressed as B ′i j B ′i j =
1
2 I 2

B − 2IIB . The substitution of
(81) into (80) gives the desired expression for Dkk in terms of the current stress and its rate. This is

Dkk =
II−1

B

2∂2φ/∂α2

[
II 1/2

B σ̇kk −
1
η

∂2φ

∂α∂β

(
σi j B ′i j − 2β(β + 2) ∂φ

∂β

)]
. (82)

If the strain energy is given by the Evans–Skalak form φ = 1
2κα

2
+µβ, (77) and (82) reduce to

D′i j =
1

2η

(
σ ′i j −

µ

det B
, B ′i j

)
, Dkk =

1
(det B)1/2

σ̇kk

2κ
. (83)

On the principal stress axes, this becomes

D1− D2 =
1

2η

(
σ1− σ2+µ(λ

−2
1 − λ

−2
2 )
)
, D1+ D2 =

1
2κλ1λ2

(σ̇1+ σ̇2) . (84)

If the membrane is modeled as isoareal, with φ = φ(β), then

D′i j =
1

2η

(
σ ′i j −

dφ
dβ

B ′i j

)
, Dkk = 0. (85)

In this case, the average normal stress σkk/2=−p0 is unspecified by the constitutive analysis.

6. Conclusion

We have presented in this paper the rate-type constitutive analysis of erythrocyte membrane undergoing
large elastic and viscoelastic deformations. The results are obtained for an arbitrary isotropic strain energy
function, and for its special Evans–Skalak form, commonly used to study the mechanical response of
red blood cells. The explicit representation of the fourth-order tensor of elastic moduli, which relates
the objective rate of the Kirchhoff stress to the rate of the deformation tensor, is derived with respect
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to the principal axes of stress, and an arbitrary set of orthogonal axes, used as the background axes in
the numerical treatment of the boundary-value problems. Since the areal modulus of the erythrocyte
membrane is several orders of magnitude higher than the shear modulus, the rate-type equations are also
derived for an isoareal membrane. The viscoelastic constitutive equations are then derived by adopting
either the Maxwell or the Kelvin viscoelastic model, i.e., by adopting the additive decomposition of the
rate of deformation, or the stress tensor, into its elastic and viscous parts. More involved viscoelastic
models can also be considered, such as those used in [Lubarda and Marzani 2009] in the context of
small strains. The obtained constitutive equations may be readily implemented in the incremental (nu-
merical) treatments of the path-dependent boundary-value problems, such as those associated with large
deformation and shape recovery of an erythrocyte passing through and exiting from narrow capillaries
[Pozrikidis 2003], or excessive aspiration of the cell membrane into micropipette, which may lead to
membrane necking followed by formation of a vesicle [Peng et al. 2010]. Other potential application of
derived equations is in a related study of the mechanics of nuclear membranes, bounding the nucleus of
eukaryotic cells [Vaziri and Mofrad 2007].

The elastic properties of a healthy cell during its lifetime of about 120 days are essential for its main
function to deliver the oxygen, while squeezing through capillaries. The degradation of elastic properties
and the gradual loss of the membrane elasticity are therefore an important extension of the present work.
From the mechanics point of view, this extension may proceed in the spirit of the rate-type theory of
damage elasticity [Lubarda and Krajcinovic 1995], provided that the appropriate specification of the
parameters which account for biochemical and physical processes of membrane damage and fatigue,
and their evolution equations, are available. This, together with the description of active topological
remodeling of the membrane structure during large deformations, is a challenging avenue for future
research.
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Appendix A: Rate-type elasticity with respect to symmetric Piola–Kirchhoff stress

If the initial configuration is used as the reference configuration in the formulation and the solution of the
boundary value problem, the rate-type constitutive expressions are needed with respect to the Lagrangian
strain

E = 1
2 (λ

2
1− 1) N1⊗ N1+

1
2 (λ

2
2− 1) N2⊗ N2,

and its conjugate symmetric Piola–Kirchhoff stress S. The components of the stress S= S1 N1⊗ N1+

S2 N2⊗ N2 are
S1 =

1
λ1

∂φ

∂λ1
, S2 =

1
λ2

∂φ

∂λ2
,

such that φ̇ = Si j Ėi j . Omitting details of the derivation, the corresponding rate-type constitutive expres-
sion is

Ṡi j =3i jkl Ėkl,
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where

31111 =
1
λ2

1

(
∂2φ

∂λ2
1
−

1
λ1

∂φ

∂λ1

)
, 32222 =

1
λ2

2

(
∂2φ

∂λ2
2
−

1
λ2

∂φ

∂λ2

)
,

31122 =
1

λ1λ2

∂2φ

∂λ1∂λ2
, 31212 =

1
λ2

1− λ
2
2

(
1
λ1

∂φ

∂λ1
−

1
λ2

∂φ

∂λ2

)
,

with the obvious symmetries 31212 = 32121 = 31221 = 32112 and 31122 = 32211. The well-known
relationship [Hill 1978] between the moduli Li jkl , appearing in the constitutive structure τ̊i j = Li jkl Dkl ,
and the moduli 3i jkl , appearing in the constitutive structure Ṡi j =3i jkl Ėkl , is

Li jkl = Fim F jn3mnpq Fkp Flq +
1
2
(τikδ jl + τ jkδil + τilδ jk + τ jlδik).

If the strain energy is given by the Evans–Skalak form (6), the elastic moduli become

31111 =
1
λ4

1

(
κλ1λ2+µ

3λ2
2− λ

2
1

2λ1λ2

)
, 31122 =

1
λ2

1λ
2
2

(
κλ1λ2(2λ1λ2− 1)−µ

λ2
1+ λ

2
2

2λ1λ2

)
,

32222 =
1
λ4

2

(
κλ1λ2+µ

3λ2
1− λ

2
2

2λ1λ2

)
, 31212 =

1
λ2

1λ
2
2

(
κλ1λ2(1− λ1λ2)+µ

λ2
1+ λ

2
2

2λ1λ2

)
.

Appendix B: Rate-type elasticity with respect to nominal stress

The nominal stress P = F−1
· τ appears in the variational formulation of the boundary value problems,

when the differential equations of motion are expressed in terms of the displacement components. The
rate of work is then φ̇ = P1λ̇1+ P2λ̇2, and the components of P = P1 N1⊗ n1+ P2 N2⊗ n2 are

P1 =
∂φ

∂λ1
, P2 =

∂φ

∂λ2
.

Again omitting details of the derivation, it follows that Ṗj i = 3̂ j ilk Ḟkl , where

3̂1111 =
∂2φ

∂λ2
1
, 3̂2222 =

∂2φ

∂λ2
2
, 3̂1122 = 3̂2211 =

∂2φ

∂λ1∂λ2
,

3̂1212 = 3̂2121 =
1

λ2
1− λ

2
2

(
λ1
∂φ

∂λ1
− λ2

∂φ

∂λ2

)
,

3̂1221 = 3̂2112 =
1

λ2
1− λ

2
2

(
λ2
∂φ

∂λ1
− λ1

∂φ

∂λ2

)
.

Since Ṗ = Ṡ · FT
+ P · LT , the relationship between the pseudomoduli 3̂i jkl and the moduli 3i jkl from

Appendix A is 3̂ j ilk =3 jmln Fim Fkn + S jlδik .
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If the strain energy is given by (6), the elastic pseudomoduli become

3̂1111 = κλ
2
2+µ

λ2

λ3
1

, 3̂2222 = κλ
2
1+µ

λ1

λ3
2

,

3̂1122 = 3̂2211 = κ(2λ1λ2− 1)−µ
λ2

1+ λ
2
2

2λ2
1λ

2
2
,

3̂1212 = 3̂2121 = µ
1

λ1λ2
,

3̂1221 = 3̂2112 = κ(1− λ1λ2)+µ
λ2

1+ λ
2
2

2λ2
1λ

2
2
.
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mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

msp

FUNCTIONALLY GRADED BARS
WITH ENHANCED DYNAMIC PERFORMANCE

KARAM Y. MAALAWI

To Charles and Marie-Louise Steele, with gratitude.

This paper presents analytical solutions for enhancing the dynamic performance of functionally graded
material bars in axial motion. Optimized designs with maximized natural frequencies under mass equal-
ity constraint are given and discussed. The composition of the construction material is optimized by
defining the spatial distribution of volume fractions of the material constituents using either continuous
or discrete variations along the bar length. Three cases of boundary conditions have been examined:
fixed-fixed, fixed-free and free-free bars. The major aim is to tailor the mass and stiffness distributions
in the axial direction so as to maximize the frequencies and place them at their target values to avoid the
occurrence of large amplitudes of vibration without the penalty of increasing total structural mass. The
resulting optimization problem has been formulated as a nonlinear mathematical programming problem
solved by invoking the Matlab optimization toolbox routines, which implement the method of feasible di-
rections interacting with the associated eigenvalue problem routines. The proposed mathematical models
have shown that the use of material grading can be promising in optimizing natural frequencies without
mass penalty.

1. Introduction

Functionally graded materials (FGMs) are advanced composite materials fabricated to have graded vari-
ation of the relative fractions of the constituent materials. Commonly, these materials are made from
a mixture of ceramic and metal or a combination of different metals. Ceramic provides high tempera-
ture resistance because of its low thermal conductivity, while metal secures the necessary strength and
stiffness. FGMs show promise in many applications, such as spacecraft heat shields, high performance
structural elements and critical engine components.

A few studies have addressed the dynamics of FGM structures. Loy et al. [1999] considered vibration
analysis of FGM cylindrical shells composed of stainless steel and nickel, which were graded in thickness
direction according to a volume fraction power-law distribution. Love’s shell theory was implemented
and the resulting eigenvalue problem was solved by Rayleigh–Ritz method. The behavior of the natural
frequencies as well as the influence of the volume fractions were investigated and presented in detail.
Cheng and Batra [2000] studied the steady-state vibrations of a simply supported FGM plate on an
elastic foundation and subjected to uniform in-plane hydrostatic loads. They applied Reddy’s third-order
theory, taking the effect of rotary inertia into consideration. The Young’s modulus and the Poisson’s ratio
were assumed to vary only in the plate thickness direction.

Keywords: functionally graded material, structural optimization, longitudinal vibration of bars, composite structures.
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Closed-form solutions for calculating the natural frequencies of an axially graded beam were derived
and given by [Elishakoff and Guédé 2004]. The modulus of elasticity was taken as a polynomial in the
axial coordinate along the beam’s length, and an inverse problem was solved to find the stiffness and
mass distributions so that the chosen polynomial could lead to an exact mode shape. Three-dimensional
exact solutions for free and forced vibrations of FGM plates were introduced in [Vel and Batra 2004]
and [Elishakoff et al. 2005]. The material properties of composite plates were also allowed to vary in the
thickness direction. Exact natural frequencies were obtained which can be used to assess the accuracy of
the different plate theories. Tylikowski [2005] presented a study of parametric vibrations of functionally
graded plates subjected to in-plane time-dependent forces. The material properties were graded in the
thickness direction of the plate according to a volume fraction power-law distribution. Effects of power-
law exponent on the stability behavior were also investigated.

Considering, next, the optimal frequency design problem, several methods have been developed and
applied in solving both the frequency and mass optimization problems. They are broadly classified as
mathematical programming techniques, optimality criteria methods and optimal control theory.

Mathematical programming has dealt successfully with a wide range of structural optimization prob-
lems, while control theory has been applied with limited success because of the great analytical complex-
ity. Niordson [1965] and Brach [1968] initiated the formulation of the extremal problem of finding the
maximum fundamental frequencies of vibrating beams under mass constraint. They applied variational
methods and investigated the effect of beam taper on the resulting optimum solutions. However, their
attained designs were characterized by zero cross-sectional area at the end supports, which results in
infinite stresses near the boundaries of the beam. Following their work, several other researchers applied
optimization techniques for solving one-dimensional structural members. Warner and Vavrick [1975]
utilized a variational continuous optimization procedure to find the minimal mass of bars in axial motion
under several frequency constraints. They indicated that the piece-wise uniform design can be economi-
cally efficient as compared to the continuous design. In [Maalawi and Warner 1984] we obtained global
optimality solutions for practical rod constructions made of piecewise uniform sections. Their objective
function was measured by maximization of the fundamental frequency under mass constraint, where
conspicuous trends were deduced under specified boundary conditions. Other optimum shapes of one-
dimensional structural models for maximum fundamental frequency were studied in [Masad 1997], who
presented an efficient numerical approach for computing the rate of change of the associated eigenvalues.
In [Maalawi 1999] we presented an exact method for the problem of frequency maximization of rods in
axial motion under mass constraint. The dual problem of mass minimization under frequency constraint
was also addressed, and results were presented and discussed for both continuous and discrete multi-
element structural models.

In the field of the optimum design of FGM-structures, Qian and Batra [2005] considered frequency
optimization of a cantilevered plate with variable volume fraction according to simple power-laws. They
implemented genetic algorithms to find the optimum values of the power exponents, which maximize the
natural frequencies, and concluded that the volume fraction needs to be varied in the longitudinal direction
of the plate rather than in the thickness direction. Goupee and Vel [2006] proposed a methodology to
optimize the natural frequencies of functionally graded beam with variable volume fraction of the con-
stituent materials in the beam’s length and height directions. They used a piecewise bi-cubic interpolation
of volume fraction values specified at a finite number of grid points, and applied a genetic algorithm code
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to find the needed optimum designs. Considering aeroelastic optimization FGM structures, Librescu and
Maalawi [2007] introduced the underlying concepts of using material grading in optimizing subsonic
wings against torsional instability. They developed exact mathematical models allowing the material
physical and mechanical properties to change in the wing spanwise direction, where both continuous
and piecewise structural models were successfully implemented.

Little is found in the literature that deals with frequency optimization of FGM bars subject to a mass
equality constraint. The aim of the present study is, therefore, to incorporate the effect of changing
the volume fractions of the constituent materials for enhancing the dynamic performance of an axially
vibrating bar. Following [Librescu and Maalawi 2007; Warner 2001; Maalawi and Warner 1984], a
useful optimization tool has been built for designing efficient patterns of FGM bars having maximized
frequencies while maintaining the total structural mass at constraint value. This allows the search for the
required optimal volume fractions which satisfy both design criteria. The corresponding increases in the
frequencies calculated with respect to a baseline design have been evaluated for several configurations,
including cases of fixed-fixed, fixed-free and free-free bars fabricated from certain types of composite
materials. Actually, substantial improvement in the overall dynamic performance has been attained
showing the usefulness of the proposed model in using the concept of material grading to arrive at the
needed optimum designs for one dimensional slender bars having arbitrary cross-sectional type.

2. Structural dynamic analysis

The partial differential equation that governs the free axial motion of a vibrating bar is [Meirovitch 1997]

∂

∂x

[
E A(x)

∂u(x, t)
∂x

]
= ρA(x)

∂2u(x, t)
∂t2 , (1)

which must be satisfied over the entire bar’s length L . In (1), x denotes the axial coordinate, u(x, t)
longitudinal displacement at any position x and time t , E(x) modulus of elasticity, A(x) cross-sectional
area and ρ(x) mass density. Three types of boundary conditions are described:

(I) fixed-fixed: u(0, t)= 0 and u(L , t)= 0

(II) fixed-free: u(0, t)= 0 and E A∂u
∂x

∣∣∣
x=L
= 0

(III) free-free: E A∂u
∂x

∣∣∣
x=0
= 0 and E A∂u

∂x

∣∣∣
x=L
= 0

The longitudinal displacement u(x, t) is assumed to be separable in space and time, u(x, t)=U (x) ·q(t),
where the time dependence q(t) is harmonic with circular frequency ω. Substituting for d2q/dt2

=−ω2q ,
the associated eigenvalue problem can be written directly in the form

d
dx

[
E A(x)

dU
dx

]
+ ρA(x)ω2U (x)= 0 (2)

which must be satisfied on the interval 0< x < L .

2.1. Definition of the baseline design. An essential phase in formulating an optimization problem is
to define an appropriate baseline design to which the resulting optimal designs can be compared. The
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baseline design has been selected to be a composite bar made of two different materials, denoted by A
and B, and has uniform mass and stiffness distributions along its length, with equal volume fractions
(V ) of the constituent materials, i.e., VA = VB = 50%. It is assumed that the optimized designs shall
have the same total mass, length, cross sectional area and shape, type of construction material and type
of boundary conditions of those of the known baseline design. Therefore, the design variables, which
are subject to change in the optimization process, shall be the distribution of the volume fractions over
the bar length.

2.2. Material grading. The physical and mechanical properties are allowed to vary lengthwise, that is,
the material is graded in the axial direction. The distributions of the mass density ρ and modulus of
elasticity E are taken to obey the semi-empirical formulas of [Halpin and Tsai 1969]. Assuming no
voids are present, we have

VA(x)+ VB(x)= 1,

ρ(x)= VA(x)ρA+ VB(x)ρB,

E(x)= VA(x)E A+ VB(x)EB .

(3)

Normalizing with respect to the baseline design by dividing (2) by E0 A/L and differentiating once more
with respect to x , we get

Ê
d2Û
d x̂2 +

d Ê
d x̂
·

dÛ
dx̂
+ ρ̂ω̂2Û = 0 (4)

which must be satisfied on the interval 0< x̂ < 1. Dimensionless quantities are defined as follows:

Axial coordinate x̂ = x/L
Longitudinal displacement Û =U/L
Modulus of elasticity Ê = E/E0

Mass density ρ̂ = ρ/ρ0

Circular frequency ω̂ = ωL
√
ρ0/E0

where the baseline design parameters E0 =
1
2(E A+ EB) and ρ0 =

1
2(ρA+ρB). The cross-sectional area

A is assumed to be constant. The total structural mass is kept equal to that of the baseline:

M̂s =

∫ 1

0
ρ̂ dx̂ = 1, (5)

implying the dimensionless mass equality constraint∫ 1

0
VA(x̂) dx̂ = 1

2 . (6)

3. Solution procedures

3.1. Continuous model: an exact power series solution. Kumar and Sujith [1997] presented exact ana-
lytical solutions for the longitudinal vibration of nonuniform rods. The equation of motion was reduced
to a standard differential equation solved in terms of Bessel and Neumann functions. However, the
solutions were restricted to rods having polynomial area variation and made of an isotropic material with



FUNCTIONALLY GRADED BARS WITH ENHANCED DYNAMIC PERFORMANCE 381

uniform properties. A more general solution of (4), where the modulus of elasticity and mass density
vary spatially, can be expressed by the power series [Edwards and Penney 2004]

Û (x̂)=
2∑

m=1

Cmλm(x̂), (7)

where the Cm are the constants of integration and the λm are two linearly independent solutions that have
the form:

λm(x̂)=
∞∑

n=m

am,n x̂n−1, n ≥ m. (8)

The unknown coefficients am,n can be determined by substitution into the differential equation (4) and
equating coefficients of like powers of x̂ . The variation of the volume fractions in FGM structures is usu-
ally described by power-law distributions [Elishakoff and Guédé 2004; Qian and Batra 2005; Tylikowski
2005]. In the present study, linear and parabolic model types are considered with their corresponding
derived recurrence formulas:

Linear distribution.

• Type (1): VA(x̂)= VA(0)−1V x̂ , 1V = VA(0)− VA(1)

am,n =
γ (n− 2)2am,n−1− θω̂

2am,n−2+ ζ ω̂
2am,n−3

β(n− 1)(n− 2)
(9)

• Type (2) – Symmetric about x̂ = 1/2: VA(x̂)= VA(0)− 21V x̂ , 1V = VA(0)− VA(1/2)

am,n =
2γ (n− 2)2am,n−1− θω̂

2am,n−2+ 2ξω̂2am,n−3

β(n− 1)(n− 2)
(10)

Parabolic distribution.

• Type (3) – Concave: VA(x̂)= VA(0)+1V (x̂2
− 2x̂), 1V = VA(0)− VA(1)

am,n =
2γ (n− 2)2am,n−1− [γ (n− 2)(n− 3)+ θω̂2

]am,n−2+ ξω̂
2
[2am,n−3− am,n−4]

β(n− 1)(n− 2)
(11)

• Type (4) – Convex: VA(x̂)= VA(0)−1V x̂2, 1V = VA(0)− VA(1)

am,n =
[γ (n− 2)(n− 3)− θω̂2

]am,n−2+ ξω̂
2am,n−4

β(n− 1)(n− 2)
(12)

• Type (5) – Symmetric about x̂ = 1/2: VA(x̂)= VA(0)+ 41V (x̂2
− x̂), 1V = VA(0)− VA(1/2)

am,n =
4γ (n− 2)2am,n−1−

[
4γ (n− 2)(n− 3)+ θω̂2

]
am,n−2+ 4ξω̂2(am,n−3− am,n−4)

β(n− 1)(n− 2)
(13)

The Greek symbols in (9)–(13) are defined as follows, with 1Ê = Ê A− ÊB and 1ρ̂ = ρ̂A− ρ̂B :

β = ÊB +1ÊVA(0), γ =1Ê1V, θ = ρ̂B +1ρ̂VA(0), ξ =1ρ̂1V .
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boundary conditions frequency equation ω̂0,i

fixed-fixed, symmetric modes Û (0)= Û ′
(1

2

)
= 0

∞∑
n=3

a2n(n− 1)/2n−2
=−1 (π, 3π, 5π)

fixed-fixed, asymmetric modes Û (0)= Û
(1

2

)
= 0

∞∑
n=2

a2n/2n−1
= 0 (2π, 4π, 6π)

fixed-free Û (0)= Û ′(1)= 0
∞∑

n=3
a2n(n− 1)=−1 (π, 3π, 5π)/2

free-free, symmetric modes Û ′(0)= Û ′
( 1

2

)
= 0

∞∑
n=3

a1n(n− 1)/2n−2
= 0 (2π, 4π, 6π)

free-free, asymmetric modes Û ′(0)= Û
(1

2

)
= 0

∞∑
n=3

a1n/2n−1
=−1 (π, 3π, 5π)

Table 1. Frequency equations for different types of boundary conditions. The column
ω̂0,i gives the dimensionless natural frequencies of the baseline design, with ω̂0 = 0
corresponding to the first (rigid-body) mode of a free-free bar. Differentiation is with
respect to x̂ .

A coefficient am,n is set equal to zero whenever n is less than m, and the leading coefficients am,m in
each series are arbitrary and can be set equal to one. This method was successfully applied by [Librescu
and Maalawi 2007] to determine the exact critical flight speed of a FGM subsonic wing. Table 1 sum-
marizes the appropriate mathematical expressions of the frequency equation for any desired case, which
can be obtained by application of the associated boundary conditions and consideration of nontrivial
solutions.

3.2. Piecewise model: The transfer matrix method. A piecewise model concept was introduced in
[Maalawi and Warner 1984] to obtain global optimal frequency designs of isotropic bars with piecewise
uniform sections. They showed that the use of piecewise models in structural optimization gives excellent
results and can be promising for similar applications. Li [2000] presented solutions of the differential
equation of longitudinal vibration of bars with stiffness and mass distributions, which were described by
specific power functions. He applied the transfer matrix method of [Pestel and Leckie 1963] to derive the
frequency equation of multi-step bars with several boundary conditions, where analytical solutions were
verified with full scale measured data of a multi-story tall building. Figure 1 shows an elastic, slender bar

                                          ρρρρk: Mass density 

                                          Ek: Modulus of elasticity 

                                                            

              (1)          (2)                             (k)                                           (Ns) 

        1        2                     3              k                  k+1 

         

              L1          L2                               Lk                                            LNs    

                x̂                                           x                               

                                                             1.0  

Figure 1. General configuration of a piecewise axially graded bar.
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with total dimensionless length of unity constructed from any arbitrary number of uniform segments (Ns),
each of which has the same cross-sectional area but different properties of the construction material. Such
a configuration results in a piecewise axial grading of the material in the direction of the bar axis. Before
determining the exact natural frequencies and performing the necessary mathematics, it is important to
bear in mind that design optimization is only as meaningful as its core structural analysis model. Any
deficiencies therein will certainly be reflected in the optimization process.

For the k-th segment, (4) reduces to

d2Û
d x̄2 +α

2
k Û = 0, αk = ω̂

√
ρ̂k/Êk, (14)

where Êk = Ek/E0 and ρ̂k = ρk/ρ0 are the dimensionless modulus of elasticity and mass density of
the k-th segment. Equation (14) must be satisfied in the interval 0 ≤ x̄ ≤ L̂k , where x̄ = x̂ − x̂k and
L̂k = Lk/L . Its general solution is:

Û (x̄)= C1 sin(αk x̄)+C2 cos(αk x̄). (15)

Expressing the constants of integration C1 and C2 in terms of the state variables [Û , F̂ = Ê dÛ/dx̄] at
both ends of the k-th segment, we get {

Ûk+1

F̂k+1

}
= [T (k)

]

{
Ûk

F̂k

}
,

where

[T (k)
] =

[
cosαk L̂k sinαk L̂k/(αk Êk)

−αk Êk sinαk L̂k cosαk L̂k

]
(16)

is the transfer matrix of the k-th segment. It is now possible to compute the state variables progressively
along the bar length by applying continuity requirements among the interconnecting boundaries of the
various bar segments. Therefore, the state variables at both ends of the bar can be related to each other
through an overall transfer matrix denoted by [T ]:

[T ] = [T (Ns)][T (Ns−1)
] . . . [T (2)

][T (1)
]. (17)

The required frequency equation for determining the natural frequencies can then be obtained by applying
the associated boundary conditions (refer to Table 1) and considering only the nontrivial solution of the
resulting matrix equation.

4. Optimization problem formulation

4.1. General. Attractive goals of designing efficient structural members include minimization of struc-
tural weight, maximization of the fundamental frequencies [Masad 1997], and minimization of total cost
of production. Global optimization models of elastic beam-type structures were presented in [Maalawi
and El-Chazly 2002], where both stability and dynamic optimization problems were formulated in a
standard mathematical programming coupled with finite element analysis routines. Another important
consideration is the reduction or control of the vibration level [Maalawi and Negm 2002]. Vibration can
greatly influence the performance of several structural systems because of its adverse effects on stability,
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fatigue life and noise. The reduction of vibration may be attained either by a direct maximization of the
natural frequencies or by separating the natural frequencies of the structure from the harmonics of the
exciting applied loads. This would avoid resonance and large amplitudes of vibration, which may cause
severe damage of the structure. Direct maximization of the natural frequencies can ensure a simultaneous
balanced improvement in both of the overall stiffness and structural mass distributions of the vibrating
bar. The associated optimization problems are usually cast in nonlinear mathematical programming
form [Vanderplaats 1999] where the objective is to minimize a function F(X) of a vector X of design
variables, subject to certain number of constraints G j (X) ≤ 0, j = 1, 2, . . . ,m. Iterative techniques are
usually used for solving such optimization problems in which a series of directed design changes are
made between successive points in the design space. The method of feasible directions is one of the
most powerful methods in finding the required constrained optimum solution. The search direction S j

must satisfy the conditions S j∇F < 0 and S j∇G j < 0, where ∇F and ∇G j are the gradient vectors
of the objective and constraint functions, respectively. For checking the constrained minima, the Kuhn–
Tucker test [Vanderplaats 1999] is applied at the design point X D , which lies on one or more set of
active constraints. The Kuhn–Tucker equations are necessary conditions for optimality for a constrained
optimization problem and their solution forms the basis to the method of feasible directions.

4.2. Optimal frequency model. In the present optimization problem, two alternatives of the objective
function form have been implemented and examined. The first one is represented by a direct maxi-
mization of a weighted sum of the natural frequencies, which is expressed mathematically as follows:

Minimize F(X)=−
∑

i

αi ω̂i ,
∑

i

αi = 1, 0≤ αi ≤ 1, (18)

where ω̂i are the normalized frequencies, αi weighting factors measuring the relative importance of each
frequency [Kasprzak and Lewis 2001] and X is the chosen design variable vector. For continuous models
with known power-law distribution, X represents the volume fractions at the ends of the bar, while for
discrete model X = (VA,k, L̂k)k,1,2,...Ns . The second alternative is to minimize a weighted sum of the
squares of the difference between each frequency ω̂i and its target or desired value ω̂∗i :

Minimize F(X)=
∑

i

αi (ω̂i − ω̂
∗

i )
2. (19)

Both objectives are subject to the constraints

Mass constraint: M̂s = 1, (20)

Side constraints: X L ≤ X ≤ XU , (21)

where X L and XU are the lower and upper limiting values imposed on the design variables vector X in
order not to obtain unrealistic odd-shaped designs in the final optimum solutions. Approximate values
of the target frequencies are usually chosen to be within close ranges; sometimes called frequency-
windows; of those corresponding to an initial baseline design, which are adjusted to be far away from
the critical exciting frequencies. The proper choice of the best form of the objective function has to wait
for actual computer experimentation. Several computer program packages are available now for solving
the above design optimization model, which can be coded to interact with structural and eigenvalue
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Material A Material B
(carbon fibers) (epoxy matrix)

Mass density (g/cm3) ρ f = 1.81 ρm = 1.27
Young’s modulus (GPa) E1 f = 235 Em = 4.3
Shear modulus (GPa) G12 f = 27 Gm = 1.6
Poisson’s ratio ν12 f = 0.2 νm = 0.35

Table 2. Material properties of carbon-AS4 / epoxy-3501-6 composite.

analysis software. The Matlab optimization toolbox is a powerful tool that includes many routines for
different types of optimization encompassing both unconstrained and constrained minimization algo-
rithms [Venkataraman 2002]. One of its useful routines, fmincon, implements the method of feasible
directions in finding the constrained minimum of an objective function of several variables.

5. Optimization results and discussions

The mathematical models developed above have been applied to obtain the required optimal solutions
of FGM bars with different boundary conditions (see Table 1). The selected construction material is
composed of carbon-AS4 (material A) and epoxy3501-6 (material B), which has favorable characteristics
and is highly desirable in several mechanical, civil and aerospace engineering applications [Daniel and
Ishai 2006]; see Table 2.

Two different forms of the objective function measuring frequency optimization have been defined
in (18) and (19). Whatever is the approach taken, it can be useful to investigate first the behavior of
the natural frequencies for the different boundary conditions and see how they are changed with the
selected design variables while maintaining the total structural mass constant. Computer experimentation
for optimizing fixed-fixed and free-free bars with either discrete or continuous material grading have
indicated that good patterns with improved dynamic characteristics would have symmetric grading about
the mid-span point of the bar (x̂ = 0.5). Therefore, half of the bar can only be analyzed with the benefit
of reducing the total number of the design variables, and consequently, the computational time.

5.1. Piecewise models. Considering first the case of fixed-fixed bar constructed from four segments
with symmetry about the midspan, half of the bar can be analyzed using only four variables denoted
by (VA, L̂)k=1,2. Furthermore, one of the segment lengths can be eliminated because of the equality
constraint imposed on the total length. Another variable can also be discarded by applying the mass
equality constraint (6), which reduces the number of design variables to only two, say (VA, L̂)1.

Figure 2 depicts the functional behavior of the dimensionless first and second frequencies augmented
with the mass equality constraint. It is seen that the functions are well behaved and continuous everywhere
in the design space (VA− L̂)1, except in the empty regions located at the upper right of the whole domain,
where the mass equality constraint is violated. Such empty regions are bounded from below by the curve
(VA L̂)1= 0.5; that is the volume fraction of material (A) is equal to zero in the second segment: VA,2= 0.

The level curves of the lowest fundamental frequency associated with the first symmetric mode are
shown in on the left in Figure 2. The feasible domain is seen to be split by the baseline contours (ω̂1=π)
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Figure 2. Isomerits of the dimensionless frequency under mass equality constraint of
a 4-segment fixed-fixed bar, symmetric about midspan. Left: fundamental frequency
(symmetric mode). Right: second frequency (asymmetric mode). Construction material
is carbon fibers-AS4 / epoxy-3501-6.

into two distinct zones. The one to the right encompasses the constrained global maxima, which is calcu-
lated to be ω̂1,max=3.45406 at the optimal design point (VA, L̂)k=1,2= (0.650, 0.3375), (0.1885, 0.1625).
Actually, each design point inside the feasible domain corresponds to different material properties as
well as different stiffness and mass distributions, while maintaining the total structural mass of the
vibrating rod constant. Figure 2, right, shows the developed isomerits of the second frequency as-
sociated with the first asymmetric mode. Two global maxima can be observed having the calculated
values ω̂2,max = 6.4732 and 6.4711, which correspond, respectively, to the design points (VA, L̂)k=1,2 =

(0.405, 0.365), (0.757, 0.135) located at the upper left region, and (0.750, 0.145), (0.3975, 0.355) at the
lower right region of the feasible domain. The developed isomerits for other cases of fixed-free and
free-free bars made of carbon/epoxy composites are shown in Figures 3 and 4, respectively. It is seen
that a bar with free-free boundary conditions behaves in the opposite trend to the case of fixed-fixed bar.
The global maximum of the fundamental frequency in the former occurs at the lower region to the left of
the design space (Figure 4) having the same value of ω̂1,max = 3.45406 with altering segment locations,
namely, (VA, L̂)k=1,2 = (0.1885, 0.1625), (0.650, 0.3375).

Table 3 summarizes the attained optimal solutions with increasing the number of segments for the
different types of boundary conditions. It is seen that the attained optimization gain (i.e. the percentage
increase in the fundamental frequency above its baseline value) increases with the number of segments.
However, it should be kept in mind that the cost of manufacturing will also be increased. Therefore,
a compromise has to be made between the reduction of vibration and the cost of manufacturing. In
all, the bars can be economically built from a fewer number of segments having different length and
material properties, since each pattern with a specified number of segments has its own exact global
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Figure 3. Frequency isomerits of a 2-segment, fixed-free bar under mass constraint
(M̂s = 1.0): fundamental frequency (left) and second frequency (right). Material is
carbon fibers-AS4 / epoxy-3501-6.

Figure 4. Frequency isomerits of a symmetric, 4-segment, free-free bar under mass
constraint (M̂s = 1.0). Left: fundamental frequency (asymmetric mode). Right: second
frequency (symmetric mode). Material is carbon fibers-AS4 / epoxy-3501-6.

optimal solution. One does not have to use more segments in order to increase the accuracy of the
resulting solutions. This is one of the major outcomes of the present model formulation, which result in
exact solutions no matter the number of segments is. Another remarkable observation is that the attained
optimal designs based on maximization of a single frequency do not guarantee maximization of other
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Ns = 1 2 3 4

fixed-fixed (0.50, 0.50)1 (0.650, 0.338)1 (0.719, 0.244)1 (0.750, 0.23125)1
(half-span) (baseline) (0.189, 0.163)2 (0.413, 0.144)2 (0.425, 0.13125)2

(0.138, 0.112)3 (0.225, 0.07500)3
(0.0625, 0.0625)4

(ω̂1, ω̂2, ω̂3) (3.142, 6.283, 9.425) (3.454, 5.537, 8.081) (3.531, 5.487, 8.287) (3.562, 5.133, 8.231)

increase in ω̂1 0% 9.93% 12.38% 13.37%

fixed-free (0.50, 1.00)1 (0.650, 0.675)1 (0.725, 0.500)1 (0.750, 0.4625)1
(baseline) (0.189, 0.325)2 (0.381, 0.306)2 (0.425, 0.2625)2

(0.107, 0.194)3 (0.225, 0.1500)3
(0.0625, 0.125)4

(ω̂1, ω̂2, ω̂3) (1.571, 4.712, 7.854) (1.727, 4.044, 7.354) (1.766, 4.105, 6.552) (1.781, 4.116, 6.454)

increase in ω̂1 0% 9.93% 12.41% 13.37%

free-free (0.50, 0.50)1 (0.200, 0.165)1 (0.138, 0.112)1 (0.0625, 0.0625)1
(half-span) (baseline) (0.648, 0.335)2 (0.413, 0.144)2 (0.2250, 0.0750)2

(0.719, 0.244)3 (0.425, 0.13125)3
(0.750, 0.23125)4

(ω̂1, ω̂2, ω̂3) (3.142, 6.283, 9.425) (3.454, 5.990, 8.170) (3.531, 5.918, 8.287) (3.562, 5.874, 8.231)

increase in ω̂1 0% 9.93% 12.38% 13.37%

Table 3. Optimal patterns (VA, L̂)k=1,2,...,Ns of multisegment FGM bars with maximized
fundamental frequency ω̂1 under mass equality constraint. Patterns for fixed-fixed and
free-free bars are symmetric about the midpoint of the bar.

frequencies. For example, in the case of fixed-fixed bar, the design based upon maximization of ω̂2

alone (see Figure 2) can result in a degraded value of the fundamental frequency (ω̂1 = 2.820), located
in the region to the left of the design space, which is lower than that of the baseline design by about
10.24%. Therefore, if one really seeks to maximize the overall stiffness-to-mass ratio of the vibrating
rod, a multi-objective design optimization ought to be implemented instead [Kasprzak and Lewis 2001].
In this regard, the proper determination of the values of the weighting factors αi ought to be based on the
fact that each frequency shall be maximized from its initial value corresponding to the uniform baseline
design. The author suggests the following procedure:

• Initialize the values of the weighting factors by the reciprocal of the initial reference values; αi =

1/ω̂0,i .

• Normalize the resulting values by dividing each one by their sum in order to make the final sum
equal to 1.0, i.e. αi ← αi/

∑
i αi .

Considering only the first three frequencies, Table 4 gives the appropriate values of the weighting
factors corresponding to the different types of boundary conditions. The attained optimal solutions for
different optimization strategies are given in Table 5 for bars constructed from two segments.
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α1 α2 α3

fixed-fixed 54.5% 27.3% 18.2%
fixed-free 65.2% 21.7% 13.1%
free-free 54.5% 27.3% 18.2%

Table 4. Appropriate values of the weighting factors for different boundary conditions.

max ω̂1 max ω̂2 max
3∑

i=1
αi ω̂i

fixed-fixed (0.6500, 0.3375)1 (0.405, 0.365)1 (0.750, 0.145)1
(half length) (0.1885, 0.1625)2 (0.757, 0.135)2 (0.398, 0.355)2
(ω̂1, ω̂2, ω̂3) (3.454, 5.537, 8.081) (2.820, 6.473, 8.914) (3.289, 6.471, 9.468)

fixed-free (0.6500, 0.675)1 (0.538, 0.90)1 (0.5315, 0.9125)1
(0.1885, 0.325)2 (0.163, 0.10)2 (0.1715, 0.0875)2

(ω̂1, ω̂2, ω̂3) (1.727, 4.041, 7.352) (1.636, 4.845, 7.834) (1.625, 4.839, 7.922)

free-free (0.200, 0.165)1 (0.560, 0.425)1 (0.163, 0.075)1
(half length) (0.648, 0.335)2 (0.163, 0.075)2 (0.560, 0.425)2
(ω̂1, ω̂2, ω̂3) (3.454, 5.990, 8.170) (2.537, 6.557, 8.502) (3.335, 6.557, 9.526)

Table 5. Optimal patterns (VA, L̂)k=1,2 of a two-segment FGM bar for different opti-
mization strategies. Patterns for fixed-fixed and free-free bars are symmetric about the
middle of bar length.

More calculations by implementation of the models described by (18) and (19) have revealed the
fact that maximization of the natural frequencies is a much better design criterion than the frequency
placement criterion. The latter resulted in a slightly time consuming optimization process and a slow
rate of convergence towards the optimum solution. Such a quadratic formulation complicates matters by
increasing nonlinearities in the design space and, therefore, difficult to minimize globally. Moreover, the
determination of the target frequencies in most cases is not easy and the resulting solutions are greatly
dependent on the choice of their values. Direct maximization of the natural frequencies without regard
to frequency-windows was found to be more significant and best representative to the overall dynamic
performance. If it happened that the maximum frequency violates frequency windows, which was found
to be a rare situation, another value of the frequency can be chosen near the global optima, and the
frequency equation can be solved via an inverse approach for any one of the unknown design variables
instead.

5.2. Continuous models. Linear and parabolic models for material grading along the bar span (Figure 5)
have been examined. The attained optimal solutions for both cases are given in Table 6 for the different
types of boundary conditions. Two consecutive solutions are given for each case; the first solution is
based on maximization of the fundamental frequency alone, while the second is based on maximization
of a weighted sum of the first three frequencies. Upper and lower limits were imposed on the volume
fraction of material (A)(0.0 ≤ VA ≤ 1.0) in order to avoid having unrealistic configurations in the final
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Figure 5. Symmetric shape models of volume fraction distribution along bar length.

Volume fraction distribution (ω̂1, ω̂2, ω̂3)

fixed-fixed (0< x̂ < 0.5)
Linear: VA(x̂)= 1.0− 2x̂ (3.5922, 4.9481, 8.3353)

VA(x̂)= 0.75− x̂ (3.4416, 6.0931, 9.3144)
Parabolic (concave): VA(x̂)= 1.0+ 3(x̂2

− x̂) (3.4706, 6.1781, 9.0588)
VA(x̂)= 0.75+ 1.5(x̂2

− x̂) (3.3566, 6.3231, 9.3781)

fixed-free (0< x̂ < 1.0)
Linear: VA(x̂)= 1.0− x̂ (1.7961, 4.1677, 6.6348)

VA(x̂)= 0.75− 0.5x̂ (1.7208, 4.6572, 7.6833)
Parabolic (convex): VA(x̂)= 0.75(1− x̂2) (1.7928, 4.4189, 7.0611)

VA(x̂)= 0.625− 0.375x̂2 (1.6958, 4.6936, 7.7527)
Parabolic (concave): VA(x̂)= 1.0+ 0.75(x̂2

− 2x̂) (1.7353, 4.5294, 7.4584)
VA(x̂)= 0.75+ 0.375(x̂2

− 2x̂) (1.6781, 4.6891, 7.7692)

free-free (0< x̂ < 0.5)
Linear: VA(x̂)= 2x̂ (3.5922, 5.7091, 8.3353)

VA(x̂)= 0.25+ x̂ (3.4416, 6.1841, 9.3144)
Parabolic (convex): VA(x̂)= 3(x̂ − x̂2) (3.5856, 6.2167, 8.8378)

VA(x̂)= 0.25− 1.5(x̂2
− x̂) (3.3916, 6.3588, 9.3872)

Table 6. Optimal constant-mass patterns with linear and parabolic distributions of VA(x̂)
for different types of boundary conditions. Patterns with fixed-fixed or free-free bound-
ary conditions are symmetric about the middle of bar length.

attained solutions. In all cases the total structural mass was maintained constant by imposing the equality
constraint described by (6). As a general observation, for fixed-fixed and fixed-free boundary conditions,
patterns with higher fiber volume fraction near the fixed ends are always favorable. The opposite trend is
true for cases of free-free bars. Maximization of the fundamental frequency alone produces an optimiza-
tion gain of about 14.33% for the linear model with 0% and 100% volume fractions at the ends of the
optimized bars with different boundary conditions. However, a drastic reduction in the second and third
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frequencies can be observed. Better solutions have been achieved by maximizing a weighted sum of the
first three frequencies, where the parabolic model was found to excel the linear one in producing balanced
improvements in all frequencies. Results have also indicated that the fixed-fixed bars are recommended
to have concave distribution rather than convex one. The latter produce poor patterns with degraded
stiffness-to-mass ratio levels. The opposite trend was observed for the free-free bars, where the convex
type is much more favorable than the concave type. Both concave and convex shapes can be accepted for a
cantilevered bar. Finally, it should be pointed out here that, for certain ranges of the design variables many
terms ought to be taken in the assumed power series (see Section 3.1) in order to achieve convergence.
The proper number of terms to be taken in the series needs to be investigated.

6. Conclusions

In view of the importance of enhancing the dynamic performance and raising the overall (stiffness/mass)
level of a FGM bar in axial motion, appropriate optimization models have been formulated for both
continuous and discrete distributions of the volume fractions of the selected composite material. Several
forms of the objective function have been examined by maximizing the natural frequencies while pre-
serving the total structural mass at a constant value equals to that of a known baseline design. It was
found that maximization of the fundamental frequency alone for any type of boundary conditions does
not guarantee maximization of other higher frequencies. A local maximum for any one of the frequencies
can correspond to a local minimum for another frequency. A weighted-sum formulation must, therefore,
be considered in order to achieve a simultaneous balanced improvement among all frequencies. The
weighting factors are best determined from the fact that each frequency ought to be maximized from its
initial reference value of the uniform baseline design. Moreover, computer experiments have revealed that
maximization of the natural frequencies is a much better design criterion than the frequency placement
criterion. The attained optimal solutions in the latter were found to be too sensitive to the selected target
frequencies, which are not easy to determine. If it happened that any one of the maximized frequencies
violates frequency windows, which was found to be a rare situation, another value of the frequency can
be chosen near the global optima, and an inverse approach can be utilized by solving the associated
frequency equation for any one of the unknown design variables instead. Optimization of multisegment
fixed-fixed or free-free bars has indicated that good patterns should be symmetric about the midspan of the
bar. The given exact structural analysis leads to the exact frequencies no matter the number of segments is.
The optimized bars can be fabricated economically from any arbitrary number of uniform segments with
material grading in the axial direction. The increase in the number of segments would naturally result
in an increase in the attained maximized frequencies, but care ought to be taken regarding the penalty
of increasing the production and manufacturing costs. It has been confirmed that the segment length is
most significant design variable in the whole optimization process. Some investigators who apply finite
elements have not recognized that the length of each element can be taken as a main design variable in
the whole set of optimization variables. It has also been shown that normalization of all terms results
in a naturally scaled objective function, constraints and design variables, which is recommended when
applying different optimization techniques. The results from the present approach reveals that piecewise
grading of the material can be promising producing truly efficient bar designs with enhanced dynamic
performance. In conclusion, a powerful design tool has been obtained by formulating an appropriate
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objective function and applying mathematical programming techniques to the resulting optimization
problem. It is the author’s wish that the results presented in this paper will be compared and validated
through other optimization techniques such as genetic algorithms or any appropriate global optimization
algorithm. Future potential areas such as optimization of FGM beams in bending and torsion shall be
formulated and identified. Other secondary effects such as material and geometric nonlinearities due to
large deformation shall be investigated in future studies.

A personal note

Charles and Marie-Louise Steele hold a special place in my heart for their support and encouragement
of my research in structural mechanics. In 2000, as editor of the International Journal of Solids and
Structures, Marie-Louise encouraged me to submit there my “Buckling optimization of flexible columns”.
I was initially discouraged, but she pushed me to improve the paper, which was eventually accepted after
extensive revision and published in 2002, outlining a new approach to the problem under consideration.
She was likewise supportive after she and Charles founded JoMMS, where I published papers in 2007
and 2008. Early in 2009, she encouraged me to apply for the Fulbright research program at Stanford;
we had been planning to collaborate in the academic year 2009/2010 on a research project about wind
turbine blades made of functionally graded material.

Marie-Louise was always helping people to an uncommon degree. I believe that her passing away has
been a great loss not only to her family and friends but to the research community. God rest her soul.
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BASIC STRAIN GRADIENT PLASTICITY THEORIES
WITH APPLICATION TO CONSTRAINED FILM DEFORMATION

CHRISTIAN F. NIORDSON AND JOHN W. HUTCHINSON

This paper is dedicated to Charles and Marie-Louise Steele for their exceptional contributions to publication in the field of
solids and structures, and, particularly, for founding this journal.

A family of basic rate-independent strain gradient plasticity theories is considered that generalize con-
ventional J2 deformation and flow theories of plasticity to include a dependence on strain gradients in
a simple way. The theory builds on three recent developments: the work of Gudmundson (J. Mech.
Phys. Solids 52 (2004), 1379–1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405–421),
proposing constitutive relations for flow theories consistent with requirements of positive plastic dissi-
pation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161–177 and 1045–1057), who
clarified the structure of the new flow theories and presented the underlying variational formulation; and
observations of Evans and Hutchinson (Acta Mater. 57 (2009), 1675–1688) related to preferences for
specific functional compositions of strains and strain gradients. The starting point in this paper is the
deformation theory formulation of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001), 2245–2271)
which provides the clearest insights into the role of strain gradients and serves as a template for the flow
(incremental) theory. The flow theory is constructed such that it coincides with the deformation theory
under proportional straining, analogous to the corresponding coincidence in the conventional J2 theories.
The generality of proportional straining is demonstrated for pure power-law materials, and the utility
of power-law solutions is illustrated for the constrained deformation of thin films: the compression or
extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same
problem based on a finite element method devised for the new class of flow theories. Potential difficulties
and open issues associated with the new class of flow theories are identified and discussed.

1. Introduction

Both [Gudmundson 2004] and [Gurtin and Anand 2009] have called attention to the fact that the phe-
nomenological flow (incremental) strain gradient plasticity theory of [Fleck and Hutchinson 2001] does
not guarantee that plastic dissipation will be positive for all straining histories. The advantage of the
Fleck–Hutchinson theory is that it generalizes the most widely used conventional plasticity theories, J2

deformation and flow theories, in a straightforward way that can be readily implemented numerically. In
its simplest form, the theory introduces only a single new material length parameter with no other inputs
than those of conventional J2 theory. By invoking viscous plasticity, [Gudmundson 2004] and [Gurtin and
Anand 2009] suggest ways that the flow can be modified such that the thermodynamic requirement that

This work is supported by the Danish Research Council for Technology and Production Sciences in a project entitled Plasticity
Across the Scales.
Keywords: plasticity, strain gradient plasticity, size effects, metallic bonding layers.
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plastic dissipation be nonnegative is met. Following up on these works, Fleck and Willis [2009a; 2009b]
have proposed specific forms of the constitutive law for both viscous and rate-independent materials.
The simplest version proposed by Fleck and Willis coincides with the original theory of [Fleck and
Hutchinson 2001] under proportional straining, and again introduces only a single length parameter. In
addition, Fleck and Willis call attention to the fact that the new form of the constitutive relation for the
rate-independent flow theory has close parallels to aspects of conventional rigid plasticity in the sense
that some of the higher-order stress quantities are not determined by prior history but depend on the
current strain rates. Most importantly, Fleck and Willis establish variational principles for the new flow
theory formulations.

In this paper, a unified family of small-strain, rate-independent, gradient plasticity theories will be
adopted from [Fleck and Willis 2009a; 2009b] which meet the thermodynamic requirements detailed in
[Gurtin and Anand 2009]. Consideration of the extended family is motivated by a recent assessment of
basic aspects of strain gradient theories [Evans and Hutchinson 2009] which examined the manner in
which plastic strain gradients are incorporated into the theories in light of experimental trends. Specif-
ically, with εP as a measure of the amplitude of the plastic strain and ε∗P as a positive measure of the
plastic strain gradients, Evans and Hutchinson assessed the family of generalized effective plastic strains
defined by

EP =
(
(εP)

µ
+ (`ε∗P)

µ
)1/µ

, (1-1)

as introduced originally in [Fleck and Hutchinson 1997]. The material length parameter, `, arises due to
dimensional consistency.

The composition with µ= 2,

EP =

√
(εP)

2+ (`ε∗P)
2, (1-2)

has generally been preferred, primarily for mathematical reasons, as in [Fleck and Hutchinson 2001] and
also in the new formulation of [Fleck and Willis 2009a]. A quadratic dependence on ` is also implicit in
the various formulations of [Gudmundson 2004; Fredriksson and Gudmundson 2005; Gurtin and Anand
2009]. The argument for the linear composition (µ= 1),

EP = εP + `ε
∗

P , (1-3)

rests on the fact that it leads to gradient effects proportional to `/h for a sequence of objects of increasing
size h as the conventional limit is approached. This trend in experimental indentation hardness data has
been noted for many metals, and has been invoked in the constitutive equation of [Nix and Gao 1998]. By
contrast, compositions depending quadratically on `ε∗P , as in (1-2), predict gradient effects proportional
to (`/h)2 as the conventional limit is approached for many problems such as indentation, and would
appear unable to capture experimental trends as well as the linear composition as the conventional limit
is approached.

This paper takes as its starting point the postulation of the deformation theory of plasticity (that is,
effectively, a strain gradient theory of small-strain nonlinear elasticity) as proposed in [Fleck and Hutchin-
son 2001]. Then, following that paper, the flow theory is constructed to coincide with the deformation
theory for proportional straining. This approach unifies the theories, as in the conventional J2 theories,
and illuminates the role gradients play in the clearest possible manner. In addition, it provides a simpler
framework for solving problems when use of deformation theory is justified, and underpins theoretical
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developments such as the J -integral of crack mechanics which rely on the existence of a deformation
theory. The objective here continues to be a theory generalizing conventional rate-independent J2 theory
in the simplest meaningful way, building, in particular, on [Fleck and Hutchinson 2001] and the more
recent developments in [Fleck and Willis 2009a; 2009b]. As in [Idiart et al. 2009], the homogeneous
composition of the generalized effective plastic strain in (1-1) will be considered with µ regarded as hav-
ing a fixed value based on mechanistic considerations such as those discussed in [Evans and Hutchinson
2009]. A parallel approach developed for an alternative effective strain composition favored by Nix and
Gao [1998] is given in the Appendix.

Following introduction of the underlying theory, application to pure power-law materials is discussed.
Deformation theory and flow theory solutions for these materials coincide because proportional straining
is precisely satisfied. Compression or separation of a finite-length thin film bonding rigid platens is
analyzed for the insights it provides into strain gradient effects on thin metallic bonding layers and as
a possible test configuration for obtaining material data. Deformation and flow theory solutions will be
generated, illustrating their correspondence and revealing the role of the material length parameter and
higher-order boundary conditions. In solving specific problems, some seemingly anomalous predictions
have been found for flow theory. These issues are addressed at the end of the paper.

2. Preliminaries

The paper lays out a small-strain, isotropic, rate-independent phenomenological theory. The notation
and theoretical framework is similar to that in [Fleck and Hutchinson 2001]. The conventional Cauchy
stress is denoted by σi j , its deviator stress by si j , the total strain by εi j =

1
2 (ui, j + u j,i ) with ui as the

displacement, and the elastic strain by εe
i j = εi j − ε

P
i j with εP

i j as the plastic strain. The conventional
effective stress is defined by σe =

√
3si j si j/2, and a dimensionless deviator tensor codirectional to the

deviator stress is defined by mi j = (3/2)si j/σe. The stress is given by σi j =Li jklε
e
kl , with isotropic elastic

moduli determined by the Young’s modulus, E , and Poisson’s ratio, ν. The other input to conventional
J2 theory is the uniaxial tensile stress-strain curve. Denote the relation between the stress and the plastic
strain in uniaxial tension by σ(εP). Furthermore, denote the plastic work density to deform a material
element in uniaxial tension to plastic strain εP by

UP(εP)=

∫ εP

0
σ(εP)dεP . (2-1)

2A. Measures of plastic strain and plastic strain gradient in the deformation theories. With

εP
i j = εi j − ε

e
i j and εP =

√
2εP

i jε
P
i j/3

as the plastic strain amplitude, the plastic strain is required to be codirectional with the stress deviator
such that εP

i j = εPmi j . The one-parameter measure of plastic strain gradient,

ε∗P =
√
εP,iεP,i , (2-2)

is the same as that employed in [Aifantis 1984; Mühlhaus and Aifantis 1991]. More general measures
based on the three quadratic invariants of the plastic strain gradient, εP

i j,k = εP,kmi j + εPmi j,k , and
involving three length parameters, `i (i = 1, 2, 3) have been considered in [Fleck and Hutchinson 2001;
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Fleck and Willis 2009a], but here attention is confined to the one-parameter measure (2-2) which will be
referred to as the scalar measure following the terminology of Fleck and Willis. A one-parameter tensor
measure, in the Fleck–Willis terminology, is

ε∗P =

√
2εP

i j,kε
P
i j,k/3. (2-3)

The definition in (2-3) is such that it coincides with (2-2) for a shearing with only one nonzero gradient,
for example, εP

12,2 = ε
P
21,2. For other strain gradients the two measures will generally not coincide. For

both (2-2) and (2-3), the generalized effective plastic strain, EP , is defined by (1-1).
The length parameter must be determined by experiment, as for the other material properties. The

value of the parameter depends on the specific theory, as discussed in some detail in [Evans and Hutchin-
son 2009], and possibly on the specific experiment. The 3-parameter versions of strain gradient plasticity
have greater flexibility in accurately encompassing a wide array of problems, but that is not the main
concern here.

2B. Measures of plastic strain and plastic strain gradient in the flow theories. The fundamental mea-
sures for flow theory are defined for increments (rates), otherwise, they are similar to those above. Specif-
ically, with ε̇P

i j = ε̇i j − ε̇
e
i j , ε̇P =

√
2ε̇P

i j ε̇
P
i j/3, and with a plastic strain rate codirectional with the stress

deviator, ε̇P
i j = ε̇Pmi j . For the one-parameter scalar version, the gradient rate measure is

ε̇∗P =
√
ε̇P,i ε̇P,i (2-4)

and for the one-parameter tensor version it is

ε̇∗P =

√
2
3 ε̇

P
i j,k ε̇

P
i j,k . (2-5)

The generalized effective plastic strain rate is taken as

ĖP =
(
(ε̇P)

µ
+ (`ε̇∗P)

µ
)1/µ

. (2-6)

Current values of the plastic strain measures are integrals over the history:

εP =

∫
ε̇P and EP =

∫
ĖP . (2-7)

Throughout this paper, the notion of proportional straining requires that the plastic strain, εP
i j , and its

gradient, εP
i j,k , change monotonically and proportionally. For proportional straining the definitions for

the flow theories coincide with those for the respective deformation theories.
It is important to be cognizant of restrictions inherent to the effective strain measures εP and EP in

the flow theory. Both measures are nondecreasing since their rates are intrinsically positive. The theories
proposed below are similar to conventional J2 theory in that they take hardening and the yield surface to
depend on the total plastic strain. The theory invokes an isotropic expansion of the yield surface which
should not be expected to correctly reproduce histories involving significant stress and strain reversal. As
with conventional J2 theory, the strain gradient version proposed here is not intended for application to
problems involving significant stress reversal without due consideration to yield surface shape changes.
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2C. The principle of virtual work and the equilibrium equations. The principle of virtual work for the
scalar theory is [Fleck and Hutchinson 2001]∫

V
(σi j (δεi j − δεPmi j )+ QδεP + τiδεP,i )dV =

∫
S
(Tiδui + tδεP)d S (2-8)

for all admissible δui and δεP . The associated equilibrium equations are

σi j, j = 0, τi,i − Q+ σe = 0, (2-9)

and the boundary data pairs are (with ni as the surface normal)

(Ti = σi j n j , ui ) and (t = τi ni , εP). (2-10)

In conventional theory, Q = σe, but in the higher-order theory Q and τi are new stress variables that
are work conjugate to εP and εP,i , respectively. With stress quantities replaced by their increments,
(2-8)–(2-10) apply for incremental equilibrium.

The corresponding principle of virtual work for the tensor formulation is∫
V

(
σi j (δεi j − δε

P
i j )+ Qi jδε

P
i j + τi jkδε

P
i j,k
)
dV =

∫
S
(Tiδui + ti jδε

P
i j )d S, (2-11)

with equilibrium equations

σi j, j = 0, τi jk,k − Qi j + si j = 0, (2-12)

and boundary pairs

(Ti = σi j n j , ui ), (ti j = τi jknk, ε
P
i j ). (2-13)

The reader is referred to [Fleck and Willis 2009b] for complete details of the tensor version which parallel
those for the scalar version. In what follows details will only be presented for the scalar version, but
selected results for the tensor version will be given.

2D. The role of the gradients of plastic strain in the theory. The physical interpretation underlying EP

in (1-1) is that it represents the collective sum of the movement of statistically stored dislocations tied to
εP and of the geometrically necessary dislocations associated with ε∗P . The specific composition of EP

is phenomenological, but it is intended to measure the history of all the dislocation motion. It reduces
to the conventional measure when the gradients are small. In conventional J2 deformation theory the
energy density of a material element following proportional straining is the sum of elastic and “plastic”
parts according to 1

2 Li jklε
e
i jε

e
kl +UP(εP) with UP given by (2-1). Following [Fleck and Hutchinson

2001], the energy density for strain gradient deformation plasticity is taken as 1
2 Li jklε

e
i jε

e
kl +UP(EP).

The replacement of εP by EP in UP(εP) reveals the essence of the plastic strain gradient in this family
of theories. In words, the plastic work needed to deform the material element in the presence of strain
gradients under proportional straining as measured by EP in (1-1) is taken equal to that at the same strain,
εP = EP , in the absence of gradients, consistent with the notion that EP and εP measure the dislocation
motion under the two circumstances.
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3. The scalar theory

3A. Deformation theory. The potential energy functional for the deformation theory is

8(u, εP)=
∫

V

( 1
2 Li jklε

e
i jε

e
kl +UP(EP)

)
dV −

∫
ST

(Ti ui + tεP)d S, (3-1)

with εe
i j = εi j − εPmi j and where Ti and t are prescribed on ST . A solution minimizes the functional

with respect to admissible u and εP assuming the tensile stress-strain curve, σ(εP), defining UP in (2-1)
is monotone. The higher-order stresses are

Q =
∂UP

∂εP
= σ(EP)

(εP)
µ−1

(EP)µ−1 and τi =
∂UP

∂εP,i
= σ(EP)

`2(`ε∗P)
µ−2εP,i

(EP)µ−1 . (3-2)

One can easily show that the following generalized effective stress satisfies

6 ≡
(
Qµ/(µ−1)

+ (τ/`)µ/(µ−1))(µ−1)/µ
= σ(EP), (3-3)

with τ =
√
τiτi .

3B. Flow theory. With rates and integrated quantities as defined in Section 2B, the stress quantities Q
and τi are chosen such that they coincide with those of deformation theory in (3-2) when the straining is
proportional, that is,

Q = σ(EP)
(ε̇P)

µ−1

(ĖP)µ−1
and τi = σ(EP)

`2(`ε̇∗P)
µ−2ε̇P,i

(ĖP)µ−1
. (3-4)

This choice guarantees a positive plastic dissipation rate because, as shown by direct calculation,

Qε̇P + τ,i ε̇P,i = σ(EP)ĖP . (3-5)

The choice (3-4) is a special case of the wide range of constitutive possibilities outlined in [Gudmundson
2004; Gurtin and Anand 2009] and is identical to that of [Fleck and Willis 2009a] for µ = 2 and that
of [Idiart et al. 2009] for arbitrary µ. As [Fleck and Willis 2009a] emphasized, (3-4) specifies the
higher-order stresses, Q and τi , in terms of the rate of the plastic strain and its gradient. In this respect
it is akin to conventional rigid plasticity. One important consequence of (3-4) is that Q and τi are not
determined by the prior stress history; rather, they depend on the strain rates and thus on the boundary
conditions of the incremental problem.

The fact that Q and τi are not predetermined in the current state is seen more clearly when the
higher-order equilibrium equation in (2-9) is expressed in terms of the plastic strain rate using (3-4):(

σ(EP)
`(`ε̇∗P)

µ−2`ε̇P,i

(ĖP)µ−1

)
,i
− σ(EP)

(ε̇P)
µ−1

(ĖP)µ−1
=−σe. (3-6)

The distributions of conventional effective stress, σe, and EP are predetermined by the prior history.
Equation (3-6) is a nonlinear, second-order partial differential equation homogeneous of degree zero in
ε̇P . The solution ε̇P depends on the boundary conditions with prescribed t = τi ni = t0 on ST and ε̇P on
Su . Neither these boundary conditions, nor even ST and Su , need depend on prior history. Consequently,
Q and τi from (3-4) can undergo discontinuous changes when incremental boundary conditions are
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abruptly altered. However, when the boundary conditions for a sequence of incremental problems change
continuously, as is the case for many problems of interest, Q and τi may also vary continuously.

It is readily verified that (3-6) is the Euler equation associated with stationary

H(ε̇P)=

∫
V

(
σ(EP)ĖP − σeε̇P

)
dV −

∫
ST

t0ε̇P d S (3-7)

with respect to all positive ε̇P satisfying prescribed conditions on Su . This is Minimum Principle I of
[Fleck and Willis 2009a]. In each zone in which ε̇P is nonzero, ε̇P is fully determined by (3-6) if nonzero
ε̇P is prescribed on any portion of S. Otherwise, ε̇P is determined to within a multiplicative constant
within each nonoverlapping yielded zone.

From (3-5) it follows that

Q̇ε̇P + τ̇,i ε̇P,i + Qε̈P + τ,i ε̈P,i = h(EP)Ė2
P + σ(EP)ËP , (3-8)

where h(EP) = dσ(EP)/d EP . This equation holds even when Q and τi change discontinuously, as
described above. Based on (3-4) and on the derivatives of the plastic strain-rate quantities, one can show:
Qε̈P + τ,i ε̈P,i = σ(EP)ËP . Consequently, whether Q and τi change continuously or discontinuously,

Q̇ε̇P + τ̇,i ε̇P,i = h(EP)Ė2
P . (3-9)

The quadratic work terms for the incremental problem are therefore

1
2 {σ̇i j ε̇

e
i j + Q̇ε̇P + τ̇,i ε̇P,i } = 1

2 {Li jkl(ε̇i j − ε̇Pmi j )(ε̇kl − ε̇Pmkl)+ h(EP)Ė2
P}.

The quadratic work terms are combined with the prescribed incremental surface tractions to form the
functional whose minimum with respect to admissible distributions (u̇i , ε̇P) provides the solution:

J (u̇i , ε̇P)=
1
2

∫
V
{Li jkl(ε̇i j − ε̇Pmi j )(ε̇kl − ε̇Pmkl)+ h(EP)Ė2

P}dV −
∫

ST

(Ṫi u̇i + ṫ ε̇P)d S, (3-10)

with Ṫi and ṫ prescribed on ST and with u̇i and ε̇P prescribed on Su . If the complete distributions of
(u̇i , ε̇P) were unknown, as in the original version of [Fleck and Hutchinson 2001], then the minimum
of J with respect to all admissible (u̇i , ε̇P) produces the entire incremental solution. However, due to
the special nature of the constitutive law (3-4) discussed above, ε̇P is either known, or known to within
a multiplicative constant, within each yielded region of the body. With ε̇P constrained by the Minimum
Principle I, it was proved in [Fleck and Willis 2009a] that the minimum of (3-10) delivers the unknown
multiplicative constants of ε̇P as well as u̇i and σ̇i j . This is Minimum Principle II. The same reference
also proves uniqueness and discusses bounding principles for the incremental problem. The incremental
problem is fully characterized, apart from a condition for distinguishing loading and elastic unloading,
as will be discussed shortly. The conventional stress is updated using σi j → σi j + σ̇i j in the standard
manner, as is EP based on (2-7); these and the distribution of mi j are known entering the repetition of
the solution process for the next incremental step.

Equation (3-4) implies the existence of a surface in terms of Q and τi given explicitly by

6 ≡
(
Qµ/(µ−1)

+ (τ/`)µ/(µ−1))(µ−1)/µ
= σ(EP) with τ =

√
τiτi . (3-11)
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Figure 1. Yield surfaces for one-parameter family of scalar theories.

For µ= 2, this same surface, or ones analogous to it, are found in the theories of [Fleck and Hutchinson
1997; Gudmundson 2004; Fleck and Willis 2009a]. The surface is plotted in Figure 1 for five values of
µ, including the limit for µ= 1 which has a corner. The plastic strain rate and its gradient are normal to
the surface:

ε̇P = ĖP
∂6

∂Q
= ĖP

(Q
σ

)1/(µ−1)
, ε̇P,i = ĖP

∂6

∂τi
= `−1 ĖP

(
τ

`σ

)1/(µ−1) τi

τ
. (3-12)

These equations are equivalent to (3-4). Plastic loading requires ε̇P ≥ 0. From (3-11) it follows that for
any plastic loading increment 6̇ = h(EP)ĖP ≥ 0 because ĖP is intrinsically nonnegative and material
softening is not considered, that is, h(EP) ≥ 0. In the present theory, the surface (3-11) is not a yield
surface in the conventional sense because any field ε̇P > 0 satisfying (3-4) always produces Q and τi that
lie on the surface.

While this formulation guarantees positive plastic work, no attempt has been made here to identify
whether the contributions of the gradients of plastic strains to the plastic work are energetic or dissipative
in the terminology of [Gurtin and Anand 2009]. In this respect, the situation is analogous to conventional
J2 flow theory where the fractional proportions of the plastic work dissipated as heat and stored as the
elastic energy of the dislocations are largely irrelevant to the formulation and, indeed, can differ from
material to material without being reflected in the theory. It was noted earlier that the flow theories laid out
here with isotropic hardening are not usually expected to be good models for histories involving reversed
plastic straining due to disregard of Bauschinger effects. Efforts to associate energetic contributions
with a component of kinematic hardening and dissipative contributions with the isotropic component of
hardening, as some have attempted, fall outside the aims of this paper.

4. Tensor theory

The deformation and flow theory versions employing the measures of strain and strain rate based on
tensor theory are analogous to those laid out above for the scalar version and can be found in [Fleck
and Willis 2009b]. One major difference between the two versions concerns the manner in which plastic
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flow is constrained in the scalar version contrasted with the tensor version. In the scalar version the
plastic strain increment is constrained to be proportional to the deviator of the Cauchy stress, si j , which
is known (and fixed) in the current state. The plastic strain increment is not directly coupled to the
Cauchy stress in the tensor version. In the tensor version, the direction of the plastic strain increment,
ε̇P

i j , is not constrained by any predetermined quantity in the current state. Instead, Qi j is codirectional
to ε̇P

i j and τi jk is codirectional to ε̇P
i j,k , and both of the higher-order stresses are not known in the current

state but are determined only by the solution to the incremental problem. Implications of this difference
will emerge in the numerical solutions to the constrained film problem.

The deformation theory for the tensor version is still defined by the functional 8 in (3-1) with εP =√
2εP

i jε
P
i j/3 and EP defined in (1-1). Now, however, ε∗P is defined by (2-5). For proportional plastic

straining the flow theory again coincides with the deformation theory.

5. Pure power-law solutions

A pure power-law material has uniaxial behavior specified by σ(εP)= σ0ε
N
P with plastic work, UP(εP)=

σ0ε
N+1
P /(N + 1). Pure power-law solutions to the deformation theory neglect elasticity such that (3-1)

becomes
8(u, εP)=

∫
V

UP(EP)dV −
∫

ST

(Ti ui + tεP)d S. (5-1)

Any solution, εP , minimizes8 subject to εP
i j = (ui, j+u j,i )/2 (with u j, j = 0) and satisfaction of conditions

on Su .
Consider traction-prescribed boundary value problems for the scalar theory with load parameter λ

such that (Ti , t)= λ(T 0
i , t0) on ST with (T 0

i , t0) as fixed spatial distributions and (ui , εP)= 0 on Su . It
is straightforward to show that solutions to the scalar theory have the form

(u,i , εP)= λ
1/N (u0

,i , ε
0
P), (si j , Q, τi )= λ(s0

i j , Q0, τ 0
i ), (5-2)

where the quantities with superscript “0” are functions of position but independent of λ. Similarly, for
displacement-prescribed boundary value problems with (ui , εP)= λ(u

0
i , ε

0
P) on Su and (Ti , t)= 0 on ST ,

the form of the solution is

(u,i , εP)= λ(u
0
,i , ε

0
P), (si j , Q, τi )= λ

N (s0
i j , Q0, τ 0

i ). (5-3)

For both types of boundary conditions, proportional straining occurs at every point in the body if λ is
increased monotonically. Consequently, any deformation theory solution is a solution to the correspond-
ing flow theory. This is the extension of Ilyushin’s theorem to strain gradient plasticity. It holds for the
tensor version as well. It is worth noting that any such solution is also a solution to the flow theory
proposed in [Fleck and Hutchinson 2001]: the possibility of negative plastic dissipation is not an issue
for such solutions.

6. Plane strain compression or separation of thin films: pure-power-law solutions

A slab of thin film is depicted in the insert in Figure 2 with height h and width L . The slab is bonded
to rigid platens on the top and bottom; the lower platen is fixed while the vertical displacement of the
upper slab is denoted by 1. The sides (x1 =±L/2) are traction-free. It is well known that the bonding
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Figure 2. Effect of film aspect ratio on the average normal stress required to yield a
rigid-perfectly plastic material (N = 0). The curves for the strain gradient material are
based on the scalar model with µ= 2 and dimensionless length parameter `/h = 1

4 . The
upper curve assumes plastic flow is blocked at the platen/film interfaces (εP = 0) while
the lower two curves are determined with no such restriction on plastic flow.

constraint of the platens gives rise to high stress triaxiality in the central region of the film accompanied by
horizontal flow to accommodate the relative platen motion. The velocity of material elements paralleling
the interfaces is approximately parabolic producing a linear variation of shear strain across the layer. Thus,
as in film bending or wire torsion, compression or separation of the film intrinsically produces gradients
of strain. Conventional theory for a rigid-perfectly plastic solid (N = 0) predicts that the magnitude of
the average normal stress, n̄, to yield a constrained layer in tension or compression increases with aspect
ratio of the film according to [Hill 1950]

n̄
σY
∼= 1+ 1

2
√

3
L
h
, (6-1)

where n̄= P/L , with P as the total force/depth. The purpose of this section is to illuminate how plasticity
size effects related to the film thickness further elevate the average normal stress.

Compression or separation of a slab of metal film that is well bonded to stiff platens may be a
useful configuration for the experimental determination of material length scales and/or for assessing
higher-order boundary conditions, especially if companion test data are available for the slab in shear.
Moreover, the effective yield strength of the metal layer under normal separation exhibits a thickness ef-
fect that has direct relevance to metallic bonding. Plane strain compression or separation of a rectangular
slab of film also illustrates the simplicity and utility of power-law solutions. Full elastic-plastic solutions
based on the flow theory will be presented in Section 7 to bring out the interaction between elasticity
and plasticity.
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Two boundary conditions will be considered on the surfaces where the slab is bonded to the platens:
(i) unconstrained plastic flow with no constraint on εP (or on εP

12 in the tensor version), and (ii) con-
strained plastic flow with εP = 0 (or εP

12= 0 in the tensor version). The second boundary condition models
dislocations blocked at a well-bonded interface joining a metal to a stiff elastic solid. In a continuum
description, the plastic strain must vanish at the bonded surface if slip planes parallel to the surface are
not available. Conditions intermediate to these limiting conditions can be defined (for example, [Fleck
and Willis 2009a]) to model internal surfaces between different materials or other types of boundaries,
but these will not be pursued here.

The uniaxial tensile response of the metal is taken as σ(εP) = σ0ε
N
P or, equivalently, as σ(εP) =

σY (εP/εY )
N with σ0 = σY /ε

N
Y . The plastic work is UP(εP)= σY εY (εP/εY )

N+1/(N + 1). Let x = x1/h
and y = x2/h, and consider the displacement field

u1/h =−c1x
(
y(1− y)

)
− c2x

(
y(1− y)

)2
− c3x

(
y(1− y)

)3
,

u2/h = c1
( 1

2 y2
−

1
3 y3)
+ c2

( 1
3 y3
−

1
2 y4
+

1
5 y5)
+ c3

( 1
4 y4
−

3
5 y5
+

1
2 y6
−

1
7 y7), (6-2)

with
1/h = u2(h)/h = 1

6 c1+
1
30 c2+

1
140 c3. (6-3)

With {ci } as free coefficients, the field generates an admissible plastic strain field, εP
i j , that satisfies

ui,i = 0 and the boundary conditions on the top and bottom surfaces, subject to the additional condition
that c1 = 0 for the constrained flow condition (ii). The effective plastic strain is εP =

√
4
3(ε

P2
11 + ε

P2
12 )

and the nonzero strain gradients from (6-2) are εP
12,2 and εP

11,2 = 2εP
12,1. For the gradient measure for the

scalar version, (2-2),

ε∗2P =
4

9ε2
P

(
εP2

12 ε
P2
11,2+ 4(εP

11ε
P
11,2+ ε

P
12ε

P
12,2)

2), (6-4)

while the measure for the tensor version, (2-3), is

ε∗2P =
4
3 (ε

P2
11,2+ ε

P2
12,2). (6-5)

The solution process is as follows. Using (6-4) or (6-5) together with the generalized effective strain,
EP , in (1-1), one obtains an expression for the energy functional, 8, in (5-1) (the contribution from
ST vanishes). It depends on the free parameters, {ci }, and on the parameters prescribing the problem
according to

8= σY εY
hL

N+1

( 1
εY

1

h

)N+1
f
(

ci ,
L
h
, N , `

h
, µ
)
. (6-6)

Numerical integration is employed to evaluate the integral in (5-1) for any {ci }. The minimum of 8 with
respect to the {ci } is also determined numerically, subject to (6-3), with c1 = 0 for condition (ii). The
results presented below have been computed using (6-2) with two free coefficients for each of the two
cases, providing f with an accuracy of no less than about one percent. As an illustration, for condition (i),
let the reference be results obtained using all three coefficients. Then, f is accurate to within 5% if only
c1 is used, while it is accurate, typically, to within a small fraction of a percent if c1 and c2 are used.

From Pd1 = d8 and (6-6), the average normal stress, n̄ = P/L , for separating the platens is the
power law

n̄
σY
=

( 1
εY

1

h

)N
f, (6-7)
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where f is the value obtained in the minimization of 8. This expression also holds for compression with
n̄ as the compressive stress and 1 as the compression.

The results presented in Figure 2 display the most basic aspects of size-dependence related to films
having a finite aspect ratio. In the limit of (6-7) for a rigid-perfectly plastic material (N = 0), the
average normal stress, n̄/σY = f , required to separate (or compress) the platens is independent of 1.
In Figure 2, the dependence of n̄/σY = f on L/h shown for conventional plasticity was computed
using the scheme described above with ` = 0 and no constraints on εP ; it is in close agreement with
the approximate formula (6-1). Included in the figure are results computed for the scalar measure (6-4)
of effective plastic strain with µ= 2 and `/h = 1

4 for both unconstrained and constrained plastic flow
at the film/platen interfaces. Film size effects become significant when the film thickness is reduced to
several times the material length parameter. Moreover, plastic flow constraint at the film/platen interfaces
further enhances the average flow strength. The trends in Figure 2 imply a significant elevation of the
average flow strength stress due to strain gradient effects that superimpose on those associated with the
film aspect ratio. Several aspects of these trends will be further explored in this section and the next.

The power-law relation between n̄ and 1 from (6-7) is shown in Figure 3 for N = 0.2 and L/h = 1 for
the scalar version. Due to the homogeneous composition (1-2) of the effective plastic strain, the relative
elevation in strength due to the size effect for pure power materials is independent of strain, as evident
from (6-7). For these examples, the effect of plastic flow constraint at the platens is roughly equivalent
to a doubling of `/h relative to the case of unconstrained plastic flow. For the unconstrained film the
flow strength, n̄, is elevated by a factor of two when the film thickness is reduced to about 2`.

Figure 4 compares the responses predicted for the scalar and tensor versions for two dimensionless
length parameters for L/h = 3. The normalizations of the plastic strain gradient measure, ε∗P , for the

1/(εY h)

n̄
σY

Figure 3. Pure-power relation between average normal stress and platen separation for
a film slab with L/h = 1 based on the scalar measure of effective plastic strain. The
relation applies in tension or compression with appropriate choice of signs. The solid
curves are for films with no constraint on plastic strain at the film/platen interfaces while
the plastic strain at the interfaces is constrained to be zero for the dashed curves.
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1/(εY h)

n̄
σY

Figure 4. Comparison between pure-power law solutions based on scalar version and
tensor version. Plastic flow at the film/platen interfaces is not constrained.

scalar and tensor versions defined in (2-2) and (2-3) coincide for shearing with a gradient (for example,
with εP

12,2 = ε
P
21,2 as the only nonzero gradient) but they do not coincide for the present problem. For this

problem, the tensor measure of ε∗P is approximately twice the scalar measure as reflected by the greater
strengthening enhancement of the tensor version.1

The material length parameters must be calibrated against experimental data. As the discussion above
illustrates, the numerical value of a length so obtained will depend on the choice of plasticity theory,
possibly with extreme differences [Evans and Hutchinson 2009]. The material length parameter will
also depend on the choice of µ in (1-1). As noted earlier, µ should not be regarded as a material
parameter. Most theoretical formulations have µ= 2, explicitly or implicitly, while the case for a linear
dependence on strain gradients (µ= 1) has been argued in [Nix and Gao 1998; Evans and Hutchinson
2009]. Strength elevation as dependent on µ for fixed `/h is illustrated in Figure 5 for the scalar version.
The implication of this figure, consistent with related studies [Fleck and Hutchinson 1997; Idiart et al.
2009; Idiart and Fleck 2010], is that a length parameter calibrated against experimental data for a model
having µ= 1 will be somewhat smaller than that for a model with µ= 2.

7. Plane strain compression or separation of a film: numerical flow theory solutions

7A. Numerical method. Numerical solutions based on the one-parameter flow theory are carried out
incrementally using a finite element procedure based on the minimum principles devised in [Fleck and
Willis 2009a; 2009b]. Details will be restricted to the scalar version. The uniaxial stress-strain relation-
ship is taken as the Ramberg–Osgood curve

ε =
σ

E
+

(
σ

σy

)1/N
. (7-1)

1The tensor contribution, `ε∗P , to the effective plastic strain defined in (2-3) is the same as that of the 3-parameter scalar
contribution of [Fleck and Hutchinson 2001; Fleck and Willis 2009a] with `1 =

√
2/3`, `2 =

√
1/6`, and `3 = `/2.
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P

Figure 5. Elevation of average normal stress above that for conventional plasticity (at
identical platen separations) due to strain gradient effects as dependent on the parameter
µ characterizing the composition of the effective plastic strain measure. These results
are derived for pure-power law material based on the scalar model. Plastic flow at the
film/platen interfaces is not constrained.

For the present problem this will ensure that the entire block of material behaves plastically throughout
the history of deformation, sidestepping the issue of a condition for initial plastic yielding. Moreover, no
special consideration needs to be given to disjoint active plastic zones; ε̇P can be expressed as a product
of a multiplier, 3, and a trial field, ε̇P(xi )=3ε̂P(xi ).

For each increment the solution is carried out in two steps:

1. Based on a plastic trial field, ε̂P(xi ), and a specified load increment, the displacement rate, u̇i (xi ) is
obtained together with the plastic multiplier, 3, by minimizing J in (3-10).

2. The plastic trial field, ε̂P(xi ), is obtained by minimizing H in (3-7).

Step 1. Stationarity of J leads to∫
V
{L i jkl(ε̇i j −3ε̂Pmi j )(δε̇kl − δ3ε̂Pmkl)+ h(EP)Ê2

P3δ3}dV =
∫

ST

(Ṫiδu̇i + ṫδ3ε̂P)d S,

which can be separated into the following two systems of equations:∫
V

L i jkl(ε̇i j −3ε̂Pmi j )δε̇kl dV =
∫

ST

Ṫiδu̇i d S, (7-2)∫
V
{−L i jkl(ε̇i j −3ε̂Pmi j )ε̂Pmklδ3+ h(EP)Ê2

P3δ3}dV =
∫

ST

ṫδ3ε̂P d S. (7-3)
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Using standard finite element interpolation with quadratic shape functions according to

u̇i =

8∑
N=1

N N
i U̇ N , ε̇i j =

8∑
N=1

B N
i j U̇ N ,

or in matrix notation
u̇ = NU̇, ε̇ = BU̇,

we obtain the discretized equations∫
V

BTL B dV · U̇ −
∫

V
BTL(ε̂P m)dV ·3=

∫
ST

Ṫ NT d S, (7-4)

−

∫
V
(ε̂P m)T L B dV · U̇ +

∫
V

(
(ε̂P m)T L(ε̂P m)+ h · (Ê P)2

)
dV ·3=

∫
ST

ṫ ε̂P d S. (7-5)

From these the incremental nodal displacement vector, U̇ , and the plastic multiplier, 3, are obtained. In
these expressions, L and m are matrix forms of the tensors L i jkl and mi j , respectively.

Initially, a zero plastic trial field is assumed. At later load increments, the plastic trial field is solved
for in Step 2.

Step 2. Stationarity of H results in∫
V
(Qδε̇P + τiδε̇P,i )dV =

∫
V
σeδε̇P dV +

∫
ST

t0δε̇P d S. (7-6)

An iterative procedure is used to solve for ε̂P(xi ). Within a 2D planar setting ε̂P is interpolated using
bilinear shape functions. Hence, the trial field and its spatial derivatives can be expressed as

(ε̂P , ε̂P,1, ε̂P,2)
T
=

4∑
N=1

M N
I ε̂

N
P = Mε̂P ,

with

M =

 M1 M2 M3 M4

M1,1 M2,1 M3,1 M4,1

M1,2 M2,2 M3,2 M4,2

=
 Mv

Mv,1

Mv,2

 .
Introducing this in the variational statement above together with the constitutive equations, as well as
requiring it to hold for all admissible variations in the plastic trial field, we obtain the discretized system
of equations ∫

V

σ(EP)

ÊP
MT AM dV · ε̂P =

∫
V
σe MT

v dV +
∫

ST

t0 MT
v d S. (7-7)

Here, for the scalar family of theories,

A= diag
((

ε̂P

ÊP

)µ−2

, l2
(

l ε̂∗P
ÊP

)µ−2

, l2
(

l ε̂∗P
ÊP

)µ−2 )
, (7-8)

which for the case of µ= 2 reduces to A= diag(1, l2, l2).
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This system of equations is solved iteratively for ε̂P . An initial guess, ε̂0
P , is taken as the solution from

the former increment, except at the first increment when ε̂0
P is taken to be unity in all nodes, except on any

boundary nodes where there is a constraint. The system of equations is solved iteratively (k = 1, 2, 3, . . .)
according to ∫

V

σ(EP)

Êk−1
P /‖Êk−1

P ‖∞
MT AM dV · ε̂k

P =

∫
V
σe MT

v dV +
∫

ST

t0 MT
v d S. (7-9)

Here, ‖Êk−1
P ‖∞ denotes the maximum norm of the gradient enhanced effective plastic strain from the

previous increment.

7B. Flow theory predictions. Normalized load-separation curves are presented in Figure 6 for short
film slabs (L/h = 1) of an elastic-plastic material with εY = σY /E = 0.01, ν = 0.49, and N = 0.2
for conventional J2 flow theory and for the scalar version of the flow theory with two values of `/h.
The lower set of curves is for the case in which εP = 0 is enforced at the film/platen interfaces and the
upper set is for the case where plastic flow is unconstrained at the interfaces. Included in each figure
are the predictions based on the corresponding deformation theory for the pure power-law material with
elasticity neglected.

The transition from predominantly elastic to nearly fully plastic behavior occurs for rather small nor-
mal displacements (1/εY h ≈ 4) for the constrained case. For the constrained case considered in Figure 6,
right, the response curves for the deformation theory and the incremental theory agree reasonably well
at large deformation levels, for both the conventional predictions and the gradient dependent predictions
with `/h ≈ 1

8 and `/h ≈ 1
4 . In the initial range of 1, the difference between the predictions of the two

theories is due to the fact that the deformation theory solutions neglect elasticity.
For the unconstrained case in Figure 6, left, the predictions from the deformation theory and flow

theory do not agree when gradient effects are important (`/h > 0), with significantly softer responses

A)  Unconstrained flow at the platens. 
 

B) Constrained flow at the platens. 

Figure 6. Normalized load-separation response computed using the scalar flow theory
(left: unconstrained flow at the platens; right: constrained flow) for an elastic-plastic
solid specified in the text (dashed curves) compared with predictions from the deforma-
tion theory for a pure power-law material with elasticity neglected (solid curves). All
cases have L/h = 1, N = 0.2, and µ= 2.
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predicted for the flow theory. The discrepancy is associated with the fact that the plastic strain rates in
certain regions of the slab are much larger according to the flow theory than the deformation theory. In
fact, over large parts of the domain the plastic strain rates are so large in the flow theory that the von
Mises effective stress decreases after initially increasing. As the slab is further deformed the effective
stress approaches zero in two regions in the slab (see Figure 7). Hence, even though plastic deformation
occurs, the von Mises stress decreases steadily as a result of a deviatoric stress relaxation. Eventually,
this would lead to an indeterminate plastic flow direction, as the von Mises stress and the stress-deviator
vanish. To circumvent this problem in the present calculations the direction of plastic flow as specified
by mi j is “frozen” when the von Mises stress drops below 10% of the initial yield stress. The domains
where this method has been implemented are shown at the overall deformation level 1/εY h = 15 with
`/h ≈ 1

8 , for the unconstrained (left figure) and constrained (right) case. The regions over which the
effective stress is well below σY are much larger. For both cases, these regions are connected to the center
of the film/platen interface or located at the free surface. The regions where the von Mises stress has
approached zero are appreciably larger for the unconstrained case, and this is even further exaggerated
for increasing values of `.

Also included in Figure 7 are contour lines of the plastic trial field evaluated at 1/εY h = 15. It is
observed for the constrained case in Figure 6, right, that the trial field goes toward zero at the constrained
boundary, and that the contour lines are perpendicular to the all other parts of the exterior of the compu-
tational domain in accordance with the natural boundary condition. Correspondingly, in Figure 7, left,
for the unconstrained case, the natural boundary condition is fulfilled at the entire exterior boundary of
the computational domain. These trial fields provide insight as to why the deformation theory solutions

 

 

P

 

 

P

Figure 7. Regions (in gray) within which the effective stress, σe, has approached zero
during continued plastic loading at 1/εY h = 15 with `/h = 1

8 (left: plastic strain is
unconstrained at the film/platen interfaces; right: constrained case), for the scalar version
with L/h = 1, N = 0.2, and µ = 2. The rectangular region shown is one-quarter the
entire cross-section of the film slab, extending upwards from the lower platen to the
horizontal centerline and rightward from the vertical centerline to the right edge. The
contour lines describe constant values of the trial function, ε̂P , whose maximum value
has been normalized to be unity. Plastic loading occurs throughout the slab.
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     B) Constrained flow at the platens. 

Figure 8. Normalized load-separation response computed using the tensor version of
flow theory (left: unconstrained flow at the platens; right: constrained flow) for an elastic-
plastic solid specified in the text (dashed and dotted curves) compared with predictions
from the corresponding deformation theory for a pure power-law material with elasticity
neglected (solid curves). The dashed curves are for the rate-independent formulation
while the dotted curves are obtained using the viscous-plastic formulation. All cases
have L/h = 1, N = 0.2, and µ= 2.

and the flow theory solutions agree reasonably well for the constrained case but not for the unconstrained
case — the constraint on plastic flow at the film/platen interfaces shrinks significantly the regions where
the deviatoric stress is relaxed, whereas this is not the case for the unconstrained analysis.

Similar comparisons of pure-power deformation solutions and full elastic-plastic flow theory solu-
tions for the tensor version are presented in Figure 8. Flow theory solutions are presented for both
the rate-independent formulation and the viscoplastic, rate-dependent formulation [Gudmundson 2004;
Gurtin and Anand 2005; Fleck and Willis 2009b], with either full constraint on plastic flow at the
platens (εP

12 = ε
P
11 = ε

P
22 = ε

P
33 = 0) or no constraint on plastic flow (t12 = t11 = t22 = t33 = 0). The

viscoplastic solutions are obtained using a method very similar to that used for the time-independent
solutions. However, for the viscoplastic formulation, the Minimum Principle II in [Fleck and Willis
2009b] delivers the entire plastic strain rate field (no unknown multiplicative factor is needed), which
means that the corresponding Minimum Principle I is used to solve for the displacement field alone.
While the displacement interpolation is the same as that used for the scalar time-independent solutions,
the plastic strain components are interpolated individually in the tensor version using bilinear shape
functions, while exploiting plastic incompressibility to define one normal component in terms of the
two others [Niordson and Legarth 2010]. For plane problems this results in 3 plastic strain degrees of
freedom for each node as compared to just one for the scalar case. A standard viscoplastic power law
has been employed using a viscoplastic exponent of 0.01 in combination with an overall loading rate on
the order of the reference strain rate, thus minimizing viscous effects in the solutions obtained.

For the tensor versions, there is reasonable agreement between deformation and flow theory solutions
in the fully plastic region for both the constrained and unconstrained cases. It is still true that the effective
stress approaches zero as 1 increases over a nonnegligible region of the slab for both the rate-independent
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and rate-dependent flow theories even though the material continues to deform plastically (plots are not
shown). The components of the Cauchy deviator stress can even switch signs. However, unlike the
scalar version, this behavior does not present a numerical problem because the plastic strain rate is not
constrained to be codirectional with the deviator stress in the tensor version.

8. Concluding remarks

Constrained plastic compression or extension of thin metal films intrinsically involves strain gradients
which, in turn, give rise to appreciable size-dependent strengthening when the film thickness is reduced
below 3 to 5 times the material length parameter employed in the present formulation. Strengthening
effects have clear implications for metal bonding layers, including increased resistance to plastic flow
and higher stresses which are likely to affect ductility.

In this paper both deformation and flow theory versions of strain gradient plasticity have been em-
ployed. In rate-independent form, the flow theories used here are the new formulations proposed in
[Fleck and Willis 2009a; 2009b]. For the thin slab problem considered here, difficulties arise with the
scalar version of the flow theory wherein the strengthening effect due to the strain gradients appears to be
significantly underestimated for the case in which plastic flow is not constrained at the loading platens.
Although the source of the difficulties is not entirely clear, it seems likely that it stems in part from the
fact that the theory predicts regions having a decreasing Cauchy deviator stress with the von Mises stress
going to zero even as the plastic deformation increases. This presents numerical difficulties due to the
fact that the plastic strain rate direction becomes indeterminate in the scalar formulation. That continuing
plastic flow is predicted to occur at small, or even zero, von Mises stress may also be problematic from
a physical standpoint. The von Mises stress also approaches zero in regions of the slab in the tensor
version of the flow theory. This does not create numerical difficulties for this class of theories because
the plastic strain rate is not tied to the Cauchy deviator stress. The apparently anomalous behavior in
which the von Mises stress becomes small even in the presence of appreciable plastic straining has also
been noted in simpler problems, such as in pure bending [Idiart et al. 2009].

The behavior noted above can arise because plastic straining is largely decoupled from the Cauchy
stresses in these new flow theory formulations. Similar behavior occurs for solutions we have carried out
based on the viscoplastic tensor version reported for the film slabs in Figure 8. Plastic straining is even
less tightly coupled to the Cauchy stresses in viscoplastic formulations than in the rate-independent ver-
sions. These same features pertain to the general class of viscoplastic theories proposed in [Gudmundson
2004; Gurtin and Anand 2005]. Thus, for some problems this class of flow theories predicts that plastic
straining can occur in regions of the body in which the elastic lattice strains are essentially zero. Such
regions are predicted to be as large as one or more times the material length parameter, `, that is, on the
order of microns in size. It remains to be seen if such behavior is observed experimentally and whether
such predictions are truly problematic from a physical standpoint.

Appendix: Formulations based on the strain measure proposed by Nix and Gao

Nix and Gao [1998] proposed an alternative way to combine the effective plastic strain, εP , and the
magnitude of its gradient, ε∗P , to model the effect of geometrically necessary dislocations. Evans and
Hutchinson [2009] discussed differences in trends based the Nix–Gao composition from those based
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on (1-1), highlighting the physical basis for each as well as their advantages and disadvantages. Here,
a generalized effective strain measure will be defined based on the Nix–Gao composition. Then, that
measure will be used to postulate strain gradient theories following the procedure outlined earlier using
the deformation theory as the starting template. It should be noted that Nix and Gao [1998] did not
propose a complete strain gradient plasticity theory — they suggested the manner in which the flow stress
is enhanced by the gradient contribution. Later, Huang et al. [2000] proposed a higher-order theory based
on the Nix–Gao composition; however, that proposal is quite different from what is given below. Indeed,
the version suggested by Huang et al. introduces a second material length parameter tied to the higher-
order stresses and unrelated to that of Nix and Gao used below. In most instances, applications of the
Nix–Gao composition have been restricted to lower-order versions [Huang et al. 2004].

With σe as the effective flow stress, σ0 as a reference yield stress, and σe = σ0 f (εP) as the relation
between stress and plastic strain in uniaxial tension, Nix and Gao proposed that the flow stress is enhanced
by the gradients according to

σe = σ0

√
f (εP)2+ `ε

∗

P . (A.1)

This incorporates the gradient measure of the geometrically necessary dislocations in accord with the
Taylor hardening law with a linear dependence on `ε∗P as the classical limit is approached, and it reduces
to the uniaxial relation when the gradients can be ignored. For uniaxial behavior with monotonically
increasing stress, that is, d f/dεP > 0, let f −1(x) denote the inverse of f (x), and define a generalized
effective plastic strain by

EP = f −1
(√

f (εP)2+ `ε
∗

P

)
. (A.2)

With this definition, σe = σ0 f (EP) is identical to (A.1) of Nix and Gao. Specifically, for a power law in
uniaxial tension, σe = σ0ε

N
P , (A.2) is

EP = (ε
2N
P + `ε

∗

P)
1/(2N ). (A.3)

The subsequent discussion will be restricted to (A.3).
With EP in (A.3), the deformation theory based on (3-1) is fully defined. For the one-parameter

gradient measure (2-2), one has

Q = ∂UP
∂εP
= σ(EP)

(
εP
EP

)2N−1
, τi =

∂UP
∂εP,i

= σ(EP)
`

2N

( 1
EP

)2N−1 εP,i

ε∗P
. (A.4)

The definition of the flow theory is not as straightforward. Unlike the measure in (1-1), (A.3) is not
homogeneous in εP and ε∗P , except if N = 1

2 . Nevertheless, a generalized plastic strain rate can be defined

that coincides with (A.3) for proportional straining. With ε̇P =
√

2ε̇P
i j ε̇

P
i j/3, ε̇∗P defined by (2-7), and total

values defined by (2-10), it is easily seen that a measure with the desired property is

ĖP =
1

E2N−1
P

(
ε2N−1

P ε̇P +
`

2N
ε̇∗P

)
. (A.5)

If N = 1
2 , (A.5) coincides with the present measure in (2-9) for µ = 1 and it is otherwise similar in

the sense that it is a linear composition of the rate contributions. The constitutive relations for the flow
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theory are taken as

Q = σ(EP)
(
εP
EP

)2N−1
and τi =

σ(EP)`

2N

( 1
EP

)2N−1 ε̇P,i

ε̇∗P
(A.6)

such that the plastic dissipation rate is again Qε̇P + τi ε̇P,i = σ(EP)ĖP . The field equation for ε̇P is
obtained from the higher-order equilibrium equation (2-12), and it is the Euler equation associated with
Minimum Principle I defined, as before, by (3-7). One can also show that

Q̇ε̇P + τ̇i ε̇P,i = h(EP)Ė2
P + (1− 2N )

σ (EP)

EP

(
Ė2

P −

(
εP
EP

)2N−1
ε̇2

P

)
. (A.7)

Thus, the functional associated with Minimum Principle II in (3-10) must be modified by replacing
h(EP)Ė2

P by the right hand side of (A.7).
It is interesting to note that the deformation and flow theories proposed above based on the ef-

fective strain measure of [Nix and Gao 1998] coincide with the corresponding theories based on the
Fleck–Hutchinson measure when µ= 1 and N = 1

2 . The nice properties of solutions for pure power-law
materials noted in Section 5 require a measure that is homogeneous in the plastic strain and its gradient.
Therefore, the simple solution structure and its consequences in Section 5 do not hold for the theories
based on the Nix–Gao measure unless N = 1

2 .
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AN AXISYMMETRIC PARACHUTE MODEL WITH WRINKLING

YOAV OFIR, DAN GIVOLI AND AVINOAM LIBAI

We are honored to dedicate this paper to Charles Steele and to the memory of Marie-Louise Steele.
Charles was my admired teacher at Stanford, and has opened my eyes to the wonderful world of shells.

Marie-Louise was a friend who always had a few warm words for a PhD student undergoing stressful times.
I will always remember her very fondly. – Dan Givoli

The deformation and stresses in a parachute canopy are analyzed, using an axisymmetric model. The
canopy is modeled as an ideal or nearly ideal elastic membrane shell. Steady state is assumed. No
restriction is imposed on the size of the deformation, and thus the problem is strongly nonlinear. Wrinkles
which form over parts of the surface are taken into consideration approximately via the use of wrinkle
fields (tension fields). The solution is obtained by a double-iteration numerical procedure, based on
a shooting technique and incremental loading. First a basic parachute model is considered in which
the material is assumed isotropic and Hookean, the pressure distribution is assumed uniform (but with
unknown magnitude), and the canopy is assumed to have a small central hole. Later all these assumptions
are relaxed. Numerical examples are presented for some representative cases.

1. Introduction

Analysis of deformation and stresses in a parachute under general conditions is extremely complicated.
Treatment of the full problem in the literature is scarce; the impressive computational work of Tezduyar’s
group [Stein et al. 2000; 2001] and that of [Kim and Peskin 2006; 2009], which takes into account the
complete fluid-structure interaction, should be mentioned in this context. The structural analysis of the
canopy is considered, for example, in [Liu et al. 2001; Lu et al. 2001]. These two papers take into
account the wrinkles which are generally formed in the parachute canopy. Information on such wrinkles
is important since they may affect the deformation and stress distribution in the canopy and thus may
have an influence on the overall parachute performance.

In this paper we propose a much simpler method of analysis for parachutes. Although the actual
behavior of real parachutes and their design are beyond the scope of this paper, we briefly mention a few
facts related to this subject, with particular attention to the issues of shape, stability, and wrinkles. The
classical paper [Taylor 1919] recognized that “if stability were the chief thing to be desired, a parachute
in the form of rounded cone is desirable. . . If lightness is the most important quality, it appears that
one should make one’s parachute as flat as possible, provided it will remain distended. If, however, the
parachute is made too flat, radial crinkles or pleats will appear and these must mean a waste of material.”
Taylor then proceeds to determine the optimal deformed shape of a parachute, and obtains a theoretical
shape determined by elliptic function curves. He comments that this theoretical shape differs from actual
shapes of parachutes in that the curvature of the profile near the edge is smaller in the former, and he
attributes this to the assumption of uniform pressure underlying his analysis.

Keywords: axisymmetric membrane shell, tension field, wrinkle field, parachute, canopy.
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The parachute studied in [Taylor 1919] assumes that inextensible wires woven into the fabric extend
radially from the center to the edge. In between these wires the fabric bulges out, to form a lobed
shape. In contrast, the parachute considered in the present paper is assumed to be axisymmetric, and
therefore cannot account for canopy lobes. Admittedly, axisymmetry is rather a strong simplification
in practical parachute analysis, since it neglects the presence of the lobes. Moreover, in some cases
the axisymmetric solution may be an unstable equilibrium solution of the parachute problem, while
a stable solution deviates from the axisymmetric configuration. Baginski et al. [2006] and Deng and
Pellegrino [2008] demonstrate such symmetry-breaking clefting in the case of pumpkin balloons. In the
case of smooth surfaces, wrinkles coalesce and form a small number of localized folds, as in Mylar party
balloons. Both papers obtain stable solutions that deviate from the axisymmetric shape as the pressure
is decreased from a nominal value by using detailed three-dimensional finite element analyses. The
method of analysis proposed here is, of course, oblivious to all these effects, which is its main limitation.
Despite this fact, we believe that the types of results that this simple method can produce are very helpful
in preliminary design stages, and can serve as basis for more detailed asymmetric analysis.

In this context, the spectrum of analysis methods for parachutes should be recognized. On one end of
this spectrum one can find the complete numerical analysis methods mentioned above, usually based on
finite element discretization in space. On the other end of the spectrum are crude calculations or analytical
solutions, usually associated with linear elasticity, namely with the assumption of small deformation and
linear material behavior. Our proposed method is somewhere inside this interval; it does make a few
basic assumptions, the most limiting of which being axisymmetry, but on the other hand it assumes
neither small deformation nor linear material behavior.

The canopy may be thought of as an ideal or nearly ideal elastic membrane shell. Ideal membranes
will wrinkle rather than support compressive stresses. Often this results in the formation of wrinkle
zones over portions of the deformed surface. These zones, in which the principal stress resultants are
everywhere nonnegative, provide a mechanism for carrying the imposed loads. Within a wrinkle zone,
the crests and troughs of the wrinkles are parallel to the direction of principal tension, and the stress
resultant in the direction normal to them (in the tangent plane) vanishes.

The parachute behaves essentially as a pulled axisymmetric membrane with surface of positive Gauss-
ian curvature. To illustrate the basic phenomena involved, Figure 1 describes the behavior of a model
of a membrane with surface of positive Gaussian curvature, albeit significantly simpler than that of the
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Figure 1. Wrinkles forming in an axisymmetric pulled membrane: (a) the unloaded
membrane; (b) the wrinkled cone generated by a slight pulling force; (c) the wrinkle
region (BD) and the two doubly tense regions (CB and ED) formed by a medium-sized
pulling force; (d) the all-tense surface generated by a large pulling force.
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parachute to be discussed later. The membrane is subjected to a pulling force, as was considered in
[Libai and Givoli 2002]. The membrane is attached to two rigid plates along its two edges C and E, as
shown in Figure 1a. The bottom plate is assumed to be fixed, whereas the top plate is pulled upwards.
During the pull, the upper plate remains parallel to the lower plate and does not rotate with respect to
it. The application of a slight pulling force P = 0+ to the upper plate results in the formation of merid-
ional wrinkles, and the membrane surface becomes a “wrinkled cone;” see Figure 1b. The formation of
wrinkles is due to the fact that the circumferential stress resultants, which would have existed in such
a membrane, must be negative, and are replaced by the wrinkle field. In addition, the requirements of
equilibrium in the direction of the normal to the membrane demand that the curvature of the meridional
lines be zero. Thus, the meridional wrinkle field takes on the shape of a cone.

In the vast majority of materials for membranes, a Poisson-like effect exists, such that a tensile stress
in one direction is accompanied by contraction (negative strain) in the directions normal to it. If this
contraction were prevented, say, along a boundary, then positive stresses would form along it and in its
immediate neighborhood. The rigid plates at the upper and lower edges of the membrane prevent the
transverse contraction, which would have occurred due to the pulling, and, thus, positive circumferential
stresses accompany the positive pulling stresses. A biaxial state of stress is, thus, formed at and near the
edges. The size of the edge zones is o(e), where e is a typical meridional strain; see [Libai 1990]. The
entire effect is strongly nonlinear.

An increase in the pulling force leads to a corresponding increase in e, so that the edge zones dete-
riorate. Thus, increasingly larger doubly tense regions are formed near the boundaries, where both the
meridional and tangential (hoop) stress resultants are positive, while the central region remains wrinkled,
as illustrated in Figure 1c. In the absence of internal pressure, the meridional curvature of the surface
in the doubly tense regions is always negative; see, for example, [Libai and Simmonds 1998; Libai and
Givoli 2002]. A further increase in the force causes the central wrinkle region to shrink, until, finally, a
tensile biaxial state of stress exists over the entire surface; see Figure 1d.

In the case of large wrinkle zones in a membrane, direct and full treatment of the wrinkles is generally
difficult. This fact gave rise to the notion of wrinkle fields, or tension fields, which represent the wrinkles
in a “homogenized” sense. The basic idea in the theory of wrinkle fields is to avoid studying the wrinkle
region in detail by replacing it with a smoothed-out pseudosurface. This pseudosurface must be in
equilibrium, and the minimum principal stress resultant must vanish on it. Obviously, the stretch of the
pseudosurface in the direction of the zero minimum principal stress resultant is nonphysical, in that it is
not equal to that of the actual wrinkled surface.

In [Wu 1978] the first complete treatment of wrinkling in nonlinearly elastic membranes of revolution
was given. Zak [1982] extended the theory to wrinkling of films of arbitrary shape. Pipkin [1986]
proposed the notion of “relaxed energy density” in this context. Steigman and coworkers have made
extensive theoretical studies [Steigmann and Pipkin 1989; Steigmann 1990; Li and Steigmann 1995a;
1995b] of the behavior of wrinkled and partly wrinkled membranes in various cases, including that of
pressurized spherical and toroidal membranes. Libai [1990] presented a complete theoretical analysis of
the transition zone between the doubly tense and wrinkle regions for pulled spherical membranes. Tait
et al. [1996] and Tait and Connor [1997] solved wrinkling problems for cylindrical membranes. Rod-
deman et al. [1987a; 1987b], Jeong and Kwak [1992], Chiu et al. [1993], and Muttin [1996] developed
finite element methods for the solution of partly wrinkled membranes. See [Libai and Simmonds 1998,
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Chapters 5 and 7] for a detailed exposition on the subject and additional references. Recent publications
making computational use of wrinkle fields for various applications include [Raible et al. 2005; Cavicchi
et al. 2009; Mosler and Cirak 2009; Liu and Sze 2009].

In this paper we use wrinkle fields to analyze the deformation and stresses in a parachute canopy, using
an axisymmetric model. We model the parachute as an ideal or nearly ideal elastic membrane shell.
“Nearly ideal” means that the membrane is allowed to sustain small compressive stresses; it wrinkles
only under larger compressive stresses. Thus, the minimal principal stress resultant is Ncr, where Ncr is
a nonpositive parameter assumed to be a material property. For ideal membranes Ncr = 0, and for nearly
ideal membranes Ncr has a small negative (given) value.

The idea to use Ncr 6= 0 in a membrane was suggested in [Rimrott and Cvercko 1986] in the context of
pulled flat rectangular membranes. The authors claim that the formation of a finite number of wrinkles,
which is typically observed in experiments in real membranes, is evidence of the presence of some small
bending stiffness, since in the absence of such stiffness there should be an infinite number of wrinkles.
Based on the experimental observation that, after the initial wrinkles form, additional deformation does
not affect their number, Rimrott and Cvercko obtained a relation which connects the parameter Ncr to
the number of wrinkles in the membrane, that is, to the wavelength of a single wrinkle. This relation can
be exploited to effectively measure Ncr by counting the number of wrinkles.

Wong and Pellegrino [2006] derive another relation, based on a simple buckling model, in which Ncr

depends on the material properties (Young’s modulus and Poisson’s ratio), the thickness of the membrane,
and the half-wavelength of the wrinkle. They use this relation and the condition Nθ = Ncr (where Nθ is
the transverse stress resultant) to calculate the wrinkle half-wavelength, namely the number of wrinkles.

In the present paper we calculate solutions for both ideal membranes (Ncr = 0) and nearly ideal
membranes (Ncr < 0). In the latter case, our choice for the value of Ncr is rather arbitrary and does not
necessarily correspond to an actual membrane material and thickness. We simply increase |Ncr| from
zero until the effect of this parameter becomes significant. Choosing Ncr in a more judicious way would
require an additional analysis, such as that of Wong and Pellegrino.

We assume steady state, namely that the canopy is fully open and the air pressure acting on it is
quasistatic. On the other hand, we pose no restriction on the size of the deformation, which may be
very large, thus making the problem strongly nonlinear. We solve the problem using a double-iteration
numerical procedure, based on a shooting technique and incremental loading. We demonstrate that
the method works very well despite the complexity of the problem which involves the highly nonlinear
membrane shell equations, different regions with interfaces which are unknown a priori, and deformation-
dependent pressure magnitude.

We first consider a basic parachute model in which we assume the material to be isotropic and Hookean,
the pressure distribution to be uniform, although with an unknown magnitude, and the canopy to have
a small hole in its center. Later we relax all these assumptions and consider also an orthotropic canopy
(which allows us to represent the higher stiffness in the meridional direction due to the canopy cords),
neo-Hookean material, nonuniform pressure (with a known distribution but unknown magnitude), and
canopies without a central hole. In the latter case, some numerical difficulties arise near the apex, and
we overcome them by slightly modifying the calculation procedure in the apex vicinity.

Summary. In Section 2 we present the parachute model and its governing equations. In Section 3
we outline the computational scheme for the solution of the parachute problem, for the basic model. In
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Section 4 we discuss the four extensions mentioned above. In Section 5 we present some representative
numerical results. We end with some concluding remarks in Section 6.

2. Parachute model and governing equations

2.1. Basic model and notation. We consider a thin curved axisymmetric hyperelastic membrane with a
positive Gaussian curvature (the canopy) subjected to a given axial pulling force P (the carried weight),
as illustrated in Figure 2. The meridian of the membrane extends between points C and E. The force
P is transferred to the canopy through tensed cords of given length L , which must be tangential to the
meridian at point C (see Figure 2) since the membrane has no bending stiffness. The entire model is
axisymmetric, and thus the cords are represented by a continuous “cone” revolving around the axis of
symmetry. The tension of this “axisymmetric cord” in the deformed configuration is denoted T , and
the angle it forms with the axial direction β, both unknown. The pressure acting on the membrane is
assumed to be uniform, but its magnitude, denoted p, is unknown.

The upper edge of the shell, point E, is fixed to a rigid ring of given radius, which encloses and
reinforces a small hole in the center of the canopy. For arbitrary external forces P and p, an axial
reaction force R would act at this point. Since the parachute is known to be in equilibrium under P and
p alone, we require that this reaction vanish, that is, R = 0, which will give us a condition that will be
essential in determining the pressure p.

We expect the membrane to have doubly tense regions near the lower and upper edges, and possibly
a wrinkle field in a central region of the meridian, bounded by points B and D (see Figure 2).

We define the notation needed to describe the geometry of the shell. The surface of the unloaded
membrane is described by the function r = r(z), where r and z are the radial and axial coordinates,
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β  0
φ  

L 

0
r 

R 

Figure 2. The basic parachute model.
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respectively. The arc length coordinate along the meridian is denoted s. We use a superposed bar to
denote quantities in the deformed configuration. Thus, we let r̄ , z̄, and s̄ denote, respectively, the radial,
axial, and arc length locations of a material point in the deformed configuration. Thus, the surface of
the deformed membrane is described by the function r̄ = r̄(z̄). We let φ̄ be the angle between the axial
direction and the normal to the deformed surface. We denote quantities related to the lower edge of
the meridian (point C) by the subscript 0. Thus, φ̄0 is the angle φ̄ at the lower edge in the deformed
configuration.

We let Ns and Nθ be the meridional and tangential stress resultants per unit undeformed length, and
N̄s and N̄θ be the meridional and tangential stress resultants per unit deformed length. We let λs and λθ
be the principal stretches.

2.2. Governing equations and boundary conditions. In this section we summarize all the equations and
boundary conditions that constitute our model. We first write down all the equations that hold in a doubly
tense region, and then we comment on the changes that need to be made in these equations in a wrinkle
region.

Basic relations connecting quantities in the deformed and undeformed configurations. Classical relations
of axisymmetric membrane shell theory are used. The relations among the stress resultants are given by

r Ns = r̄ N̄s, ds Nθ = ds̄ N̄θ , (1)

which actually define the stress resultants in the undeformed configuration. The principal stretches are
related to the geometry through

λs = ds̄/ds, (2)

λθ = r̄/r. (3)

Axial equilibrium. Consideration of the axial equilibrium of a portion of the membrane which lies on
the lower side of a circumferential cross section yields

P − 2π r̄ N̄s sin φ̄− I = 0, (4)

where

I ≡
∫ s̄

0
2πpr̄ ′ cos φ̄′ds̄ ′. (5)

The integral I is the total axial force due to the pressure p acting from the lower edge of the membrane
along the meridian up to the point under consideration. A prime ( ′ ) denotes a quantity calculated at the
integral variable point s̄ ′ ∈ [0, s̄]. Using (1) in (4) we also obtain

Ns =
P − I

2πr sin φ̄
. (6)

This equation holds in the entire membrane.

Normal equilibrium. In the doubly tense regions, we also consider the normal equilibrium of an element,
which yields the equation

N̄θ
ρ̄θ
+

N̄s

ρ̄s
= p. (7)
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Here, ρ̄s and ρ̄θ are the meridional and tangential radii of curvature of the deformed membrane, which
satisfy

1
ρ̄s
=−φ̄,s̄, ρ̄θ =

r̄
sin φ̄

. (8)

In (8) and elsewhere, a comma indicates differentiation. We use (1), (7), and (8) to obtain

Nθ =
r Ns φ̄,s + pr̄ s̄,s

sin φ̄
. (9)

Substituting Ns from (6) yields

Nθ =
pr̄ s̄,s
sin φ̄

−
(cot φ̄),s

2π
(P − I ). (10)

Compatibility equation. The compatibility relation simply relates r̄ , s̄, and φ̄ through

dr̄
ds̄
=− cos φ̄. (11)

The minus sign in (11) comes from the fact that in the region where the cosine is positive, namely where
φ̄ < π/2 (for example, as in the segment CB shown in Figure 1c), r̄ is a decreasing function of s̄.

Constitutive relations. The constitutive relations complete the set of differential equations governing the
membrane’s behavior. It is assumed that the membrane is isotropic hyperelastic, namely it possesses a
strain energy function W (λs, λθ ) per unit area of the undeformed surface, such that

Ns =W,λs , Nθ =W,λθ , (12)

in the doubly tense regions.
In our basic model we consider a Hookean (linear elastic) isotropic material. In this case, the strain

energy function is quadratic:

W (λs, λθ )=
Eh

1− ν2

( 1
2 (λ

2
s + λ

2
θ )+ νλsλθ − (1+ ν)(λs + λθ − 1)

)
. (13)

Here h is the membrane thickness, E is the Young’s modulus and ν is the Poisson’s ratio. With this
strain energy function, the relations (12) in the doubly tense regions become

Ns =
Eh

1− ν2 (λs + νλθ )−
Eh

1−ν
, (14)

Nθ =
Eh

1− ν2 (λθ + νλs)−
Eh

1−ν
. (15)

Modified equations in the wrinkle region. Equations (1), (2), (4)–(6), and (11) hold in the entire mem-
brane. The other equations written above hold in the doubly tense regions, and have to be modified
in the wrinkle region. Equation (3) is not relevant in the wrinkle region since λθ is not physical there.
Equation (10) is simply replaced by Nθ = Ncr in the wrinkle region. Here Ncr is a nonpositive quantity
assumed to be a material property. For ideal membranes Ncr = 0, and for nearly ideal membranes Ncr

has a small negative (given) value.
The constitutive equations (14) and (15) are replaced by an effective constitutive equation in the

wrinkle region. Since Nθ = Ncr there, (15) furnishes then a relation between λs and λθ . This relation
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can be used to eliminate λθ from (14), thus obtaining a modified unidirectional constitutive relation for
Ns . After some algebra, the end result is

Ns = Eh(λs − 1)+ νNcr. (16)

Geometrical relations at the lower edge. A few geometrical relations may be inferred from the setup
shown in Figure 2, in the deformed configuration:

φ̄0 = β +π/2, (17)

r̄0 = L sinβ, (18)

P = 2π r̄0T cosβ. (19)

From the last two relations, a simple relation between the unknown quantities β and T can be deduced:

T = P
πL sin 2β

. (20)

Boundary and interface conditions. To complete the statement of the problem, the equations given above
must be accompanied by boundary conditions at the two ends of the membrane. At the lower end (point
C in Figure 2) we have

(N̄s)0 = T, (21)

since T is tangent to the meridian at this point. At the upper end (point E in Figure 2) we have

rE = r̄E or (λθ )E = 1, (22)

since the membrane is fixed to a rigid ring there. The second equality in (22) follows from (3).
We also need interface conditions at the meridional junctions of the doubly tense and wrinkle regions

(points B and D in Figure 2). These conditions are:

Nθ = Ncr and φ̄ is continuous at B and D. (23)

From (6) and (16) we conclude that Ns and λs are also continuous at the interfaces. This completes the
statement of the problem for given pressure p.

Global equilibrium. Since the entire parachute is in self equilibrium under load P and pressure p, we
must have

P − IE = 0, (24)

where IE is the value of I defined by (5) at point E, which is the total axial force due to the pressure p
along the entire meridian. This equation will serve us in determining the pressure p.

We remark that from (24) and (6) it follows that at point E either Ns = 0 or φ̄ = 0. However, we do
not enforce this boundary condition directly, but rather enforce the global equilibrium condition (24), as
will be explained in the next section.
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3. Computational scheme

3.1. The overall scheme. The problem involves a single given loading parameter, namely the carried
weight P . We approach the parachute problem via incremental loading, by increasing the load P in
small discrete steps from zero to its final value. This serves two purposes. First, for a given undeformed
geometry of the canopy, this provides us with a family of solutions for various carried weights. Second,
this procedure helps us to detect critical values of P for which essential changes occur in the nature of
the solution.

For a given value of P , the computational scheme that we use in order to solve the problem stated in
the previous section involves two nested iteration processes. The outer iteration loop may be described
as follows. We make an initial guess p̃ for the pressure value p. Then we step into the inner iteration
loop (to be described in the next subsection) and compute all deformation and stress variables along the
entire meridian. Based on this solution, we calculate the reaction R (see Figure 2) by

R = P − IE . (25)

Of course, we know that R should vanish, since the whole parachute is self-equilibrated; see (24). Com-
putationally, we check if the criterion

|R| ≤ δ1 P (26)

is satisfied, where δ1 is a small given tolerance. If this criterion is satisfied, our guess was correct, and
thus p̃ ' p and the whole problem is solved. If not, we change the guess p̃ and repeat the inner iteration
loop. This process continues, until (26) is satisfied.

Despite the strong nonlinear nature of the whole problem, numerical experiments show that the relation
between the reaction R and the assumed applied pressure p̃ is almost linear! This is demonstrated
in Figure 3, where the reaction-pressure relation is shown for a typical set of input parameters (ideal
membrane, elliptic initial shape, vertical force P = 0.1). This surprising fact can be explained by the
following calculation. Let us evaluate the integral I defined by (5) at the upper point E (see Figure 2)
for a guessed pressure value p̃:

IE = 2π p̃
∫ s̄E

0
r̄ ′ cos φ̄′ds̄ ′. (27)

Defining

ÎE =

∫ s̄E

0
r̄ ′ cos φ̄′ds̄ ′, (28)

and using (25), we have

R( p̃)= P − 2π p̃ ÎE . (29)

We calculate ÎE using (28), (3), (11), and (22):

ÎE =

∫ s̄E

0
r̄ ′ cos φ̄′ds̄ ′ =−

∫ r̄E

r̄0

r̄ ′dr̄ ′ =− 1
2(r̄

2
E − r̄2

0 )=−
1
2(r

2
E − r̄2

0 )=−
1
2

(
r2

E − r2
0 (λθ )

2
0
)
. (30)

Now we make the assumption that the hoop strain at the lower point is small, namely that (λθ )0 is close
to one. (This assumption was verified numerically in the example problems that we have solved.) We
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write this assumption is the form

(λθ )0 = 1+ ε f ( p̃)= 1+ O(ε). (31)

Then from the last calculation we have

ÎE =−
1
2

(
r2

E − r2
0 + O(ε)

)
. (32)

Using this result in (29) finally yields

R( p̃)= P +π
(
r2

E − r2
0 + O(ε)

)
p̃. (33)

This is an approximate linear relation between R and p̃, which explains the observation above.
The fact that R is almost proportional with p̃ is a considerable aid in the numerical convergence of the

scheme. By taking advantage of this fact, one is able to find an excellent approximation for the pressure
p by making only two calculations, with two values of p̃, and linearly extrapolating the results as implied
by Figure 3.

Incidentally, from the calculation above we can deduce another almost linear relation, namely the
relation between the true pressure p and the weight P . With the true pressure we should get R = 0, and
from (29) we thus have

P − 2πp ÎE = 0. (34)

Therefore,

p =
P

2π ÎE
, (35)

and using (32) we have

p =−
P

π(r2
E − r2

0 + O(ε))
. (36)
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Figure 3. The reaction R as a function of the pressure p̃ for a typical set of input
parameters. The five dots along the straight line correspond to the numerical results of
five runs of the inner iteration loop with different values of p̃.
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This proves the claim, which was also verified numerically. If the term O(ε) is dropped as an approxi-
mation, we get the simple result p = P/[π(r2

0 − r2
E)] which can be obtained directly from summation of

forces in the z direction, and is valid also in the case of no hole (rE = 0).

3.2. The inner-loop iterative procedure. The inner-loop iteration procedure is a generalization of the
one used in [Libai and Givoli 2002] to analyze a pulled membrane without internal pressure and with
simpler boundary conditions. This procedure is based on a shooting technique and on approximately
integrating the equations along the meridian. (The use of such a technique was suggested to the third
author by D. J. Steigmann; see also [Li and Steigmann 1995a; 1995b]).

The numerical scheme is outlined as follows. The value of the pulling force P is given. Also given is
the function r(z) describing the shape of the unloaded membrane, where z ranges from 0 to the height of
the undeformed membrane Z . We divide the z axis into M small intervals [zm−1, zm] for m = 0, . . . ,M .
For simplicity we take the intervals to be of uniform size 1z ≡ zm − zm−1 = Z/M . We start from the
lower edge of the membrane, that is, point C in Figure 2. To initiate the integration process, we first
guess the value of the hoop stretch at point C, (λθ )0. Then we integrate the equations numerically as will
be described shortly, until we reach the other edge, that is, point E. We check if the boundary condition
(22) is satisfied at point E to within a desired precision; if it is, the solution process has terminated. If
not, the guessed value of (λθ )0 is adjusted, and the integration starts all over again from point C. This
process is repeated until the boundary condition (22) is satisfied at point E.

The scheme is now described in full detail. The value of a variable v at location zm is denoted vm .
The pressure p̃ is assumed to be known, having been set in the outer loop.

(1) The lower doubly tense zone (from point C to point B; see Figure 2).
(a) Choose an initial value (λθ )0 for the hoop stretch at point C.
(b) Set m = 0, s0 = s̄0 = 0, z0 = z̄0 = 0 and I0=0.
(c) Use (3), (17), (18), and (20) to compute

r̄0 = r0(λθ )0, β = sin−1(r̄0/L), φ̄0 = β +π/2, T = P/(πL sin 2β).

(d) Use the equilibrium equation (6) to calculate

(Ns)m = (P − Im)/(2πrm sin φ̄m).

(e) Use the constitutive equation (14) to calculate (λs)m from (Ns)m and (λθ )m :

(λs)m =
1−ν2

Eh
(Ns)m − ν(λθ )m + 1+ ν.

(f) Use the constitutive equation (15) to calculate (Nθ )m from (λs)m and (λθ )m .
(g) Check if (Nθ )m ≤ Ncr. If yes, point B is reached (see Figure 2); move to step 2.
(h) Calculate

zm+1 = zm +1z, 1rm = rm+1− rm, 1sm =
√
(1rm)2+ (1z)2, sm+1 = sm +1sm .

(i) Use (2) to calculate

1s̄m =1sm(λs)m, s̄m+1 = s̄m +1s̄m .
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(j) Integrate the equilibrium equation (10) to calculate

φ̄m+1 = cot−1[cot φ̄m −
(
2π/(P − Im)

)(
1sm(Nθ )m − p̃r̄m1s̄m/ sin φ̄m

)]
.

(k) Use the compatibility equation (11) to calculate

1r̄m =−1s̄m cos φ̄m+1, r̄m+1 = r̄m +1r̄m .

(l) Use (3) to calculate
(λθ )m+1 = r̄m+1/rm+1.

(m) Calculate
1z̄m =

√
(1s̄m)2− (1r̄m)2, z̄m+1 = z̄m +1z̄m .

(n) Use (5) to calculate
Im+1 = Im + 2π p̃ cos(φ̄m)r̄m1s̄m .

(o) Set m← m+ 1 and return to substep (d).

(2) The wrinkle zone (from point B to point D; see Figure 2).
(a) Calculate

zm+1 = zm +1z, 1rm = rm+1− rm, 1sm =
√
(1rm)2+ (1z)2,

sm+1 = sm +1sm, 1s̄m =1sm(λs)m, s̄m+1 = s̄m +1s̄m .

(b) Set (Nθ )m+1 = Ncr.
(c) Integrate the equilibrium equation (10) to calculate

φ̄m+1 = cot−1[cot φ̄m −
(
2π/(P − Im)

)
(1sm Ncr− p̃r̄m1s̄m/ sin φ̄m)

]
.

(d) Use the compatibility equation (11) to calculate

1r̄m =−1s̄m cos φ̄m+1, r̄m+1 = r̄m +1r̄m .

(e) Use (5) to calculate
Im+1 = Im + 2π p̃ cos(φ̄m)r̄m1s̄m .

(f) Use the equilibrium equation (6) to calculate

(Ns)m+1 = (P − Im+1)/(2πrm+1 sin φ̄m+1).

(g) Use the constitutive equation (16) to calculate (λs)m+1 from (Ns)m+1:

(λs)m+1 = 1+
(
1/(Eh)

)(
(Ns)m+1− νNcr

)
.

(h) Calculate
1z̄m =

√
(1s̄m)2− (1r̄m)2, z̄m+1 = z̄m +1z̄m .

(i) Use (3) to calculate a nonphysical value of λθ :

(λNP
θ )m+1 = r̄m+1/rm+1.
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(j) Use the constitutive equation (15) to calculate a nonphysical value of (Nθ )m+1, denoted by
(N NP

θ )m+1, from (λs)m+1 and (λNP
θ )m+1.

(k) Check if (N NP
θ )m+1 ≥ Ncr. If yes — point D is reached (see Figure 2); skip to step 3.

(l) Set m← m+ 1 and return to substep (a).

(3) The upper doubly tense zone (from point D to point E; see Figure 2).
(a) Repeat substeps (d)–(f) and (h)–(o) of step 1. Continue the integration process till the last step

m = M , namely till zm = Z .
(b) Based on the value (λθ )M at point E, calculate µ= |1− (λθ )M |. Check if µ < δ2, where δ2 is

a predetermined small tolerance. If yes, the solution process has ended. Otherwise, adjust the
value of (λθ )0 (see step 1, substep (a)) and start the whole process again.

Numerical experiments show that the adjustment of the value of (λθ )0 is easy in practice. The “output”
(λθ )M turns out to be a monotonely increasing function of the “input” (λθ )0, so by using a bisection-type
technique the correct value of (λθ )0 can be found after a few trials. Numerical experiments also show
that the convergence of the results as the number of subintervals M increases is fast. Moreover, the
entire calculation is explicit and therefore very efficient. For example, we have used M = 10,000 for
the problems presented in Section 5, and the running time in each case on a personal workstation was a
few seconds. Thus, despite the fact that the solution process involves two nested iteration schemes, it is
extremely fast.

4. Extensions

In the basic model described above the material was assumed isotropic and Hookean, the pressure dis-
tribution was assumed uniform, and the canopy was assumed to have a small hole in its center. Now we
show how each of these assumptions may be relaxed.

4.1. Orthotropic canopies. In real parachutes, the canopy is stiffened with a finite number of meridional
cords. Classical analysis [Taylor 1919] assumes that these cords are inextensible and the membrane forms
lobes between each pair of adjacent cords. In the framework of our basic axisymmetric assumption,
we cannot handle individual cords. Instead, we assume that the cords cause a global stiffening effect
in the meridional direction. Thus we consider an effective canopy material which is homogeneous but
orthotropic. Thus, different material properties are associated with the meridional and the circumferential
directions. Of course, the only change caused by this extension in our formulation is in the constitutive
equations (14)–(16).

We denote the meridional and circumferential Young’s moduli by Es and Eθ , and the corresponding
Poisson’s ratios by νs and νθ . Then, in the doubly tense regions, (14) and (15) are replaced by

Ns =
Esh

1−νsνθ
(λs + νsλθ )−

Esh
1−νsνθ

(1+ νs), (37)

Nθ =
Eθh

1−νsνθ
(λθ + νθλs)−

Eθh
1−νsνθ

(1+ νθ ). (38)

In the wrinkle region, in which Nθ = Ncr, we obtain, in a similar manner to the isotropic case,

Ns = Esh(λs − 1)+ (Es/Eθ )νs Ncr, (39)
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which replaces (16).
These modified equations imply obvious changes in the algorithm presented in the previous section.

4.2. Neo-Hookean material. In the case of a neo-Hookean material, the strain energy function (13) is
replaced by

W (λs, λθ )= Ch
(
λ2

s + λ
2
θ + (λsλθ )

−2
− 3

)
, (40)

where C is a material constant. In this case the relations (12) in the doubly tense regions become

Ns = 2Ch(λs − λ
−3
s λ−2

θ ), (41)

Nθ = 2Ch(λθ − λ−2
s λ−3

θ ), (42)

and the modified constitutive law in the wrinkle region becomes

Ns = 2Ch(λs − λ
−2
s ). (43)

It should be noted that this relation is valid for an ideal membrane only.
An algorithmic complication arises from the fact that the numerical scheme presented above requires

(see steps 1, substep (e) and 2, substep (g)) the inversion of the constitutive equations (41) and (43), so
that in the doubly tense regions λs is expressed explicitly in terms of Ns and λθ , and in the wrinkle region
λs is expressed as a function of Ns . In the Hookean case this inversion was trivial, but in the neo-Hookean
case it involves the solution of a quartic equation and a cubic equation. Closed-form formulas for the
solutions of these two equations were obtained in [Libai and Givoli 2002] — an exact formula for the
cubic equation and a 4th-order asymptotic solution for the quartic solution; see more details in [Libai
and Givoli 2002].

4.3. Nonuniform pressure. The assumption of uniform pressure distribution is typically a reasonable
one; in many cases the pressure on the canopy is nearly uniform except in a thin boundary layer near the
outer edge of the membrane and the edge of the central hole (if any), where the pressure drops rapidly to
the atmospheric pressure. However, in some cases a more significant deviation from uniformity occurs,
which the analyzer may want to take into account.

To demonstrate this capability, we use as an example the pressure distribution found via computational
fluid dynamics in [Sahu et al. 1995], and adopted in [Shannon 2001, p. 117]. According to this result,
the internal pressure on the canopy is almost uniform but the external pressure is nonuniform, leading
to a nonuniform net pressure, that reaches a maximum around the center of the meridian. By using a
piecewise cubic polynomial approximation we interpolate this pressure distribution. This is shown in
Figure 4 as a function f (χ) defined over the unit interval χ ∈ [0, 1]. The actual pressure p(s) can then
be expressed as a function of the undeformed arc length coordinate s by

p(s)= p0 f (s/S). (44)

Here p0 is the pressure magnitude, which is unknown as in the uniform-pressure case, and S is the total
arc length of the meridian in the undeformed configuration, which can easily be computed in advance
from the known geometry of the undeformed meridian.

Obvious changes have to be applied to the algorithm presented in the previous section in order to
replace the uniform pressure by the nonuniform pressure (44).
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Figure 4. Nonuniform pressure distribution function, after [Sahu et al. 1995].

4.4. Canopy without a hole. The most involved extension
to the basic setup presented in Section 2 is the consideration
of a canopy without a central hole, as shown in Figure 5.
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Figure 5. Parachute model with no hole.

The governing equations in this case are identical to those
in Section 2. However, the boundary condition (22) at point
E needs to be modified. At the apex E we require that the
membrane be continuous and have no kink (and thus must
be flat there), namely

r̄E = 0, φ̄E = 0. (45)

From the condition φ̄E = 0 and from (6), we deduce that (24)
is also satisfied, and thus we do not need to require global
equilibrium as an additional condition.

A numerical difficulty arises when trying to apply the
inner-loop scheme presented in Section 3.2 to this case. In
the close vicinity of the apex, owing to the conditions r̄E = 0
and φ̄E = 0, we have r̄ ' 0, φ̄ ' 0, and P − I ' 0, and we
also know that r ' 0. These approximate equalities give
rise to large roundoff errors near the apex. For example, using (λθ )m+1 = r̄m+1/rm+1 (see the inner-loop
scheme, step 1, substep (l), which is repeated in step 3) becomes impossible, since the quantity on the
right side approaches a 0/0 type limit at the apex.

To circumvent this difficulty, we approximate the deformed shape of the membrane in the close vicinity
of the apex by the parabola

z̄(r̄)= ar̄2
+ br̄ + c, (46)
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where a, b, and c are constants. A similar technique has been used in the context of hot air balloon
analysis [Irvine and Montauban 1980]. In that paper, the governing equations are simple enough to
observe that in the limit r→ 0 an equation of a circle is obtained near the apex; therefore, for a 1◦ arc
near the apex the shape of the membrane is assumed to be circular. In our case, the equations are not
simple enough to observe the actual limit. However, in assuming the parabolic shape (46) we are guided
by the fact that any smooth contour can be locally approximated by a parabolic curve.

We assume that (46) is the form of the deformed membrane when the condition φ̄ < εφ is satisfied,
where εφ is a predetermined tolerance. This defines the point Q on the meridian, where the usual equations
are to be replaced by modified equations based on the approximation (46). Since the parabola must be
flat at the apex, we require

∂ z̄
∂ r̄

∣∣∣
r̄=0
≡ b = 0. (47)

With the form (46) and (47) given, it is easy to calculate the limit of r̄/φ̄ at the apex, and we find

r̄/φ̄ ' r̄/ tan φ̄ = r̄/(−dz̄/dr̄)=−1/(2a). (48)

Equations (47) and (48) are used in the scheme to pose two practical conditions on a and b:

|b|< ε1, 1/2+ (r̄/φ̄)a < ε2, (49)

where ε1 and ε2 are given tolerances. We note that the second condition involves the ratio r̄/φ̄ that is
numerically problematic at the apex. However, this condition is checked only at point Q, which is on the
border of the apex region where roundoff error is not yet significant.

In the close vicinity of the apex, the canopy behaves like a flat circular membrane under axisymmetric
tension. Therefore we can assume

λs ' λθ ' constant, Ns ' Nθ ' constant. (50)

From this and (3) we deduce

λs = λθ =
r̄Q

rQ
. (51)

From axial equilibrium calculated from the apex to the point under consideration (see (4), which is
calculated from the lower edge) we obtain, with η = S̄− s̄,

2π r̄ N̄s sin φ̄ =
∫ η̄

0
2πpr̄ ′ cos φ̄′dη̄′. (52)

We use sin φ̄ ' φ̄, cos φ̄ ' 1, and η̄ ' r̄ , calculate the integral, and finally use (48) to get

N̄s '−p/4a. (53)

Using this result with (50), (1), and (3) we have

Nθ = Ns =−
p

4a
r̄Q

rQ
. (54)

Accordingly, step 3 in the inner-loop scheme of Section 3.2 should be modified for the case of no
central hole in the following manner:
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(3) The upper doubly tense zone (from point D to point E; see Figure 2).
(a) Repeat substeps (d)–(f) and (h)–(o) of step 1. Continue the integration process till the condition

φ̄ < εφ is satisfied. Once this condition is satisfied, point Q is reached; denote the current
meridional-step m by m Q , and proceed to (b).

(b) Use the values of r̄ and z̄ at the last three grid points (m Q , m Q − 1, and m Q − 2) to perform
parabolic extrapolation and compute the constants a, b, and c in the parabola (46).

(c) Check the condition 1/2+ (r̄Q/φ̄Q)a < ε2 (see (49)). If it is satisfied, proceed to (d). Otherwise,
adjust the value of (λθ )0 (see step 1, substep (a)) and start the whole process again.

(d) Calculate λs = λθ = r̄Q/rQ and Nθ = Ns = −(p/4a)(r̄Q)(rQ). These values are valid in the
interval from Q to E.

(e) For m = m Q, . . . ,M calculate r̄m = λθrm , φ̄m =−2ar̄m , and z̄m = ar̄2
m + c.

In the outer loop (see Section 3.1), we check if the condition |b|< ε1 (see (49)) is satisfied. If it is, our
guess for p̃ was correct, and thus p̃ ' p and the whole problem is solved. If not, we change the guess
p̃ and repeat the inner iteration loop. This process continues, until the condition |b|< ε1 is satisfied.

5. Numerical examples

We apply the proposed method to two example canopies, which differ in their initial (undeformed) shape.
We consider a parabolic undeformed membrane described by

r(z)=−1.9z2
+ 2.9z+ 2, z ∈ [0, 2], (55)

and an elliptic undeformed membrane described by

r(z)= 3.3
√

1− (z− 1)2/4, z ∈ [0, 2.99]. (56)

The elliptic undeformed canopy shape chosen here is inspired by [Lennon and Pellegrino 2005], and
is such that the deformed shape turns out to be quite similar to the oval shape obtained in the analysis
of [Taylor 1919], but without the lobes (see discussion in Section 1). Moreover, in Taylor’s optimal
parachute the ratio of minimum to maximum diameter is about 0.6, and this is also the ratio obtained in
our case. The parabolic shape was chosen not due to physical reasons but simply because this was the
family of shapes considered in our previous investigation (see [Libai and Givoli 2002]).

We assume uniformly distributed pressure, except in one case discussed at the end of this section.
We use nondimensional parameter values which were chosen based on the following normalization.

Denoting dimensional quantities with a ∗, we first define two reference quantities: the length L∗, related
to the height Z of the undeformed membrane, and the force F∗ = E∗h∗L∗. Due to technical reasons
that we omit here, we define L∗ = Z/2 for the parabolic canopy and L∗ = Z/3 for the elliptic canopy,
although of course the choice L∗ = Z would have been equally legitimate. Then all the parameters and
variables are normalized, according to their units, with respect to a product of powers of L∗ and F∗.
Thus, for example, p = p∗/(E∗h) and T = T ∗/(E∗h∗). This normalization method always gives the
nondimensional quantity Eh = 1. All parameters that appear in the examples below are unitless, having
been defined by using this method of normalization. In all the examples shown here we use the Hookean
material law, and ν = 0.5.
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Figure 6. Undeformed and deformed shapes of a parabolic canopy with a central hole,
under the applied load P = 0.4.

The computational tolerances needed for the double iteration loop are set as follows. In the case of a
canopy with a central hole we use the tolerances δ1 = 0.01 and δ2 = 10−3, while in the case of a canopy
without a central hole we use εφ = 0.07, ε1 = 10−4, and ε2 = 5 · 10−3. In all cases we take 10,000 steps
in the z direction. This choice is based on practical convergence analysis; see [Ofir 2009] for the details
and a convergence graph.

Figure 6 shows the undeformed and deformed shapes of the parabolic canopy with a central hole,
under the load P = 0.4. The deformed shapes of both an ideal membrane and a nearly ideal membrane
with Ncr = −0.05 are shown. Here and in subsequent figures, the boundaries of the wrinkle zone are
marked on the deformed meridian by two × marks. It is clear that the wrinkle zone is much larger in the
ideal membrane, as it should be. We also see that the deformed membranes are almost flat at the upper
edge, which is consistent with the discussion at the end of Section 2.2.

Figure 7 shows the size of the wrinkle zone, relative to the entire meridian length, as a function of
the applied load P , for four values of Ncr. In the case of the ideal membrane (Ncr = 0), the wrinkle
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Figure 8. Response of a parabolic canopy with a central hole: undeformed and de-
formed shapes for three values of the vertical load P .

zone shrinks as P increases, up to a load value of about P = 1.9, beyond which the entire membrane
becomes doubly tense. In the case of a nearly ideal membrane (that is, for any nonzero value of Ncr),
the wrinkling behavior is considerably different. When the applied forces are very small, no wrinkles
are present since the membrane has a certain capability of carrying compressional hoop stresses. When
the applied loads are large enough, wrinkles start to form. Increasing the load further causes the wrinkle
zone to expand, up to a maximal size. Increasing the load even further causes the wrinkle zone to shrink
until it totally vanishes. The wrinkled regime shrinks when the value of |Ncr| is increased. The latter
behavior is the more physical one, since real membranes are not ideal. Additional numerical examples
in this context can be found in [Ofir 2009].

Figures 8 and 9 show the responses of the ideal parabolic canopy with a central hole, under an in-
creasing applied load. In Figure 8 we show the undeformed and deformed shapes, and in Figure 9 the
distribution of the stress resultants Ns and Nθ and the distribution of the stretches λs and λθ . Note that
in the wrinkle zone Nθ ≡ 0, and the hoop stretch λθ becomes nonphysical and is therefore not shown in
this zone. For the three load values considered in these figures, the lowest one (P = 0.01) yields a very
large wrinkle zone, the intermediate one (P = 0.3) gives a smaller wrinkle zone, and the highest one
(P = 1.9) causes the membrane to be doubly tense along the entire meridian.

Figure 10 summarizes the response of a parabolic canopy with a central hole as a function of the
applied load P . We show the maximal values along the meridian of the stress resultants Ns and Nθ and
of the stretches λs and λθ . These functions are monotone but are far from being linear.

Figures 11 and 12 show the responses of a nearly ideal elliptic canopy with no central hole, under
an increasing applied load. Here we set Ncr =−0.002. Again we show the undeformed and deformed
shapes (Figure 11), and the distributions of the stress resultants Ns and Nθ and of the stretches λs and
λθ (Figure 12). In this case the response of the membrane is more sensitive to changes of the load value
than in the previous case. Already for P = 0.4 the entire meridian is doubly tense.

Figure 13 shows the response of the ideal elliptic canopy with a central hole in two cases: one in which
the pressure along the meridian is uniformly distributed, and the other in which it is distributed nonuni-
formly according to the function shown in Figure 4. We show the two deformed shapes in Figure 13a
and the two meridional stress resultants in Figure 13b, for P = 0.3. The difference between the two
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Figure 9. Response of a parabolic canopy with a central hole, stress resultant, and
stretch distribution: (a) P = 0.01, stress resultants, (b) P = 0.01, stretches, (c) P = 0.3,
stress resultants, (d) P = 0.3, stretches, (e) P = 1.9, stress resultants, (f) P = 1.9,
stretches.
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Figure 10. Response of a parabolic canopy with a central hole as a function of the
applied load P: (a) maximal stress resultants, (b) maximal stretches.
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Figure 11. Response of a nearly ideal elliptic canopy with no central hole: undeformed
and deformed shapes for three values of the vertical load P .

deformed shapes is small, although wrinkles are formed only in the case of uniform pressure distribution.
However, the meridional stress in the vicinity of the hole is much larger in the case of uniform pressure.
This shows that ignoring the effect of nonuniformity of pressure distribution on the mechanical response
of the canopy is not always justified.

Finally we consider the case of an orthotropic canopy (see Section 4.1). We use an ideal membrane
with the elliptic undeformed shape and a central hole, and with the vertical load P = 0.3. The nondimen-
sional Young’s modulus in the circumferential direction is still Eθh = 1, while in the meridional direction
we take Es = 2Eθ = 2. The Poisson ratio is taken as 0.5 in both directions. In Figures 14a and 14b we
compare the meridional stress resultant Ns and stretch λs , respectively, in the isotropic and orthotropic
cases. We see that the orthotropy does not affect Ns along the meridian except near the hole surface, where
the effect is very strong. The stretch λs is affected almost uniformly along the meridian. The deformation
and circumferential stress and stretch (not shown here) are affected much less by the orthotropy.
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Figure 12. Response of a nearly ideal elliptic canopy with no central hole, stress re-
sultants, and stretch distribution: (a) P = 0.1, stress resultants, (b) P = 0.1, stretches,
(c) P = 0.3, stress resultants, (d) P = 0.3, stretches, (e) P = 0.4, stress resultants,
(f) P = 0.4, stretches.
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Figure 13. An ideal elliptic canopy with a central hole — responses in the cases of
uniformly and nonuniformly distributed pressure: (a) deformed shapes, (b) meridional
stress resultant.
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Figure 14. Comparison between the responses of isotropic and orthotropic canopies:
(a) meridional stress resultant Ns , (b) meridional stretch λs .

6. Concluding remarks

The problem considered in this paper, of the quasistatic behavior of parachute canopies including the
effects of large deformation and wrinkling, belongs to an important class of problems in nonlinear
membrane shell theory. Other examples of such problems can be found, for example, in biology. In
the present paper we have extended [Libai and Givoli 2002], which used wrinkle fields (also called
tension fields) to model the wrinkle zones, but considered a much simplified setup.

The model introduced here, which represents a parachute under axisymmetric geometry, material
properties, and loading, was analyzed via a double-iteration numerical procedure, based on a shooting
technique and incremental loading. We first considered a canopy with a small central hole, made of an
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isotropic Hookean material, and we assumed uniform pressure distribution. Later we showed how to
relax these assumptions.

The advantage of the proposed numerical scheme employed here, over, say, the finite element method
(FEM), is that it is quite simple, very easy to implement, and exhibits fast convergence, despite the
complexity of the problem which involves the highly nonlinear membrane shell equations, different
regions with interfaces which are unknown a priori, and deformation-dependent pressure magnitude. An
attack of the same class of axisymmetric problems by FEM would be much more complicated. However,
our method is restricted by the strong assumption of axial symmetry. It may be possible to extend it
for more realistic nonaxisymmetric scenarios by using Fourier decomposition and considering the modal
response to sinusoidal loading (see, for example, [Givoli and Libai 1995]). However, it may well be the
case that for such problems one should resort to FEM.
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CONICAL INDENTATION OF THICK ELASTIC SPHERICAL SHELLS

NKEM OGBONNA AND ALAN NEEDLEMAN

Indentation of spherical shells by a rigid conical indenter is analyzed. Because the shape change as-
sociated with overall bending provides a main deviation from the corresponding indentation behavior
of a half-space, finite deformation analyses are carried out. The shell material is characterized by a
hypoelastic relation that reduces to isotropic linear elasticity for small strains and is an elastic relation at
finite strains for fixed principal directions. Axisymmetric deformations are assumed. For indentation of
shells there is a complex interaction between the indentation response and the overall structural response
of the shell. The aim of the analyses is to give insight into the range of indentation depths for which
the indentation response dominates so that an indentation analysis can be used to extract the elastic
properties. Shells having various thicknesses are analyzed. It is found that for spherical shells with
thickness to radius ratios less than or equal to 0.4 and for sufficiently shallow indentation depths, the
scaling of the indentation load with contact area has the same form as that for indentation into a half-
space but with a different scaling constant.

1. Introduction

Indentation is a convenient method for investigating the mechanical properties of solids that are difficult
to characterize by other mechanical testing methods. It is relatively nondestructive and is routinely used
to measure the elastic stiffness and hardness of a wide variety of solids at a variety of scales; see, for
example, [Doerner and Nix 1986; Oliver and Pharr 1992; Oliver and Pharr 2004]. Indentation has also
been explored for determining the yield strength and strain hardening index of thin films [Cheng and
Cheng 1998; Ma et al. 1998].

An indentation test is typically performed on a flat surface of a solid. An indenter of prescribed
geometry is pressed into the solid under prescribed load and the depth of penetration and/or the size of
the contact are measured. For depth-sensing indentation tests, the mechanical properties are determined
directly from load and displacement measurement. Various indenter profiles are used: the most common
ones include a cone (Rockwell test), a sphere (Brinell test), a rectangular pyramid (Vickers test) and a
triangular pyramid (Berkovich test).

Much is known about indentation of solids, particularly elastic and elastic-plastic solids [Johnson
1985; Barber and Ciavarella 2000]. For indentation of a conical indenter into an isotropic linear elastic
solid that can be appropriately idealized as being a half space, there is no characteristic dimension other
than the indentation depth. Hence, from dimensional considerations,

P
Eh2 = K ,

Keywords: indentation, elasticity, spherical shells, finite element modeling.
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where P is the indentation force, E is Young’s modulus, h is the indentation depth and K is a constant.
The value of K depends on the shape of the cone cross section, the cone angle and Poisson’s ratio, and
can be determined from the solution of an elasticity problem. With K known, measuring the indentation
force and depth enables E to be directly determined. A recent comprehensive overview of indentation
into a planar linear elastic solid has been given in [Poon et al. 2008]. Much of the interest in indentation
of linear elastic solids has been associated with characterizing the unloading response of elastic-plastic
solids that have been indented [Oliver and Pharr 2004].

Some solids, such as natural and biological materials, may not have flat surfaces available for inden-
tation. For example, the outer surface of the human eye is dome-shaped and, in order to determine intra-
ocular pressure, doctors usually subject it to an indentation test using an instrument called a tonometer.
The growing interest in natural materials, which often involve shell-type structures, as potential renewable
resources for high performance and cost effective structural applications provides another motivation for
examining the indentation behavior of solids with curved surfaces.

There is a literature on the deformation of thin elastic shells subject to point type loads that can give
rise to complex deformation patterns; see for example [Vaziri and Mahadevan 2008]. However, the
focus here is on relatively thick shells for which the deformation pattern remains axisymmetric when
subject to conical indentation. We also neglect any effect of adhesion which can play an important
role in contact of elastic solids as shown in [Johnson et al. 1971]. In this paper, we explore the extent
to which simple scaling relations can be used to extract elastic moduli of isotropic elastic solids from
indentation of spherical shells by a rigid conical indenter. In particular, we consider indentation of a rigid
conical indenter with a circular cross-section into a thick walled isotropic linear elastic spherical shell.
Indentation of a cone into a solid sphere has been considered in [Fu 2007]. A fundamental difference
between indentation of a cone into a half space and its indentation into a spherical shell is that for the
shell geometry there are characteristic lengths other than the indentation depth h. For a spherical shell
with internal radius Ri and external radius Ro,

P
Eh2 = C

(
h
Ri
,

Ri

Ro

)
,

so that extracting the value of Young’s modulus E from a measurement of indentation force and depth is
not necessarily as straightforward as for a half space. Although our interest is in linear elastic material
response, we carry out finite deformation analyses because for shells a main deviation from linearity is
associated with a change in shape due to bending.

2. Problem formulation

The problem we analyze is indentation of a linear elastic spherical shell by a rigid conical indenter
allowing for the possibility of finite shape changes. The finite element implementation is based on
a convected coordinate Lagrangian formulation of the field equations, with the initial unstressed state
taken as reference. All field quantities are taken to be functions of convected coordinates, yi , which
serve as particle labels, and time, t . With attention confined to quasi-static deformations and with body
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forces neglected, the rate form of the principal of virtual work is∫
V
[τ̇ i jδEi j + τ

i j u̇k
,iδuk, j ] dV =

∫
S

Ṫ iδui d S. (2-1)

Here, V and S are the volume and surface, respectively, of the body in the reference configuration
and (˙) = ∂()/∂t at fixed yi . The contravariant components of the Kirchhoff stress, τ i j , are given by
τ i j
= Jσ i j , where J is the ratio of current to reference volume of a material element and σ i j are the

contravariant components of the Cauchy (or true) stress on the deformed convected coordinate net.
The nominal traction components, T i , and the Lagrangian strain components, Ei j , are given by

T i
= (τ i j

+ τ k j ui
,k)ν j , (2-2)

Ei j =
1
2(ui, j + u j,i + uk

,i uk, j ), (2-3)

where u j are the components of the displacement vector on base vectors in the reference configuration,
( ),i denotes covariant differentiation in the reference frame and ν j are the surface normal components
in the reference configuration.

The material is described by a constitutive relation of the form

τ̂ i j
= L i jkl Ėkl, (2-4)

where τ̂ i j is the Jaumann derivative of the Kirchhoff stress and

L i jkl
=

E
1+ ν

[
1
2

(
Gik G jl

+Gil G jk)
+

1
1− 2ν

Gi j Gkl
]
, (2-5)

with Gi j being the contravariant components of the metric tensor in the current configuration. The
relation in (2-4) and (2-5) is a hypoelastic relation but does reduce to isotropic linear elasticity for small
strains and is an elastic relation at finite strains for fixed principal directions.

Figure 1 is a sketch of the indenter and the definition of the angle β. The contact radius a is defined as
the actual contact radius accounting for sink in. The corresponding indentation depth h is then defined
by

h = a tanβ (2-6)

The spherical shell has internal radius Ri and external radius Ro so that the shell thickness is t = Ro−Ri .
Axisymmetric deformations are assumed. Figure 2 shows the region analyzed and finite element mesh
used for a shell with t/Ro = 0.4.

Figure 1. A sketch of the indenter geometry.
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y
1

y
2

Figure 2. The finite element mesh for a spherical shell with t/Ro = 0.4. Each quadri-
lateral consists of four “crossed” triangular linear displacement elements. Left: the full
mesh. Right: the fine mesh region.

Perfect sticking is assumed as soon as the shell comes into contact with the indenter, so that the rate
boundary conditions are

u̇1 = 0 u̇2 =−U̇ on Scontact, (2-7)

where Scontact denotes the portion of the shell surface in contact with the indenter and U is the imposed
displacement of the rigid indenter. Note that U is not equal to h as defined here where h is the depth
associated with the contact radius. Initially, Scontact is the single point y1

= 0, y2
= Ro. As additional

points come into contact, Scontact expands.
The symmetry conditions on the y2

−axis are

u̇1 = 0 Ṫ 2
= 0 on y1

= 0. (2-8)

Symmetry is also assumed about the y1
−axis so that

u̇2 = 0 Ṫ 1
= 0 on y2

= 0, (2-9)

and the remaining external surfaces are traction free so that Ṫ 1
= Ṫ 2

= 0.
The finite element discretization of (2-1) is based on linear displacement triangles arranged into

“crossed” triangle quadrilaterals and the deformation history is calculated in an incremental manner.
Calculations are carried out for four values of the thickness to radius ratio, t/Ro, 0.1, 0.2, 0.4 and
0.6. Different finite element meshes are used for each value of t/Ro. For t/Ro = 0.6, a 155× 220
quadrilateral mesh is used with a uniform 100×100 quadrilateral mesh in a region t/Ro = 0.1×1θ = 9◦

near the indenter. Here, R =
√
(y1)2+ (y2)2 and θ = tan−1(y2/y1). This mesh has 34100 quadrilaterals

and 68592 degrees of freedom after static condensation is used to eliminate the central node in each
quadrilateral. The mesh for t/Ro = 0.4, shown in Figure 2, has 140× 220 quadrilaterals, giving 62322
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degrees of freedom after static condensation and the uniform mesh is 80×100 in a t/Ro = 0.1×1θ = 9◦

region near the indenter. The corresponding values for t/Ro = 0.2 are 100× 220, 44642 and an 80× 100
uniform mesh in a t/Ro = 0.1×1θ = 9◦ uniform region and for t/Ro = 0.1, 100× 200, 40602 and an
90× 100 uniform mesh in a t/Ro = 0.15×1θ = 9◦ uniform region.

3. Results

For indentation of a rigid conical indenter into a flat surface we have (see [Sneddon 1948; Johnson 1985])

P
Ea2 =

π

2
1

(1− ν2)
tanβ. (3-1)

Alternatively, expressed in terms of the contact depth h = a tanβ,

P
Eh2 =

π

2
1

(1− ν2)

1
tanβ

=
π

2
1

(1− ν2)
cotβ. (3-2)

The relation (3-2) is sometimes expressed in terms of the displacement of the rigid indenter, here termed
U , for example in [Poon et al. 2008]. For indentation of a rigid cone into a linear elastic half-space
h = (2/π)U ; see [Bower et al. 1993], for example.

With β = 20◦, (3-2) gives P/(Eh2) = 4.74. A finite element calculation using the formulation in
Section 2 but for indentation into a flat surface gave P/(Eh2)= 4.90.

For spherical shells, calculations were carried out for t/Ro = 0.1, 0.2, 0.4, 0.6. In all calculations,
Poisson’s ratio ν, was taken to be 0.3 and, unless otherwise stated, the indenter angle β is fixed at 20◦.
The calculations were carried out for prescribed increasing displacement U .

The relation between h and U for the spherical shells analyzed is shown in Figure 3. For U/Ro

sufficiently small, the half-space relation provides an accurate characterization and for h/Ro = 0.4 and

U/R
o

h
/R

o

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

t/R
o
=0.1

t/R
o
=0.2

t/R
o
=0.4

t/R
o
=0.6

half­space

Figure 3. Variation of the indentation depth h associated with the current contact radius
a versus the displacement of the rigid indenter U .
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Figure 4. Variation of normalized contact force P/E R2
o (left) and normalized contact

pressure P/Eh2 with the change in shell thickness under the indenter (i.e., at y1
= 0)

for spherical shells with t/Ro = 0.1, 0.2, 0.4, 0.6.

0.6 that relation is approximately satisfied up about U/Ro = 0.02. For U/Ro greater than about 0.02
there are significant deviations with the deviation increasing with decreasing shell thickness.

Curves of contact force normalized by Young’s modulus E and the outer sphere radius Ro, P/E R2
o ,

plotted against 1t/t , are shown in Figure 4. The quantity 1t/t is the change in thickness divided by the
original thickness of the shell at y1

= 0 and is convenient for representing the indentation depth. There
is a clear dependence of the indentation force on the shell thickness, with the thinner shells requiring a
smaller contact force for a given indentation depth. The indentation force at a given value of 1t/t does
not quite scale with t2; for example, at 1t/t = 0.08, the indentation force with t/Ro = 0.6 is 7.8 times
that for t/Ro = 0.2 and 30.4 times that for t/Ro = 0.1.

However, when the contact depth h = a tanβ is used to normalize the indentation force there is a range
where the value of P/Eh2 is nearly the same for all four values of the shell thickness. The oscillations
are a numerical artifact due to the contact radius increasing by an element length when a new node
comes into contact with the indenter whereas the contact force increases smoothly. When only a few
nodes are in contact with the indenter, the contact area is too small for an accurate value of P/Eh2 to be
obtained. A finer finite element mesh would permit accurate values of P/Eh2 to be obtained for smaller
indentation depths 1t/t . At larger values of indentation depth, a reasonably accurate estimate of P/Eh2

can be obtained. For example, 1t/t = 0.035, the value of P/Eh2 lies between 5.9 and 6.1 for all four
values of t/Ro. The mean value of P/Eh2 for t/Ro = 0.1 and 0.2 is 5.9. The mean values of P/Eh2

are a bit higher and, furthermore, clearly increase with increasing indentation depth for 1t/t greater
than about 0.05. The value of normalized contact force, P/Eh2, for the spherical shells is significantly
greater than for indentation into a flat surface for the same material and the same indenter angle, ≈ 6
versus the numerically obtained value of 4.9 for indentation of a flat surface.

The dependence of the indentation pressure on the angle β is shown in Figure 5 for a spherical shell
having t/Ro = 0.4. The evolution of the normalized contact force P/Eh2 is plotted against the contact
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Figure 5. Variation of normalized contact pressure, P/Eh2, with indenter angle β for
spherical shells with t/Ro = 0.4.

depth as measured by 1t/t . For β = 30◦, the mean value of P/Eh2 is 3.8, for β = 20◦ it is 5.9
and for β = 10◦ it is about 12. For the most flat cone geometry, β = 10◦, the mean value of P/Eh2

increases with 1t/t over the entire range for which a reliable estimate of P/Eh2 can be obtained. This
is not surprising since in the limit of a flat surface pressing against a spherical shell, the deformation is
dominated by overall shell bending. Nevertheless, for all three values of β, the dependence of P/Eh2

on tanβ follows the scaling in (3-2). The ratio cot 30◦/ cot 20◦ equals 0.631, while the corresponding
ratio of normalized contact force in Figure 5 is 0.644. Even for β = 10◦ we have cot 10◦/ cot 20◦ = 2.06,
while 12/5.9= 2.03.

Distributions of mean normal stress τ k
k /3, where τ k

k = Gkmτ
km , normalized by Young’s modulus E ,

are shown in Figure 6 for t/Ro = 0.6 and 0.2. These plots also show the deformed shape of the spherical
shells at 1t/t = 0.1. The mean normal stress is negative and a significant fraction of Young’s modulus
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Figure 6. Contours of τ k
k /3E at 1t/t = 0.1 for shells with t/Ro = 0.6 and t/Ro = 0.2.
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Figure 7. Contours of τ k
k /3E at 1t/t = 0.1 in the vicinity of the indentation for the

two cases shown in Figure 6: shells with t/Ro = 0.6 (left) and t/Ro = 0.2 (right).

E directly under the indenter. In fact, the stress is singular at the indenter tip and the peak value obtained
there depends on the finite element discretization. In both cases, the values of τ k

k are positive in a vicinity
near y1

= 0, y2
= Ri and in a vicinity near y1

= Ro, y2
= 0 which are indications of bending of the

spherical shell. As can also be seen in the figure, the inner surface of the initially spherical shell does not
quite remain spherical. The overall bending of the spherical shell gives rise to the deviation of P/Eh2

from its value for indentation into a flat surface.
The distributions of τ k

k /3E for these two cases in the vicinity of the indenter are shown in the bottom
row in Figure 7. Near the indenter these distributions are very similar to those for indentation into a flat
surface.

4. Concluding remarks

We have carried out finite deformation analyses of indentation of a rigid cone into linear elastic (actually
linear hypoelastic) spherical shells. Our results indicate that if the indenter is not too flat and if the shell is
not too thick, say t/Ro ≤ 0.4, there is a regime of indentation depths where the scaling of the normalized
contact force is of the same form as that for a flat surface. Hence, for isotropic elastic spherical shells in
this regime we can write

P
Sh2 = C cotβ or

P
Sa2 = C tanβ, (4-1)

with S = E/(1− ν2) and C ≈ 2 as opposed to π/2≈ 1.57 for indentation into a flat surface, as in (3-1)
and (3-2). Our results suggest that if the actual contact area (a = h cotβ) can be measured accurately,
indentation into elastic shells may be able to be used to obtain the material’s elastic stiffness even though
the load is not a “pure” indentation load but also includes the effects of overall shell deformation.

For a spherical shell with t/Ro ≤ 0.4, we find that C in (4-1) is only weakly dependent on the shell
thickness. For a sufficiently thin spherical shell a complex non-axisymmetric deformation pattern, for
example as discussed in [Vaziri and Mahadevan 2008], occurs and our axisymmetric analysis is no longer
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applicable. This lower limit for the applicability of (4-1) cannot be ascertained by an axisymmetric
analysis as carried out here. However, in the range where the scaling relation in (4-1) is applicable, a
relatively good estimate of the elastic stiffness can be obtained without carrying out a finite element
analysis. It is of interest to learn whether or not such simple scaling relations can be used to obtain an
estimate of elastic stiffness for shells in more general circumstances than considered here.
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PROPAGATION OF WAVES IN AN INCOMPRESSIBLE TRANSVERSELY
ISOTROPIC ELASTIC SOLID WITH INITIAL STRESS: BIOT REVISITED

RAY W. OGDEN AND BALJEET SINGH

In this paper, the general constitutive equation for a transversely isotropic hyperelastic solid in the pres-
ence of initial stress is derived, based on the theory of invariants. In the general finite deformation case
for a compressible material this requires 18 invariants (17 for an incompressible material). The equa-
tions governing infinitesimal motions superimposed on a finite deformation are then used in conjunction
with the constitutive law to examine the propagation of both homogeneous plane waves and, with the
restriction to two dimensions, Rayleigh surface waves. For this purpose we consider incompressible
materials and a restricted set of invariants that is sufficient to capture both the effects of initial stress and
transverse isotropy. Moreover, the equations are specialized to the undeformed configuration in order to
compare with the classical formulation of Biot. One feature of the general theory is that the speeds of
homogeneous plane waves and surface waves depend nonlinearly on the initial stress, in contrast to the
situation of the more specialized isotropic and orthotropic theories of Biot. The speeds of (homogeneous
plane) shear waves and Rayleigh waves in an incompressible material are obtained and the significant
differences from Biot’s results for both isotropic and transversely isotropic materials are highlighted with
calculations based on a specific form of strain-energy function.

1. Introduction

Initial stresses in solids have an important influence on the mechanical response of the material from an
initially stressed configuration. Applications range from geophysics to the components of engineering
structures and the behavior of soft biological tissues. The term initial stresses embraces situations in
which the stress is accompanied by finite deformation from an unstressed configuration, in which case
the term pre-stresses is commonly used, as, for example, in [Ieşan 1989], and situations in which the
initial stress arises from some other process, such as manufacturing or growth, and is present in the
absence of applied loads. In this latter case the initial stress is referred to as residual stress according to
the definition of [Hoger 1985].

In the present paper we are concerned with the effect of initial stress on the propagation of small
amplitude (linearized) elastic waves. A static theory of initial stress was developed long ago by Biot
[1939]. He then extended it to wave propagation problems [1940]; this work is summarized in [Biot
1965]. In [Biot 1940] he states: “No assumption is made on how the initial state of stress is produced” —
he requires only that it satisfy the equilibrium equations. Biot’s theory has since formed the basis of
many contributions to the literature, particularly in the geophysical context; see, for example, [Tolstoy
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theory.
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1982] and the more recent [Dey and De 1999; Sharma and Garg 2006]. The latter was concerned with
an initially stressed anisotropic material and further references can be found therein. In the context of
modern continuum theory, however, Biot’s formulation of the equations is not straightforward, and part
of the purpose of the present work is to show how Biot’s formulation fits into a more general and more
transparent framework.

Surface waves in elastic solids were first studied by Lord Rayleigh [1885] for an isotropic elastic
solid. The extension of surface wave analysis and other wave propagation problems to anisotropic
elastic materials has been the subject of many studies; see, for example, [Musgrave 1959; Anderson
1961; Stoneley 1963; Chadwick and Smith 1977; Royer and Dieulesaint 1984; Barnett and Lothe 1985;
Mozhaev 1995; Nair and Sotiropoulos 1997; 1999; Destrade 2001a; 2001b; Destrade et al. 2002; Ting
2002a; 2002c; 2002b; Destrade 2003; Ogden and Vinh 2004]. For problems involving surface waves in
a finitely deformed pre-stressed elastic solid (strain-induced anisotropy) we refer to [Hayes and Rivlin
1961; Flavin 1963; Chadwick and Jarvis 1979; Dowaikh and Ogden 1990; 1991; Norris and Sinha 1995
(concerning a solid/fluid interface); Chadwick 1997; Prikazchikov and Rogerson 2004 (concerning pre-
stressed transversely isotropic solids); Destrade et al. 2005; Edmondson and Fu 2009]; see also [Song and
Fu 2007]. As representatives of other works concerning waves in initially stressed elastic solids we cite
[Norris 1983] on plane waves, the review [Guz 2002] and the analysis [Akbarov and Guz 2004] of waves
in circular cylinders. Here we shall study the effect of initial stress on the propagation of surface waves
based on a general formulation of the constitutive law of an elastic material that would be transversely
isotropic in the absence of initial stress.

In Section 2, the equations governing small amplitude waves in a deformed transversely isotropic elas-
tic solid with initial stress are derived, both for compressible and incompressible materials, the transverse
isotropy being associated with a preferred direction in the initially stressed reference configuration. The
constitutive law of the material is based on a strain-energy function (defined per unit reference volume)
which depends on the combined invariants of the right Cauchy–Green deformation tensor, the initial
stress tensor and the preferred direction. For a compressible material there are 18 such independent
invariants in the general three-dimensional case, a number which reduces to 17 for an incompressible
material. Expressions for the Cauchy stress and nominal stress tensors and the elasticity tensor are given
in general forms but, because the large number of invariants makes the theory unwieldy in general, their
forms are made explicit only for a restricted number of invariants, and attention is then confined largely
to incompressible materials with seven invariants.

In Section 3, the equations of motion are specialized in order to study the effect of initial stress on
the wave speed of homogeneous plane waves. It is noted, in particular, that the wave speed depends in a
nonlinear fashion on the initial stress. In order to make contact with Biot’s theory and to see how it sits
within the general framework considered here, we give, in Appendix B, a derivation of Biot’s equations,
their connection with the equations herein, and a formula for the relation between the components of the
elasticity tensor used here (which depend nonlinearly on the initial stress) and the components of Biot’s
elasticity tensor. In Section 4, the theory is specialized to two-dimensional motions (for incompressible
materials) and then applied, in Section 5, to the study of Rayleigh waves in a half-space subject to initial
stress parallel to its boundary with the preferred direction of transverse isotropy either parallel or normal
to the boundary. The secular equation is derived and then specialized to give corresponding results for
Biot’s isotropic and orthotropic theories. The final section, Section 6, provides numerical results that



PROPAGATION OF WAVES IN AN INCOMPRESSIBLE TRANSVERSELY ISOTROPIC ELASTIC SOLID 455

show the significant differences between the predictions of the general theory and of Biot’s theory, and
some concluding discussion is contained therein.

2. Equations of motion

We consider an elastic body whose initial geometry defines a reference configuration, which we denote by
Br . In this configuration the body is in equilibrium and may in general be subject to a stress distribution,
and we denote the Cauchy stress in Br by T . If there is a body force br per unit mass acting then the
equation of equilibrium is

Div T C �r br D 0; (1)

where �r is the mass density of the material in Br and Div is the divergence operator in Br , i.e., with
respect to position vector X in Br . If the traction on the boundary @Br of Br vanishes pointwise then
T is referred to as a residual stress, and it is necessarily non-uniform [Hoger 1985; Ogden 2003]. If
the traction is not zero then we refer to T as an initial stress or pre-stress, and in general this may be
accompanied by some prior deformation required to reach the configuration Br from an unstressed state.
Here we shall not be concerned with how the initial stress is produced.

A motion of the body from Br may be described by a function � so that the current position x of the
material point initially at X is given by x D �.X ; t/, where t is time. The deformation gradient tensor,
denoted F , is given by F D Grad�.X ; t/, where Grad is the gradient operator in Br . Let B be the
configuration occupied by the body at time t .

The constitutive law of an elastic material may be described in terms of a strain-energy function, which
is a function of F and defined per unit volume in Br . We denote this by W .F /, but note that in general
W depends also on the initial stress T and on implicit material symmetries, which are suppressed for the
present. Let S denote the nominal stress tensor in the configuration B. Then, for a material not subject
to any internal mechanical constraints S is given by

S D
@W

@F
: (2)

For an incompressible material the constraint

det F D 1 (3)

is enforced and (2) is modified to

S D
@W

@F
�pF �1; (4)

where p is a Lagrange multiplier associated with the constraint.
The motion � is governed by the equation

Div S C �r bD �r x;t t ; (5)

where b is the body force acting in the current configuration, which may in general be different from
br , and a subscript t following a comma signifies the material time derivative, i.e., the time derivative at
fixed X , so that x;t is the particle velocity and x;t t the acceleration.
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Although this is not strictly necessary, we now assume, for simplicity, that the body force is uniform
and independent of the deformation. Then, bD br and we get from (1) and (5)

Div.S �T /D �r x;t t : (6)

Now consider a finitely deformed equilibrium configuration B0 defined by �0.X/ and let F0 be the
deformation gradient in this configuration and S0 the corresponding nominal stress. Then, Div.S0 �

T / D 0. Next, we consider an incremental motion from this latter configuration with displacement
Px D �.X ; t/��0.X/, and corresponding increment PF D Grad Px D F �F0 in the deformation gradient.
Let PS D S �S0 denote the increment in the nominal stress. Then,

Div PS D �r Px;t t : (7)

For a compressible material the linearized form of PS is

PS DA PF ; PS˛i DA˛iˇj
PFjˇ; (8)

while for an incompressible material

PS DA PF CpF �1 PF F �1
� PpF �1; (9)

where Pp is the increment in p and A is the elasticity tensor, which, for either a compressible or an
incompressible material, is defined by

AD
@2W

@F @F
; A˛iˇj D

@2W

@Fi˛@Fjˇ

DAˇj˛i ; (10)

evaluated in the configuration B0. The convention that Greek indices refer to the configuration Br and
Roman indices to B0 is adopted here. The linearized incompressibility condition is

tr. PF F �1
0 /D 0: (11)

For details of the background on the theory of incremental deformations superimposed on a finite defor-
mation we refer to [Ogden 1984; 2007], for example.

It is convenient to work with B0 as the reference configuration, which requires that all quantities are
updated, i.e., pushed forward, from Br to B0 and incremental quantities are treated as functions of x

and t . In particular, we define the Eulerian form of the displacement vector by u.x; t/ D Px.X ; t/ via
the connection x D �0.X/. The updated forms of the incremental constitutive laws (8) and (9) are,
respectively,

PS0 DA0L; PS0pi DA0piqj Ljq; (12)

and
PS0 DA0LCpL� PpI ; (13)

where L D grad u is the displacement gradient, I is the identity tensor and a subscript 0 indicates a
pushed forward quantity. In particular,

J0A0piqj D F0p˛F0qˇA˛iˇj ; (14)
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where J0 D det F0 D �r=�0 and �0 is the density in B0. For an incompressible material J0 D 1 and
�0 D �r . The (linearized) incremental form of the incompressibility constraint (11) is then expressed as

tr L� div uD 0: (15)

For a compressible material, the (Cartesian) component form of the equation of motion is

.A0piqj uj ;q/;p D �0ui;t t ; (16)

and for an incompressible material

.A0piqj uj ;q/;p � Pp;i Cp;j uj ;i D �r ui;t t ; with ui;i D 0: (17)

Note that as well as possessing the major symmetry A0piqj D A0qjpi induced by (10), A has the
property

A0piqj C ıjp�0iq DA0ipqj C ıij�0pq (18)

for a compressible material, and

A0piqj C ıjp.�0iqCpıiq/DA0ipqj C ıij .�0pqCpıpq/ (19)

for an incompressible material, where �0ij are the components of the Cauchy stress tensor �0 in B0.
These are easily established by considering the symmetry of Cauchy stress expressed in the form FS D

S TF T, taking the increment of this and then updating the reference configuration to B0 to obtain

PS0CL�0 D
PS T
0 C �0LT: (20)

Suppose now that the material is homogeneous. This requires, in particular, that the initial stress T is
uniform. We recall, however, that a residual stress cannot be uniform [Hoger 1985; Ogden 2003], so the
following analysis does not apply if the initial stress is a residual stress. Suppose further that �0.X/ is a
homogeneous deformation. Then, the configuration B0 is uniform and hence A, A0 and p are constant,
and the equations of motion (16) and (17) reduce to

A0piqj uj ;pq D �0ui;t t (21)

and
A0piqj uj ;pq � Pp;i D �r ui;t t ; ui;i D 0; (22)

respectively.
In general A, and hence A0, depends on the deformation through F , on the initial stress T and on any

material symmetry present in the configuration Br . Here we consider a transversely isotropic material
with preferred direction M in Br , where M is a unit vector. To make the dependence of A (and A0)
on these quantities explicit we consider the scalar invariants of the tensors involved.

2.1. Invariant formulation. By objectivity, the dependence of the strain-energy function W on F is
through the right Cauchy–Green tensor C , which is defined by C D F TF , and we therefore consider
W to depend on the invariants of the three tensors C , T and M ˝M since the material properties are
assumed to be independent of the sense of M .
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The invariants of C most commonly used are the principal invariants, defined by

I1 D tr C ; I2 D
1
2
Œ.tr C /2� tr.C 2/�; I3 D det C : (23)

The (anisotropic) invariants associated with M and C are usually taken as

I4 DM � .CM /; I5 DM � .C 2M /: (24)

The notation I1; : : : ; I5 is fairly standard for these invariants; see, for example, [Merodio and Ogden
2002; 2003]. In the reference configuration Br these reduce to I1 D I2 D 3, I3 D I4 D I5 D 1. A set of
independent invariants of T that do not involve M may be taken as

tr T ; tr.T 2/; tr.T 3/; tr.TC /; tr.TC 2/; tr.T 2C /; tr.T 2C 2/; (25)

invariants of T independent of C as

M � .TM /; M � .T 2M /; (26)

and invariants depending on C ;M and T as

M � .TCM /; M � .TC 2M /; M � .T 2CM /; M � .T 2C 2M /: (27)

These are the only independent invariants, 18 in total. For an incompressible material we have I3 D 1

and hence there are 17 independent invariants in this case. In the reference configuration Br the fourth,
fifth, sixth and seventh invariants in (25) and the invariants (27) reduce to the first two in (25) and the
two in (26). For full discussion of the relevant background on invariants of tensors we refer to [Adkins
1960; Spencer 1971; Zheng 1994]. A set of invariants equivalent to the above has been used by [Hoger
1993a; 1996]. For related work concerned with the constitutive equations and material symmetry for a
residually stressed elastic material we refer to [Coleman and Noll 1964; Hoger 1986; 1993b; Man and
Lu 1987; Johnson and Hoger 1993; Man 1998; Saravanan 2008; Tanuma and Man 2008].

We have not for the moment defined particular notation for the invariants (25)–(27). In the general
case suppose there are N invariants, which we denote by Ii ; i D 1; 2; : : : ;N . Then, the expressions for
the stress and elasticity tensors require the calculation of

@W

@F
D

NX
iD1

Wi
@Ii

@F
(28)

and

@2W

@F @F
D

NX
iD1

Wi
@2Ii

@F @F
C

NX
iD1

NX
jD1

Wij
@Ii

@F
˝
@Ij

@F
; (29)

where we have used the shorthand notations Wi D @W =@Ii ; Wij D @
2W =@Ii@Ij ; i; j D 1; 2; : : : ;N .

Such a large number of invariants is impractical for applications, so for simplicity we restrict atten-
tion to incompressible materials and to the following invariants, which capture the main features of the
combined anisotropy and initial stress. In particular, we omit invariants that are nonlinear in T . Thus,
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we consider

I1 D tr C ; I4 DM � .CM /; I5 DM � .C 2M /; (30)

I6 D tr.TC /; I7 D tr.TC 2/; I8 DM � .TCM /; I9 DM � .TC 2M /, (31)

which identify the invariants I6; I7; I8; I9, while the standard notation I1; I4; I5 is retained and, since
we are considering incompressible materials, I3 � 1. We may also include tr T and M � .TM / in the
functional dependence of W since they do not depend on C and hence their derivatives with respect to
F do not contribute to the stress or elasticity tensors. In the following we give explicit expressions for
the stress tensors and the elasticity tensor based on this restricted set of invariants.

2.2. Stress tensors. The strain-energy function W is now taken to depend on the seven deformation-
dependent invariants I1; I4; : : : ; I9 together (possibly) with tr T and M � .TM /. For the considered
incompressible material we have

S D
@W

@F
�pF �1

D

X
1�i�9
i¤2;3

Wi
@Ii

@F
�pF �1; (32)

and the corresponding Cauchy stress is

� D F
@W

@F
�pI D

X
1�i�9
i¤2;3

WiF
@Ii

@F
�pI ; (33)

where Wi D @W =@Ii ; i D 1; 4; : : : ; 9. The required expressions for @Ii=@F are listed for convenience
in Appendix A in component form. These enable the Cauchy stress to be expanded as

� D�pI C 2W1B C 2W4m˝mC 2W5.m˝BmCBm˝m/

C 2W6†C 2W7.B†C†B/CW8.F TM ˝mCm˝F TM /

CW9.F TM ˝BmCBm˝F TM CFCTM ˝mCm˝FCTM /; (34)

where mD FM , † D F TF T and B D FF T is the left Cauchy–Green deformation tensor.
In the reference configuration Br the Cauchy stress must be equal to the initial stress. Thus, when

(34) is evaluated in Br , we obtain

T D .2W1�p/I C 2.W4C 2W5/M ˝M C 2.W6C 2W7/T

C .W8C 2W9/.TM ˝M CM ˝TM /; (35)

where W1;W4; : : : ;W9 are evaluated in the reference configuration, where F D I , and may in general
depend on tr T and M � .TM /. For consistency it is therefore appropriate to set

p D 2W1; W4C 2W5 D 0; W6C 2W7 D
1
2
; W8C 2W9 D 0; (36)

in the reference configuration. Indeed, if (35) holds for all possible T then these conditions necessarily
follow.
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2.3. The elasticity tensor. Next, we note that the elasticity tensor A is given by

AD
@2W

@F @F
D

X
1�i�9
i¤2;3

Wi
@2Ii

@F @F
C

X
1�i�9
i¤2;3

X
1�j�9
j¤2;3

Wij
@Ii

@F
˝
@Ij

@F
: (37)

This requires expressions for the second derivatives of the invariants. In component form these are given
in Appendix A. Since the resulting formula for the components of A is quite long we do not give it
here. Instead, we give its specialization to the situation in which there is no finite deformation and B0

coincides with Br . The subscript 0 on A0 may now be omitted, and taking account of the conditions
(36) prevailing in the reference configuration the components of A in the reference configuration can be
arranged in the (still fairly lengthy) form

Apiqj D 2W1ıijıpqC 2W5.ıij MpMqC ıpqMiMj C ıiqMj MpC ıjpMiMq/C ıij Tpq

C 2W7.ıij TpqC ıpqTij C ıiqTjpC ıjpTiq/CW9Œıij .MpTqr CMqTpr /

C ıpq.MiTjr CMj Tir /C ıiq.Mj Tpr CMpTjr /C ıjp.MiTqr CMqTir /�Mr

C 4W11ıipıjqC 4.W44C 4W45C 4W55/MiMj MpMq

C 4.W14C 2W15/.ıipMj MqC ıjqMiMp/C 4.W16C 2W17/.ıipTjqC ıjqTip/

C 2.W18C 2W19/Œıip.Mj Tqr CMqTjr /C ıjq.MiTpr CMpTir /�Mr

C 4.W46C 2W47C 2W56C 4W57/.MiMpTjqCMj MqTip/

C 2.W48C 2W49C 2W58C 4W59/.Tir Mj MpMqCTjr MiMpMq

CTpr MiMj MqCTqr MiMj Mp/Mr C 4.W66C 4W67C 4W77/TipTjq

C 2.W68C 2W69C 2W78C 4W79/ŒTip.Tqr Mj CTjr Mq/CTjq.Tpr Mi CTir Mp/�Mr

C .W88C 4W89C 4W99/.MiTpr CMpTir /.Mj TqsCMqTjs/Mr Ms; (38)

all the derivatives of W being evaluated in Br . With the restricted set of invariants adopted these depend
in general on tr T and M � .TM /. Note that when (38) is substituted into the equation of motion all the
terms involving ıjp or ıjq disappear by virtue of the incompressibility condition.

We now consider three special cases that will be used subsequently: (1) the underlying material is
isotropic; (2) TM D 0; (3) T D T M ˝M .

Case 1: Isotropy. If there is no preferred direction in Br and in the absence of initial stress the material
is isotropic then in the presence of initial stress (38) reduces simply to

Apiqj D 2W1ıijıpqC ıij TpqC 2W7.ıij TpqC ıpqTij C ıiqTjpC ıjpTiq/C 4W11ıipıjq

C 4.W16C 2W17/.ıipTjqC ıjqTip/C 4.W66C 4W67C 4W77/TipTjqI (39)

that is, all terms in which W has a subscript 4, 5, 8 or 9 are omitted.

Case 2: TM D 0. In this case all the terms in (38) in which W has a subscript 8 or 9 vanish and (38)
reduces to



PROPAGATION OF WAVES IN AN INCOMPRESSIBLE TRANSVERSELY ISOTROPIC ELASTIC SOLID 461

Apiqj D 2W1ıijıpqC 2W5.ıij MpMqC ıpqMiMj C ıiqMj MpC ıjpMiMq/C ıij Tpq

C 2W7.ıij TpqC ıpqTij C ıiqTjpC ıjpTiq/C 4W11ıipıjq

C 4.W44C 4W45C 4W55/MiMj MpMqC 4.W14C 2W15/.ıipMj MqC ıjqMiMp/

C 4.W16C 2W17/.ıipTjqC ıjqTip/C 4.W46C 2W47C 2W56

C 4W57/.MiMpTjqCMj MqTip/C 4.W66C 4W67C 4W77/TipTjq:

We note, in particular, the connections

Aijji DAjiij DAijij � .2W1CTii/DAjiji � .2W1CTjj /; i ¤ j ; (40)

Ajijj DAijjj �Tij ; i ¤ j ; Aijjk DAijkj �Tik ; (41)

where i; j ; k are distinct.

Case 3: T D T M ˝M . In this case the components of A have a relatively simple structure and can
be written compactly as

Apiqj D 2W1ıijıpqC 4W11ıipıjqCA.ıij MpMqC ıpqMiMj C ıiqMj MpC ıjpMiMq/

CB.ıipMj MqC ıjqMiMp/CCMiMj MpMqCT ıij MpMq; (42)

where

AD 2 ŒW5CT .W7CW9/�; (43)

B D 4 ŒW14C2W15CT .W16C2W17/CT 2.W18C2W19/�; (44)

C D 4 ŒW44C4W45C4W55CT .W46C2W47CW48C2W49C2W56C 4W57C2W58C4W59/

CT 2.W66C4W67C4W77CW68C2W69C2W78C4W79CW88C4W89C4W99/�: (45)

It is noteworthy that in each of the three cases the components Apiqj are quadratic in the components
of the initial stress even though we have not included in the model invariants that are nonlinear in the
initial stress.

3. Homogeneous plane waves

With the focus on incompressible materials we now apply the equation of motion and the incompress-
ibility condition in (22) to the analysis of homogeneous plane waves. In particular, we consider the
incremental displacement u and Lagrange multiplier Pp to have the forms

uD f .n �x� vt/d ; Pp D g.n �x� vt/; (46)

where d is a constant unit (polarization) vector, the unit vector n is the direction of propagation of the
plane wave, v is the wave speed, f is a function that need not be made explicit, but is subject to the
restriction f 00 ¤ 0, and g is a function related to f . A prime on f or g indicates differentiation with
respect to its argument.

Substitution of (46) into (22) then yields

ŒQ.n/d � �v2d �f 00�g0nD 0; d �nD 0; (47)
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where the (symmetric) acoustic tensor Q.n/ is defined by

Qij .n/DApiqj npnq: (48)

On taking the dot product of (47)1 with n we obtain g0 D ŒQ.n/d � �nf 00, and on substituting back into
(47)1 and eliminating the factor f 00 we may arrange the resulting propagation condition in the form

ŒQ.n/�n˝Q.n/n�d D �v2d ; (49)

or equivalently as
NQ.n/d D �v2d ; (50)

where NQ.n/ is the projection of Q.n/ on to the plane normal to n defined by

NQ.n/D NIQ.n/ NI ; (51)

where NI D I �n˝n. The symmetrization (51) was originally derived in [Scott and Hayes 1985]. Thus,
NQ.n/ is symmetric and the two-dimensional eigenvalue problem (50) (in the plane normal to n) therefore

has two real solutions for �v2. The wave speeds are real if the two eigenvalues are positive, and this is
guaranteed if the strong ellipticity condition holds. This is expressed as

Œ NQ.n/d � �d > 0 for all nonzero vectors d and n such that d �nD 0: (52)

For given n and d the wave speed v is obtained from

�v2
D Œ NQ.n/d � �d D ŒQ.n/d � �d : (53)

As a first application we consider Case 1 in Section 2.3. Then we obtain

NQ.n/D Œ2W1C .2W7C 1/.Tn/ �n� NI C 2W7
NT C 2.W66C 4W67C 4W77/ NITn˝ NITn; (54)

where NT D NIT NI is the projection of T on to the plane normal to n. The wave speed is then easily
calculated from (53). For illustration we consider the initial stress to be uniaxial and along the x1 axis
with T11DT . Then, if we consider motion in the .x1;x2/ plane with n1D cos � , n2D sin � , d1D� sin � ,
d2 D cos � , we obtain

�v2
D 2W1C 2W7T CT cos2 � C .W66C 4W67C 4W77/T

2 sin2 2�: (55)

Clearly, except for the angles � D 0 and � D �=2 the squared wave speed depends quadratically (at least)
on the initial stress T , bearing in mind that in general the coefficients W1;W7;W66; : : : could depend
on T . If all the invariants had been included in W then the nonlinearity would be quartic (at least). This
is in contrast to the predictions of Biot’s theory, and we now make contact with that for comparison. For
this purpose we have provided in Appendix B a derivation of the connection between the general theory
used here and Biot’s theory. If we denote by Bijkl the material constants used in Biot’s theory then,
from Appendix B, we have

Aijkl DBijkl �
1
2
ıilTjk �

1
2
ıikTjl �

1
2
ıjkTil C

1
2
ıjlTik C ıklTij : (56)

For the present special problem the relevant Bijkl components are given by

B1111 D ��T; B2222 D �; B1122 D���T; B2211 D��; B1212 D �; (57)
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where � > 0 is the shear modulus. It follows that

A1111 D ��T; A2222 D �D�A1122; A1212 D �C
1
2
T; A2121 D ��

1
2
T DA1221: (58)

The wave speed in this case is then given by

�v2
D �� 1

2
T CT cos2 �: (59)

Clearly, this result can be recovered from (55) if we take 2W1 D �, W7 D �
1
4

(and hence, by (36)3,
W6 D 1), and W66 C 4W67 C 4W77 D 0. The individual components in (58) are recovered from the
general expression (39) by also setting W11 D 0 and W16C 2W17 D 0 in (39), except that we obtain
A1122 D 0 instead of �� and A1221 D �T=2 instead of �� T=2. However, this difference is of no
consequence since the sum of these two terms is the same in each case and it is only their sum, as the
coefficient of 2d1d2n1n2, that contributes to the expression for �v2 in (53). In fact, because of the
incompressibility constraint, there is an intrinsic non-uniqueness in the components Aijkl (and hence
in Bijkl ) since a term of the form p�ıilıjk C q�ıijıkl may be added to Aijkl , where p� and q� are
arbitrary scalars, possibly dependent on tr T and M �.TM / in the general case. The term in q� disappears
from the incremental constitutive relation by incompressibility and the term in p� vanishes identically
in the incremental equation of motion, again by incompressibility.

As a second example we consider Case 3 in Section 2.3, for which we obtain

NQ.n/D Œ2W1C .ACT /.M �n/2� NI C ŒACC.M �n/2� NM ˝ NM ; (60)

where NM D NIM , and hence from (53) we obtain

�v2
D 2W1C .ACT /.M �n/2C ŒACC.M �n/2�.M �d/2: (61)

Let us take, for illustration, M to be along the x1 axis with the same d and n as in the previous example,
so the motion is confined to the .x1;x2/ plane. Then

�v2
D 2W1CACT cos2 � CC sin2 � cos2 �; (62)

where A and C are given by (43) and (45), respectively. We note, in particular, that C is quadratic in T .
Again we compare with the corresponding formula from Biot’s theory, which involves two material

constants N and Q for this (two-dimensional orthotropic) situation, for which we obtain

A1111 DN �T; A2222 DN D�A1122; A1212 DQC 1
2
T; A2121 DQ� 1

2
T DA1221; (63)

and hence
�v2
DQ� 1

2
T CT cos2 � C 4.N �Q/ sin2 � cos2 �: (64)

This can be obtained from (62) by setting

2W1 DN; 2W1C 2W5 DQ; W7 D�
1
4
; (65)

C � 4.W44C 4W45C 4W55/D 4.N �Q/; (66)

and all the other derivatives of W to zero. The case of isotropy is recovered by taking N DQD �.
Case 2 produces very similar results when the motion is again restricted to the .x1;x2/ plane. If we

take M now to be aligned along the x2 axis and T as before then we obtain

�v2
D 2W1CA0CT cos2 � CC 0 sin2 � cos2 �: (67)
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Compared with (62) A0 is obtained from A in (43) by omitting the term in W9, while C 0 is given by

C 0D 4 ŒW44C4W45C4W55�2T .W46C2W47C2W56C4W57/C T 2.W66C4W67C4W77/�; (68)

which differs from C in (45).
For each of the cases considered above, the appropriate specialization of the strong ellipticity condition

(52) requires �v2 > 0, and conditions on the material parameters and the initial stress for this to be
satisfied for all angles � may be inferred. For example, from (67), if T D 0 then necessary and sufficient
conditions for �v2 > 0 are W1CW5 > 0 and 2W1C 2W5CW44C 4W45C 4W55 > 0. On the other
hand, if T ¤ 0 then restrictions are imposed on the permissible range of values of T . For example, by
considering � D �=2 and � D 0, we deduce that 2W1CA0 > 0 and 2W1CA0C T > 0, respectively,
are necessary conditions for �v2 > 0, but to obtain necessary and sufficient conditions for �v2 > 0 for
all � requires consideration of several possible cases, depending on the signs of the material coefficients
W7; W46; W66; : : : , and since this is algebraically lengthy the details are omitted.

4. Equations governing two-dimensional motions

In this section we restrict attention to two-dimensional motions of incompressible materials. Specifically,
we consider motions in the .x1;x2/ plane with displacement components uD .u1;u2; 0/, where u1 and
u2 depend only on x1;x2 and t . The two in-plane components of the equations of motion (14) are

Ap1qj uj ;pq � Pp;1 D �u1;t t ; Ap2qj uj ;pq � Pp;2 D �u2;t t ; (69)

where the summation is over indices 1 and 2. In general, the third component of the equations of motion
should also be considered; here this has the form Ap3qj uj ;pq � Pp;3 D 0. However, henceforth we
specialize the form of T and the orientation of M so that this reduces to Pp;3 D 0, i.e., Pp depends only on
x1;x2 and t . In particular, we take the .x1;x2/ plane to be a principal plane of T , with M either lying
parallel to the .x1;x2/ plane or aligned with the x3 direction. Then, it is easy to show that Ap3qj uj ;pq

vanishes identically.
Elimination of Pp by cross differentiation in (69) yields

Ap1qj uj ;pq2�Ap2qj uj ;pq1 D �.u1;2t t �u2;1t t /: (70)

By incompressibility we can introduce a scalar function  such that

u1 D  ;2; u2 D� ;1; (71)

and substitution into (70) then yields an equation for  , namely

A1212 ;1111C 2.A1222�A1211/ ;1112C .A1111CA2222� 2A1122� 2A1221/ ;1122

C 2.A1121�A2221/ ;1222CA2121 ;2222 D �. ;11t t C ;22t t /: (72)

We now apply these equations to Cases 2 and 3 specialized to the .x1;x2/ plane for T D T e1˝ e1,
with M D e2 (Case 2) and M D e1 (Case 3).

Case 2: T D T e1˝ e1 and M D e2. In this case (72) reduces to

.aCT / ;1111C .2aCT C b/ ;1122C a ;2222 D �. ;11t t C ;22t t /; (73)
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where

aDA1212�T DA2121 D 2W1CA0 D 2W1C 2W5C 2T W7; (74)

b DA1111CA2222� 2A1122� 2A1221�A1212�A2121 D C 0

D 4.W44C4W45C4W55/�8T .W46C2W47C2W56C4W57/C4T 2.W66C4W67C4W77/: (75)

Case 3: T D T e1˝ e1 and M D e1. Similarly to the previous case, (72) reduces to

.˛CT / ;1111C .2˛CT Cˇ/ ;1122C˛ ;2222 D �. ;11t t C ;22t t /; (76)

where

˛ DA1212�T DA2121 D 2W1CAD 2W1C 2W5C 2T W7C 2T W9; (77)

ˇ DA1111CA2222� 2A1122� 2A1221�A1212�A2121 D C

D 4 ŒW44C 4W45C 4W55CT .W46C 2W47C 2W56C 4W57CW48C 4W49C 2W58C 4W59/

CT 2.W66C 4W67C 4W77CW68C 2W69C 2W78C 4W79CW88C 4W89C 4W99/�: (78)

If we compare the coefficients of Case 2 and Case 3, it may be remarked that ˛ D a C 2T W9,
while ˇ and b differ significantly, although their structures and the equations are very similar. If there
is no initial stress then T D 0 and the two sets of equations are the same except that I4 and I5 will
be different for the two cases because the directions of M are different. If there is initial stress but
no preferred direction (underlying isotropy) then all the derivatives of W with a subscript 4, 5, 8 or 9
vanish and the two equations are identical, with coefficients reducing to a D ˛ D 2W1C 2T W7 and
b D ˇ D 4T 2.W66C 4W67C 4W77/.

5. Rayleigh surface waves

We now consider a half-space occupying the region x2 < 0 in the reference configuration with boundary
x2D 0 and surface waves propagating along the direction x1. The initial stress and preferred direction are
confined to the .x1;x2/ plane so that the equations of motion (69) are applicable and the third equation
is again satisfied trivially. Furthermore, we take the initial stress to have the form T D T e1˝ e1. Then
the components A1112, A1121, A2212, A2221 all vanish, as for Cases 2 and 3 in Section 4, and the
equations simplify accordingly. On the surface we take the incremental surface traction to vanish, so that
PS021 D 0; PS022 D 0 on x2 D 0. For the considered incompressible material this yields

A2121u1;2C .A2112Cp/u2;1 D 0; A2211u1;1C .A2222Cp/u2;2� Pp D 0 on x2 D 0; (79)

and with u1 D  ;2 and u2 D� ;1 these boundary conditions become

A2121 ;22� .A2112Cp/ ;11 D 0; A2211 ;12� .A2222Cp/ ;12� Pp D 0 on x2 D 0: (80)

The second of these equations may be expressed in terms of  by differentiating with respect to x1 and
then using (69)1, appropriately specialized, to eliminate Pp;1. The result is

.A1111CA2222� 2A1122� 2A2112CA2121/ ;112CA2121 ;222 D � ;2t t : (81)
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The two boundary conditions can now be written compactly as

a. ;22� ;11/D 0; .3aC bCT / ;112C a ;222 D � ;2t t on x2 D 0: (82)

These apply for Case 2. The corresponding equations for Case 3 are obtained by replacing a and b by ˛
and ˇ, respectively. Thus, in the following we work with the parameters a and b.

We consider harmonic waves propagating in the x1 direction and we write  in the form

 .x1;x2; t/D �.z/ expŒik.x1� vt/�; (83)

where k is the wave number, v is the wave speed, z D kx2, and the function � is to be determined.
Substituting this into the equation of motion (73) we obtain

a�0000� .2aC bCT � �v2/�00C .aCT � �v2/� D 0; (84)

wherein and in the following equations a prime on � denotes differentiation with respect to z. In terms
of � the boundary conditions (82) become

�00.0/C�.0/D 0; a�000.0/� .3aC bCT � �v2/�0.0/D 0: (85)

The factor a has been omitted from the first of these equations on the assumption that a¤ 0. For the
solution of (84) we require the decay condition �.x2/! 0 as x2!�1 to hold, and the general solution
satisfying this condition is

�.z/D c1 exp.s1z/C c2 exp.s2z/; (86)

where c1 and c2 are constants and s1; s2 are the solutions of

as4
� .2aC bCT � �v2/s2

C .aCT � �v2/D 0 (87)

with positive real parts. From the latter it follows that

s2
1 C s2

2 D
2aC bCT � �v2

a
; s2

1s2
2 D

aCT � �v2

a
: (88)

If s2
1

and s2
2

are real, then they must be positive to ensure that s1 and s2 have positive real part. If they
are complex then they are conjugate. In either case the product s2

1
s2
2

must be positive. Assuming that
a> 0, a real (surface) wave speed v satisfies the inequality

0< �v2 < aCT: (89)

Note that if T � 0 then this cannot be satisfied unless a> 0, which requires W1CW5CT W7 > 0. In
Biot’s theory, for example, this, in conjunction with (89), yields �2Q< T < 2Q.

Substitution of the solution (86) into the boundary conditions (85) yields the equations

.1C s2
1
/c1C .1C s2

2
/c2 D 0; (90)

Œas3
1
� .3aC bCT � �v2/s1�c1C Œas3

2
� .3aC bCT � �v2/s2�c2 D 0: (91)

In order to construct a nontrivial solution of this system, corresponding to vanishing of the determinant
of coefficients, it is convenient to introduce the notations

NT D
T

a
; � D

�v2

a
; Nb D

b

a
; �D

p
1C NT � �; (92)



PROPAGATION OF WAVES IN AN INCOMPRESSIBLE TRANSVERSELY ISOTROPIC ELASTIC SOLID 467

and then we obtain the cubic equation

�3
C �2

C .3C Nb/�� 1D 0 (93)

for �. Once this is solved for (positive) � the wave speed is obtained from the formula

�v2
D a� D aCT � a�2: (94)

The inequalities satisfied by � corresponding to (89) are 0< � <
p

1C NT .
Note that (93) can be written as

.4C NbC NT � �/�C NT � � D 0: (95)

If T D 0 then this can only be satisfied for � > 0 if � < 4C Nb, and hence we must have 4C Nb > 0 in this
case. If T ¤ 0 then since, by definition, �� 0, (95) can only be satisfied if either

NT < � < 4C NbC NT ; (96)

which requires 4C Nb > 0, or
4C NbC NT < � < NT ; (97)

which requires 4C Nb < 0, or the transitional case

� D NT ; (98)

which, since then �D 1, corresponds to 4C Nb D 0. Note that (96) can hold for either positive or negative
T provided 4C NbC NT > 0, but (97) and (98) are only possible if T > 0.

If we denote the function on the left-hand side of (93) by f .�/ and note that f .0/D�1 and f 00.�/ > 0

for �� 0 we see that (93) has a unique positive solution for � 2 .0;
p

1C NT � if f .
p

1C NT /� 0. If T D 0

then this is guaranteed if 4C Nb > 0, and if this inequality holds a unique positive solution also exists for
T > 0 (subject to a > 0). On the other hand, if T < 0 then there is a value NT0 of NT with �1 < NT0 < 0

such that a unique positive solution exists only for NT > NT0. The value of NT0 is determined as the value
of NT satisfying f .

p
1C NT / D 0, bearing in mind that in general Nb depends on T . The exact details

depend in a fairly complicated way on the form of the strain-energy function W and are not discussed
here. Instead we illustrate the results using a specific form of W in the following section.

6. Numerical results and discussion

We remain focused on Case 2 in order to compare the results of the general theory with those of the
Biot theory for both anisotropic and isotropic models. In particular, we compare the wave speeds for
both plane (shear) waves and Rayleigh waves. In each case this involves the initial stress T and material
parameters a and b, which also depend on T . For the general constitutive law considered in Case 2 we
record here the expressions for a and b from Section 4 for ease of reference:

aD 2W1C 2W5C 2T W7; (99)

b D 4.W44C4W45C4W55/�8T .W46C2W47C2W56C4W57/C4T 2.W66C4W67C4W77/: (100)

If the second derivative terms in W involving a subscript 6 or 7 are identically zero then these reduce to

aD 2W1C 2W5C 2T W7; b D 4.W44C 4W45C 4W55/; (101)
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which can be specialized to Biot’s anisotropic case by setting W7 D�
1
4

, 2W1C 2W5 DQ and W44C

4W45 C 4W55 D N �Q in terms of Biot’s constants N and Q. Finally, the case of isotropy is then
recovered by also dropping terms with a subscript 4 or 5, yielding

aD 2W1C 2T W7; b D 0; (102)

and Biot’s case is obtained by setting 2W1 D � and W7 D�
1
4

, where � is the shear modulus.
For plane waves in the .x1;x2/ plane the wave speed v is given by

�v2
D aCT cos2 � C b sin2 � cos2 �; (103)

while the corresponding formula for the Rayleigh wave speed is

�v2
D aCT � a�2; (104)

where � is the unique positive solution of the equation

�3
C �2

C .3C b=a/�� 1D 0; 0< � <
p

1CT=a: (105)

In order to capture the effect of the T 2 term in b, which provides the main distinction from the classical
theory, it suffices for purposes of illustration to consider a specific form of the strain-energy function W .
In the absence of initial stress an incompressible transversely isotropic linear elastic solid is characterized
in terms of three elastic constants. Thus, for the transversely isotropic part of W three material constants
are needed. The connections between the derivatives of W with respect to the invariants I1; I2; I4 and I5

evaluated in the undeformed configuration and the three classical constants were provided in [Merodio
and Ogden 2005] and can be specialized to the present situation in which I2 is omitted. We denote the
transversely isotropic constants here by �, � and � and consider a transversely isotropic strain-energy
function of the form

W D 1
2
�.I1� 3/C 1

2
�.I4� I5/

2
� 2�.I4� 1/C �.I5� 1/; (106)

which consists of an isotropic neo-Hookean term with constant � and two anisotropic terms associated
with the preferred direction and involving two anisotropic constants � and �. The condition W4C2W5D 0

identified in (36) is then satisfied in the reference configuration Br , W45CW55 D 0 and W44 D �.
The initial stress is next incorporated in the model by introducing two additional material constants �

and 
 and the invariants I6 and I7, and ensuring that the condition W6C 2W7 D
1
2

in (36) is satisfied
in the configuration Br . A simple example of this inclusion, which we adopt here, extends (106) to the
form

W D 1
2
�.I1� 3/C 1

2
�.I4� I5/

2
� 2�.I4� 1/C �.I5� 1/C 1

2

I2

6 � 
 .tr T /I6

C.1
2
� 2�/I6C�I7C

1
2

 .tr T /2C .�� 1

2
/ tr T ; (107)

the final two terms being included merely to ensure that W vanishes in Br . They do not contribute to
the stress. The only nonzero derivatives of W when evaluated in Br are the first derivatives

W1 D
1
2
�; W4 D�2�; W5 D �; W6 D

1
2
� 2�; W7 D �; (108)
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and the second derivatives

W44 D �; W45 D��; W55 D �; W66 D 
: (109)

The expressions for a and b become

aD �C 2�C 2�T; b D 4.�C 
T 2/: (110)

Clearly, if �D�1
4

then the term in T within a has the same form as in the Biot theory. Inclusion of the
dimensionless constant � allows more flexibility in the model.

In what follows we present results in dimensionless form by defining the dimensionless quantities

� D �v2=�; a� D a=�; b� D b=�; �� D �=�; �� D �=�; 
 � D 
�; T � D T=�; (111)

and for consistency of notation for the constants we set �� D �.
Thus, for plane waves,

� D 1C 2��C 2��T �CT � cos2 � C 4.��C 
 �T �
2
/ sin2 � cos2 �: (112)

In Figure 1 we plot � as a function of T � for the values 0; �=6; �=4; �=3; �=2 of � and specifically
we take �� D 0:4, �� D 2:2, 
 � D 0:5. The results are qualitatively very similar for other values of these
parameters. The parameter �� has been set at �1

4
. By considering the values � D 0 and � D �=2 it can

be deduced from (112) that T � must be restricted to the range of values �2.1C2��/ < T � < 2.1C2��/.
Also in Figure 1 we show, for comparison, the results corresponding to �� D 0:4, �� D 2:2, 
 � D 0 (the
thick dashed lines — essentially the specialization to Biot’s anisotropic theory) and to �� D 0, �� D 0,
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Figure 1. Plot of dimensionless squared wave speed � D �v2=� against dimensionless
initial stress T � for � D 0 (a), �=6 (b), �=4 (c), �=3 (d), �=2 (e), based on (112): con-
tinuous curves for parameter values �� D 0:4, �� D 2:2, 
 � D 0:5; thick dashed lines
for �� D 0:4, �� D 2:2, 
 � D 0; thin dashed lines for �� D 0, �� D 0, 
 � D 0 (isotropy).
In each case �� D�1

4
. The horizontal dashed lines correspond to � D �=4.
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Figure 2. Dimensionless squared wave speed � D �v2=� versus the angle � 2 Œ0; �=2�,
based on (112), for �� D�1

4
and various values of the dimensionless initial stress T �.

Remaining parameter values are �� D 0:4, �� D 2:2, 
 � D 0:5 (solid curves); �� D 0:4,
�� D 2:2, 
 � D 0 (thick dashed curves); �� D 0, �� D 0, 
 � D 0 (thin dashed curves).


 � D 0 (the thin dashed lines — Biot’s isotropic theory). For � D 0 and � D �=2 there is no difference
between the two anisotropic models. For intermediate values of � there is a very significant difference
between the results for the general model and Biot’s anisotropic model due to the term in T �

2. Note that
in the isotropic case the wave speed vanishes for T � D˙2, which correspond to the extreme values of
T � identified previously.

An alternative view of the results is shown in Figure 2, in which � is plotted against the angle �
separately for four values of T �. For each value of T � the curves corresponding to the three models are
shown. Again the significant difference between the general model and Biot’s anisotropic model should
be noted, which is particularly strong for the larger values of T �.

The parameter �� also has a significant effect and we illustrate this in Figure 3 in which � is plotted
against T � for three different values of �� and for �� D 0:4; �� D 2:2; 
 � D 0:2 and � D �=3. Even
though the (nonlinear) strain-energy function (107) is a considerable specialization of the most general
such model it nevertheless demonstrates that the effect of initial stress on the speed of plane waves can
be much stronger than is the case with the classical Biot theory.

Next we illustrate the effect of the model (107) on the Rayleigh wave speed based on the solution of
(105), with � D �v2=� then given by (104). In Figure 4, � is plotted against T � for representative values
of the parameters (�� D 0:4, �� D 2:2, 
 � D 0:5) and two values of ��: �0:15 and �0:3. In each case
the dependence on T � is effectively linear, and this is found also to be the case even when the coefficient

 � of T �

2 is quite large. Also shown for comparison are the specializations corresponding to Biot’s
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Figure 3. Dimensionless squared wave speed � D �v2=� versus T �, based on (112),
for � D �=3, �� D 0:4, �� D 2:2, 
 � D 0:2 and different values of ��.
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Figure 4. Dimensionless squared Rayleigh wave speed � D �v2=� versus T �, based on
(104) and (105), for different values of ��. Remaining parameter values are �� D 0:4,
�� D 2:2, 
 � D 0:5 (solid lines); �� D 0:4, �� D 2:2, 
 � D 0 (dashed line); �� D 0,
�� D 0, 
 � D 0 (dotted line).

anisotropic and isotropic results, for which, respectively, the parameter values are taken as �� D 0:4,
�� D 2:2, 
 � D 0, �� D�0:25 and �� D 0, �� D 0, 
 � D 0, �� D�0:25.

In the isotropic case we have

� D 1C 1
2
T �� .1� 1

2
T �/�2

0; (113)

where �0 is the unique positive root of (105) when b D 0 and is given approximately as �0 D 0:2956.
As noted earlier, a positive real upper limit for � requires that 1C T �=a� > 0, and for isotropy this
gives �2 < T � < 2. The upper limit corresponds to � D 2, as can be seen in the figure, and this is a
cut-off value beyond which a Rayleigh surface wave cannot propagate. At the lower limit � < 0 and
there is also a cut-off value of T �, approximately �1:679. These limiting values of T � are associated
with the onset of instability of the underlying initially stressed configuration. For a related discussion of
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Figure 5. Dimensionless squared Rayleigh wave speed � D �v2=� versus the parameter
�� for various values of T �, with �� D 2:2, 
 � D 0, and �� D 0:15 (solid lines) or
�� D�0:25 (dashed lines).

such instability in the case of a pre-stressed (and deformed) half-space we refer to [Dowaikh and Ogden
1990]. Analogous cut-off values of T � are evident also for the anisotropic models.

As a further illustration of the influence of the parameter ��, Figure 5 shows � plotted as a function of
the parameter �� for each of the initial stress values T �D�2; 0; 2 and for the set of parameters ��D 2:2,

 � D 0, �� D 0:15 compared with results for the set �� D 2:2, 
 � D 0, �� D�0:25. Clearly, �� has a
significant effect on the value of the wave speed (except, of course, for T �D 0). Thus, as is the case with
plane waves, the initial stress dependence of the nonlinear model (107) can have a strong influence on
the value of the Rayleigh wave speed compared with its classical linear specialization. Moreover, other
specific choices of the nonlinear model within the general framework outlined here can equally and even
more substantially affect the wave speed, when, for example, invariants that are nonlinear in the initial
stress are included in the form of W .

In this paper we have developed a general theory of transversely isotropic hyperelasticity incorporating
initial stress and used a particular specialization of the theory to calculate the elasticity tensor for an unde-
formed initially stressed configuration. This was then used to examine the propagation of homogeneous
plane waves and Rayleigh surface waves with particular reference to the effect of the initial stress. The
results, which involve nonlinear terms in the initial stress, are significantly different from those based on
the classical theory of Biot, which can be recovered as a special case of the present formulation.

Appendix A. Derivatives of the invariants

First derivatives. The first derivatives of the invariants I1; I4; : : : ; I9 with respect to F are obtained, in
component form, as

@I1

@Fi˛
D 2Fi˛;

@I4

@Fi˛
D 2M˛FiˇMˇ;

@I5

@Fi˛
D 2.M˛FiˇCˇ
 CC˛ˇMˇFi
 /M
 ;

@I6

@Fi˛
D 2T˛ˇFiˇ;

@I7

@Fi˛
D 2.T˛ˇCˇ
 CC˛ˇTˇ
 /Fi
 ;
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@I8

@Fi˛
D .T˛ˇMˇFi
 CM˛FiˇTˇ
 /M
 ;

@I9

@Fi˛
D .T˛ˇMˇFi
C
ıCC˛ˇMˇFi
T
ıCM˛FiˇCˇ
T
ıCFiˇMˇC˛
T
ı/Mı:

When evaluated in the reference configuration these reduce to

@I1

@Fi˛
D 2ıi˛; 2

@I4

@Fi˛
D 4MiM˛ D

@I5

@Fi˛
; 2

@I6

@Fi˛
D 4Ti˛ D

@I7

@Fi˛
;

2
@I8

@Fi˛
D 2.MiT˛ˇCM˛Tiˇ/Mˇ D

@I9

@Fi˛
:

Since the latter apply in the reference configuration there is strictly no distinction between Greek and
Roman indices in this case.

Second derivatives. The second derivatives of the invariants I1; I4; : : : ; I9 with respect to F are, in
component form,

@2I1

@Fi˛@Fjˇ

D 2ıijı˛ˇ;
@2I4

@Fi˛@Fjˇ

D 2ıij M˛Mˇ;
@2I6

@Fi˛@Fjˇ

D 2ıij T˛ˇ;

@2I5

@Fi˛@Fjˇ

D 2ıij .M˛Cˇ
 CMˇC˛
 /M


C 2Bij M˛MˇC 2ı˛ˇFi
M
FjıMıC 2.FiˇFj
M˛CFj˛Fi
Mˇ/M
 ;

@2I7

@Fi˛@Fjˇ

D 2 Œıij .T˛
Cˇ
 CTˇ
C˛
 /CBij T˛ˇC ı˛ˇ†ij CFiˇFj
T˛
 CFj˛Fi
Tˇ
 �;

@2I8

@Fi˛@Fjˇ

D ıij .M˛Tˇ
 CMˇT˛
 /M
 ;

@2I9

@Fi˛@Fjˇ

D ıij .T˛
M
CˇıCTˇ
M
C˛ıCC˛
T
ıMˇCCˇ
T
ıM˛/Mı

C ı˛ˇ.Fi
T
ıFj"CFj
T
ıFi"/MıM"CBij .M˛Tˇ
 CT˛
Mˇ/M


C .M˛FiˇFj
 CMˇFj˛Fi
 /T
ıMıC .T˛
FiˇFjıCTˇ
Fj˛Fiı/M
Mı:

When evaluated in the reference configuration these specialize to

@2I1

@Fi˛@Fjˇ

D 2ıijı˛ˇ;
@2I4

@Fi˛@Fjˇ

D 2ıij M˛Mˇ;
@2I6

@Fi˛@Fjˇ

D 2ıij T˛ˇ;

@2I5

@Fi˛@Fjˇ

D 6ıij M˛MˇC 2.ı˛ˇMiMj C ıiˇMj M˛C ıj˛MiMˇ/;

@2I7

@Fi˛@Fjˇ

D 6ıij T˛ˇC 2.ı˛ˇTij C ıiˇTj˛C ıj˛Tiˇ/;

@2I8

@Fi˛@Fjˇ

D ıij .M˛Tˇ
 CMˇT˛
 /M
 ;
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@2I9

@Fi˛@Fjˇ

D 3ıij .M˛Tˇ
 CMˇT˛
 /M
 C ı˛ˇ.MiTj
 CMj Ti
 /M


C ıiˇ.M˛Tj
 CMj T˛
 /M
 C ıj˛.MiTˇ
 CMˇTi
 /M
 :

Appendix B. Connections with Biot’s equations

It is instructive to relate the formulation of the incremental equations adopted here to that of Biot (see,
for example, [Biot 1965] for details). For a compressible material, which we deal with here, the nominal
stress tensor S and Cauchy stress tensor � are related by S D JF �1� , where F is deformation gradient
and J D det F . On taking the increment of this equation we obtain

PS D JF �1
P� C PJF �1� CJ

P
F �1� D JF �1Œ P� C .tr L/� �L� �;

where LD grad u and u is the displacement vector. On updating the reference configuration from Br to
B0 we obtain

PS0 D P� C .tr L/� �L� :

Taking the divergence of both sides leads to

div PS0 D div P� C div Œ.tr L/� �L� �:

If the configuration B0 is uniform then we have

divŒ.tr L/� �L� �DLkk;j�ji �Ljk;j�ki DLkk;j�ji �Ljj ;k�ki D 0;

and the incremental equation of motion becomes

div PS0 � div P� D �u;t t :

Now, Biot works in terms of components referred to different sets of axes, in particular a set of
Cartesian axes and a set of axes obtained by rotation therefrom, with the rotation associated with the
incremental deformation. Let ei ; i D 1; 2; 3, be a Cartesian coordinate basis in B0, and let e0i ; i D 1; 2; 3,
be the axes obtained by the rotation. Then, e0i � ei CWei , where the tensor W is the antisymmetric
part of the displacement gradient L. After the increment the total Cauchy stress is � C P� , which has
components on the rotated axes given by, to the first order in incremental quantities,

Œ.� C P� /e0i � � e
0
j D Œ.� C P� /.ei CWei/� � .ej CWej /D �ij C P�ij C �ikWkj �Wik�kj ;

where the symmetry of � and the antisymmetry of W have been used, and �ij and Wij are their com-
ponents referred to the original axes (note that Wij here are not the same as the second derivatives of
the strain-energy function with respect to the invariants introduced in (29)). The component form of the
incremental equation of motion with uniform � therefore becomes

P�ji;j C �ikWkj ;j � �jkWik;j D �ui;t t :

This is translated into Biot’s notation [1965] by setting �ij D Sij , P�ij D sij and Wij D�!ij , and then
yields Biot’s equation

sij ;j CSjk!ik;j CSik!jk;j D �ui;t t
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appropriate for homogeneous Sij in the absence of body forces [Biot 1965, p. 264]. Biot’s constitutive
equation for incremental deformations may be written in the form P�ij D BijklLkl , where Lkl D uk;l

and
Bijkl DBjikl DBijlk :

Since Wij D .Lij �Lji/=2, it follows that

AijklLlk DBijklLlk �
1
2
.Lik CLki/�kj �

1
2
�ik.Lkj �Ljk/CLkk�ij ;

and since this holds for arbitrary Lij we deduce that

Aijkl DBijkl �
1
2
ıil�jk �

1
2
ıik�jl �

1
2
ıjk�il C

1
2
ıjl�ik C ıkl�ij :

This identity holds in the configuration B0 and when B0 is taken to coincide with Br the Cauchy stress
� becomes the initial stress T . Using the symmetry Aijkl DAklij , it follows that

Bijkl �Bklij D ıij�kl � ıkl�ij ;

which recovers a formula of Biot [1965, p. 71], albeit in different notation.
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VARIABLE-ORDER FINITE ELEMENTS FOR NONLINEAR,
FULLY INTRINSIC BEAM EQUATIONS

MAYURESH J. PATIL AND DEWEY H. HODGES

Fully intrinsic equations and boundary conditions involve only force, moment, velocity, and angular
velocity variables, but no displacement or rotation variables. This paper presents variable-order finite
elements for the geometrically exact, nonlinear, fully intrinsic equations for both nonrotating and rotating
beams. The finite element technique allows for hp-adaptivity. Results show that these finite elements
lead to very accurate solutions for the static equilibrium state as well as for modes and frequencies
for infinitesimal motions about that state. For the same number of variables, the accuracy of the finite
elements increases with the order of the finite element. The results based on the Galerkin approximation
(which is a special case of the present approach) are the most accurate but require evaluation of complex
integrals. Cubic elements are shown to provide a near optimal combination of accuracy and complexity.

1. Introduction

Beam-like structures are used in a wide range of applications, from rotor blades and high-aspect-ratio
wings to nanosensors. The displacement formulation of the geometrically exact equations of motion for
beams was presented in [Borri and Mantegazza 1985; Simo and Vu-Quoc 1988; Bauchau and Kang 1993].
A mixed formulation was presented in [Hodges 1990], which gave the partial differential equations of
motion in so-called intrinsic form, following the terminology of [Green and Laws 1966; Reissner 1973]
for beams and [Danielson 1970] for shells. Intrinsic equations are independent of the way displacement
and rotation are parametrized. In the mixed formulation of [Hodges 1990], the kinematical partial dif-
ferential equations relate the chosen displacement and rotation variables to the generalized strain and
velocity measures. It was later discovered that one can have the complete beam formulation of [Hodges
1990] without carrying displacement or rotation variables as unknowns. This approach may be inferred
from [Hegemier and Nair 1977] though exclusion of rotation variables was not mentioned therein; see
[Hodges 2009] for additional details of the pertinent history. As a result, the fully intrinsic, geometrically
exact partial differential equations of motion and kinematical partial differential equations were presented
in [Hodges 2003]. These fully intrinsic equations and boundary conditions involve only force, moment,
velocity and, angular velocity variables, with no displacement or rotation variables; see (1)–(6) below.

The goal of this paper is to present a variable-order finite element solution to the fully intrinsic equa-
tions. The research assumes that a suitable cross-sectional analysis is available for beams of arbitrary
geometry and material distribution. These cross-sectional properties can be calculated using an analytical
thin-walled theory [Volovoi and Hodges 2000; Patil and Johnson 2005] or computational FEM analysis

Presented at the 62nd Annual Forum and Technology Display of the American Helicopter Society International, Phoenix,
Arizona, May 9–11, 2006.
Keywords: nonlinear beam theory, nonlinear finite element, variable-order finite element, fully intrinsic.
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[Giavotto et al. 1983; Cesnik and Hodges 1997; Yu et al. 2002] for general configurations. Although the
work of [Volovoi and Hodges 2000] addresses both closed- and open-section beams, the present work
pertains only to closed-section beams. The beam formulation of [Hodges 1990; 2003] is not appropriate
for beams with open cross-section, which require a separate warping displacement variable and associated
boundary conditions [Simo and Vu-Quoc 1991; Yu et al. 2005]. The book [Hodges 2006] gives a more
comprehensive treatment for beams of all types.

Beam dynamics analysis can be broken up into five parts:

• Cross-sectional analysis to determine elastic constants and stress/strain recovery relations;

• Beam partial differential equations;

• Techniques for solving those equations (including discretization);

• Nonlinear model-order reduction schemes;

• Application to coupled-field problems such as aeroelasticity, active blades, and control design.

The focus of the present work is on the third item, that is, discretization and solution of the geometrically
exact, intrinsic beam equations.

Beam equations. There are a number of geometrically exact formulations for the nonlinear dynamics of
beams that can be used for analysis and design [Borri and Mantegazza 1985; Simo and Vu-Quoc 1988;
Bauchau and Kang 1993]. The present work is based on the “intrinsic” formulation developed in [Hodges
1990], which can be written in a simple matrix form with only second-degree nonlinearities. To say that
these equations are intrinsic is to say that they are independent of displacement and rotation measures.
They were used along with generalized strain- and velocity-displacement measures to solve for beam
dynamics, yielding excellent agreement with experimental results as given in [Hodges and Patil 2004].
Recently, a set of generalized strain-velocity compatibility relations were derived in [Hodges 2003] which,
along with the equations of motion, make up a complete set of intrinsic equations that can be solved
without using displacement/rotation measures for certain loading and boundary conditions. Although
they incorporate all the nonlinearities and anisotropic couplings, these equations are very simple.

Discrete equations of motion. The equations described above are partial differential equations in space
and time for 12 variables (force, moment, velocity, and angular velocity vectors). The solution of these
equations requires discretization in space to convert the equations to ordinary differential equations in
time. For example, one may use finite elements or a series of assumed functions. It is also possible to use
a combination of the two, where the order of the polynomials within the elements as well as the number
of elements both vary, leading to variable-order (or hp) finite elements [Gui and Babuška 1986].

A simple nonlinear finite element representation of the beam equations was presented in [Hodges
2003]. The FEM equations were used successfully to conduct nonlinear dynamic analysis and control
design of integrally actuated helicopter blades [Traugott et al. 2006] as well as the nonlinear aeroelas-
tic analysis of high-aspect-ratio flying wing configurations [Patil and Hodges 2006]. A new nonlinear,
energy-consistent, Galerkin approach has been developed recently and can be found in [Patil and Al-
thoff 2006]. The Galerkin approach leads to a highly accurate solution with a low computational cost.
The application of the nonlinear Galerkin approach is feasible because of the simplicity of the intrinsic
equations. Since the highest degree nonlinearity is quadratic, the Galerkin integrals can be evaluated
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exactly without resorting to numerical quadrature when the properties are uniform along the span. This
contributes to the method’s accuracy and efficiency.

The Galerkin approach leads to the exact nonlinear solution (to five decimal places) with as few as
10 assumed functions per variable. Also it is clear [Patil and Althoff 2006] from the slow convergence
of the low-order FEM approach, that one would require very large number of finite element nodes to
generate results with the same order of accuracy as those generated by the Galerkin approach using 10
functions per variable.

The nonlinear Galerkin approach leads to an approximate solution that is more accurate for a given
number of unknowns (or that has fewer unknowns for a given level of accuracy). This is especially
important if one needs to conduct numerous optimizations, simulations, and control scenarios. The
limitation of the Galerkin approach is the handling of discontinuities. Thus, when one has a complex
beam, such as a helicopter rotor blade with multiple changes in properties along the span, then it will
be more accurate to break the beam into multiple finite elements, to each of which one can apply the
Galerkin approach. This would lead to variable-order finite elements. It is the focus of this research to
develop a variable-order finite element scheme to optimally model future structures, including helicopter
blades and aircraft wings.

2. Nonlinear, intrinsic beam equations

The nonlinear, fully intrinsic governing equations for the dynamics of a nonuniform, initially curved and
twisted, anisotropic beam undergoing large deflections and rotations are given as

F ′+ (k̃+ κ̃)F + f= Ṗ + �̃P, (1)

M ′+ (k̃+ κ̃)M + (ẽ1+ γ̃ )F +m= Ḣ + �̃H + Ṽ P, (2)

V ′+ (k̃+ κ̃)V + (ẽ1+ γ̃ )�= γ̇ , (3)

�′+ (k̃+ κ̃)�= κ̇, (4)

where ( )′ denotes the partial derivative with respect to the axial coordinate of the undeformed beam, ˙( )
denotes the partial derivative with respect to time, z̃ is the skew-symmetric cross-product operator matrix
corresponding to the column matrix z, F(x, t) and M(x, t) are the measure numbers of the internal force
and moment vectors (cross-section stress resultants), P(x, t) and H(x, t) are the measure numbers of the
linear and angular momentum vector (generalized momenta), γ (x, t) and κ(x, t) are the beam strains and
curvatures (generalized strains), V (x, t) and �(x, t) are velocity and angular velocity measures (general-
ized velocities), and f(x, t) and m(x, t) are the external force and moment measures. Measure numbers of
all variables except for k are calculated in the deformed beam cross-sectional frame. The initial twist and
curvature of the beam are represented by k(x)= bk1(x) k2(x) k3(x)c, the measure numbers of which
are in the undeformed beam cross-sectional frame. Finally, e1 = b1 0 0cT . The first two equations in
the above set are the equations of motion [Hodges 1990] while the last two are the intrinsic kinematical
equations [Hodges 2003] derived from the generalized strain- and velocity-displacement equations.

The cross-sectional stress resultants of the beam are related to the generalized strains via the cross-
sectional stiffnesses or flexibilities. These cross-sectional properties can be calculated using an analytical
thin-walled theory [Volovoi and Hodges 2000; Patil and Johnson 2005] or computational FEM analysis
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[Cesnik and Hodges 1997; Yu et al. 2002] for a general configuration. Such an analysis gives the linear
constitutive law {

γ

κ

}
=

[
R S
ST T

]{
F
M

}
, (5)

where R(x), S(x), and T(x), are the cross-sectional flexibilities of the beam. This linear constitutive law
is valid only for small strain, but the beam deflections and rotations due to deformation still may be large.

The generalized momenta are related to the generalized velocities via the cross-sectional inertia matrix{
P
H

}
=

[
µ1 −µξ̃

µξ̃ I

]{
V
�

}
=

[
G K

KT I

]{
V
�

}
, (6)

where µ(x), ξ(x), I (x) are, respectively, the mass per unit length, the mass center offset (a vector in the
cross-section from the beam reference axis to the cross-sectional mass center), and the cross-sectional
inertia matrix consisting of mass moments of inertia per unit length on the diagonals, with I11 = I22+ I33,
plus the mass product of inertia per unit length I23.

Usually, the constitutive laws are used to replace some variables in terms of others. Here it was
decided to express the generalized strains in terms of the cross-section stress resultants, allowing easy
specification of zero flexibility, and the generalized momenta in terms of generalized velocities, allowing
easy specification of zero inertia. Thus, the primary variables of interest are F , M , V , and �.

Finally the boundary conditions need to be specified. For the given beam of length L, there will be
two boundary conditions at each end. In this paper we consider only primitive boundary conditions of
the form

V (0, t)= V0 or F(0, t)= F0, �(0, t)=�0 or M(0, t)=M0,

V (L, t)= VL or F(L, t)= FL, �(L, t)=�L or M(L, t)=ML,
(7)

Boundary conditions involving attached springs or bodies at the ends may be formulated in terms of fully
intrinsic variables as well.

For ease of presentation, we consider a beam clamped at its root. It should be noted that the formu-
lation as well as the conclusions presented are general enough to be applicable to all possible boundary
conditions [Sotoudeh and Hodges 2011]. Thus, the assumed boundary conditions are

V (0, t)= V0, �(0, t)=�0, F(L, t)= FL, M(L, t)=ML. (8)

These equations are intrinsic and do not contain displacement and rotation variables. To calculate the
displacements and rotations, the following equations, which relate the strains and curvatures to displace-
ments and rotations, are used:

(r + u)′ = Cdef(γ + e1), Cdef′
=−(κ̃ + k̃)Cdef, (9)

where r is the position vector of the beam axis from the origin of the reference frame, u is the dis-
placement, and Cdef is the rotation matrix of the deformed beam cross-sectional frame relative to the
undeformed beam cross-sectional frame.
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3. Energy-consistent weighting

Let us assume that the beam is discretized into n elements as shown in the figure. To create a finite
element model we need to choose trial functions as well as weighting functions.

x0 x1 x2 x3 xn−2 xn−1 xn

L1 L2 L3 Ln−1 Ln

Let the solution in the i-th element be given by V i , �i , F i , and M i . We require that it satisfy
(approximately) the equations of motion, the kinematic equations, and the boundary conditions given
above. We also require that continuity equations be satisfied (approximately) between adjacent elements:

V i (Li , t)= V i+1(0, t), �i (Li , t)=�i+1(0, t), F i (Li , t)= F i+1(0, t), M i (Li , t)= M i+1(0, t).

These continuity conditions will be modified for any node at which there is a concentrated mass, a rigid
body, a nodal force or moment, or a kink in the axis.

Now consider the following weighting of the equations of motion, kinematical equations, continuity
conditions, and boundary conditions:

n∑
i=1

〈∫ Li

0

{
V i T
[Ṗ i
+�̃i P i

−F i ′
−(k̃i
+ κ̃ i )F i

− f i
]+�i T

[Ḣ i
+�̃i H i

+ Ṽ i P i
−M i ′

−(k̃i
+ κ̃ i )M i

−(ẽ1+γ̃
i )F i
−mi
]+F i T

[γ̇ i
−V i ′

−(k̃i
+ κ̃ i )V i

−(ẽ1+γ̃
i )�i
]+M i T

[κ̇ i
−�i ′

−(k̃i
+ κ̃ i )�i

]
}

dx i
〉

+

n−1∑
i=1

〈
F i+1(0, t)[V i (Li , t)− V i+1(0, t)] +M i+1(0, t)[�i (Li , t)−�i+1(0, t)]

+V i (Li , t)[F i (Li , t)−F i+1(0, t)]+�i (Li , t)[M i (Li , t)−M i+1(0, t)]
〉
−F1(0, t)T [V 1(0, t)−V0

]

−M1(0, t)T [�1(0, t)−�0
] + V n(Ln, t)T [Fn(Ln, t)−FL

] +�n(Ln, t)T [Mn(Ln, t)−ML
] = 0.

Note that the constitutive equations are not included, as these equations are satisfied exactly. Since the
continuity conditions and the boundary conditions are satisfied weakly, we will not get exact satisfaction
of the boundary conditions and the variables will not be continuous at the nodes.

We are conducting a weighted residual above and thus there are no guarantees in terms of energy
conservation. Furthermore, we are adding the weighted residuals of various types of equations including
equations describing kinetics, kinematics, and continuity. But, if we appropriately choose the weighting
function (for each equation over space and relative to the other equations), energy conservation can result.
We know that the exact solution satisfies energy conservation, but by the correct choice of the weighting
functions we can maintain energy conservation in the reduced space. To prove energy conservation, we
integrate these weighted residual equation by parts and simplify to give

n∑
i=1

∫ Li

0
(V i T

Ṗ i
+�i T

Ḣ i )dx +
n∑

i=1

∫ Li

0
(F i T

γ̇ i
+M i T

κ̇ i )dx

=

n∑
i=1

∫ Li

0
(V i T

f i
+�i T

mi )dx + [V n(Ln, t)T FL
+�n(Ln, t)T ML

−F1(0, t)T V0
−M1(0, t)T�0

]. (10)
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The first term above is the rate of change of kinetic energy, and the second is the rate of change of
potential energy. The third is the rate of work done (power) due to applied forces in the interior of the
beam, and the fourth is the power due to applied forces at the boundaries. The equation states that the
rate of change of the energy of the beam is equal to the rate of work done on the beam. Thus, the above
weighting of all the equations leads to an energy balance, on the basis of which we derive the FEM
equations. It should be noted that energy conservation is not an approximation but is satisfied exactly.

4. Variable-order FEM

The independent trial functions used are the shifted Legendre polynomials [Abramowitz and Stegun
1964], denoted by P j(x̄), which constitute a complete set of polynomials that are orthogonal over the
shifted interval 0≤ x̄ ≤ 1, so that ∫ 1

0
P j(x̄)Pk(x̄)dx̄ =

δ jk

2i + 1
. (11)

These polynomials can be obtained from the recursive relations

P0(x̄)= 1, P1(x̄)= 2x̄ − 1, Pi+1(x̄)=
(2i + 1)(2x̄ − 1)Pi(x̄)− i Pi−1(x̄)

i + 1
. (12)

The use of orthogonality makes certain of the linear coefficient matrices diagonal.
Expanding all twelve variables in terms of these polynomials, one finds that the unknowns can be

written as

V i (x i , t)=
m∑

j=0

P j(x̄ i )v j,i (t), �i (x i , t)=
m∑

j=0

P j(x̄ i )ω j,i (t),

F i (x i , t)=
m∑

j=0

P j(x̄ i ) f j,i (t), M i (x i , t)=
m∑

j=0

P j(x̄ i )m j,i (t),

(13)

where x̄ i
= x i/Li , and v j,i , ω j,i , f j,i , and f j,i are column matrices of the unknowns of the formulation,

corresponding to the i-th element and j-th order. With i = 1, 2, . . . , n and j = 0, 1, . . . ,m, we have a
total of 12(m+ 1)n variables.

The FEM equations for the i-th element can be derived based on the energy-conserving integral equa-
tion (10) as∫ Li

0
Pk
[(Gi P j v̇ j,i

+Ki P j ω̇ j,i )+ P̃lωl,i (Gi P jv j,i
+Ki P jω j,i )−P j ′ f j,i

− (k̃i
+

˜Si T Pl f l,i + ˜Ti Plml,i )P j f j,i
− f i
]dx i
+Pk(1)[P j(1) f j,i

−P j(0) f j,i+1
] = 0, (14)∫ Li

0
Pk
[(Ki T

P j v̇ j,i
+I i P j ω̇ j,i )+P̃lωl,i (Ki T

P jv j,i
+I i P jω j,i )+P̃lvl,i (Gi P jv j,i

+Ki P jω j,i )−P j ′m j,i

− (k̃i
+

˜Si T Pl f l,i + ˜Ti Plml,i )P j m j,i
− (ẽ1+ R̃i Pl f l,i + ˜Si Plml,i )P j f j,i

−mi
]dx i

+Pk(1)[P j(1)m j,i
−P j(0)m j,i+1

] = 0, (15)
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0
Pk
[(Ri P j ḟ j,i

+Si P j ṁ j,i )−P j ′v j,i
− (k̃i

+
˜Si T Pl f l,i + ˜Ti Plml,i )P jv j,i

− (ẽ1+ R̃i Pl f l,i + ˜Si Plml,i )P jω j,i
]dx i
+Pk(0)[P j(1)v j,i−1

−P j(0)v j,i
] = 0, (16)∫ Li

0
Pk
[(Si T

P j ḟ j,i
+Ti P j ṁ j,i )−P j ′ω j,i

− (k̃i
+

˜Si T Pl f l,i + ˜Ti Plml,i )P jω j,i
]dx i

+Pk(0)[P j(1)ω j,i−1
−P j(0)ω j,i

] = 0. (17)

In these equations Ri , Si , and Ti are the cross-sectional flexibility coefficients for the i-th element, Gi ,
Ki , I i are the cross-sectional inertia coefficients for the i-th element, ki is the initial curvature for the i-th
element, and f i and mi define the loading for the i-th element. In the equations, summation is assumed
over indices j and l. Thus we have a set of equation for each i (element) and k (order), giving us a total
of 12(m+ 1)n equations for as many unknowns.

We need to calculate the above integrals so as to obtain the equations in a form suitable for solution.
For demonstration, we assume that the cross-sectional properties, the initial twist and curvature, and the
distributed loading are all constant within each element. With the above assumptions, the FEM equations
for the i-th element can be derived and we obtain the discretized equations of motion as

Ak j Li (Gi v̇ j,i
+Ki ω̇ j,i )+Ck jlLi ω̃ l,i (Giv j,i

+Kiω j,i )−Bk j f j,i

−Ak j Li k̃i f j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i ) f j,i

−DkLi f i
+Pk

1 P
j
1 f j,i

−Pk
1 P

j
0 f j,i+1

= 0, (18)

Ak j Li (Ki T
v̇ j,i
+ I i ω̇ j,i )+Ck jlLi ω̃ l,i (Ki T

v j,i
+ I iω j,i )+Ck jlLi ṽ l,i (Giv j,i

+Kiω j,i )−Bk j m j,i

−Ak j Li k̃i m j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i )m j,i

−Ak j Li ẽ1 f j,i
−Ck jlLi (R̃i f l,i + S̃i ml,i ) f j,i

−DkLi mi
+Pk

1 P
j
1m j,i

−Pk
1 P

j
0m j,i+1

= 0, (19)

Ak j Li (Ri ḟ j,i
+Si ṁ j,i )−Bk jv j,i

−Ak j Li k̃iv j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i )v j,i

−Ak j Li ẽ1ω
j,i
−Ck jlLi (R̃i f l,i + S̃i ml,i )ω j,i

−Pk
0 P

j
0v

j,i
+Pk

0 P
j
1v

j,i−1
= 0, (20)

Ak j Li (Si T
ḟ j,i
+Ti ṁ j,i )−Bk jω j,i

−Ak j Li k̃iω j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i )ω j,i

−Pk
0 P

j
0ω

j,i
+Pk

0 P
j
1ω

j,i−1
= 0. (21)

In the above equations summation is implied over indices j and l, and Ak j , Bk j , Ck jl , and Dk are
dimensionless integrals, given by

Ak j
=

∫ 1

0
Pk(x̄)P j(x̄)dx̄, Bk j

=

∫ 1

0
Pk(x̄)

(
P j(x̄)

)′dx̄,

Ck jl
=

∫ 1

0
Pk(x̄)P j(x̄)Pl(x̄)dx̄, Dk

=

∫ 1

0
Pk(x̄)dx̄ .

(22)

Now, representing all the system unknowns of the i-th element as
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q i (t)=



v0,i (t)
ω0,i (t)
f 0,i (t)

m0,i (t)
...

vm,i (t)
ωm,i (t)
f m,i (t)

mm,i (t)



and q(t)=


q1(t)
q2(t)
...

qn(t)

 , (23)

the complete system consists of N = 12n(m+ 1) equations and unknowns. The equations can then be
written in the form

A j i q̇i + B j i qi +C j ik qi qk + D j = 0, (24)

where summation is assumed over the indices i and k.

5. Results

The equations were solved using the variable-order FEM for a simple prismatic beam case with these
data:

Span 16 m
Chord 1 m
Mass per unit length 0.75 kg/m
Mom. inertia (50% chord) 0.1 kgm
Spanwise elastic axis 50% chord
Center of gravity 50% chord
Bending rigidity 2× 104 Nm2

Torsional rigidity 1× 104 Nm2

Bending rigidity (chordwise) 4× 106 Nm2

Shear/extensional rigidity ∞

Three examples are presented: (1) a beam undergoing large deformation due to a tip follower force,
(2) the natural frequencies and modeshapes of a beam, and (3) the natural frequencies and modeshapes of
a rotating beam (this involves calculation of the nonlinear steady state and linearizing the system about
this nonlinear steady state).

Let us first consider a beam loaded at the tip with a transverse follower force. As the force increases,
the deformation increases; and due to the large deformation, the force direction as well as its position
relative to the beam root changes. The correct nonlinear solution thus has a lower root bending moment
as compared to the linear solution. The exact solution to the problem satisfies the transcendental equation

1
6

m̄
√

4− m̄4 p̄2+
2
√

2
3
√

p̄
F
[

sin−1
(

m̄
√

p̄
√

2

) ∣∣∣∣−1
]
= 1− x̄, (25)
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where m̄ is the bending moment made dimensionless by P L , p̄ is the tip force made dimensionless by
E I/L2, x̄ is the axial coordinate made dimensionless by L , and F(φ|k) is the elliptic integral of the first
kind with k =−1 and sinφ = m̄

√
p̄/
√

2.
Figure 1 shows the root bending moment calculated using variable-order finite elements compared to

exact results for p̄ = 3. Figure 1a shows the convergence of the root bending moment as the order of
the system increases. The red line corresponds to the h-version, and the blue line corresponds to the
p-method. Finally, the green dots correspond to the hp-method. As expected, for this simple case, the
Galerkin approximation (the p-version) is the best of the three. It should be noted that when the Galerkin
approximation is applied to beams with properties varying along the span, it may not be possible to
calculate the integrals exactly. Thus, the Galerkin approach may become computationally intensive for
a general configuration. Figure 1b shows the convergence of the various methods. The Galerkin approx-
imation is seen to reach the exact result with error of the order of machine precision using twelfth-order
polynomials. The linear, first-order finite elements have about third-order convergence, that is, for every
doubling of the number of finite elements, the error decreases by a factor of eight (that is, 23). Figure 1c
shows the convergence of the error for finite elements of various orders. The quadratic finite elements
exhibit fifth-order convergence, and the cubic finite elements have seventh-order convergence. Finally,
the quartic finite elements show a whopping ninth-order convergence, that is, for every doubling of the

0 5 10 15 20
0.75

0.77

0.79

0.81

0.83

n × (m+1)

n
or

m
al

iz
ed

 r
oo

t 
b

en
d

in
g 

m
om

en
t

 

 

n = 1

m = 1

n = m

2 5 10 20
10

−20

10
−15

10
−10

10
−5

10
0

n × (m+1)

er
ro

r 
in

 r
oo

t 
b

en
d

in
g 

m
om

en
t

 

 

n = 1

m = 1

n = m

(a) (b)

2 5 10 20

10
−8

10
−6

10
−4

10
−2

n × (m+1)

er
ro

r 
in

 r
oo

t 
b

en
d

in
g 

m
om

en
t

 

 

m = 1

m = 2

m = 3

m = 4

0.01 0.10.03 0.3
10

−10

10
−8

10
−6

10
−4

10
−2

computational time (s)

er
ro

r 
in

 r
oo

t 
b

en
d

in
g 

m
om

en
t

 

 

m = 1

m = 2

m = 3

m = 4

(c) (d)

Figure 1. Results for the root bending moment due to follower force at the tip: (a) con-
vergence of root bending moment; (b) error in root bending moment; (c) error in root
bending moment for various model orders; (d) error in root bending moment relative to
computational time.
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number of finite elements there is a reduction in the error by a factor of 512. In other words, the element
of n-th order has a convergence of order 2n+ 1, so that doubling of the number of elements decreases
the error by a factor of 22n+1.

To further understand the effect of order on the accuracy and computational time, we have plotted
the error in results relative to computational time for various order finite elements. It should be noted
that the computational time used in this plot does not include time for calculation of the analytical
integrals, which can be calculated once for constant properties and stored. For variable properties one
will have to recalculate the integrals which can take considerable time. In the present case for a constant
property beam, for the same amount of time (0.4 s) we can use 54×12 variables (27 elements) for m = 1,
45×12 variables (15 elements) for m = 2, 32×12 variables (8 elements) for m = 3, and between 20×12
and 25×12 variables (4–5 elements) for m = 4. One can see that in terms of computational time (even
without recalculation of integrals), the various order finite elements are much closer together. The linear
finite elements still have relatively slow convergence, but the quadratic finite elements have behavior
more like cubic ones, and the cubic finite elements are still more like the quartic ones. The calculations
were done using the Matlab linear equation solver for sparse matrices. So, we can see that sparsity
matters and we can analyze more variables with lower order finite elements, but the order of accuracy
of higher-order finite elements increases at a faster rate than the computational time and thus they are
in general preferable. For beams with varying properties one may increase efficiency by using more
elements so that the preference will be for lower-order finite elements. One can recalculate the integrals
and matrices for higher-order elements analytically or by Gauss integrations by taking into account
the variations, but it may increase substantially the computational effort. Thus, one should use very
high-order finite elements or the Galerkin form only if model order reduction is important (for example,
in control design) or if we are reusing the calculated integrals multiple times (for example, for time
marching). Finally, for problems with multiple (stiffness or load) discontinuities, we would have no
choice but to place nodes at the discontinuities, as the solution using higher-order elements (without
nodes at discontinuities) will not give good results near the discontinuities. Again, hp finite elements are
good in that one can pick and choose an appropriate order depending on the problem at hand.

Now consider the frequencies of nonrotating as well as rotating beams. Table 1 lists the calculated
frequencies and compares them with exact results from [Wright et al. 1982]. The frequency predictions

Cantilevered beam Rotating cantil. beam Rot. cantil. beam with offset
ω = 0, v = 0 ω = 3.189 rad/s, v = 0 ω=3.189 rad/s, v=51.03 m/s

Mode Exact n = 9 n = 3 n = 1 Exact n = 9 n = 3 n = 1 Exact n = 9 n = 3 n = 1
m = 1 m = 3 m = 9 m = 1 m = 3 m = 9 m = 1 m = 3 m = 9

1st bending 2.243 2.243 2.243 2.243 4.114 4.114 4.114 4.114 5.703 5.703 5.703 5.703
2nd bending 14.06 14.03 14.06 14.06 16.23 16.21 16.23 16.23 18.72 18.69 18.72 18.72
3rd bending 39.36 39.22 39.38 39.36 41.59 41.44 41.62 41.59 44.50 44.33 44.53 44.50

1st torsion 31.05 31.05 31.05 31.05
2nd torsion 93.14 93.17 93.14 93.14

Table 1. Beam structural frequencies (rad/s).
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for a nonrotating as well as a rotating beam using the present approach with mn = 9 are shown. For
m = 9 and n = 1, that is, a single, high-order element, the frequencies are obtained to three significant
digits for both the bending and torsion modes. This approach is equivalent to the Galerkin approach
discussed in [Patil and Althoff 2006] and to formulations commonly referred to as p-version [Babuška
et al. 1981]. On the other hand, for m = 1 and n = 9, the maximum number of the crudest possible
elements for mn = 9, the solution is not as accurate, leading to errors greater than 0.3% for the third
bending mode. This approach corresponds to the lowest-order FEM method, commonly referred to as
h-version, consisting of linear shape functions. Finally, the case of m = 3 and n = 3 is a good balance
between these two extreme approaches. Here cubic polynomials are used to represent the variables in
each of three elements. The results are quite good with negligible errors.

The left column of Figure 2 presents the convergence of results for the first bending mode of a nonro-
tating beam. Figure 2a shows the convergence of frequencies with increase in the order of the system. As
expected, again the Galerkin approximation is the best of the three. Figure 2b shows the convergence of
the various methods. The Galerkin approximation is seen to reach the exact result with error of the order
of machine precision using eighth-order polynomials. Figure 2c shows the convergence of the error in
the first frequency for finite elements of various orders. Similar to the nonlinear solution results, for the
linearized perturbation results the linear finite element shows third-order convergence, quadratic finite
elements show a fifth-order convergence, cubic finite elements show a seventh-order convergence, and
quartic finite elements show a ninth-order convergence. Finally, Figure 2d shows the convergence of
mode shape for three implementations. The mode shape obtained by the Galerkin approach is the closest
to the exact mode shape. The mode shape predicted by the lowest-order, linear finite elements shows
deviation from the exact mode shape and is discontinuous as expected, because the continuity conditions
are weakly satisfied. Similarly, the mode shape does not satisfy the boundary conditions exactly because
of weak satisfaction of the boundary conditions.

The right column of Figure 2 shows the corresponding plots for the first torsion mode. For the torsional
frequencies the Galerkin approximation again leads to the most accurate results while the accuracy
increases with the increase in the order of the finite element. The order of the relative error is third-
order, fifth-order, seventh-order and, ninth-order for the linear, quadratic, cubic, and quartic elements
respectively.

Figure 3 shows the results for the first bending mode of a rotating beam with root velocity. For
the rotating beam, the static steady-state solution is nontrivial. Thus, the accuracy of the frequencies
obtained from linearizing about the nonlinear steady state is dependent on the accuracy of the steady-
state solution and the accuracy of the linearized perturbation. We obtain the exact steady-state solution
for finite elements of second and higher order. The errors are in general higher for the rotating beam as
compared to the nonrotating beam. Furthermore, the rate of convergence for the rotating beam is slightly
slower than that of the nonrotating beam.

We have addressed the impact of bandedness or sparsity of the matrices in the variable-order finite
element formulation. For low-order elements, the coefficient matrices are very sparse and one can take
advantage of this. In addition, the coefficient matrices for low-order elements can be calculated using
lower-order Gauss integration thus further reducing the computational time. The higher-order element,
though more accurate, may not be computationally as efficient as the low-order element. This aspect
has not been addressed in the present paper. For example, a global Galerkin approximation requires
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Figure 2. Results for the first bending mode (left column) and the first torsion mode
(right column) of a nonrotating cantilevered beam: (a,e) convergence of frequency;
(b,f) error in frequency; (c,g) error in frequency; (d,h) convergence of mode shape.
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Figure 3. Results for the first bending mode of a rotating cantilevered beam with offset:
(a) convergence of first bending frequency; (b) error in first bending frequency; (c) error
in first bending frequency; (d) convergence of first bending mode shape.

calculation of complex integrals and will lead to fully populated matrices. But, if one is interested
in using nonlinear beam analysis as a part of a multidisciplinary analysis (aeroelasticity), preliminary
design (HALE aircraft, helicopter flight mechanics), and control synthesis, the reduced number of de-
grees of freedom is essential. We have presented a way to calculate the nonlinear dynamics of the
beam accurately using a low number of degrees of freedom that will lead to significant advancement in
nonlinear aeroelastic calculations (which lead to loss of sparsity anyway), flight dynamics simulations
(with complete geometrically nonlinear aeroelasticity), and design optimization. A detailed assessment
of the computational cost of the method vis-à-vis the accuracy for various types of beams and various
applications will be addressed in a later paper.

6. Conclusions

A variable-order finite element technique is presented and applied to beams with uniform properties
along the span. This technique is based on a geometrically exact, fully intrinsic formulation. The results
presented show that one can obtain approximately third-order, fifth-order, seventh-order, and ninth-order
convergence for the linear, quadratic, cubic, and quartic finite elements. It is recommended that one use
quadratic- or higher-order finite elements for a better approximation of mode shapes. The cubic finite
elements provide an especially good balance of accuracy, computational efficiency, and applicability to
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general configurations. Additional work needs to be done to assess the method’s accuracy when applied
to beams with properties varying along the span.
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EFFECTS OF CONTACT SURFACE SHAPE ON LIFETIME OF CELLULAR
FOCAL ADHESION

GREGORY J. RIZZA, JIN QIAN AND HUAJIAN GAO

As a means of better understanding cell-matrix adhesion, we consider the effects that the contact surface
shape of a cellular focal adhesion has on its adhesion lifetime. An idealized model of focal adhesion is
adopted in which two dissimilar elastic media are bonded together by an array of ligand/receptor bonds
modeled as Hookean springs on a curved surface. The cluster of bonds is subjected to a constant applied
tensile load F , and the distribution of traction forces on the individual bonds is assumed to obey the
elasticity equations of continuous elastic media. The rupturing and rebinding of bonds are described by
stochastic equations solved using the Monte Carlo method. The contact surface in the model is scaled by
an optimal shape defined as the deformed surface profile of a planar elastic half-space that is subjected to
a uniform pressure applied over the contact region with the total force equal to F . Our model shows that
contact surface shape does have a substantial impact on adhesion lifetime. The model also shows that
the adhesion lifetime becomes increasingly sensitive to variations in contact surface shape as the focal
adhesion increases in size.

1. Introduction

Cell adhesion is becoming an important topic of study in all fields involving cellular research. It has
been observed that a large amount of cell activities such as cell migration, cell differentiation, wound
healing, etc. are dependent upon the ability of a cell to adhere to a variety of biological surfaces [Alberts
et al. 2002; Chen and Gumbiner 2006]. An interesting feature of cell adhesion on substrates, which
could be characterized as a cell adhering to the extracellular matrix (ECM) within an organism of study,
is that the bonds formed between the cell surface and ECM via ligand/receptor connections are usually
arranged in clusters of multiple individual bonds [Zamir et al. 2000; Zaidel-Bar et al. 2003]. These bond
clusters are of a finite size with a maximum length of only a few microns depending on the stiffness of
the system, and have been referred to as focal adhesions (FAs) due to their definite size and discreteness
[Alberts et al. 2002; Chen and Gumbiner 2006; Zamir et al. 2000; Zaidel-Bar et al. 2003; Bershadsky
et al. 2003]. There are many biological, chemical and mechanical processes which occur during the
sequences involved in cellular adhesion. However, for the purposes of this paper we will only examine
cellular focal adhesion on the basis of a mechanical model in order to develop a better understanding of
the effects of contact surface shape on FA lifetime.

There have been both theoretical and experimental studies in developing an understanding that single
ligand/receptor bonds only have finite adhesion lifetime. Even in the absence of any applied load, bond
dissociations due to thermal fluctuation are expected to occur in a statistical fashion [Evans and Ritchie

Keywords: cell adhesion, focal adhesion, ligand/receptor bonds, optimal shape, adhesion lifetime, Monte Carlo method,
biomechanics.
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1997; Evans 2001; Evans and Calderwood 2007]. This understanding of single molecular bonds is
currently accepted and assumed to be representative of the behavior of a large number of ligand/receptor
types in cell adhesion. However, the mechanics of multiple bond adhesions, such as those in focal
adhesions, is not understood to the same degree of single bond adhesion due to its complexity.

The study of adhesions made up of many molecular bonds was pioneered by Bell [1978], who devel-
oped a kinetic theory to predict the thermodynamic competition between bonds forming and breaking
under an applied load. The investigation of multiple bond adhesion was further progressed by the work of
Erdmann and Schwartz [2004a; 2004b] who developed stochastic equations and performed Monte Carlo
simulations to investigate the adhesion lifetime as a function of cluster size. They showed that, unlike
single bond adhesion which only has a limited lifetime, focal adhesion clusters made up of multiple bonds
could have more prolonged lifetimes. Their model showed that the larger the focal adhesion becomes
the longer adhesion lifetime it can experience. Qian et al. [2008; 2009] were the first to model focal
adhesions between cell and substrate in terms of clusters of ligand/receptor bonds between two dissimi-
lar continuous elastic media, showing the effects of varying adhesion size and system stiffness on focal
adhesion strength and lifetime. According to their results, a possible explanation for the characteristic
micron-size scale of focal adhesions is that small adhesion size leads to single-molecule-like behavior of
limited lifetime because of statistical effects whereas large adhesion also leads to single-molecule-like
behavior because of the focusing effect of stress concentration that confines the bond dissociation events
to a smaller number of bonds near the adhesion edges. Their model also showed that stiffer cell and
substrate result in larger and more stable focal adhesions than softer ones. This finding is consistent with
a range of experimental observations, including that focal adhesions are small or absent in cells cultured
on sufficiently compliant substrates, and that cells tend to actively migrate towards stiffer region when
cultured on an elastically nonhomogeneous substrate [Pelham and Wang 1997; Lo et al. 2000; Tan et al.
2003].

So far we know that clustering multiple bonds into focal contacts greatly enhances the lifetime and
stability of cell-matrix adhesion [Erdmann and Schwarz 2004a; 2004b]. However, due to the elasticity
effects of the system, there is an upper limit in size of a focal adhesion in order for it to avoid stress
concentration effect [Qian et al. 2008; 2009]. It has also been shown that stiffness of cell and substrate is a
factor in controlling the stability of focal adhesions, and cells have a preference towards stiffer substrates
potentially due to the increased focal adhesion lifetime [Qian et al. 2008; 2009].

The present paper explores how contact surface shape can be used as a factor to control focal adhesion
lifetime. Here, the contact surface shape is defined as the initial gap between a pair of contacting surfaces
in the absence of any external loads [Gao and Yao 2004; Yao and Gao 2006]. In the special case when
one of the contact surfaces is a flat plane, the contact surface shape then corresponds to the actual shape
of the opposing partner surface. Optimization of contact surface shape is not an uncommon strategy
when trying to increase adhesion strength in contact mechanics problems. In biology, optimized surface
shapes can be seen in species that rely on nonspecific adhesion for survival such as gecko and many
types of insects, and the optimal surface shape for adhesion between two elastic media via van der Waals
interaction has been defined as the profile of the contact surface that distributes an applied load uniformly
within the adhesion region at the critical moment of pull-off [Gao and Yao 2004; Yao and Gao 2006;
Shi et al. 2006]. Following a similar line of thought, here we define the optimal contact surface shape of
focal adhesions via specific molecular bonds as the shape that gives rise to a uniform traction distribution
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among individual bonds within the adhesion domain whenever the closed bonds are evenly spaced. This
even distribution of load avoids stress concentrations along the contact edges, leading to substantially
increased lifetime of focal adhesions.

The goal of this article is to explore the effects of contact surface shape on focal adhesion lifetime.
Based on previous studies on the lifetime of multiple bond adhesion under constant tensile loads, we
plan to demonstrate the effects that altering and optimizing the geometric shape of the adhesion surface
have on focal adhesion lifetime. To do this, a range of surface shapes which are related to the optimal
shape through a numerical shape factor are studied under various focal adhesion parameters. From this
model, we plan to show:

(1) Optimizing surface shape can greatly increase focal adhesion lifetime.

(2) As focal adhesions increase in size, deviations from the optimal shape result in substantial decrease
in adhesion lifetime when compared to the cases of focal adhesions with fewer bonds.

(3) Varying system stiffness and applied tensile load on the focal adhesion have interesting effects with
respects to parts (1) and (2).

2. Model

The theoretical model under consideration is illustrated in Figure 1, in which two elastic media are seen
bonding to each other via ligand/receptor bonds. The upper elastic medium represents a biological cell
whereas the lower elastic medium is representative of the extracellular matrix. The Young’s moduli and

Figure 1. Idealized model of a single focal adhesion between a cell and substrate un-
dergoing tensile loading. The cell and substrate are bonded together by an array of
ligand/receptor bonds. The contact surface shapes of the focal adhesion are determined
by a shape factor S which ranges in [0, 2], where S = 1 corresponds to the optimal
contact shape for an initial uniformly loaded bond cluster.
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Poisson’s ratios of these media are defined as Ec, νc for the cell, and Es , νs for the substrate. It is usually
convenient to define a combined elastic modulus E∗ as

1
E∗
=

1− ν2
c

Ec
+

1− ν2
s

Es
(2-1)

when analyzing contact problems involving two different elastic media [Johnson 1985]. The cell/
substrate system is subject to a constant tensile load F such that the load distribution among individual
bonds is governed by elasticity equations. The two media are bonded together by ligand/receptor bonds
idealized as Hookean springs with a spring coefficient kLR. It is assumed in the model that the bonds
do not have any interaction with each other. It is also assumed that when rupture occurs in a bond, the
energy required to rupture the ligand/receptor bond is much lower than the energy required to rupture the
connection of the ligand or receptor from the cell or substrate surface [Bell 1978]. What this means is
when the ligand/receptor bond is undergoing tensile loading, rupturing of the bond will most likely occur
at the ligand/receptor interface due to the less energy required for it to rupture. The bonds are evenly
spaced at distance b from each other in the lateral x-direction (Figure 1), corresponding to a bond density
of ρLR = 1/b2. As can be seen in Figure 2, the initial location of each bond in the vertical z-direction
is determined by a shape factor S. The shape factor value of S = 0 corresponds to the surfaces of the
cell and substrate being modeled as horizontal planes, S = 1 corresponds to an optimized curved surface
profile that gives rise to uniform traction distribution among individual ligand/receptor bonds within the
adhesion domain under a tensile load (see details in next section), and S = 2 corresponds to an overly
curved surface in comparison to the optimal surface (S = 1). The adhesion being analyzed in this model
is defined as a single focal adhesion cluster which is made up of an array of bonds aligned axially with
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Figure 2. Schematic of a focal adhesion surface containing 40 bonds, having a system
stiffness of E∗ = 200 kPa, and a tensile load factor of ϕ = 0.46. The surface shapes
represented are for the following shape factors: S= 0 corresponding to adhesion between
conforming surfaces, S = 1 corresponding to the optimal shape, and S = 2 corresponding
to an overly curved focal adhesion surface in comparison to the optimal case.



EFFECTS OF CONTACT SURFACE SHAPE ON LIFETIME OF CELLULAR FOCAL ADHESION 499

an out of plane thickness b. The size of the adhesion is defined as 2a where a is the half-width of the
focal adhesion, and the total number of involved bonds is N = 2a/b.

2.1. Optimal shape and shape factor. Following a similar concept introduced in reference [Gao and
Yao 2004], an optimal shape of contact surface is defined as the deformed surface profile of a planar
half-space that is subjected to a uniform pressure applied over the contact region with the total force
equal to F on the bond cluster. For a cluster of evenly spaced ligand/receptor bonds, the optimal contact
surface shape that gives rise to a uniform traction distribution among individual bonds within the adhesion
domain is

fz(x)=−
ϕ ·Fb
πE∗b2

(
(a+ x) ln

(a+x
a

)2
+ (a− x) ln

(a−x
a

)2
+Cx

)
, (2-2)

where Cx is a length constant to satisfy the condition that the optimal shape gives z= 0 at a reference point
x∞, Fb is a force scale related to the dissociation of single bonds (see (2-9) below), and ϕ = F/(Fb N )
is a load factor representing the nominal force sustained by individual bonds (normalized by the force
scale Fb).

As can be seen in Figure 2, a shape factor S has been applied to the elasticity part of modeling in
order to study the effects of surface shape on adhesion lifetime. The shape factor S is defined in such a
way that S = 0 corresponds to two bonded surfaces in perfect conformity with each other in the absence
of external loads, S = 1 corresponds to the optimal contact surface shape defined in (2-2), and S = 2
corresponds to an overly curved surface when compared to the optimal surface shape.

2.2. Elasticity model. Let us define the axial direction running parallel to the surfaces of the cell and
substrate to be x , and assume that the origin x = 0 corresponds to the center of the focal adhesion.
Also, let us define u(x) to be the difference between the stretched length of the ligand/receptor bond
located at position x and its rest length lb, and w(x) be the surface displacement discontinuity of the two
elastic media at x . The relationship between u(x) and w(x) is governed by the compatibility condition
at the cell-substrate interface, to ensure that the bond length after deformation, u(x)+ lb, is equal to the
displacement and shape discontinuities, −w(x) and S · fz(x), plus a constant separation h, i.e.,

u(x)+w(x)+ lb = h+ S · fz(x). (2-3)

In our model, xi is constricted to the domain of [−a, a] and is representative of the location of a bond
in the x direction within a focal adhesion of size 2a. The elastic Green’s function that defines the relative
displacement of the combined elastic media at position xi induced by a load being applied on a bond at
x j (i 6= j) is given by the equation [Johnson 1985]

wi j =
1

πE∗b
· 2F j

(
ln |x∞− x j | − ln |xi − x j |

)
, (2-4)

where F j is the individual force acting on the bond at location x j , and x∞ is an arbitrary reference point
chosen such that wi j = 0 at x∞ for a load F j . To avoid singularity, the relative displacement of the elastic
media at position xi caused by the on-site load Fi acting on the bond is given by the equation [Johnson
1985]

wi i =−
1
πE∗
·

Fi

2a0b
(2a0 ln 4+Ci ), (2-5)
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where a0 denotes the radius of an individual bond and is typically only a few nanometers [Arnold et al.
2004], and Ci is a length constant chosen such that wi i = 0 at x∞.

Since we have chosen to model ligand/receptor bonds as Hookean springs, the relationship between
the extension of a bond at a position xi and the load Fi applied on that bond is

Fi = kLRui . (2-6)

Combining Equations (2-3)–(2-6) gives the elasticity equation

n∑
j=1, j 6=i

{
1

πE∗b
2F j

(
ln |x∞− x j | − ln |xi − x j |

)}
−

1
πE∗
∗

Fi

2a0b
(2a0 ln 4+Ci )+

Fi

kLR
+ lb

= h+ S · fz(xi ), (2-7)

where n is the number of closed bonds in the focal adhesion. This relationship in (2-7) represents n
equations with n + 1 unknowns (F1, . . . , Fn, h). The elastic part of the model is completed with an
additional equation coming from the global force balance

n∑
i=1

Fi = F = ϕFb N , (2-8)

where F is the constant tensile load being applied to the system.

2.3. Stochastic model. The elasticity equations shown above govern how the applied load F is dis-
tributed among all closed bonds. Each bond site within the focal adhesion in the present model has
the ability to rupture from attachment as well as rebind after rupture. These rupturing and rebinding
behaviors are represented as rate equations and are defined using the following stochastic equations.

Bond rupturing is assumed to occur according to [Bell 1978]

koff = k0eFi/Fb , (2-9)

where the rate of bond rupture increases exponentially as the load acting on the individual bonds Fi

increases. The rate of bond rupture as defined by Bell involves the parameters Fb, which is a force
scale typically in the piconewton range [Bell 1978], and k0, which is the spontaneous dissociation rate
of an individual bond in the absence of any type of load. The spontaneous dissociation rate can range
anywhere from 0.1 to 100 seconds depending on the bond type and environmental conditions [Evans and
Calderwood 2007].

Bond rebinding behavior is assumed to depend on the separation distance between the open receptor
and free hanging ligand as described by Erdmann and Schwarz [2007; 2006], which the reader can
consult for the next few equations. The probability of a ligand falling in close proximity to a receptor
within a reacting radius lbind is

p =
lbind

Z
e−kLR(δ−lb)

2/(2kB T ), (2-10)

where lbind is defined as the length scale within which the receptor and ligand will react to form a bond,
δ is the surface separation between cell and substrate where the open receptor and ligand are anchored,
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kB T is the Boltzmann constant multiplied by the absolute temperature, and Z is a partition function
defined as

Z =
√
πkB T
2kLR

{
erf
(
(δ− lb)

√
kLR

2kB T

)
+ erf

(
lb

√
kLR

2kB T

)}
. (2-11)

From these equations, the rebinding rate can be defined as

kon = k0
on

lbind

Z
e−kLR(δ−lb)

2/(2kB T ), (2-12)

where k0
on is a spontaneous reaction rate of open ligand/receptor pairs within the reacting radius lbind. It

is beneficial to normalize both the rupture and rebinding rates in our model in order to define certain
analytical factors. Both the rupture and rebinding rates are defined by

ri = eFi/Fb , (2-13)

gi = 2γ

√
β

π

e−β(1i−Lb)
2

erf
(√
β(1i − Lb)

)
+ erf

(
Lb
√
β
) , (2-14)

where 1i = δi/b is the normalized bond separation, Lb = lb/b is the normalized bond rest length, and

β =
kLRb2

2kB T
. (2-15)

In the bond rebinding rate equation, γ is a rebinding factor defined as

γ =
k0

on

k0

lbind

b
, (2-16)

which is a measure of propensity for rebinding to occur. Once the separation length δ has reached a
value of roughly 2lb, rebinding of the ligand/receptor becomes almost impossible no matter how great
the rebinding factor is [Qian et al. 2008].

In our model we consider both stochastic rebinding and rupturing of all bonds within a focal adhesion.
The binding evolution of the bond cluster is characterized by the master equation [van Kampen 1992]

d Pn(τ )

dτ
= ĝn−1 Pn−1(τ )+ r̂n+1(τ )Pn+1(τ )−

[
r̂n(τ )+ ĝn(τ )

]
Pn(τ ), (2-17)

where τ = k0t is normalized time, n is the number of closed bonds in the adhesion, r̂n and ĝn correspond
to the normalized total bond cluster rupture and rebinding rates when n bonds are closed (these rates differ
from ri and gi which are rupture and rebinding rates for a single bond i), and Pn(τ ) is the probability
that n bonds are closed at time τ . Using a Monte Carlo method, which will be discussed in the next
section, our model initially starts with n equal to the total number of bonds N within the focal adhesion.
As time passes, stochastic binding and breaking occur until n equals zero, corresponding to failure of
the adhesion as all the bonds within the focal adhesion become open.

3. Numerical method

To analyze (2-17) we use a Monte Carlo method based on Gillespie’s algorithm [1976; 1977]. Initially all
bonds within the focal adhesion are assumed to be closed. The evolution of the adhesion is characterized
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total number of bonds, N 6–90
spacing between neighboring bonds, b 32 nm
focal adhesion size, 2a ∼ 0.2–3µm
bond rest length, lb 11 nm
radius of bond, a0 5 nm
single bond stiffness, kLR 0.25 pN/nm

combined elastic modulus, E∗ 2–400 kPa
rebinding rate factor, γ 100
load factor, ϕ 0.44–0.52
force scale in bond dissociation, Fb 4 pN
shape factor, S 0–2
Boltzmann’s constant × temperature, kB T 4.1 pN·nm

Table 1. Parameters used in the model of a focal adhesion between a cell and a substrate.

by cycles in which bond rupturing or rebinding occurs. Whether a closed bond will rupture or an open
bond will rebind is determined by the probability of these actions occurring. The idea is to determine
using randomized numbers and probability the likely location of a particular bond rupturing or rebinding
for each cycle during the focal adhesion’s lifetime until every bond in the focal adhesion is open. The
likelihood of bond rupture/rebinding to occur at a specific location becomes dependent on the elastic
solutions of the model at that current cycle time, and is globally based on the parameters used to define
the specific focal adhesion under study, which are listed for our model in Table 1. It is necessary to note
that because of the stochastic behaviors of both bond rupturing and rebinding for the focal adhesion, many
simulations of each particular parameter set of focal adhesion must be performed and their output results
averaged in order to formulate a reasonable assessment representative of the behavior of the adhesion.

In the present study, we analyze our model using the “first reaction method” of Gillespie’s algorithm,
following [Erdmann and Schwarz 2004a; 2004b]. In the first reaction method, a series of independent
numbers are randomly generated in which they are uniformly distributed from 0 to 1. Each random
number ξi is assigned to a specific bond site such that ξ = (ξ1, . . . , ξN ) where N is the total number of
bonds in the focal adhesion. The normalized reaction time for each specific bond site is calculated as
[Gillespie 1976; 1977].

dτi =−
ln ξi

qi
, (3-1)

where qi is either the normalized rebinding rate if the bond classified by index i is open or the normalized
rupture rate if the bond is closed. The normalized reaction time for the particular cycle is chosen to be
the minimum component of dτi such that,

dτ =min(dτi ), (3-2)

where the location of actual reaction taking place is identified as where the shortest reaction time is
chosen. This means that if the chosen bond at the reaction location is currently closed, the bond will
rupture, and if the chosen bond is currently open, it will rebind, and the normalized time between the
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reaction just prior to this one and the reaction just after this one is dτ . Each time this reaction occurs
constitutes one cycle and the number of cycles continues to grow until all bonds in the focal adhesion
are open, which we have defined as the point when adhesion fails. The normalized lifetime of the focal
adhesion is defined as the sum of all the reaction times for each cycle,

τ =

µ∑
k=1

dτk, (3-3)

where µ is the total number of cycles leading up to adhesion failure. This process is repeated a prescribed
number of times and a normalized mean lifetime is determined.

4. Results

The first class of focal adhesions we chose to model were three types of focal adhesions with varying
combined elastic modulus E∗ values of 200 kPa, 100 kPa, and 20 kPa. For the model we chose a rebinding
factor γ = 100 which is representative of highly favorable rebinding conditions [Qian et al. 2008; 2009],
and a load factor ϕ = 0.46 which corresponds to the applied tensile load on the system being ρ = 1.78 kPa
where ρ = F/2ab and F = ϕFb N . The model is defined to represent a focal adhesion being experimented
on at room temperature, corresponding to a value of kB T = 4.1 pN · nm. Each ligand/receptor bond of
the adhesion was modeled as a Hookean spring with a spring coefficient of kLR = 0.25 pN/nm, which
has been estimated as an appropriate value when modeling fibronectin/integrin bonds [Erdmann and
Schwarz 2006]. The force factor defined for bond rupturing was chosen to be a constant value Fb = 4 pN
[Erdmann and Schwarz 2004a; 2004b]. The ligand/receptor dimensions were defined to have a rest length
lb = 11 nm [Zuckerman and Bruinsma 1998] and an individual radius of a0 = 5 nm [Arnold et al. 2004].
Each ligand/receptor bond is evenly spaced a distance b = 32 nm from each other, with the length of
the entire focal adhesion defined as 2a and the total number of bonds in the adhesion as N = 2a/b. As
shown in the left column of Figure 3, for each value of E∗, we varied the number of bonds making up the
focal adhesion from 6 to 90, and for each focal adhesion size we varied the shape factor S within [0,2]
in order to analyze each focal adhesion’s mean lifetime. This range in number of bonds corresponds to
a focal adhesion size of roughly 200 nm - 3µm.

Figure 3, top left, shows a clear increase in adhesion lifetime as the contact surface shape progresses
towards the optimal shape, especially as the focal adhesion increases in size. However, as the adhesion
increases in size, the optimal shape remains to have the maximum adhesion lifetime, but any discrepancies
from this optimal shape result in a much lower adhesion lifetime. This is most clearly seen in Figure 3,
top right, in which the adhesion lifetime is plotted against the number of bonds for shape factor values
S = 0, 0.8, 1. The optimal shape represented in the graph by S = 1 clearly has the longest adhesion
lifetime. However, as the adhesion grows in size, subtle variance from the optimal surface shape results
in a drastic change in adhesion lifetime, which can be seen by comparing the lifetimes of S = 0.8 and
S = 1. The difference between the two focal adhesion shapes is geometrically subtle, but the effect it has
on adhesion lifetime becomes very drastic as the focal adhesion grows in size. These shape effects have
also been studied in other areas of biology with regards to gecko adhesion, and similar results pertaining to
adhesion strength were seen [Gao and Yao 2004]. A significant difference in adhesion lifetime appears
to occur once the focal adhesion expands to 50 bonds when comparing the two surface shapes. This
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Figure 3. Effects of varying surface shape as defined by numerical shape factor values
ranging within [0,2] on focal adhesion lifetime for different focal adhesion sizes ranging
from 6 to 90 individual bonds. From top to bottom, E∗ = 200 kPa, 100 kPa, 20 kPa.
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difference in lifetime increases more drastically as the adhesion continues to grow in size. This drastic
reduction in adhesion lifetime for larger bonds with varying adhesion surface geometry from the optimal
shape can be understood by the fact that generally stress concentrations are more severe as the focal
adhesion increases in size [Qian et al. 2008; 2009]. What the optimal shape does for adhesion lifetime
is to remove the preexisting stress concentrations from the bond cluster at its initial state. Therefore,
the optimal contact shape can improve the lifetime of a cluster of bonds more significantly in larger
adhesions.

The next type of focal adhesion modeled can be seen in Figure 3, middle left, in which the number
of bonds within the adhesion varies from 6 to 90, the shape factor’s observed range in [0, 2], and the
combined elastic modulus E∗ = 100 kPa. Comparing the focal adhesion lifetimes between E∗ = 200 kPa
and E∗ = 100 kPa shows that the adhesion lifetimes are much smaller for the softer system. This is
concurrent to the results shown in other studies of system stiffness and adhesion lifetime [Qian et al.
2008; 2009]. Besides this difference in magnitude of adhesion lifetime, the behavior of the data in the
case of E∗ = 100 kPa seems to differ when compared to the results shown in Figure 3, top left. The focal
adhesion still has the longest lifetime on the optimal contact surface shape, but the largest focal adhesion
size does not correspond to the longest adhesion lifetime. This is more clearly seen in Figure 3, middle
right, where the maximum adhesion lifetime is achieved for the optimal shape S = 1, when the adhesion
contains about 50 bonds. After this critical size, the lifetime of the focal adhesion appears to shorten as
the number of bonds increases. Similar behavior occurs for S = 0.8 where the critical number of bonds
is 30, and for the flat surface S = 0 where the critical number of bonds is 10. A possible reason for this
behavior, which has been previously studied for flat surface adhesion [Qian et al. 2008; 2009] is that as
focal adhesions increase in size, they develop large stress concentrations at edges of the focal adhesion,
and these stress concentrations result in crack-like failure of the focal adhesion, thereby decreasing its
lifetime. Since the optimal shape was defined as the cell surface shape which results in the initially even
distribution of load among all closed bonds, as the focal adhesion continues to cycle in which bonds
are rupturing and rebinding, we believe that crack-like singularities begin to form within the adhesion
domain and eventually dominate adhesion lifetime. This behavior of decreased adhesion lifetime with
increasing adhesion size is also seen in the top row of Figure 3 for E∗ =200 kPa for the majority of
nonoptimal cases, and we believe if the adhesion size continues to increase in bond number this behavior
would then be seen even in the optimal case, as has been displayed for E∗ = 100 kPa.

The bottom row of Figure 3 shows the results for a focal adhesion with combined elastic modulus
E∗ = 20 kPa. The data acquired for this focal adhesion differs greatly in comparison to the E∗ = 200 kPa,
100 kPa cases mainly because the longest adhesion lifetimes seem to occur when the adhesion is very
small. Also, the longest adhesion lifetime for most of the adhesion sizes seems to occur when the
geometry of the adhesive surface is flat. Not until the adhesion reaches a size of roughly 70 bonds does
the behavior of the focal adhesion lifetime seem to resemble that of the behavior shown in the above two
cases. However, even in the case of optimal shape involving 90 bonds where the adhesion lifetime is
longest, it still is shorter when compared to the adhesion lifetimes for any adhesion size and shape factor
analyzed. From this data it appears that once the system reaches a critical stiffness threshold between soft
matter and very soft matter, the effects of bond size on the adhesion outweigh the potential strengthening
effects of shape on the adhesion. It also appears that optimizing the shape seems to decrease adhesion
lifetime slightly, which differs in behavior from the previous two cases. However, the reasoning for these
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Figure 4. The effects of varying system stiffness as defined by the combined elastic
modulus E∗ on focal adhesion lifetime for an adhesion made up of 40 bonds with a load
factor of ϕ = 0.46. Left: focal adhesion lifetime as a function of the surface shape factor
for values of E∗ = 2, 20, 100, 200, 400 kPa. Right: focal adhesion lifetime as a function
of system stiffness for the flat surface case (S = 0) and the optimal surface case (S = 1).

unexpected results could be because the load applied to the adhesion defined by a load factor of ϕ = 0.46
is too great. The range in mean normalized lifetimes of all the adhesion sizes for the E∗ = 20 kPa case
only extends a normalized time frame of 0.1 which, when compared to the cases of E∗ = 100 kPa and
200 kPa, is roughly 10 and 10,000 times smaller. In order to get a more thorough analysis of the effects
of shape on a system of very soft stiffness, the load factor would have to be reduced in such a way that
from the data shown here, a normalized time range of at least 1 would have to be represented. This
would allow for a better representation of the effects of shape on adhesion systems with very soft cell
and substrate.

For further understanding on the effects of contact surface shape on adhesion lifetime, an adhesion
made up of 40 bonds was analyzed under varying stiffness values and varying load factor values. In
Figure 4, a 40-bond focal adhesion was analyzed with a load factor of ϕ = 0.46, a rebinding factor of
γ = 100, and the combined elastic stiffness of the system ranged E∗ = 2 kPa, 20 kPa, 100 kPa, 200 kPa,
400 kPa. From the left part of the figure, we see that the adhesion with optimal surface shape has the
longest adhesion lifetime for the cases of E∗ = 100 kPa and greater, and it appears that the adhesion
lifetime gets exponentially longer as the stiffness of the system doubles in magnitude. Also as expected,
due to the medium focal adhesion size, the difference between slight deviations from the optimal shape
does not seem to have the drastic effect it had for larger bond sizes. However, it can be seen in Figure 4,
right, that there is a large difference between adhesion lifetime between the optimal surface shape and
the flat surface shape. This difference is large enough such that any attempt of optimizing the shape
of the adhesion would have a substantial increase in the lengthening of adhesion lifetime, especially in
cases where the system stiffness is large.
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Figure 5. The effects of varying applied tensile load acting on the cell/substrate as
defined by the load factor ϕ on focal adhesion lifetime for an adhesion made up of 40
bonds with a combined elastic modulus of E∗ = 200 kPa. Left: focal adhesion lifetime
as a function of the surface shape factor for values of ϕ = 0.52, 0.50, 0.48, 0.46, 0.44.
Right: focal adhesion lifetime as a function of the applied load for the flat surface case
(S = 0) and the optimal surface case (S = 1).

In Figure 5, a similar 40-bond focal adhesion is considered with a combined elastic modulus of E∗ =
200 kPa, a rebinding factor of γ = 100, and the load factor for the adhesion is varied such that ϕ =
0.52, 0.50, 0.48, 0.46, 0.44. As with the previous model involving varying system stiffness, the focal
adhesion with the optimal surface shape has the longest adhesion lifetime and the difference in lifetime
appears to increase exponentially as the load decreases, which is to be expected. The effects the shape
of the adhesion surface has on adhesion lifetime seem to be more substantially affected by decreasing
the load factor than varying the stiffness, which is shown by the greater normalized lifetime difference
between the optimal and flat surface cases displayed in Figure 5, right. However there appears to be
substantially more sensitivity to deviations from the optimal shape as the load decreases in magnitude
in comparison to the effects of deviation from the optimal shape for the increasing stiffness case. This
can be taken to mean that decreasing the applied tensile load on an adhesion of large size with some
geometrical variance from the optimal shape would be less effective in increasing the focal adhesion
lifetime than would be done by increasing the system stiffness.

5. Conclusion

In this paper we have examined an idealized model of a cell/substrate focal adhesion bonded together
by ligand/receptor bonds evenly spaced along curved surfaces. The focal adhesion was modeled as a
bond cluster between continuous elastic media undergoing an applied tensile load which is distributed
as traction forces on each bond. Initially all bonds in the adhesion were considered to be closed and the
magnitude of the distributed traction forces on individual bonds was determined by the geometrical shape
of the contact surface. The contact surface shape was defined by a numeric shape factor S in proportion to
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an optimal shape that renders the applied tensile load being uniformly distributed among all closed bonds
whenever these bonds are evenly spaced within the adhesion domain. The model accounted for both bond
rupturing and rebinding via stochastic equations, which were analyzed numerically using Monte Carlo
methods. A series of simulations were performed using a coupling of elastic and stochastic equations
in order to model several sets of focal adhesions in which the effects of contact surface shape were
observed with respect to the adhesion lifetime. In our model we have chosen to define adhesion lifetime
as the time taken for all bonds within the adhesion to go from their initial state to failure. The calculated
adhesion lifetimes were normalized using k0, the spontaneous dissociation rate of an individual bond in
the absence of any type of load. The following main conclusions can be drawn from our analysis.

(1) As the contact surface shape begins to change from flat towards the optimal shape for adhesion, the
lifetime of the focal adhesion increases to a maximum value. The optimal surface shape is defined to have
a shape factor of S = 1. Depending on the size of the focal adhesion and the number of ligand/receptor
bonds within the adhesion, the advantage of having an optimal surface shape in increasing adhesion
lifetime becomes more significant as the adhesion increases in size.

(2) The larger the adhesion size becomes, the more drastic the effect slight deviations from the optimal
contact surface shape have on the focal adhesion lifetime. Similar behavior has been demonstrated for
adhesion of elastic media via van der Waals forces [Gao and Yao 2004; Yao and Gao 2006], as well as
vesicles adhering on curved substrates [Shi et al. 2006].

(3) As the size of a focal adhesion increases, the effect of the increased adhesion lifetime due to optimal
surface shape begins to be overtaken by crack-like singularity behaviors which result in earlier failure of
the focal adhesion. This transition of adhesion behavior leads to the observation of a critical adhesion
size that corresponds to a maximum adhesion lifetime for the prescribed focal adhesion parameters. Even
though the optimal surface shape almost always corresponds to the maximum adhesion lifetime (except
in the case of very soft matter), as the focal adhesion increases in size, the adhesion lifetime begins
to decrease after extending past a critical focal adhesion size. This is consistent with the behavior that
occurs with flat surface focal adhesion as it increases in size [Qian et al. 2008; 2009].

(4) In comparing the cases of increasing system stiffness or decreasing the magnitude of the applied
tensile load in order to increase focal adhesion lifetime, it seems that both cases amplify the effects of
optimal shape by a greater magnitude in comparison to the nonoptimized flat adhesion surface orientation.
However, decreasing the applied load seems to be less effective in mitigating the effects of reduced
adhesion lifetime due to deviations from the optimal surface shape in comparison to increasing system
stiffness for a single focal adhesion. It is worthwhile to note that the sensitivity of focal adhesions
to cell/substrate stiffness cannot be alleviated by removing stress concentration through optimal shape
design. Even for molecular clusters under initially uniform pulling forces, the cell/substrate elasticity
can destabilize focal adhesions by suppressing rebinding of open bonds [Qian and Gao 2010].

Experiments have shown that nanostructured surfaces have great impacts on cellular behavior and
tissue engineering. The concepts developed in this paper should be understood as a theoretical model
displaying the effects of surface geometry on adhesion lifetime for molecular adhesion based on specific
ligand/receptor bonds. The present study shows from Monte Carlo simulations of discrete bond evolution
that the contact surface shape could greatly influence the stability of cell-matrix adhesion. The analysis
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by Wang and Gao [2010] based on a continuum formulation of cell-substrate interaction led to similar
shape-dependent adhesion. This principle of optimal adhesion shape has already been quantitatively
demonstrated by experiments in the case of nonspecific adhesion [Waters et al. 2011] and is now being
analyzed and studied for specific adhesion as well. Once proven, we could contemplate further controlled
experiments to explore using the micro- and nanoscale surface geometry to probe cell-matrix interactions.
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LONG WAVELENGTH BIFURCATIONS AND MULTIPLE NEUTRAL AXES OF
ELASTIC LAYERED STRUCTURES SUBJECT TO FINITE BENDING
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Dedicated to Marie-Louise and Charles Steele

Geometries and rigidities involving the presence of more than one neutral axis during finite (plane-strain)
bending of a multilayered elastic (incompressible) block make numerically stiff the differential equations
governing the incremental problem necessary to investigate diffuse-mode instabilities. We have devel-
oped a compound matrix method to solve these cases, so that we have shown that the presence of two
neutral axes occurs within sets of parameters where the elastic system may display long-wavelength
bifurcation modes. Following the predictions of the theory, we have designed and realized qualitative
experiments in which these modes become visible.

1. Introduction

Recently Roccabianca et al. [2010] have addressed, solved and experimented the problem of bifurcation
of a layered incompressible elastic block, subject to finite bending in plane strain. They were able to show
that a layered system exhibits bifurcation loads and angles of bending completely different from those
occurring in a uniform elastic block. They found that for several geometries and stiffness contrasts the
first (“critical”) bifurcation load corresponds to a long-wavelength mode, which results to be very close to
the bifurcation load associated with the surface instability limit of vanishing wavelength,1 a feature also
common to the behavior of a uniform elastic block. This feature explains the experimental observation
(on uniform blocks [Gent and Cho 1999; Gent 2005] and bilayers [Roccabianca et al. 2010]) that short-
wavelength modes become visible, instead of the long-wavelength modes that are predicted to occur
before. Therefore, the question was left open whether or not wavelength modes longer than the short-
wavelength modes available at surface instability and visible in the experiments can be experimentally
displayed with a layered system in which an appropriate selection is made of stiffness and thickness
contrasts between layers. We provide a positive answer to this problem in the present article, so that our
calculations, based now on the compound matrix method [Backus and Gilbert 1967; Ng and Reid 1979a;

Financial support of PRIN grant no. 2007YZ3B24 “Multiscale Problems with Complex Interactions in Structural Engineering”
financed by Italian Ministry of University and Research is gratefully acknowledged. Experiments have been conducted by S. R.
at the Laboratory for Physical Modeling of Structures and Photoelasticity of the University of Trento, managed by D. B.; see
http://www.ing.unitn.it/dims/ssmg.
Keywords: nonlinear elasticity, neutral axis, instability, composite plate, compound matrix method.

1 Surface instability occurs in a uniformly strained half space as a bifurcated mode of arbitrary wavelength, corresponding
to a Rayleigh wave of vanishing speed. In the limit of vanishing wavelength, surface instability can be viewed as a bifurcation
mode adaptable to every boundary and state of stress of a strained body, so that it becomes a local instability mode (also called
“failure of the complementing condition” in [Benallal et al. 1993]).
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Figure 1. Bifurcation of a two-layer rubber block under finite bending evidencing long-
wavelength bifurcation modes. Stiffness and thickness ratios between the layers are
(2.687 N/mm2)/(0.095 N/mm2) and (3 mm)/(40 mm). The stiff layer (86 mm × 3 mm
× 150 mm, made up of natural rubber, marked with a white pencil on the sample) is at
the compressive side and coats a neoprene layer (86 mm × 40 mm × 150 mm).

1979b; 1985], allow us to conclude that there are situations in which the long-wavelength modes are well-
separated from the surface instability, so that systems exhibiting bifurcation modes of long wavelength
can be designed. These systems have been realized by us and qualitatively tested, showing that the theory
predictions are generally followed, Figure 1.

It turns out that the hunt for long-wavelength modes can be related2 to the presence of more than
one neutral axis (namely, the line of null normal stresses) during bending, an issue that was noted in
[Roccabianca et al. 2010], but not investigated in detail.

In a bilayer, two neutral axes typically occur when a stiff layer is placed at the compressive side of the
system, a case in which the differential equations become numerically stiff, so that we have employed
an ad hoc version of the compound matrix method, which is shown to allow systematic investigation of
the situations in which more than one neutral axis occurs. In these cases we find a sort of inversion of
the sequence of bifurcation modes with the aspect ratio of the system, so that high-wavenumber modes
are relevant for lower slender ratios than small-wavenumber modes.

2. Finite bending of an elastic multilayer and incremental bifurcations

We review the theory developed in [Roccabianca et al. 2010] for finite bending of an elastic incompress-
ible multilayered block and for incremental bifurcations, both addressed here only in the special case of
a Mooney–Rivlin material,3 a choice which affects results, but simplifies the treatment.

We denote a generic layer with a superscript (s) (s = 1, . . . , N ), so that, in the reference stress-free
configuration, a Cartesian coordinate system O(s)

0 x0(s)
1 x0(s)

2 x0(s)
3 is introduced for each layer, centered at

2 The relation is that within the parameter range in which long-wavelength bifurcations occur well-separated from surface
instability, two neutral axes are often found.

3 Bending of an elastic homogeneous block has been solved in [Rivlin 1949], while incremental bifurcations have been
analyzed in [Triantafyllidis 1980; Dryburgh and Ogden 1999; Coman and Destrade 2008; Destrade et al. 2009; 2010].
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its centroid, with basis vectors e0
i (i = 1, 2, 3), x0(s)

1 ∈ [−h(s)0 /2, h(s)0 /2], x0(s)
2 ∈ [−l0/2, l0/2], and with

x0(s)
3 denoting the out-of-plane coordinate.

The deformed configuration of each layer is a sector of a cylindrical tube of half-angle θ̄ , so that it
becomes convenient to introduce a cylindrical coordinate system O(s)r (s)θ (s)z(s), with basis vectors er ,
eθ and ez , r (s) ∈ [r (s)i , r (s)i + h(s)], θ (s) ∈ [−θ̄ ,+θ̄ ], and with out-of-plane coordinate z(s).

The imposition of incompressibility (conservation of volume) yields

r (s)i =
l0h(s)0

2θ̄h(s)
−

h(s)

2
, (1)

where h(s) is the current thickness of the s–th layer. Following [Roccabianca et al. 2010], the imposition
of the incompressibility constraint in terms of principal stretches (λr , λθ and λz) and of the boundary
conditions at x0(s)

2 =±l0/2 and x0(s)
1 =−h(s)0 /2 provides

λ(s)r =
1

αr (s)
, λ

(s)
θ = αr (s), λ(s)z = 1, (2)

where α = 2θ̄/ l0; note that α is independent of index s.
The N layers forming the multilaminated structure are assumed to be perfectly bonded to each other,

so that

r (s)i = r (s−1)
i + h(s−1) (s = 2, . . . , N ), (3)

where r (s)i is given by (1). Condition (3) provides all thicknesses h(s) (s = 2, . . . , N ) as a function of the
thickness of the first layer h(1), remaining the sole kinematical unknown of the problem, to be determined
as the solution of the boundary-value problem.

Since the layers are assumed to be perfectly bonded, all radial coordinates r (s) can be referred to
the same origin O of a cylindrical coordinate system Orθ z, common to all deformed layers; therefore,
the index s will be omitted in the following in all coordinates and the deformed configuration will be
described in terms of the global system Orθ z.

Finally, the kinematics provides all stretches in the multilayer which can be represented as

λr =
1
λ
=

l0

2θ̄r
, λθ = λ=

2θ̄r
l0
, λz = 1, (4)

and the current thickness of the s–th layer, h(s), as a function of h(s−1), namely

h(s) =−
l0h(s−1)

0

2θ̄h(s−1)
−

h(s−1)

2
+

√√√√( l0h(s−1)
0

2θ̄h(s−1)
+

h(s−1)

2

)2

+
l0h(s)0

θ̄
(s = 2, . . . , N ), (5)

determining all current thicknesses as functions of the thickness of the first layer, h(1) (in [Roccabianca
et al. 2010, Equation (21)], corresponding to our (5), a minus sign appears by mistake instead of a plus
in front of the last term under the square root).
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A constitutive prescription between the principal components of the Cauchy stress Ti (i = 1, 2, 3) and
the principal stretches λi (i = 1, 2, 3) can be written as

Ti =−π + λi
∂W (λ1, λ2, λ3)

∂λi
, λ1λ2λ3 = 1, (6)

where the index i is not summed and π is an arbitrary Lagrangian multiplier representing the undeter-
mined hydrostatic pressure.

For a generic layer s, the Cauchy stress can be represented in polar coordinates as

T (s)
= T (s)

r er ⊗ er + T (s)
θ eθ ⊗ eθ + T (s)

z ez ⊗ ez, (7)

and calculated from the constitutive equations (6). Here, we adopt the Mooney–Rivlin strain-energy
function defined in terms of the moduli c1 and c2 and of the left Cauchy–Green deformation tensor B as
(for layer s)

W (s)
=

c(s)1

2
(tr B− 3)+

c(s)2

2
(tr B−1

− 3). (8)

For a plane-strain deformation, defining the shear modulus µ0 as

µ
(s)
0 = c(s)1 + c(s)2 , (9)

the integration of the equilibrium equation (div T = 0) within each layer yields, for the components of
Cauchy stress,

T (s)
r = Ŵ (s)

+ γ (s) =
µ
(s)
0

2

(
λ2
+

1
λ2

)
+ γ (s),

T (s)
θ =

(
λŴ (s)

)′
+ γ (s) =

µ
(s)
0

2

(
3λ2
−

1
λ2

)
+ γ (s),

(10)

where Ŵ (s)(λ) = W (s)(1/λ, λ, 1), γ (s) is an integration constant, and ()′ denotes differentiation with
respect to the stretch λ. The component T (s)

z can be inferred from (6). Note that in plane strain, the
definition of W in (8) specializes to

W (s)
=

c(s)1 + c(s)2

2

(
λ2
+

1
λ2 − 2

)
=
µ
(s)
0

2

(
λ2
+

1
λ2 − 2

)
. (11)

The N constants γ (s) can be determined by imposing the boundary conditions at the external sides of
the layered system, namely

T (1)
r (r (1)i )= 0, T (N )

r (r (N )e )= 0, (12)

and the interfacial continuity conditions

T (s−1)
r (r (s−1)

e )= T (s)
r (r (s)i ) (s = 2, . . . , N ), (13)

where r (s−1)
e = r (s−1)

i +h(s−1) (s = 2, . . . , N +1). In particular, the constant γ (N ) can be calculated from
(12)2 using (10)1 as

γ (N ) =−
µ
(N )
0

2

[
(αr (N )e )2+

1

(αr (N )e )2

]
, (14)
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while from (13) the following recursion rule, useful in computing all the remaining constants γ (s), can
be inferred

γ (s−1)
=
µ
(s)
0 −µ

(s−1)
0

2

[
(αr (s−1)

e )2+
1

(αr (s−1)
e )2

]
+ γ (s) (s = 2, . . . , N ), (15)

where r (s)i = r (s−1)
e . In the special case N = 2, (15) and (12)1 provide

µ
(1)
0

2

[
(αr (1)i )2+

1

(αr (1)i )2

]
+
µ
(2)
0 −µ

(1)
0

2

[
(αr (1)e )2+

1

(αr (1)e )2

]
+ γ (2) = 0, (16)

in which r (1)i , r (1)e and γ (2) are all functions of h(1), through (1), (5), and (15). Therefore, (16) can be
numerically solved to obtain the current thickness of the first layer, h(1), which determines the solution
of a bilayer subject to finite bending.

Now that the bending solution is known, this can be used as the fundamental solution in an analysis of
incremental bifurcations. The incremental equilibrium is expressed in terms of the updated incremental
first Piola–Kirchhoff stress 6 by

div6 = 0, (17)

where

6 = ṠFT , Ṡ= Ṫ F−T
− T LT F−T , (18)

S= T F−T and a superposed dot is used to denote a first-order increment. L is the gradient of incremental
displacements with cylindrical components

L = ur,r er ⊗ er +
ur,θ − uθ

r
er ⊗ eθ + uθ,r eθ ⊗ er +

ur + uθ,θ
r

eθ ⊗ eθ , (19)

subject to the constraint tr L = 0 (incremental incompressibility), namely,

rur,r + ur + uθ,θ = 0. (20)

The linearized constitutive equation is

6 = CL− π̇ I, (21)

where C is the fourth-order tensor of instantaneous elastic moduli and, since 6 = Ṫ − T LT [see (18)],
the balance of rotational momentum yields

612−621 = T2L12− T1L21, (22)

so that

Ci j j i + Ti = C j i j i (i 6= j), (23)

where the indices i and j are not summed.
For an incompressible isotropic elastic material, the components of C can be written as functions of

two incremental moduli, denoted by µ and µ∗, that depend on the current deformation. In cylindrical



516 SARA ROCCABIANCA, DAVIDE BIGONI AND MASSIMILIANO GEI

coordinates, the nonvanishing components of C are (see [Hill and Hutchinson 1975; Gei and Ogden
2002])

Crrrr = Cθθθθ = 2µ∗+ p, Cθrθr = µ−0,

Crθrθ = µ+0, Crθθr = Cθrrθ = µ+ p,
(24)

where

0 =
Tθ − Tr

2
and p =−

Tθ + Tr

2
, (25)

describe the state of prestress. Hence, the incremental constitutive equations (21) take the explicit form

6rr =−π̇ + (2µ∗+ p)ur,r , 6θθ =−π̇ + (2µ∗+ p)
ur + uθ,θ

r
,

6rθ = (µ+0)
ur,θ − uθ

r
+ (µ+ p)uθ,r , 6θr = (µ+ p)

ur,θ − uθ
r

+ (µ−0)uθ,r .
(26)

For a Mooney–Rivlin material deformed in plane strain, the two moduli µ and µ∗ coincide and are equal
to [see (8)]

µ= µ∗ =
µ0

2
(λ4
+ 1)
λ2 . (27)

We seek bifurcation represented by an incremental displacement field in the form
ur (r, θ)= f (r) cos nθ,

uθ (r, θ)= g(r) sin nθ,

π̇(r, θ)= k(r) cos nθ,

(28)

so that (20) can be reformulated as

g =−
( f + r f ′)

n
, (29)

and the incremental equilibrium equations as

k ′ = D f ′′+
(

C,r + D,r +
C + 2D

r

)
f ′+

E(1− n2)

r2 f,

k =
r2C
n2 f ′′′+

F + 3C
n2 r f ′′+

(
F
n2 − D

)
f ′−

1− n2

n2

F
r

f,
(30)

where coefficients C , D, E and F can be expressed (for a Mooney–Rivlin material) as

C = µ−0 =
µ0

λ2 , D = 2µ∗−µ=
µ0

2
λ4
+ 1
λ2 ,

E = µ+0 = µ0λ
2, F = rC,r +C =−

µ0

λ2 .

(31)

By differentiating (30)2 with respect to r and substituting the result into (30)1, a single differential
equation in terms of f (r) is obtained:

r4 f ′′′′+ 2r3 f ′′′−
(
3+ n2(λ4

+ 1)
)
r2 f ′′+

(
3+ n2(1− 3λ4)

)
r f ′+ (n2

− 1)(3+ n2λ4) f = 0, (32)
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defining the function f (r) within a generic layer. Once f (r) is known for each layer, the other functions,
g(r) and k(r), can be calculated by employing (29) and (30)2, respectively, so that function f (r) becomes
the primary unknown.

The differential equation (32) for the functions f (s)(r) (s = 1, . . . , N ) is complemented by the follow-
ing boundary conditions:

• continuity of incremental tractions and displacements across interfaces:

f (s)
∣∣
r=r (s)e

= f (s+1)
∣∣
r=r (s+1)

i
,{

f + r f ′
}(s)∣∣∣

r=r (s)e
=
{

f + r f ′
}(s+1)

∣∣∣
r=r (s+1)

i

,

{
µ0

(
r3 f ′′′+ 2r2 f ′′−

(
1+ n2( 1

2(3+ λ
4)− γ̄

))
r f ′+ (1− n2) f

)}(s)∣∣∣∣
r=r (s)e

=

{
µ0

(
r3 f ′′′+ 2r2 f ′′−

(
1+ n2(1

2(3+ λ
4)− γ̄

))
r f ′+ (1− n2) f

)}(s+1)
∣∣∣∣
r=r (s+1)

i

,

{
µ0

(
r2 f ′′+

( 1
2(3+ λ

4)+ γ̄
)
r f ′+ (1− n2)

( 1
2(λ

4
− 1)+ γ̄

)
f
)}(s)∣∣∣∣

r=r (s)e

=

{
µ0

(
r2 f ′′+

( 1
2(3+ λ

4)+ γ̄
)
r f ′+ (1− n2)

( 1
2(λ

4
− 1)+ γ̄

)
f
)}(s+1)

∣∣∣∣
r=r (s+1)

i

,

(33)

where γ̄ (s) = γ (s)λ2/µ
(s)
0 ;

• null tractions (for dead loading) at the external surfaces (r = r (1)i and r = r (N )e ):{
r3 f ′′′+ 2r2 f ′′−

(
1+ n2(2+ λ4)

)
r f ′+ (1− n2) f

}(1),(N )∣∣∣
r=r (1)i ,r (N )e

= 0,

{
r2 f ′′+ r f ′+ (n2

− 1) f
}(1),(N )∣∣∣

r=r (1)i ,r (N )e
= 0;

(34)

• null incremental normal displacement and nominal shear stress (at θ =±θ̄ ), which yields

n =
2mπ
αl0

(m = 1, 2, 3, . . . ). (35)

3. The compound matrix method for a bilayer

The compound matrix method was initially proposed in [Backus and Gilbert 1967] and applied to prob-
lems of fluid mechanics [Backus and Gilbert 1967; Ng and Reid 1979a; 1979b; 1985, Anturkar et al. 1992;
Yiantsios and Higgins 1988] and solid mechanics [Lindsay 1992; Lindsay and Rooney 1992]. Haughton
and Orr [1995] used the method in incremental elasticity, while Haughton [1999], Dryburgh and Ogden
[1999] and Destrade et al. [2009; 2010] employed it to investigate instabilities of a homogeneous block
subjected to finite flexure. Our aim is to show the application to elastic multilayers subject to finite
bending, in the simple case of a bilayer.
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The differential equation (32) can be rewritten as a linear system of first-order ODEs, that in the case
of two elastic layers can be cast in the standard form

y′ = Ay, z′ = Bz, (36)

where the vectors y and z are defined as

y(r)=
[

f (1)(r) f (1)
′
(r) f (1)

′′
(r) f (1)

′′′
(r)
]T
,

z(r)=
[

f (2)(r) f (2)
′
(r) f (2)

′′
(r) f (2)

′′′
(r)
]T
,

(37)

and the matrices A and B, which depend on the radial coordinate r , as

A(r)=


0 1 0 0
0 0 1 0
0 0 0 1

A41 A42 A43 A44

 , B(r)=


0 1 0 0
0 0 1 0
0 0 0 1

B41 B42 B43 B44

 . (38)

The components of A and B, as well as those of other matrices and vectors introduced in this Section
are listed in Appendix A.

The boundary conditions at the two external surfaces of the layer, equations (34), are equivalent to

C y(ri )= 0, Dz(re)= 0, (39)

where ri = r (1)i , re = r (2)i + h(2) and matrices C and D are

C =
[

C11 C12 C13 C14

C21 C22 C23 0

]
, D =

[
D11 D12 D13 D14

D21 D22 D23 0

]
. (40)

The continuity conditions (33) between the two layers, can be written as

G y(rm)+ H z(rm)= 0, (41)

where rm = r (1)i + h(1) and matrices G and H are defined as

G =


G11 G12 G13 G14

G21 G22 G23 0
G31 0 0 0
G41 G42 0 0

 , H =


H11 H12 H13 H14

H21 H22 H23 0
H31 0 0 0
H41 H42 0 0

 . (42)

It is now convenient to rearrange the four solutions of (36): two for the first layer, yI , yII , and two for
the second layer, z I , zII , [these solutions already satisfy the boundary conditions (39), but still not the
interface conditions (42)] into two matrices sharing the common structure

∗
I
1 ∗

II
1

∗
I
2 ∗

II
2

∗
I
3 ∗

II
3

∗
I
4 ∗

II
4

 (43)
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(where the symbol ∗ stands for either y or z) and defining the so-called compound matrices. Moreover,
we introduce the vectors φy

i (i = 1, . . . , 6) and φz
i (i = 1, . . . , 6) collecting the components of the minors

of matrices (43) as
φ∗1 = ∗

I
1 ∗

II
2 −∗

I
2 ∗

II
1 , φ

∗

4 = ∗
I
2 ∗

II
3 −∗

I
3 ∗

II
2 ,

φ∗2 = ∗
I
1 ∗

II
3 −∗

I
3 ∗

II
1 , φ

∗

5 = ∗
I
2 ∗

II
4 −∗

I
4 ∗

II
2 ,

φ∗3 = ∗
I
1 ∗

II
4 −∗

I
4 ∗

II
1 , φ

∗

6 = ∗
I
3 ∗

II
4 −∗

I
4 ∗

II
3 .

(44)

With the definitions (43) and (44), the differential problem (36) can be shown [Ng and Reid 1979a]
to be equivalent to the new problem(

φy)′
= P Aφy,

(
φz)′
= P Bφz, (45)

where, introducing the symbol �, equal to A (to B) for φy (for φz), we define

P�
=



0 1 0 0 0 0

0 0 1 1 0 0

�42 �43 �44 0 1 0

0 1 0 0 1 0

−�41 0 0 �43 �44 1

0 −�41 0 −�42 0 �44


. (46)

The system of differential equations (45) has to be solved using a Runge–Kutta (4,5) numerical method
(we have used Matlab version 7.9) to determine the compound matrices φy and φz .

The solution of the bifurcation problem can be written as a linear combination of the solutions yI , yII ,
z I , and zII ,

y = ξ1 yI
+ ξ2 yII, z = ξ3z I

+ ξ4zII, (47)

where the arbitrary coefficients ξi (i = 1, . . . , 4), which set the amplitude of the bifurcation mode, remain
undefined in a linearized analysis. The conditions at the internal interface (41) can be recast as

Mξ = 0, with [ξ ] = [ξ1 ξ2 ξ3 ξ4]
T , (48)

where

M =



(
G yI

)
1

(
G yII

)
1

(
H z I

)
1

(
H zII

)
1(

G yI
)

2

(
G yII

)
2

(
H z I

)
2

(
H zII

)
2(

G yI
)

3

(
G yII

)
3

(
H z I

)
3

(
H zII

)
3(

G yI
)

4

(
G yII

)
4

(
H z I

)
4

(
H zII

)
4

 , (49)

so that the bifurcation condition, depending on the bending half-angle θ̄ , the undeformed aspect ratios
l0/h0 and h(1)0 /h(2)0 , and the stiffness ratio µ(1)0 /µ

(2)
0 , becomes

det(M)= 0. (50)
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Condition (50) can be rewritten as the sum of 2×2-determinants as

1∑
i=0

(−1)i
{∣∣∣∣∣M1+i,1 M1+i,2

M41 M42

∣∣∣∣∣
∣∣∣∣∣M2−i,3 M2−i,4

M33 M34

∣∣∣∣∣−
∣∣∣∣∣M2+i,1 M2+i,2

M11 M12

∣∣∣∣∣
∣∣∣∣∣M3−i,3 M3−i,4

M43 M44

∣∣∣∣∣
−

∣∣∣∣∣M2+2i,1 M2+2i,2

M31 M32

∣∣∣∣∣
∣∣∣∣∣M4−2i,3 M4−2i,4

M13 M14

∣∣∣∣∣
}
= 0. (51)

The determinants can be expressed in terms of the compound matrices φy and φz as∣∣∣∣∣Mk1 Mk2

Ml1 Ml2

∣∣∣∣∣= (Gk1Gl2−Gk2Gl1)φ
y
1 + (Gk1Gl3−Gk3Gl1)φ

y
2 + (Gk1Gl4−Gk4Gl1)φ

y
3

+ (Gk2Gl3−Gk3Gl2)φ
y
4 + (Gk2Gl4−Gk4Gl2)φ

y
5 + (Gk3Gl4−Gk4Gl3)φ

y
6 (52)

and ∣∣∣∣∣Mk3 Mk4

Ml3 Ml4

∣∣∣∣∣= (Hk1 Hl2− Hk2 Hl1)φ
z
1+ (Hk1 Hl3− Hk3 Hl1)φ

z
2+ (Hk1 Hl4− Hk4 Hl1)φ

z
3

+ (Hk2 Hl3− Hk3 Hl2)φ
z
4+ (Hk2 Hl4− Hk4 Hl2)φ

z
5+ (Hk3 Hl4− Hk4 Hl3)φ

z
6, (53)

where the indices k and l take the values corresponding to the representation (51).
Once the undeformed aspect ratios l0/h0 and h(1)0 /h(2)0 and the stiffness ratio µ(1)0 /µ

(2)
0 have been

fixed, the bifurcation condition (50), through representation (51), becomes a function of the bending
half-angle θ̄ only, to be solved numerically (we have used the function “fzero” of Matlab). An example
of the advantage related to the use of the compound matrix method over the usual determinantal method
is reported in Figure 2, where det(M) is plotted as a function of θ̄ for a stiff case, in which the superiority
of the former approach is evident (note the spurious oscillations of the determinantal method). In this
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Figure 2. The compound matrix method (dashed line) against the determinantal method
(solid line): det(M) is evaluated at different angles θ̄ , for l0/h0 =0.1, h(1)0 /h(2)0 =

(1 mm)/(5 mm) and µ(1)0 /µ
(2)
0 = (7 N/mm2)/(1 N/mm2). Bifurcation corresponds to the

vanishing of det(M); note the spurious oscillations of the latter method.
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particular case, the 2-norm condition number of the matrix M is equal to 9.37× 1027, a value confirming
that the matrix is bad conditioned.

4. Bifurcations of a two-layer system

Results for bifurcation of bent configurations for bilayers are shown in Figure 3, in terms of criti-
cal half-angle θ̄cr (upper graphs) and critical stretch λcr (r

(1)
i ) at the compressed side of the specimen
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Figure 3. Critical angle θ̄cr and critical stretch λcr (evaluated at the internal boundary,
r = r (1)i ) versus aspect ratio l0/h0 for a Mooney–Rivlin bilayer coated with a stiff layer
and subject to bending with h(1)0 /h(2)0 and µ(1)0 /µ

(2)
0 as indicated above the graphs. The

stiff layer is located at the side in compression. In each plot, a small circle denotes a
transition between two integer values of m (the parameter which sets the circumferential
wavenumber). In the lower plots, the insert contains a magnification of the region where
bifurcations occur at low l0/h0. Two neutral axes occur in the region marked gray.
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(lower graphs) as functions of the global aspect ratio, that is, the initial length divided by the ini-
tial total thickness. The ratios between the thicknesses and the shear coefficients µ0 of the layers
are (1 mm)/(5 mm) and (7 N/mm2)/(1 N/mm2) for the left half of Figure 3, and (3 mm)/(40 mm) and
(2.687 N/mm2)/(0.095 N/mm2) for the right half. The various curves reported in the figure represent
solutions corresponding to different bifurcation modes, singled out by the circumferential wavenumber
m. The mode visible in an experiment is that corresponding to the lower value of the critical half-angle,
θ̄cr , or to the higher value of critical stretch at the compressed side, λcr . Note that the gray zone represents
the range of aspect ratios and bending half-angle for which two neutral axes occur.

Within the set of aspect ratios and stiffness contrast analyzed in the left part of Figure 3, a bifurcation
only appears when two neutral axes have been formed, while it may occur when two or one neutral axes
are present in the right half of the figure. In all cases analyzed, including Figure 3, we have found that
the gray zone in the θ̄cr –l0/h0 graphs is bounded by a straight line, becoming a horizontal line in the
λcr –l0/h0 representation. An explanation for this fact is given in Appendix C.

The special feature emerging from Figure 3, left (and not found within the set of parameters and
geometries investigated in [Roccabianca et al. 2010]) is that the mode m =1 of bifurcation becomes
the critical mode for a sufficiently high slenderness, so that here long-wavelength bifurcations (corre-
sponding to small m) become well-separated from surface modes (corresponding to high m) and thus
fully visible. This feature is also present in Figure 3, right, which has been produced with values of
parameters corresponding to commercially available rubbers (and tested by us; see Appendix B). In this
way it has been possible to produce the two samples shown in Figures 1 and 4, differing only in the
aspect ratio (taken equal to 2 for the sample shown in Figure 1 and 1.5 for that shown in Figure 4) and
evidencing long-wavelength bifurcation modes.

The progression of bending is shown in Figure 4, referred to a 64.5 mm × 3 mm × 150 mm rubber
strip glued to a 64.5 mm × 40 mm × 150 mm neoprene plate (in which the larger dimension is that out-
of-plane, taken sufficiently large, 150 mm, to simulate the plane strain condition). At a certain stage of
finite bending, namely at a certain bending half-angle θ̄cr , a long-wavelength mode can be detected to
appear on the surface of the sample (Figure 4, right), which qualitatively confirms our findings.

Figure 4. Progressive bending of a two-layer rubber block (undeformed configuration
is shown on the left, a bent configuration in the center), evidencing bifurcation with
long-wavelength bifurcation modes (shown on the right). Stiffness and thickness ratios
between layers are (2.687 N/mm2)/(0.095 N/mm2) and (3 mm)/(40 mm), respectively.
The stiff layer (64.5 mm × 3 mm × 150 mm, made up of natural rubber, marked with
a white pencil on the sample) is at the compressive side and coats a neoprene layer
(64.5 mm × 40 mm × 150 mm).
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From a quantitative point of view, the critical half-angle for bifurcation results from modeling to
be equal to 39.40◦ for the sample shown in Figure 1 and 35.49◦ for that shown in Figure 4, values
that are definitely higher than those found experimentally (30.00◦ for the former sample and 21.00◦ for
the latter). The fact that the theoretical predictions correspond to bifurcation angles larger than those
observed experimentally is also common to all previous experiments [Gent and Cho 1999; Roccabianca
et al. 2010] and can be explained as the usual effect of imperfections (so that for instance the bending
mode associated with the Euler buckling is always experimentally observed to become visible before
the achievement of the critical load). The fact that the discrepancy between theoretical and experimental
values is larger in the cases reported in the present article can be motivated in terms of the effect of the
different sensitivity to imperfections. In fact, short-wavelength undulations introduced in the reference
configuration begin to amplify and to become visible much closer to the bifurcation threshold than
long-wavelength imperfections, a feature demonstrated through finite element numerical simulations
[Roccabianca 2011].

5. Conclusions

Incremental bifurcations emanating from a finitely bent configuration of an elastic incompressible multi-
layered block have been reconsidered after the article [Roccabianca et al. 2010]. It has been shown that
the presence of two neutral axes is linked to the possibility of finding long-wavelength bifurcation modes
well-separated from (short-wavelength) surface modes, a circumstance which was pointed out without
proof in that article and is now definitely demonstrated. Since the equations governing the bifurcation
become stiff (specially when more than one neutral axis is present), the treatment of the computational
problem has been possible only through an use of the compound matrix method. Our findings have been
substantiated by qualitative experiments, giving full evidence to long-wavelength modes.

Appendix A. Components of the compound matrices in (38), (40), (42), and (46)

A41(r)=
(n2
− 1)(F (1)− r F (1),r − n2 E (1))

C (1)r4 , A42(r)=
2F (1)− (r F (1)+ 2rn2 D(1)),r

C (1)r3 ,

A43(r)=
2n2 D(1)

− (r F (1)),r − 4F (1)

C (1)r2 , A44(r)=−2
F (1)+ 2C (1)

C (1)r
.

B41(r)=
(n2
− 1)(F (2)− r F (2),r − n2 E (2))

C (2)r4 , B42(r)=
2F (2)− (r F (2)+ 2rn2 D(2)),r

C (2)r3 ,

B43(r)=
2n2 D(2)

− (r F (2)),r − 4F (2)

C (2)r2 , B44(r)=−2
F (2)+ 2C (2)

C (2)r
.

C11 = F (1)(n2
−1), C12 = ri [F (1)−n2(2D(1)

+C (1))], C13 = r2
i (F

(1)
+3C (1)),

D11 = F (2)(n2
−1), D12 = re[F (2)−n2(2D(2)

+C (2))], D13 = r2
e (F

(2)
+3C (2)),

C14 = r3
i C (1), C21 = n2

−1, C22 = ri , C31 = r2
i ,

D14 = r3
e C (2), D21 = n2

−1, D22 = re, D23 = r2
e .
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G11 = F (1)(n2
−1), G12 = rm[F (1)−n2(2D(1)

+C (1)
−T (1)

r )],

H11 = F (2)(1−n2), H12 = rm[n2(2D(2)
+C (2)

−T (2)
r )−F (2)],

G13 = r2
m(F

(1)
+3C (1)), G14 = r3

mC (1), G21 = (n2
−1)(C (1)

−T (1)
r ),

H13 =−r2
m(F

(2)
+3C (2)), H14 =−r3

mC (2), H21 = (1−n2)(C (2)
−T (2)

r ),

G22 = rm(C (1)
+T (1)

r ), G23 = r2
mC (1), G31 = 1, G41 = 1, G42 = rm,

H22 =−rm(C (2)
+T (2)

r ), H23 =−r2
mC (2), H31 =−1, H41 =−1, H42 =−rm .

P A
31 =

2F (1)−(r F (1)+2rn2 D(1)),r

C (1)r3 , P A
32 =

2n2 D(1)
−(r F (1)),r−4F (1)

C (1)r2 , P A
33 =
−2(F (1)+2C (1))

C (1)r
,

P A
51 =

(1−n2)(F (1)−r F (1),r −n2 E (1))
C (1)r4 , P A

54 =
2n2 D(1)

−(r F (1)),r−4F (1)

C (1)r2 , P A
55 =
−2(F (1)+2C (1))

C (1)r
,

P A
62 =

(1−n2)(F (1)−r F (1),r −n2 E (1))
C (1)r4 , P A

64 =
(r F (1)+2rn2 D(1)),r−2F (1)

C (1)r3 , P A
66 =
−2(F (1)+2C (1))

C (1)r
.

P B
31 =

2F (2)−(r F (2)+2rn2 D(2)),r

C (2)r3 , P B
32 =

2n2 D(2)
−(r F (2)),r−4F (2)

C (2)r2 , P B
33 =
−2(F (2)+2C (2))

C (2)r
,

P B
51 =

(1−n2)(F (2)−r F (2),r −n2 E (2))
C (2)r4 , P B

54 =
2n2 D(2)

−(r F (2)),r−4F (2)

C (2)r2 , P B
55 =
−2(F (2)+2C (2))

C (2)r
,

P B
62 =

(1−n2)(F (2)−r F (2),r −n2 E (2))
C (2)r4 , P B

64 =
(r F (2)+2rn2 D(2)),r−2F (2)

C (2)r3 , P B
66 =
−2(F (2)+2C (2))

C (2)r
.

Appendix B. Experimental determination of the stiffness coefficient µ0 of the employed materials

In our qualitative experiments to detect bifurcation, we have imposed finite bending to bilayered systems
made up of a natural rubber strip (3 mm thick) and a neoprene block (40 mm thick). The bilayer is
obtained by gluing the neoprene block to the natural rubber strip (we have used ethyl cyanoacrylate,
Pattex©).

Four dog-bone-shaped standard ISO 5277-1/1BA 30 mm × 5 mm specimens have been sampled from
the two materials to characterize them in terms of Mooney–Rivlin model. Result of the tests (performed
at room temperature with a Messphysik Midi 10 testing machine equipped with Doli Edc 222 acquisition
and control electronics) are shown in Figure 5, in terms of true stress versus stretch. The selected ranges
of stress and stretch for the tests correspond to the values expected in the bending experiments.

In the plots, the interpolation with the Mooney–Rivlin material (which provides a nearly linear re-
sponse at the stretch under consideration) selected for the calculations is also included. The least square
method provides for the natural rubber c(natrub)

1 = 0.007 N/mm2, c(natrub)
2 = 2.68 N/mm2 (corresponding

to µ(natrub)
0 ' 2.687 N/mm2) and for the neoprene c(neopr)

1 = 0.09 N/mm2, c(neopr)
2 = 0.005 N/mm2, giving

µ
(neopr)
0 ' 0.095 N/mm2.
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Figure 5. Uniaxial tests and material characterization of the natural rubber and the
neoprene plate employed for the specimens to be subject to bending. Dotted curves
represent Mooney–Rivlin interpolations employed in the analysis.

Appendix C. A justification of the fact that the region in which two neutral axes are present
is bounded by a straight line in Figure 3

We provide a justification of the finding that, when two neutral axes occur in a bilayer, the stretch (at the
compressed side) is independent of the global aspect ratio l0/h0, so that the gray zone (corresponding
to the presence of two neutral axes) is bounded by a horizontal (inclined) line in the λcr –l0/h0 (in the
θ̄cr –l0/h0) representation, Figure 3.

The explanation of this effect is based on two observations:

i. During progressive bending of a bilayer with the stiff layer under compression, one neutral axis is
present from the beginning of the deformation within the soft layer, while the second neutral axis
always nucleates at the interface between the two layers (and then moves in the stiff layer).

ii. When the second neutral axis nucleates, the radial Cauchy stress Tr at the interface between layers
takes a value independent of the initial aspect ratio l0/h0. We can therefore operate on a single
layer by imposing, in addition to the usual bending, a pressure Pext at one of its external sides (of
initial length l0) to correspond to the radial stress at the interface between layers. In particular, we
can apply Pext at the side where the longitudinal stretch is greater than 1.

To operate in dimensionless form, we introduce, from (2) and (4), the kinematic unknowns

ᾱ =
2θ̄
a
, r̄ =

r
h0
, h̄ =

h
h0
, (C.1)

where a = l0/h0 is the aspect ratio of the undeformed configuration. The internal and external nondi-
mensional radii, from (1), are

r̄i =
a

2θ̄ h̄
−

h̄
2
, r̄e = r̄i + h̄. (C.2)
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As we want to write the bending problem in terms of the variable λi = λ(r̄i ), we calculate θ̄ as a function
of a, h̄ and λi , so that (4)2 gives

θ̄ =
a
h̄

(
1
h̄
− λi

)
, (C.3)

and the condition λe = λ(r̄e) becomes

λe =
2
h̄
− λi . (C.4)

The boundary conditions for the layer under consideration are now

Tr (r̄i )= 0, Tr (r̄e)= Pext, (C.5)

where

Tr =
µ0

2

(
λ2
+

1
λ2

)
+ γ,

can be written from (10)1. Equation (C.5)2 provides the coefficient γ in the form

γ = Pext
−
µ0

2

(
λ2

e +
1
λ2

e

)
, (C.6)

while, on the other hand, (C.5)1 is equivalent to

λ2
i +

1
λ2

i
+ 2

Pext

µ0
−

[(
2
h̄
− λi

)2

+

(
2
h̄
− λi

)−2
]
= 0, (C.7)

from which it is clear that the unknown h̄ is independent of a (but remains dependent on λi , µ0, and
Pext). Therefore, since a neutral axis corresponds to

Tθ (r̄e)= 0, (C.8)

equations (10)2, (C.6), and (C.4) show that the neutral axis condition is independent of a, so that the
solution in terms of λi becomes only a function of µ0 and Pext.
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ADVANTAGES OF FORMULATING EVOLUTION EQUATIONS
FOR ELASTIC-VISCOPLASTIC MATERIALS IN TERMS

OF THE VELOCITY GRADIENT INSTEAD OF THE SPIN TENSOR

M. B. RUBIN AND O. PAPES

Dedicated to Charles and Marie-Louise Steele, who advanced the field of mechanics with their wise editorial leadership

Evolution equations for tensors that characterize elastic-viscoplastic materials are often formulated in
terms of a Jaumann derivative based on the spin tensor. Typically, numerical integration algorithms for
such equations split the integration operation by first calculating the response due to rate of deformation,
followed by a finite rotation. Invariance under superposed rigid body motions of algorithms, incremental
objectivity and strong objectivity are discussed. Specific examples of steady-state simple shear at con-
stant rate and steady-state isochoric extension relative to a rotating coordinate system are used to analyze
the robustness and accuracy of different algorithms. The results suggest that it is preferable to reformulate
evolution equations in terms of the velocity gradient instead of the spin tensor, since strongly objective
integration algorithms can be developed using the relative deformation gradient. Moreover, this relative
deformation gradient can be calculated independently of the time dependence of the velocity gradient
during a typical time step.

1. Introduction

Evolution equations with finite rotations occur naturally in continuum mechanics when history-dependent
variables are expressed in terms of the present deforming configuration. Researchers in continuum
mechanics typically focus attention on integrating rotations and use a representation of the rotation
tensor attributed to Euler and Rodrigues; see, e.g., [Argyris 1982; Simo and Vu-Quoc 1988; Argyris
and Poterasu 1993; Govindjee 1997; Becker 2006; Rubin 2007]. One of the objectives of this paper is
to discuss fundamental and practical reasons for considering evolution equations based on the velocity
gradient instead of on the spin tensor.

To be more specific, it is recalled that within the context of the three-dimensional theory the velocity
gradient L separates into a symmetric rate of deformation tensor D and a skew-symmetric spin tensor
W , such that

L = D+W , D = 1
2(L+ LT ), W = 1

2(L− LT ). (1-1)

Within the context of hypoelastic formulations of the elastic response for elastic-viscoplastic materials
it is common to propose a constitutive equation for the time rate of change of Cauchy stress T . For
example, a typical constitutive structure based on the Jaumann derivative of stress suggests that

W
T = Ṫ −W T − T W T

= K̂W (T , D), (1-2)

Keywords: elastic-viscoplastic, finite rotation, incremental objectivity, numerical integration.
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where a superposed dot denotes material time differentiation and the function K̂W (T , D) characterizes
elastic and inelastic rates of deformation.

Integration of (1-2) over the time period t1 ≤ t ≤ t2 with time increment 4t = t2 − t1 is usually
performed in two steps. First, the initial value T (t1) of stress is augmented by an increment of stress that
is determined by the quantity K̂W and then the result is rotated with an orthogonal tensor associated with
the spin W . This procedure can be formalized by introducing a proper orthogonal tensor 3W defined by
the evolution equation and initial condition

3̇W =W3W , 3W (t1)= I, (1-3)

and by introducing the auxiliary tensor TW defined by

T =3W TW3
T
W , (1-4)

which satisfies the evolution equation and initial condition

˙TW =3
T
W K̂W (T , D)3W , TW (t1)= T (t1). (1-5)

In particular, this procedure requires two approximations, one for the integral of the stress (1-5) and
another for the integral of the rotation (1-3). Hughes and Winget [1980] developed an approximate
solution of (1-2), which will be discussed in Section 2. Also, for constant spin, (1-3) can be solved
exactly in terms of the exponential map; see, e.g., [Govindjee 1997].

The Jaumann derivative is one of a number of stress rates which is properly invariant under superposed
rigid body motions (SRBM) and which has been used in the literature to develop evolution equations
for stress. For example, Dienes [1979] used the skew-symmetric tensor associated with the material
derivative of the rotation tensor R in the polar decomposition (see [Malvern 1969], for instance) of
the total deformation gradient F. Also, Rashid [1993] used the skew-symmetric tensor associated with
the material derivative of the rotation tensor Rr in the polar decomposition of the relative deformation
gradient Fr .

The same material response as that characterized by (1-2) can be obtained using different stress rates
as long as the term on the right-hand side of (1-2) is modified appropriately. For example, the Oldroyd
rate (see, e.g., [Holzapfel 2000]) can be used to obtain the evolution equation

L
T = Ṫ − LT − T LT

= K̂L(T , D), (1-6)

where the function K̂L is defined by

K̂L(T , D)= K̂W (T , D)− DT − T D. (1-7)

Next, it is recalled that the relative deformation gradient Fr can be defined in terms of the total
deformation gradient by the expression

Fr (t)= F(t)F−1(t1). (1-8)

Moreover, it can be shown that Fr satisfies the evolution equation and initial condition

Ḟr = L Fr , Fr (t1)= I . (1-9)
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It then follows that the solution of (1-6) can be written in the form

T = Fr TL FT
r , (1-10)

where the auxiliary tensor TL satisfies the evolution equation and initial condition

˙T L = F−1
r K̂L(T , D)F−T

r , TL(t1)= T (t1). (1-11)

Since the material response characterized by (1-2) can be formulated using different invariant stress
rates, there is no fundamental advantage of one properly invariant formulation over another. However,
from a practical point of view, details of the approximate integration algorithms for {3W , TW } or {Fr , TL}

may present advantages due to accuracy or invariance under SRBM.
Another important consideration was discussed in [Rashid 1993]. In computer codes for integrating the

equations of motion in continuum mechanics the positions of material points are known at the beginning
of the time step and are determined at the end of the time step. For implicit integration algorithms the
final positions are determined by iteration, whereas for explicit integration algorithms they are determined
by estimations based on the positions, velocities and accelerations during the time step. Rashid argued
that the time dependences of the rate of deformation tensor D and spin tensor W during the time step
are never known. This means that integration of the Jaumann formulation necessarily requires approx-
imations associated with the specification of the time dependences of D and W as well as additional
approximations due to the specific integration algorithms for both the rotation (1-3) and stress (1-5).

In contrast, the value Fr (t2) of the relative deformation gradient at the end of the time step is a unique
function of the positions at the beginning and end of the time step and therefore is known. This means that
the evolution equation (1-9) can be integrated exactly without assuming an approximation of the velocity
gradient. Consequently, the only approximation associated with the Oldroyd formulation appears in the
specified integration algorithm for the auxiliary stress value TL in (1-11). For this reason the Oldroyd
seems to have a practical advantage over the Jaumann formulation.

Eckart [1948] seems to be the first to have proposed an evolution equation directly for elastic defor-
mation for large deformations of elastically isotropic elastic-plastic materials. In particular, using [Flory
1961] it is possible to introduce a symmetric unimodular tensor B′e,

det B′e = 1, (1-12)

which is a pure measure of elastic distortional deformation. Then, for elastic-viscoplastic response B′e
can be determined by the evolution equation

Ḃ′e = L B′e+ B′e LT
−

2
3(D · I)B

′

e−0Ap, Ap = B′e−
3

B′−1
e · I

I, (1-13)

where 0 and Ap characterize the rate of relaxation due to plasticity. This equation must be integrated
subject to the initial condition

B′e = B′e(t1) for t = t1. (1-14)

This idea was used in [Leonov 1976] for polymeric liquids, and in [Simo 1992; Rubin 1994] for elastic-
plastic and elastic-viscoplastic solids. Besseling [1968] and Rubin [1994] proposed generalizations of
(1-13) for elastically anisotropic response and a number of physical aspects of constitutive equations for
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plasticity have been discussed in [Rubin 1994; Rubin 1996; Rubin 2001]. Also, a simple integration
algorithm for (1-13) was discussed in [Rubin and Attia 1996].

Again, using [Flory 1961], it can be shown that the unimodular part F′r of the relative deformation
tensor Fr defined by

F′r = (det Fr )
−1/3 Fr , det F′r = 1, (1-15)

satisfies the evolution equation and initial condition

Ḟ′r = L F′r −
1
3(D · I)F

′

r , F′r (t1)= I . (1-16)

Consequently, the solution of (1-13) can be written in terms of the auxiliary unimodular symmetric tensor
B′e defined by

B′e = F′r B′e F′Tr , det B′e = 1, (1-17)

with B′e satisfying the evolution equation and initial condition

˙B′e =−0F′−1
r Ap F′−T

r , B′e(t1)= B′e(t1). (1-18)

In general, 0 is a nonlinear function of state variables that can include hardening. Also, it is noted that
for an elastically isotropic hyperelastic material the Cauchy stress can be obtained from derivatives of a
strain energy function that depends on the dilatation J = det F and the two nontrivial invariants of B′e.

An outline of the paper is as follows. Section 2 summarizes the Hughes–Winget algorithm [Hughes
and Winget 1980], Section 3 discusses invariance under SRBM and the notion of incremental objectivity.
Section 4 presents integration algorithms for a simple elastic-viscoplastic material. The robustness and
accuracy of these algorithms are discussed in Section 5 for the example of steady-state simple shear and
in Section 6 for the example of steady-state isochoric extension relative to a rotating coordinate system.
Finally, Section 7 presents conclusions.

Above and in the following, boldfaced symbols denote tensors, ei is a right-handed orthonormal triad
of fixed rectangular Cartesian base vectors, the components of all tensors are referred to ei and ⊗ denotes
the tensor product. Also, A · B = tr(ABT ) denotes the inner product between two second-order tensors
{A, B} and a⊗ b denotes the tensor product between two vectors {a, b}.

2. Summary of the Hughes–Winget algorithm

Hughes and Winget [1980] developed an expression for the value 3W (t2) of a rotation tensor based on the
skew-symmetric part of an approximate incremental displacement gradient. Specifically, they introduced
a mapping from the position y1 at the beginning of the time step to the position y2 at the end of the time
step and a mapping to the position yα at an intermediate configuration by the expressions

y2
= y2( y1), yα = (1−α) y1

+α y2. (2-1)

Then, the incremental displacement δ, and displacement gradient G relative to this intermediate config-
uration are defined by

δ = y2
− y1, G = ∂δ/∂ yα = (∂ y2/∂ y1

− I)(∂ y1/∂ yα). (2-2)



VELOCITY GRADIENT VERSUS SPIN TENSOR IN ELASTIC-VISCOPLASTIC EVOLUTION EQUATIONS 533

Moreover, with the help of (2-1) it follows that

∂ yα/∂ y1
= (1−α)I +α(∂ y2/∂ y1). (2-3)

Next, using the definition of the relative deformation gradient Fr (t2) at the end of the time step

Fr (t2)= ∂ y2/∂ y1, (2-4)

the tensor G can be expressed in the form

G =
(
Fr (t2)− I

)(
I +α{Fr (t2)− I}

)−1
. (2-5)

Thus, for α = 1
2 as specified in [Hughes and Winget 1980], the tensor G is given by

G = 2
(
Fr (t2)− I

)(
Fr (t2)+ I

)−1
. (2-6)

Next, using the lemma quoted in [Hughes and Winget 1980],

A(A+ B)−1 B = B(A+ B)−1 A, (2-7)

for all square nonsingular matrices A, B, A+ B. Taking A= FT
r and B = I it follows that

FT
r (F

T
r + I)−1

= (FT
r + I)−1 FT

r , (FT
r − I)(FT

r + I)−1
= (FT

r + I)−1(FT
r − I), (2-8)

so that
GT
= 2(FT

r + I)−1(FT
r − I)= 2(FT

r − I)(FT
r + I)−1. (2-9)

Thus, the symmetric part γ and skew-symmetric part ω of G are given by

γ = 1
2(G+ GT )=

(
Fr (t2)− I

)(
Fr (t2)+ I

)−1
+
(
FT

r (t2)− I
)(

FT
r (t2)+ I

)−1
,

ω = 1
2(G− GT )=

(
Fr (t2)− I

)(
Fr (t2)+ I

)−1
−
(
FT

r (t2)− I
)(

FT
r (t2)+ I

)−1
.

(2-10)

Now, the Hughes–Winget algorithm for the value 3W (t2) of the rotation tensor 3W at the end of the
time step is given by

3W (t2)=
(
I + 1

2ω
)(

I − 1
2ω
)−1
. (2-11)

3. Invariance under superposed rigid body motions and incremental objectivity

Under SRBM the material point x at time t moves to the position x+ at time t+, such that

x+ = c(t)+ Q(t)x, t+ = t + c, QQT
= I, det Q =+1, Q̇ =�Q, �T

=−�(t), (3-1)

where c is an arbitrary constant, c(t) is an arbitrary function of time characterizing superposed translation,
Q(t) is an arbitrary proper orthogonal tensor characterizing rotation and �(t) is the associated spin tensor.
Moreover, under SRBM the quantities {F, Fr , F′r , D, W , 3W , T , B′e, 0} transform to {F+, F+r , F′+r ,
D+, W+, 3+W , T+, B′+e , 0+}, respectively, by the relations

F+ = Q F, F+r = Q Fr , F′+r = Q F′r ,

D+ = Q D QT , W+ = QWQT
+�, 3+W = Q3W ,

T+ = QT QT , B′+e = Q B′e QT , 0+ = 0.

(3-2)
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Since the rates in (1-2) and (1-6) transform under SRBM by

W
T+ = Q

W
T QT ,

L
T+ = Q

L
TQT , (3-3)

it follows that the evolution equations (1-2) and (1-6) are properly invariant under SRBM provided that
the functions K̂W and K̂L satisfy the restrictions

K̂W (QTQT , Q D QT )= Q K̂W (T , D)QT , K̂L(QTQT , Q D QT )= Q K̂L(T , D)QT , (3-4)

for all proper orthogonal Q. Moreover, the evolution equation (1-13) is properly invariant under SRBM.
Using these results together with the definitions (1-4), (1-10) and (1-17), it can also be shown that the

auxiliary tensors {TW , T L , B′e} transform to {T+W , T+L , B′+e }, so they are unaffected by SRBM:

T+W = TW , T+L = T L , B′+e = B′e. (3-5)

Hughes and Winget [1980] introduced the notion of an algorithm being incrementally objective.
Specifically, they proved that the expressions (2-10) and (2-11) are incrementally objective in the sense
that they correctly produce zero strain increment (γ = 0) and the correct rotation tensor (3W = Fr ) when
the deformation during the time step is a pure rotation with Fr being an orthogonal tensor (FT

r Fr = I).
It can also be shown that (2-10) and (2-11) correctly produce zero incremental spin (ω = 0) and the
correct rotation (3W = I) when the deformation during the time step is a pure stretch with Fr being a
symmetric tensor.

Rashid [1993] extended this notion of incremental objectivity by demanding that the integrator com-
putes a stretching part that is independent of the input rotation when the incremental motion involves
both stretch and rotation. Actually, the notion of strong objectivity, as discussed in [Papes and Mazza
2009], requires the estimates of all variables at the end of the time step to satisfy the same invariance
properties under SRBM as their exact values. In this regard, it is noted that the tensors {γ ,ω} are not
properly invariant under SRBM since they retain an unphysical dependence on the arbitrary rotation
tensor Q:

γ+ = Q
[(

Fr (t2)Q− I
)(

Fr (t2)Q+ I
)−1
+
(

QT FT
r (t2)− I

)(
QT FT

r (t2)+ I
)−1]QT ,

ω+ = Q
[(

Fr (t2)Q− I
)(

Fr (t2)Q+ I
)−1
−
(

QT FT
r (t2)− I

)(
QT FT

r (t2)+ I
)−1]QT .

(3-6)

Consequently, the approximation (2-11) for 3W is also not properly invariant:

3+W 6= Q3W . (3-7)

Moreover, it is natural to consider the approximation of incremental strain

1t D ≈ γ . (3-8)

However, this expression is also not properly invariant since

1t D+ 6= Q(1t D)QT . (3-9)
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4. Integration algorithms for a simple elastic-viscoplastic material

In the remainder of this paper attention will be focused on an elastic-viscoplastic material which is
characterized by the equations (1-13), (1-14), (1-17) and (1-18) with the simplification that the scalar
0 is constant. In this section three algorithms are discussed which yield approximate solutions of these
evolution equations. Sections 5 and 6 will discuss examples to test the accuracy and robustness of these
algorithms.

Algorithm 1. This algorithm is based on the formulation (1-17) and (1-18). This formulation has the
simplicity that any approximation of B′e that is unaffected by SRBM will yield a solution for B′e that
transforms appropriately under SRBM. To motivate an approximate solution of (1-18) consider the value
determined by the fully implicit equation

B′e(t2)= B′e(t1)−1t 0
(

B′e(t2)−
3

B′−1
e (t2)· I

C ′−1
r (t2)

)
, C ′−1

r (t2)= F′−1
r (t2)F′−T

r (t2). (4-1)

Next, use is made of the approximation that B′−1
e (t2) · I ≈ 3 to deduce that

B′e(t2)=
1

1+1t 0
(
B′e(t1)+1t 0C ′−1

r (t2)
)
. (4-2)

However, this expression does not ensure that B′e(t2) is unimodular. Motivated by [Rubin and Attia
1996], the expression (4-2) is used to obtain an equation for the deviatoric part B′′e (t2) of B′e(t2) of the
form

B′′e (t2)=
1

1+1t 0

(
B′e(t1)+1t 0C ′−1

r (t2)− 1
3

[(
B′e(t1)+1t 0C ′−1

r (t2)
)
· I
]
I
)
. (4-3)

Then, the final value B′e(t2) can be obtained using the procedure discussed in [Rubin and Attia 1996] to
determine the scalar α, in the expression

B′e(t2)=
1
3α I + B′′e (t2), (4-4)

by the condition that B′e(t2) is unimodular.

Algorithm 2. Typically, for elastic-viscoplastic response an equation like (1-13) is integrated in two
steps. First, the elastic trial value B′∗e (t) is determined by the evolution equation (which is (1-13) with
0 = 0) and initial condition

Ḃ′∗e = L B′∗e + B′∗e LT
−

2
3(D · I)B

′∗

e , B′∗e (t1)= B′e(t1). (4-5)

Then, the value B′e(t2) at the end of the time step is determined by relaxing the elastic trial value B′∗e (t2)
at constant total deformation with the help of an approximation of the evolution equation (1-13).

In particular, using the formulation (1-17) and (1-18) it is easy to see that the exact solution of (4-5)
is given by

B′∗e (t2)= F′r (t2)B
′

e(t1)F
′T
r (t2), (4-6)

so that the solution of (1-13) can be written in the form

B′e(t2)= B′∗e (t2)− F′r (t2)
(∫ t2

t1
0F′−1

r Ap F′−T
r dt

)
F′Tr (t2). (4-7)
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An elastic trial of the type (4-6) was used in [Simo 1992] for a nonunimodular tensor and in [Simo and
Hughes 1998, p. 315] updating a unimodular tensor. In approximating the integral in (4-7) it is important
to ensure that the approximation remains properly invariant under SRBM. Here, the values of {Ap, F′r }
are approximated by their values at the end of the time step and use is made of the fully implicit form

B′e(t2)= B′∗e (t2)−1t 0
(

B′e(t2)−
3

B′−1
e (t2) · I

I
)
. (4-8)

Again, since this result does not ensure that B′e(t2) is unimodular, the solution is determined by the
deviatoric part B′′e (t2) of B′e(t2) given by

B′′e (t2)=
1

1+1t 0
B′′∗e (t2), (4-9)

where B′′∗e (t2) is the deviatoric part of the elastic trial B′∗e (t2)

B′′∗e (t2)= B′∗e (t2)−
1
3

(
B′∗e (t2) · I

)
I . (4-10)

Then, the final value B′e(t2) is obtained using the procedure discussed in [Rubin and Attia 1996] to
determine the scalar α in the expression

B′e(t2)=
1
3α I + B′′e (t2), (4-11)

which has the same invariance properties under SRBM as the exact value of B′e(t2).

Algorithm 3. Algorithms 1 and 2 integrate the evolution equation (1-13) including coupling of the rates
of deformation and spin {D, W} through the expressions for the velocity gradient L and the relative
deformation gradient Fr . For Algorithm 3 this evolution equation is reformulated in terms of the Jaumann
derivative which focuses on spin. Specifically, (1-13) can be written in the form

W
B′e = Â(B′e, D)−0Ap, Â(B′e, D)= DB′e+ B′e D− 2

3(D · I)B
′

e. (4-12)

Then, the solution is given by (4-9) and (4-10), where the elastic trial B′∗e (t2) is determined by the
evolution equation and initial condition

W
B′∗e = Â(B′∗e , D), B′∗e (t1)= B′e(t1). (4-13)

Next, using the Hughes–Winget algorithm the solution of (4-13) is approximated by

B′∗e (t2)=3W
(
B′e(t1)+1t Â(B′e(t1), D)

)
3T

W , (4-14)

where 3W is defined by (2-11). Furthermore, use is made of the approximation (3-8) to obtain the
deviatoric tensor

B′′∗e (t2)=3W
(
B̃′e−

1
3(B̃

′

e · I)I
)
3T

W , B̃′e = B′e(t1)+ γ B′e(t1)+ B′e(t1)γ −
2
3(γ · I)B

′

e(t1), (4-15)

which is then used in (4-9) to obtain the final value (4-11) for this algorithm.
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5. Example of steady-state simple shear at constant shear rate

The algebra required to obtain the solutions discussed in the example in this and the next sections is
rather heavy so use has been made of the symbolic program Maple to derive the results.

This section presents the example of steady-state simple shear at constant shear rate to analytically
analyze the robustness and accuracy of Algorithms 1, 2 and 3. For this problem the deformation gradient
F and the constant velocity gradient L are specified by

F = I + γ0t (e1⊗ e2), L = γ0(e1⊗ e2), (5-1)

where the constant scalar γ should not be confused with the tensor γ in (2-10). It then follows that the
relative deformation tensor associated with (5-1) is given by

Fr (t2)= I + κ(e1⊗ e2), F−1
r (t2)= I − κ(e1⊗ e2), κ =1t γ0. (5-2)

Moreover, since this deformation is isochoric, Fr is a unimodular tensor with

F′r = Fr . (5-3)

Exact solution. The initial value B′e(t1) is a steady-state solution of the evolution equation (1-13) pro-
vided that it satisfies the equation

L B′e(t1)+ B′e(t1)L
T
−

2
3(D · I)B

′

e(t1)−0Ap(t1)= 0. (5-4)

The exact solution of this algebraic equation can be written in the form

B′e(t1)= a2(e1⊗ e1)+ b2(e2⊗ e2)+ c2(e3⊗ e3)+ d(e1⊗ e2+ e2⊗ e1), (5-5)

where {a, c} take the forms

a =

√
1+ d2b2

b2 , c = b, (5-6)

and the constants {b, d} attain the values {be, de}, respectively, given by

be =
1

(1+ γ2)1/6
, de =

γ

(1+ γ2)1/3
. (5-7)

Solution of Algorithm 1. The initial value B′e(t1) is a steady-state solution of Algorithm 1 if B′e(t2) and
its deviatoric part B′′e (t2) are given by

B′e(t2)= F′−1
r (t2)B′e(t1)F

′−T
r (t2), B′′e (t2)= B′e(t2)−

1
3

(
B′e(t2) · I

)
I . (5-8)

More specifically, substitution of (5-8) into (4-3) and taking B′e(t1) in the form (5-5), with the condition
(5-6), yields a system of algebraic equations for {b, d}. These equations can be solved to obtain the
values {b1, d1}, given by

d1 = (γ + κ)b2
1− κ, (5-9)

where b1 is the positive real root of the equation

(1+ γ2
+ γ κ)b6

1+ κ
2b4

1− κ
2b2

1− 1= 0. (5-10)



538 M. B. RUBIN AND O. PAPES

Solution of Algorithm 2. The initial value B′e(t1) is a steady-state solution of Algorithm 2 if B′′e (t2)
equals the deviatoric part B′e(t1), given by

B′′e (t2)= B′′e (t1)= B′e(t1)−
1
3

(
B′e(t1) · I

)
I . (5-11)

More specifically, substitution of (5-11) into (4-9) and taking B′e(t1) in the form (5-5), with the condition
(5-6), yields a system of algebraic equations for {b, d}. These equations can be solved to obtain the
values {b2, d2} given by

b2 =
1

(1+ γ2+ γ κ)1/6
, d2 =

γ

(1+ γ2+ γ κ)1/3
. (5-12)

Solution of Algorithm 3. The initial value B′e(t1) will be a steady-state solution of Algorithm 3 if B′′e (t2)
in (4-9) satisfies (5-11) with the deviatoric part B′′∗e (t2) of the elastic trial given by (4-15). The solution
of this system of equations has the form (5-5), where {a, b, c, d} obtain the values {a3, b3, c3, d3} given
by

a3 = b3

√
256+ 512γ2+ 512γ κ + 16(2− γ2)κ2− 16γ κ3+ κ4

256+ 16(2+ γ2)κ2+ 16γ κ3+ κ4 , b3 =

(
N3(γ, κ)

D3(γ, κ)

)1/6

,

d3 =
(512− 112κ2

+ κ4)b2
3− (80− κ2)κ2a2

3

512+ 256γ κ + 64κ2+ 2κ4 γ, c3 =

√
1
2(a

2
3 + b2

3)− γ d3. (5-13)

In these expressions the functions N3 and D3 are polynomials of their arguments that can be obtained
analytically by requiring B′e(t1) to be unimodular. Also, it is noted that the values of {a, c} no longer
satisfy the conditions (5-6) of the exact solution. Since this formulation uses the approximations (2-11)
and (3-8) it is not properly invariant under SRBM.

Discussion. In these solutions the parameter γ is a normalized loading rate and the parameter κ is a
normalized time increment. Figure 1 plots the exact solution as a function of the loading rate γ . From
this figure it can be seen that the elastic distortional deformation is large for large values of γ . It can also
be shown that in the limit that κ approaches zero all three algorithms reproduce the exact steady-state
values (5-7) for all values of γ . However, for positive values of κ Algorithms 1 and 2 reproduce the
exact result that (c1 = b1, c2 = b2), whereas Algorithm 3 predicts that c3 is different from b3.
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Figure 1. Simple shear: Exact steady-state solution.
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Figure 2. Simple shear: Errors in the solutions predicted by Algorithms 1, 2 and 3 for
the normalized time increment κ = 0.1.

To compare the predictions of the algorithms with the exact solution it is convenient to define the errors

Ea =
a
ae
− 1, Eb =

b
be
− 1, Ec =

c
ce
− 1, Ed =

d
de
− 1, (5-14)

where {a, b, c, d} are the values predicted by each of the algorithms, with the values of {a, c} given
by (5-6) for Algorithms 1 and 2. Figure 2 shows these errors as functions of γ for the relatively large
normalized time increment κ = 0.1. From these results it can be seen that Algorithm 1 is slightly more
accurate than Algorithm 2 for Ea . On the other hand, Algorithm 2 is more accurate than Algorithm 1
for Ed . Also, both Algorithms 1 and 2 are more accurate than Algorithm 3. Overall, it is concluded that
both Algorithms 1 and 2 predict relatively robust results for the steady-state solution of simple shear at
constant rate of deformation.

6. Example of steady-state isochoric extension relative to a rotating coordinate system

In order to better understand the implications of an algorithm not being strongly objective, consider the
case of isochoric extension relative to a rotating coordinate system. Specifically, let e′i be an orthonormal
triad of vectors which rotates with constant angular velocity ω0 about the fixed e3 direction

e′1 = cos(ω0t)e1+ sin(ω0t)e2, e′2 =− sin(ω0t)e1+ cos(ω0t)e2, e′3 = e3. (6-1)

For this deformation field it is convenient to introduce the orthogonal tensor Q defined by

Q(t)= e′i ⊗ ei , ė′i =�e′i , �= Q̇ QT , �= ω0(−e1⊗ e2+ e2⊗ e1),

Q = cos(ω0t)(e1⊗ e1+ e2⊗ e2)+ (e3⊗ e3)+ sin(ω0t)(−e1⊗ e2+ e2⊗ e1),
(6-2)
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where the usual summation convention is used for repeated indices. Moreover, the deformation gradient
F and the velocity gradient L are specified by

F = Q
(
λ(e1⊗ e1)+ λ

−1/2(e2⊗ e2+ e3⊗ e3)
)
, λ= exp(γ0t), J = 1,

L = γ0Q
(
(e1⊗ e1)−

1
2(e2⊗ e2+ e3⊗ e3)

)
QT
+�,

(6-3)

where λ is the stretch of a material line element which in the reference configuration (at t = 0) was
oriented in the e1 direction, and γ0 is the constant logarithmic stretch rate. It then follows that the
relative deformation tensor associated with (6-3) is given by

Fr (t2)= Q(t2)
(
eκ(e1⊗ e1)+ e−κ/2(e2⊗ e2+ e3⊗ e3)

)
QT (t1), κ =1t γ0. (6-4)

Moreover, since this deformation is isochoric, the tensor Fr is unimodular as was the case in (5-3).

Exact solution. The tensor B′e(t) is a steady-state solution relative to the rotating basis e′i of the evolution
equation (1-13) provided that it satisfies the equation

�B′e+ B′e�
T
= L B′e+ B′e LT

−
2
3(D · I)B

′

e−0Ap. (6-5)

The exact solution of this algebraic equation can be written in the form

B′e(t)= a2(e′1⊗ e′1)+
1
a
(e′2⊗ e′2+ e′3⊗ e′3), (6-6)

where a takes the value ae given by

ae =

( 1+γ
1−2γ

)1/3
for γ < 1

2 . (6-7)

It can be seen from this solution that no steady-state solution of this form exists if the rate of extension
is too large (γ ≥ 1

2 ).

Solution of Algorithm 1. The values of {B′e(t1), B′e(t2)} correspond to a steady-state solution relative
to the rotating basis e′i of Algorithm 1 if they have the forms

B′e(t1)= Q(t1)B̂′e QT (t1), B′e(t2)= Q(t2)B̂′e QT (t2), B̂′e=a2(e1⊗e1)+
1
a
(e2⊗e2+e3⊗e3), (6-8)

where the stretch a needs to be determined. Next, using (1-17) and (6-4) it follows that

B′e(t2)= F′−1
r B′e(t2)F

′−T
r = Q(t1)

(
a2e−2κ(e1⊗ e1)+

eκ

a
(e2⊗ e2+ e3⊗ e3)

)
QT (t1). (6-9)

These expressions will satisfy (4-3) provided that a takes the value a1, which is the real positive root of
the equation (

γ − (γ + κ)e−2κ)a3
1 − κ(e

κ
− e−2κ)a1+

(
(γ + κ)eκ − γ

)
= 0 (6-10)

closest to unity. It can be shown that in the limit that κ→ 0 the real positive solution of (6-10) yields the
exact result (6-7) for all possible values of γ . For finite values of κ , a maximum value of γ exists beyond
which the real solution of (6-10) becomes negative. Thus, the maximum value of γ which produces a
physical solution is a function of the size of the time step though the value of κ .
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Figure 3. Isochoric extension: exact solution (left) and errors in the solutions predicted
by Algorithms 1 and 2 for the normalized time increment κ = 0.1.

Solution of Algorithm 2. The values of {B′e(t1), B′e(t2)} correspond to a steady-state solution relative
to the rotating basis e′i of Algorithm 2 if they have the forms (6-8). Next, using these expressions, the
elastic trial value (4-6), and equating the estimate (4-9) with the deviatoric part B′′e (t2) of B′e(t2) in (6-8)
yields an algebraic equation for a which is solved to obtain the value a2 given by

a2 =

(
γ + κ − γ e−κ

γ + κ − γ e2κ

)1/3

. (6-11)

This solution has the same character as the solution of Algorithm 1.
Figure 3, left, plots the exact solution ae in (6-7) as a function of the normalized stretch rate γ . The

right half of the figure shows the error Ea in (5-14) predicted by Algorithms 1 and 2 for the normalized
time increment κ = 0.1. From this figure is it easy to see that Algorithm 1 is more accurate than
Algorithm 2. Moreover, we emphasize that both algorithms are strongly objective because the solutions
(6-10) and (6-11) are uninfluenced by rate of rotation ω0 of the axes e′i , which can be interpreted as a
superposed rate of rigid body rotation.

Discussion of Algorithm 3. To discuss Algorithm 3 it is convenient to introduce the two tensors

3̃= Q(t2)T3W Q(t1), γ̃ = Q(t1)T
(
γ B′e(t1)+ B′e(t1)γ

)
Q(t1). (6-12)

It then follows from (4-9), (4-15) and (6-8) that

B̃′e = Q(t1)
(
B̂′e+ γ̃−

2
3(γ · I)B̂

′

e
)

QT (t1),

B̂′e−
1
3(B̂

′

e · I)I =
1

1+1t 0
3̃
((

B̂′e+ γ̃ −
2
3(γ · I)B̂

′

e
)
−

1
3

[(
B̂′e+ γ̃−

2
3(γ · I)B̂

′

e
)
· I
]

I
)
3̃T .

(6-13)

Consequently, Algorithm 3 will admit solutions of the form (6-8) if the tensors {3̃, γ̃} are independent
of the value of the angular velocity ω0 and if they are diagonal tensors with respect to the fixed basis ei .
Specifically, it can be shown that

3̃ · (e1⊗ e2)=−3̃ · (e2⊗ e1)=−

4 cos κ
2

sinh2 κ

4
sin ωκ

γ

cosh κ − 8 sinh2 κ

4
sin2 ωκ

2γ
+ cos ωκ

γ
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and

γ̃ · (e1⊗ e2)= γ̃ · (e2⊗ e1)=

2(a3
+ 1) sinh 3κ

4
sin ωκ

γ

a
(

cosh κ
4
+ cosh 3κ

4
cos ωκ

γ

) . (6-14)

Not only are these quantities nonzero but they depend explicitly on the angular velocity ω0, which is a
direct consequence of the algorithm not being strongly objective.

7. Conclusions

Evolution equations based on the Jaumann derivative like (1-2) or (4-13) necessarily require three types
of approximations. One for the specification of the time dependence of the spin tensor W , one for
the integration algorithm of the evolution equation (1-3) for the rotation tensor 3W , and one for the
integration algorithm of the evolution equation for an auxiliary variable like TW in (1-5). In contrast,
when evolution equations are formulated in terms of the velocity gradient L, the evolution equations
(1-9) for the relative deformation gradient Fr and (1-16) for the unimodular part F′r of the relative
deformation tensor can be integrated exactly in terms of the positions of material points at the beginning
and end of the time step, independently of the time dependence of L during the time step. Consequently,
such integration algorithms have the advantage that approximations are limited to the algorithms for the
evolution equations of the auxiliary tensors like (1-11) for T L and (1-18) for B′e. Moreover, since these
auxiliary tensors are unaffected by SRBM it is simple to develop algorithms which are strongly objective
in the sense discussed in [Papes and Mazza 2009].

Focusing attention to the response of a simple elastic-viscoplastic material, examples of steady-state
simple shear at constant shear rate and steady-state isochoric extension relative to a rotating coordinate
system are considered to assess the robustness and accuracy of the three algorithms presented in Section 4.
Algorithms 1 and 2 are strongly objective, but Algorithm 3, which is based on the Hughes–Winget
algorithm, is only weakly incrementally objective and exhibits unphysical dependence on the arbitrary
rotation tensor Q in SRBM when the rate of deformation is nonzero. Algorithms 1 and 2 give robust and
relatively accurate predictions of these steady-state solutions for reasonably large time increments. From
a practical point of view, Algorithm 2 is perhaps the easiest to implement. It presents an improvement
over the simple formulation in [Rubin and Attia 1996] in that here the elastic trial value B′∗e (t2) is
evaluated exactly.
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NUMERICAL AND EXPERIMENTAL EVALUATION OF CRYOGENIC TENSILE
STRENGTH OF WOVEN FABRIC-REINFORCED GLASS/EPOXY COMPOSITES

USING OPEN HOLE SPECIMENS

YASUHIDE SHINDO, SHINYA WATANABE, TOMO TAKEDA,
FUMIO NARITA, TAKUYA MATSUDA AND SATORU YAMAKI

A numerical and experimental evaluation of the tensile strength properties of woven glass fiber-reinforced
polymer composite laminates at cryogenic temperatures was conducted by means of open hole specimens.
Tensile tests were performed on specimens with a circular hole at room temperature, at 77 K, and at 4 K.
The length of the hole edge damage zone corresponding to specimen failure was determined by micro-
scopic examination of the fracture surfaces. A method based on finite element analysis was developed
for estimating the cryogenic tensile strength of the unnotched woven laminates using the experimentally
determined failure load and damage zone length. The results suggest that the tensile strength of woven
composite laminates at cryogenic temperatures can be determined effectively by this approach.

1. Introduction

Fiber-reinforced polymer composites are widely used in many modern structural applications because
of their unique properties. In particular, the demand for lightweight structures in the next generation
of reusable launch vehicles may likely result in the use of carbon fiber-reinforced polymer (CFRP)
composites in the design of the cryogenic liquid hydrogen and oxygen fuel tanks [Melcher and Johnson
2007]. Also, superconducting magnets for use in the International Thermonuclear Experimental Reactor
(ITER) may use large quantities of woven glass fiber-reinforced polymer (GFRP) composite laminates
as thermal and electrical insulation and structural support [Tsuji et al. 2001]. Hence, the mechanical
properties of woven composite laminates must be characterized and fully understood under application-
specific environmental conditions for the design process of cryogenic systems.

Accurate in-plane strength properties in tension of composite laminates are essential for material
selection decision and as design data. Tensile tests have been a fundamental method of characterizing
the mechanical response of composite materials for many years. The standard methods for tensile tests
on composite materials — for example, American Society for Testing and Materials D 3039/D 3039M
[ASTM 2000] and Japanese Industrial Standards K 7164 and K 7165 [JIS 2005; 2008] — are designed
for room-temperature testing. However, there is currently no universally accepted method for tensile tests
on composites at cryogenic temperatures. The determination of composite tensile properties, especially
the ultimate strength, at cryogenic temperatures is not straightforward [Kumagai et al. 2003]. This is a
result of the high strength, stiffness, and anisotropy of polymer matrix composite materials. Typically,
cryogenic tensile tests on polymer matrix composites have resulted in noticeable inconsistencies with
regard to strength values [Eisenreich and Cox 1992]. Also, cryogenic testing problems include that

Keywords: cryomechanics, finite element method, tension test, polymer-matrix composites, strength, cryogenic devices.
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the specimen slips out of the test grips during testing. Increasing the clamping force to prevent grip
slippage leads to increased stress concentration within the grip that influences the measured strength
data. To address the problems encountered with cryogenic tensile testing, some researchers have devoted
their efforts to evaluating the cryogenic mechanical response of composite specimens under tension.
For example, Kumagai et al. [2004] experimentally and numerically examined the effects of specimen
geometry and gripping method on the tensile properties of woven GFRP composite laminates having
high glass content at cryogenic temperatures. Shindo et al. [2006] investigated the cryogenic mechanical
response of woven GFRP composite specimens under tension, and discussed the influence of specimen
geometry and size on the tensile properties of the composites.

An attractive alternative to the tensile test for the determination of the composite strength at cryogenic
temperatures is the open hole tensile test. The open hole tensile test was originally developed to evalu-
ate the notched strength (failure load divided by the gross cross-sectional area of composite laminates)
[ASTM 2007]. However, the notched strength is not a material property but a structural property. For an
open hole specimen, the failure load is correlated with the composite strength (a material property) and
the size of the damage zone near the hole edge [Kogo et al. 1998; Green et al. 2007]. In addition, since
the hole causes a stress concentration, the failure of the open hole specimen occurs at loads far below
the failure load of the unnotched specimen. Therefore, the open hole tensile test offers a potentially
attractive approach for avoiding cryogenic testing problems such as slippage between the specimen and
the grips, and evaluating the composite strength.

A combined numerical-experimental method is presented for the evaluation of the tensile strength
properties of woven GFRP composite laminates at cryogenic temperatures using open hole specimens.
The open hole tensile tests were carried out at room temperature, liquid nitrogen temperature (77 K),
and liquid helium temperature (4 K), and the failure loads were obtained. From microscopic exami-
nation of the fracture surfaces, the length of the damage zone at the hole edge was measured. The
experimentally determined failure load and damage zone length were applied to the finite element model
to estimate the cryogenic tensile strength of the unnotched woven laminates. The validity of this approach
is discussed by comparing the predictions with existing experimental data.

2. Experimental procedure

2.1. Material and specimen. In this work, National Electrical Manufacturer’s Association grade G-11
woven GFRP laminates (Arisawa Mfg. Co., Ltd., Japan) were used. The basis for G-11 woven laminates
is a plain weave fabric of E-glass. The plain weave is produced by interlacing warp fiber bundles and fill
fiber bundles. The weave contains 43 and 32 fiber bundles per 25.4 mm in the warp and fill directions,
respectively. The polymer matrix is a bisphenol A epoxy resin. The overall fiber volume fraction is 47%.

Open hole specimens were employed for experiments. The geometry and dimensions of the specimen
are shown in Figure 1. The specimens were cut with the length parallel to the warp direction. The
dimensions of the specimen were 120 mm in overall length (l), 27 mm in length of the grip section (g),
and 25 mm in width (w). The nominal thickness of the specimen (h) was equal to 2 mm. The specimens
also contain a circular hole with a diameter (d) of 4.2 mm in the center. The width to hole diameter ratio
w/d was chosen based on the ASTM D 5766 standard [2007]. The tapered tabs were bonded to the
sample ends by means of an adhesive system that is suitable for use at cryogenic temperatures.
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Figure 1. Geometry and dimensions of open hole specimen.

2.2. Testing method. Tensile tests were conducted on the open hole specimens at room temperature,
77 K, and 4 K using a 30 kN capacity servohydraulic testing machine. The strains were measured us-
ing strain gages bonded to the front and back surfaces of the specimen. The strain gages were placed
near the hole as shown in Figure 2. Each specimen was tested at a displacement rate of 0.5 mm/min.
Low-temperature environments were achieved by immersing the loading fixture and specimen in liquid
nitrogen or liquid helium. To keep the specimen fully submerged in liquid helium during the test, an

Strain gage

4.6

unit: mm

Figure 2. Position of the strain gage on open hole specimen.
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automatic refill system (TRG-350D, Taiyo Nippon Sanso Co., Ltd., Japan) was incorporated. Load P
and strain ε data were taken up to the catastrophic failure of the open hole specimens, and the failure
loads Pc were measured.

Microscopic observations of the specimen surfaces and fracture surfaces were made with optical mi-
croscopy in order to obtain a better understanding of damage mechanisms of G-11 woven laminates at
cryogenic temperatures. In addition, the fracture surfaces were examined in detail and the length of
the critical damage zone (that is, the damage zone just before catastrophic failure), Dc, was determined
from the fracture surface morphologies. All observations were performed after the completion of tensile
testing.

3. Finite element analysis

Finite element simulations were carried out for the G-11 open hole specimens. The typical mesh of an
open hole specimen is shown in Figure 3. The origin of the rectangular Cartesian coordinate system
O-xyz is fixed at the center of the open hole specimen, and the x , y, and z-axes are in the fill, warp
(tensile loading), and thickness directions, respectively. In the finite element calculations, plane stress
conditions in the x-y plane were assumed. The specimen was meshed using 6-noded triangular elements,
and a relatively fine mesh was used adjacent to the hole in order to evaluate accurately the stress state.

x

y

 O

w/2

l/
2

  
 g

d/2

・
Figure 3. Finite element mesh of open hole specimen.
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The finite element model treated the entire plain weave fabric composite as one homogeneous material
with orthotropic material properties. Due to symmetry in geometry and loading, only one-quarter of the
specimen was considered. The gripped portion was not included in the model.

The strain-stress relationships for the orthotropic composite specimen under plane stress are εxx(x, y)
εyy(x, y)
2εxy(x, y)

=
 1/Ex −νxy/Ex 0
−νxy/Ex 1/Ey 0

0 0 1/Gxy

 σxx(x, y)
σyy(x, y)
σxy(x, y)

 , (1)

where εxx(x, y), εyy(x, y), and εxy(x, y)= εyx(x, y) are the strain components; σxx(x, y), σyy(x, y), and
σxy(x, y)=σyx(x, y) are the stress components; Ex and Ey are the Young’s moduli; Gxy is the shear mod-
ulus; and νxy = νyx Ex/Ey is the Poisson’s ratio. The Poisson’s ratio νxy reflects shrinkage (expansion)
in the y-direction, due to tensile (compressive) stress in the x-direction. The normal strain component
εzz perpendicular to the x-y plane can be expressed in terms of the stress components σxx(x, y) and
σyy(x, y) and the elastic properties Ex , Ey , νxz = νzx Ex/Ez , and νyz = νzy Ey/Ez as follows:

εzz(x, y)=−
νxz

Ex
σxx(x, y)−

νyz

Ey
σyy(x, y). (2)

The elastic properties Ex , Ey , Ez , Gxy , νxy , νyz , and νzx were determined from the micromechanics
model for plain weave fabric composites [Hahn and Pandey 1994]. The model includes parameters
to characterize the fabric architecture and constituent material properties. The geometrical parameters
of G-11 woven laminates were measured on scanning electron microscopy photographs of the woven
laminate cross-sections. The Young’s modulus, shear modulus, and Poisson’s ratio of the matrix and fiber
were obtained from the exponential functions of temperature based on the experimental data [Dahlerup-
Petersen and Perrot 1979]. The composite elastic moduli can be determined under the assumption of
uniform strain inside the unit cell. Table 1 lists the predicted Young’s moduli Ex , Ey , and Ez , shear mod-
ulus Gxy , and Poisson’s ratios νxy , νyz , and νzx of G-11 woven laminates at 295 K (room temperature),
77 K, and 4 K. In the table, the values in parentheses are the experimental results [Sanada and Shindo
2005]. By comparing the predicted elastic moduli with experimental data, this model is shown to be
efficient and accurate.

In [Whitney and Nuismer 1974] two stress failure criteria were proposed, the point stress criterion
(PSC) and the average stress criterion (ASC), for predicting the point at which the catastrophic failure of

295 K 77 K 4 K

Ex (GPa) 21.07 (24.1) 28.47 (31.1) 31.95 (34.3)
Ey (GPa) 26.66 (27.9) 32.98 (32.7) 35.94 (36.9)
Ez (GPa) 10.75 20.48 25.03
Gxy (GPa) 5.17 (6.2) 8.76 (9.4) 10.28 (10.1)
νxy 0.10 0.16 0.19
νyz 0.32 0.33 0.34
νzx 0.17 0.26 0.29

Table 1. Predicted elastic moduli of G-11 woven laminates.
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a laminated composite with a circular hole occurs. These two stress criteria use the linear elastic stress
field adjacent to the hole, and are semiempirical models based on the laminate tensile strength and a
characteristic dimension. The characteristic dimension seems to be related to the length of the damage
zone at the hole edge [Kogo et al. 1998]. With regard to the above criteria, Belmonte et al. [2001] have
pointed out that the ASC is more consistent with the experimental results on damage growth and failure
at circular holes in woven GFRP composite laminates under tension at room temperature than the PSC.
While the ASC has the merits of being simple to apply, its limitations are that it does not consider the
evolution of damage from the hole. In practice the damage will modify, significantly, the assumed elastic
stress distribution near the hole, and the ASC does not give an adequate description of the stress state.
Actually, the stress distribution in the damage zone is very complicated. Although the stress level along
the direction perpendicular to the applied tensile load inside the damage zone can be considered to keep
nearly constant and the stress is correlated with the unnotched tensile strength [Zhen 1983], no one has
evaluated exactly the stress state near the hole in the damaged composites. In the present study, the
damage zone was therefore modeled as a strip with the critical damage zone length Dc ahead of the hole
edge, and the normal stress σyy was assumed to be uniform within the damage zone. Let ux and u y be
the displacement components. The boundary conditions can be written as

σyy(x, 0)= σ0 for d/2≤ x < d/2+ Dc, (3)

u y(x, 0)= 0 for d/2+ Dc ≤ x ≤ w/2, (4)

σyx(x, 0)= 0 for d/2≤ x ≤ w/2, (5)

u y(x, l/2− g)= u∗y for 0≤ x ≤ w/2, (6)

σyx(x, l/2− g)= 0 for 0≤ x <w/2, (7)

ux(0, y)= 0 for d/2≤ y ≤ l/2− g, (8)

σxy(0, y)= 0 for d/2≤ y ≤ l/2− g, (9)

σxx(w/2, y)= 0 for 0≤ y < l/2− g, (10)

ux(w/2, l/2− g)= 0 (11)

σxy(w/2, y)= 0 for 0≤ y < l/2− g, (12)

where σ0 is the uniform stress in the damage zone and u∗y is the prescribed displacement in the y-direction.
The prescribed displacement u∗y was determined from the condition

2
w

∫ w/2

0
σyy(x, l/2− g) dx =

Pc

wh
. (13)

The displacement boundary condition given in (11) represents the constraint effect resulting from the rigid
clamping of the specimen’s ends. The stress distribution corresponding to the experimentally obtained
failure load Pc and critical damage zone length Dc was determined from the finite element analysis, as
illustrated in Figure 4. The solid and dashed lines in the figure represent the stress distributions near the
hole with and without the damage zone, respectively. The solid line can be obtained using the condition
of finite stress σ0 (vanishing stress singularity) at the tip x = d/2+ Dc, and the σ0 value was evaluated
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Figure 4. Stress distribution near the hole with damage zone.

for each specimen. The numerically evaluated uniform stress σ0 was regarded as the ultimate tensile
strength of the specimen material.

4. Results and discussion

Figure 5 shows the measured gage strains ε in percent as a function of the applied stress σ (σ = P/wh)
at room temperature (RT), 77 K, and 4 K. For the sake of comparison, a linear elastic finite element
analysis was carried out and the calculated strains are also provided in the figure (the dashed lines). The
calculated strain is the normal strain in the y-direction at the center of the strain gage (x = 4.6, y = 0)
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Figure 5. Measured and calculated gage strains versus applied stress at room tempera-
ture (left) and at 77 K and 4 K (right).
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(a) (b) (c)Figure 6. Photographs of failed specimens at room temperature (left), 77 K (middle),
and 4 K (right).

and corresponds to the measured gage strain. The linear analysis did not consider the hole edge damage
(Dc = 0). Each curve exhibits a linear initial region, and the calculated curves agree with the experimental
data very well. With increase in the applied stress, the nonlinearity of the curves appears at both room
temperature and cryogenic temperatures. Note that pronounced nonlinearity of the curves can be found
at 77 K and 4 K, which can be attributed to the accumulation of damage such as microcracks in the matrix
material [Takeda et al. 2005].

Photographs of the open hole specimens after the tensile tests at room temperature, 77 K, and 4 K are
shown in Figure 6. Failure invariably occurs in the central section of the specimens. A straight failure
plane is formed normal to the applied load at room temperature. In the specimens at 77 K and 4 K, an
intense damage zone is found at the hole edge. Also, the size of the damage in the specimen at 4 K is
more extensive than that at 77 K. This damage zone is generally seen on both sides of the hole. Figure 7
shows the optical microscopy images of the edge sections of failed specimens at room temperature, 77 K,
and 4 K. It can be seen that the specimen at 4 K shows extensive delamination, while the specimen at
77 K displays less delamination, and the specimen at room temperature virtually none. This may be

2 mm(a) (b) (c)2 mm 2 mm
Figure 7. Edge views of failed specimens at room temperature (left), 77 K (middle),
and 4 K (right).



CRYOGENIC TENSILE STRENGTH OF WOVEN FABRIC-REINFORCED GLASS/EPOXY COMPOSITES 553

Hole edge 2 mmDc
Hole edgeDc 2 mm

2 mm(b)
(a)
(c)

Hole edgeDc Hole edge 2 mmDc
Hole edgeDc 2 mm

2 mm(b)
(a)
(c)

Hole edgeDc Hole edge 2 mmDc
Hole edgeDc 2 mm

2 mm(b)
(a)
(c)

Hole edgeDc
Figure 8. Fracture surface morphologies of failed specimens at room temperature (left),
77 K (middle), and 4 K (right).

due to the residual thermal stresses in the specimens generated during cooling and the brittleness of
the polymer resins at cryogenic temperatures. Figure 8 shows typical fracture surface morphologies of
failed specimens at room temperature, 77 K, and 4 K. The fracture surface displays the drastic difference
in failure mechanism between room temperature and cryogenic temperatures. The region of the room
temperature fracture surface near the hole edge is relatively smooth, and loose transverse (fill) fiber
bundles are found away from the hole edge. Loose transverse fiber bundles are a characteristic of woven
laminate tensile failure at room temperature [Karayaka and Kurath 1994]. Based on this finding, damage
before the catastrophic failure of the open hole specimens at room temperature seems to lead to the smooth
fracture surface near the hole edge and the length of the smooth region is taken as the critical damage zone
length Dc at room temperature. At 77 K and 4 K, the fracture surfaces near the hole edge exhibit fiber
pullout, and the fibers tend to pull out as bundles rather than individual filaments. Damage (microcracks)
caused by large residual thermal stresses at cryogenic temperatures and concentrated stresses near the
hole lead to the degradation in the fiber-matrix interface bonding and the fiber breakage. In the case of
poor fiber-matrix bonding, the broken fibers are pulled out of the matrix [Berthelot 1999]. The fracture
surfaces at 77 K and 4 K suggest that the length of the fiber pullout region corresponds to the critical
damage zone length Dc. Overall the fracture surface studies indicate that the smooth region at room
temperature and the fiber pullout region at 77 K and 4 K were localized near the hole edge, and the
boundary of the damage zone was discerned relatively well. Table 2 shows the experimentally obtained
failure loads Pc and critical damage zone lengths Dc at room temperature, 77 K, and 4 K. The critical
damage zone length Dc in the table was calculated as the average of the values measured on both sides
of the hole after the tensile test of each specimen. The failure loads at 77 K and 4 K are higher than
that at room temperature, and the failure load at 77 K is similar to that at 4 K. The critical damage zone
length increases as the temperature decreases. The difference in the critical damage zone length reflects
the microdamage mechanism changes with changing temperature. Also, the critical damage zone length

RT 77 K 4 K
Pc (kN) Dc (mm) Pc (kN) Dc (mm) Pc (kN) Dc (mm)

10.8 1.9 20.4 5.7 20.8 6.8
10.7 2.0 21.7 4.9 22.3 6.8
10.5 2.6 21.2 5.2 20.7 6.7

Table 2. Failure loads Pc and critical damage zone lengths Dc.
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Figure 9. Stress distributions near the hole along the line y = 0 (d/2≤ x ≤ w/2).

at each temperature is reasonably constant across all specimens. This implies that the measurement of
the critical damage zone length is reliable.

Figure 9 shows the distributions of the normal stresses σyy along the x-axis (y=0, d/2≤ x ≤w/2) with
and without the damage zone at 4 K as a function of distance from the hole edge 2(x−d/2)/(w−d). The
failure load Pc and the critical damage zone length Dc were taken as 20.8 kN and 6.8 mm, respectively.
Based on the stress distribution with the damage zone, the uniform stress σ0 in the damage zone can
be determined to be 523 MPa. Table 3 presents the numerically determined uniform stresses σ0 at room
temperature, 77 K, and 4 K. The uniform stresses σ0 in the table are averages of three values at each
temperature, and the values in parentheses are the standard deviations. For comparison, the ultimate
tensile strengths σult from the tensile tests on the unnotched G-11 specimens [Shindo et al. 2006] are
given in the table. The numerically determined uniform stresses σ0 are in good agreement with the σult

values. This suggests that the uniform stress from the present combined numerical-experimental method
is a reliable estimate of the composite tensile strength at cryogenic temperatures. It may be possible
to carry out the cryogenic tensile tests on the unnotched specimens of the commercial G-11 woven
laminates. However, cryogenic tensile testing is very difficult for high-strength advanced composite
materials such as CFRP composites. Although the issue of grip slippage in unnotched tests, of course,
has to be overcome, the present method is an efficient approach to measuring the cryogenic tensile
strength of high-strength composite materials because high applied tensile load and high clamping force
are not necessary to break the open hole specimen.

RT 77 K 4 K
σ0 (MPa) σult (MPa) σ0 (MPa) σult (MPa) σ0 (MPa) σult (MPa)

331 310 548 610 535 579
(13.9) (28.7) (18.8) (73.1) (18.4) (14.0)

Table 3. Predicted and experimental ultimate tensile strengths of G-11 woven composite
laminates. Values in parentheses are standard deviations in a sample of size three.
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5. Conclusions

In this article, we studied the tensile strength properties of woven glass fiber-reinforced polymer com-
posite laminates at cryogenic temperatures through a combined numerical-experimental approach using
open hole specimens. The major conclusion from the current investigation is that it is possible to obtain
reasonable values of the ultimate tensile strength of woven laminates at cryogenic temperatures from
open hole specimens. Also, at cryogenic temperatures, microscopic examination of the failed specimens
suggests that an intense damage zone develops at the hole edge prior to catastrophic failure. The open
hole acts as sufficient stress riser to force the specimen failure from the hole, and, therefore, the present
method provides a novel approach to measuring the cryogenic tensile strength of high-strength advanced
composite materials.

Dedication

We dedicate this work to the memory of Marie-Louise. As Associate Editor of the International Journal
of Solids and Structures and the Journal of Mechanics of Materials and Structures, she devoted herself
to the success of those journals, and we owe her much for their progress. When I first met her and
Charles for the first time in 1994, in Seattle, she talked to me as a friend. Since then, I enjoyed various
discussions with them at conferences. I miss her. We thank Marie-Louise and Charles Steele for their
efforts and dedication to two successful journals.
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ON TIME-DELAYED AND FEED-FORWARD TRANSMISSION LINE MODELS OF
THE COCHLEA

ROBERT SZALAI, BASTIAN EPP, ALAN R. CHAMPNEYS AND MARTIN HOMER

The mammalian cochlea is a remarkable organ that is able to provide up to 60dB amplification of low
amplitude sound with sharp tuning. It has been proposed that in order qualitatively to explain experimen-
tal data, models of the basilar membrane impedance must include an exponential term that represents
a time-delayed feedback. There are also models that include, e.g., a spatial feed-forward mechanism,
whose solution is often approximated by replacing the feed-forward term by an exponential term that
yields similar qualitatively accurate results. This suggests a mathematical equivalence between time
delay and the spatial feed-forward models. Using a WKB approximation to compare numerical steady-
state solutions, we show that there is no such simple equivalence. An investigation of the steady-state
outputs shows that both models can display sharp tuning, but that the time-delay model requires negative
damping for such an effect to occur. Conversely, the feed-forward model provides the most promising
results with small positive damping. These results are extended by a careful stability analysis of both
models. Here it is shown that whereas a small time delay can stabilize an unstable transmission-line
model (with negative damping), that the feed-forward model is stable when the damping is positive.
The techniques developed in the paper are directed towards a more comprehensive analysis of nonlinear
models.

1. Introduction

Hearing in mammals occurs via a complicated mechanism, in which the key organ in is the cochlea. It
responds to sound pressure waves in fluid that are coupled to sound pressure waves in the outside air
through the ear drum and the middle ear. Essentially, the cochlea is the stage of the auditory pathway
where mechanical vibration is transformed into neural signals, to be transmitted to the brain. It is capable
of sensing a wide range of frequencies and amplitudes, with a great frequency and temporal resolution;
see [Hudspeth 2008], for example.

The cochlea is also active; that is, it amplifies vibration by 50–60 dB for small amplitudes. The
active process displays a so-called compressive nonlinearity in its input-output characteristic; that is, the
amplification decreases as the input amplitude increases. Moreover, there is sharp frequency tuning, so
that individual spatial locations along the cochlea amplify different input frequencies. In this paper we
shall not consider the effect of variation of input amplitude. We instead suppose that the stimuli are
sufficiently small so as to, engage the cochlear amplifier in full.

Mathematical modeling of the physiology of the cochlea has a long history dating back to Helmholtz
[1885], who suggested that it contains an ensemble of resonators that are sensitive to different frequencies.
As the anatomy of the cochlea (illustrated schematically in Figure 1) became better understood, it was

Keywords: hearing, cochlea model, stability, delay.
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Figure 1. The basic anatomy of the mammalian cochlea. Left: the cochlea in its true
representation as a coiled partitioned tube showing the basilar membrane as a shaded
surface. Right: longitudinal cross section of the organ of Corti, showing the basilar
membrane, the phalangeal processes (PH) of the Deiter’s cells and the tilted outer hair
cells (OHC).

discovered by Békésy [1960] that the cochlea supports a traveling wave that is the result of the interaction
between the fluid and the resonant structures in the organ of Corti. Since then, due to the pioneering work
of Charles Steele and others, over more than 35 years, passive models of the fluid-structure interaction
have been proposed and embellished; see [Yoon et al. 2009] and references therein. Many of the features
of the fine tuning can be explained by the way the geometry of the cochlear tube causes traveling waves
to reach a maximum amplitude and stop at a frequency-dependent distance along the cochlea. More
sophisticated cochlear models also exist, taking more detailed account of the fluid motion and the precise
micromechanics of the cochlea based on physiological data; see [Steele and Lim 1999; Ramamoorthy
et al. 2007], for example.

However, there are still significant questions to be answered, such as identifying the mechanism for
amplification in the cochlea [Davis 1983; Lagarde et al. 2009]. It is widely held that outer hair cells are
responsible for amplification but the mechanism is still unclear; see [Ashmore 2008] for a discussion. In
particular, two broad schools of thought suggest that either hair bundle motility [Tinevez et al. 2007] or
the piezoelectric elongation of the cell body [Dallos 2008] are primarily responsible. Recent modeling
studies suggest that a combination of the two mechanisms may be required in order to explain observed
data [Ó’Maoiléidigh and Jülicher 2010; Szalai et al. ≥ 2011]. As a conceptual model of the active
process, it has been proposed that the output at a fixed longitudinal position along the basilar membrane
resembles that of a nonlinear oscillator that is tuned to be at the onset of a Hopf bifurcation [Eguíluz
et al. 2000].

One of the key unsolved problems associated with any active process is to explain how amplification
can occur for very low inputs without activating an instability. In this paper we deal with feedback
mechanisms in the cochlea that enhance tuning and provide the stability of the active process.

Another motivation for this work is the observation, due to Zweig [1991], that most models of the
cochlea cannot qualitatively fit experimental data for frequencies where the decay of the phase of the
basilar membrane vibration becomes steep and then flat. In order to explain this inaccuracy, Zweig
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used a simple transmission line model and determined the impedance of the organ of Corti necessary to
reproduce the data. This extracted impedance implied that, in order to achieve a qualitative agreement
with data, a delay term must be included in the transfer function of the organ of Corti. Zweig’s results are
striking, as there is no obvious mechanism in the cochlea that can result in a pure time delay, independent
of the dynamics.

Alternatively, there are other mechanisms that reproduce experimental data just as well, but do not
explicitly include a time delay. Hubbard [1993] introduced a secondary traveling wave that could be
related to either the tunnel of Corti flow [Karavitaki and Mountain 2007], or the waves of the tectorial
membrane [Ghaffari et al. 2007]. Also, tilting of the outer hair cells can introduce a spatial feed-forward
mechanism that can similarly explain experimental findings [Geisler 1993; Puria and Steele 2008]. How-
ever, not all mammalian species have tilting outer hair cells, but all have a phalangeal processes on their
Deiter cells, resulting in longitudinal mechanical coupling (see Figure 1). Yoon and Steele argue that
these processes, together with tilting outer hair cells lead to amplification via a push-pull mechanism
[Yoon et al. 2009].

The purpose of this paper is neither to resolve this controversy, nor to examine the physiological
origins of any active process. Rather we shall use simple mathematical models to examine the generic
effects on basilar membrane dynamics of coupling in both space and time, and the relationship between
them.

The outline of the rest of this paper is as follows. In Section 2 we introduce simple mathematical
models of the cochlea described as a transmission-line. We describe models with time-delay and feed-
forward longitudinal coupling. Further, we describe a solution technique that can determine the response
of both models to oscillatory forcing, whether stable or unstable, and examine results with particular
focus on the relationship between coupling in space and time. Section 3 then addresses the stability of
the response of both models. Finally, Section 4 draws conclusions and suggests avenues for future work.

2. Transmission line models

Zweig’s model. In the model introduced in [Zweig 1991], the cochlea is modeled as a rectangular box
with two ducts of the same and constant cross-section A. The ducts are separated by the flexible basilar
membrane, which is assumed in the model to have a single degree of freedom, with displacement ξ(x, t),
where x represents the longitudinal distance along the cochlea, measured from the stapes, and t time.
The fluid in the ducts is driven by oscillations of the oval window, which generate a pressure difference
between the two ducts, p(x, t) and drives the basilar membrane. The equations of motion can then be
derived from the one-dimensional Stokes equation assuming that the endolymph/perilymph fluid inside
the cochlea is inviscid and incompressible. The fluid mechanics can then be reduced to a single equation
for the pressure difference p(x, t) across the membrane:

∂

∂t2 ξ(x, t)=
ε2

m
∂

∂x2 p(x, t), (2-1)

where ε2
= 2m A/(ρβ), m is the surface mass density of the basilar membrane, A is the cross section

area of the duct, ρ is the fluid density and β is the width of the membrane. The relation between the
pressure difference p and the basilar membrane displacement ξ is also determined by the mechanics of
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Parameter Description Units Value

t Time ms t ∈ R

x Longitudinal coordinate 0≤ x ≤ 1
ξ Membrane displacement
p Pressure difference kg ms−2

m Membrane mass kg
A Duct cross-section
ρ Fluid density kg
β Membrane width
θ(x) Interpolating function e−10x

+ e−20(1−x)

ζ(x) Relative damping factor 0.1e1.1973xθ(x)+ ζ0e−0.3914x (1− θ(x))
ζ0 Coefficient of ζ(x) −0.06 or 0.01
ω0(x) Natural frequency of the membrane ms−1

(
20.832e−4.8354x

− 0.1455
)
× 2π

σ(x) Feedback stiffness amplitude 0.1416e−3914x

ε Coupling parameter
√

2m A/(ρβ)= 0.006
τ(x) Feedback time delay ms 1.742× 2π/ω0(x)

Table 1. Model parameters for (2-5).

the basilar membrane, that is,

p(x, t)
m
=

∂

∂t2 ξ(x, t)+ 2ζ(x)ω0(x)
∂

∂t
ξ(x, t)+ω2

0(x)ξ(x, t)+ σ(x)ω2
0(x)ξ(x, t − τ(x)). (2-2)

The meaning of the parameters and space-dependent coefficients in (2-1) and (2-2) are given in Table 1
along with the values that we have used in this study. Note that, apart from the damping factor ζ0,
which we allow to vary, these values are the same as those determined in [Zweig 1991] and [Epp et al.
2010], where all distances are measured in the units of the uncoiled cochlea length. We will discuss the
physiological motivation of the time-delayed feedback term below.

Using the properties of linear equations, one can assume that a steady time-periodic solution to the
model (2-1) and (2-2) can be expressed in the form of a series

p(x, t)=
∑

i

p̄i (x)eλi t , (2-3)

which is a separation of variables with exponential time dependence and spatial patterns p̄i (x). Substi-
tuting this expansion into (2-1) and (2-2), we obtain

λ2
i ξ̄i =

ε2

m
∂

∂x2 p̄i and
p̄i

m
= κ2(λi , x)ξ̄i , (2-4)

where
κ2(λi , x)= λ2

i + 2λiζ(x)ω0(x)+ω2
0(x)

(
1+ σ(x)e−λτ(x)

)
.

Combining the two transformed equations (2-4) by eliminating ξ̄i we get

λ2
i p̄i = ε

2κ2(λi , x)
∂

∂x2 p̄i . (2-5)
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This equation has to hold for each p̄i and λi , where as yet we have not determined which values λi must
take. (Note that our notation here is different from that of [Zweig 1991, Equation 24], and that we use a
linear longitudinal coordinate. However, the essence of the model is the same.)

The natural boundary condition to take at the apex of the cochlea, where fluid is allowed to flow
between the two chambers divided by the basilar membrane, is

p(1, 0)= 0. (2-6)

Typically the choice of λi ’s is determined by the boundary condition at the stapes, which we assume to
take the form ∂

∂x p(0, t)=−ρvst(t), where vst is the stapes velocity.
In this study we shall assume a single frequency sound input with constant phase. It is most convenient

to solve in complex coordinates, and therefore we set

∂

∂x
p(0, t)=−ρvst(t)= eiωt . (2-7)

The form of the boundary conditions (2-6) and (2-7) means that we can choose a single λ= λ0 = iω and
a single p̄ = p̄0 and hence the boundary conditions on p̄ become

∂

∂x
p̄(0)= 1, p̄(1)= 0. (2-8)

Hence we have reduced the dynamic problem to that of finding a steady solution to the two-point
boundary value problem (2-5) for p(x) subject to the boundary conditions (2-8). In order to solve such
a problem we have used Chebyshev collocation [Trefethen 2000] with 2400 mesh points in x , which
yields very high accuracy.

A typical numerical solution for the excitation pattern of the cochlea, defined as the maximum am-
plitude of the basilar membrane at each longitudinal position x , is shown in Figure 2 for the particular
choice of stimulus frequency 1.6kHz. Solutions with nonzero time delay are represented by continuous
green lines, and without time-delay (τ(x)= 0) by dotted black lines. Similar results are obtained for a
variety of different input frequencies with the sharp peak occurring at a frequency-dependent distance.

It can be seen that with negative damping ζ0 =−0.06 (left column of Figure 2), the tuning is sharper
than with small positive damping (ζ0 = 0.01; right column of Figure 2). We also can see that when the
delay is removed there is no sharp tuning. Moreover, the phase curves (bottom row of Figure 2) suggest
that the zero-delay case causes instability in the presence of negative damping, as the phase increases
rather than decreases with x . Note that a decrease in phase is not a sufficient condition for stability, and
a thorough stability analysis needs to be carried out to assess the stability. Such an analysis forms the
subject of Section 3.

Delay equivalency. It can be argued that time delay in the active part of the cochlea, although it cannot be
directly related to a physiological effect, is in some sense equivalent to a spatial feed-forward mechanism
that captures the action of the tilted hair cells and the phalangeal processes. The logic for this argument
is that the cochlea supports a traveling wave whose speed is easily determined. From this speed, and
starting from a time-delay model, one can calculate the distance that the wave travels during a fixed delay
interval. This distance should then be equal to the spatial constant of the feed-forward mechanism.
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Figure 2. Steady state solutions of cochlea models for 1.6kHz harmonic stimulus:
continuous green curves correspond to the time-delay model (2-5), dotted black lines
correspond to the time-delay model with τ(x) = 0, and dashed red lines corresponds
to the feed-forward model (2-10). The damping parameter is ζ0 = −0.06 for the left
column and ζ0 = 0.01 for the right column.

The reason for studying the temporal delay model is that it is much simpler to solve using the method
we introduced in the previous section, and the model with delay can reproduce the cochlear response
qualitatively better than without delay, as shown by the continuous green curves in Figure 2. It is useful
then to consider the relation between the time-delay and feed-forward models in more detail.

We use the WKB technique to solve (2-5). The approximate solution assumes the form of p̄(x) =
sinhφ(x)/ε with φ(x)=−

∫ 1
x

λ
κ(λ,z)dz. The wavelength of the solution becomes

δ(x)=
2πε

Im iω0(x)
κ(iω0(x), x)

.

With knowledge of the spatial wavelength, it is possible to calculate the distance that will have the same
phase as the delayed wave, p̄(x)e−λτ , namely p̄(x +1(x)), where

1(x)= ω0(x)τ (x)δ(x). (2-9)

Note that since τ(x)ω(x) is a constant, 1(x) is a constant multiple of δ(x), and note further that δ(x) is
roughly constant along the cochlea. For our parameter values, the estimated feed-forward distance 1(x)



ON TIME-DELAYED AND FEED-FORWARD TRANSMISSION LINE MODELS OF THE COCHLEA 563

Figure 3. The equivalent feed-forward distance 1(x) along the cochlea. The damping
parameter is ζ =−0.06 (a) and ζ = 0.01 (b).

defined by (2-9) is plotted in Figure 3. The obtained distance values are unreasonably large, around 2%
of the length of the uncoiled cochlea, which would mean 0.75 mm for the 35 mm long human cochlea.

Furthermore, this approximation of the feedback term is inaccurate. It does not take into account
that the wave is decaying both to the left and to the right of its peak and hence a solution with smaller
amplitude will be fed back. It also ignores the fact that the feed-forward mechanism changes the wave
speed. We therefore proceed to study a model which explicitly includes a spatial feed-forward term,
instead of time-delay.

Feed-forward model. Replacing the time delay in (2-5) with a spatial delay of distance 1(x) yields the
feed-forward model. In some respect this is more physiological, but it still does not properly take into
account the underlying source of the feed-forward term. The governing equation after expanding the
solution into the form (2-3) becomes

λ2 p̄(x)= ε2κ2
0 (λ, x)

∂

∂x2 p̄(x)+ κ2
1 (x)

∂

∂x2 p̄(x +1(x)), (2-10)

where κ2
0 (λ, x)= λ2

+ 2λζ(x)ω0(x)+ω2
0(x) and κ2

1 (x)= ω
2
0(x)σ (x). The excitation pattern compared

to the time-delay model can be seen in Figure 2. With the obtained value of 1(x) in Figure 3 we were
not able to obtain a plausible result, which is already an indication that the derived relation in (2-9) is
inaccurate. Indeed, when looking for an exact value of distance 1(x) and a constant σ̂ that replaces
the feedback coefficient σ , we find that 1(x) and σ̂ heavily depend on the stimulus frequency, and it is
impossible to use fixed values for all frequencies. Nevertheless, we find from our simulations (indicated
by dashed red lines in Figure 2) that a spatial delay of a quarter of the (inaccurately) estimated distance
1(x)/4 gives responses with the expected tall and broad peaks if ζ is positive.

It can also be seen in Figure 2 that the feed-forward effect does not stabilize the model with negative
damping and has less sharp tuning. However, with small positive damping the tuning is sharp and stability
appears to be preserved. Note that stability in this context means only stability with respect to single
frequency response. A more thorough stability analysis is outlined in the next section.

3. Stability

Stability of the delayed model. Stability calculations for a delay equation can be demanding, depending
on the type of the equation [Stépán 1989]. For delayed ordinary differential equations (DDEs) the
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problem reduces to finding roots of an exponential polynomial, followed by a check that all of these
(typically infinitely many) roots have negative real part to ensure stability. In a numerical scheme one
can count the number of unstable roots using the so-called argument principle [Marsden and Hoffman
1999]. The argument principle states that along a contour in the complex plane the argument variation of
the function will be a constant times the difference between the number of poles and roots of the function
inside the contour. This is very helpful, but only in the case when the function does not have poles.

Here we construct a function (the characteristic function) for the time-delayed cochlea model, whose
roots determine the stability. However, since our underlying model is a delayed partial differential equa-
tion, it is not possible to guarantee that this function is without poles.

The construction of the characteristic function goes as follows. We say that λ is a characteristic root
of (2-5) if it has a nontrivial solution that satisfies the boundary conditions (∂ p̄/∂x)(0)= 0 and p̄(1)= 0.
Since (2-5) is an ODE, one can solve it uniquely by specifying two boundary conditions p̄(0)= a1 and
(∂ p̄/∂x)(1)= a2. If for nonzero a1 and a2 the conditions (∂ p̄/∂x)(0)= 0 and p̄(1)= 0 hold, there is a
nontrivial solution and hence λ is a characteristic root.

One can therefore generate a characteristic matrix M such that ∂

∂x
p̄(0)

p̄(1)

= M(λ)

 ∂

∂x
p̄(1)

p̄(0)

 .
The left side of this equation can only be zero for nonzero right-hand side vector if det M(λ)= 0. Hence,
the roots of det M(λ)= 0 are the characteristic roots of (2-5). Since this is a delayed partial differential
equation there may be a continuous spectrum, so finding the roots is a challenge. One can however
approximate the roots by finding local maxima of the function 1/ det M(λ) that are above a certain
threshold.

We solve the boundary value problem with a central finite difference scheme with 1200 equidistant
points that is a rather fast and moderately accurate method. A plot of the roots can be seen as the black
dots in Figure 4. In the nondelay case, we can also approximate the roots by a (slower but more accurate)
direct method using Chebyshev collocation to check the accuracy of our computation; the results are the
color dots in Figure 4.

We see that in the case of negative damping (ζ0 =−0.06, shown in the left column of Figure 4) adding
time delay stabilizes the system. On the other hand, with positive damping (ζ0 = 0.01, shown in the right
column of Figure 4) the solution is always stable, with or without time-delay.

We note that both numerical methods provide spectra that are essentially indistinguishable in the case
of no time-delay, which gives confidence in the accuracy of our computations. Furthermore, every root
of our characteristic function is accompanied by a pole, therefore counting the difference between the
number of roots and poles gives identically zero result, hence the argument principle cannot be used.

Stability of the feed-forward model. The stability of the feed-forward model can be calculated more
efficiently than that of the time-delay model. In order to formulate the spectral problem we introduce
the differential operators

D2
0 : (D

2
0ϕ)(x)=

∂

∂x2ϕ(x), ϕ ∈
{
φ ∈ C2

[0, 1] : ∂
∂x
φ(0)= 0, φ(1)= 0

}
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Figure 4. Stability of the time-delay model. Black points show the characteristic roots
of (2-5), computed from the characteristic function det M = 0, without delay (top) and
with delay (bottom). In the nondelay case, the roots are also computed with a direct
method using Chebyshev collocation, as a check; these values are indicated with color
dots. The damping parameter is ζ0 = −0.06 for the left column and ζ0 = 0.01 for the
right column.

and
D2
1 : (D

2
1ϕ)(x)=

∂

∂x2ϕ(x +1(x)), ϕ ∈
{
φ ∈ C2

[0, 1] : ∂
∂x
φ(0)= 0, φ(1)= 0

}
,

noting that the boundary conditions for (2-10) are (∂ p̄/∂x)(0) = 0 and p̄(1) = 0. The spectral prob-
lem is not an ODE any more, but is instead a neutral delay-differential equation. In contrast to the
time-delay case the equation is polynomial in λ, and therefore can be transformed into a regular eigen-
value/eigenfunction problem:[(

0 I

ε2ω2
0

(
D2

0 + σD2
1

)
2ε2ζω0 D2

0

)
− λ

(
I 0
0 I

)](
ψ1

ψ2

)
=

(
0
0

)
. (3-1)

We discretize this boundary problem with Chebyshev collocation, using 2400 points, exactly as for the
steady state solution, and put into an eigenvalue solver to obtain the spectrum.

The spectrum of (3-1) is shown in Figure 5. We see that the feed-forward mechanism does not stabilize
the system with negative damping, but that stability is preserved with the combination of positive damping
and spatial feed forward.
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Figure 5. Characteristic roots of the feed-forward model (2-10). The damping parame-
ter is ζ =−0.06 (a) and ζ = 0.01 (b).

4. Conclusion

In this paper we have compared two cochlea models, one with time delay, and another with a spatial feed-
forward mechanism. We calculated an approximate relation between the temporal and spatial delays
and found no simple relation between the two such models can exist. Moreover, we showed that the
two models do not yield similar excitation profiles for equivalent physiological parameters. From a
mathematical point of view, it is easier to control stability with a time-delay than with the feed-forward
mechanism. In particular, we were not able to find a value for the feed-forward distance that made the
model stable. However, the restriction on the damping does not restrict the sharpness of tuning with a
stable model. In fact, with small positive damping one can achieve sharp tuning and qualitatively good
agreement with data, as also shown in [Yoon et al. 2009].

Furthermore, our stability analysis has given information on the alignment of the characteristic roots
along the complex imaginary axis, which might also give insight into spontaneous otoacoustic emissions
and even explain synchronization of the emitted frequencies. The distance of the roots from the imaginary
axis might also indicate the sensitivity to different frequencies.

A natural next step that will be investigated in future work would be to introduce a nonlinear model for
the outer hair cells themselves. Introduction of such a nonlinear term into the transmission line equations
would enable us to investigate the effect of the loss of stability on the dynamics. More importantly, we
would like to understand what kinds of local hair cell dynamics lead to compressive active nonlinearity
when the spatial feed-forward or temporal delay are taken into account. In particular, through match-
ing with experimental data, this would enable us to gain a better global understanding of the relative
importance of the longitudinal effects considered in this paper and the local hair cell dynamics.
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A POROELASTIC MODEL FOR CELL CRAWLING
INCLUDING MECHANICAL COUPLING BETWEEN

CYTOSKELETAL CONTRACTION AND ACTIN POLYMERIZATION

LARRY A. TABER, YUNFEI SHI, LE YANG AND PHILIP V. BAYLY

Much is known about the biophysical mechanisms involved in cell crawling, but how these processes
are coordinated to produce directed motion is not well understood. Here, we propose a new hypothesis
whereby local cytoskeletal contraction generates fluid flow through the lamellipodium, with the pressure
at the front of the cell facilitating actin polymerization which pushes the leading edge forward. The
contraction, in turn, is regulated by stress in the cytoskeleton. To test this hypothesis, finite element
models for a crawling cell are presented. These models are based on nonlinear poroelasticity theory,
modified to include the effects of active contraction and growth, which are regulated by mechanical
feedback laws. Results from the models agree reasonably well with published experimental data for cell
speed, actin flow, and cytoskeletal deformation in migrating fish epidermal keratocytes. The models also
suggest that oscillations can occur for certain ranges of parameter values.

1. Introduction

Cell motility plays an important role in many biological processes, including the response to disease and
injury, morphogenesis, and the progression of cancer (see [Stossel 1994], for example). Much is known
about the molecular and physical mechanisms involved in cell crawling, but how these mechanisms
combine to produce directed motion remains incompletely understood. According to the traditional
view, cell crawling involves three sequential steps [Flaherty et al. 2007]: (1) actin polymerization pushes
a lamellipodium forward from the leading edge; (2) the lamellipodium adheres to the substrate; and (3)
cytoskeletal contraction generates tension that breaks weaker adhesions at the rear of the cell and pulls
the cell body forward.

Recent work has questioned the order of these events, however, suggesting that contraction precedes
polymerization and begins the crawling cycle [Yam et al. 2007; Loitto et al. 2009]. The reason that
contraction may be needed to initiate normal cell crawling is unknown. One possibility is that it generates
hydrostatic pressure, which helps drive the protrusion at the front of the cell [Charras et al. 2005; Yam
et al. 2007]. This idea is a key element of the present study.

The notion that fluid pressure is an important factor in cell crawling is not new. Diffusion alone may
not provide a forward flow of actin monomers sufficiently fast to give observed protrusion rates [Oster
and Perelson 1987; Zicha et al. 2003], and researchers have speculated that pressure may foster this
flow, as well as drive lamellipodial extension [Zhu and Skalak 1988; Stossel 1994; Keren et al. 2009].

Work supported by grants R01 GM075200 and R01 HL083393 from the National Institutes of Health, as well as grant DMS-
0540701 from the National Science Foundation.
Keywords: cell migration, poroelasticity, keratocyte.
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This idea has fallen out of favor for most cell types, however, as mounting evidence indicates that actin
polymerization is the dominant mechanism in lamellipodial extension [Bray 2001]. On the other hand,
recent studies have shown that substantial pressure gradients and fluid flow can occur in cells [Charras
et al. 2005; Iwasaki and Wang 2008; Mitchison et al. 2008; Keren et al. 2009], suggesting that fluid
dynamics may play a larger role in cell motility than commonly thought.

The purpose of this paper is to investigate a new hypothesis for cell crawling that integrates the
effects of actin polymerization, cytoskeletal contractility, and intracellular fluid flow. To illustrate the
plausibility of our hypothesis, these mechanisms are included in 1-D and 2-D continuum models of a
migrating cell. Here, the main focus is on fish epidermal keratocytes, which move relatively quickly
(about 0.05–0.2µm/s) while maintaining a nearly constant shape, in contrast to most other types of
cells, which exhibit oscillatory behavior [Bray 2001; Keren et al. 2008]. For realistic parameter values,
results from the models agree reasonably well with published experimental data for cell speed, actin
flow, and cytoskeletal deformation. In addition, the models predict oscillations (similar to other cell
types) for certain parameter values, thereby illuminating some of the inherent feedback control problems
that apparently have been solved by crawling keratocytes in order to reach a steady state.

2. Preliminaries

General characteristics of crawling cells. The shape of an epidermal keratocyte (EK) depends on whether
it is stationary or crawling, as well as on whether it is located on a 2-D surface or in a 3-D matrix.
Stationary cells on a surface resemble the contents of an egg poured onto a flat surface (Figure 1b).
The hemispherical yolk in the center corresponds to the cell body, which contains the nucleus and other
organelles. The egg white, spread out into a thin disk around the yolk, represents the lamellipodium,
which is filled with actin and myosin.

Some cells crawl in a cyclic manner like a worm, e.g., amebas and fibroblasts. They first extend their
front end, grab the substrate, and then pull their rear ends forward. In contrast, EKs move more like
a centipede, which crawl without changing shape (except to turn). Unlike a centipede, however, EKs

1-D

2-D (stationary) 2-D (moving)

cell body

C

C

P

C

P
P

X1

X2
R

(a)

(b) (c)

X1

X3

Figure 1. Models for crawling cells (P = actin polymerization zone of lamellipodium;
C = CSK contraction zone). (a) 1-D model. (b) Stationary 2-D model. (c) Crawling 2-D
model.
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apparently are not propelled by dozens of tiny legs. How these cells can crawl steadily at speeds up to
10µm/min or more is an intriguing and unanswered question.

While crawling on a surface at steady state, the EK lamellipodium becomes shaped like a fan or wing
(approximately 40µm wide, 10µm long, and 0.2µm thick; see Figure 1c). Experiments have shown
that lamellipodia isolated from the cell body can crawl on their own with a similar speed and shape as
intact cells (see Figure 6a) [Verkhovsky et al. 1999]. Hence, this structure is the engine that drives the
cell, with the cell body pulled along behind it. The cell body, therefore, can be neglected in models for
crawling EKs.

For technical reasons, most experimental studies and models of cell crawling have been two-dimen-
sional. Crawling in three dimensions is quite different, however. For example, cells moving through a
3-D matrix have fewer stress fibers and adhesions, and they must create space in which to move [Friedl
and Bröcker 2000]. Moreover, whereas cells on surfaces spread out into a relatively flat configuration,
they become spindle shaped as they crawl though tissue. Thus, a 1-D model may be a good approximation
for a cell crawling through 3-D tissue.

The cytoskeleton of crawling cells. Cytoskeletal (CSK) dynamics are key to the migration process.
Within a relatively narrow region (about 1–2µm wide) near the leading edge, the lamellipodium is filled
with a relatively dense meshwork of branched actin filaments (F-actin). Actin at the front of this region
polymerizes to push the cell membrane forward, while actin at the rear depolymerizes into monomers (G-
actin), which then move forward to provide a pool for further polymerization. This sets up a treadmilling
mechanism [Bray 2001].

Behind this network, F-actin is organized into bundles, and interaction with myosin generates contrac-
tion in the crawling direction. Researchers have speculated that this contraction enhances the rate of actin
depolymerization and may drive fluid, along with G-actin, toward the leading edge [Svitkina et al. 1997;
Zicha et al. 2003; Yam et al. 2007; Keren et al. 2009; Okeyo et al. 2009]. It is notable that actin density
decreases and myosin density increases from front to back, and a relatively thick stress fiber forms along
the back edge of the lamellipodium.

Proposed crawling mechanism. Combining previous ideas, we herein propose a relatively simple crawl-
ing mechanism that integrates the effects of actin polymerization and cytoskeletal contraction. First,
CSK contraction elevates the fluid pressure at the rear of the cell, driving fluid (and actin monomers)
forward. Next, pressure at the front of the cell pushes the cell membrane forward, creating extra space
for monomers and thereby increasing the rate of actin polymerization at the leading edge. Finally, in con-
junction with cell-substrate adhesion, the tension generated in the contracting CSK pulls the cell forward.

To achieve steady-state motion, these processes must be continuous and balanced. Hence, coupling
between these processes is crucial to the global dynamic behavior of the cell. We suggest that this
coupling is regulated by mechanical feedback that depends on the interaction between fluid pressure,
CSK stress, and adhesive forces.

3. Governing equations

To model fluid-solid interaction, we take the cytoplasm as a porous elastic material (the CSK) saturated
with a viscous fluid, i.e., a poroelastic material. Laying the foundation for the model, this section summa-
rizes the governing equations of nonlinear poroelasticity theory. Then, modifications are discussed for
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including growth, which is used to simulate actin polymerization and CSK contraction. The presentation
is relatively brief; further details on poroelasticity can be found in [Biot 1972; Kenyon 1976; Yang et al.
1994], while detailed discussions of the growth theory are given, for example, in [Rodriguez et al. 1994;
Taber 2001].

Nonlinear poroelasticity theory. In poroelasticity theory, as in the more general mixture theory [Bowen
1976], all points in the bulk material are assumed to be occupied simultaneously by both solid and fluid
particles. Here, both the fluid and solid phases are assumed to be incompressible. The total Cauchy
stress tensor is given by

σ = σs + σ f ,

where the respective partial stresses of the solid and fluid (per unit area of the bulk material in the current
configuration) are

σs = φs σ̂s, σ f =−φ f p I .

In these relations, φs and φ f are volume fractions, σ̂s is the true solid stress, p is the fluid (pore) pressure,
and I is the identity tensor. If there is no mass exchange with the surroundings, φs +φ f = 1.

Computations are based on a Lagrangian formulation, with all quantities defined relative to the initial
(reference) configuration for a cell at rest (taken as stress free). As described below, growth is simulated
by introducing an intermediate zero-stress configuration, but we disregard this for the moment. With
position vectors to a material point of the solid in the initial and current configurations given by X and
x = x(X, t), respectively, the total deformation gradient tensor for the solid skeleton is

F = (∇x)T , (3-1)

where ∇ ≡ ∂/∂X and superscript T denotes the transpose. The corresponding Lagrange strain tensor is
E = 1

2(F
T
· F− I).

The total first Piola–Kirchhoff stress tensor P , defined relative to the bulk area in the initial state, is
given by [Taber 2004]

P = J F−1
· σ , (3-2)

where J = det F is the dilatation ratio. The equilibrium and constitutive equations can be written in the
forms

∇ · P + f0 = 0, (3-3)

P =
∂W
∂FT − J p F−1, (3-4)

where f0 and W are the respective body force vector and strain-energy density function per unit bulk
reference volume.

Fluid flow is governed by a generalized Darcy’s law of the form [Yang et al. 1994]

U̇ =−K ·∇ p, (3-5)

where U̇ is the volume flow rate of fluid relative to the solid, per unit bulk material area in the reference
state, and dot denotes time differentiation. In terms of U̇ , the relative fluid velocity is v f = J−1U̇ · FT .
In addition,

K = F−1
· k · F−T J/µ f
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is the effective permeability tensor, with k being the intrinsic permeability tensor and µ f the fluid vis-
cosity.

Finally, for incompressible fluid and solid constituents, equating the net volume flow rate of fluid en-
tering a material element to the rate of change of element volume gives the incompressibility (continuity)
condition

−∇ · U̇ = J̇ .

This equation can be integrated to yield

∇ ·U + J − 1= 0. (3-6)

Given appropriate boundary and initial conditions, equations (3-1), (3-3), (3-4), (3-5) and (3-6) can
be solved for x, F, P , U , and p. Note that if K = 0, then U = 0 and these equations reduce to the
governing equations for an incompressible solid, with p becoming a Lagrange multiplier [Taber 2004].

Growth. Polymerization and contraction are simulated using a theory for volumetric growth of an elastic
solid [Rodriguez et al. 1994; Taber 2001]. Positive growth along an actin fiber simulates polymerization,
while negative growth simulates contraction.

In this theory, the growth tensor G transforms the zero-stress reference state for each material ele-
ment into an intermediate (virtual) zero-stress state of different size and shape. Geometric compatibility
between growing elements is ensured by the elastic deformation gradient tensor F∗, and the total defor-
mation gradient tensor is written is the form

F = F∗ · G. (3-7)

With this formulation, growth occurs relative to the reference configuration. In addition, stress depends
only on F∗, and the Cauchy stress tensor is given by [Taber 2001]

σ = J ∗−1 F∗ ·
∂W
∂E∗
· F∗T − p I, (3-8)

from which (3-2) provides P . In the resulting expression, which replaces (3-4), J ∗ = det F∗, W =
W (E∗), and E∗ = 1

2(F
∗T
· F∗− I).

In our models, the growth tensor is determined by mechanical feedback laws. These laws have the
general rate form Ġ = Ġ(X, t; F; σ̂s, p), which is specialized below.

4. Proposed models for cell crawling

In this paper, we present 1-D and 2-D poroelastic models for a cell crawling on a flat surface S. To
define the geometry, let X i represent a Cartesian coordinate system fixed to S, with X1 directed along
the crawling direction and X3 normal to S.

Geometry and material properties. The 1-D model represents a narrow strip along the centerline of
the lamellipodium in the X1-X3 plane. In the initial resting state, the cell is taken as a rectangular
bar (or plate) of length 10µm and height 1µm (Figure 1a). This model also can be considered a first
approximation for a spindle-shaped cell crawling through a 3-D matrix. (The cell height, which is
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irrelevant in the present study, is taken unrealistically large to improve numerical convergence in the 1-D
model.)

The 2-D model represents an EK lamellipodium in the X1-X2 plane. The stationary lamellipodium
is taken as a circular annulus of outer radius 10 µm surrounding a cell body of radius 3µm (Figure 1b).
For a crawling cell, the lamellipodium initially has the shape of a section of a circle with rounded corners
and approximately the same planform area as the lamellipodium in the stationary model (Figure 1c); the
cell body is not included. For convenience, the center of the circle defining the leading edge at t = 0 is
placed at the origin of the X i system.

Actually, both models are analyzed as two-dimensional objects, just in different planes, with the 1-D
and 2-D models assumed to be under conditions of plane strain and plane stress, respectively. The cell
membrane is not included explicitly, but the boundaries are assumed to be impermeable to flow. Hence,
the total cell volume remains constant, although fluid can flow from one region to another.

The strain-energy density function for the solid skeleton must have a compressible form. For a first
approximation, we assume that the CSK is transversely isotropic and take

W = C
[

I ∗− 3+
1− 2ν
ν

(
J ∗−2ν/(1−2ν)

− 1
)]
+C3 E∗233 , (4-1)

where the term in brackets corresponds to a Blatz–Ko material [1962] and the last term provides a stiffen-
ing in the X3-direction that prevents the lamellipodium from thickening unrealistically during crawling.
We speculate that relatively short and stiff crosslinks between actin filaments, as well as connections
between actin and the cell membrane, provide this additional transverse stiffness. The parameters C and
ν represent the small-strain modulus and Poisson’s ratio, respectively, of the drained solid skeleton, C3

is the transverse modulus, and I ∗ = tr (I + 2E∗) is a strain invariant.

Actin polymerization. Polymerization of actin filaments is simulated by growth of the solid skeleton in
a narrow zone near the leading edge of the model, along the local fiber coordinate (X f ) normal to the
edge in the reference configuration. In the 1-D model, X f is the longitudinal coordinate X1, whereas in
the 2-D models, it is the radial direction R (Figure 1b,c). Since growth in our models is one-dimensional,
the growth tensor G has only one non-zero component, denoted here simply by G. With the initial value
of G set to unity everywhere, G > 1 gives polymerization and G < 1 gives contraction (see below).

It is important to note that simulating actin polymerization by volumetric growth of filaments is a
relatively crude approximation for the actual process. At the molecular level, the addition of monomers
to the end of a filament actually is a type of surface growth. To more accurately model polymerization
in a continuum formulation, a multiscale analysis is needed. This would be a natural extension of the
present model.

Feedback control of polymerization in the models is based on the work of Peskin et al. [1993], who
postulate that, at the leading edge of a crawling cell, actin filaments push the cell membrane forward via a
Brownian ratchet mechanism. According to this idea, thermal fluctuations in the membrane create a small
gap between the membrane and actin filaments, allowing actin monomers to enter and add to the length
of the filaments. Here, we propose that positive fluid pressure at the leading edge facilitates this process
by pushing the cell membrane forward, enlarging the gap and increasing the rate of polymerization. This
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mechanism is implemented through the feedback law

G̈ p = Ap ṗL gp(x f ), (4-2)

where G p represents the growth due to polymerization, pL is the fluid pressure at the leading edge, and
Ap is a positive rate constant. With this law taken as second order in time, the polymerization rate (Ġ p)
becomes constant when pressure reaches a steady state ( ṗL = 0).

In the equation above, the function gp provides the spatial distribution of growth in the current con-
figuration. With xL denoting the current location of the leading edge, we take

gp(x f )= Hs(x f − (xL −1x p,1x j p))(1−βX2
2), (4-3)

in which Hs is a smoothed Heaviside step function defined in the region x f ≥ xL−1x p. In this expression,
x f is the local fiber coordinate (the growth direction), 1x p defines the (specified) width of the growth
zone, and 1x j p is the length of the smoothed “jump” from zero to one. This form for gp keeps the width
of the active polymerization zone fixed in the crawling direction, rather than growing longer with G. In
addition, the term with the specified constant β allows for a gradient in polymerization force along the
leading edge of the 2-D crawling model (gc= 0 for |X2|> 1/

√
β and β = 0 for the 1-D and 2-D stationary

models). Some investigators have speculated that the observed regional variation in actin density, being
highest near the center and lowest near the sides of the cell, plays an important role in maintaining cell
shape [Keren et al. 2008; Rubinstein et al. 2009].

Cytoskeletal contraction. Actomyosin contraction occurs in a wider zone toward the back of the cell
[Yam et al. 2007]. To achieve steady-state conditions, we speculate that the contraction is continuous in
time, i.e., the contracting region never relaxes. For this to occur, contraction is assumed to be accom-
panied by CSK remodeling, similar to the contractile mechanism of smooth muscle [An and Fredberg
2007; Bossé et al. 2008]. As a smooth muscle cell contracts, its CSK remodels to reset the zero-stress
configuration so that shortening can continue to very large magnitudes. This process is included in the
present models by progressively enlarging the contractile region so it maintains a constant width as it
contracts. In the 1-D and stationary 2-D models, contraction is assumed to occur in the same direction
as actin polymerization, i.e., normal to the leading edge. In the 2-D crawling model, contraction occurs
in the direction of motion.

To obtain steady-state motion, feedback is included in the contractile machinery. A growing amount of
evidence suggests that cells and tissues respond to mechanical perturbations in ways that tend to restore
a homeostatic state of stress [Humphrey 2008]. Correspondingly, we assume that a homeostatic (target)
stress σ̂0 exists for contractile fibers and propose a contraction feedback law of the form

G̈c =−A2
c(1− σ̂s/σ̂0)gc(x f ), (4-4)

where Gc is the (negative) growth due to contraction, σ̂s is the true solid stress in the fiber direction, and
Ac is a rate constant. With this law, the contractile rate (Ġc) becomes constant when σ̂s = σ̂0.

The spatial distribution for contraction is taken in a form similar to that given above for gp, i.e.,

gc = [1− Hs(x f − (x0+1xc,1x jc))](1−βX2
2), (4-5)



576 LARRY A. TABER, YUNFEI SHI, LE YANG AND PHILIP V. BAYLY

where x0 is the current location of the trailing edge of the lamellipodium, and the lengths 1xc and 1x jc

provide an active contractile zone of constant geometry in the current configuration. In the axisymmetric
model for a stationary cell, we take β = 0, as well as gc = 0 in the cell body (Figure 1b).

Once G p and Gc are computed, the total growth is given by G = G pGc.

Adhesion dynamics. Adhesion between the CSK and the substrate is modeled by a frictional body force
[Alt and Dembo 1999; Gracheva and Othmer 2004; Kruse et al. 2006; Kuusela and Alt 2009]. The
proportionality between velocity and force represents the cumulative effects of a number of adhesions.
The force on each adhesion depends on the displacement of the cytoskeleton relative to the undeformed
substrate, over the time since the adhesion was formed. If adhesion lifetime is approximately constant, net
adhesion force will increase roughly in proportion to velocity, and the coefficient in this relationship will
increase with density of adhesions, adhesion stiffness, and substrate stiffness. Other dissipative forces,
such as those caused by viscous resistance between the CSK and cell membrane, as well as between the
cell membrane and the surrounding environment, are included through an additional friction force. The
total friction force is given by

f0 =−ηvs − ηcvc, (4-6)

where η and ηc are friction coefficients for the adhesions and cell membrane interaction, respectively. In
addition, vs is the local velocity vector for the solid skeleton (CSK), and vc is the forward velocity of the
cell as a whole, taken as the velocity at the center of the leading edge.

5. Computational methods

To express the governing equations in dimensionless form, the following nondimensional variables are
defined:

X̄ =
X
L
, x̄ =

x
L
, ∇̄ = L∇, t̄ =

t
T
, Ū =

U
L
, v̄ =

vT
L
,

σ̄ =
σ

C
, P̄ =

P
C
, f̄0 =

f0L
C
, p̄ =

p
C
, W̄ =

W
C
, C̄3 =

C3

C
,

K̄ =
CT
L2 K , η̄ =

L2

CT
η, Āp = CT Ap, Āc = T Ac.

The characteristic length L is taken as the initial cell length (10µm), and the characteristic time is defined
as T = L/vc = 50 s for a cell velocity vc = 0.2µm/s. Thus, it typically takes an EK about 50 s to move
a distance equal to its own length. In terms of these quantities, the governing equations (3-1), (3-3),
(3-5), (3-6), (3-8), (4-2), (4-4), and (4-6) maintain their dimensional forms if we let dot denote d/dt̄ and
remove all bars. Unless stated otherwise, all results are given in terms of nondimensional variables with
the bars implied.

Finite element modeling. Finite element models were developed using the commercial software Comsol
Multiphysics (v. 3.5; Comsol AB, Burlington, MA). The Structural Mechanics Module provided the basis
for the nonlinear elastic part of the model. The governing equations were modified to implement volu-
metric growth as described in [Taber 2008], with Darcy’s law and the feedback laws included as auxiliary
differential equations. In addition, the following changes were made to enforce incompressibility:
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• The extra term −p δ was added to the strain-energy density function, where δ is the expression on
the left side of (3-6) and p is a Lagrange multiplier with the physical meaning of fluid pressure.

• The expression (p/M+δ)pt was included as a weak constraint condition, where pt is a test function
and M is a (large) penalty parameter (set to 105).

Triangular second-order and first-order elements were used for displacement (solid elasticity) and
pressure (fluid flow), respectively. The mesh was refined until the model yielded sufficient solution
accuracy. The function flc2hs provided the smoothed Heaviside function used in the feedback laws.

Finally, we note that the model is unstable when it is required to meet the target stress at all points in
the CSK. To improve stability, we used the average value of the true solid stress over the rear 4µm (1-D
and 2-D crawling models) or 3µm (2-D stationary model) along the cell centerline for σ̂s in (4-4). Testing
showed that the length of the averaging region has a relatively small impact on the results. Similarly, the
value of pL in (4-2) was taken at the middle of the leading edge.

Simulation procedure. Initially, the model is at rest with no stresses and G= I . All boundaries are stress
free and impermeable to flow (P · N = U̇ · N = 0, where N is the local normal to the boundary in the
reference configuration). There are no specified loads or displacements. At the outset of the simulation,
the feedback law (4-4) initiates a contraction at the rear of the cell, generating fluid pressure, and the other
feedback law (4-2) causes growth near the front that pushes the leading edge forward. Except for time
plots and results from the 2-D crawling model, all results are plotted after the cell reaches steady-state
conditions.

Parameter values. The geometries of the polymerization and contraction zones were estimated from
published distributions of F-actin, myosin II, and contractile strains in crawling EKs [Svitkina et al.
1997; Adachi et al. 2009]. The values used in the models are 1x p =1x j p = 1µm, 1xc = 4 µm (1-D &
2-D crawling) or 2µm (2-D stationary), 1x jc = 4µm (1-D & 2-D crawling) or 3µm (2-D stationary),
and β = 0.25.

Otherwise, with K = K I (isotropic permeability), the models contain ten physical parameters: C ,
C3, ν, K , φs (φ f = 1 − φs), η, ηc, Ap, Ac, and σ̂0. Unfortunately the range of reported parameter
values is quite large in some cases. For example, estimates for the hydraulic permeability (K ) range
over at least five orders of magnitude, from about 10−10 to 10−15 m4/N s [Guilak et al. 2006]. Hence,
after first obtaining first-approximation parameter values from published data as described below, we
iteratively correlated model and experimental results to refine these values in order to define a baseline
model (Table 1). We also used this method to guide our choices for the functions gp and gc in (4-2) and
(4-4).

In defining the mechanical properties of the cytoskeleton, we note that recent studies have shown that
the CSK is capable of very rapid remodeling [An and Fredberg 2007; Bossé et al. 2008]. Hence, we
assume that CSK remodeling keeps up with the dynamics of the crawling cell and take the porosity and
permeability as constant. The representative values φs = φ f = 0.5 are used for the volume fractions, and
the value taken for K is near the low end of the range given above (Table 1). The values chosen for C
and ν are typical for a compressible cell [Guilak et al. 2006], while C3 is taken large enough to prevent
significant changes in lamellipodium thickness.
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Parameter Physical meaning Value Nondimensional
Value

C CSK modulus 1 kPa 1
C3 Transverse fiber modulus 20 kPa 20
ν Poisson’s ratio 0.3 0.3
K Effective hydraulic permeability 4× 10−15 m4/N s 2
η Adhesion friction coefficient 200 Pa s/µm2 0.4
ηc Cell membrane friction coefficient 50 Pa s/µm2 0.1
Ap Actin polymerization rate constant 1 (kPa s)−1 50
Ac CSK contraction rate constant 0.2 s−1 10
σ̂0 Target stress 0.5 kPa 0.5

Table 1. Parameter values for baseline model.

The value used for the friction coefficient (η) was measured by [Fournier et al. 2010]. The membrane
friction coefficient (ηc) is assumed to be similar to η, but smaller to keep the cell moving forward.

The rate constants (Ap and Ac) and the target stress (σ̂0) were estimated as follows. The value of σ̂0

is based on measurements of actomyosin contractile stress (∼ 0.4 kPa) in EKs [Galbraith and Sheetz
1999]. The constant Ac in (4-4) characterizes the rate of contraction under zero load conditions. With
the unloaded speed of myosin relative to actin being approximately vm = 6µm/s [Howard 2001], the
fractional contraction rate is roughly Ac = vm/1xc ∼= 1.5 s−1, but we ended up using a somewhat smaller
value (Table 1).

Finally, to estimate the actin polymerization rate constant Ap, we use two pieces of information: (1)
the unloaded polymerization velocity for actin is approximately v0 = 0.8µm/s [Peskin et al. 1993]; and
(2) the stall stress for actin polymerization is about σs = 2 kPa in EKs [Prass et al. 2006]. Then, taking the
force-velocity relation as linear (a very rough approximation) yields Ap = (v0/1x p)/σs = 0.4 (kPa s)−1.

Again, all of these values were modified somewhat to obtain more accurate model behavior, and,
unless stated otherwise, the results for both the 1-D and 2-D models are based on the parameters given in
Table 1. Because of incomplete and inconsistent data, it was important to conduct a parametric sensitivity
analysis (see Results section).

6. Results

One-dimensional model. Steady-state distributions along the cell are shown for actin velocity (vs = ẋ1),
CSK stretch rate (Ḟ11), actin stress (σ̂s), fluid pressure (p), and relative fluid velocity (v f ) (Figure 2).
For clarity, except in the plots of the deformed cell (Figure 2a), all quantities are plotted as functions of
the undeformed coordinate X1. To illustrate the effects of fluid flow, curves are shown for various values
of the effective hydraulic permeability K .

Actin velocity is forward at the front and back of the cell, but backward elsewhere (Figure 2b). The
retrograde flow of actin is caused by growing actin filaments at the front pushing backwards as they meet
frictional resistance to forward motion (due to adhesions). The magnitude of the actin velocity increases
with K in each region.



A POROELASTIC MODEL FOR CELL CRAWLING INCLUDING MECHANICAL COUPLING 579

.

Figure 2. Steady-state distributions in 1-D model. Except in (a), quantities are plotted
as functions of the undeformed longitudinal coordinate. Results are shown for various
values of the effective hydraulic permeability K , with K = 2 giving the baseline case
and the legend in (b) applying to all plots. (a) Deformed cell geometry (outline is initial
geometry). Top: pressure (colors) and relative fluid velocity (arrows); bottom: growth
rate (colors) and actin velocity (arrows). (b) Actin velocity. (c) Stretch rate. (d) Actin
(solid) stress. (e) Fluid pressure. (f) Relative fluid velocity.

Actin polymerization causes a positive stretch rate near the leading edge, while CSK contraction
generates increasingly negative stretch rates toward the rear (Figure 2c). The stretch-rate magnitudes
increase with K . In addition, the actin (solid) stress distribution peaks near the rear of the cell and drops
off toward the front (Figure 2d).
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Figure 3. Effects of adhesiveness (friction) and target stress on cell velocity and ret-
rograde actin flow in 1-D model. (a) Cell velocity vs friction coefficient η for various
values of effective hydraulic permeability K . (b) Retrograde actin velocity vs η for
various K (same legend as in (a)). (c) Cell velocity vs K for η = 0.4. (d) Cell velocity
vs target stress σ̂0 for η = 0.4.

The fluid pressure is positive throughout the cell (Figure 2e). It is greatest at the trailing edge and
decreases to a minimum at the leading edge. The negative pressure gradient, which is produced by the
combined effects of contraction at the rear and growth at the front, drives the fluid forward. The fluid
velocity relative to the solid skeleton peaks near the leading edge and meets the boundary conditions
of zero relative flow at the front and back (Figure 2f). Although the pressure gradient decreases with
increasing values of K (Figure 2e), the fluid velocity increases because the higher permeability offers
less resistance to flow.

Cell speed (actin speed at the leading/trailing edge) depends in a biphasic manner on adhesiveness, as
represented by the friction coefficient η (Figure 3a). It is small at low and high values of η and reaches
a peak between η = 0.1 and 1. In contrast, the retrograde actin velocity is nearly constant for η < 0.01
but drops off for larger values of η (Figure 3b). For the baseline value η = 0.4, cell speed increases with
K and approaches a constant value for K > 10 (Figure 3c). However, the speed increases in proportion
to the target stress σ̂0 over the range of values studied (Figure 3d).

Finally, results are presented to illustrate the temporal behavior of the model. At the beginning of the
simulation, the start-up conditions produce oscillations which eventually damp out in most cases, leaving
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Figure 4. Time-dependent behavior of 1-D model. (a) Cell velocity for various values
of the effective hydraulic permeability K . (b) Cell velocity for various values of the
friction coefficient η. (c) Cell displacement for various K . (d) Cell displacement for
various η. (e) Rate of change in fluid pressure for various K . (f) Ratio of actin (solid)
stress to target stress (σ̂s/σ̂0) for various K .

a steady-state condition (Figure 4a,b). At steady state, the fluid pressure becomes constant and σ̂s→ σ̂0

(Figure 4e,f).
For certain parameter values, however, the oscillations persist and may continue indefinitely. We found

that this behavior is especially sensitive to the values of K and η, as persistent oscillations appear for
low values of K and high values of η (Figure 4a,b). Even when cell speed oscillates, however, the net
motion is forward in all cases (Figure 4c,d).
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Figure 5. Results for stationary 2-D model (t = 0.45; CB = cell body). (a) Pressure
(colors) and relative fluid velocity (arrows). (b) Radial growth (colors) and actin velocity
(arrows).

Two-dimensional model. Unfortunately, the present 2-D models do not reach steady state. (A parameter
study failed to find a suitable combination of parameter values.) Hence, we present only illustrative results
at times when nearly steady-state conditions occur.

Although the fluid pressure in the stationary model is relatively small, the pressure gradient is sig-
nificant enough to drive fluid radially outward from the cell body everywhere except near the leading
edge and within the cell body (Figure 5a). At the same time, the actin CSK flows inward throughout the
lamellipodium except for a small outward motion due to polymerization near the outer edge (Figure 5b).

The crawling model acquires the characteristic fan-like shape of an EK (Figure 6). Near the symmetry
axis of the cell, the results are similar to those from the 1-D model. In particular, a pressure gradient
drives fluid toward the leading edge (Figure 6b), while actin flows backward in the middle of the cell
and forward near the front and back edges (Figure 6c). Near the tips of the “wing,” however, relatively
little fluid flow occurs, but the actin moves radially inward at considerable speed. The continued lateral
deformation is one reason for the failure to achieve steady state. Also shown is a map of the frictional
body force exerted by adhesions on the cell (Figure 6d). Peaks in force occur near the front and back
edges, with strong concentrations at the wing tips.

7. Discussion

Theoretical modeling has played a central role in studies of cell migration. Models promote understand-
ing of the physical processes underlying observed behavior. They also can be used to test whether a
given hypothetical mechanism is consistent with physical law.

Previous models for cell crawling. Here, we provide a brief summary of some of the models most
pertinent to the present work, focusing primarily on 1-D and 2-D models with a significant mechanical
component. More comprehensive recent reviews of this topic include those of [Flaherty et al. 2007;
Carlsson and Sept 2008].

DiMilla et al. [1991] proposed one of the first models for cell crawling that includes adhesion dynamics.
The CSK is modeled as a 1-D viscoelastic system of springs and dashpots, with contractile elements
providing the driving force, which mediates binding affinities. Notably, this model predicts the experi-
mentally observed biphasic behavior of cell speed with increasing substrate adhesiveness. In particular,
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(d)
(a) (b) (c)

Figure 6. Results for 2-D model crawling toward the right (t = 0.3; outlines indicate
initial configuration). (a) Image of isolated EK lamellipodium crawling on a surface
(red: myosin II; cyan: actin) (reprinted with permission from [Verkhovsky et al. 1999]).
(b) Pressure (colors) and relative fluid velocity (arrows). (c) Radial growth (colors) and
actin velocity (arrows). (d) Frictional body force (colors and arrows) exerted by substrate
on the cell.

cell speed is low for either very high or very low adhesiveness, and it peaks at some intermediate value
[Palecek et al. 1997]. A common interpretation for this behavior is that cells cannot gain enough traction
to move quickly on very slippery surfaces, while they have difficulty letting go of very sticky surfaces
[DiMilla et al. 1991]. The present model captures this fundamental behavior (Figure 3a).

In [Alt and Dembo 1999; Kuusela and Alt 2009] the cytoplasm is treated as a biphasic fluid-like
mixture. One phase contains actin and myosin filaments, and the other phase is a solvent containing
actin monomers. The phases exchange monomers through chemical reactions, and the forces of actin
polymerization and CSK contraction are simulated by positive and negative pressures, respectively. Other
investigators also have considered the cytoplasm as a fluid-like mixture (e.g., [Kruse et al. 2006; Rubin-
stein et al. 2009].

Modeling the CSK as a fluid is based on the argument that the time scales for CSK remodeling and
function are similar [Alt and Dembo 1999]. At low Reynolds numbers like those in a cell, however, fluid
stress is dominated by pressure, which is intrinsically isotropic, whereas solid-like behavior is needed
to produce directed (anisotropic) stress like that generated by actin polymerization and CSK contraction.
Our model includes rapid remodeling of contractile fibers, but they are considered as elastic solids.

Hydrostatic pressure provides the driving force in some published models for pseudopod extension
and blebbing [Young and Mitran 2010; Oster and Perelson 1987]. In our model, pressure plays a central
but more indirect role, as it modulates the rate of actin polymerization at the leading edge, but actin
filaments do the actual “pushing.” The pseudopod extension model of [Zhu and Skalak 1988] is similar
in some respects to our model. In their model, actin polymerization pushes the cell membrane forward,
creating a pressure drop that draws fluid and actin monomers toward the leading edge. As in the present
model, fluid flow is governed by Darcy’s law.

Stolarska et al. [2009] presented a 3-D finite element model for an EK crawling on a surface. The cell
is treated as a viscoelastic solid, and focal adhesions are included at the boundary with the substrate. As in
our model, actin polymerization and CSK contraction are simulated using volumetric growth. However,
growth is specified in their model, rather than being governed by feedback.
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The 1-D model of [Larripa and Mogilner 2006] treats the cell as a viscoelastic actin-myosin gel. Con-
tractile stress is assumed to be proportional to the concentration of myosin bound to actin, as computed
from chemical kinetics. This model achieves steady-state motion like an EK.

Perhaps the most biochemically comprehensive model for a crawling cell is the 2-D model of [Rubin-
stein et al. 2005] for an EK lamellipodium. This model includes turnover of actin and actomyosin fibers,
forces generated by actin polymerization and actomyosin contraction, and actin transport. External loads
and displacements are applied at the boundaries in an ad hoc manner, whereas all loads in our models
arise automatically from mechanical feedback.

Comparison of numerical and experimental results. A theoretical model is only as good as the experi-
mental data used to support and test it. Over the years, numerous experimental studies of cell crawling
have been published. Many of these studies have been qualitative, but recent reports have emphasized
quantitative measurements. We used some of these data to estimate parameter values for our models, but,
as noted above, the available data are not always consistent. In addition to natural biological variability,
the use of different cell and substrate types contribute to this inconsistency. Nevertheless, it is important
to compare numerical and experimental results when possible.

In general, results given by previous models for cell crawling have been compared with only limited
portions of the available experimental data. Here, we evaluate our models using the following data for
EKs under steady-state conditions:

(1) The speed and shape of a crawling EK are relatively constant. At steady state, our 1-D model is con-
sistent with this observation. The steady-state cell speed in the 1-D baseline model is approximately
0.1µm/s, which is within the range of reported values (about 0.05–0.2µm/s; see, e.g., [Adachi et al.
2009; Okeyo et al. 2009; Wilson et al. 2010]. The speed is similar in the 2-D model, but this model
does not achieve steady state.

(2) As discussed above, cell speed depends on adhesion strength in a biphasic manner. (Actually, this
behavior has been found in at least two cell types [Palecek et al. 1997; Peyton and Putnam 2005];
to our knowledge this effect has not been explored in EKs.) Our 1-D model captures this behavior,
including the shapes of the cell velocity vs adhesiveness (η) curves and the result that cell velocity
increases by approximately an order of magnitude for a similar increase in adhesiveness (Figure 3a).

(3) In crawling cells, the actin CSK moves forward relative to the substrate at the front and back of
the lamellipodium and backwards in between [Schaub et al. 2007; Yam et al. 2007; Fournier et al.
2010]. In stationary (circular) EKs, on the other hand, actin flows radially inward toward the cell
body throughout the lamellipodium [Yam et al. 2007]. Both the 1-D and 2-D models are consistent
with these results (Figures 2a,b and 5b). In the 1-D baseline model, the retrograde actin speed is
about 0.07µm/s, which is similar to measured values for EKs [Schaub et al. 2007; Adachi et al.
2009].

(4) In the direction of motion, strain rate along the midline of the lamellipodium is positive near the
leading edge and negative toward the rear [Adachi et al. 2009]. Results from our models are con-
sistent with this pattern (Figure 2c). In addition, the magnitude of the peak negative strain rate in
the 1-D baseline model is about −0.04 s−1, which is nearly the same as that measured in EKs by
Adachi et al.



A POROELASTIC MODEL FOR CELL CRAWLING INCLUDING MECHANICAL COUPLING 585

(5) Relative to the CSK, intracellular fluid flows forward through the lamellipodium [Keren et al. 2009].
Both the 1-D and 2-D models give this result (Figures 2f and 6b). However, the fluid and solid
velocities in our models are similar, whereas Keren at al. found that relative fluid velocity is about
40% that of the cell.

(6) The largest traction stresses between a crawling EK and the substrate occur along the leading and
trailing edges of the cell, as well as near the tips of the “wings” [Jurado et al. 2005; Fournier et al.
2010]. Our 2-D model is consistent with these data, including the result that the maximum traction
occurs at the wing tips (Figure 6d), but the measured traction direction at the tips is opposite to that
predicted by the model.

(7) According to our 1-D model, cell velocity increases with the value of the target stress (σ̂0) in the
contractile fibers (Figure 3d). This prediction is consistent with the experiments of Okeyo et al.
[2009], who found that EKs move faster when exposed to the contraction enhancer calyculin and
slower when exposed to the contraction inhibitor blebbistatin.

In addition to these key results, Barnhart et al. [2010] recently have found that crawling EKs exhibit
oscillations under certain conditions. They speculate that these oscillations are caused by dynamic in-
teractions between cell elasticity and cell-substrate adhesions. Moreover, most other types of cells, e.g.,
fibroblasts, crawl in a cyclic manner. Interestingly, our 1-D model oscillates for relatively small values of
the hydraulic permeability or large values of the friction coefficient (Figure 4a,b). These results suggest
that the oscillations are caused by delays in the feedback loops in our models, i.e., phase differences that
often characterize poroelastic and frictional systems. This type of behavior is commonly encountered in
feedback control systems.

Limitations. This study focuses solely on mechanical aspects of cell crawling. Biochemistry and detailed
molecular mechanisms, e.g., adhesion dynamics, receptor-ligand binding, and stress fiber assembly, are
not considered, although they clearly play major roles in this problem [DiMilla et al. 1991; Boulbitch
et al. 2001; Schaub et al. 2007; Yam et al. 2007; Vicente-Manzanares et al. 2009]. We also do not
consider some of the more detailed mechanical events, such as lamellipodial ruffling [Zhang 2009], the
effects of substrate stiffness on cell speed and direction [Pelham and Wang 1997; Lo et al. 2000; Ghosh
et al. 2007], and how crawling cells probe their environment [Mattila and Lappalainen 2008; Petrie et al.
2009]. These effects are beyond the scope of the present study.

Concluding remarks. Our models reproduce quite well a relatively wide range of experimental data
obtained for crawling EKs. There are some discrepancies, however. A crucial unresolved issue is how
the cell achieves steady state motion in two dimensions. A number of investigators have pondered
this problem, with some suggesting that a gradient in actin polymerization along the leading edge is a
necessary ingredient [Lee et al. 1993; Grimm et al. 2003; Rubinstein et al. 2009]. Although our 2-D
crawling model includes such a gradient, it clearly is still missing something essential. One possibility is
that the stress fiber along the trailing edge and the strong adhesions at the ends of the fiber are important
factors. This problem remains fertile ground for future work.
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A personal note

This paper is dedicated to Marie-Louise and Charles Steele. The first author (Taber) has had the privilege
of knowing them since his days as a graduate student. MarieLu treated JoMMS as her “baby” and was
instrumental in helping Charles establish and maintain its high standards. She was loved by all and is
greatly missed. Taber learned the art of mathematical modeling from Professor Steele, who was his
doctoral research advisor. Although the models presented in this paper cannot rival the extraordinarily
creative and mathematically rigorous models of Professor Steele, we have striven to make them consistent
with his teachings. That is, our models are based on fundamental physical principles, include (we hope)
the most essential elements, and have been tested in multiple ways using experimental data. We wish
him a pleasant retirement.
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A REMARKABLE STRUCTURE OF LEONARDO AND A HIGHER-ORDER
INFINITESIMAL MECHANISM

TIBOR TARNAI AND ANDRÁS LENGYEL

Dedicated to the memory of Marie-Louise Steele

This paper is concerned with the static and kinematic behavior of two chain-like bar-and-joint assemblies
which have the same topology. One is a structure which is both statically and kinematically indeterminate,
and constitutes a higher-order infinitesimal mechanism. The other is a structure which is both statically
and kinematically determinate, introduced by Leonardo da Vinci in the Codex Madrid. Proceeding along
the internal joints from the bottom to the top of the assembly, the lateral components of the displacements
of the internal joints of the infinitesimal mechanism show an exponential decay, and the forces in the
internal bars of Leonardo’s structure show an exponential growth. It is pointed out that, in the elastic
model of Leonardo’s structure, the propagation of displacements of internal joints and the propagation
of forces in internal bars also show an exponential character in a modified form. This work also provides
some hints for overcoming difficulties arising in higher-order infinitesimal mechanisms, and corrects
minor mistakes made by Leonardo.

1. Introduction

Cable nets, cable domes, and tensegrity structures, from the mechanical point of view, are usually bar-
and-joint assemblies that constitute infinitesimal mechanisms. The answer to the important question of
whether self-stress may impart first-order stiffness to such a structure depends on whether or not it is
an infinitesimal mechanism of first or higher order [Pellegrino and Calladine 1986]. (An infinitesimal
mechanism is of the n-th order (n = 1, 2, . . . ) if it involves no elongation of any bar up to and including
the n-th order but exhibits an elongation of order n+ 1 in at least one bar.)

In [Tarnai 1989], we discussed problems of definition and determination of the order of an infinitesimal
mechanism, and presented, among other things, an example of a higher-order infinitesimal mechanism
where the propagation of the displacements of the joints shows exponential decay. On the other hand,
Nielsen [1998] called attention to a drawing of a structure by Leonardo da Vinci (see page 597) taken from
the Codex Madrid [Leonardo 1493], which contains notes and drawings of his mechanical studies, and
which was believed to be lost until the stunning announcement, in 1967, of its accidental rediscovery
in the National Library in Madrid. In this structure, the propagation of forces in the bars shows an
exponential growth.

In this paper, the accidental similarity between the two structures, as well as the duality between the
exponential decay of the displacements and the exponential growth of the bar forces, are investigated.

Research supported by the Hungarian Scientific Research Fund (OTKA) grant no. K81146.
Keywords: bar-and-joint structure, both statically and kinematically indeterminate structure, rigidity, infinitesimal mechanism,

force propagation, Leonardo da Vinci.
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2. Higher-order infinitesimal mechanisms

A structure is called an infinitesimal mechanism if it has only infinitesimal free motions. Koiter defined

“an infinitesimal mechanism of the first order by its property that any infinitesimal displacement
of the mechanism is accompanied by second order elongations of at least some of the bars. An
infinitesimal mechanism is called of second (or higher) order if there exists an infinitesimal
motion such that no bar undergoes an elongation of lower than the third (or higher) order”
[Koiter 1984].

Koiter’s definition can be mathematically formulated as follows. Consider a bar-and-joint assembly
which contains b bars and consider a system of infinitesimal displacements of the joints. Let us denote
an infinitesimal displacement component of a characteristic joint by u and the elongation of the bar k
due to u by ek . Write the power-series expansion of ek in u:

ek = a1ku+ a2ku2
+ a3ku3

+ · · · (k = 1, 2, . . . , b). (1)

For an infinitesimal mechanism, there always exists a system of infinitesimal displacements of joints
such that, in (1), a1k = 0 for k = 1, 2, . . . , b. Such a system of infinitesimal displacements is obtained
as the solution of a set of homogeneous compatibility equations. The displacement vector coordinates
depend on the chosen coordinate system but the positions of the displaced joints do not. However, it is
advantageous if one axis of the coordinate system is chosen in the direction of the displacement of the
characteristic joint.

Definition 1 [Tarnai 1984]. An infinitesimal mechanism is of order at least n (n ≥ 1) if there exists a
system of infinitesimal displacements of joints such that, in (1), a1k = a2k = · · · = ank = 0 for k = 1, 2,
. . . , b. An infinitesimal mechanism is of order n if it is of order at least n, but not of order at least n+ 1.

Consider, for example, the mechanism in Figure 1, left. If we move it as in the middle figure, the
lengthening of the horizontal bars is quadratic in the displacement u (for small u; see next section
for details). The length of the vertical bars does not change. Therefore, for this displacement, all the
coefficients a1k in (1) vanish, so the system has order at least 1.

However, we can also consider the displacement in Figure 1, right. Here, if the central joint moves
by u keeping the length of the bars attached to it constant and the far ends of these bars along the center
line, the far ends move up and down by an amount proportional to u2, and so the length of the horizontal
bars increases by an amount proportional to u4. For this displacement, then, a1k , a2k and a3k vanish for
all k. So in fact this system has order at least 3.

Figure 1. A two-DOF infinitesimal mechanism in the plane. Left: initial state. Middle:
a displacement where the horizontal bars undergo second-order elongation. Right: a
displacement where the same bars undergo fourth-order elongation.
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Remark. We see from this example that, for multi-degree of freedom (DOF) infinitesimal mechanisms,
displacements corresponding to different DOFs can result in different numbers n; but according to
Definition 1, the maximum n will be the order of the infinitesimal mechanism. Thus, the definition
can be reformulated as follows. For a system of infinitesimal displacements, consider the exponent of
the first nonvanishing term in the series (1) for each bar, and take the minimum of these exponents. Then
determine this minimum for each possible system of infinitesimal displacements, and take the maximum
of these minima. The number obtained is one more than the order n of the infinitesimal mechanism.

Thus, in the assembly of Figure 1, we can say that the order is at least 1, based on the DOF whose
displacement is illustrated in the middle diagram. But another DOF, illustrated in the diagram on the
right, ensures that the order is at least 3. Since we have to take the maximum, we can declare that the
assembly in Figure 1, left is a third-order infinitesimal mechanism. (It can be shown that no displacement
leads to a higher order.)

In mathematics, the term “n-th order infinitesimal mechanism” is not used. Mathematicians usually
deal with n-th order rigidity and n-th order flexes instead [Connelly 1980].

3. A series of infinitesimal mechanisms

Consider the bar-and-joint assembly in Figure 2a, all bars being of unit length. As shown in the figure, we
denote by x the horizontal component of the displacement of joint B and by 2y the vertical component
of the displacement of joint A. We constrain the displacements so that bars 1 and 2 undergo the same
elongation, denoted by e, and bars 3 and 4 are inextensional (elongation zero). We can express the
displacement component y in terms of x , and the elongation e in terms of y, as

y = 1−
√

1− x2 and e =
√

1+ (2y)2− 1.

Taking the binomial series expansion of these functions, we get

y = 1
2 x2
+

1
8 x4
+

1
16 x6
+ · · · , (2)

e = 1
2 (2y)2− 1

8 (2y)4+ · · · . (3)

�
$

[

�\

\%

� �

�

�

�

(a)

�
$ �\

\
%

� �

�

�

&

[ ]

� �

�

� �

����

(b)

Figure 2. A planar assembly composed of (a) two and (b) three three-pinned frame units
of collinear joints, and their infinitesimal free displacements.
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Introduction of (2) into (3) yields

e = 1
2 x4
+

1
4 x6
+

1
32 x8
+ · · · ,

that is, fourth-order elongations arise in bars 1 and 2. Bars 3 and 4 have no elongation, by assumption.
Thus, n + 1 = 4, and so n = 3: the assembly in Figure 2a is an infinitesimal mechanism of order at
least 3. It can be shown that no displacement leads to a higher order, so the assembly in Figure 2a is a
third-order infinitesimal mechanism. (A similar calculation applied to the rightmost configuration of the
structure in Figure 1 justifies our earlier assertion that that structure has order at least 3.)

Now let us supplement the bar-and-joint assembly in Figure 2a with a horizontal three-pinned frame
of collinear joints, connected to joint B, as in Figure 2b. All bars have unit length, and bars 3, 4, 5,
and 6 are taken as inextensional. Let us apply a vertical displacement z at joint C . In this case, the
displacement components x and y shown in Figure 2b and the elongation e of bars 1 and 2 are related by

x =
√

1− (1− y)2, (z− y)2+
(
2− x −

√
1− z2

)2
= 1, e =

√
1+ (2y)2− 1.

Using Maple to eliminate x and y and to expand the resulting formula for e in powers of z, we obtain
for the elongation of bars 1 and 2 the series

e = 1
2 z8
+

1
2 z10
− z11

+
11
16 z12

+ · · · ;

that is, eighth-order elongations arise in bars 1 and 2. Thus, the assembly in Figure 2b is an infinitesimal
mechanism of order at least 7. It can be shown that no displacement leads to a higher order, so the
assembly in Figure 2b is a seventh-order infinitesimal mechanism.

More generally, it can be shown [Tarnai 1989] that an the assembly composed of M three-pinned
frame units with collinear joints, as in Figure 3, is an infinitesimal mechanism of order 2M

− 1.

Figure 3. A planar assembly composed of
M three-pinned frame units of collinear joints.
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4. A chain-like infinitesimal mechanism

Let the value of M be equal to 9; thus we have the assembly in Figure 4, which is both statically and
kinematically indeterminate, constituting an infinitesimal mechanism of order n = 29

− 1 = 511. We
selected M = 9 because later we want to compare this infinitesimal mechanism to the similar structure
by Leonardo, mentioned in the Section 1. Let each bar be 6 m long. We suppose that all bars are inex-
tensional except the uppermost two, where extensions are allowed to develop freely. Let us investigate
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Figure 4. A chain-like planar assembly
composed of nine three-pinned frame units of
collinear joints, and displacements of middle joints
(numbered 1 through 9) when the lowest joint (joint 1)
has a prescribed vertical displacement of 1 m.
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the motion of the assembly if the lowermost joint (joint 1) has a vertical displacement of 1 m. In this
investigation, we apply the approximation

√
1+ a ≈ 1+ 1

2 a, and consider only the lateral displacement
of the middle joint of a three-pinned frame unit, that is, the vertical displacement for a horizontal three-
pinned unit and the horizontal displacement for a vertical three-pinned unit. The axial displacements of
the middle joints are neglected. If the lateral displacement of joint i is δi then, from this, a displacement
δi+1 arises at joint i + 1, and the directions of the two displacements are perpendicular to each other.
According to the approximations above, we have

δi+1 = 2
(

6−
√

62− δ2
i

)
,

which yields δi+1 =
1
6 δ

2
i , that is,

δi =
( 1

6

)2i−1
−1 i = 1, 2, . . . , 9. (4)

It is easy to see that, proceeding from the bottom to the top of the assembly, the displacements are
exponentially decreasing.

It is also possible to calculate the exact position and displacement of the joints, taking into account the
displacement in the axial direction in addition to that in the lateral direction. In fact, the numbered joints
move along circular arcs centered at the supported joints (not numbered) to which they are connected by
6-meter bars. Once the position of joint 1 is defined, the next one can be calculated geometrically as the
intersection of two circles centered at joint 1 and the next supported joint, respectively. The procedure
goes on this way for all the numbered joints. The results are only slightly different from those of the
approximate calculations.

The displacements δi obtained both by approximate calculations, according to (4), and by exact ones
are given for the first few joints in Table 1. Thus the 1 m displacement of the first joint decreases to
approximately 5 mm at the third joint, and 4µm at the fourth joint. The displacement of the fifth joint
is only 2 pm, less than the size of an atom. (Atomic radii lie in the range 50–200 pm.) From a practical
point of view, this means that from the fourth joint on there is basically no displacement. This surprising
result illustrates the most important property of higher-order infinitesimal mechanisms: mathematically
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i δ
approx
i (m) δexact

i (m)

1 1 1
2 6−1

= 1.667× 10−1 1.674× 10−1

3 6−3
= 4.630× 10−3 4.674× 10−3

4 6−7
= 3.572× 10−6 3.641× 10−6

5 6−15
= 2.127× 10−12 2.210× 10−12

Table 1. Lateral displacements of the middle joints of three-pinned units of the assembly
in Figure 4. (At joint i , the approximate value δapprox

i and the exact value δexact
i of the

lateral displacement are given).

they have only infinitesimal free motions, but physically they behave locally like finite mechanisms. The
motion of mechanisms of this kind was also investigated in [Hortobágyi 2000].

5. Leonardo’s structure

5.1. Structure in the Codex Madrid. On folio 75R of the Codex Madrid [Leonardo 1493], which we
reproduce in Figure 5, there is a drawing of a chain-like structure composed of 12-unit-long cables. Each
cable is V-shaped, and the distance between the midpoint of the cable and the straight line connecting the
end points of the cable is 1 unit. The straight lines connecting the end points of the cables are alternately
horizontal and vertical. (The bar-and-joint model of Leonardo’s structure shown in Figure 6 is both
statically and kinematically determinate, unlike the infinitesimal mechanism studied in Section 4.)

Leonardo investigated the propagation of forces in the structure if the bottom cable is loaded at its
midpoint with a weight of one pound. He made an approximate analysis. He considered the cables to be
inextensional and neglected the fact that a cable segment, joining another cable at its midpoint, has an
inclination: he calculated the forces in the cables as if the direction of the joining cable segment were
perpendicular to the straight line connecting the end points of the cable. In this way, Leonardo obtained
equal forces in both segments of a cable. Let ϕ denote the angle of inclination of cable segments. From
the geometrical data it follows that

sinϕ = 1
6 .

By resolving the forces horizontally and vertically at the node loaded by the one-pound weight, force
S1 in the lowermost cable is obtained: S1 = 3 pounds. For the second cable, this member force of
3 pounds acts as a load and, because of the above-mentioned approximation, the force in the second
cable is S2 = 3S1. The force in the k-th cable from below is Sk = 3Sk−1, that is,

Sk = 3k pounds.

Therefore, the propagation of forces in cables is exponentially increasing: the forces form a geometric
progression with ratio 3. From the 1 pound load applied at the midpoint of the lowermost cable, a force
S9 of 19,683 pounds (S9 = 39 pounds) arises in the uppermost cable. (Leonardo wrote 19,530 pounds
for that force; indeed, we see in Figure 5 that in two steps of the progression his multiplications by 3
are slightly off: 27→ 80, instead of 81, and 2160→ 6510, instead of 6480. The reason for this is not
known.)
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�

�

Figure 5. Leonardo da Vinci’s drawing of a planar assembly [Leonardo 1493, folio
75R]. The forces in the cables, arising from a one-pound load at the lowest cable, are
written on the respective cables. Leonardo, as usual, made this note in mirror image.
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Figure 6. The inextensional bar-and-joint
model of Leonardo’s structure. The values of
the forces in the bars, arising from a one-pound
vertical load at the lowest internal joint, are written
on the respective bars. Forces in the two bars of a three-
pinned frame unit are different (except in the lowest unit).
In the upper right-hand corner, the equilibrium of a joint is
shown by the vector triangle of bar forces acting at the joint.
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5.2. Structure with rigid members subject to unit load. These minor inaccuracies compel us to analyse
the equilibrium of Leonardo’s structure in detail. We consider all nodes in their exact positions and all
members in their exact directions. We call the middle points of the three-pinned frame units internal
joints and the bars connecting two internal joints internal bars. Regarding all members as infinitely rigid,
one can obtain the bar forces at all nodes from a vector triangle. A typical equilibrium system is shown
in the upper right-hand corner of Figure 6. The bar forces are displayed at their corresponding locations
rounded to the nearest integer. Note that the exponential growth of the forces in the internal bars follows
the quotient

Sk+1

Sk
=

1
sin 2ϕ

=
1

2 sinϕ cosϕ
=

1

2 1
6

√
35
6

=
18
√

35
= 3.042555 . . . ,

which is slightly larger than 3.

5.3. Structure with elastic members subject to a load. Leonardo’s discovery that a single load at the
lowermost node produces an approximately twenty thousand times magnified cable force at the top
indicates that the elastic deformations of the members ought to be considered.

Let all members of length L be linearly elastic with Young’s modulus E and cross-sectional area A. Let
us apply a single load at the lowermost node similarly to Leonardo’s drawing. We expect an exponential
growth in the bar forces upwards. The elastic elongations ek = Sk L/(E A) of the members due to bar
forces Sk result in increasing nodal displacements downwards in a twofold way. On the one hand, longer
bars of three-pinned frame units result in larger heights, and, on the other hand, they produce a shorter
base length (and consequently a larger height) in the next three-pinned frame unit attached. Thus, this
double exponential change in the bar forces and the displacements implies that a surprisingly small force
can produce large displacements even if the structure is quite stiff.
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E A (kN) D (mm) S9,10 (kN) σ9,10 (MPa) δ1 (m)

100 7.979× 10−2 4.410× 10−3 8.819× 102 4.596× 100

101 2.523× 10−1 1.721× 10−2 3.441× 102 4.293× 100

102 7.979× 10−1 6.306× 10−2 1.261× 102 3.847× 100

103 2.523× 100 2.201× 10−1 4.402× 101 3.253× 100

104 7.979× 100 7.365× 10−1 1.473× 101 2.533× 100

105 2.523× 101 2.326× 100 4.652× 100 1.728× 100

106 7.979× 101 6.538× 100 1.308× 100 9.295× 10−1

107 2.523× 102 1.427× 101 2.853× 10−1 3.183× 10−1

108 7.979× 102 2.038× 101 4.076× 10−2 5.493× 10−2

109 2.523× 103 2.184× 101 4.368× 10−3 6.096× 10−3

Table 2. Extremal values of bar forces and nodal lateral displacements under the vertical
load F = 1 N applied at joint 1. The cross-section diameter D, the maximal force S9,10,
the normal stress σ9,10 in bar {9, 10} (according to the numbering of Figure 7), and the
maximal vertical displacement δ1 of joint 1 are given for different values of the normal
stiffness E A of the bars.

In order to bring this structure closer to reality and have a better picture of its behavior, let us choose
steel as our material, with Young’s modulus E = 200 GPa, apply a small unit load (F = 1 N) at the
lowermost node, and consider a series of different values of tensile stiffness: E A = 100, 101, . . . , 109 kN.
Let the 6 m-long bars be of circular cross-section. Table 2 shows the cross-section diameter, the largest
bar force (at the top of the structure), the stress, and the largest vertical displacement (at the lowermost
node) as functions of the tensile stiffness. As the tensile stiffness increases, the bar forces also increase but
at a lesser rate. Consequently, the stresses and deformations decrease, resulting in smaller displacements.
The larger the tensile stiffness, the more closely the force-displacement system approximates that of the
infinitely rigid structure of Section 5.2. The maximal force in the table also gives a hint of the rate of the
force propagation in the chain, which is less than that in the case of the rigid structure. This is because
when the displacements are large the vector triangles change significantly.

However, a relatively good match (for example, in the range E A = 108–109 kN) can only be obtained
for unrealistically large cross-sections, which means that this cable structure with ordinary cross-sections
(such as E A = 103–104 kN) indeed undergoes large displacements even for a small load. Figure 7 shows
the deformed structure with tensile stiffness E A = 104 kN. The member forces SF

i,i+1 and the lateral
components δF

i of the nodal displacements are listed in Table 3. The results were obtained by a large
displacement iterative analysis.

According to Table 3, the forces SF
i,i+1 in internal bars form a monotonically increasing sequence where

the ratio SF
i+1,i+2/SF

i,i+1 is monotonically increasing with an increase in i (i = 1, 2, . . . , 8). Thus, the
bar forces show an exponential-like increase, but the change is faster than in a geometric progression. A
similar observation can be made for the displacements, but in an inverse manner. The lateral components
δF

i of the displacements of the internal joints form a monotonically decreasing sequence where the
ratio δF

i+1/δ
F
i is monotonically decreasing with an increase in i . Thus, the lateral components of the

displacements show an exponential-like decrease, but the change is faster than in a geometric progression.
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Figure 7. The equilibrium shape of the bar-and-
joint model of Leonardo’s structure with 6 m-long
linearly elastic bars of stiffness E A = 104 kN and with
a vertical load F = 1 N at joint 1. The dashed lines show
the structure at the rest position.
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(

{i, i + 1} SF
i,i+1 (kN) S1T

i,i+1 (kN) i δF
i (m) δ1T

i (m) δ1T lim
i (m)

{1, 2} 8.884× 10−4 7.365× 10−4 1 2.533× 100
−1.011× 100

−1.000× 100

{2, 3} 1.130× 10−3 2.630× 10−3 2 1.756× 100
−1.621× 10−1

−1.636× 10−1

{3, 4} 1.804× 10−3 8.357× 10−3 3 1.040× 100
−4.381× 10−2

−4.931× 10−2

{4, 5} 3.741× 10−3 2.568× 10−2 4 5.088× 10−1
−8.882× 10−3

−1.579× 10−2

{5, 6} 9.526× 10−3 7.806× 10−2 5 2.078× 10−1 2.275× 10−3
−5.139× 10−3

{6, 7} 2.707× 10−2 2.365× 10−1 6 7.509× 10−2 5.880× 10−3
−1.675× 10−3

{7, 8} 8.041× 10−2 7.154× 10−1 7 2.555× 10−2 6.931× 10−3
−5.409× 10−4

{8, 9} 2.427× 10−1 2.162× 100 8 8.432× 10−3 6.864× 10−3
−1.684× 10−4

{9, 10} 7.365× 10−1 6.542× 100 9 2.574× 10−3 5.595× 10−3
−4.255× 10−5

Table 3. Forces in internal bars and lateral displacements of internal joints of the struc-
ture with bar stiffness E A = 104 kN. Force SF

i,i+1 in bar {i, i + 1}, the lateral component
δF

i of displacement of internal joint i for a vertical load F = 1 N applied at joint 1, force
S1T

i,i+1 in bar {i, i+1}, and the lateral component δ1T
i of the displacement of internal joint

i for temperature drop 1T =−40◦ C are given. δ1T lim
i provides the lateral component

of displacement of internal joint i in the limit state due to a decrease in temperature.
Downward and rightward displacement components are considered positive.

5.4. Thermal effect. We have seen that Leonardo’s structure is extremely sensitive to small deformations
of the members. Let us now examine the effects of the shortening of the elements contrary to the
elongations due to tensile forces.

Consider a simultaneous shortening of the lengths L as a kinematic load, for example, due to uniform
cooling of all bars. Denoting the thermal expansion coefficients by α [1/◦C], all bars undergo elongation
e= L ·α ·1T due to a temperature rise 1T [◦C] (or shortening due to a temperature drop, as in our case).
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Figure 8. The shape of the structure, subject
to a uniform decrease in temperature, in the limit
state where the joints of the lowermost three-pinned unit
become collinear.
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The new position of the internal nodes can be calculated, starting with the uppermost, proceeding to the
one below it, and then to the one to the right, and so on. The shortening of the bars makes the height
of a three-pinned frame unit smaller, and at the same time the base length of the next unit longer. Thus
in each step the nodal displacements are magnified. This phenomenon is similar to the one described in
Section 5.3 but in the opposite direction. This means that the internal nodes now move towards the base
of the frame units, that is, upwards and leftwards, alternately.

Note that none of the base lengths can exceed 2L , which sets a limit on the measure of the cool-
ing. This limit occurs at a small e = −0.00000709091. . . m shortening (which is equivalent to a
1T =−0.0984849 . . .◦ C change in temperature in the case of steel with α = 1.2 · 10−51/◦ C). Now
the joints of the last three-pinned frame unit are collinear (as shown in Figure 8). This is a limit state
where the originally both statically and kinematically determinate structure becomes a statically and
kinematically indeterminate structure. Until this decrease in temperature, the assembly is free of stresses.

At this limit state, the lateral displacements δ1T lim
i of all the internal nodes are summarized in the last

column of Table 3. The direction is emphasized by the use of the minus signs before the displacement
values. Proceeding from the bottom to the top of the structure, the lateral displacements are exponentially
decreasing, which can be easily illustrated in a semilogarithmic scale plot (Figure 9). The line in the figure
is approximately linear except at the first and last nodes. The ratio of decrease is around 3.1−1

= 0.32 . . . .
If the cooling continues, stresses appear in the structure. In further calculations, the elastic properties

of the structure, considered in Section 5.3, should be taken into account. The same algorithm has been
applied to calculate the equilibrium shape as in Section 5.3. Our calculations show that the structure
basically tightens up, at this point having only tensile forces, and only minor displacements occur beyond
that. The shape of the structure is similar to the one shown in Figure 8. The bar forces and the stresses
naturally increase with the change in temperature but the elongations are countered with the thermal
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Figure 9. Lateral displacement of the internal nodes in the limit state.

shortenings. The member forces S1T
i,i+1 and the lateral components δ1T

i of the nodal displacements are
listed in Table 3 for 1T =−40◦ C. In accordance with our earlier notation, the positive displacement
values refer to rightward or downward motion, while the negative displacement values refer to leftward
or upward motion. In the progression of the forces in the internal bars, the ratio is decreasing from
3.572 . . . to 3.0265 . . . ; in a longer range, it is around 3.03, that is, close to the value of 3.0425 . . .
found for the infinitely rigid structure loaded with a concentrated force at joint 1.

6. Concluding remarks

It is ascertained that, proceeding from bottom to top, the lateral components of the displacements of
internal joints of the inextensional mechanism in Figure 4 show an exponential decay, where the dis-
placements decrease much faster than a geometric progression, and the forces in the internal bars of
Leonardo’s infinitely rigid structure in Figure 6 show an exponential growth according to a geometric
progression with common ratio 3.0425 . . . . If the members in Leonardo’s structure are linearly elastic
equal bars, then elastic deformations change the structural behavior. Though the lateral components
of the displacements of internal joints and the forces in internal bars show exponential-like decrease
and increase, respectively, the change is not as fast as in the case of the inextensional members. In the
investigated structure (with E A= 104 kN), the sequence of the lateral components of nodal displacements
has a ratio monotonically decreasing from 1.4426−1 to 3.2761−1, and the sequence of bar forces has a
ratio monotonically increasing from 1.2721 to 3.0352, that is, the ratio of change in both is approximately
the same. If the force unit is Newtons instead of pounds, then the force in bar {9, 10} of the infinitely rigid
structure is 22,031 N (Figure 6). As a consequence of the elastic properties of the structure, however,
this value is decreased to 736 N (Table 3), that is, to approximately one thirtieth of its value.

With numerical calculation we found that, with a decrease in the magnitude of the load F on the elastic
structure, while keeping monotonicity, the ratio in the sequence of forces in the internal bars increases,
and converges to 3.042555 . . . , the common ratio of the geometric progression of bar forces in the
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infinitely rigid structure. For F = 10−5 N, for instance, the ratio varies from 3.0368 . . . to 3.042553 . . . .
The nodal displacements are less regular: the ratio monotonically decreases from 3.0336−1 to 3.2891−1.

The determination of the order of a chain-like infinitesimal mechanism was straightforward. This
can give the impression that the determination of the order of an infinitesimal mechanism is an easy
task. Unfortunately, this is not the case. Connelly called attention to difficulties [Tarnai 1989; Connelly
and Servatius 1994] which partly come from the definitions of higher-order infinitesimal mechanisms.
One problem can be if the elongation functions are not analytic at a point, for instance, where there is
a cusp in the configuration space. This particular problem can be resolved by using series expansion
with fractional exponents [Gáspár and Tarnai 1994]. Another, quite general mathematical problem is the
parametrization. The displacement vector of any joint can be given as a function of parameter u, but we
can define a new displacement vector as a function of parameter u2. The result of this reparametrization
is that the order of the infinitesimal mechanism will be twice as large as for the original parametrization.
Consequently, the order can be arbitrarily large. This problem is not yet settled. A very promising
approach was presented recently by [Stachel 2007] who suggested that the definition of an n-th order
infinitesimal mechanism must be based on irreducible representations of flexes. Although the notion
of a higher-order infinitesimal mechanism is a purely geometrical term, to simplify the analysis Koiter
suggested the introduction of elasticity in the bars, that is, the use of the elastic energy function of
the assembly and interpretation of the infinitesimal mechanism as the buckling mode of the assembly
under zero loading. Koiter’s idea overcomes the difficulties mentioned by Connelly, and, indeed, was
successfully applied, for instance, by [Salerno 1992].

Our analysis in Section 5.2 has shown that the forces in Leonardo’s structure show an exponential
growth with ratio 3.0425 . . . , which is different from Leonardo’s own value of 3. However, it is possible
to introduce a modification to the original structure to fit this number (see Figure 10). Now each cable

Figure 10. The modified inextensional
bar-and-joint model of Leonardo’s structure.
The forces in the bars, arising from a one-pound
vertical load at the lowest internal joint, are written
on the respective bars. The forces in both bars of a
three-pinned frame unit are equal. In the upper right-
hand corner, the equilibrium of a joint is shown by the
vector triangle of bar forces acting at the joint.
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is connected to the middle point of the next one at an angle of 90◦+ϕ in a symmetric way as shown in
the inset in the upper right-hand corner.
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TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR
STRUCTURES TRACING GIVEN LOAD-DISPLACEMENT CURVES

GIL HO YOON, JIN YEE NOH AND YOON YOUNG KIM

To design structures involving nonlinear structural responses by the topology optimization method is still
a challenging problem. Here, the structural topology optimization tracing nonlinear load-displacement
curves is investigated by employing the element connectivity parametrization formulation as it is ex-
pected to deal with low-density element related numerical instability more effectively than the element
density based formulation. After the formulation is given in the setting of the element connectivity
parametrization, the sensitivity analysis for load-displacement curve tracing problems implemented with
a discretized finite element model is presented. Several numerical problems are considered to address
issues occurring in the topology optimization of nonlinear structures. Finally, the findings from this
investigation on the topology optimization tracing nonlinear load-displacement trajectories and future
work are summarized as concluding remarks.

1. Introduction

Along with size and shape optimization methods, the topology optimization method [Bendsøe and
Kikuchi 1988] has been used as an effective tool for optimizing structures and mechanical parts (see
[Bendsøe and Sigmund 2003], for example). Compared with abundant investigations on linear struc-
tural problems, the topology optimization of nonlinear structural problems is relatively rare [Buhl et al.
2000; Bruns et al. 2002; Cho and Jung 2003; Yoon and Kim 2005b; Yoon et al. 2008]. In this study,
we investigate the topology optimization of a continuum structure tracing a prescribed nonlinear load-
displacement trajectory. Specifically, hardening or softening nonlinear responses without and without
snap-through will be considered.

Structures exhibiting geometric hardening or softening behavior (see Figure 1) can be utilized for
crash worthiness or energy absorption mechanism design. For example, one may wish to find a structure
which can absorb a specific amount of impact energy in case of crash worthiness. There have been
some interests in designing truss or beam structures to exhibit geometrical and/or material nonlinearities
[Kamat and Ruangsilasingha 1985; Saxena 2005; Lu and Kota 2003; Ohsaki 2005; Huang and Xie 2008;
Santer and Pellegrino 2008; Thai and Kim 2009] where the buckling loads of structures are maximized.

.
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Figure 1. Geometric hardening or weakening model depicted with a displacement con-
trolled Newton–Raphson scheme. (The prescribed displacement and the reaction force
of the i-th load step are denoted by t+1tU i and t+1tRi , respectively. The number of load
steps is nl).

However, research on two- or three-dimensional continuum structures is relatively less active due to
heavy computational cost and numerical instability [Buhl et al. 2000; Bruns et al. 2002; Yoon et al.
2007].

Perhaps, the first investigation on trajectory-following continuum topology optimization was done in
[Sekimoto and Noguchi 2001] using the homogenization method. Trajectory problems were also solved
in [Bruns et al. 2002] and [Bruns and Sigmund 2004] using the density based method. In these studies,
an automated solution controlling method was employed to consider a snap-through phenomenon. To
design compliant mechanisms generating given paths was also considered using the structural topology
optimization algorithms [Lu and Kota 2003; Saxena 2005; Prasad and Diaz 2006]. In spite of these
studies, some issues, such as low-density elements, still remain. Among others, this study is focused on
the numerical instability of low-density elements and the adverse effects of postprocessing intermediate
density elements to solid or void elements.

An optimized layout even at the converged state typically involves some low-density (and intermediate-
density) elements. In this case, low-density continuum elements under a big load can inevitably lose the
positive-definiteness of the system tangent stiffness matrix when nonlinear analysis is performed. Among
others, Yoon and Kim [2005b] developed a method, called the element connectivity parametrization
method (ECP) to avoid the loss of the positive definiteness of the system matrix. The concept of the
ECP method may be briefly illustrated with Figure 2; see [Yoon and Kim 2005a; [2005b]; Langelaar
et al. 2005; Yoon et al. 2007; 2008; Yoon 2010] for more details. In the ECP method, elements are
connected through one-dimensional zero-length links having variable stiffness. Because the ECP method
represents an element of low density by a solid element connected through one-dimensional low-stiffness
links, the loss of the tangent stiffness of low-density continuum elements can be avoided. To avoid the
aforementioned numerical instability, therefore, we will employ the ECP method for the present problem
tracing a geometrically nonlinear load-displacement curve.



TOPOLOGY OPTIMIZATION OF STRUCTURES TRACING NONLINEAR LOAD-DISPLACEMENT CURVES 607

SIMP approach

Design variable

Solid

element

Weak

element

SIMP approach

Design variable

Solid

element

Weak

element

I-ECP approach

Patch

Design variable

Weak

links

Strong

links

I-ECP approach

Patch

Design variable

Weak

links

Strong

links

Figure 2. A structure (left) modeled with the SIMP (solid isotropic with penalization)
method (middle) and the ECP-based method (right). All links have zero length.

Another important issue, especially in problems involving nonlinear structural responses, is related to
intermediate-density elements appearing at the converged state because the postprocessing of intermedi-
ate elements to either solid or void elements can produce considerably different load-displacement curves.
Although an implicit (and/or explicit) penalization technique to push discretizing elements to either void
or solid states can be used, any topology optimization formulation using the notion of the density con-
cept cannot completely suppress intermediate density-elements at the convergence state. (Integer-type
topology optimization is not considered here because of impractically high computation cost.) For this
reason, a special attention will be paid to the issue related to intermediate densities.

For the numerical analysis of geometrically nonlinear structures here, the displacement-controlled
Newton–Raphson method will be used [Bathe 1996; Cho and Jung 2003; Huang and Xie 2008]. If a force
control procedure is implemented, it is difficult to simulate complicated load-displacement trajectories
such as snap-through or snap-back phenomena [Bathe 1996; Sekimoto and Noguchi 2001; Huang and Xie
2008]. Alternatively, one can use algorithms such as the arc-length method or the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method (see [Bathe 1996], for example) when snap-back or snap-through
phenomena need to be simulated. Since a monotonic softening or hardening load-displacement trajectory
and a simple snap-through example are of the main interests in this study, the displacement-controlled
Newton–Raphson method would be satisfactory here.

This paper is organized as follows. Section 2 explains the underlying governing equations for non-
linear analysis and the concept of the ECP modeling and Section 3 presents the topology optimization
formulation and sensitivities analyses needed to solve load-displacement tracing problems. In Section 4,
several numerical case studies are presented. Finally, the findings of this research are summarized and
future research work is discussed.

2. Underlying equations and the ECP method

Before presenting an optimization formulation, this section describes underlying equations and notations
needed for the finite element analysis and the ECP formulation.
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2.1. Geometrical nonlinear analysis. For the analysis of geometrical nonlinear structures, the following
Green–Lagrangian strain ( t+1t

0εi j ) and the associated second PK (Piola–Kirchhoff) stress are used:

t+1t
0εi j =

1
2

( t+1t
0 ui, j +

t+1t
0 u j,i +

t+1t
0 ul,i

t+1t
0 ul, j

)
(i = 1, 2), (1)

where t+1t
0 ui is the displacement component in the xi coordinate at time t+1t where the left subscript 0

indicates that the displacement is measured in the undeformed configuration. The comma denotes partial
differentiation with respect to coordinate xi . The repeated index implies summation. By denoting the
displacement increment nodal vector and the displacement nodal vector at time t +1t of a generic point
of a body occupying a domain V in equilibrium by 1U and t+1tU , respectively, the following update
rules for the Newton–Raphson method can be used (see [Bathe 1996; Cook et al. 2001], for instance):

<<<=
t+1tFExt−

t+1tFInt =
t+1tFExt−

∫
V

BT S dV = 0 (S= C E), (2)

tKT =
∂<<<

∂ t+1tU
, (3)

t+1tU (k)
=

t+1tU (k−1)
+1U (k), t+1tU (0)

=
tU, (4)

tK (k−1)
T 1U (k)

=<<<(t+1tU (k−1)), (5)

where superscript k denotes the iteration step in the implemented Newton–Raphson method. The residual
vector and the tangent stiffness matrix are denoted by <<< and tKT, respectively. The symbols t+1tFExt and
t+1tFInt denote the external load and internal load, respectively. The vector expressions of the second
PK stress and the Green-strain are given by S and E and they are assumed to be related through a linear
constitutive matrix C . The strain-displacement matrix is denoted by B.

2.2. Geometrical nonlinear analysis for the ECP method. In representing a layout in the framework
of the ECP method, elements are not directly connected but through one-dimensional zero-length links
with varying stiffness values. Therefore, the total number of nodes by ECP for two- or three-dimensional
problems can be increased approximately by 5 or 9 times compared to those by the standard density
approach [Yoon et al. 2007]. However, one can reduce the computation time and the size of the assembled
system matrix by employing the patch model of [Yoon 2010; Yoon et al. 2007] (Figure 3) and using static
condensation. Referring to Figure 3, the degrees of freedom of the inner nodes of the ECP patch can be
statically condensed out so that only the degrees of freedom of the outer nodes can be kept in the system
matrix. (For sample code in Matlab of the patch-model based ECP method, see [Yoon et al. 2008]).

Although only the degrees of freedom of the outer nodes will appear in the final system matrix, the
displacement u(k)e,in of the inner nodes and the displacement u(k)e,out of the outer nodes should be simulta-
neously updated as [

t+1t u(k)e,out
t+1t u(k)e,in

]
=

[
t+1t u(k−1)

e,out
t+1t u(k−1)

e,in

]
+

[
1u(k)e,out

1u(k)e,in

]
(6)
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The updated displacement increments for the outer nodes and the inner nodes are denoted by 1u(k)e,out

and 1u(k)e,in, respectively. The equation to find the increments is{[
kI,e −kI,e

−kI,e kI,e

]
+

[
0 0
0 t kstruct,(k−1)

T,e

]}[
1u(k)e,out

1u(k)e,in

]
=

[
<
(k−1)
e,out

<
(k−1)
e,in

]
, (7)

with

kI,e = le(γe)I8×8, (8)

where 0 and I8×8 are the 8× 8 zero matrix and identity matrix (in the two-dimensional case).
The link stiffness of the e-th patch, le, is a function of the design variable. The stiffness matrix, the

residual force terms of the outer and the inner nodes of the e-th patch are denoted by tkstruct,(k−1)
T,e , <(k−1)

e,out

and <(k−1)
e,in , respectively. The force terms <(k−1)

e,out and <(k−1)
e,in are calculated as[

<
(k−1)
e,out

<
(k−1)
e,in

]
=

[ t+1tRe

0

]
−

[
0

t+1t
0 f struct,(k−1)

e

]
−

[
t+1t

0 f link,(k−1)
e,out

t+1t
0 f link,(k−1)

e,in

]
, (9)

[
t+1t

0 f link,(k−1)
e,out

t+1t
0 f link,(k−1)

e,in

]
=

[
kI,e −kI,e

−kI,e kI,e

][
t+1t u(k−1)

e,out
t+1t u(k−1)

e,in

]
. (10)

In (9), the externally applied force on the outer nodes is denoted by t+1tRe and the internal force acting
on the inner nodes by t+1t

0 f struct,(k−1)
e . By applying the static condensation strategy, the degrees related

to the inner nodes are condensed out, leading to

tk(k−1)
Con,e1u(k)e,out =<

(k−1)
e,out + kI,e(kI,e+

tkstruct,(k−1)
T,e )−1

<
(k−1)
e,in , (11)

where
tk(k−1)

Con,e =
(
kI,e− kI,e(kI,e+

t+1tkstruct,(k−1)
T,e )−1kI,e

)
. (12)
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Figure 3. The e-th patch surrounding the e-th element for the ECP method. The inner
nodes are the nodes defining the element while the outer nodes defining the e-th patch
are used to connect patches sharing the same outer nodes. The solid lines connecting
the inner and outer nodes denote zero-length one-dimensional elastic links.
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Then the global tangent matrix is assembled as

tK (k−1)
Con =

Np∑
e=1

tk(k−1)
Con,e , (13)

where Np is the total number of patches. Finally, the following system of equations is solved iteratively
by a standard nonlinear solver such as the Newton–Raphson method or the arc-length method:

tK (k−1)
Con 1U (k)

out =<
(k−1)
Con (14)

where

<<<
(k−1)
Con =

Np∑
e=1

(
<
(k−1)
e,out + kI,e(kI,e+

tkstruct,(k−1)
T,e )−1

<
(k−1)
e,in

)
(15)

For efficient topology optimization procedures, it is crucial to use an appropriate interpolation function
for the ECP method. In this paper, the following interpolation function is adopted for the link stiffness
in (8):

Solid: le = lmax, γe = 1, (16)

Void: le = lmin, γe = 0.001, (17)

le = α
γ n

e

1+ (1− γ n
e )τ
+β

(
τ =

α× s
kstruct

diagonal× k

)
, (18)

α = lmax− lmin, β = lmin, (19)

γmin ≤ γe ≤ 1, γmin = 0.001, (20)

where k is the number of degrees of freedom per node and s and n are penalty parameters. A diagonal
term of the linear stiffness matrix is denoted by kstruct

diagonal. The upper and lower bounds of the stiffness
of links are denoted by lmax and lmin, respectively. Here, lmax and lmin are set to 106

× kstruct
diagonal and

10−6
× kstruct

diagonal, respectively. (See [Yoon et al. 2007; Yoon et al. 2008; Yoon 2010] for more details on
the interpolation function adopted above and actual implementation on Matlab.)

3. Topology optimization formulation

3.1. Optimization formulation. To find a structural layout tracing a given load-displacement trajectory,
the following optimization formulation is considered, where nl is the number of loadsteps and Np is the
number of discretizing patches:

Min
γ
8=

nl∑
i=1

∥∥LT
d

t+1tU i
−

t+1tU i,ref∥∥ (21)

s. t.
Np∑

e=1

ρe(γe)ve ≤ V ∗, (22)
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with γ = {γ1, γ2, . . . , γNp}
T . Here 8 is a scalar objective function measuring the sum of the differences

between the actual displacements t+1tU i and the target displacement t+1tU i,ref for nl steps for a given
load. The symbol Ld denotes a vector which has unity at the node of the displacement measurement
point and all zeros for the rest. The density and element volume of the e-th patch are denoted by ρe and
ve, respectively. The prescribed volume limit is V ∗. Instead of the objective function in (21), one may
prescribe a displacement path and calculate the reaction force as the response. In this case, the objective
function 8 is defined as

8=

nl∑
i=1

∥∥LT
r

t+1tFi
Int−

t+1tRi,ref∥∥ , (23)

where t+1tRi,ref and t+1tFi
Int are the target reaction force and the internal force vector at the i-th load

step of the Newton–Raphson iteration. The symbol Lr is a vector which has unity at the node of the
reaction force measurement point and all zeros for the rest.

The objective function in (23) was used by [Sekimoto and Noguchi 2001] to find optimal layouts
satisfying a prescribed load-displacement trajectory. Theoretically, the use of either (21) or (23) would
yield the same result (layout) if the same load-displacement trajectory is pursued. However, when the
load-displacement trajectory becomes complex, the displacement control procedure is known to perform
better in convergence. Although it can fail for a complex trajectory such as those involving snap-backs
and/or snap-through phenomena, the displacement control procedure usually works better than the load
control procedure using the objective function of (23) [Bathe 1996; Hellweg and Crisfield 1998; Liu
and Nocedal 1989; Vila et al. 1997; Cook et al. 2001]. So it is implemented in the Newton–Raphson
nonlinear solver for this investigation.

Although the functional form of (23) is used, there might be alternatives in selecting the specific norm.
For instance, one can consider the Euclidean norm (2-norm)

8=

nl∑
i=1

(LT
r

t+1tFi
Int−

t+1tRi,ref)2, (24)

the p-norm

8=

( nl∑
i=1

(LT
r

t+1tFi
Int−

t+1tRi,ref)p
)1/p

(p = 2, 4, 6, . . . ), (25)

or the maximum norm

8=max
(∣∣LT

r
t+1tFi

Int−
t+1tRi,ref∣∣). (26)

Obviously, the optimization convergence can be affected by the choice of the norm. The use of the
Euclidean norm is to minimize the sum of every distance between the response reaction force and the
reference (target) force for all incremental steps. On the other hand, the maximum norm minimizes the
maximum distance. For example, let us consider an intermediate design for which the reaction follows
the trajectory depicted in Figure 4. With the Euclidean norm, the average square of distances (the area
marked by A) is to be minimized. With the p-norm with a sufficient large p or the maximum norm, the
distance at load step 3 is minimized because the distance of the load step 3 (the vertical distance marked
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Figure 4. A typical load-displacement trajectory at an intermediate design step.
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Figure 5. Topology design optimization procedure.

by B) is the largest. It is often useful to normalize the aforementioned norms as

8=

nl∑
i=1

(
LT

r
t+1tFi

Int
t+1tRi,ref −1

)2

, 8=

( nl∑
i=1

(LT
r

t+1tFi
Int

t+1tRi,ref −1
)p
)1/p

, 8=max
(∣∣∣∣LT

r
t+1tFi

Int
t+1tRi,ref −1

∣∣∣∣). (27)

In general, it is difficult to judge in advance which norm would perform better for a given prob-
lem. Therefore, one may test various norms as given by (24)–(27) before finding optimal solutions.
Figure 5 depicts an implemented topology optimization procedure to find a structure tracing a specific
load-displacement trajectory.
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3.2. Sensitivity analysis. To update the design variables (γ = {γ1, γ2, . . . , γN p−1, γN p}
T ), the optimiza-

tion procedure as described in Figure 5 will be employed. To obtain the sensitivity of the objective
function 8 with respect to the design variable, γ , it is necessary to derive the sensitivities of the dis-
placement or the reaction force depending on the form of the selected objective function. Although the
procedure to calculate the sensitivity for the present ECP method may be similar to that based on the
element density method, it is worth giving it in some detail. For analysis, we assume that the size of
the degrees of freedom of displacement is nG and the displacement conditions (condensed degrees of
freedom) are applied at t+1tUkn where t+1tUun denotes the unknown displacements (to be determined
by a nonlinear solver). So the following definitions are introduced for the sensitivity analysis:

9d = LT
d

t+1tU, 9r = LT
r

t+1tFint,kn,

where Ld and Lr are nG × 1 and nkn × 1 vectors for the temporarily objective functions 9d and 9r

of the displacement and the reaction force, respectively. By separating the known displacements from
unknown displacements, one can express the governing equation by using the residual vector:

<<<=
t+1tFExt−

t+1tFInt =

[ t+1tFExt,un −
t+1tFInt,un

t+1tFExt,kn −
t+1tFInt,kn

]
=

[
0un×1

0kn×1

]
(28)

Because the boundary conditions are specified on t+1tUkn , the second row of the above equation can be
removed. Without the loss of generality, the load step index appearing as a right superscript is omitted.

3.3. Sensitivity of the displacement. The sensitivity of 9d with respect to the design variable γ requires
the sensitivity of the displacement t+1tU :

9 ′d = LT
d

t+1tU ′ (29)

where differentiation is with respect to γ . To calculate t+1tU ′, the equilibrium equation, <<<= 0nG×1, is
differentiated:

∂<<<

∂ t+1tU
∂ t+1tU
∂γ

+<<<
′
= 0nG×N p. (30)

If an adjoint variable λ is solved from
∂<<<

∂ t+1tU
λ= Ld , (31)

the sensitivity 9 ′d can be easily found from

9 ′d =−λT
<<<
′. (32)

3.4. Sensitivity of the reaction force. The sensitivity of 9r with respect to the design variable γ can be
obtained by a technique similar to that used to calculate 9 ′d . For the displacement-controlled case, it is
convenient to put t+1tU as

t+1tU = [t+1tUun,
t+1tUkn]

T (33)
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In this case, the residual vector <<< can be also put as

<<<=

[ t+1tFExt,un

0kn×1

]
−

[ t+1tFInt,un
t+1tFInt,kn

]
=

[
0un×1

0kn×1

]
,

∂ t+1tFInt

∂ t+1tU
=


∂ t+1tFInt,un
∂ t+1tUun

∂ t+1tFInt,un
∂ t+1tUkn

∂ t+1tFInt,kn
∂ t+1tUun

∂ t+1tFInt,kn
∂ t+1tUkn

 . (34)

First, we differentiate 9r :

d9r

dγ
= LT

r

(
∂ t+1tFInt,kn

∂ t+1tUun

∂ t+1tUun

∂γ
+
∂ t+1tFInt,kn

∂ t+1tUkn

∂ t+1tUkn

∂γ
+
∂ t+1tFInt,kn

∂γ

)
. (35)

Because t+1tUun =
t+1tU∗ (condensed degrees of freedom), the second term in parenthesis in (35) van-

ishes: ∂ t+1tUkn/∂γ = 0kn×N p. To calculate the first term, the equilibrium equation (34) is differentiated:

∂ t+1tFExt,un

∂γ
−
∂ t+1tFInt,un

∂ t+1tUun

∂ t+1tUun

∂γ
−
∂ t+1tFInt,un

∂γ
= 0un×N p. (36)

By inserting (36) into (35), we obtain

∂9r

∂γ
= LT

r

(
∂ t+1tFInt,kn

∂ t+1tUun

((
∂ t+1tFInt,un

∂ t+1tUun

)−1(∂ t+1tFExt,un

∂γ
−
∂ t+1tFInt,un

∂γ

))
+
∂ t+1tFInt,kn

∂γ

)

= LT
r

[
−
∂ t+1tFInt,kn
∂ t+1tUun

(
∂ t+1tFInt,un
∂ t+1tUun

)−1

Ikn×N p

] −
∂ t+1tFExt,un

∂γ
+
∂ t+1tFInt,un

∂γ

∂ t+1tFInt,kn
∂γ

 . (37)

We now introduce the adjoint variable λ, with λT
≡ [λun λkn]T, where λkn = Lr , and simplify (37) to

∂9r

∂γ
= λT

 −
∂ t+1tFExt,un

∂γ
+
∂ t+1tFInt,un

∂γ

∂ t+1tFInt,kn
∂γ

 , (38)


∂ t+1tFInt,un
∂ t+1tUun

∂ t+1tFInt,un
∂ t+1tUkn

∂ t+1tFInt,kn
∂ t+1tUun

∂ t+1tFInt,kn
∂ t+1tUkn

[ λun

λkn

]
=

[
0un×1

0kn×1

]
. (39)

Since λkn = Lr , this leads to

λ=

 −
(
∂ t+1tFInt,un
∂ t+1tUun

)−1
∂ t+1tFInt,kn
∂ t+1tUkn

Lr

Lr

 . (40)

The validity of the sensitivity analysis was checked against the direct numerical result by finite difference.
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4. Examples of topology optimization

This paper considers problems defined only in two-dimensional domains, but the validity and efficiency
of the ECP-based solution approach can be clearly demonstrated in the topology optimization tracing
given load-displacement curves. It is noted that the developed ECP-based approach does not entail any
special treatment or tuning for stabilizing possible instability in the Newton–Raphson iterations or in
optimization processes. Because the ECP method is used here, all the remarks and findings are mainly
applicable to an approach based on the ECP method, not on the element density method. One may see
more detailed explanations of the advantages and drawbacks of the element density method for some
nonlinear problems may be found in [Buhl et al. 2000; Bruns and Tortorelli 2003; Cho and Jung 2003;
Yoon and Kim 2005b; Yoon et al. 2008]. Unless stated otherwise, uniform initial guesses of γ satisfying
given mass constraints are used. The dimension, material properties and magnitude of the loads are so
chosen as to demonstrate the potential of the present ECP based formulation. In this study, the method of
moving asymptotes is used as an optimization algorithm [Svanberg 1987]; however other optimization
algorithms can also be used.

Example 1: Controlling the load-displacement curve. As the first numerical example, we consider the
problem depicted in Figure 6a. The design domain is discretized by 60× 40 four-node quad elements.
The displacement is prescribed at the top-right node while other boundary conditions are depicted in the
figure. Young’s modulus and Poisson’s ratio are set to be 1 N/m2 and 0.4, respectively.

Before solving the optimization problem set up as (21) and (22), a nominal structure maximizing the
reaction force for a specified displacement value where the structural response is found by using linear
strains. The result is shown in Figure 6b, which should be the same as the result obtained by a standard
compliance minimization using linear strains. To obtain the result in Figure 6b, the sensitivity filer of
radius equal to 1.2 times the element size was used [Bendsøe and Sigmund 2003].

It will be interesting to investigate the load-displacement trajectory when the geometric nonlinearity
using the Green–Lagrangian strain is used for the optimized layout of Figure 6b. The result is given in
Figure 6c for which the maximum tip displacement δmax is set to be 0.12 m. When the nonlinearity is
considered, the drop in the reaction force is expected as the tip displacement ( δ) reaches δmax. This is
due to a buckling phenomenon caused by the local bending indicated in Figure 6d.

Now let us try to find a structural layout following a prescribed load-displacement trajectory based on
geometric nonlinear analysis. By using the trajectory in Figure 6c as a nominal trajectory, we set up a
problem to find a structure that passes the following two points in the load-displacement trajectory:

Target:

{
t+1tR1,ref

= 1.0× 10−3 N at δ= 0.06 m,
t+1tR2,ref

= 2.0× 10−3 N at δ= 0.12 m.
(41)

The load-displacement relation required by (41) states that the target structure should not exhibit apparent
weakening effects near 0.12 m for the input displacement because t+1tR2,ref by (41) is larger than the
corresponding value predicted in Figure 6c. In other words, the overall stiffness before 0.6 m of the input
displacement should be smaller than that of the linear design but a sudden drop due to the geometric
weakening in the reaction force observed at the linear design can be avoided at δ = 0.12 m if a structure
satisfying (41) is indeed found.
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By using the optimization formulation of (22) and (23) (with V ∗ = 20% as before), the optimized
layouts tracing the target response of (41) are shown in Figure 7, left and middle. In defining (23), the
Euclidean norm defined in (24) was used. The fixed filter implies the sensitivity filter using the fixed
radius (rfilter) of 1.2 times the element size while the varying filter implies the sensitivity filter using the
following filter radius (this can be viewed as a special case of the continuation method):

rfilter =

{
1.2× element size for loop≤ 150 iterations,

1.0× element size for loop> 150 iterations.
(42)

The main motivation to use the varying filter is to minimize the appearance of intermediate density
elements because the existence of these elements can significantly affect structural response especially
when nonlinear analysis is considered.
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Figure 6. A test problem. (a) Problem definition (E=1 N/m2, ν = 0.4). (b) Optimized
layout for V ∗ = 20% when linear analysis is used. (c) Load-displacement trajectory of
the layout in (b) by geometrically nonlinear analysis; Cr is the threshold design variable
value for hard-kill postprocessing. (d) Deformed shape by nonlinear analysis when the
top displacement reaches 0.12 m.
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To check the effects of postprocessing, for instance, Figure 6c compares the load-displacement curves
before and after the hard-kill postprocessing by which the elements having design variables above or
equal a threshold Cr are replaced by solid elements, and elements having the design variables lower than
Cr by void elements. Two values of Cr were used: 0.3 and 0.7. As seen from Figure 6c, the differences
among the responses can be neglected in the linear range but become significant in the nonlinear range.
As a result, more effort should be made to avoid intermediate design values but the optimized layouts
in existing works dealing with nonlinear load-displacement curve tracing seem to contain quite a large
portion of intermediate variables. As shall be seen later with numerical results, the optimized layouts by
the element connectivity method appear to have a smaller portion of intermediate variables.

Although the filter-size varying technique helped to reduce the occurrence of intermediate density el-
ements, they were not completely removed. The load-displacement trajectories by the optimized layouts
are plotted in Figure 7, right. Note that an additional member has appeared in the optimized layouts when
the target trajectory is required to pass two reference points in (41). When δ exceeds δmax = 0.12m, the
reaction forces suddenly drop and the response pattern is significantly affected even by small differences
in the layout configuration, which may be viewed as an imperfection.

Now let us find a structural layout to follow the load-displacement trajectories having slightly different
reference points from those used to obtain the layouts in Figure 7. Among others, the value of the reaction
force at δ = 0.06 m is varied. The comparison of the obtained layouts in Figure 8a,b and that shown in
Figure 8c indicates that the member staring at A should be more straight as a larger reaction force at
δ = 0.06 m is required. As a larger reaction force is required at δ = 0.06 m, the reduction in the tangent
stiffness of the obtained layout at δ = 0.12 m is more significant. Another observation is that it may
be not always possible to obtain a layout yielding a given load-displacement trajectory passing through
arbitrarily specified load-displacement points because there may not exist such a layout. For instance,
the trajectory marked by (a) in the graph of Figure 8 does not exactly pass through (t+1tR2,ref, δ) =

(2.0× 10−3 N, 0.12 m).
Furthermore, to prevent the sudden drop of the reaction force of the design in Figure 8c near δ =

0.144 m, the one reference point at δ = 0.144 m in Figure 9 is additionally inserted and the effect of
this inclusion is tested. The changes of the details of the design of Figure 8c are observed in Figure 9.
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(middle); load-displacement trajectories for the optimized layouts (right).
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Figure 8. Top: optimized layouts following different target reference points in the load-
displacement trajectory. Bottom: corresponding load-displacement trajectories.

The straight line near the point A becomes thicker and the straight line near the point C becomes narrow
compared with the design in Figure 8c. This reveals that the ECP based topology optimization can
change the details of the design to satisfy the given load and displacement curve. Furthermore, it proves
that after the post processing of obtained layouts, the size or shape optimization process may be required
to compensate the adverse effect of the postprocessing.
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Figure 10. Left: reference layout. Right: load-displacement trajectory.

The normalized norm was also considered in the definition of the objective function. Although the
optimized results are not shown, the layout configurations with and without the normalization were not
much different. For this reason, the unnormalized Euclidean norm defined in (24) will be used in the
subsequent examples.

Example 2: Design of a stiffening structure. To test if the proposed formulation can find a structural
layout exhibiting geometrically stiffening behavior, a structure shown in Figure 10 is devised. When
the structure is loaded at the tip marked by a vertical arrow, it exhibits geometrical stiffening. Note that
the stiffening effect results from the constraint of the horizontal displacement along the roller support.
The optimization problem considered is to recover the layout shown in Figure 10, left, when the curve
in Figure 10, right, is given as the target trajectory. To solve this problem, the formulation given by
(22) and (23) is adopted. Eleven points in the load-displacement curves marked by dots in Figure 10,
right, are used. The intermediate and final layouts appearing during optimization iterations and the
corresponding load-displacement trajectories are shown in Figure 11, which indicates that the proposed
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Figure 11. Optimized results by the developed method in recovering the reference lay-
out exhibiting the nonlinear load-displacement curve in Figure 10. Left: the optimized
layout. Right: load-displacement curves of the intermediate and final layouts.
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Figure 12. A problem to find a target nonlinear load-displacement trajectory. Left:
target and limiting trajectories. Middle: reference layouts yielding linear and nonlinear
limiting trajectories. Right: a compliance minimization problem used to obtain the given
layouts with E = 1 N/m2, ν = 0.4, volume= 20%.

ECP-based formulation is capable of finding a layout very close to the one given in Figure 10, left, while
the specified load-displacement curve is fairly accurately traced.

Example 3: Center-loaded structure with a specified structural response. Here, we look for a struc-
tural layout following a target load-displacement trajectory in Figure 12a, lying between two limiting
trajectories. The limiting trajectories shown in the graph are the trajectories of the layouts (b) and (c)
in Figure 12, optimized through compliance minimization (defined in Figure 12d) by using linear and
geometrically nonlinear analyses. In obtaining the layouts, the center of the design domain was pulled
down by δmax = 0.4 m and a checkerboard filter of radius equal to 1.2 times the element size was used.

To solve this problem, nl = 2 was used and the specific reference points were (t+1tR1,ref, δ) =

(0.0363 N, 0.16 m) and (t+1tR2,ref, δ) = (0.065 N, 0.32 m). Figure 13 shows the optimized result for
this problem. The optimized layout (left) and the variation of the load-displacement trajectories are
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Figure 13. Iteration history of the load-displacement trajectories. The design objective
is to find the target layout in Figure 12d.
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°

Figure 14. A problem to find a target snap-through trajectory (E = 1 N/m2, ν = 0.4,
volume = 30%, input displacement = 0.001).

illustrated as the iteration proceeds. The target trajectory in Figure 12a is shown to be accurately traced
by the trajectory of the optimized layout in Figure 13. Interestingly, the optimized layout in this case
looks like a combination of the two layouts in parts (b) and (c) of Figure 12, with the size of every
member roughly reduced by a factor of two. As remarked in earlier examples, it is difficult to obtain a
completely distinct solid-void distribution without intermediate design variables.

Example 4: A design exhibiting snap-through. A problem involving snap-through is now considered.
Since a relatively simple solver is employed, a structure without any snap-back is considered in Figure 14.
The design domain is bounded by elliptical curves. If a slender symmetric structure is center-loaded, the
design domain in Figure 14 can be viewed as its half. Then one can consider a roller-supported side
which is loaded by a vertical displacement. The left side may be assumed to be fixed at its middle point.
The radius and thickness of the ellipse are assumed to be 0.1 and 0.001, respectively. The domain is
discretized by 120 by 20 elements and the allowed material usage is set to 30% of the total area. The input
displacement is set to be 0.001 which is the same as the height of the design domain. This value would
be sufficiently large to induce a snap-through phenomenon. The target points in the load-displacement
curve for the topology optimization are marked in Figure 15, right. This curve is so selected as to be
able to obtain a layout exhibiting snap-through. To obtain the optimized layout in Figure 15, left, the
same ECP formulation as used in the previous examples is used. Solution convergence was stable. The
trajectory by the optimized layout is marked by a solid line in Figure 15, right. This example demonstrates
that the developed method can be used to solve problems involving snap-through phenomena. However,
the present approach in its current form may not handle complex force-displacement curves without an
advanced nonlinear solver.

Example 5: A column design exhibiting geometrically weakening. As the last case study, we consider
an optimization problem to find a structure tracing the nonlinear load-displacement trajectory given in
Figure 16, left. As shown by that figure, the target trajectory corresponds to the load-displacement curve
of a slender column vertically loaded at the top left corner. Obviously, the solid straight column will be
an optimized layout obtained as a solution to (22) and (23). To set up a nontrivial optimization problem,
we take the design problem depicted in Figure 16, right; only the middle part of the column is assumed
to be a design domain, but it is enlarged by 5 times. If the mass constraint of 20% is used, then the
original straight column (middle diagram) is expected to be recovered. However, the actual optimized
result is a rectangular box, quite different from the expected nominal rectangular solid. Seven points in



622 GIL HO YOON, JIN YEE NOH AND YOON YOUNG KIM

Target trajectory

Figure 15. Example 4: a problem involving snap-through. Top left: optimized layout
(undeformed). Bottom left: deformed shape (input displacement = 0.001). Right: load-
displacement trajectory by the optimized layout; circles represent the target points.
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Figure 16. Example 5: a column design exhibiting geometrically weakening. Left:
target trajectory. Middle: reference solid column structure (E = 1 N/m2, ν = 0.3). Right:
an optimized layout in the expanded middle design domain.

the trajectory were used as the reference points to obtain the results in Figure 16, right, by the proposed
topology optimization method. When a uniformly distributed density value of 0.2 (corresponding to
20%) was used, the solid column in the middle diagram was not recovered; one of local optima as given
by the rightmost diagram was obtained. As Figure 17 shows, however, the optimized layout in Figure 16,
right, obtained with 7 reference points, traces fairly closely the target trajectory. Figure 17 also shows
the importance of using more reference points in order to trace the target trajectory accurately.

5. Conclusions

The structural topology problem to find optimal structural layouts exhibiting either geometrically hard-
ening or weakening load-displacement trajectories was investigated by using the element connectivity
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Figure 17. Comparison of the target load-displacement trajectory and the trajectories
of the optimized structures obtained with varying numbers of reference points in the
load-displacement trajectory. The layouts on the right correspond to, respectively, 1, 3,
4, and 7 points.

parametrization formulation. The following findings are made through this study. First, the ECP method
effectively avoided the numerical instability or the erratic convergence related to low-density elements
during the topology optimization tracing geometrically nonlinear load-displacement trajectories without
any additional stabilization treatment in the Newton–Raphson scheme or prior tuning in optimization.
Second, the issues of local optima and gray elements due to the design variable relaxation from the
binary variables to the continuous variables appeared in the ECP based method, but the gray element
problems appeared to be less severe than those with the element based approach. A load-displacement
trajectory sufficiently close to the target one was found while the optimized layout was completely dif-
ferent from the nominal layout used to produce the target trajectory. Therefore, much attention should
be paid in interpreting optimized results. In several cases, the postprocessed layouts yielded different
load-displacement trajectories from those of the unprocessed layouts. Although a gray-element-free
topology optimization formulation that can handle arbitrarily shaped load-displacement curve requires
further research, the findings and numerical results obtained with the ECP formulation suggest that it
can be very useful to advance the research in complete handling of general nonlinear problems.

Personal notes in memory of MarieLu Steele, by Yoon Young Kim

MarieLu was one of the most cheerful and lively persons I have met. She was always positive, and, I
was revitalized every time I was in her company. I strongly believe that her positive energy enabled
the dramatic success of the International Journal of Solids and Structures for which she was a dedicated
Associate Editor for many years. Recently, her enthusiasm and devotion ensured the successful launching
of the Journal of Mechanics of Materials and Structures, a new high-quality journal in the field of
mechanics. I will dearly miss her energizing power and dedication to the mechanics community.
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ANALYSIS OF HARD COATINGS ON A SUBSTRATE CONTAINING
INHOMOGENEITIES

KUN ZHOU, LEON M. KEER AND Q. JANE WANG

We investigate the effect stiff inhomogeneities in the substrate beneath a hard coating have on the elastic
field. The solution of multiple interacting three-dimensional inhomogeneities in a half-space is utilized
by modeling a coating layer as an inhomogeneity of finite size. The study shows that stiff inhomo-
geneities in the substrate do not worsen the cracking and debonding of hard coatings, but are still detri-
mental to the yielding behavior of the substrate even though it is under the protection of a hard coating.

1. Introduction

Inhomogeneities with elastic moduli different from those of their surrounding matrix are ubiquitous in
solid materials, and their presence significantly affects the physical and mechanical properties of materi-
als at the local and the global scale [Mortensen 2007]. For a given matrix material, inhomogeneities are
categorized into two types: stiff ones which have larger Young’s modulus than the matrix and compliant
ones with smaller Young’s modulus. Generally, stiff inhomogeneities can cause stress to increase in
the matrix material, compared with compliant inhomogeneities. Nonmetallic inhomogeneities such as
oxides and nitrides are typical stiff inhomogeneities in steels.

Hard coatings have been used to protect substrate matrix materials from wear and yielding damage;
however, they are subject to interfacial cracking and debonding and surface cracking failure under com-
bined heavy normal and tangential loading. Such failure may be more likely when inhomogeneities
in the substrate are closer to the interface of the coating-substrate system. To improve reliability and
functionality, it would be useful to understand how and to what extent inhomogeneities degrade the
performance of coatings. However, almost no theoretical or experimental studies on such problems exist,
due to the complex nature of the solution for the elastic field of inhomogeneities in a coating-substrate
system. Such a solution would be a foundation for further studies but is not yet available.

Eshelby [1957] pioneered the work on inhomogeneities by solving the elastic field of an ellipsoidal
inhomogeneity embedded in an infinite matrix with the equivalent inclusion method (EIM). The EIM
assumes that an inhomogeneity can be modeled by a homogenous inclusion with unknown equivalent
eigenstrain to be determined. A homogeneous inclusion has the same material properties as the matrix
but contains eigenstrain, a generic term that refers to inelastic strain such as plastic strain, misfit strain,
thermal expansion and phase transformation [Mura 1987]. Since then, the EIM has been used extensively
to investigate a single inhomogeneity [Johnson et al. 1980a; 1980b; Nakasone et al. 2000; Dong et al.
2002; Kirilyuk and Levchuk 2005], two interacting inhomogeneities [Moschovidis and Mura 1975; Fond

Keywords: hard coating, inhomogeneity, equivalent inclusion method, yielding.
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et al. 2001; Shodja and Sarvestani 2001; Shodja et al. 2003], and multiple inhomogeneities [Nemat-
Nasser et al. 1982; 1993; Luo and Weng 1987; Hori and Nemat-Nasser 1993; Shodja and Roumi 2005;
Duan et al. 2006] in an infinite matrix. However, the interactions of all inhomogeneities were not fully
taken into account in the referred studies of multiple inhomogeneities. Other methods have also been
used to study a single or two inhomogeneities in an infinite matrix, e.g., the complex function method
[Kushch et al. 2005], the boundary element method [Tan et al. 1992], and the volume integral equation
method [Dong et al. 2003].

So far, few investigations have been conducted on inhomogeneities in a half-space. These studies
include a circular rigid disc [Hunter and Gamblen 1974; Selvadurai 2001], an ellipsoidal inhomogeneity
[Tsuchida and Mura 1983], a hemispheroidal inhomogeneity [Kouris and Mura 1989], a spheroidal in-
homogeneity [Tsuchida et al. 2000], two concentric spherical inhomogeneities [Molchanov et al. 2002],
and one or multiple two-dimensional arbitrarily shaped inhomogeneities [Kuo 2007; 2008] The bound-
ary element method was used in these last two works, while the Papkovich–Neuber or the Boussinesq
displacement potential was used to solve the problems in the other referred works. Studies were also
performed on a single or multiple inhomogeneities in one of two joining half-surfaces of dissimilar
materials, e.g., [Meguid and Zhu 1995; Yu and Kuang 2003; Brusselaars et al. 2007]. The results of
those studies can be applicable to the problems of inhomogeneities in a half-space when one of the two
joining half-spaces is set free.

Recently, Zhou et al. [2010] solved multiple interacting three-dimensional inhomogeneities of arbitrary
shape in a half-space using the EIM. In this paper, we apply this solution to study the effect of inhomo-
geneities embedded in the substrate of a coating-substrate system on the elastic field of the coating by
modeling the coating as an inhomogeneity with respect to the substrate.

2. Methodology

Consider a coating-substrate system that contains multiple inhomogeneities in the substrate and is subject
to external loading on the surface of the coating. The loading is prescribed as a known function and
assumed to be located within a circular area of radius R. The solution strategy is to model the coating
by a cuboidal inhomogeneity of size L x × L y × H with H equal to the thickness of the coating. The
dimensions L x and L y are set to be much larger than both R and H to simulate the infinite dimensions
of the coating in the x-y plane. In this way, the original coating-substrate problem with inhomogeneities
is converted into a half-space problem with inhomogeneities.

Let us now turn to a half-space with elastic moduli Ci jkl (i, j, k, l = 1, 2, 3) that contains n inhomo-
geneities �ψ (ψ = 1, 2, . . . , n) with elastic moduli CΨ

i jkl . Since there is no inelastic strain within �ψ ,
the total strain εi j at any point within �ψ is the elastic strain εe

i j . According to Hooke’s law, the stress σi j

within �ψ is given by σi j = CΨ
i jklεkl . Using the EIM, each �ψ is simulated by a homogeneous inclusion

�I
ψ that has the same elastic moduli as the matrix but contains equivalent eigenstrain ε∗i j to be determined.

The equivalent eigenstrains ε∗i j are introduced to represent material differences of the inhomogeneities,
the interactions among them, and their responses to the external load (applied stresses). The total strain
εi j within �I

ψ contains elastic strain εe
i j and equivalent eigenstrain ε∗i j , and according to Hooke’s law,

the stress σi j within �I
ψ is given by σi j = Ci jkl(εkl − ε

∗

kl). Furthermore, σi j can be decomposed into
σi j = σ

∗

i j + σ
0
i j , where σ ∗i j is the eigenstress caused by the equivalent eigenstrains ε∗i j in all �I

ψ and σ 0
i j
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the applied stress due to the external load. From these three stress expressions, the governing equation
is established as

CΨ
i jklC

−1
klmqσ

∗

mq − σ
∗

i j +CΨ
i jklε

∗

kl = σ
0
i j −CΨ

i jklC
−1
lkmqσ

0
mq (ψ = 1, 2, . . . , n; i, j, k, l,m, q = 1, 2, 3). (1)

where the equivalent eigenstrains ε∗i j are unknowns. This equation cannot be solved until the relationship
between σ ∗i j and ε∗i j is determined.

Figure 1 illustrates a cuboidal computational domain D of size L x × L y × L z that contains n inhomo-
geneities �ψ in a half-space, which is bounded by the surface plane z = 0 in the x-y-z coordinate system.
The cuboidal inhomogeneity �1 of size L x × L y× H at the surface is used to model a layer of coating of
thickness H . The domain D is discretized into Nx × Ny × Nz small cuboidal elements of the same size,
and each �ψ is then geometrically approximated by a collection of such cuboidal elements. The finer
the discretization, the more accurate the approximation would be. If the size of the cuboidal element is
small enough, each cuboidal inhomogeneity within �ψ can be treated as containing uniform eigenstrain.
It is noted that the eigenstrain within �ψ is still nonuniform. For convenience, each cuboidal element is
indexed by a sequence of three integers [α, β, γ ] (0≤α≤ Nx−1, 0≤β ≤ Ny−1, 0≤ γ ≤ Nz−1). Using
the EIM, each cuboidal inhomogeneity is simulated as a cuboidal homogenous inclusion with uniform
equivalent eigenstrain. Thus, (1) can be recast into

(Cα,β,γC−1
− I)σ ∗α,β,γ +Cα,β,γ ε

∗

α,β,γ = (I−Cα,β,γC−1)σ 0
α,β,γ ,

(Cα,β,γ ∈ Cψ (ψ = 1, 2, . . . , n), 0≤ α ≤ Nx − 1, 0≤ β ≤ Ny − 1, 0≤ γ ≤ Nz − 1), (2)

where C, ε∗, σ ∗ and σ 0 are written in matrix form and I is a unit matrix. The symbol C denotes the
elastic moduli of the substrate matrix, Cα,β,γ denotes the elastic moduli of the cuboid [α, β, γ ] within
�ψ , ε∗α,β,γ the uniform equivalent eigenstrain within [α, β, γ ], σ ∗α,β,γ the stress at an observation point
inside [α, β, γ ] caused by the equivalent eigenstrains in all the cuboidal inclusions, and σ 0

α,β,γ the applied
stress at the observation point. All the observation points are chosen to be at the center of each cuboid.

""
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Figure 1. Discretization of a computational domain D into Nx × Ny × Nz cuboids. The
domain D contains n arbitrarily shaped inhomogeneities in an isotropic half-space, where
�1 is used to model a layer of coating on the substrate matrix.
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The final solvable form for (2) is given in [Zhou et al. 2010] as

(Cα,β,γC−1
− I)

Nz−1∑
φ=0

Ny−1∑
ζ=0

Nx−1∑
ξ=0

Aα−ξ,β−ζ,γ−φε
∗

ξ,ζ,φ +Cα,β,γ ε
∗

α,β,γ = (I−Cα,β,γC−1)σ 0
α,β,γ

(Cα,β,γ ∈ Cψ(ψ = 1, 2, . . . , n), 0≤ α ≤ Nx − 1, 0≤ β ≤ Ny − 1, 0≤ γ ≤ Nz − 1). (3)

where Aα−ξ,β−ζ,γ−ϕ relates the eigenstress σ ∗α,β,γ at the observation point in the cuboid [α, β, γ ] to
the uniform eigenstrain ε∗ξ,ζ,ϕ in the cuboid [ξ, ζ, ϕ]. The expression for Aα−ξ,β−ζ,γ−φ is given in the
paper by Chiu [1978] who solved the elastic field of a cuboid containing uniform eigenstrain in a half-
space. Chiu’s solution shows that there are stress singularities at certain edges and corners of the cuboid,
depending upon the types of eigenstrain in the cuboid (also see [Chiu 1977; Mura 1987]). Nevertheless,
the stress singularities would not affect the solution of (3) because the observation points where the
stresses are concerned are taken only at the center of each cuboid.

Equation (3) can be solved by the conjugated gradient method [Shewchuk 1994], a well-established
method for solving linear equations by iteration. Furthermore, the fast Fourier transform technique can
be used for rapid calculation of the summations in (3) to achieve computational efficiency [Zhou et al.
2009]. Once all the eigenstrains ε∗ are determined, the eigenstress σ ∗ due to ε∗ is known and then the
overall stress field σ is obtained by σ = σ ∗+ σ 0.

3. Results and discussion

The study is performed on the elastic analysis of a layer of WC hard coating on a steel substrate in which
a stiff cuboidal Al2O3 inhomogeneity is formed near the substrate surface prior to coating deposition, as
illustrated in Figure 2. The steel matrix has Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.28,
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Figure 2. Schematic of a cuboidal inhomogeneity located beneath the interface of a
coating-substrate system. The surface of the coating is subject to pressure and friction
force.
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the WC coating has E1 = 670 GPa and ν1 = 0.28, and the Al2O3 inhomogeneity has E2 = 344 GPa and
ν2 = 0.25. The coating surface, bounded by the plane z = 0 in the x-y-z Cartesian coordinate system,
is subjected to the prescribed normal pressure p(x, y)= p0

(
1− (x/R)2− (y/R)2

)1/2 and friction force
f (x, y) = µp(x, y) in a circle of radius R. The coating thickness is denoted by H , and the cases
of h ≤ 0.5R are mainly investigated. The cuboidal inhomogeneity has dimensions cx = cy = R and
cz = 0.5R; its depth from the interface is denoted by w. The center of the cuboid is located in the plane
y = 0 and distanced from the plane x = 0 by |l| with l being the x-coordinate value of the center.

In the calculation, a computational domain of size 16R × 16R × 1.5R is used and the coating is
simulated by the cuboidal inhomogeneity �1 of 16R × 16R × H . The cuboid �1 has much larger
dimension in the length and width directions than in the thickness direction in order to approximate the
effect of infinite dimensions that the coating has in the x-y plane. The dimension 16R is also much larger
than the radius R of the pressure area on the coating surface. The inhomogeneity, as mentioned, may
have singularities at its edges and corners, but these singularities would not affect the stress calculation.

The case of H =0.5R, w=0.25R, l=0, and µ=0.3 is first studied and shows that both the surface and
interfacial stresses of the coating approach zero approximately at x =±4R. Therefore, it is justifiable to
model the infinitely extended coating by an inhomogeneity of finite size embedded at x =±8R. Figure 3
presents the surface stress component σ surf

x and the interfacial stress components σ int
x , σ int

z and σ int
xz within

the coating in the central plane y = 0 and along the x direction. All the stress components are normalized
by the peak pressure p0 at (0, 0, 0). Results show that the surface normal stress σ surf

x is tensile in the area
behind the friction direction (x <−R), but compressive both in the pressure area and in the area ahead
of the friction direction (x >−R). The stress σ surf

x reaches its maximum tensile value around the edge
of the pressure area at x =−R, and therefore is likely to cause crack nucleation there. The interfacial
normal stress σ int

x within the coating is tensile in the area under the surface pressure and its maximum
value is comparable to that of σ surf

x . This tensile stress may cause cracks to nucleate at the interface
and then grow into the film along the direction perpendicular to the interface or cause the kinking of

"

"

$

$ %$ $

-6 -4 -2 0 2 4 6
-1.5

-1.0

-0.5

0.0

0.5

x / R 

 
 /

 p
o

surf

x int

x 

int

z 

int

xz 

Figure 3. The component σ surf
x of the surface stress and the components σ int
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z , and

σ int
xz of the interfacial stress in the coating along the x-axis direction in the computational

domain of size 16R× 16R× 1.5R.
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x (top) and shear stress σ int
xz (bottom) within the coating.

interfacial cracks. Besides cracking within the coating, interfacial debonding of the coating is another
damage phenomenon that needs to be considered. The interfacial shear stresses σ int

xz affect the adhesion
of the coating onto the substrate; their low magnitude would generally lead to good adhesion, thereby
preventing the occurrence of interfacial debonding. Figure 3 shows that σ int

xz reaches positive and negative
maximum values in the locations approximately beneath the edges of surface pressure area (x =±R). It
is predicted that interfacial debonding is likely to start at such locations.

We then study the effect of the inhomogeneity �2 on cracking and debonding of the coating. Figure 4
compares the interfacial stress components σ int

x and σ int
xz among the cases for different horizontal locations

of the inhomogeneity �2. The results show that the presence of �2 decreases the tensile values of σ int
x ,

compared with when �2 is absent (l =∞). The maximum tensile value of σ int
x is decreased by about

17% when �2 is directly beneath the peak surface pressure (l = 0). The decrease becomes smaller when
�2 is horizontally displaced from l = 0 to l =−R or l = R. On the other hand, the change in both the
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Figure 5. Effect of the depths of the inhomogeneity �2 on the interfacial normal stress
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x (top) and shear stress σ int
xz (bottom) within the coating.

maximum positive and negative magnitudes of σ int
xz is almost inappreciable. At l = 0, σ int

xz decreases in
the areas near the points of maximum negative and positive magnitudes, while at l =−R (l = R), σ int

xz
increases in the area near the point of the maximum positive (negative) magnitude. Nevertheless, the
overall change in σ int

xz is not significant.
Figure 5 compares the interfacial stress components σ int

x and σ int
xz among the cases for different depths

of the inhomogeneity �2 at l = 0 and shows that as �2 approaches the interface, the maximum tensile
value of σ int

x decreases and the reduction reaches about 27% at the depth w= 0.125R. The overall change
in σ int

xz is not significant except that the peak and valley shapes of σ int
xz are narrower in the presence of �2

than in the absence of �2 (w =∞).
Figures 4 and 5 demonstrate that the presence of stiff inhomogeneities in the substrate would not

worsen the cracking and debonding of a hard coating and instead may likely play a role to decrease the
possibility of their occurrence.
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Figure 6 further presents the normalized von Mises stresses σ̄vm in both the coating and the substrate
for different depths of the inhomogeneity �2 at l = 0. In the absence of �2 (w =∞), the maximum von
Mises stress σ̄max

vm in the coating reaches 0.937 at the interface location approximately beneath the peak
surface pressure. As �2 approaches the interface, σ̄max

vm in the coating slightly increases to 0.953 and then
decreases to 0.923, and its location remains the same. The increase in σ̄max

vm is almost negligible (about
1.7%). In contrast, σ̄max

vm in the substrate monotonically increases from 0.586 to 0.642, and its location
changes from the interface location to the edge plane of the inhomogeneity �2. The increase in σ̄max

vm
is significant (about 8.7%) and means yielding is more likely to occur in the substrate. Therefore, stiff
inhomogeneities are still detrimental to the yielding behavior of the substrate even though it is protected
by a layer of hard coating.

The thickness of a coating is a key parameter that affects its performance. The previous examples
consider coatings of thickness H = 0.5R. The coatings with a thinner thickness H = 0.25R are also
studied. In Figure 7, the solid lines plot the surface stress component σ surf

x and the interfacial stress
components σ int

x and σ int
xz in the coating for the case of H = 0.25R, w = 0.25R, l = 0, and µ = 0.3

along the x-axis, while the dashed lines represent the corresponding stress components for the case in
the absence of the inhomogeneity �2. Their comparison shows that the presence of �2 does not increase
σ surf

x , σ int
x and σ int

xz or cause significant change to them. Thus, for a thinner hard coating, it is still valid
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to draw the conclusion that stiff inhomogeneities in the substrate would not worsen the cracking and
debonding of the coating.

Figure 7 shows that the maximum surface tensile stress σ surf
x is much larger than the maximum in-

terfacial tensile stress σ int
x , which leads to the conclusion that surface cracking may start much earlier

than cracking nucleated at the interface or dominate the damage mechanisms. An optimal design of hard
coatings should balance the two cracking mechanisms to avoid the early occurrence of either one of them.
The proper selection of coating thickness is a way to achieve this balance. Figure 3 demonstrates that
when the coating is selected to have the thickness of H = 0.5R, the maximum tensile value of σ surf

x is
close to that of σ int

x .
The normalized von Mises stresses σ̄vm in both the coating and the substrate are presented in Figure 8

and show that as the inhomogeneity is located closer to the coating-substrate interface, σ̄vm in the substrate
increases and the increase reaches about 11%, which demonstrates again that detrimental effect of the
stiff inhomogeneity on the yielding behavior of the substrate must be accounted for. Furthermore, the
comparison between Figures 6 and 8 shows that a thicker coating (X = 0.5R) can provide better yielding
protection to the substrate than a thinner coating (H = 0.25R).

Inhomogeneities can become stringers or clusters during their formation process. We investigate a
stringer of Al2O3 inhomogeneities in the WC-coated steel substrate. The stringer is modeled as three
identical cuboidal Al2O3 inhomogeneities, which have the same dimension as the previously studied
single inhomogeneity and are equally distanced by 0.25R. Figure 9 compares the von Mises stress field
of the stringer between the two cases in which the coating has different thicknesses of H = 0.5R and
h = 0.25R. The stringer is located beneath the interface at the depth w = 0.125R and shows that the
interactions among the inhomogeneities distort the stress field around them and the distortion becomes
stronger as the coating becomes thinner.

Although this study focuses on inhomogeneities of cuboidal shape, it should be noted that the present
method is also capable of handling inhomogeneities of any arbitrary shapes. An arbitrarily shaped geom-
etry can be approximated by the appropriate arrangement of multiple infinitesimal cuboidal elements.
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4. Conclusions

The effect of stiff inhomogeneities on the elastic field of hard coatings is studied by using the solution
of multiple interacting three-dimensional inhomogeneities of arbitrary shape in a half-space. In the
utilization of the inhomogeneity solution, a layer of coating is modeled by an inhomogeneity of finite
size embedded in the half-space, which has much larger dimensions in the horizontal directions than in
the depth direction to simulate the effect of the finitely extended dimensions of the coating. The study
shows:

(1) Stiff inhomogeneities formed in the substrate would not worsen the cracking and debonding of a
hard coating.

(2) Stiff inhomogeneities are still detrimental to the yielding behavior of the substrate even though
coated by a layer of hard coating.

These considerations may provide guidance to minimize the potential damage induced by inhomo-
geneities to coating-substrate systems.

This study also suggests that the effect of inhomogeneities on yielding and plastic zone expansion
cannot be neglected when a film-substrate system containing inhomogeneities is subject to elastic-plastic
indentation. Based on the present method, a further study can be conducted to develop an elastic-plastic
indentation model that takes into account inhomogeneities for indentation tests.
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