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DEDICATION

This issue of the Journal of Mechanics of Materials and Structures is dedicated to Professor Charles
R. Steele, the journal’s Founding Editor, and his late wife, Marie-Louise Steele, Associate Editor of
JoMMS until her untimely death in 2009. It includes papers written by colleagues and friends who
thereby wanted to honor the two. We, who have succeeded Charles and Marie-Louise at the helm of the
journal, consider it a privilege to have acted as editors of this issue.

The issue has a twofold purpose: to celebrate the Steeles’ accomplishments and to commemorate
the passing of Marie-Louise, who was an indispensable partner in running the journal and is to be
credited to no small degree with supporting Charles in his professional endeavors. They both made
an important contribution to the engineering community by founding the nonprofit Journal of Mechanics
of Materials and Structures, and prior to that by their editorship of the International Journal of Solid and
Structures. Charles’s own research work has had a lasting impact on theoretical and applied mechanics
and biomechanics, addressing problems in shell theory, elasticity theory, cochlear mechanics, and bone
mechanics, among others. He has been recognized for these contributions by being elected to National
Academy of Engineering in 1995 and by the ASME Koiter medal in 1999.

The original papers presented in this issue are authored by researchers whose scientific interests fall
within the broad spectrum of JoMMS. They include theoretical, numerical and experimental reports
spanning the fields of mechanics, mathematics and biology, covering fundamental problems in continuum
and discrete mechanics, deformation, flow and failure of materials (beams, shells, composites, fractal
media), wave propagation of linear and nonlinear waves, cellular mechanics, adaptation of biological
tissues, and a range of other topics.

We extend sincere thanks to all the authors who contributed to this issue, for which the manuscripts
were reviewed according to the rules of JoMMS. We thank them for their cooperation throughout the
process.

DAVIDE BIGONI: bigoni@ing.unitn.it
Dipartimento di Ingegneria Meccanica e Strutturale, Facolta di Ingegneria - University of Trento, Via Mesiano 77,
1-38123 Povo (TN), Italy

IWONA JASIUK: ijasiuk@illinois.edu
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street,
Urbana, IL 61801, United States

YASUHIDE SHINDO: shindo@material.tohoku.ac.jp
Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-02,
Aoba-ku, Sendai 980-8579, Japan



FROM THE EDITORAL BOARD

The Editorial Board of JoMMS and the Publisher join the Chief Editors today in remembering
Marie-Louise Steele with fondness, expressing their warmest appreciation and good wishes to
Charles, and renewing their commitment to JoMMS, so that it may evermore be a tribute to the

monumental work of its founders.
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MARIE-LOUISE (BUHLER) STEELE (1943-2009)

On February 17, 2009, Marie-Louise (MarieLu) was diagnosed with metastatic breast cancer. This
was a complete shock, since she had a clear mammogram just 18 months before, there is little cancer in
the family, her father lived to 92, and her mother lived to 99. Her mother always told MarieLu that she
would not live as long, because she used too much of her energy in each day. As many know, MarieLu
did not spare effort in her projects and in helping friends and family. Below is a photograph taken at the
beginning of radiotherapy; the one on the next page was taken just before the first chemotherapy session
on April 15. Despite her good physical condition and very positive outlook, she reacted very poorly to
the chemotherapy, entered the hospital intensive care on April 30, and died on May 14. Although she
grew weaker by the day, she always had a smile to greet visitors.

When MarieLu received the health report on February 17, she said there should be no tears and quoted
Edith Piaf: Je ne regrette rien. She and Charles had such good fortune in meeting each other and sharing
life in journal work, morning workout followed by coffee latte in the hot tub, so much opportunity to
travel and keep friends around the world, and healthy children and grandchildren.

Personal background

MarieLu was born in Heilbronn (Germany) in 1943 to Karl and Elise Biihler, and remembered well
growing up in the aftermath of World War II, an experience that helped to form her lifelong dedication
to conservation and hard work. Her father was a prisoner of war in Siberia, and was one of the few to
return. After recuperation he became Burgermeister of Brackenheim, a small town about 30 miles from
Stuttgart. She always remembered as a nine-year-old, looking up at the stars and vowing that she would

MarieLu with grandchildren (and granddog) on March 14, 2009.
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MarieLu on a hike with the family at the Golden Gate Bridge, San Francisco on April 5, 2009.

see the world one day. She loved poring over maps and picked two places she had to visit. One was
San Francisco and the other was Rio de Janeiro. As it transpired, she has lived at Stanford near San
Francisco, and has spent four New Year’s Eves on Copacabana, related to attending PACAM meetings
with Charles.

The acceptable means for a young lady to escape to the large world was through language. So, after
finishing the arbitur, MarieLu attended interpreter school in Stuttgart and then in Geneva. The interna-
tional flavor was greatly to her liking, and she became fluent in French. However, her focus was English,
and she decided that she must spend time in an English-speaking country to achieve proficiency. So she
immigrated to the United States, which was relatively easy then for northern Europeans. In Geneva she
worked part-time in an office of Hewlett-Packard. Apparently her skills were already developed at the
age of 21, since a position was offered to her if she would come to Palo Alto, California. She first spent
three months working for Siemens in the Empire State Building. The chaos of Manhattan, however, did
not appeal to her, but she decided to give the US one more chance. In Geneva she had purchased a
bus ticket: 100 days for 100 dollars. With her direct practical thinking, she took the bus nonstop from
Manhattan to Palo Alto. After a few years in the international office of Hewlett-Packard, she decided
to go to school full time, but then walked into the life of Charles Steele, a single father of three boys —
Eric, Brett and Jay — and changed both of their lives forever. Thus began a 40-year love affair, enhanced
by the arrival in 1971 of their son Ryan.

When Ryan was only one month old, the family packed up and traveled to Switzerland, where Charles
was invited to teach for a year. MarieLu was not daunted by caring for a newborn and setting up a new
household in a foreign country. She thrived on challenges and later completed the BS and MS degrees,
made possible by organizing an equal distribution of household chores and cooking among all family
members. Over the years, the family went on to spend sabbatical time in Taiwan, Sweden, Germany and
South Africa.

MarieLu will be remembered by all for her bubbly personality, her passion for life and culture. After
the boys were grown up and on their own, MarieLu and Charles continued to travel, and spent months at
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a time in Italy, Spain, Germany, Thailand, and India. In recent years, they traveled with three computers,
in order to combine work and pleasure. Around the globe, MarieL.u won friends with her vivaciousness
and zest for life.

MarieLu further will be remembered for her generous assistance to others less fortunate. She provided
a home away from home for generations of foreign visitors and relatives, both distant and close. She
gave to all she met, thrilled to be able to help in anyway she could. In 1993, she helped a Ukranian
friend start a dress shop in the Ukraine with second-hand wedding dresses collected in the United States.
She sponsored two of her German nieces to come to school in the States and put two step-grandchildren
through University. She helped each of her sons secure a home for their families, and often handled the
home improvements herself. The examples of generosity and selflessness go on and on. She was tireless,
and even while the cancer attacked her body, she worked on the journal, painted, cleaned, worked out at
the YMCA, and played with her grandchildren.

MarieLu loved all creatures of the world, and would even rescue spiders from the shower to liberate
in the garden. She cherished her furry friends and the little birdies she fattened up with birdseed in the
deluxe feeders and birdhouses she constructed in her garden. She often cared for her grandkitties and
granddogs, spoiling them as only a grandmother can. Some recent fond memories are of her butterfly
walks this past Easter with her young granddaughters at her beloved Sea Ranch in Sonoma County,
California, where the family maintained a vacation home.

Journal work

In 1965, George Herrmann founded the International Journal of Solids and Structures (1JSS), one of a
number of journals launched by Pergamon Press around that time. In 1984, he retired, and Charles Steele
agreed to succeed him as editor. Because of a previous change in staff, the editorial office was not in
good order, with piles of manuscripts and cabinets full of unanswered correspondence, some more than
a year old. MarieLu offered to help for a few days. However, she quickly proved to be indispensible
and was appointed as Associate Editor. The few days turned into 20 years. She was well suited for this,
since her great skill was bringing order to a chaotic situation, with her desire to help people and her
interest in the international community. She grew to know thousands of authors and reviewers around
the world. Correspondents were appreciative of her cheerfulness, efficiency and warmth — rarities when
dealing with a technical journal! As the figure on the next page shows, IJSS was stable in the first 20
years of existence, with around 150 submissions per year. After MarieL.u began work, the number of
submissions increased exponentially to over 900 in 2004. This is despite the launching of a number of
competing journals of mechanics during this time. Standards were not relaxed, with only about 60% of
the submitted papers published all that time.

Unfortunately, in the hands of Elsevier, the price per page also increased substantially. The Cornell
University Library includes 1JSS among the four most outrageous examples of pricing for engineering
journals:

http://engineering.library.cornell.edu/about/stickershock_4
Generally, the price per article (or per page) of technical journals from commercial publishers are

many times those published by nonprofit organizations. Consequently in response to the international
library crisis, Charles and MarieLu, with 21 of the 23 members of the Board of Editors, resigned from
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Manuscripts submitted for publication and those accepted and sent to the publisher for
publication, by year. Included are 1JSS, from 1965 through 2004 under Pergamon and
Elsevier, and JoMMS from 2005 through 2008 under MSP. After Marie-Louise Steele
began with 1JSS in 1985, the increase in activity is substantial. A new phase starts with

the low-cost JoMMS.

1JSS to establish the Journal of Mechanics of Materials and Structures (JoMMS). The publisher is the
nonprofit Mathematical Sciences Publications (MSP). JoMMS has made a very good beginning, now with
about 160 submissions per year. MarieLu’s ambition was to see JoMMS catch up to IJSS in activity, but
with the cost to libraries remaining low. The advantages of JoMMS for authors and libraries make this a
possibility. In any case, the mechanics community will miss the contribution of Marie-Louise Steele. In
the hospital, she was pleased and quite relieved to hear that Davide Bigoni, Iwona Jasiuk, and Yasuhide
Shindo agreed to take over the responsibility for JoMMS, and joint Chief Editors. In their hands, her

ambition for JoMMS will be fulfilled.

ELIZABETH WILLES, friend, and CHARLES STEELE, husband

6 October 2009

mathematical sciences publishers
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FINITE STRAIN MICROMECHANICAL MODELING OF
THERMOVISCOELASTIC MATRIX COMPOSITES

JACOB ABOUDI

A finite strain micromechanical analysis is generalized for the modeling of thermoviscoelastic matrix
composites. The thermoviscoelastic matrix of the composite is represented by a finite thermoviscoelas-
ticity theory that permits (in contrast to finite linear thermoviscoelasticity theories) large deviations away
from thermodynamic equilibrium. As a result, it is possible to subject the composite to large thermome-
chanical loadings. In addition, the possibility of evolving damage in the matrix is included. The derived
micromechanical model is applied to investigate the behavior of a thermoviscoelastic rubber-like matrix
reinforced by steel fibers in various circumstances. By subjecting the composite to mechanical loading
under isentropic conditions, the micromechanical model is employed for the prediction of thermoelastic
inversion point at which the Gough—Joule phenomenon at the rubber-like phase occurs. Results are given
that show the effect of damage, elevated temperature and viscoelasticity of the matrix on the global
response of the composite including its creep and relaxation behavior.

1. Introduction

The viscoelastic effects of polymers that are undergoing large deformations can be modeled by finite
linear viscoelasticity. In the framework of this theory the strains are finite, but the deviations away
from thermodynamic equilibrium are assumed to be small. This implies that the equations that control
the evolution of the internal variables are linear; see [Lockett 1972; Christensen 1982; Holzapfel 2000;
Simo 1987], for example. For large deviations from equilibrium the finite linear viscoelasticity is not
applicable any more and nonlinear evolution laws must be introduced to allow more accurate modeling.
To this end a finite viscoelasticity theory was formulated in [Reese and Govindjee 1998b] in which the
equations of evolution are nonlinear thus allowing very large strains to take place. In [Govindjee and
Reese 1997] comparisons have been made between the finite linear viscoelasticity of [Simo 1987] and
their developed finite viscoelasticity theory.

The development of thermoviscoelasticity theories at finite strain that include viscous and nonisother-
mal effects is very important since the behavior of polymeric materials is strongly influenced by tempera-
ture changes. A thermoviscoelasticity theory at finite strains was presented in [Holzapfel and Simo 1996].
In this formulation, however, the evolution equations of the internal variables are linear and, therefore, this
theory can be considered as finite linear thermoviscoelasticity. Finite thermoviscoelasticity theories that
allow finite perturbations away from thermodynamic equilibrium were presented by [Lion 1996; Reese

Keywords: finite thermoviscoelasticity, large deformations, Rubber-like matrix composites, evolving damage, finite strain
high-fidelity generalized method of cells.
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and Govindjee 1998a]. The formulation in the latter reference is based on entropic elasticity and involves
nonlinear evolution equations that allow the modeling of significant thermomechanical deformations of
the material and permits large deformation rates.

The derived constitutive equations of [Reese and Govindjee 1998a] are based on the multiplicative
decomposition of the deformation gradient into elastic and viscous parts. In addition, the free energy is
decomposed into equilibrium (which corresponds to time-independent thermoelastic deformation) and
nonequilibrium (which corresponds to the time-dependent deformation) parts. Damage considerations
are not included in the finite thermoviscoelasticity of that paper. In the present investigation, evolving
damage in finite thermoviscoelastic materials is included by adopting, in the framework of continuum
damage mechanics, the derivation of [Lin and Schomburg 2003; Miehe and Keck 2000], according to
which the rate of damage depends upon the kinematic arc-length. Isothermal finite viscoelasticity with
evolving damage is obtained as a special case, and by neglecting the thermal and viscous effects, the
special case of a hyperelastic material with evolving damage is obtained.

In [Aboudi 2004], a micromechanical analysis was proposed for the prediction of the behavior of
composites undergoing large deformations in which one of the phases is modeled by the finite linear
thermoviscoelasticity theory of [Holzapfel and Simo 1996]. In the present investigation, this finite strain
micromechanical analysis, referred to as high-fidelity generalized method of cells (HFGMC), is extended
to incorporate polymeric phases that can be modeled by the finite thermoviscoelasticity of [Reese and
Govindjee 1998a] in which damage can evolve, the rate of which depends upon the kinematic arc-length.
As a result of the present generalization, finite strain constitutive equations that govern the macroscopic
behavior of the anisotropic thermoviscoelasticity composites undergoing large deformations with evolv-
ing damage in the polymeric phase are established. These equations involve the damaged instantaneous
mechanical and thermal tangent tensors as well as a global tensor that includes the current viscoelas-
ticity and damage effects. Every one of these three tensors is given by closed-form expressions that
involve the instantaneous properties of the phases and the corresponding current mechanical, thermal
and viscoelastic-damage tensors which have been established from the micromechanical procedure. The
special case of composites that consist of finite viscoelastic phases has been recently investigated in
[Aboudi 2010].

Results are given for a thermoviscoelastic rubber-like matrix reinforced by thermoelastic steel fibers.
The thermoviscoelastic rubber-like matrix consists of a system of a thermoelastic element together with a
single Maxwell element which is represented by the equilibrium and the nonequilibrium parts of the free
energy. The thermoelastic inversion point which is characteristic for rubber-like materials at which the
Gough—Joule effect occurs is determined by analyzing an isentropic process that provides the induced
temperature by stretching the composite in the transverse direction (perpendicular to the fibers). In addi-
tion, the effects of elevated temperature, viscoelasticity and damage on the steel/rubber-like composite
response to mechanical and thermal loading-unloading conditions are examined, as well as its creep and
relaxation behavior.

This paper is organized as follows. After a brief summary in Section 2 of the thermoviscoelastic
model of [Reese and Govindjee 1998a] for monolithic materials and its coupling with evolving damage,
the HFGMC analysis is described in Section 3. Section 4 includes the application of the finite strain
thermoviscoelastic composite model in various circumstances, followed by conclusions and suggestions
for future research.
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2. Finite strain thermoviscoelasticity coupled with damage model of monolithic materials

In the present section we briefly present the constitutive behavior of finite strain thermoviscoelastic
polymeric materials that exhibit evolving damage. The presentation follows the papers of [Reese and
Govindjee 1998a] where no damage is accounted to and [Lin and Schomburg 2003] where evolving
damage is included. The present thermoviscoelastic modeling allows finite strain and large deviations
from the thermodynamic equilibrium state.

Let X and x denote the location of a point in the material with respect to the initial (Lagrangian)
and current systems of coordinates, respectively, and ¢ is the time. In terms of the local deformation
gradient tensor F (X, t),dx = F(X, t)dX. The deformation gradient F is expressed by the multiplicative
decomposition

F(X,t)=F“X,HF'(X,1), (1)

where F°¢ and FV are the elastic and viscous parts. The Jacobians that correspond to F and F°¢ are:
J =det F and J°¢ = det F*, respectively.

The modeling that is presented herein is based on a single Maxwell and elastic elements, but it can
be extended to include several Maxwell elements. The total free energy per unit reference volume
is decomposed into equilibrium (EQ) which represents the strain energy of the elastic element and a
nonequilibrium (NEQ) part that accounts for the Maxwell element:

Y=y yNEQ (2)

The equilibrium part is given by

0 0
Y= (1-D) [fEQwﬁfQ + (e0)kQ (1 - %> +co (e — 60— 0 log %)] , 3)
where D denotes the amount of damage such that 0 < D < 1, 6 and 6y are the current and reference
temperatures, respectively, and ¢ is the heat capacity. In this relation frq and (eg)gq are of the form

0
feQ = 9% (e0)EQ = K a“ log J by, 4)

where K¢ and «¢ are the bulk modulus and thermal expansion coefficient, respectively, of the elastic ele-
ment. It follows from (3) that 1//(])E Qs the equilibrium part of the free energy at the reference temperature
6y in the presence of damage.

The nonequilibrium part is given by

0
l//NEQ =({1-D) |:fNEQ¢(1;]EQ + (eO)NEQ (1 — 9—0)] s 5)
where
0
IneQ = % and (eg)ngq = K"’ log J,6y, (6)

K" and «” being the bulk modulus and thermal expansion coefficient, respectively, of the viscous part
of the material. Here too, yNEQ = z//(I;I EQ for 0 =6y and D #£ 0.
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The Kirchhoff stresses can be derived from the free-energy expressions above:

dyEQ
EQ — ZFgI—CFT = (1- D)2, %)

C = FTF being the right Cauchy—Green deformation tensor, and

9 NEQ 9 NEQ
Py FT:ZFE%FETE(I D)™, (8)

=2
e eT pre EQ _NEQ ; ;
where C¢ = F¢" F° and 7,7, 7, ~ correspond to the Kirchhoff stresses of the undamaged material.
Let the left Cauchy—Green tensor B = FFT be represented in terms of its eigenvalues b p» and unit

principal directions e,,, p =1, 2, 3: X

B = diag [b1, b2, b3], e, B:pr e, Qe ©)
p=1
With J = det F = /b1b,b3, the volume preserving tensor B = J~2/3B can be accordingly represented
in the form
B = diag [b1, by, b3] = (b1bab3) ™' diag [b1, b2, b3]. (10)
The finite strain isothermal contribution w(l;: Q can be modeled by the Ogden’s compressible material
representation [Ogden 1984; Holzapfel 2000] as follows

3 e

Ke
§:—f (B2 4 (ba)"? + (b3)*0? = 3) + = (J2 = 2log J — 1), (11)
p=1 P

where ), and «j, are material parameters of the elastic element.

For Maxwell’s element, the isothermal free energy 1/f(1)\I EQ i represented by [Reese and Govindjee
1998a]:

3 v
,u/ - v = v = v Kv
Yoot = D SE (BT B+ B = 3) + - (U = 2log = 1), (12)
p=1 "7
where
B¢ = F°[F°]" =diag [b{, b3, bS] (13)
and J¢ = \/b$DSDS, b4 = (J€)~3b¢, and I, o, are material parameters.

The entropy of the system can be determined from

0 96 90

1 1 0 1
=—(1-D) [%wéf‘? ~ 5 (€wsq —colog 9—0} —(1-D) [ Yo — 9—0<eo>NEQ]

= (1 — D)no. (14)

The evolution equation for the internal variables is given in [Reese and Govindjee 1998a]:

1 1 1
——L,[B¢1[B¢]"" = ——dev [tVEQ] + —trace [tVEQ], (15)
2 2np Oy
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where np and ny are the deviatoric and volumetric viscosities, respectively, and L,[B¢], the Lie deriva-
tive of B¢, can be expressed as

L,[B‘1=FC"'FT, (16)
with CV = F'T F?. For elastic bulk behavior, 1/ny = 0 and the relaxation time is given by £ = np/u
where p is the small strain shear modulus of the Maxwell element (the nonequilibrium part).

The integration of the evolution equation (15) is performed by means of the return mapping algorithm
in conjunction with the logarithmic strain and the backward exponential approximation which were
developed in the framework of elastoplasticity, see [Weber and Anand 1990; Eterovic and Bathe 1990;
Cuitino and Ortiz 1992; Simo 1992]. Thus, by employing the exponential mapping algorithm, (15) is
reduced to

€nita = Entin — A [Ldev (oA 21+ L trace [rNEQ]] : (17)
2np Inv ntl
with A =1, 2, 3, where the principal values of the elastic logarithmic strain € are given by €4 = % log b%

and At is the time increment between the current and previous step. In (17), the trial values of €/, flia}“

e trial e trial € trial __ 1 e trial
can be expressed in terms of the eigenvalues b; ", of B, " namely, €/ ", = 51ogbf |\, where
e trial
Bn+1 fn+lB fn+ls (18)
with
f n+l = n+1F . (19)

Equation (17) forms a system of coupled nonlinear equations in the unknowns €; | ,, A=1,2,3. It
can be rewritten in terms of the elastic logarithmic strain increments in the form

1
Aeh =€l [T — €l 4 — At [?dev [tAEQ] + Wtrace [TNEQ]] - (20)
n+

In this equation, the principal values of TNFQ are given according to (8) by

awNEQ awNEQ

NEQ e

=2 by =2———b5. 21
w4 oby AT T Topg A o

The rate of damage evolution is given by (see [Lin and Schomburg 2003; Miehe and Keck 2000])

D= (D*® — D), (22)

Ndam
where the rate of kinematic arc length is defined by

2=\/g||HII, H=1logC, (23)

with the saturation value {
1+ Do exXp (_ﬁdam/adam)

and

aam = max \HIH @) (25)

In these relations, gam, Dj° and ogam are material parameters.



12 JACOB ABOUDI

The incremental form of the constitutive equations of the finite thermoviscoelastic material and the
corresponding instantaneous tangent tensor that are needed in the following micromechanical analysis,

are determined as follows. From (8) the following expression can be established
AT = (1 - D)AT) 0 — ) QAD.

Let the second-order tensor MNEQ be defined by

NEQ

MNEQ [MNEQ]—[a—e]v AaB:1$2’3a
In addition, the components of the thermal stress vector I'NEQ are determined from
NE
FNEQ _ 0T, Q
A 30
In conjunction with (20), we obtain from (26) that

A=1,2,3.

y 1 1
ATNEQ (1 D)MNEQ{ ,‘;fl“‘g €, p— At [—dev [tBEQ] + ——trace [tNEQ]] }
277D nv n+1

NEQ EQ
— (1= D)ri*A0 — ) °AD.

Let A€ and Aefd be defined by

e trial
Aea=€,11 4 — € 4,

NEQ AD .

1 1
Ae¥ = At | —dev [t} "]+ —trace [rNEQ]] +[MNRQYL L
n+1 1 —D

2np Iy
Therefore (29) can be represented by
AT = (1 - DY M Aep — Ay - TFRA0)
= (1—D)[MERAeg — TNFA0] — AWNEQ

where the components AWEEQ involve the thermoviscoelastic and damage effects.
The fourth-order tangent tensor dVE is defined by

NEQ 2., NEQ
JVEQ _ o 0S _4 oY
oC 9CaC ’
where SNEQ ig the second Piola—Kirchhoff stress tensor:
9yNEQ _, ayNEQ )
SNEQ — 5~ "  _)[FY FV
ac = AP e

whose the principal values are given by

GNEQ =28wNEQ _ 20y™R
4 dbs by 9B

., A=123,

(26)

27)

(28)

(29)

(30)

€1V

(32)

(33)

(34)
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with bY = b, /b¢ being the principal values of B' = F'[F V1T = diag [b?, b3, b3]. The principal values
of dNFQ can be determined from the following expression [Holzapfel 2000]:

3.3 8SNEQ
NEQ __ o
A=) - Na®Ns@Nz @ Np

3 SNEQ NEQ
_|_Z Z ﬁ(NA®NB®NA®NB+NA®NB®NB®NA) (35)
AlB#Al(AB) (Aa)

where
NEQ NEQ
LSy 9S4 32y NEQ
Ap kg dbg  bybYy db4by

(36)

with A4 = «/bs and N4 denotes the principal referential orthonormal directions. It should be noted that
for A4 = Ap, a Taylor expansion shows that

NEQ  oNEQ NEQ NEQ
lim Sg =84 _ 1 [asg™ 3§, (37)
rp—=ra (Ag)2 — (Aa)2  2Ap| OAp orp |

The second-order thermal stress tensor yNEQ is determined from

NE 2./ NE
neq _ 98 7 ! LN . (38)

06 aCao

and its principal values are given by
92 NEQ 2 52y NEQ

NEQ _ _, 14 7Y (39)

YA T T 000 T by 00500

The values of )/EEQ can be readily related to FI;\IEQ in (28) by employing the relation: 7 = FSFT from
which the equality I" | NEQ =by yN ? is obtained.

The fourth-order ﬁrst tangent tensor RNEQ which is defined by

dTNEQ
RN Q= — (40)
oF
where TNEQ is the first Piola—Kirchhoff stress tensor, can be determined from
RNER = F gNEQ FT  SNEQ g T, (41)

with I denoting the unit second-order tensor. Thus, the rate form of the nonequilibrium portion of the
constitutive equations of the finite thermoviscoelastic material is given by

TNEQ — RNEQ . fp gNEQg _ yNEQ (42)

where by taking into account the relation between the Kirchhoff 7 and the first Piola—Kirchhoff T stress
tensors: T = FT, the following expressions for the thermal stress HNFQ and viscous-damage VNEQ
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terms can be established:
HNEQ _ p—1pNEQ _ yNEQFT’ (43)
VNEQ — p—1 yNEQ (44)

The same procedure can be followed for the establishment of the first tangent tensor REQ of equilibrium
elastic element where WEQ involves this time the damage effects only and FV = I. It yields

TEQ = RFQ . F — HFQ9 — VEQ, (45)
The final total rate form of the finite thermoviscoelastic material is as follows
T=R:F—-H6-V, (46)

where T = TNEQ 4 7EQ R — RNEQ 4 REQ g — HNEQ 4 HFQ and Vv = VNEQ 4 VEQ_ Constitutive
equations can be obtained from (46) as specials cases in the presence/absence of damage and viscous
effects.

3. Finite-strain micromechanical analysis

Finite strain HFGMC micromechanical analyses for the establishment of the macroscopic constitutive
equations of various types of composites with doubly periodic microstructure undergoing large defor-
mations have been previously reviewed by [Aboudi 2008]. These micromechanical analyses are based
on the homogenization technique in which a repeating unit cell of the periodic composite can identified.
This repeating unit cell represents the periodic composite in which the double periodicity is taken in
the transverse 2 — 3 plane, so that the axial 1-direction corresponds to the continuous direction; see
Figure 1. (For a unidirectional fiber-reinforced material, for example, the 1-direction coincides with the

T o7 J o7 I\
g%
4|94
I

J
J
J

[ J
Q

Repeating
Unit Cell

\Yz

Uy

RN

Uy

RN

X3

Figure 1. A multiphase composite with doubly periodic microstructures defined with
respect to global initial coordinates of the plane X, — X3. The repeating unit cell is
defined with respect to local initial coordinates of the plane Y, — Y3.
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fiber orientation.) In the framework of these HFGMC micromechanical models, the displacements are
asymptotically expanded and the repeating unit cell is discretized. This is followed by imposing the
equilibrium equations, the displacement and traction interfacial conditions as well as the conditions that
ensure that the displacements and tractions are periodic across the repeating unit cell. In particular, the
imposition of the equilibrium equations provide the strong form of the Lagrangian equilibrium conditions
of the homogenization theory that must be satisfied. In addition, since the solution of the repeating unit
cell is determined with a constant vector, the corners of this cell are rigidly clamped to prevent this
indeterminacy. The resulting homogenization derivation establishes the deformation concentration tensor
A(Y, 0), where Y are the local Lagrangian system of coordinates with respect to which field variables
in the repeating unit cell are characterized. This tensor relates the rate of the local deformation gradient
F (Y, 6) at a material point ¥ within the repeating unit cell to the externally applied deformation gradient
rate F on the composite in the form

F(Y,0)=A(Y,0): F+ANY,0)f + A*(Y, ), (47)

where A™ and A¥¢ are the thermal concentration tensor and the viscous-damage contribution. The
mechanical concentration tensor A is determined at every increment of loading when the thermal and
viscous-damage effects are absent. Similarly, the thermal concentration tensor A™ is determined at
every increment in the absence of mechanical and viscous-damage effects. Finally, the current A"9 can
be determined when no mechanical or thermal effects are present. It follows from (47) and in conjunction
with (46) that the local stress rate at this point is given by

T(Y.0)=R(Y,0):[A(Y,6): F+ ANY, 0)0 + AV(Y, O)-HXY,00-V(Y.,0). (48)

Hence the resulting rate form of the macroscopic constitutive equation for the multiphase thermovis-
coelastic composite undergoing large deformation is given by

T=R:F—H%9—V, (49)

where T is the rate of the overall (global) first Piola—Kirchhoff stress tensor and R* is the instantaneous
effective stiffness (first tangent) tensor of the multiphase composite. It can be expressed in terms of the
first tangent tensors of the constituents R(Y, 6) and the established deformation concentration tensor
A(Y, 0) in the form

R* = i// R(Y,0) A(Y,6) dSy, (50)
Sy JJsy

where Sy is the area of the repeating unit cell. The effective instantaneous thermal stress tensor H* in
(49) is established from

1 th
H*:—S—// [R(Y,0) A™(Y,0)— H(Y,0)] dSy. (51)
Y Sy

Finally, the current viscous-damage contribution to the macroscopic constitutive equations (49) is given
by

V:_SL// [R(Y,0): A" (Y,0)—V(Y,0)]dSy. (52)
Y Sy
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More details can be found in [Aboudi 2008]. It should be noted that the current values of R*, H* and
V of the composite are affected by the current value of damage variable through the instantaneous value
of the tensors R(Y,0), H(Y, 6) and V(Y , 0) of the finite strain constituents.

The finite strain HFGMC micromechanical model predictions were assessed and verified by compar-
ison with analytical and numerical large deformation solutions in [Aboudi and Pindera 2004; Aboudi
2009] for composites with hyperelastic and hyperelastic coupled with damage constituents, respectively.

4. Applications

In the present section, applications are given that exhibit under various circumstances the response of
a composite undergoing large deformations, which consists of a thermoviscoelastic rubber-like material
reinforced by continuous thermoelastic fibers. The thermoviscoelastic matrix is characterized by the free
energy functions (3) and (5) that represent elastic and maxwell elements, respectively in conjunction
with the corresponding isothermal free-energy functions (11) and (12). The parameters in these functions
[Reese and Govindjee 1998a] are given in Tables 1 and 2, together with np and 1/ny = 0 (assuming
elastic bulk deformations). The damage mechanism affects the thermoviscoelastic matrix only and its
parameters which appear in (22)—(24) are: 1gam = 0.1, D3° = 1 and agam = 1. The effect of damage can
be totally neglected by choosing 1/94am = 0.

The continuous thermoelastic steel fibers are oriented in the 1-direction and they are characterized by
the free energy function [Reese and Govindjee 1998a]

N T T T Ks
el — (1)st [(B1) @72 4 (by)@)st/2 4 (By) @2 — 3] 4 Tt [/2—2logs —1],  (53)

(or1)ss
where (u1)s:, (a1)s: and K, are material parameters of the steel fibers which are given in Table 3. The
volume fraction of the fibers is vy = 0.05 which is characteristic for a rubber-like material reinforced by
steel fibers.

n§ (MPa) pS (MPa) p$ (MPa) of of of K¢ (MPa) at(K™ c§ (MPa K™
0.13790 —0.04827 0.01034 1.8 —2 7 50 223.33 x 107 1.7385

Table 1. Material parameters in the function W(I;: Qof (11). The parameters uf, and o)),
p=1,2,3 are the Ogden’s material constants, K¢ is the bulk modulus, & is its thermal
expansion coefficient and cj is its heat capacity. In the small strain domain, the shear
modulus of this material is 0.208 MPa.

p! (MPa) pub (MPa) b (MPa) of of of KY(MPa) np (MPas) o (K™
0.3544  —0.1240 0.0266 1.8 —2 7 50 9.38105  223.33x107°

Table 2. Material parameters in the function 1//(1)\1 EQ of (12). The parameters ), and a,
p =1, 2,3 are the Ogden’s material constants, K" is the bulk modulus and «" is its
thermal expansion coefficient. np and ny are the viscoelastic constants with ny — 00
implying elastic bulk behavior. In the small strain domain, the shear modulus of this
material is 0.536 MPa.
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(D)5t MPa)  (@1)ss Ky (MPa) (@) (K™ (co)ss MPaK™")
80769.231 2 12115385 12x 107 3.768

Table 3. Material parameters in the function ¢! of (53). The parameters (i), and
(av)sr are the Ogden’s material constants of the steel fibers, K, is the bulk modulus,
() its coefficient of thermal expansion and (cp)s, is its heat capacity. In the small
strain domain, the shear modulus of the material is 80769.231 MPa.

4.1. The thermoelastic inversion effect. Consider a uniaxially stretched specimen of rubber in the 1-
direction that is subjected to thermal loading (isomeric behavior). For low values of constant stretch, the
graph of the gradient of the stress against temperature is negative (as in glass and metals), but becomes
positive at certain critical stretching. This change of gradient sign characterizes the thermoelastic inver-
sion effect also referred to as the Gough—Joule effect. Similarly, in ordinary materials with a prescribed
stress and subjected to a thermal loading (isotonic behavior), the gradient of deformation with respect to
temperature is always positive, but in rubbers this gradient becomes negative at loadings beyond a critical
value. As was shown by [Ogden 1992], the derivative of the stress 77, with respect to the temperature
0 at constant stretch A: (0771/00),,, and the derivative of the temperature 6 with respect to the stretch
A1 at constant entropy n: (96/dA1), (isentropic behavior) vanish simultaneously. Thus, it is possible
to detect the critical value of stretch at which the thermoelastic inversion takes place by considering a
strip of rubber subjected to a uniaxial stress loading under isentropic conditions, namely 1 = 0. The
minimum value of the generated temperature against applied stretch graph corresponds to the critical
inversion point.

For a homogeneous material the (undamaged) entropy 7o is given by (14). Under uniaxial stress
loading in the 1-direction, the principal values b, and b3 of the left Cauchy—Green deformation tensor
B can be expressed in terms of the stretch A; = +/b; and temperature §. Hence 19 = no(A1, 0). For
isentropic stretching

ano ano
dno(r,0) = —] dr — do =0, 54
no(A1, 0) (3)»1)9 1+(89)M (54)

o o [Badm (55)
orn ), by 9b°, it

0 (@m0/3r1)g
dh (10/20);,

where

This relation provides

(56)

The integration of this differential equation provides the graph of temperature deviation A6 =6 — 6y
against the stretch A; which shows initially a falling and then rising temperature, thus exhibiting the
thermoelastic inversion effect. The critical value of stretch where thermoelastic inversion effect takes
place correspond to the minimum of this curve.
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For a rubber specimen that is subjected to prescribed stress, the critical value of the stress at which
the slope of (dA1/90)r,, changes sign can be determined as follows. The Maxwell relations

aT, d oA ad
). -G, &),-G) &
20 ), o), 30 )5~ \ori /),
show that (37711/00),, = 0 yields (dno/911)y = 0; namely, (011/360),, = 0. But from

9T, 9T
dTuz(J) d/\1+(i> do (58)
), 20 ),

and (54) we obtain that (9170/911), = 0 implies that (96/9711),, = 0. Hence the critical value of stress
Ty can be determined from the minimum of the curve 6 vs. T generated during an isentropic procedure.

In order to determine the thermoelastic inversion effect in thermoviscoelastic composites, the follow-
ing tensor is defined in terms of its principal values d19/dA, and unit principal directions k,, p =1, 2, 3:

K =2 _ gig [8”0 310 a’"’} ie. K=23:@k Dk,. (59)
aF Or Bry 03 ’ kLY P
It follows that the increment of the local value of the entropy is given by
Ano(Y,0)=K(Y,0): AF(Y,0)+ P(Y,0)A0, (60)

where P = ¢g/6 of the constituent. By substituting (47) in this relation the following expression is
established

Ano(Y,0) = K(Y,0) : [A(Y,0): AF + A"(Y,0)A0 + AAY(Y,6)] + P(Y,0)A0.  (61)

The increment of the global entropy of the composite is given by

Ano—— / / Ano(Y, 0) dSy. 62)
Sy

Consider a thermoviscoelastic composite that sub]ected to a uniaxial stress loading in the transverse
2-direction such that all components of T are zero except T»,. Here, there are eight unknown deformation
gradients AF (except A Fy) and Af. There are, on the other hand eight equations AT = 0 (except AT»y)
and for isentropic procedure there is the additional relation: Ang = 0. Thus, the above relations enable
the computation of the temperature 6 that is generated at applying a transverse stretch F; in a stepwise
manner. Figure 2(a) shows the generated temperature deviation A6 = 6 — 6y under isentropic and uniaxial
stress loading conditions against the applied average transverse deformation gradient F,. This figure
shows the resulting behavior of the homogeneous (unreinforced) and the unidirectional steel/rubber-like
composite where the matrix is considered as thermoviscoelastic (TVE) as well as thermoelastic (TE) in
which the viscous effects have been neglected. The minima of the curves correspond to the critical stretch
F 5, at which the thermoelastic inversions take place. It can be readily observed that the viscous effects on
the critical points are negligible. The critical stretch of the TVE homogeneous matrix occurs at a stretch
of F>, = 1.023, but due to the presence of reinforcement it moves to Fy =1.032. The corresponding
graph which exhibits the resulting temperature deviation A6 against transverse stress T, is shown in
Figure 2(b). This latter figure also shows the locations of the inversion thermoelastic points when the
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Figure 2. Temperature deviations generated by applying, under isentropic conditions, a
uniaxial transverse stress loading on thermoviscoelastic (TVE) and thermoelastic (TE)
composites. Also shown are the corresponding temperature deviations generated in the
homogeneous (H) unreinforced matrix. The minima correspond to the locations of the
thermoelastic inversions. Temperature deviations are plotted against average transverse
deformation gradient (a) and against average transverse stress (b).

composite and its homogeneous unreinforced matrix are subjected to a thermal loading in conjunction
with a prescribed transverse uniaxial stress. These critical stresses occur at about 75, = 0.1 MPa and
T»> = 0.05 MPa for the composite and its homogeneous matrix, respectively.

4.2. The composite and its unreinforced matrix responses. We now study the behaviors of the uni-
directional thermoviscoelastic composite and its matrix under various circumstances. Figures 3 and 4

(@ A6=100K (b) A6=100K A © 6= 100K

1.5 r=0.01/s 08 r=0.01/s L

i il r=0.01/s
5 0.6 -
[-W
2 b = £
= TE & TVE <
a 0.4F E

021
0.5 ! L | | 0 | | | |
12 14 16 18 2 1 12 14 16 18 2
Fi Fy

Figure 3. Response of the homogeneous thermoviscoelastic (TVE) and thermoelastic
(TE) rubber-like material to uniaxial stress loading in the 1-direction, applied at elevated
temperature A0 = 100K at a rate of r = F 11 = 0.01/s: stress-deformation gradient
response (a), damage evolution (b), and stress-deformation gradient response in the ab-
sence of damage (c).
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show the behavior under uniaxial stress loading in the 1-direction (i.e., when all components T' are zero
except T71) of the homogeneous (unreinforced) thermoviscoelastic (TVE) rubber-like matrix at elevated
temperature A6 = 100K as well as the thermoelastic (TE) matrix when the viscous effects have been
neglected. Figure 3(a) compares the response of the TE and TVE matrix, whereas Figure 3(b) shows the
evolution of damage in the matrix as the loading proceeds. Here and in the following, the value of the
damage refers to its maximum amount that evolves in all locations of the rubber-like phase. Figure 3(c)
shows the counterpart behavior of the homogeneous matrix in the absence of any damage effects (note
that the scale of the plot in the latter case is twice that of the damaged case). In all cases the rate of
loading is r = Fj; = 0.01/s. This figure exhibits very well the significant viscous and damage effects
on the rubber-like material behavior.

Figure 4 provides comparisons of the rubber-like material response at the reference temperature (i.e.,
A6 = 0) such that the material behavior is viscoelastic (VE), and at elevated temperature A6 = 100 K

1.5k -
@) VE LSr ® TVE
- AD=0 - AO=100K
= =
a3 [N
E p=
o) oy
| | | | | | | |
I 12 14 16 18 2 I 12 14 16 18 2
Fn Fi
(d) TVE, D=0
AB=100K
= 5
[a W)
= 2
= &

Figure 4. Top row: stress-deformation gradient response of the homogeneous viscoelas-
tic (a) and thermoviscoelastic (b) rubber-like material to uniaxial stress loading in the
1-direction, applied at two rates: r = F11 = 1/s and 0.01/s. In (a) the VE material is
kept at & = 6y, in (b) the TVE material undergoes a temperature change of A9 = 100 K.
Bottom row: corresponding results in the absence of damage effects.
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Figure 5. Response of the steel/rubber-like thermoviscoelastic (TVE) and thermoelastic
(TE) composite to uniaxial stress loading in the transverse 2-direction, applied at elevated
temperature Af = 100K at a rate of r = F», =0.01/s: global stress-deformation gradient

response (a), damage evolution (b), and global stress-deformation gradient response in
the absence of damage (c).

resulting in a thermoviscoelastic behavior (TVE). In this figure, comparisons are also shown when the
uniaxial stress loading is applied at two rates r = 1/s and 0.01/s in the presence and absence of damage
(in the latter case the scale of the graph is twice the former). Significant differences between the various
cases can be clearly observed.

Similar studies can be carried out in order to show the behavior of the unidirectional steel/rubber-like
composite. In this case, the application of a transverse uniaxial stress loading perpendicular to the fiber
direction is the most interesting loading, since for loading in the fiber direction (1-direction) the much
stiffer elastic steel will dominate the response of the composite. In this type of loading all components
of the average stress T are equal to zero except T 1. The transverse loading is performed by applying
the average transverse deformation gradient F, at a rate of r = F 22. Figure 5 exhibits the viscous and
damage effects of the rubber-like phase on the behavior of the composite loaded at a rate of » = 0.01/s
(note that the scale of the plot in the undamaged case is three times the damaged one). Figure 6 shows
the effect of elevated temperature, rate of loading and damage on the macroscopic transverse response
of the composite.

Let the unidirectional steel/rubber-like thermoviscoelastic composite be subjected to a cyclic thermal
loading at a rate § = 1 K/s while keeping the composite traction-free (T = 0). In this thermal loading case,
the temperature deviation increases/decreases linearly such that —100K < A# < 100 K. The resulting
average of the transverse deformation gradient F, caused by this thermal loading is shown in Figure 7
during 7 cycles followed by 1/4 cycle after which the applied temperature deviation reaches A9 = 100 K,
where the damage reaches the value of D = (.5. This figure shows the transverse deformation gradient in
both the presence and absence of evolving damage in the rubber-like matrix. In presence of damage, its
evolution with applied thermal loading is shown in Figure 7(b). It can be readily observed that the effect
of damage on the resulting transverse deformation gradient is negligible, and that the induced strains are
quite small and can be regarded to belong to the infinitesimal domain. In addition, it turns out that the
rate of applied thermal loading has no appreciable effect on these strains.
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Figure 6. Top row: global stress-deformation gradient response of the steel/rubber-like
viscoelastic and thermoviscoelastic composite to uniaxial stress loading in the transverse
2-direction, applied at two rates: r = Fy, = 1/s and 0.01/s. In (a) the VE material is
kept at & = 6y, in (b) the TVE material undergoes a temperature change of A9 = 100 K.
Bottom row: corresponding results in the absence of damage effects.

FZZ

Although the previous thermal loading case that was shown in Figure 7 indicates that the effect of
evolving damage on the free-thermal expansion response of the thermoviscoelastic composite appears
to be minor, it should be interesting to investigate the response of the composite by applying a uniaxial
transverse stress of loading and unloading at a rate of r = Fp=1 /s, which immediately follows the
previously applied 7.25 cycles of thermal loading, —100 K < A# < 100 K, which will be referred to as
case 1. The response of the composite in case 1 is compared to the response which results by subjecting
the steel/rubber-like composite to a uniaxial transverse stress of loading and unloading applied at a rate
ofr=F 20 = 1/s at elevated temperature A6 = 100K, referred to as case 2. The resulting comparison is
shown in Figure 8 together with the evolving damage in both cases. It is readily observed that although
the cyclic thermal loading ends with a damage of D = 0.5 in the rubber-like matrix, its effect on the
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Figure 7. Response of the thermoviscoelastic steel/rubber-like composite that is sub-
jected to cyclic thermal loading —100K < A# < 100K at a rate of § = 1 K/s, while
keeping it traction-free: transverse deformation gradient variation with cycles (a), dam-
age evolution with cycles (b), and transverse deformation gradient variation with cycles
in the absence of damage (c).
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Figure 8. Response of thermoviscoelastic steel/rubber-like composite subjected to (1)
cyclic thermal loading —100K < A@ < 100K at a rate § = 1 K /s, while staying traction-
free, then to a uniaxial transverse stress loading-unloading, applied at a rate of r =
F 20 = 1/s, at elevated temperature A6 = 100 K; and (2) stress loading-unloading alone,
as in (1). Plot (a) shows the average transverse stress deformation gradient, plot (b) the
damage evolution.

subsequent mechanical transverse loading is quite small. Applying the uniaxial transverse stress loading
at the lower rate of r = F 22 = 0.01/s gave the same closeness between the two cases.

The following four figures exhibit the creep behavior of the composite under various circumstances.
Figure 9(a) compares the creep behavior of the thermoviscoelastic steel/rubber-like composite with the
corresponding behavior of the homogeneous (H) matrix. In both cases a uniaxial transverse stress loading
is applied at elevated temperature A@ = 100K such that all components of the stress T are zero except
T, = 1 MPa. Figure 9(b) shows the evolving damage to saturation in the thermoviscoelastic matrix of
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Figure 9. Creep behavior of thermoviscoelastic steel/rubber-like composite subjected
to a uniaxial transverse stress loading T, = 1 MPa at elevated temperature A6 = 100 K.
Also shown is the corresponding creep behavior of the homogeneous (H) unreinforced
thermoviscoelastic matrix. As functions of time, the plots show the global transverse de-
formation gradient (a), damage evolution (b), and global transverse deformation gradient
in the absence of damage effects.

the composite as well is in the unreinforced material. Finally, Figure 9(c) is the counterpart of Figure 9(a)
in the absence of any damage effects.

It is interesting to observe that whereas the existence of the steel fibers decreases, as expected, the
resulting macroscopic deformation gradient of the composite, the damage induced in the reinforced
matrix is higher that the one that evolves in the homogeneous material. Figure 10 compares the creep
behavior of thermoviscoelastic steel/rubber-like composite when it is subjected to uniaxial transverse
stress loadings of T, = 1 MPa and 2 MPa at elevated temperature A@ = 100 K. This figure shows that
by doubling the value of the applied stress, the global transverse displacement gradient F», — 1 of the
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Figure 10. Comparison between the creep behaviors of the thermoviscoelastic
steel/rubber-like composite which is subjected to uniaxial transverse stress loadings
T2 = 1 MPa and 2 MPa at elevated temperature A6 = 100 K. As functions of time,
the plots show the global transverse deformation gradient (a), damage evolution (b), and
global transverse deformation gradient in the absence of damage effects.
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Figure 11. Comparison between the creep behaviors of thermoviscoelastic (TVE) and
thermoelastic (TE) steel/rubber-like composites where in the latter the viscous effects
in the matrix phase have been neglected. Both composites are subjected to uniaxial
transverse stress loading T, = 1 MPa at elevated temperature A9 = 100 K. As functions
of time, the plots show the global transverse deformation gradient (a), damage evolution
(b), and global transverse deformation gradient in the absence of damage effects (c).

composite increases due to the nonlinearity by about 1.25 times only. On the other hand, the amount of
saturation value of damage increase is just about 1.03 times. Next, Figure 11 shows the viscous effects
in the matrix phase of the composite. This figure compares the creep response to uniaxial transverse
stress loading T2 = 1 MPa of the thermoviscoelastic (TVE) steel/rubber-like composite at elevated
temperature A9 = 100 K with the corresponding thermoelastic (TE) one in which the viscoelasticity of
the matrix is neglected and, therefore, there is no creep effect. The graphs show that the viscous effects
are significant. It increases the saturated transverse macroscopic displacement gradient of the composite
and the saturation value of damage by about 1.8 and 1.14 times, respectively. Finally, in Figure 12 the
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Figure 12. Comparison between the creep behaviors of thermoviscoelastic (TVE) at
elevated temperature A9 = 100 K, and viscoelastic (VE) at the reference temperature
(A6 = 0) of steel/rubber-like composites. Both are subjected to uniaxial transverse stress
loading T2 = 1 MPa. Global transverse deformation gradient (a), damage evolution (b),
and global transverse deformation gradient in the absence of damage effects (c).
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Figure 13. Relaxation behavior of the thermoviscoelastic steel/rubber-like composite
which is subjected to a uniaxial transverse stress loading such that Fy, = 2 at elevated
temperature A6 = 100 K. Also shown is the corresponding relaxation behavior of the
homogeneous (H) unreinforced thermoviscoelastic matrix. Global transverse stress (a),
damage evolution (b), and global transverse stress in the absence of damage effects (c).

effect of elevated temperature on the creep of the thermoviscoelastic (TVE) steel/rubber-like composite
loaded by a transverse stress T», = 1 MPa at AO = 100K is compared with that of a viscoelastic (VE)
composite that is subjected to the same loading but by keeping the composite at the reference temperature
6 = 6y. This figure shows that the effect of elevated temperature on the creep of the composite and the
evolving damage in its matrix are not appreciable.

Corresponding to these four figures that describe the creep behavior of the composite and its matrix
in various circumstances, the following four figures show the relaxation behavior of the composite and
its matrix. Figure 13(a) and (c) display the relaxation at elevated temperature A8 = 100 K of the ther-
moviscoelastic steel/rubber-like composite and its homogeneous (H) unreinforced matrix when they are
subjected to a transverse deformation gradient of F1 = 2 under uniaxial stress loading conditions (all
components of T are equal to zero except T»,) in the presence and absence of damage effects in the matrix.
(Note that the scale of the graph when D = 0 is three times the scale of the damaged case.) Figure 13(b)
shows is the damage evolution with time. The effect of the steel fibers is well exhibited in this figure.

The effect of doubling the applied transverse displacement gradient F», — 1 on the relaxation behavior
of the composite is displayed in Figure 14 in the presence and absence of damage (it should be noted
that the scale of the plot in the latter case is four time the scale of the former one). Doubling the
applied deformation gradient generates a stress at saturation of about 5.3 and 7 times in the damaged
and undamaged case, respectively. The damage increases by about 1.1 times, however.

The viscous effects in the rubber-like matrix on the relaxation behavior of the composite are shown in
Figure 15 at elevated temperature A6 = 100K in the presence and absence of damage. The relaxation
stresses of the thermoviscoelastic (TVE) composite are observed to be much lower than the thermoelastic
(TE) case in which no relaxation effects exist. In both cases, however, the viscoelasticity has a very small
effect on the damage evolution in the matrix.

The final illustration is given in Figure 16, where a comparison between the relaxation behaviors of
the thermoviscoelastic (TVE) composite at elevated temperature A@ = 100 K and a viscoelastic (VE)
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Figure 14. Comparison between the relaxation behaviors of the thermoviscoelastic
steel/rubber-like composite which is subjected to uniaxial transverse stress loadings such
that F», = 2 and 3 at elevated temperature A9 = 100 K. Global transverse stress (a),
damage evolution (b), and global transverse stress in the absence of damage effects (c).
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Figure 15. Comparison between the relaxation behaviors of thermoviscoelastic (TVE)
and thermoelastic (TE) steel/rubber-like composites where in the latter the viscous ef-
fects of in the matrix phase have been neglected. Both composites are subjected to
uniaxial transverse stress loading such that Fy =2 at elevated temperature A6 = 100 K.
Global transverse stress (a), damage evolution (b), and global transverse stress in the
absence of damage effects (c).

composite which is kept at the reference temperature 6 = 6y. As in the creep case, the effect of elevated
temperature appears to be moderate.

Conclusions

The finite strain HFGMC micromechanical model which is capable of predicting the global behavior of
thermoviscoelastic rubber-like matrix composites that are subjected to arbitrarily large thermomechanical
loading has been presented. The rubber-like matrix is modeled by finite thermoviscoelasticity, which in
contrast to finite linear thermoviscoelasticity where the deformations are large but the deviations from
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Figure 16. Comparison between the relaxation behaviors of thermoviscoelastic (TVE)
at elevated temperature A6 = 100 K, and viscoelastic (VE) at the reference temperature
(A6 = 0) of steel/rubber-like composites. Both composites are subjected to uniaxial
transverse stress loading such that F1 = 2. Global transverse stress (a), damage evolu-
tion (b), and global transverse stress in the absence of damage effects (c).

equilibrium are small (i.e., B® &~ I, implying that the dependence on the strain is nonlinear but the
dependence on the strain rate is linear), permits large deviation from equilibrium. In addition, the effect
of evolving damage in the finite thermoviscoelastic matrix is incorporated. The finite strain HFGMC
analysis establishes the rate form of the macroscopic constitutive equations that govern the composite’s
global response. The results exhibit the response of the composite and its unreinforced thermoviscoelastic
matrix under various circumstances including their creep and relaxation behaviors.

The present derivation is confined to one-way thermomechanical coupling according to which the me-
chanical effects do not affect the temperature. It is possible, however, to generalize the micromechanical
analysis by including a full (two-way) thermomechanical coupling.

The established global finite strain constitutive equations of the unidirectional composite can be em-
ployed to investigate the behavior of thermoviscoelastic laminates. They can be also employed to inves-
tigate the response of thermoviscoelastic structures such as laminated plates and shells undergoing large
deformations. This can be performed by coupling the present micromechanical model to a finite element
software such that the nonlinear composite structure response at each integration point is governed by
the established macroscopic constitutive equations at each increment. This multiscale approach has been
recently implemented by [Kim 2009] who coupled the hyperelastic HFGMC model to the finite element
ABAQUS software in order to investigate the behavior of various types of tissue materials including the
human arterial wall layers and porcine aortic valves leaflets.
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GENERALIZED THERMOELASTIC WAVES IN CYLINDERS
DUE TO LOCALIZED HEATING

HAO BAI, RAVI CHITIKIREDDY, ARVIND H. SHAH AND SUBHENDU K. DATTA

This paper presents a theoretical study of propagation of thermoelastic waves generated by concentrated
heating of the outer surface of circular cylindrical shells. The generalized thermoelastic theory proposed
by Lord and Shulman is used to model the response of a circular cylindrical shell to a pulsed laser focused
on the surface of the cylinder. Guided wave modes in the cylinder are obtained by a semianalytical finite
element method. Dynamic response is constructed numerically by superposition of guided wave modes.
In this method, the cylinder is discretized in the radial direction into several coaxial circular cylinders
(subcylinders) and the radial dependence of the displacement and temperature in each subcylinder is
approximated by quadratic interpolation polynomials. Numerical results for the variation through the
thickness of various physical quantities of interest at a location away from the source are presented
for a silicon nitride (Si3Ny) tube for illustration purposes. The frequency dependence of the response
quantities is discussed and attention is focused on convergence and accuracy of the computed results.

1. Introduction

Laser-based ultrasonic techniques have been used in several recent studies to generate elastic waves in
solids. These techniques provide a number of advantages over conventional ultrasonic methods, such
as higher spatial resolution, noncontact generation and detection of waves, and the ability to operate on
curved and rough surfaces [Scruby and Drain 1990]. The use of generalized thermoelasticity theories to
analyze thermoelastic waves generated by a pulsed laser beam has received some attention in recent years.
The classical theory of heat conduction in solids treats the flux of heat as proportional to the gradient of
temperature in the media. Thus, the heat conduction equation is a parabolic partial differential equation,
which predicts an infinite thermal wave speed. This assumption of infinite speed of heat propagation is
contrary to physical reality. To rectify this paradox, several generalizations to the classical heat conduc-
tion equation and the thermoelastic wave equations have been proposed. These generalizations take into
account the finite wave speed of the thermal pulse travelling through the body.

Lord and Shulman [1967] presented a generalized theory of thermoelasticity for an isotropic body that
was a modification of the Fourier law of heat conduction by the inclusion of a relaxation time. This then
predicts a finite thermal wave speed. Other generalizations were proposed by Green and Lindsay [1972],
who developed a temperature-rate dependent theory that included two relaxation times, and by Green
and Naghdi [1993], who introduced a thermoelasticity theory without energy dissipation. See [Ignaczak
and Ostoja-Starzewski 2010] for a theoretical development of thermoelasticity with finite wave speeds.
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Guided surface (Rayleigh) waves and Rayleigh—-Lamb waves in plates have been studied by sev-
eral investigators using generalized thermoelasticity theories. Rayleigh—-Lamb waves in plates using
Lord—Shulman theory have been discussed in [Datta and Shah 2009]. References to many other works
can be found in [Sharma et al. 2000; Verma and Hasebe 2001; Verma 2002; Al-Qahtani and Datta 2004;
Al-Qabhtani et al. 2005]. Compared to many studies that have dealt with plates, there is a very limited
amount of reported work on waves in cylinders using generalized thermoelastic theories.

Dispersion of longitudinal thermoelastic wave propagation in a circular isotropic cylinder was studied
by Erbay and Suhubi [1986], who considered the cylinder surface to be stress-free and at a constant
temperature. Elnagar and Abd-Alla [1987] studied the influence of the initial stress on Rayleigh wave
propagation in a generalized thermoelastic cylinder. Three-dimensional vibration of a homogeneous
transversely isotropic thermoelastic cylindrical panel was investigated in [Sharma 2001; Sharma and
Sharma 2002]. Recently, wave propagation in a thermoelastic cylinder of an arbitrary cross section was
reported by Ponnusamy [2007], who used a collocation method to study the dispersive waves.

Circumferential isothermal elastic waves in an isotropic cylinder generated by a laser pulse and their
scattering by a surface defect was studied experimentally in [Clorennec and Royer 2003]. Pan et al. [2004;
2006] investigated theoretically and experimentally the isothermal acoustic waves generated by a laser
point pulse in an isotropic and a transversely isotropic cylinder. Three-dimensional Fourier transforms
were used to find the dynamic displacements at the cylinder surface.

In this work, we present an analysis of generalized thermoelastic waves in cylinders due to a pulsed
laser beam focused on the surface of the cylinders. The generalized heat conduction theory of [Lord and
Shulman 1967] has been adopted here. A semianalytical finite element (SAFE) method was employed
earlier in [Chitikireddy et al. 2010] to obtain the dispersion relations for guided thermoelastic waves in
free cylinders. These modes are used here to represent the time-harmonic solutions for the field quantities
due to the laser excitation. Based on this solution, the steady-state Green’s function for the thermoelastic
cylinder can also be constructed. Zhuang et al. [1999] used the SAFE method to study the steady-state
Green’s function for isothermal composite cylinders. The response in the time domain can be obtained
by applying an inverse Fourier transform. Here, the distributions of the stresses, displacements, and
heat flux through the thickness of the cylinder are presented at certain chosen frequencies to show the
convergence of the results.

2. Formulation

2.1. Governing equations. Consider an infinite thermoelastic cylinder of inner radius r; and outer radius
7, in the cylindrical coordinate system (r, 6, z) with the origin at the centre of the cross section of the
cylinder as shown in Figure 1. The generalized Lord—Shulman governing equations of thermoelasticity,
in the presence of a body force and heat source, are given by [Al-Qahtani et al. 2005]

oij,j + fi=pii, Topn+Q=—qii, 0ij=Cijucu—BiT,
i : CE : (D

pi = Bijéij + pT—OET, gi + o4i = —ki; T ;.
The physical quantities and material constants appearing in these equations are: o;;, the components
of the stress tensor; u;, the components of the displacement; ¢;;, the components of the strain tensor;
Ciju, the elastic constants; g;, the components of the heat flux vector; p, the mass density; Ty, the
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reference temperature; n, the entropy density; T, the temperature change; cg, the specific heat at constant
deformation; Ty, the thermal relaxation time; f;;, the thermal coefficients; k;;, the coefficients of thermal
conductivity; f;, the body force per unit volume; and Q, the heat source. In the above equations, a
superposed dot indicates the derivative with respect to time.

We define nondimensional quantities

x« _ 1 x _ Uj « T *_1_) « _ Oij x _ 4 « _ €ij
"= Y“Tsg TTE USELY T 4T fiT g

x _ P x _ CE x ,811 K — kij  _ Cijki x v T — TO (2)
ey kT PisTg K= Gw=Tg w=gre =7

where
_ e kT _ kT 5 6¢c k
- =, 8: -, = -, = —, = —C . 3
v 0 He 1T H p T E pvH ©)

In the sequel, two more nondimensional quantities are defined: the wave number k* = k H and frequency
w* = wH /v. Here p, k, ¢, H, and T are the basic normalization quantities, and the rest can be derived
from them as shown above. Note that p, k, ¢, and T can be taken suitably depending upon the material
properties of the cylinder. This nondimensionalization scheme yields all dimensionless equations in
the same form as their dimensional counterparts. Therefore, this normalization could be used to solve
multilayer structures.

Using (1), the governing coupled thermoelastic equations can be written as

. 0 . .
Cijritktj — Bij T j+ fi = plii, <1 + TOE)[TO,BU&J' +pceT + Ql=ki;T;j. 4)

Writing these equations in terms of the nondimensional quantities defined in (2) and introducing

. H . H? . 0
== Q==<1+70§>Q,

8¢ kT

Figure 1. Geometry of the cylinder.
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we obtain
ey — BT+ fi = pliiy,
a\. d \.

These two equations have to be solved by numerical techniques for a generally anisotropic medium. If
the material of the cylinder is transversely isotropic with the symmetry axis coinciding with the z-axis,
the equations can be solved analytically in terms of Bessel functions. This will be discussed in a future
publication. In the following, we will use the SAFE method to solve the problem. For convenience, the
superscript * will be dropped.

&)

2.2. Semianalytical finite element formulation. In this method, the radial dependence of the displace-
ment u and the temperature 7 are approximated by one-dimensional isoparametric finite elements. The
total thickness of the cylinder H is composed of cylindrical layers and each layer can have distinct
thermoelastic properties and thickness. By using the SAFE method, the thickness of the cylinder is dis-
cretized into N laminas. Quadratic interpolation polynomials are used to approximate the displacement
and temperature field over each lamina in the radial direction.

The displacement and temperature of the k-th lamina are expressed as

u(r,0,z,t) =N (&)u‘@®, z,1), 6
T 0,z,t)=N>(E)TCO, z, 1), ©)
with
r=Ny(&)R". (7
Here

ni 0 O ny 0 0 nj 0 0
NiE=|0mn 0 0mn 0 0n3 0, Nu&)=][n ny n3l, ()
0 0ng 0 0 np O O ny

u® = (Up1, Ugt, Uz1, Urd, Ugd, Uzd, Ups, Ugs, Uz3) . TC=(T1,To, T3)', R°=(Rp, R, Rp)". (9)
In (8), the shape functions are
ni=3EE—1), m=1-£, ny=3E+1), —1<&<l (10)

In (9) the nodal displacements u,;, ug;, and u; and temperature T;, where j =1, 2, 3, are taken at
the inner surface (r = R;), middle layer (r = R,, = (R, + R)/2), and outer surface (r = Ry) of the k-th
lamina.

The strain tensor and temperature gradient are expressed as

e:Dlue—I—Dzuf@—i—Dgufz, T/:BlTe+Bzrz+B3z§. (11)
The matrices By, By, B3, Dy, D,, and Dj are defined in the Appendix. The stress vector is given by

o = C(Du’ + Dyu’y + Dsu,) — BN T*. (12)
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The variational principle of thermoelasticity [Al-Qahtani et al. 2005] is

151 n
/ / (5’0 —8T'"KT' —8T'" (q +70§))dV dt = / / (f —8u” pii)dV dt. (13)
o JV th JV
The first term on the left-hand side is

1 n
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The second term in (13) is

I3l n
ST'TKT' dV dt = ST "B +8T¢"BI + sT*" BT YK (B, T¢+B,T%+BsT¢)dV dt
v v 1 60 22 ,Z 3 .0 ,Z
0] Iy

n
=/ //aTeT(gnTe—gzzT;g—gagT;Z)dedzdr. (15)
to Jz JO

The third term in (13) is
N 1
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The right-hand side of (13) has the form

/1f 5uT(f—pii)dth:/I//(SueT(fe—Miéf)dedzdz. (17)
tn JV tyg Jz JO

The element matrices appearing in equations (14)—(17) are defined in the Appendix. Equating the coef-
ficients of §u® in (13) to zero gives the equation

Mii¢ + Kyju® — Ko T¢ + (K12 — Ka)uy + Ko T
+ (K13 — K31)u, + K3 T — Knou'yy — (Kaz + K3p)uy, — K33u’, = f¢. (18)

Similarly, equating the coefficients of 67°¢ in (13) yields

Tofliie‘l‘TOmOTe-l-Tofzii%+T0f3iifz+m0Te+f1ﬂe+f2ﬂfg+f3llfz+g11Te—gzzTEQ —gnT, =0°.
(19)
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Combining (18) and (19) and assembling the element matrices into global matrices leads to the governing
equations of motion

H\V+H,Vo+H3V . +H,V+HsVog+HgV .+H;V+HV g+ HoV .+ H\oVgg+Hy Vo +HpV ..
=F, (20)

where H; (i =1,2,...,12) are the global matrices, given in the Appendix, V is the global nodal dis-
placement and temperature vector, and F is a load vector defined by

_|fe
F_|:Qe]. 1)

The traction-free boundary conditions on surfaces of the cylinder require that the stresses at the inner
and outer surfaces of the cylinder are zero:

orp =09 =0,,=0 at r=r and r =r,. (22)
The thermal boundary conditions are considered as
T,=0 at r=r and r =r,. (23)

These thermal boundary conditions imply that heat does not flow into or out of the system via the
boundaries. Note that for a free cylinder without body forces and heat sources the right-hand side
of (20) will be zero. Then, the homogeneous equation (20) leads to the eigenvalue problem for the
determination of the dispersion relation between the frequency w and the z-direction wave number k for
a fixed circumferential integral wave number n. This was studied in [Chitikireddy et al. 2010].

3. Solution procedure for steady-state loading

In (20), the force vector F and the response V are assumed to be time harmonic with frequency w. The
6-dependence of the load and response can be expressed in Fourier series as:

n=+00
F@.2,0=¢""F@,2)=e" Y Fy(e",

e (24)

n=+oo
VO.2.0=eV{©®.2)=e" Y Va(x)e".

n=—oo

Substitution of (24) into (20) yields a system of ordinary differential equations with Fourier coefficients
V, in terms of z. For each circumferential wave number (), we obtain

H;3V, ..+ (—o*Hs —ioHs + Ho + inHy )V, ;
—[0*(H) + inH>) +iw(Hy + inHs) — (Hy + inHg — n*Hy0)1V,, = F,. (25)

The following Fourier integral transform pairs are used to treat the z-dependence in (25):

_ +o0 . 1 +oo .
V(ky) = f Va(2)e e dz, Vi(2) =5 / V,(kp)e™ ™ dk,. (26)

oo —00
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Application of Fourier transformation to (25) yields an algebraic equation in terms of the transform
parameter (k;):

_k,%H12‘_/n +anB‘_/n+HA‘_/n:an (27)

where
Hp = —iw’Hy+wHg+iHy —nH,,

Hy = —o*(Hy +inHy) — io(Hy +inHs) + (Hy + inHg — n* Hy).

Equation (27) is the governing equation for the n-th circumferential harmonic in the transformed domain.
The solution of (27) will be obtained in the form of an expansion in guided wave modes in the
z-direction. For this purpose, we consider the homogeneous equation, which is a three-parameter alge-
braic eigensystem in w, n, and k,,. If k,, serves as an eigenvalue for given values of w and n, (27) gives a
quadratic eigenvalue problem. Equation (27) can be converted into two first-order equations in the form

0 I V, 10 Vol [0
[HA HB] {ann} hn [0 le} {ann} B [ﬁn]’ (28)

which we rewrite more compactly as
[A—Fk,B]U, = P,. (29)

If the displacement and temperature vector V,, has dimension M, the dimension of U, in (29) is 2M.
A nontrivial solution to the homogeneous form of (29) in terms of &, yields 2M roots, denoted by k.
They represent axial wave numbers which can be real, purely imaginary, or complex. A real wave number
represents a propagating wave and purely imaginary or complex wave numbers represent nonpropagating
(evanescent) waves.

Once the wavenumbers and wave functions are found from (29), the response due to the n-th circumfer-
ential mode in the Fourier series representation of the applied loads can be obtained by modal summation.
Associated with each eigenvalue there are right and left eigenvectors, ®X and ®% | respectively, and
they satisfy the equations

[A—k,Bl®% =0, [AT —k,BT]®L =0. (30)

nm
The right and left eigenvectors also satisfy the biorthogonality relations
T . T .
@, BO; =diag(Bun). @, A®) = diag(kunBun). (31)

where diag( ) denotes a diagonal matrix. The eigenvectors can also be partitioned into the following
upper and lower halves (represented by subscript u and 1, respectively):

R L
®,, = [2%"1“} Oy, = [:II’,L’”] : (32)

nml

The solution of (29) is expressed by summation of right eigenvectors as

2M
m=1
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The coefficients U,,, are calculated by substituting (33) into (28) and using the biorthogonality relations
(31). Then, the solution vector U, is written as

2M

L' P
Un — #QR . 34
2 (knm _kn)Bnm o ( )

The solution vector V, in (28), occupying the upper half of U,,, takes the form

2M LT &

- o F,

Vp=Y —m @k . 35
m=1 (knm_kn)Bnm o ( )

Inverse Fourier transform of (35) gives the response, V,(z), of the n-th circumferential harmonic in the
spatial domain:

(1)5121 F R ikyz
TS Z/ N T (6

In many problems, F,, oL ~®R and B,, are independent of wave number k,, so that application of the
Cauchy residue theorem yields the modal response V,,(z) in a straightforward way. The eigendata can be
divided into two groups for travelling or decaying modes from the origin in %z directions, respectively.

Therefore, V,(z) can be expressed as summation of motions in the positive and negative directions as

T R 2M LT 1
®L &L F, .
Vi(z, @) = —i 2: LTTLUPY >, e e 37)
m=M+1 nm

The response in the time domain is now obtained by applying an inverse Fourier transformation to
(37) and is calculated numerically as

V( _ 1 oo —iwt
w(z, 1) = o= V.(z, w)e dow. (38)

—0
4. Heat source representation

The heat input due to the laser pulse is assumed to be of the form

Q=11 (1)8(0)gr(r)g-(2), (39)
where Ij is the energy of the laser pulse. The temporal profile f(¢) is assumed as

ft)= %e
0

LS
f (40)

where 1y is the pulse rise time. The spatial profile g,(z) is assumed to have a Gaussian profile in the
z-direction,

1 2
g = e 2l (41)
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where a is the radius of the laser beam. The depth dependence, g, (r), of the pulse is taken as
gr(r) = Lerom, (42)

where y is the extinction coefficient. A schematic representation of the pulse and the frequency spectrum
of f(¢) are shown in Figures 2 and 3, respectively. Here, the nondimensional frequency, w* = wH /v,
where b = 2.5 x 10> m/s. Note that the rise time of the pulse, f, has been taken to be 1 us.

t r

Figure 2. Temporal and spatial profiles of the pulse.

T T T T T T T
1.0 —+— Real —
\ — o — Imaginary

f(o")

Figure 3. Frequency spectrum of f(z).
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Once the fundamental response functions I'(z) are constructed due to Q = I f(1)§(0) g, (r)5(2), the
response due to the heat source Q, represented by (39), can be calculated as

400
v(z0)=/ I'(2)g.(z —z0) dz. (43)

(o.¢]

In the present work, only the thermal load is considered for constructing the response function. The
spatial representation of the heat source along the radial profile in the frequency domain is

0 = Iy f(®)8(8)8(2) Qo, (44)

where Qo = (Q1, 02, ..., Ok, ..., Qan+1)T and Qy is the value of g,(r) at the k-th node using a
consistent load formulation. The solution procedure involves expansion of §(8) in a Fourier series. It is
well known that the Fourier series representation of a §-function does not converge. Hence, it is necessary
to replace the point source by a uniform spatial pulse of intensity gg over a circumferential distance 2r,6p.
For equivalence of a unit concentrated source, g is given by

+90 1
do =1 = . 45

/_ " qoro or 40=75.5 (45)
Therefore, the 0-dependence of Q in (44) is represented by a Fourier series expansion in the circumfer-

ential direction as
n=-+0o0

0= > " Q. (46)
where -
1 sinnby -
0o = 5= 5 =10 (@)5(2) o. (47)

The Fourier transform of @, in the z-direction is

1 sinnby
2rr,  nby

Qo = I f (@) Qo. (48)

Since mechanical load is not considered here, the load vector in (27) becomes

_[ 0 i|_ I f (w) sinnéy

Pl
" 0.0 2rr,  nbp

Fy, (49)

where Fp = [O QO]T. Substitution of (49) into (37) and considering propagation only in the 4z directions
yields the n-th circumferential mode displacement and temperature response functions as

—ily f(w) sinnby <~ ®L F,

V , — mnl <I)R ikan‘ 50
(2, w) 2mrg 6o Z B, nmu€ (50)

m=1
Using (50) in (46), we obtain

=400

.y 7 . M LT

—ilof(w)" sinnby ; o F .

V.2 0) = 27r Z nby e Z gnl @0 (5D
o p— nm

n=—oo
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Equation (51) is used in the next section to calculate the vector V at a given location (@, z) for different
frequencies w. Attention is focused on the convergence of the numerical results by varying the number
of nodes through the thickness of the cylinder, the number of terms |n| in the Fourier series, and the
number of modes M.

5. Numerical results and discussion

In this section, we consider propagation of thermoelastic waves in a cylindrical shell generated by the heat
source represented by (39). The material of the cylinder is taken to be silicon nitride (SizN4). Amorphous
and textured SizN4 has been widely studied in the past for its excellent mechanical properties, such as high
resistance to thermal shock, resistance to chemical attack, high fracture toughness, and good tribological
and wear properties. A good review of the processing and anisotropic properties of silicon nitride for
various automotive and aerospace applications can be found in [Zhu and Sakka 2008] (see also [Kitayama
et al. 1999; Vogelgesang et al. 2000; Yokota and Ibukiyama 2003]). Dispersion of thermoelastic guided
waves in Si3Ny plates and cylindrical shells was reported in [Al-Qahtani and Datta 2004; Chitikireddy
et al. 2010]. Here, we present results for the frequency dependent displacements, stresses, temperature,
and thermal flux at an observation point due to the laser generated heating represented by (39).

We consider an infinite cylindrical tube with thickness 0.1 mm and inner radius 0.95 mm. Thus, the
nondimensional inner and outer radii are r; = 9.5 and r, = 10.5. The shell is discretized into N equally

Quantity  Units Silicon nitride
p=p kg/m? 3.20 x 103
i N/m? 433 x 10'!
c12 N/m? 1.95 x 10!
13 N/m? 1.27 x 10'!
€33 N/m? 5.74 x 10
Cas N/m? 1.08 x 10!
Br N/m? °K 2.71 x 108
B.. N/m? °K 3.22 x 108
K, W/m °K 43.5

K..=k  W/m°K 55.4

CE J/kg °K 0.67 x 103
To=T °K 296

T0 s 432 %1071
a um 100

fo us 1.0

H mm 0.1

y m~! 1 x10
I() Nm 1.0

¢ N/m? 2 x108

Table 1. Thermomechanical properties of SizNj.
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thick coaxial circular cylinders, where N is allowed to take different values (25 and 50) in order to check
for the convergence of the results. As discussed later, numerical results indicate that the heat flux in the
radial direction, |g,|, has sharp gradients near the inner and outer surfaces of the cylinder. So, numerical
results are obtained also when the thickness is subdivided into 10 layers (5 at the outer end and 5 at the
inner), each of thickness 0.00175 mm, and 25 layers of thickness 0.0033 mm each in the middle.

As mentioned above, the material of the cylinder is SizN4, whose properties, from [Al-Qahtani and
Datta 2004], are listed in Table 1. The symmetry axis of the material is aligned with the axis of the
cylinder. The localized heat source is represented by (39) with g.(z) taken as §(z). As noted before,
once the response due to this source is known, that due to any other function g.(z) can be found by
convolution; see (43). In the frequency domain, the frequency spectrum of f(¢) is shown in Figure 3. It
is seen that the dominant contribution comes from the interval 0 < w* <5, that is, the dominant frequency
is between 0 and 1.99 MHz.

All the numerical results obtained here are in nondimensional forms. The nondimensional material
properties of the tube are given by

p*=1.0, ¢ = 1.0, ¢ =1.081x10"% g5 =70.03, B, =70.03, )
Br, =83.21, k:. =0.785, ky, =0.785, k7, =1.00, ¢y =967.50.
The nondimensional elastic stiffness tensor is given by
(2165 975 635 0 0 O |
975 2165 635 0 O O
S S

0 0 0 0 540 O
0 0 0 0 0 765

Dispersion curves for circumferential modes n = 0 are shown in Figure 4, and for n = 1 in Figure 5,
where yg and y; are the real and imaginary parts of the wavenumber k. It is found that the elastic modes
are not affected significantly by the thermal effects within the frequency range considered here. This is
consistent with the findings reported in [Chitikireddy et al. 2010].

The computation of V (6, z, w) using (51) involves two summations: one over the number of axial
modes M for a fixed circumferential mode n and the other over circumferential modes n. The first is
determined by the number of finite elements N, used to discretize the thickness of the cylinder. The
value of 6y, appearing in (45), has been chosen as 0.01 radians. The observation location is at 6 = /4
and z = rmean/4. Furthermore, g.(z) is taken to be 8(z) and y appearing in (42) is chosen as 105m™!
(see Table 1).

To test the convergence of the series with the number of elements N, for an appropriate choice of |n|,
results were obtained for N, as 15, 20, 35, and 50 keeping |n| fixed at 50. The value of w* was taken
as 5. Figure 6 shows the variation of displacement, temperature, stress, and radial heat flux through
the thickness with the number N.. It is seen that 35 elements are sufficient to assure convergence.
It is interesting to note the variation of |T'| and |g,| through the thickness. The former decreases in
a nearly linear manner from the boundaries towards the middle of the shell. Note the sharp change
near the boundaries so that the slopes vanish at the boundaries to satisfy the zero heat flux conditions.
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Figure 4. Frequency spectra of silicon nitride cylinder for n = 0. The two-dimensional
diagram, corresponding to the plane y; = 0, shows the propagating (purely real) modes.
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Figure 5. Frequency spectra of silicon nitride cylinder for n = 1. The two-dimensional
diagram, corresponding to the plane y; = 0, shows the propagating (purely real) modes.

Consequently, the radial heat flux is nearly flat through most of the thickness and then drops steeply to
zero at the boundaries. It is seen that convergence is achieved with both 35 and 50 elements.

Figures 7-9 show the changes in the distribution of the field quantities through the thickness at fre-
quencies w* =1, 3, and 5. They also show variations with increasing ||, which was assumed to take the
values 20, 40, 50, and 60. The number of elements was kept at 35. It is seen that results converged when
|n| was 50. It is interesting to note that the rate of convergence increases with w*. This may be explained
by noting the fact that the amplitudes decrease (because of diffusion) as the frequency increases. This is
seen clearly in these figures.

Other features of these figures are as follows.
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Figure 6. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at w* = 5.0 with 25, 35, and 50 elements. The top two rows show

the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 7. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at w* = 1.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the

stress components and the heat flux.
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Figure 8. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at w* = 3.0 with |n| = 20, 40, and 50. The top two rows show

the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 9. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at w* = 5.0 with |n| = 20, 40, and 50. The top two rows show

the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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(1) Atlow frequencies, |ug| decreases in a linear fashion from the inner to the outer surface. As the
frequency increases, it decreases first from the inner surface, reaches a minimum, and then increases
with increasing radius. Both |u;| and |T'| also decrease first starting from the inner surface and then
increase as the radius increases. The former attains the highest value at the outer surface, whereas
the latter has the highest value at the outer surface at low frequencies; this feature is reversed at high
frequencies.

(2) The radial displacement component and all the traction components increase from the inner surface
(the latter being zero at both boundaries), reach maxima, and then decrease as the radius increases.

(3) Radial heat flux has the distinctive feature that it increases steeply from zero at the inner surface,
reaches a plateau (slightly sloping towards the outer surface), and then decreases steeply to zero.

6. Conclusion

Propagation of thermoelastic waves in a circular cylindrical shell excited by a concentrated heat input has
been studied in this paper. The generalized thermoelasticity theory developed by Lord and Shulman has
been adopted. This theory includes a single thermal relaxation time. The material of the cylinder has been
taken to be transversely isotropic SizNy as an illustrative example. However, the semianalytical finite
element (SAFE) method that has been used here can also be used for generally anisotropic materials.

The heat input resembles that due to heating by a pulsed laser. It is focused at r =r,, 0 =0, z =0,
with a radial dependence that decays with decreasing r and acts on a small circular arc 2r,6y, where
6o = .01 radians. The solution can then be used for more general dependence on z and 6.

Although the solution presented here is for a concentrated heat source only, a concentrated mechanical
load can easily be incorporated in the SAFE computations. This will be communicated in a future paper.

The results presented here are for discrete frequencies and the emphasis is on a study of convergence
and distribution of the field quantities over the thickness of the cylinder. However, transient wave forms
can be obtained by converting the continuous frequency spectrum using an inverse Fourier transform.

Appendix
nyr N2y N3r I’? I’? I’? 0 0 O_
31=000,32=717273,B3:ooo,
0 0 0 0 0 0 ny ny ns |
_I’ll,r 0 0 nar 0 0 n3r 0 0 ]
m 0 o ™2 0 0o ™ 0 0
r r r
D —| 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0|’
0 0 n, O 0 ny O 0 ns,
0 ni,— 2 0 0 n,—2 0 0 n3,—2B 0
L r r r -




GENERALIZED THERMOELASTIC WAVES IN CYLINDERS DUE TO LOCALIZED HEATING 49

"0 0 00O O O 0 07
0™ o0 0™ o 0™ o (00000000 O]
r r r 0000O0O0OO OO
D:ooooooooo b0 0m 0 0m o 0m
2710 0™ o 0™ o 0 ™" BTl0n 000 0n 0]
r r r n 0 0na O 0ny 00
0000 0 OO OGO O 000000000
g 00 0290 0 - -
I r r -

Kjk:/DjTCDkrdr (j, k=1,2,3), KOk:/DjTﬂNgrdr k=1,2,3),
r r
M=pr1TN1rdr, gjj:/BjTKBjrdr (]:1,2,3),

fj=/T0N2T,BTDjrdr (j=1,2,3), m0=/,ocEN2TN2rdr, feszszrdr,
r r r

M 0 0 0 0 O 0 0 00
H, = , Hy= . H3= . Hi= , Hs= ’
: [Tofl Tomo] 2 [Tofz 0i| : |:T0f3 0] ! [fl m0i| : [fz 0i|

H6:[O 0]’ H7=[K” —Ko1] H8:|:K12—K21 Koz] H9:|:K13_K31 K03]’

f3 0 0 gu 0 0 0 0
—K»n 0 i| [—(K23+K32) 0} [—K33 0 }
Hiy= , H; = , Hp= .
10 [ 0 —g» 1 0 0 12 0 —gs,
References

[Al-Qahtani and Datta 2004] H. M. Al-Qahtani and S. K. Datta, “Thermoelastic waves in an anisotropic infinite plate”, J. Appl.
Phys. 96:7 (2004), 3645-3658.

[Al-Qahtani et al. 2005] H. M. Al-Qahtani, S. K. Datta, and O. M. Mukdadi, “Laser-generated thermoelastic waves in an
anisotropic infinite plate: FEM Analysis”, J. Thermal Str. 28:11 (2005), 1099-1122.

[Chitikireddy et al. 2010] R. Chitikireddy, H. Bai, A. H. Shah, and S. K. Datta, “Thermoelastic waves in an anisotropic cylin-
der”, J. Thermal Str. 33:2 (2010), 97-120.

[Clorennec and Royer 2003] D. Clorennec and D. Royer, “Analysis of surface acoustic wave propagation on a cylinder using
laser ultrasonics”, Appl. Phys. Letters 82:25 (2003), 4608-4610.

[Datta and Shah 2009] S. K. Datta and A. H. Shah, Elastic waves in composite media and structures: with applications to
ultrasonic nondestructive evaluation, CRC Press, 2009.

[Elnagar and Abd-Alla 1987] A. M. Elnagar and A. M. Abd-Alla, “On a generalized thermo-elastic problem in an infinite
cylinder under initial stress”, Earth, Moon and Planets 37:3 (1987), 213-223.

[Erbay and Suhubi 1986] S. Erbay and E. S. Suhubi, “Longitudinal wave propagation in a generalized thermoelastic cylinder”,
J. Thermal Str. 9:3 (1986), 279-295.

[Green and Lindsay 1972] A. E. Green and K. A. Lindsay, “Thermoelasticity”, J. Elast. 2:1 (1972), 1-7.

[Green and Naghdi 1993] A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation”, J. Elast. 31:3 (1993),
189-208.



50 HAO BAI, RAVI CHITIKIREDDY, ARVIND H. SHAH AND SUBHENDU K. DATTA

[Ignaczak and Ostoja-Starzewski 2010] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with finite wave speeds, Ox-
ford University Press, New York, 2010.

[Kitayama et al. 1999] M. Kitayama, K. Hirao, M. Toriyama, and S. Kanazaki, “Thermal conductivity of 8-SizNy, I: effects of
various microstructural factors”, J. Amer. Ceram. Soc. 82:11 (1999), 3105-3112.

[Lord and Shulman 1967] H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys.
Solids 15:5 (1967), 299-309.

[Pan et al. 2004] Y. Pan, C. Rossignol, and B. Audoin, “Acoustic waves generated by a laser point source in an isotropic
cylinder”, J. Acoust. Soc. Am. 116:2 (2004), 814—-820.

[Pan et al. 2006] Y. Pan, M. Perton, B. Audoin, and C. Rossignol, “Acoustic waves generated by a laser point source in a
transversely isotropic cylinder”, J. Acoust. Soc. Am. 119:1 (2006), 243-250.

[Ponnusamy 2007] P. Ponnusamy, “Wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section”,
Int. J. Solids Str. 44:16 (2007), 5336-5348.

[Scruby and Drain 1990] C. B. Scruby and L. E. Drain, Laser ultrasonics: techniques and applications, Adam Hilger, New
York, 1990.

[Sharma 2001] J. N. Sharma, “Three-dimensional analysis of a homogeneous transversely isotropic thermoelastic cylindrical
panel”, J. Acoust. Soc. Am. 110:1 (2001), 254-259.

[Sharma and Sharma 2002] J. N. Sharma and P. K. Sharma, “Free vibration analysis of homogeneous transversely isotropic
thermoelastic cylindrical panel”, J. Thermal Str. 25:2 (2002), 169-182.

[Sharma et al. 2000] J. N. Sharma, R. Singh, and R. Kumar, “Generalized thermoelastic waves in homogeneous isotropic
plates”, J. Acoust. Soc. Am. 108:2 (2000), 848-851.

[Verma 2002] K. L. Verma, “On the propagation of waves in layered anisotropic media in generalized thermoelasticity”, Inter-
nat. J. Engrg. Sci. 40:18 (2002), 2077-2096.

[Verma and Hasebe 2001] K. L. Verma and N. Hasebe, “Dispersion of thermoelastic waves in a plate with and without energy
dissipation”, Int. J. Thermophys. 22:3 (2001), 957-978.

[Vogelgesang et al. 2000] R. Vogelgesang, M. Grimsditch, and J. S. Wallace, “The elastic constants of single crystal 8-Si3Ny”,
Appl. Phys. Lett. 76:8 (2000), 982-984.

[Yokota and Ibukiyama 2003] H. Yokota and M. Ibukiyama, “Microstructure tailoring for high thermal conductivity of B-SizNy
ceramics”, J. Amer. Ceram. Soc. 86:1 (2003), 197-199.

[Zhu and Sakka 2008] X. Zhu and Y. Sakka, “Textured silicon nitride: processing and anisotropic properties”, Sci. Technol.
Adv. Mater. 9:3 (2008), 1-47.

[Zhuang et al. 1999] W. Zhuang, A. H. Shah, and S. B. Dong, “Elastodynamic green’s function for laminated anisotropic
circular cylinders”, J. Appl. Mech. (ASME) 66:3 (1999), 665-673.

Received 22 Mar 2010. Revised 28 Jun 2010. Accepted 3 Jul 2010.

HAO BAI: hbai@lakeheadu.ca
Department of Mechanical Engineering, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada

RAVI CHITIKIREDDY: umchitik@cc.umanitoba.ca
Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

ARVIND H. SHAH: shah@cc.umanitoba.ca
Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

SUBHENDU K. DATTA: Subhendu.Datta@colorado.edu
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427, United States

mathematical sciences publishers :'msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

DYNAMICAL CHARACTERIZATION OF MIXED FRACTAL STRUCTURES

LUIZ BEVILACQUA AND MARCELO M. BARROS

It is because of people like Marie-Louise and Charles that it is worth fighting for a better world.

We present a new technique to determine the fractal or self-similarity dimension of a sequence of curves.
The geometric characterization of the sequence is obtained from the mechanical properties of harmonic
oscillators with the same shape of the terms composing the given sequence of curves. The definition
of “dynamical dimension” is briefly introduced with the help of simple examples. The theory is proved
to be valid for a particular type of curves as those of the Koch family. The method is applied to more
complex plane curves obtained by superposing two generators of the Koch family with different fractal
dimensions. It is shown that this structure is composed by two series of objects one of which is fractal
and the other which is not rigorously a fractal sequence but approaches asymptotically a fractal object.
The notion of quasifractal structures is introduced. The results are shown to provide good information
about the structure formation. It is shown that the dynamical dimension can identify randomness for
certain fractal curves.

1. Introduction

The correlation between the form and the physical properties of certain objects and the fractal char-
acteristics of their geometry has called the attention of several researchers [Feder 1988; Gouyet 1996;
Mandelbrot 1982; Mauroy et al. 2004]. However the determination of the geometric fractal dimension
of a given sequence of objects using the associated sequence of a selected physical property has not yet
been explored as far as we know. In previous papers we have shown that coupling between physics and
geometry of fractal objects can be used to determine the fractal dimension of curves belonging to the
Koch family.

It was shown that dynamical properties of curves belonging to a fractal sequence can also be fractal.
Namely, the periods of a sequence of simple oscillators associated to a given Koch sequence have been
successfully used to determine the geometric fractal dimension of the given sequence [Bevilacqua et al.
2008]. We present below the more important results obtained for Koch curves that will help to understand
the numerical approach used here to deal with complex curves as explained later on.

We say that a sequence of curves belongs to the Koch family if the k-th order term contains N
segments with the same length A;. The number of segments and the respective lengths are given by
Ny = pk and A, = Lo/ qk where L is the initial basis or the initiator and p, g are integers. We will use
this definition throughout this paper.

Consider a sequence of springs consisting of wires folded in such a way as to reproduce the same
geometric shape of the corresponding terms of a given sequence of fractal curves. With these springs is

Research project partially funded by CNPq (Brazil) and FAPER]J..
Keywords: fractals, mixed fractals, dynamical dimension, random fractals.
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Figure 1. Top: two terms of the fractal geometric sequence. Bottom: Corresponding
dynamic oscillators used to characterize the geometric sequence. The mass attached at
the extremity of the spring is represented by m.

then possible to construct a simple spring-mass harmonic oscillators sequence by clamping one of the
extremities and attaching a mass m at the free extremity. This oscillator sequence as shown in Figure 1
will be called the dynamic characteristic sequence.

It can be shown that it is possible to derive relatively simple relations between the geometric fractal
dimension of Koch curves and the fundamental periods of the related harmonic oscillators. Note that the
fundamental periods refer to each oscillator as a single isolated spring mass system. That is for a sequence
comprising n terms each one defined by the pair (Ng, Ax) k =1,2,...,n where Ny and Aj stand for
the number of terms and their lengths respectively there will be n simple harmonic oscillators each one
characterized by the corresponding fundamental period ka . The superscript f stays for the respective
degree of freedom excited by the initial conditions induced by a horizontal force H, a vertical force V or
a moment M. Since Ny can be written as a function of Ay it is therefore possible to plot the elementary
length A, against the fundamental frequency ka . Figure 2 illustrates the polygonal curve representing
the relation between the logarithm of the normalized variables Ax/Lg and T, / TOH up to the sixth term
for a given Koch sequence corresponding to an initial excitation induced by a horizontal force H.

We claim that the slopes of the segments composing the polygonal curve tend to a fixed value s which
is correlated with the fractal dimension D of the Koch sequence. That is limy_, » sy = s and consequently

log(TkH /To)

tog(r’ /1,)

AT N R VN N VN RV R Py

Figure 2. The vertices of the polygonal curve represent the relation between the terms
of order k and the normalized frequencies of the corresponding oscillators.



DYNAMICAL CHARACTERIZATION OF MIXED FRACTAL STRUCTURES 53

Figure 3. Oscillator corresponding to a term k of the Koch triadic carrying a mass m at
the free end and excited by an initial displacement induced by a horizontal force H.

the slope of the last segment in the polygonal curve leads to the fractal dimension of the Koch sequence
with increasing precision.

In order to keep this paper as self-contained as possible we will reproduce the proof of the convergence
of the slopes sy to the slope s as k — oo or equivalently as A; — 0.

Consider the Koch triadic sequence. Figure 3 represents the simple oscillator corresponding to a
general term k in the sequence.

Let us assume that all the independent oscillators carry an equal mass m at the free end. Imposing an
initial displacement generated by a horizontal force H applied at the free end the motion is governed by
the elementary equation

d 2 Wi Wy
11
where wy is the generalized displacement and c%’? is the compliance or the inverse of the rigidity. For
linear elastic structures the compliance is given by

k) _ Wi
‘= 0H H=1
W, stands for the stored elastic energy. For the system under consideration the elastic energy stored in
a general term k is primarily due to the bending moment distributed along the Ny segments with length
Ax composing the term of order k in the Koch triadic. Therefore the stored bending energy for the k-th

order term is
1 L, M]%(S) 1 1 © )
) M
M ng EI T 2EI Zf (M, ;i (s))7ds, 3)

where E is the Young modulus of the wire material and / the moment of inertia of the wire cross
section. Both will be assumed constant for all the oscillators. Mi(f)l’ ; 1s the bending moment acting on
the elementary segment (i — 1, /) as shown in Figure 4 and Ny is the total number of segments in the k-th
order term. We are disregarding the contribution of the shear and normal forces to the strain energy. Now
all the oscillators, for all £, fit into a box Lo X hg as can be seen from Figure 4. The bending moment
along a segment (i — 1,1) is

2

Ml(k)1 [(s) = yl(k)1 + (y(k) yt(k)l)s] where 0 <s < 1. 4)
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Figure 4. Bending moment along the segment (i — 1, i) for a general term & of the

oscillator sequence.

Now introducing (4) into (3), integrating over all segments Ay and summing up we get

—1H2xh2st
k_2Eka kItgiVknak,

1 N

where
Q=—> o
k Ny P a; (k)

and «; (k) = %[Z,-z_l +2Zi-12i +Z,2] with z; = y;/ho.
From the definition of hq clearly z; < 1 for all j, and consequently «; (k) < 1.

The compliance can now be derived from the stored energy function Wj:
W, h}
D=2 = 0 N Q).
0H 14=1 Ei I

Introducing this expression into (1) we obtain
d?uy L]
PR —_— U = s

dt? (TkH )2 k

where the period 7, is given by

Now from the definitions of Nj and A for curves of the Koch family there comes immediately

M\ lo
log Ny = —log(L—’;) loig'

Introducing the value of N, given by the equation above into (7) and after some straightforward calcula-

tions we obtain

long =—
T, 2

U L Q—i—l(l D) log
0 —(1- og —,
83k T3 1o

&)

(6)

(7

8)

(9a)
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where D =log p/logg and T01 is a reference period:

2
moh? Lo
Eyly

The parameter D is the dynamical fractal dimension. It coincides with the box and the Hausdorff fractal
dimensions provided that the mass, the Young modulus and the diameter of the wire cross section are all
constant.

Now, if the geometric fractal dimension of the Koch sequence can be determined through the sequence
of the periods of the corresponding oscillators, it is necessary that the (9a) plotted on the plane Yy x Xy,
with Y, =log(Ty/Tp) and X; = log(rr/Lo), approaches a straight line whose angular coefficient is equal
to (1 — D) /2 as shown in Figure 2. Define the functional relation Y; < X} as a polygonal curve composed
by straight segments connecting the points (Xg, Yx); (X¢+1, Yk+1)- Let us prove the asymptotic behavior
of the polygonal curve. The following lemma is proved in the Appendix.

Lemma. For curves belonging to the Koch family — class of curves defined by Ny = p* and \/Ly =
1/q* — the first order differential form of the quadratic term S with respect to Ay is finite for increasing
values of k, or equivalently decreasing values of Ay. That is,

lim (AQk/A)»k) = lim (AQk/A)uk)
k—o00 re—0

is finite.
Now recalling (9a) and with Yy = log(Ty/Tp) and Xy = log(ig/Lo) the calculation of the differential

ratio AY; /A X after some simple operations gives

AYe 1 A
AX; 29 Al

Therefore from the lemma and since €2 is finite and nonzero we have

M+ 7(1=D).

Proposition 1. As k — oo the curve given by (9a) approaches asymptotically a straight line with slope
equal to (1 — D)/2.

It was shown that the oscillation period sequence approaches asymptotically a fractal sequence whose
fractal dimension exhibits a simple correlation with the geometric fractal dimension for the case of an
excitation induced by a horizontal force. Similarly it can be shown that the sequences corresponding to
the other two initial conditions, triggered by a vertical force or a moment, are governed by similar laws,

namely
v

T} 1 1 Ak
logﬁzilog\bk—i—z(l—D)logL—o (9b)
for a vertical force and ”
T, A
log % = 1(1 - D)log 7~ (%)
T, Lo

for a moment.
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The parameter D is the fractal dimension of the primordial geometric sequence provided that the
mechanical properties of the wires acting as springs are the same for all elements.

Note that for the initial condition induced by a moment the sequence of the normalized periods of
the simple oscillators follow exactly a power law. The reason is that for this case the bending moment
is the same for all the elementary segments, that is, the strain energy is uniformly distributed along the
elements composing the respective curve.

Numerical experiments have clearly shown that the fractal dimension of a generalized Koch curve can
be determined by the periods of a related oscillator sequence provided that the wire cross section and
Young modulus remain the same for all oscillators. It can be shown that if the mass m at the free end is
not constant but proportional to the total curve length, for each oscillator, that is, for the k-th oscillator
my = p N¢Ag the factor multiplying log(A/Lg) in (9a)—(9c¢) should be 1 — D instead of (1 — D)/2.

The fractal dimension determined with the method introduce above will be called dynamical fractal
dimension irrespectively of the value of the mass, constant or not.

Now suppose we are given just one term, sufficiently large, of a hypothetically fractal sequence. The
problem now is to find out if the given sample really belongs to some fractal sequence and if so to
determine the respective fractal dimension. Let us call this first curve the reference term. Following the
same technique exposed before build a spring-mass system using a folded wire with the same shape as
the reference term carrying a mass m at one of the extremities and keeping the other clamped (Figure 5,
left). It is possible, as already discussed [Bevilacqua et al. 2008] to find three fundamental frequencies
corresponding to three selected excitation introduced by a horizontal force H, a vertical force V and a
concentrated moment M.

From the reference term — Figure 5, left — cut a piece off the extremity to obtain a new sample with
length L, 1 = bL, where b < 1 is the scale factor. This operation may be repeated successively to
obtain a sequence of samples. Now to each sample corresponds a simple harmonic oscillator and the
corresponding periods for all three types of excitation can be determined. Performing this operation in
successive steps (Figure 5) it is possible to find a correlation between the periods and the lengths of the
sample projections on the horizontal axis. It is convenient, in order to simplify the calculations, to agree
on a constant reduction factor b = L,,/L,,— to cut the successive samples.

Call b, the variable representing the ratio L,,/L, where L,, is the length of the horizontal projection
of the sample m and L, is the length of the horizontal projection of the reference term. Therefore we
have b,, = b™. For the classical Koch curves it is possible to show that:

Ly

Figure 5. Sequence of three general samples (m > r > n) taken from the reference term
whose projections on the horizontal axis are L,,, L,, L,. The scale b is defined by
L,_1=bL,.
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(A) For oscillations induced by the action of a concentrated moment:
T, M- p
log =) = Z log(by) + @M. (10a)
T, 2

(B) For oscillations induced by the action of a horizontal force or a vertical force we obtain the
equations

Toym \ " D
log ~2/m ) — <1+—) log by, + ®UD (10b)
T, 2
Tuym \'" D
log “2m ) = (1 n —) log by + @), (10¢)
T, 2

The parameters QDan’H’V) in these equation can be interpreted as a kind of noise perturbation intrinsic

to the method. The interval of variation of the perturbation @an’H’V) as function of m depends on several
conditions other than the scale factor b, as the type of the initial excitation and the geometry of the curves.
The analysis of dMH-V) a5 a function of m is rather complex even for simple Koch curves. It is possible
to show that a first estimation of the relative deviation of the sequence of normalized periods (75, / T,)
from the theoretical power law given by (b)) 1HP/2) s

T"/m/Tn 1—2meg
(by)1+D/2) S \/J, where s =1—5 > 0.

Several numerical experiments were tried for different types of Koch curves. It has been observed that
for oscillations induced by a horizontal force the local perturbation is large while for the other two types

of excitation induced by vertical force and concentrated moment the noise is very small. In any case the
average values obtained with this technique for all boundary conditions are very good particularly for
ratios L,, /L, > 0.6.

This paper is intended to show that the dynamical approach is equally applicable for a new class
of more complex curves that will be called mixed fractals. Numerical experiments with mixed fractal
geometries confirm that the theory developed for Koch curves presents just as good results. In other
words, Equations (9a)—(9¢) and (10a)—(10c) can be extended to more complex curves.

2. Mixed fractals and quasifractal structures

Figure 6 shows two types of Koch curves C4 and Cp with self-similar or fractal dimensions D4 and Dp
respectively. From the definition of Koch curves we may write

log Ny, =klog p
and
log 2£ = _k1o
2 Lo 2q.
Eliminating £ we obtain

log p
logg "

A
log Ny = —Dlog L—k, where D =
0
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Lo
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Series C, three first terms Series Cg three first terms

g

Figure 6. Koch curves C4 and Cp used to generate a new object O. The fractal dimen-
sions are D4 =log4/log3 and Dg = 1.5.

The parameter D is the self-similarity dimension or the fractal dimension. For the Koch triadic C4 and
the Koch quadratic Cg, we get D4 =log4/log3 =1.261859 and Dp = log8/log4 = 1.5 respectively.

This paper deals with a series of objects O : {Oy, O3, ..., O,, ...} generated with the help of a
particular arrangement of two or more curves of the Koch type. We will call this class of objects mixed
fractal curves. In order to illustrate these ideas let us build a mixed fractal sequence with the help of two
particular curves, namely the Koch triadic (C4) and the Koch quadratic (Cp).

The generation process of a mixed fractal curve using the Koch curves C4 and Cp with fractal dimen-
sions D4 and Dp respectively is governed by the following law of formation.

The first term O; coincides exactly with the first term, the generator, of the C4 series assembled
on a basis with length L. That is O; consists of N]A = pa segments with length )Lf = Lo/qa. The
second term of the O series is obtained by selecting p4 generators of the series Cpg properly scaled such
that all of them fit to a basis of length Af. This means that O, consists of p4 pp segments with length
Xf = )»f‘ /qB = Lo/qaqp. The next curves can be obtained repeating the procedure described above, that
is by using the elementary segments of the current curve as basis for the following generator of C4 or of
Cp properly downscaled. Switching these generators in successive steps all terms of the mixed fractal
sequence may be obtained.

Let C4 be the Koch triadic and Cp the Koch quadratic. Taking as initiator the generator of the Koch
triadic, ignoring the trivial initiator L, the process is simply to switch step by step the generators of both
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Lo 0,

/\ O

Figure 7. Terms of the series O built up with the Koch curves C4 and Cp.

curves properly scaled to build up a new term of the series O as described above. Figure 7 depicts four
terms of the series.

Now, let us investigate the fractal characteristics of this new series built by overlaying alternatively the
generators of the triadic and of the quadratic Koch curves on each other properly scaled. Let us assume
that the mixed fractal curve belongs to the same class as Koch curves. Then we may write

_ log N,
D= 8Nk
log(Ax/Lo)

If the mixed curve is really a self-similar fractal then Dy, is independent of k.

Recalling the formation law it is not difficult to calculate the number of segments Ny =( p A)i( p DY
and the segment length A; = Loq;i qgj corresponding to the k-th order term. The integers i and j are
either equal or differ by one. That is,

(11

{i,j}:li—j=0ori—j=1]
Clearly i 4+ j = k. This can be expressed analytically by
i=(k+1)/2], j=Ik/2],

where the | | indicates the floor function (returning the integer part of a rational number). The expressions
for Ny and A; can be rewritten using these expressions:

log Ny =ilog pa + jlog pp (12)
and
log(Ak/Lo) = —(ilogga + jlogqs). (13)
Now using (12) and (13) after some simple operations, the expression (11) becomes

By — klog pa + |k/2](log pp —log pa)
klogq, + Lk/2](loggp —logqa)

(14)
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Note that the dimension Dy depends on the iteration order k. So it is not possible to say that a mixed
curve is fractal, further investigation is necessary. Let us separate the series O into two subsets, the odd
series Oyqq and the even series Oeyen-
For even iterations (14) reads
peven — log pa+t log PB

— ) (15)
logga +loggp

The sequence of even terms has a classical fractal structure with D" independent of k. For odd iterations

we have
pesd - k= Dlogpatk=Dloeps o oy (16)
(k—1)logga + (k—2)loggp
Then odd iterations are not strictly fractals. Clearly in the limit, when k — oo, the expression (16) tends
to expression (15) and we may say that the odd sequence approaches asymptotically a fractal sequence.
It is remarkable that the series O can be split into two series, O™ which is a fractal series and 0°%
which is not strictly a fractal series, but we could say that it tends to a fractal object when k — oo. It is

possible to generalize the result above to include several fractal curves composing a mixed fractal.

Definition. An infinite set of curves {C, C», ..., Ck, ...} with the same basis L is said to be a quasifrac-
tal Koch sequence if, letting Ny be the number of segments — all of same length A; — corresponding to
the term Cy, the sequence {D;, D, ..., Dy, ...} given by

i log N
Dy — 8Nk
log(Ax/Lo)

satisfies D; # l_)j and has a limit
D = lim l_)k.
k— 00

Suppose that the number of elementary segments and the respective lengths corresponding to a general
term Cy are given by

— i

Nk=P1P;2"'P;T and ()_»1/L0)=4filq;i2"'qn7im i1 +io+--+in =k,

where the pair (p;, Loql._l) J=1,2,..., m corresponds to a simple generator K ; belonging to the Koch
family and the exponents i, are integers function of k, i, = f, (k). Then the definition of Dy gives

Dy — (f1(k)/fp(k))log p1 + (f2(k)/fp(k)) log pr + - - - +1log pg +- - - + (fu (k) /fp(k)) log pm
(fiK)/fp(K)) log g1 + (f2(k)/f(k)) loggr + - - +1og gp + - - - + (fu (k) / f (k) 10g G -

Now if at least one f;(k)/fg(k) # 1 and limy_, [ fj(k)/fg(k)] — 1 then according to the previous
definition the sequence of curves Cy, k =1,2,...,n,... is quasifractal. O

According to this definition the odd sequence obtained with the process described above is clearly
quasifractal since from (16) we immediately obtain

lim Dyt = EPATILPE _ pevn
k—o0 logga +1loggp
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Figure 8. Normalized period log T;/Ty versus the normalized length of segments
log Ax /Lo for odd (left) iterations and even (right) iterations of the triadic-quadratic
mixed curve.

It is interesting to note that if g4 is close to gp, that is, if

loggp
logga

=l+e,

the expression (15) can be written as
seven _ Dat(+6)Dp
¢ 1+(1+e)

When ¢ — 0 we find that the fractal dimension tends to the mean value

D" ~ (Ds + Dp) /2.

3. Dynamical fractal dimension of mixed fractals

In this section we will use the technique presented in the previous section to investigate the fractal
characteristic of the mixed curve presented in the Section 2. The results obtained here, despite the fact
that we are dealing with a particular case, suggest that we may expect equally good results for other
mixed fractals belonging to the Koch family.

3.1. Test with a finite subset of consecutive terms removed from a mixed fractal sequence. Let us test
the dynamic fractal dimension method for mixed curves generated by the triadic-quadratic process given
the first eight terms. Let eight simple harmonic oscillators be built after the geometry presented in the
Figure 7. The eight terms are separated into two sets each one consisting of four terms corresponding
respectively to the even sequence and the odd sequence. For the first numerical experiment the oscillators
carry a constant mass and are excited by a moment, a horizontal force or a vertical force separately. The
results for four terms of each series, the odd series Oyqq and the even series Oeyen are presented in the
Figure 8-a and Figure 8-b. The approximated fractal dimension D,pp0x Was obtained with the slope
Dy, of the segment joining the points on the graph of Figure 8 corresponding to the two highest order
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Exciting force | Mass Mo Odd iterations Even iterations
Ddyn Dapprox Ddyn Dapprox

Couple —0.197354 1.394708 | —0.197355 1.394710
Vertical force | Constant | —0.199822 1.399644 | —0.200063 1.400126
Horizontal force —0.200496 1.400992 | —0.200745 1.401490
Couple —0.394709 1.394709 | —0.394711 1.394711
Vertical force | Variable | —0.397130 1.397130 | —0.395132 1.395132
Horizontal force —0.398592 1.398592 | —0.398576 1.398576

Table 1. Characterization using four terms of each sequence. Dynamic fractal dimen-
sion of odd and even iterations for the mixed triadic-quadratic Koch. Results for two
distinct assemblages: constant mass and variable mass proportional to the curve length.

terms in the sequence. According to the theoretical predictions (9a)—(9c), those slopes should relate with
the geometric fractal dimension as Dypprox = 1 — 2Dgy,. The results are displayed on the Table 1 and
agree satisfactorily with the correct value of the geometric fractal dimension given by (15). Note that the
approximation of the fractal dimension for the odd sequence is indistinguishable from the approximation
for the even fractal sequence for practical proposes.

The results for a second numerical experiment with variable mass proportional to the total spring
length of the corresponding geometric term are also presented in the Table 1. For this case the fractal
geometric dimension expected from the theoretical results should be related to the dynamical fractal
dimension according t0 Dapprox = 1 — Dy, as stated before.

It is important to mention that the oscillator periods were calculated taking into account only the elastic
energy stored by the bending moment, disregarding shear and normal forces. The fractal dimension
relative to the even iterations is ngen = 1.39471 independent of k. As shown in the Table 1, the deviation
from this value is not more than 1.5%. The results are very consistent. It is also interesting to notice
that the results for the odd iterations are quite satisfactory if we think of the limit value as k — oco. The
numerical experiment corroborate the conjecture that the technique that has proved to work out for regular
Koch curves are also efficient to calculate the dynamical fractal dimension for mixed fractal objects. We
believe that this approach opens up a very rich topic for both theoretical and numerical investigation.

3.2. Test with a single term removed from the mixed fractal sequence. For this identification problem
just one term of the reference sequence is given to find out the respective fractal dimension. Let us take
the eighth order term of the Koch triadic-quadratic mixed fractal series. The projection of this curve on
the horizontal axis is therefore equal to the initiator length, that is L, = Lg. Figure 6 shows how the
normalized periods for 14 samples obtained from the reference curve as explained in the introduction
varies with respect to the successive length ratios. The cuts were made following a rather large scale
b = 1/2 reducing each sample successively according to the rate Ly = (Lx_1)/2.

Figure 9 shows the normalized periods versus the sample lengths for the three excitation types. The
Table 2 shows the slope Dgy, of interpolated straight lines corresponding to the points on the figure rep-
resenting the three excitation types and the derived approximated fractal dimension Djpprox. According
to the theoretical prediction (9a)—(9c¢), the relations between the geometric fractal dimension and the
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Exciting force Dagyn Dpprox

Couple 0.608081 1.397961
Vertical force 1.699156 1.398312
Horizontal force | 1.710820 1.421658

Table 2. Slope of the lines which minimizes the sum of the square of the errors of the
respective data.

T T

couple —4&—
vertical force —H—
horizontal forc —S—

log (T,/Tg)

A 1 . . . . . . |
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
log (L,/Ly)

Figure 9. The normalized period log(7}/ Tp) versus the normalized horizontal projec-
tion of the length of the curve log(Ly/Lo) for 14 samples obtained from the eighth order
term of the mixed triadic-quadratic Koch sequence, with b = 1/2.

dynamical fractal dimension should give D,pprox = 2Dgyy for the case of excitation induced by a moment
and Dypprox = 2(Dgyn — 1) for the case of excitation induced by a horizontal or vertical force. The
interpolated straight lines were adjusted to fit the point sets {7y /Ty, L/ Lo} displayed on the Figure 6
with the least mean square deviation method.

The mass was assumed constant for all oscillators. As shown in the Table 2 the maximum error ob-
tained with this technique is less than 3% and corresponds to the horizontal excitation. Clearly the points
corresponding to the horizontal excitation presents a large dispersion. For excitations corresponding to
a couple or a vertical force the errors do not exceed 1.2%.

3.3. Random mixed structures. It has been shown that the dynamical approach provides very good and
consistent results for regular, deterministic curves belonging to the Koch family. The method has also
proved to be successful in determining the fractal characteristics of mixed fractal curves.

For the classical Koch curves, besides providing means to determine the classical fractal dimension,
the dynamical approach tell us if the geometry is random or not. For the regular generation process,
the n-th order term is obtained from the (n — 1)-th term following a well determined rule. What we
call random geometry is that one obtained in a similar way except that the regular rule is replaced by a
random orientation procedure.
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Figure 10. The first two terms of two Koch triadic curves: the classical deterministic

curve (top) and a random generation (bottom). Both have the same Hausdorff dimension.

Figure 10 illustrates what we mean by a random fractal, taking as an example the classical Koch
triadic. Note that the cover set for both curves is the same and therefore they have the same Hausdorff
dimension. However note that the random series doesn’t present the self-similarity property. Also, if the
box counting technique were applied to compute the fractal dimension of these curves the results would
be the same for all curves. The dynamical approach however is able to identify the random character of
the curve.

Consider four terms of the triadic-quadratic odd series 0% corresponding to five different random
generations. Consider the corresponding simple oscillators excited by a horizontal force. The results
correlating the normalized periods Ty/Tp and the relative lengths Ay/Lg are displayed in Figure 11.
The curves obtained by connecting the point set {7/ Ty, A/ Lo} for each random series clearly do not
coincide. However similar construction connecting the point set derived from the excitation induced by

0.2 T
hortril —+—
hortri2. —<—
hortri3 —%—
0.3 hortri4 —5— |
e hortris —i—

TN

-0.5

-0.6

log (T, /Typ)

-0.7

-0.8

N\

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

log (A /Lg)

-0.9

Figure 11. Logarithm of the normalized period versus the logarithm of the relative
length of the elementary segment for five random triadic-quadratic sequences taking
only odd iterations with initial conditions induced by a horizontal force.
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a concentrated moment would lead to just one and the same curve. The reason is that for this particular
type of excitation, that is, a concentrated moment, the strain energy is uniformly distributed along the
curve which is the dynamical equivalent to the set covering introduced in the Hausdorff theory [Falconer
1990].

Indeed, recall that we are considering only the elastic energy induced by the bending moment. For
the case of a moment this energy is independent of the orientation of the segments in the oscillator and
consequently the results are the same for all random curves of the same order k. Now for excitations
due to a horizontal or a vertical force the bending moment distribution depends on the position of each
segment in the oscillator. This indicates that the elastic energy stored in the oscillator is sensitive to the
position of the segments in the structure and this is translated in the point set distribution identifying
the randomness of the structure formation. The slopes of the interpolated straight lines representing the
points {7/ Ty, L/ Lo} for each random series lead as expected to a unique value related closely to the
Hausdorff dimension. That is on the average the result coincides with the other classical methods but
the slight dispersion of the points reveals the random character of the series.

4. Conclusions

The technique proposed in a series of papers [Bevilacqua and Barros 2007; Bevilacqua et al. 2008] is
applied here to mixed structures. The results reproduce the expected output of the method. All the exper-
iments lead to the conclusion that this method is powerful and justify further exploration, encompassing
both theoretical and computational fields. What the method suggests is that the dynamical properties of
fractal, self-similar structures and random structures hide very rich information that need to be further
investigated. In order to detect details as that associated to multi-fractals structures, random formation,
mixed fractals and the like it would be convenient to use more complex oscillators for the identification
problem with several added masses, that is extend the method to multi-mass systems. Possibly the
frequency spectrum of those more complex structures will provide the information needed for the cor-
responding characterization. Application can be found in the determination of fractal dimension, if any,
of protein chains, tissues and biological membranes [Bassingthwaighte et al. 1994]. It is also important
to remark that this technique can be applied to physical objects, that is, characterization through labo-
ratory experimentation. Therefore laboratory experiments can be designed to determine the dynamical
properties of biological tissues or fibers and consequently the fractal characterization of the sample. The
fractal characterization of composite materials may also be obtained using samples of the material to be
analyzed and applying the procedure described above.

In [Bassingthwaighte et al. 1994, Chapter 12] the question is raised of “fractals where the physical
mechanism must be different at different scales”, referring to problems related to neural networks. The
analysis introduced here may give some clues to explain this kind of puzzling behavior. Indeed if the
mechanical properties of the oscillators are different at different scales then the sequence of periods of
the oscillators may follow a power law quite different from that characterizing the geometric sequence,
or even not be fractal at all. This means that for the general case the physical behavior may generate a
sequence of physical properties quite different from the geometric characteristics.
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Vi

e

Figure 12. Mean value y;_;.; and difference Ay;_ ;.

Finally we would like to remark the interesting property of mixed fractals formed by two Koch curves
that split up into two different sets. One is fractal and the other is quasifractal. To the best of our knowl-
edge this is a new result that needs further investigation and generalization for structures constructed
with more than two Koch curves.

Appendix

We show that the first derivative of the bilinear term €2; with respect to A, is finite for increasing values
of k. Recall that

Ni
1
Q= A Zai(k) and «;(k) = %[Z,-z_l +zZi—12i +z,-2].
k“
i=0
First let us write «; (k) under the form
(k) =27y + 3020, (17

where
Zi—1i =(Zi-1+2z)/2 and  Azi_y; = (zi —zi-1)/2.

Introducing (17) in the expression for €; we get

Ni
1 _
Q= N > G+ 3A ). (18)
i=0

Clearly z; <1 and |Az;—1 ;| < 1.
Consider the second term on the right-hand side of (18). By definition Ay;_;; = y; — yi—1 as shown
in Figure 12 and therefore it is possible to write

Ayi_1i=Vi—1,iA with  y_1; <1,

From this it follows that

1

1
Azi_1,;= 2—hOA)’i—1,i = z—hoyi—l,i)»k =Bi_1,irk.
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Introducing this expression in (18) we get

Ny
1 _
= 2 Gt (19)
kizo
Now define the vector functions
(k) = (k) = (k) =(k)
7 = [Zo 12127 %i—1,i ‘.Zl(vk—l,Nk]
and
T _ k) pk) (k) (k)
Bi = 2\/_ ['301 '8 ’ 'Bifl,i"'ﬁNkfl,Nk]'
Then (19) reads, in vector notation,
Q (Zk %+ A7 ﬂk Bi).

Since |zi—1.;| <1, |Bi—1.i| <1 and ¢ < M for all k, we conclude that 2; remains bounded as kK — oo.
Similarly the term of order k£ 4 1 can be written as
1
ST 1,2 T
Q1 = m(zk+1zk+l + 34181 Bkt
where the components of z;| are proportional to the ordinates of the corners of the curve corresponding
to the term of order k + 1. In general we may write

1
. k1) (k+1) _ (k+1) (k+1)
Zk+1—h_0[ 0 T Nk+1]'

Referring to the preceding term in the sequence as shown in Figure 13 we have

1

T (k) _ (k) (k) (k) (k) (k)

k41 = ho [yo Yo~ Yop—0Y1 T Vip-1) yNk]
Note that

) (k+1)
YNe = YpNi >

05 (k+1)
yl - ypl ’

*) _ k+D .
Yii = Ypitj o i=0,....,Ny—1; j=1,...,p—1

represent respectively the ordinates of the corners of the k-th curve in the sequence and the ordinates of
the added corners for the (k + 1)-th curve. It is possible then to decompose the vector zx4; as

(GIRG NS Uzr (k) ) () (k)
Lht1 = ho [yo Y1 yzvk] +h—0[y01 Yop-nYt T Vip-n 'y<Nk—1>(p—1>]’

where U; and U, are Boolean matrices.
Now, with this decomposition it is not difficult to show that the vector z;,| can be written as

Zi+1 = RZi + R(Az) + Apigr.  where [pf )| < 1



68 LUIZ BEVILACQUA AND MARCELO M. BARROS

v

Figure 13. Term of order £+ 1 attached to the previous term of order k. MN =X Mm =
mn=no=or =rN = Ag4].

and R = [r;;] is a Boolean matrix defined as follows (where i, j, p are integers):
1 ifp(j—1) <i < pj.
pii =
Y 0 otherwise.

Now using the definition of 24 and recalling that (Azy) = A Br we get

Qi1 =+ 1Bl Brss
3Nkt1
where
1 )
Q= W(z,fRTRzk + 228 RT RBy)
+1
2 . . 1
+ (MBL R RZi + Miepl oy Rz + 25y | RBK) + —— (Aep 1 Pt )-
Nit1 Nis1

Recalling that
k k k+1 k+1
1<t 8P 1BV 108V <L Nkt = PNk At = Mi/q

and that R according to the definition above has the property RT R = pI we arrive at

1 o
st =+ (PG 2+ 1A2BL Bo)) + ARk, k4 1) + A2 Ra (k, k + 1),

k+1

where Ry (k, k+ 1) and R, (k, k + 1) are finite for all k, max(R;, Ry) < M (finite). Finally recalling that
Niy+1 = pNi we get

Qi1 = U+ MRy, k4 1) + A7 Ry (k, k4 1).

Now noting that
1

Ahp = Ayt — i =xk<5 — 1).
We may write

ALy 1 -1
= (1) Rk D) g Ralh K+ D),
Ak q
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Lemma. For curves belonging to the Koch family — the class of curves defined by Ny = p* and Ax/Lo =
1/q* —the first order differential form of the quadratic term S with respect to A is finite for increasing
values of k, or equivalently decreasing values of . That is, the limit

lim (AQ]{/A)\.]C) = lim (AQk/A)»k)
k—o00 A—>0
is finite.
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TAPPING DYNAMICS FOR A COLUMN OF PARTICLES AND BEYOND
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This paper is respectfully dedicated to Marie-Louise and Charles Steele.

The dynamics of a vertical stack of particles subject to gravity and a sequence of small, periodically
applied taps is considered. First, the motion of the particles, assumed to be identical, is modeled as a
system of ordinary differential equations, which is analyzed with an eye to observing connections with
finite-dimensional Hamiltonian systems. Then, two approaches to obtaining approximate continuum
models for large numbers of particles are described: the long-wave approximation that yields partial
differential equations and the BSR method that employs integro-partial differential models. These
approximate continuum models, which comprise infinite-dimensional dynamical systems, are studied
with a focus on nonlinear wave type behavior, which naturally leads to investigating links to infinite-
dimensional Hamiltonian systems. Several examples are solved numerically to show similarities among
the solution properties of the finite-dimensional (lattice-dynamics), and the approximate long-wave and
BSR continuum models. Extensions to higher dimensions and more general dynamically driven particle
configurations are also sketched.

1. Introduction

There are several extant explanations of the dynamical behavior of configurations of particles subjected
to small periodic tapping forces, most of which are aimed at conforming to a number of empirically
derived formulas currently in use. Our primary intention is to apply fundamental principles of physics to
obtain dynamical models for the evolution of systems of particles subjected to such tapping perturbations,
and from them deduce simpler dynamical models - accessible to modern dynamical systems analysis —
that are capable of predicting some of the most important aspects of the evolution of these systems
with acceptable accuracy. Two of our main tools shall be the long-wave limit procedure, which has
been successfully applied to particle dynamics by researchers such as Nesterenko, Daraio and their
collaborators [Daraio et al. 2006; Nesterenko 1983; Nesterenko et al. 2005; Porter et al. 2009], and
simplified integro-differential dynamical models developed in [Blackmore and Dave 1997; 1999; 2000].
In this regard, one should mention that there also is the related direct lattice-dynamics of FPU-chains
approach of [Sen and Manciu 1999; 2001], which deals directly with the dynamics of long chains of
particles, without going to a limit, and provides many opportunities for comparison with the results of the
continuum approximation methods especially with regard to nonlinear wave type behavior of solutions.
In addition, we shall briefly consider possible generalizations of these approximate continuum modeling

D. Blackmore’s, A. Rosato’s and X. Tricoche’s work in this paper was supported in part by NSF Grant CMMI-1029809.
Keywords: Newtonian models, periodic taps, Hamiltonian system, long-wave limit, BSR approximation.
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approaches to higher-dimensional tapping problems and even more general granular flow phenomena.
Along the way, we shall indicate some of the most interesting dynamical systems aspects of the models
that are introduced and analyze them from a more theoretical perspective.

We begin in Section 2 with a continuous one-dimensional dynamical model for the vertical column
of particles (assuming Walton—Braun—-Mindlin type interaction laws) expressed as a system of ordinary
differential equations (ODEs) in the usual Newtonian way. The initial system of second order equations
is converted to a system of first order equations emphasizing the comparison with the Hamiltonian system
obtained for perfectly elastic collisions. In Section 3, we illustrate the dynamics with numerical solutions
for a couple of cases with relatively small numbers of particles, and also deduce a theorem about the
existence of chaotic dynamics.

Then, in Sections 4 and 5, we use this system in two different ways to obtain approximate contin-
uum models for the tapping dynamics of a monodisperse column of particles in the form of infinite-
dimensional dynamical systems comprised of partial differential equations (PDEs) or integro-partial
differential equations (IPDEs). In particular, the PDEs are obtained using a standard long-wave limit,
such as in [Daraio et al. 2006; Nesterenko 1983; Nesterenko et al. 2005; Porter et al. 2009; Zabusky
and Kruskal 1965], as the number of particles goes to infinity, and then using the simplified model in
[Blackmore et al. 1999]. A monodisperse system of particles is chosen in the interest of simplicity, since
the dynamics of polydisperse systems are considerably more difficult to approximate using continuum
models, especially for the long-wave limit method. After developing approximate continuum models
for the tapping dynamics via the long-wave (L-W) and Blackmore—Samulyak—Rosato (BSR) methods,
we also formulate the associated boundary-initial value problems corresponding to the one-dimensional
vertical tapping regime under investigation in these sections, respectively.

In Section 6, we turn our attention to some of the mathematical properties of the L-W and BSR
dynamics, with a focus on the Hamiltonian and near Hamiltonian infinite-dimensional dynamical systems
associated with these continuum models. Some of the results for the approximate L-W and BSR models
have already been proved in the literature, and some related theorems shall only be stated since their
proofs, which shall be treated in forthcoming work, are a bit too technical to include in this paper. We
follow this in Section 7 with numerical solutions of the L-W and BSR approximations corresponding to
the numerical simulations of the tapping regimes considered in Section 3, and find good qualitative agree-
ment among the solutions of the exact and both approximate continuum models. Finally, in Section 7,
we summarize the work presented and outline some of our plans for future research — both with regard
to granular flow applications and infinite-dimensional dynamical system theory - for higher-dimensional
systems and more general particle configurations and forcing scenarios.

2. Newtonian model

We begin with a mathematical model for the tapping motion of the column of particles obtained using
Newtonian and Hamiltonian principles assuming that the particle-particle and particle-floor interaction
forces are of Walton—Braun—Mindlin type [Blackmore et al. 1999; MacKay 1999; Blackmore and Dave
1997; Daraio et al. 2006; Sen and Manciu 1999; Nesterenko 1983]. The results obtained have certain
aspects in common with the approaches of the last four works just cited and of [Blackmore et al. 2000;
Fermi et al. 1965; Nesterenko et al. 2005; Porter et al. 2009; Sen and Manciu 2001], among many
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other works. In particular, we consider a configuration of N particles p;, 1 <i < N, aligned along the
(vertical) positive y-axis, stacked one above the other starting with pi, under the action of gravity — with
constant gravitational acceleration g — and interacting inelastically (according to the Walton—Braun—
Mindlin model) with neighboring particles and a “container” bottom, denoted as yy, initially at the origin
that is moving in a manner that simulates a periodic nearly impulsive tapping force applied vertically to
the floor. The moving bottom and particle centers are located, respectively, at the points

O0<yo()<yr<---<ywn (D

in the semi-infinite interval / := {y : 0 < y}, and we assume that the particles have masses and radii
miy, ri, ..., My, Iy, respectively.
In order to model the periodic tapping, we assume that yo(¢) is a periodic function of period 7" > 0

represented as ) _
asinot if0<t<nm/w,

0 ift=0orn/w<t<T

yo(t) := { 2)

for0 <t <T, where m/w < T, and the amplitude a is a small positive number. Note that the derivative
of (2) with respect to ¢, denoted by a dot over the variable, is the discontinuous function given as

. awcoswt iIfO0<t<rn/w,
yo() :={ / (3)

0 ift=0o0or7n/w<t<T.

Our intention is to determine the motion of the particles after each of a periodic sequence of taps, and
compare the positions of the particles after being given time to settle following each of the taps — say at
times .997, 1.99T, 2.99T, .. ., in order to determine trends after many such taps, with the evolution of
the linear particle density being of particular interest.

We shall assume that the particles and bottom interact inelastically according to a simplified Walton—
Braun—Mindlin law, so that the equations of motion obtained from Newton’s second and third laws take
the form of a system of N second-order ODE:s:

m;yi =F; (1 <i<N), “4)
where the forces on the particles are expressed as
Fi = _mig+_fii_1 _,’_f‘il'-i-l (5)

for 1 <i < N, where ff‘l is the force exerted by p;_; (or the bottom when i = 1) on p; and f;“ is the
force exerted by p;+; on p; when 1 <i < N — 1. These interaction forces are given by

£ = (K = Ko (31 — 30) (r1 — 1 = o)) x(r1 — (v = yo (1)),
FIT = = (K = KT o (A90)) (i + rien — Ay x (i + 11 — Ay, (6)

N+1 .
N+,

forl1 <i <N —1, with
firl= —fi %
for2 <i < N. Here
Ayi == Yit1 = Vi,  AYi = Vi1 — Vi, (8)
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for 1 <i <N — 1, the K" and I%f“ are constants with 0 < I%l."“ <K/ ™ foralll<i<N-—1,and o
and y denote the signum and step functions defined, respectively, by

-1 ift <O, 0 ift <O,
o(r):={ 0 ift=0, and  x(r):={1 ifr=0, 9)
1 ifr >0, 1 ifr>0.
With the definitions above, the system (4) may now be rewritten as
. 1 1 - - .
Ji=Yi=—F=—g+—f""+ £ (U<i<N), (10)
m; m;
which can be recast in vector form for y := (yy, ... yn) as
y=Y(,y.t: ), (11)
where ¥ := (Y1, ... Yn) = (=g +m (fL+ [, oo —g+my (0 T+ YD, —g+my' fo~"), and

[ is a parameter (vector) incorporating a, w, T, all the particle masses and radii, and all of the interaction
parameters K [l 1 and K l’ *+1 As is usual for such second-order systems, we shall find it convenient to
recast it as the following system of 2N first-order ODEs, which is better suited to direct numerical
solution by such schemes as a Runge—Kutta solver:

yi=vi, v =Y, (12)

for 1 <i < N. Of course, we can also write this succinctly in (the Hamiltonian related) vector form as

x=X(x,t;p), (13)
where
X = (x1,x2,...,XN—1,X2n) := (Y1, V1, ..., YN, UN),
=(X1, X2,.... Xon—1, XN) = (v1, 11, ..., N, YN). (14)

Observe that only the second coordinate (component) of X depends explicitly on ¢, and by definition,
X is periodic of period T in the independent time variable ¢. Also, X» is the only coordinate that depends
explicitly on the parameters a and w. The forces defined above are chosen so that the inelasticity of the
particle-particle and particle-bottom interactions is manifested by a loss of energy upon impact that
is essentially represented by a spring constant of K f+1 +K f“ when the particles are approaching one
another or the bottom and a spring constant of K l."+1 —K l’ *1 when the particles are moving away from one
another or the bottom after impact. From this perspective, the case K ;H = 0 represents a perfectly elastic
interaction. We also note that the discontinuities in (13) are somewhat inconvenient from a theoretical
standpoint, but they can easily be handled by a standard numerical scheme, such as a Runge—Kutta
solver, and the forces can also be approximated to any degree of accuracy by smooth (= C*) functions
if necessary.

So in summary, we want to solve (13), and this can be accomplished numerically via say a variable
step size Runge—Kutta scheme subject to the initial condition

x(0) = (y1(0), 0, y2(0), ..., 0, yn(0), 0), (15)
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which represents a stacked configuration of particles initially at rest. Here we have to determine the
values of the y;(0) by requiring that the stack of particles is initially at rest and in equilibrium, and
because the particles are assumed to be non-rigid we shall have to determine these values in a way that
guarantees that yo(f) < y1(¢) < y2(t) < --- < yn(¢) for all ¢ > 0, which we shall demonstrate in the sequel
for the monodisperse case. We also want to make comparisons of the positions of the particles at times,
say at .997,1.997T,2.997T, ..., k.99T for rather large positive integer values of k. In these simulations
it makes sense to simplify matters by taking all the K's equal and all the K's equal, with 0 < K =eK,
with 0 < e < 1, and all the radii and masses equal or having at most a pair of possible values. Note that
in this context, the coefficient of restitution o, which is the standard measure of elasticity with 0 < p <1
and the left (0) and right (1) extremes representing the perfectly inelastic and elastic cases, respectively,
is given as

, l—e , 1-0?
= , or, equivalently, e=——-.
l+e 1+ 02

For the other parameters, some good choices are as follows: 20 < N, T =1, n/w < 1/10, a < 1/50,
ri=r and m; =m, with0 <r < 1/100 and 0 < m < 1/20, and it makes sense to run several cases for
(13)—(15) for different parameter values satisfying these inequalities.

With the assumptions that all K's and K's are the same and K = ek, the equations of motion take
the form

0 (16)

. K i i+1 .
yi=Y; :=—g+;(f,- +f£7) (<i=<N), (17)
where

=11 —eo (31— o)1 — y1 + o) x(r1 — y1 + yo(1)),

[Ti= =1 = ea (MG +ris1 — Ay) x(ri +ri1 — AYy), (18)
N—+1 =0
N+= 0,

Whence, the Newtonian equations of motion are

i = —g— - ([1=ea (AJI(1+r2= Ay x(ri+r2 = Ay)
—[1—eo (31 =301 (r1—y1+y0(0)) x (r1 —y1+)’0(f))>,

K .
Vi = —g—%<[1 —eo (Ay)(ri+ris1—Ayi) x (ri+rig1—Ay;) (19)
l
—[1=eo (AJi- DI 1+ = Ayi)x (o1 7= Ayi)) 2 =i < N1,
. K .
IN = —g+a[1 —eo (AyN-DI(rN—1+rN —AYN-DX(rN-1F+TN—AYN-1).

The natural initial conditions for the tapping dynamics are then
v1(0), y2(0), ..., yny(0) determined by assuming initial equilibrium of column,
y1(0) = 32(0) = y3(0) = --- = yn(0) = 0.

It is instructive to observe that (13) can be written in the form

(20)

x=0x)+W(x, t; 1), (21)
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where

x=o(x) (22)
is an autonomous Hamiltonian system that is completely integrable in the Liouville-Arnold sense (L-A
integrable) and W may be viewed as a (non-Hamiltonian) perturbation of the integrable system (22) that
goes to zero as e, a — 0; see, for example, [Arnold 1978; Blaszak 1998; Guckenheimer and Holmes
1983; Katok and Hasselblatt 1995; Prykarpatsky et al. 1999]. We also note that the periodicity in ¢ can
be used to recast (21) in the autonomous form

x=0x)+V(x,0;pn), 6=27/T (23)
on the (2N + 1)-dimensional cylinder R2N x S', where S! is the unit circle.

2.1. Monodisperse particle configuration. In the interest of transparency and simplicity, we shall con-
fine our attention to a monodisperse column of particles, so that we assume now and hereafter that
my=---=my:=mandr; =---=ry :=r. This assumption naturally simplifies each of the equations
(17), (18) and (19); for example, (19) becomes

yi= —g—%<[1—eG(Ay'1)](2r—Ay1)x(2r—Ay1)—[1—ea(y'1—y'o(t))](r—y1+yo(t))x(r—y1+yo(t))),

i = —g— - ([1—e0 (A1 —Ay)x @r— Ayl —ea (Aji-DI2r—Ayi Dxr—Ayi ) (24)

K (1<i<N),
v = —8+E[1—60(A)"N—l)](zr—AYN—l)X(zr—AyN—l),
and the initial conditions (20) reduce to
v1(0), y2(0), ..., yn(0) to be determined and y;(0)="---yy(0) =0, (25)

and (21)—(23) are modified analogously.
To determine the initial positions, we assume that the configuration is initially at rest and in equilibrium,
so (24) implies that the following equations must be satisfied:

—2y1(0) + y2(0) =r + M,
Ye-1(0) =2y, (0) + yi1(0) =M (I <k <N -1, (26)
yN-1(0) = yn(0) = =2r + 901,
where
M= %
It is straightforward to show that (26) has the solution

k) =QRk—Dr—(k/2)CN —-k+1)0M (1 <k<N-1),

(27)
yn(0) = 2N —Dr —1/2)[(N —1)N +2]9.
As we naturally require that y; (0) — yx—1(0) > O for all 1 <k < N, this leads to the condition
M < L, or, equivalently, Ng < 5 (28)

N r m
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which must be imposed in order to maintain physical realism. We note here that the maximum height S
of the column of particles where they are all just touching one another is

S =2Nr. (29)

We shall study the solutions of (24)—(25) directly, and also analyze the dynamics of the corresponding
first-order system (21)—(23), with the monodisperse assumption imposed to simplify the expressions.
One slightly troubling feature from a theoretical standpoint is the fact is that although (20), or (24), is
piecewise linear, it has jump discontinuities, which we should add can be easily handled using a numerical
scheme such as the Runge—Kutta method. Theoretically, we can always adjust the systems to be smooth
(= C*) by using appropriate approximations of the signum and step functions. A rather good choice for
smooth approximations is

o(s) ZEoy(s) :=tanhas, x(s) = xu(s) = %(1 + tanh as), (30)
where o > 1.

3. Dynamics of Newtonian model

In this section we shall briefly investigate the dynamical properties of the system (21) using both nu-
merical simulation and analytical means. We begin with some numerical simulations of the solutions
of (24)—(25) employing a standard ODE solver of the type used in the molecular dynamics simulation
codes developed by Rosato and his collaborators, which have been applied to advantage in many studies
of granular flows, such as in simulations of examples in [Blackmore et al. 1999].

For these simulations, with monodisperse particle stacks, we fix T =50, m = 1,r =1.0cm, a/2r =
0.53, e =0.09, g =980.67 cm/sec?, and following (29), K = (2Ng/r), and vary the number of particles N
over the values N =5, 10. Note that the frequency w = 2z I" is varied for the two cases, with I' = 2.4019
for N =5 and I' = 3.8476 for N = 10, mainly to obtain better resolution for the particle configurations.
The dynamics for the five-particle and the ten-particle cases are illustrated in Figure 1, which plots of
y1(t) through yy(¢) for all choices N over a time interval long enough to include four periodic taps.

I'=2.4019, Frequency = 7.5 Hertz I =3.8467, Frequency = 7.5 Hertz

Part. 1 |
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16 Part. 3
Part. 4
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Figure 1. Particle trajectories for tapping of five (left) and ten (right) particle stacks.
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Observe that in order to more clearly establish the quiescent state, the formulas for the initial conditions
above are translated by 50 time steps in the numerical simulations. One can see from these time series
plots for the positions of the particles how the density of the particles varies with time by observing the
evolution of the interparticle distances.

From the perspective of modern dynamical systems theory, one can use the same arguments as en-
listed in [Blackmore and Dave 1997; Blackmore et al. 2000] to prove the following result (see also
[Guckenheimer and Holmes 1983; Prykarpatsky et al. 1999]).

Theorem 1. Fixing all parameters save the amplitude of the taps, there exist sufficiently large values of
a for which (21) has periodic solutions of arbitrarily large period, and ultimately there exist large values
of a such that the system of particles exhibits chaotic motion. Moreover, if all the parameters are fixed
but the period T of the taps, then there exist chaotic orbits when the period is sufficiently small.

Before moving on to continuum approximations for the system (24) for very large N, we should
mention a very important related body of work in the realm of lattice dynamics, which deals with a
direct analysis of these equations of motion — usually focusing on finding solutions of a particular wave
related form. Important representatives of this type of one-dimensional lattice dynamics research (which
has yielded the existence of solitary wave solutions, solitons and breathers, to name a few examples) can
be found in [Friesecke and Wattis 1994; MacKay 1999; MacKay and Aubry 1994; Poggi and Ruffo 1997;
Sen and Manciu 1999; 2001; Treschev 2004; Yoshimura and Doi 2007; Zolotaryuk et al. 2000]. There
are also some useful studies of the finite systems, such as in [Blackmore and Dave 1997; Blackmore
et al. 2000; Yang and Wylie 2010] devoted to finding special properties of certain orbits of the dynamical
systems of N particles, where N need not be particularly large.

4. Long-wave continuum approximation

We shall first use the standard long-wave continuum limit method to find an approximation for our discrete
system of particles in the form of a nonlinear partial differential equation (PDE). One of the most famous
examples of this approach is the continuum approximation of the Fermi—Pasta—Ulam (FPU) model [Fermi
et al. 1965] obtained by Zabusky & Kruskal [Zabusky and Kruskal 1965] that established a connection
between the FPU system and the Korteweg—de Vries equation that was a vital link in the chain leading
to an explanation of the existence of solitons and their connection with integrable PDE:s.

Toward this end, we focus on the middle equation of (24) in the monodisperse case; namely

K
yi=—8— Z([l —ea (Ay)1(2r — Ayi) x(2r — Ayi) = [1 —ea (Ayi—1)]Q2r — Ayi—1) x(2r — Ayp)). (31)

Next we introduce the alternative variable z for y to avoid confusion in our notation, and define & :=2r
to be the (mean) distance between the particles (“springs”). The underlying assumption in the long-wave
approximation method is that the wavelength L of the wave phenomena embodied in the motion of the
particles satisfies 4 < L, which as it turns out is quite a reasonable supposition for a wide range of granular
flow regimes, including the one under consideration here. Our intention is to find an approximate PDE
representing the dynamics of (31) as N — oo. For this we assume that y; represents the function y(z, t),
which is at least of class C* in all of its variables, and

yix1 :=y(zxh,1), (32)
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which can be expanded in Taylor series up to the fourth order in 4 as
yier =y@th )=y £y h+ 3y P tly hP+ Ly ot (33)
and we also have
Vier 1= Vi@ Eh D) = Vi Yich + 3iech® £ Yz’ + ggyizaach® 4 (34)

Substituting (32), (33) and (34) in (31), we find after a long and tedious but straightforward calculation
that up to the fourth order in 2 we have the fourth order PDE on (z, 1) € RT x Rt = [0, 00) x [0, 00):
K h2 1 1 /
Y =-8+ 7(§A(+)y22 - §h[Byz +eo (0) A yielyze

+ hz(%A(—)yZZZZ =+ 2ra/(0)y22yzz + 0’ (0) By, y.:yiz + %ea/(O)A(—k—)yzzytzz))a (35)

where
A :=3x(0) +6ro’(0) £8°¢”(0) and B :=o'(0)+4r2c"(0), (36)

and we have assumed that o and x are convenient smooth approximations of the signum and step func-
tions such as given in (30) and such that all even derivatives of o and yx vanish at the origin. If we use
the approximation for o in (31), then (35) takes the form

Kh? |
Vit =—8 — 7(§A(+)yzz - §h[ByZ +eaAr)yizlyz:

+ hz(%A(—)yZZZZ + a(zryzz)’zz +eBy Yz + %eA(—F)yZZylZZ)))a 37)

with

A =3x0)+6raF16r°¢> and B :=a(l —8r’a?). (38)
We can take (37) as our long-wave continuum approximation for the dynamics of the particle system as
N — oo. Note that if we choose x(0) = % ando =1/h=1/Q2r), then

Ay =25 Ay=135 and B=—(1/h).

Observe that this is a highly nonlinear wave type equation. Of course, we shall need to impose
appropriate auxiliary conditions on (35) or (37) in order to obtain well-posedness, and also include the
periodic external (tapping) motion given by (2) and (3). Suitable initial and boundary conditions are

y(z,0)=2z, y(0,1)=yo(), (39)

but more has to be done in order to (approximately) model the actual evolution of the system primarily
due to the vertical nature of the particle stack and the influence of gravity; something that makes analysis
of a horizontal particle configuration considerably easier to handle.

We shall now briefly explain these attendant difficulties, and describe the simplified method used
in this paper to deal with the intricacies of numerically solving (37). This problem is defined on the
semi-infinite first quadrant of the ¢, z-plane in a way that actually makes it analogous to a free boundary
problem that also necessitates an adjustment of the right-hand side of (37) consistent with evolution of
the lower and upper boundaries of the initial “particle interval”, 0 < y(z, 0) = z < S. What is required is
to find the evolution of the top point S of the vertical continuum of particle matter, 0 < z < §, defining a
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curve z = @(¢) in the in the ¢, z-plane, above which the force on the right-hand side of (37) has to be set
to zero. In addition, the gravity term g on the right-hand side of (37) must be set equal to zero along the
moving bottom yo(¢), which defines the motion of the lower boundary point of the initial particle interval.
We choose to deal with these mathematical difficulties completely in a forthcoming paper dedicated to
just these matters, and use a much simpler hybrid method for our numerical treatment of the solution of
(37) in the sequel. In particular, we use our numerical solutions of the finite-dimensional initial value
problem (24)—(25) to track the (upper) “free boundary” of the evolution of the initial particle continuum
of height S, and then make the adjustments in (37) that we have just indicated.

As noted earlier, we also need to impose constraints on the parameters so that the initial stack of
particles, now approximated by a continuum of height S does not collapse. To this end, noting that we
are assuming i = 2r to be the average distance between the particles, it follows from (27) and (28) that
we must have

Kh*>  4Kr?
m om

> 4Ngr =2S8g. (40)

So, for example, Kh?/m = 2.5 Sg would be a safe choice.

With regard to the PDEs (35) and (37), note that they represent (infinite-dimensional) integrable Hamil-
tonian dynamical systems when e = 0 (see [Ablowitz and Segur 1981; Btaszak 1998; Blackmore et al.
> 2011; Dickey 1991; Faddeev and Takhtajan 1987; Prykarpatsky and Mykytiuk 1998]), which is not
all that surprising since they are obtained as continuum approximations of the finite-dimensional system
(21), which can be rewritten as an L-A integrable Hamiltonian system when e = 0.

It is useful to observe that if (37) is solved imposing the auxiliary conditions described above, we can
then use the continuity equation to determine the particle density p via the equation

+ Y20 =0, (41)
subject to the auxiliary (Cauchy) condition

0(z,0) = constant = ;n_r (42)

5. Alternative continuum approximation: BSR model

There is another, more direct, method for finding continuum approximations of granular flow equations
that was developed in [Blackmore et al. 1999] and used in [Blackmore and Dave 1997] to approximate
the dynamics of a large number of particles moving along a horizontal line with one fixed boundary
(wall) and subject to a periodic forcing function. This approach leads first to the following integro-PDE
(IPDE) for the dynamics of the granular motion being considered:

Us +uu; =
K o0
—g—gf ([1—eo (Ay)1Q2r—Ay) x2r—Aky)—[1—eo (Ay;i—)12r—Ay;—1) x2r—Ayi_1))dz, (43)
0

where u is the velocity y; = z,. In order to obtain the correct expression for the integral, we need to
reinterpret the local force (appearing as the integrand) on a particle at the point y in the manner of
[Blackmore et al. 1999].
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The actual force expression at z € [0, co0), which must be “averaged” over a neighborhood (z —y, z+y)
corresponding to the near-neighbors in the lattice dynamics formulation in Section 2.1 is

K
—H—eo(u(z+y) —u@)IQr = lyDx@r—IyD.

and this suggests the following as a first approximation for the integrated force in (42):

K h
_Z/h[l —eou(z+y) —u(@)2r —|yDx@2r — |y dy.

However, this does not account for the probabilities of an abutting particle (or bottom) that actually
causes the force on a particle centered at z. A reasonable choice is that of a normal distribution that
depends on z in a way that the force goes rapidly to zero as z — oo having the form

2
Xp<_w>, (44)

O(y,z;b,c) = 202

1
e
b2m
where a and b are positive constants that can be tuned to match results obtained by simulation or exper-
iment. For the sequel, we choose b = 7h and ¢ = 3h. Whence, our IPDE becomes

K h
U +un, =—g— th@(y, z; Th, 3m)[1 —eo (u(z+y) —u@)I2r — |yDxC2r — |y dy.  (45)

Again we require auxiliary conditions for well-posedness, and these take the form
u(z,0) =0, u(0, 1) = yo(z). (46)

Once again, it is worth noting that when e = 0, (45) represents an infinite-dimensional Hamiltonian
dynamical system, inasmuch as it can be written in the form

u, =6 o VH(@), (47)

where H is a smooth function, called the Hamiltonian function, V is the standard variational gradient
operator for functions and 6 is what is called an implectic operator, which plays a role for infinite-
dimensional Hamiltonian systems analogous to that of the 2N x 2N matrix

(0 Iy
J_(—IN 0)’

where [ is the identity matrix of order N. These notions are all standard in the theory of Hamiltonian
dynamical systems, as found in texts such as [Ablowitz and Segur 1981; Arnold 1978; Blackmore et al.
> 2011; Blaszak 1998; Dickey 1991; Faddeev and Takhtajan 1987; Guckenheimer and Holmes 1983;
Katok and Hasselblatt 1995; Prykarpatsky and Mykytiuk 1998], but are a bit too mathematical to delve
into here.

Observe that in a manner analogous to that in the L-W formulation above, one also can use the solution
u = (z, t) to determine the density via

ap ap

L ru= =0, 48
or Ty, THp (48)

subject to the Cauchy data (46).
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6. Dynamics of continuum models

If, as indicated by our preliminary study here, the infinite-dimensional dynamical systems in the form of
PDEs and IPDEs obtained using the L-W and BSR methods, respectively, provide good approximations
to the behavior of a fairly rich variety of granular flows, it follows that we may be able to bring many of
the tools of nonlinear dynamics to bear on a multitude of related problems of practical interest. Here we
shall only give a couple of examples - in the form of theorems — related to wave propagation in granular
media.

First, we consider the L-W approximation (37) and the possible existence of the kind of persistent
stable wave structure associated with solitons, which were first described by Zabusky and Kruskal [1965]
and have since become an important fixture of the modern theory of dynamical systems, as indicated by
such treatments as [Ablowitz and Segur 1981; Blackmore et al. > 2011; Btaszak 1998; Dickey 1991;
Faddeev and Takhtajan 1987; Prykarpatsky and Mykytiuk 1998]. And these solitons associated with
integrable systems have become increasingly important in applied research in general, and granular flow
investigations in particular. Nesterenko [1983] was the first to analytically show the existence of solitons
in L-W approximations of a horizontal chain of particles with perfectly elastic Hertzian interactions,
which he validated by observing soliton like behavior in actual physical experiments. His equations
were obtained by fourth order L-W approximations analogous to (37), except for the gravity term. He
showed that his equations can be transformed into the Korteweg—de Vries equation, which is well known
to be integrable and so admit soliton solutions. The transformation that he used can be readily modified
for our vertical, Walton—Braun rather than Hertzian interactions, to prove the following result.

Theorem 2. The infinite-dimensional Hamiltonian system (37) is integrable when e = 0; therefore it
admits soliton solutions.

Several years after Nesterenko’s pioneering work on solitons in L-W approximations of one-dimen-
sional Hertzian particle chains, Blackmore and Dave [1997] analyzed approximate models of the same
kind of particle chains assuming Walton—Braun particle-particle and particle-wall interactions using the
BSR method. They found that a further approximation using the BSR approach yielded Burgers’ equation,
which is another well-known example of an integrable PDE admitting soliton solutions. The Hamiltonian
system obtained from (45) when e = 0 is also integrable, and this can be proved by showing that there
exists another independent representation of the form (47) satisfying certain assumptions guaranteeing
that the system is bi-Hamiltonian (cf. [Blaszak 1998]) in a way that implies integrability. We shall only
state this result here, leaving the proof to a forthcoming paper.

Theorem 3. If e =0, the BSR model (45) is an integrable Hamiltonian dynamical system.

7. Ilustrative examples

Here we present examples of a numerical solution of the one-dimensional tapping equations (together
with auxiliary data) obtained using both the L-W and BSR methods. In each case we use the simplified
hybrid method — described for the L-W model in Section 4 and the BSR model in Section 5. The partial
differential operators in equations (37) and (45) are approximated using central differences with equal
time and distance steps of 0.01 and the integral in (45) is computed using the trapezoidal approximation.
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Figure 2. L-W (left) and BSR (right) approximations of tapping solution surface with
parameters in Figure 1, right.

We use the same parameters as in the ten-particle example in Figure 1, right, but consider a much longer
tap duration, so that we can compare the approximate numerical solutions of the continuum models to
the numerical solutions of the exact Newtonian initial value problem (24)—(25).

The solution surfaces of the approximate L-W and BSR solutions are shown in the two halves of
Figure 2. One can see that both approximate continuum solutions are very close to one another —
both qualitatively and quantitatively — and they show good qualitative agreement with the (numerical)
solution of the exact system of ODEs as depicted in Figure 1, right.

8. Concluding remarks and future research

We have shown that both the L-W and BSR approximate continuum models for the one-dimensional
tapping problem have solutions that are in rather good qualitative agreement with exact lattice solutions.
It seems reasonable to assume then that both of the approximate continuum approaches employed in this
paper are viable predictive tools for higher-dimensional and more varied granular flows. Consequently,
it just may be that a wealth of useful information can be mined from a dynamical systems oriented
investigation of these relatively simple continuum models. With this in mind, we plan, in our future
research, to investigate the potential of these infinite-dimensional models using a combined dynamical
systems, simulation and visualization approach.

From the dynamical systems perspective, we shall first generalize the two continuum approaches to
two- and three-dimensional tapping flows. Extension of the L-W method to two and three dimensions
is inherently more difficult than the BSR approximation, because the lattice equations from which it
is derived get quite a bit more complicated due to the increasing number of possible regular lattices
(square, hexagonal, cubic, tetrahedral and more) to choose from and the increased complexity of nearest-
neighbor dynamical equations, as indicated in [Ruiz-Ramirez and Macias-Diaz 2010; Zolotaryuk et al.
2000]. Naturally, we shall have to perfect our numerical treatment of the resulting boundary-initial value
problems (which we conveniently simplified using a hybrid method in this paper) in order to validate
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the dynamical predictions obtained from the continuum models. And having a rigorously formulated
and coded numerical simulation approach will be a must as we extend the continuum approximation
approach to additional types of (higher-dimensional) granular flow regimes.

We also expect the nonlinear dynamics approach to be especially useful in detecting and analyzing
such phenomena as jamming and force chains. Roughly speaking, jamming can be associated with nearly
invariant subregions of the dynamical systems, and force chains can be identified with connected nearly
invariant networks in the resulting stress tensor fields. From a more mathematical perspective, we envis-
age obtaining new theoretical results linking the integrability of the limiting continuum approximations
with the integrability of the exact finite systems, possibly yielding new examples of higher-dimensional
integrable systems and novel KAM theory type results for systems that are only nearly integrable to begin
with (see [Arnold 1978; Katok and Hasselblatt 1995; Kuksin 1993], for example) or results akin to those
in [Prykarpatsky et al. 1999] when slight inelasticity renders the dynamics only nearly Hamiltonian.

Our approach using dynamical systems theory is intended to go hand-in-hand with novel refinements
and extensions of existing simulation capabilities in a manner that both informs and validates the analysis.
One of the applications intended for the models we have discussed in this paper is that of “density
relaxation”, in which a vessel of granular materials subjected to vibrations or tapping experiences an
increase in its bulk density. Because the ability of granular materials to undergo this change in density
is an inherent property that is not well-understood, this remains a critical impediment in developing
predictive models of flowing bulk solids. We intend to address this issue in future studies by applying
the dynamical systems models described in this paper to a system of uniform spheres in an attempt to
determine how the various features of the motion scale with the total mass, and the details (e.g., amplitude
and frequency) of the floor motion. In particular, our recent stochastic and discrete element findings on
density relaxation, reported in [Dybenko et al. 2007; Rosato et al. 2010a; 2010b], have suggested the
importance of the tap amplitude in the evolution of granular microstructure, as well as a strong effect of
the bulk mass of the system.

An indispensable component of our future research is the kind of sophisticated dynamical systems
oriented computer visualization that has come to the fore in recent year in work such as [Haller 2001;
Lindeberg 1998; Tricoche et al. 2008]. As our theoretical and computational investigation moves toward
more complex, higher-dimensional, and larger-scale granular systems, the interpretation and analysis of
our models will become significantly more difficult and require dedicated tools that do not yet exist. We
are therefore initiating a research thrust in visual data analysis aimed at supporting the characterization
of salient structural and quantitative properties of the systems. Our work will explore an approach
connecting the dynamical systems perspective to differential geometric structure definitions. The latter
will then form the basis of abstract visual representations that address the visual clutter of large particulate
assemblies.

Specifically we will apply a topological framework [Tricoche et al. 2008] to characterize the structural
skeleton of the stress field acting upon the system and study its relationship with relaxation and jamming
behaviors. Moreover we will study invariant manifolds of the system’s dynamics by extending to the
discrete setting the notion of Lagrangian coherent structures that has been recently introduced in the non-
linear dynamics and fluid mechanics literature [Haller 2001]. Finally, we will devise a novel scale space
framework [Lindeberg 1998] suitable for the detection of salient core and edge manifolds in granular
assemblies and explore their relationship with observed physical properties of granular flows.
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REFLECTION OF TRANSIENT PLANE STEP-STRESS WAVES:
SOME CONSIDERATIONS OF ORTHOTROPY AND THERMOELASTICITY

Louis MILTON BROCK

To Charles and Marie-Louise Steele

Governing transient equations and (dimensionless) wave speeds for isotropic and orthotropic solids, and
for isothermal and thermoelastic cases, are presented. For the orthotropic solid, propagation occurs in
a principal plane. The thermoelastic cases treat Fourier heat flow and thermal relaxation, and stress-
and temperature-step waves of a class that does not exhibit attenuation and dispersion. Reflection of
incident step-waves by a half-space surface is then treated. Situations vary in the combinations of model
features noted above. Isotropic limit cases of orthotropic results are also examined, for isothermal and
thermoelastic situations. Finally, restrictions on angles of incidence and reflection due to anisotropy are
identified, and some related calculations presented.

1. Introduction

The reflection of transient plane waves by traction-free surfaces of elastic solids is an important consid-
eration in seismology [Cagniard 1962] and in models for layers and layered media [Brekhovskikh 1957;
Achenbach 1973; Miklowitz 1978]. The reflection process is more complicated in the orthotropic elastic
solid [Lindsay 1960] because elastic wave speeds depend on propagation direction. Similarly, isotropic
thermoelastic solids [Chadwick 1960; Lord and Shulman 1960; Green and Lindsay 1972; Ignaczak and
Ostoja-Starzewski 2010] exhibit waves both with and without dispersion and attenuation.

Whether isothermal [Scott and Miklowitz 1967] or thermoelastic [Sharma and Sidhu 1986], anisotropic
solids are often studied in terms of the plane harmonic wave. Thus effects of step-stress (shock) signals
in a reflection process are not as readily discerned as in transient analyses of, for example, isotropic
isothermal solids [Achenbach 1973; Miklowitz 1978]. Plane wave propagation without dispersion can
occur in an isotropic solid subject to thermal relaxation [Ignaczak and Ostoja-Starzewski 2010]. For
the orthotropic solid, a class of plane waves exhibits neither dispersion nor attenuation [Brock 2010],
whether Fourier conduction [Chadwick 1960] or thermal relaxation [Lord and Shulman 1960; Green
and Lindsay 1972] holds. The class includes the step-stress. For plane wave propagation in an arbitrary
direction, displacement and stress are in effect defined by the temperature change. For propagation in a
principal plane, out-of-plane displacement uncouples from temperature, and travels as a shear wave of
arbitrary form. In the isotropic limit both displacement components parallel to the wave fronts travel as
shear waves of arbitrary form.

This study examines problems of reflection of a transient plane step-wave by the traction-free sur-
face of a half-space. Two problems involve isotropic solids that are governed by the thermal relaxation

Keywords: orthotropy, coupled thermoelasticity, Fourier conduction, thermal relaxation, plane wave reflection.
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models of [Lord and Shulman 1960] and [Green and Lindsay 1972], respectively. The former exhibits
a single relaxation time, while the latter has two such times. A third problem involves an orthotropic
solid governed by the Fourier model [Chadwick 1960], and a fourth problem concerns an isothermal
orthotropic situation. For simplicity, orthotropic problems treat plane wave propagation in a principal
plane, and include the corresponding isotropic cases as limits. The incident wave in the fourth problem
is a step-stress. The first three problems consider incident stress- and temperature-step waves without
attenuation or dispersion [Brock 2010].

It should be noted, for the Fourier model in particular, that several problems involve restrictions on
the particular combination of natural boundary conditions imposed. Nevertheless, the solutions de facto
represent nonconventional thermoelastic processes [Ignaczak and Ostoja-Starzewski 2010], and allow in-
sight into propagation without dispersion and attenuation for plane waves with temperature or stress steps.

As indicated above, a substantial literature exists for isothermal wave propagation. For purposes of
illustration and the use of uniform definitions of parameters and functions, however, some key results
for these problems are included. It is also noted that a plane wave in an infinite isothermal solid is
obtained from the solution to an eigenvalue problem. That is, the solution defines the wave speeds and
couples components of displacement (and also stress). The work in [Brock 2010] differs only in that a
class of solutions —including the step-stress (shock) case — does not exhibit the typical attenuation and
dispersion of coupled thermoelasticity.

The study begins with a presentation of governing equations for the orthotropic isothermal and the
orthotropic thermoelastic solid. Corresponding equations for propagation of plane waves in a principal
plane are then extracted, and characteristic wave speeds for the isothermal and thermoelastic cases exam-
ined. The isotropic limit speeds are obtained, and asymptotic formulas for the speeds when orthotropy
is weak are then presented. Consideration of the four problems and isotropic limit cases follows.

2. Governing equations for orthotropic elasticity
In terms of principal Cartesian basis x = (x, x2, x3) and time ¢, linear momentum balance requires that
WTy = iiD*u;, D=—, v=+ii/p (i,k=123). (1)
v

Here 0; and 0, signify derivatives with respect to x; and ¢, and u;, T;; are the components of displacement
vector u and stress tensor T'(x, t). For the isothermal case the components of T are

T Ci Cio Ci3roius
|:T22:|=ﬂ|:C12 C> C23:||:82u2:|, (2a)

T33 Ci3 Cx3 C3 1L0zu3
T3 = 1Cy(Oou3z + 3uz), 131 = uCs5(03u1 +01u3), Tip = uCe(d1uz + douy), (2b)
nwCi=cii, pCix=ci @@#k). (2¢)

Here p is mass density, the c;; are the nine elastic constants for orthotropic elasticity [Sokolnikoff 1956;
Jones 1999], i is a reference shear modulus chosen for convenience from the set (ca4, Cs5, Cg6), and v
is a corresponding reference speed that becomes the shear (rotational) wave speed in the isotropic limit
[Achenbach 1973]. A positive-definite elastic strain energy requires [Jones 1999] that the determinant
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of the coefficient matrix in (2a) be positive, and that

Ck>0 (k:1529 354557 6)5 (33)
CiCy—C3, >0 (i,k=1,2,3, i#k), (3b)
CijCix — CiCxl < \/(C,-c, ~C2)(CiCr— C}) G, j.k=1,2,3 alldistinct).  (3c)

The summation convention does not hold in (3¢). Equations (1), (2b), (2¢) and (3) hold for a thermoelastic
solid initially at uniform (absolute) temperature Ty, but coupling of (#, T') with the change in absolute
temperature 6 (x, ¢) requires that (1) be augmented by

(h:9> — DD)0 — DD<—81M1+K82u2+?83u3) 0, (4)

with D, D, &i, h; defined below. The gradient column matrix in (2a) and (3) are also modified:

31”1—1(1@9 K Ci Cip Ci3[a
|:32M2 — K2D9i| with |:K2:| = |: Cpp C C23i| |:062:|, (5a)
33143 — K3D9 K3 Ciz Cy3 G
o, K; >0 (=1,2,3). (5b)

For the Fourier model [Chadwick 1960], denoted by F, and the thermal relaxation models of [Lord and
Shulman 1960] and [Green and Lindsay 1972], denoted by I and II, respectively, the operators D, D, D
are

F: D,D,D=1, (62)
I: D,.D=14mD, D=1, (6b)
II: D=1, D=1+hD, D=1+hyD. (6¢)

Here ¢;, h; are dimensionless thermal coupling constants and Ay, hyy are thermal characteristic lengths;
their expressions are

k;
cvA/ P
where #1, f11 are thermal relaxation times, with #; > #1, while &;, «;, cy are the conductivity, coefficient of
linear expansion, and specific heat at constant volume. In the isotropic limit, it = u reduces to the shear

modulus pu, while v reduces to the isotropic shear (rotational) wave speed vg = +/u/p; we then have,
with A the first Lamé constant and v Poisson’s ratio,

Ty _ _ _
& = c—(vK,-)z, hi = h=vt,, hn=vm, (7
%

2
CI,CZ’C3:&+27 Cy4,Cs5,Ce =1, C12,C13,C23=&= L (8a)
uw uw 1=2v
A Ty 2
Kl,Kz,K3:K:(3—+2)a, £1, 60,63 =6 = ~2 [v,(s +2)] (8b)
128 9%
k
hi,hy,h3=h= (8¢)

cyJIp
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3. Plane wave propagation in arbitrary direction: formulation

The formulation for plane wave propagation in an arbitrary direction is given in [Brock 2010] for the
thermoelastic case. For purposes of this article, it is sufficient to consider propagation in the xjx;-
principal plane. Thus the Cartesian basis (x, y, z) is defined with respect to the principal basis x by the
transformation

X =X1C0S¢p —xpsing, y=x;sin¢p+x,co8¢, z=2x3 (o] < m/2). 9

Because propagation occurs in the xjx,-plane it is convenient to choose

fi = ces, z'):vé:/‘%, t=vt, D=0,. (10)

The temporal variable T has dimensions of length, and D now signifies differentiation with respect to t.
When propagation is in the x-direction and (y, z)-dependence is suppressed, (1) gives

Ox Ty = C66D2“x’ Oy Tyx = C66D2uy’ 0x Tz = C66D2”z- (1)

Similarly, in place of (2),

T exT rCy Cyxy O roguy
Tyx = C66 xy Cy 0 8xuy y (1221)
LT, L0 0 C,dLlou,

Ty rCy Gy 0 qoyuy

T.. |=ces| CX CI 0 Haxuy}, (12b)
LTy L0 0 CydLlou,

Tey =Ty, Ty;=T.y, Ty, =T, (12¢)

In (12a) the dimensionless coefficients are

C. = Cicos* ¢+ Casin' ¢ + (1 + 1 C1o) sin® 2, (13a)
Cy = cos*2¢ + 1(Cy + Co —2Cp) sin® 2¢), (13b)
Cyy = %[Cz sin? ¢ — Cj cos® ¢ + (2 + C12) cos 2¢] sin 2¢, (13¢)
C.x = Cscos® ¢ + Cy sin’ ¢. (13d)

In (12b) the coefficients are

Cy = Cia(cos® ¢ +sin ¢) + [(C1 4 C2) — 1] sin® 29, (14a)
C) = 3[Cycos” ¢ — Cy sin* g — (2+ C1) cos 2¢] sin 2¢), (14b)
CY=Ci3c08° ¢+ Cozsin’ ¢, C) = (Caz—C13)singcos g, (14c)
Cy; =(C4—Cs)singcos . (14d)

The matrix in (12a) is symmetric but that in (12b) is not, and

Ciy+C)=(C;—C))singcos¢, Cy+Cy=1+Ccos’p+ Cysin’ ¢. (15)
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For the thermoelastic case, (11) is coupled with

~ — Ex &y
(hd> = DD)0 — DDd, ( —u, + —>u,)=0. (16)
<K; Ky ’)

The modifications of the gradient column matrices in (12a) and (12b) are

dyutx— K DO dyux— K3 DO
[axuy—nyzﬁe} |:8xuy—K3lA)9i|. (17)
OxU; Oxly
In (16) and (17),
T Tt
hy=hicos’ p+hysin®p, &= —(06K.) &= —(v6Ky)> (18)
Ccy cy
The K coefficients in (16)—(18) are given by
K, = K cos’> ¢ + K5 sin” ¢, K;:Kl sin? ¢ + K, cos’ ¢, (19a)
Ky, =(Ky— K;)singcos ¢, K, + Ky, =K+ K>. (19b)

4. Isothermal plane waves

Studies of isothermal waves in isotropic, transversely isotropic and orthotropic solids are available in
[Achenbach 1973; Payton 1983; Lindsay 1960; Scott and Miklowitz 1967]. For the sake of transparency
and notational consistency, however, basic results are presented here: (11) can be uncoupled, and (12a)
then gives

(Cx82 — D*)u, =0, (20a)
[cxaf —D?  C,,9? } [ux] _ [0} (200)
Cyyd?  C,0?—D?*1lu, 0
For plane wave propagation in the x-direction, (20) admits the general solutions
ug =Ugy + (c47 —x) + Ug_(c_T — ), E=(x,y), (21a)
u, =U,(c;t —x), c;=c(¢)= \/C5 cos’ ¢+ Cy sin? ¢ . (21b)

The functions U, and Ug are arbitrary but Ug is subject to either of two restrictions:
(Cx = cD)ULL + CryUJy =0, CoyUly +(Cy— UL =0 (22)

Here a prime signifies differentiation. The dimensionless speed c; is defined in (21b); the dimensionless
speeds ¢ = c4 come from the roots of the secular equation

= (Cy+Cy)® + CCy — C5, = 0. (23)

Properties of quadratics [Abramowitz and Stegun 1972], together with (13), (14) and (15), give
ci +c* = Ci+Cy= 1+Clcosz¢+Czsin2¢>,

(24)
cicz_ =C,Cy — C)%y = C) cos? ¢ + C, sin® ¢ + Q2 sin? ¢ cos? .
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Solution of (23) gives

2t =2c4(p) =TT +T", (25a)
r+ = \/1 +Ccos? ¢+ Cysin® ¢ j:Z\/Cl cos® ¢ 4 C, sin® ¢ + Q2 sin® ¢ cos” ¢, (25b)
Q=(C,—D(Cr—=D)—m?’=y—C—Cy, y=14CiCr—m?, m=1+C. (25¢)

It is noted that c4 and c, are symmetric in ¢. Parameters (y, m) and €2, respectively, are used by [Payton
1983] and [Brock and Georgiadis 2007] for transversely isotropic materials, but prove useful in the
present study as well. In the isotropic limit 2 = 0 and (21b) and (25) give

V=1V, C;=cC_=csg=1, c+=cD=/%+2>1 (|| <m/2). (26)

Subscript D and S signify quantities associated with isotropic dilatational and shear waves. For ortho-
tropic materials, c; > c_ > 0 in any of these situations:

Al: Y2 —4C1C2 <0, |p| <7/2; (27a)
A2 7/2—4C1C2>(), y>0, |¢p|<m/2; (27b)
A3: P —4C10>0, y<0, [pl<da, day<lpl<m/2, 27¢)
where
1
o1>Ai=tan*1\/?C2 —yFAY2 —4CCs. (27d)

If in A3 we take instead |¢| = P g4, then 't =T~ >0andcy >0,c_=0.If ®,_ < |p| < P4y, then
['t, '™ are complex conjugates with positive real parts, and ¢ is positive real, but c_ is imaginary.

5. Thermoelastic plane waves

Equation (1) again uncouples to produce (20a) and (21b). However, (u,, uy) and 6 are coupled by (16);
as a consequence [Chadwick 1960; Achenbach 1973; Ignaczak and Ostoja-Starzewski 2010] we get for
isotropic materials a secular equation that gives complex dimensionless speeds c; that is, uy, u,, 6 exhibit
dispersion and exponential decay.

However one can consider a restricted class of forms [Brock 2010]

N

6 = Z Or_1(ct — )1 (ct >x) (28)
k=1

with N =4 for F and N = 3 for I, II. Here the ®; are constants; the ®( term represents a propagating
temperature step. The secular equations then become

F: t—1f+1f =o, (29a)
i =+ I + (e + 2+ 1 1e? = Leie? =0, (29b)
I: =+ T+l (ch + )+ hlc? —lcte? =0. (29¢)
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The coefficients in (29a) are
IlF =1+ F; cos® ¢+ F sin? ¢, 12F = F) cos? o+ F sin’ ¢+ QF sin’ o) cos’ o, (30a)
with
Q=F —-DF~)-mi=yp—Fi—F, ye=1+FF-mj mp=1+Fa  (30b)
Fi=Ci+e, EBE=C+¢&, Fp=Ch+ 8. (30c)
In (29b) and (29c), c+ and c_ are given by (25), and

h
:l>Ll:@

hy hy
The inequalities in (31) are based on data [Ignaczak and Ostoja-Starzewski 2010; Brock 2009]. The
roots of (29a), (29b) and (29c) give dimensionless speeds ¢ = cp+, ¢ = c11, €1, €31 and ¢ = ¢y, €211, €311

. Properties of quadratic and cubic equations [Abramowitz and Stegun 1972] show that

L=l +0-D(+c2), L= +0A-Di, I > 1. 31)

ptcio=1{, i =1, (32a)
chtonten=L+1{, cutcmt+cp=>L+1, (32b)

cheq+ e+ =LI+13,  uciy+ ucin+ ucin =Ll + I, (32¢)
cliehca = iy = L fa. (324d)

For model F, (29a) and (30) give symmetric real functions of ¢:

2cp+ = 2cpi (@) =T £Ty, (33a)

r= \/ 1+ Fy cos? ¢ + Fs sin® ¢ £ 2v/ Fy cos2 ¢ + F sin® ¢ 4 Qp sin2 ¢ cos2 . (33b)
In the isotropic limit, Qg vanishes and (30) and (33) give, for all |¢| < /2,
V6 =Vr, C;=Cp-=cs5=1, CF+=CF=\/C2D+8>1. 34)

The parameter set (yr, mg, 2F) is the thermoelastic counterpart of (y, m, 2). For the orthotropic material,
the behavior of cgy is governed by conditions that can be obtained from (27) in Section 4 by replacing
Ct, Fi, y,m, Q, Cy, Cp with cp4, FI:;t, vE, My, QF, F1, F, respectively.

Formal expressions for the roots C%I, c%l, c%l of (29b) and basic inequalities that guarantee positive real
values are given in [Brock 2010] for Model I. The isotropic case is of interest here, and it can be shown
that (29b) gives, for all |¢| < /2,

Ve=1UVs, ClI=Cl4, CQ=Cl—, C=C;=cs=1, (35a)

Qe =T Ty, Tf=y(cpE£v0L)+e. (35b)

Available data [Brock 2009] suggest that 1 < ¢c;— < ¢p < ¢r < cr+. Equation (35a) shows that the
components of u,, u, corresponding to c3; uncouple from 6, i.e., are shear waves defined by arbitrary
functions of 7 — x.
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Equation (29¢) for Model 1II yields roots c;, ci11, con, ¢3p. Formal expressions for these, and basic
inequalities that guarantee positive real values, are given in [Brock 2010]. As with Model I the isotropic
case is of interest here:

Ve =Vs, ClI=Cl+, Ca=Cl—, CM=C;=cs=]1, (36a)

dens =TH £T5. Tn=1/(cp £yl +1e (36b)

Available data [Brock 2009] suggest that 1 < cjj— < ¢p < ¢f < cqi+-

The components of u,, u, that correspond to cg_, c31, c311 are seen from equations (34), (35a), (36a),
respectively, to uncouple from 6, and become shear waves that are arbitrary functions of T — x. Moreover
(35) and (36) give the dimensionless speeds in transient two-dimensional studies that are valid for short
times (t/h; < 1 and 7/ hy < 1 respectively); see [Brock 2009].

6. Speeds in weakly orthotropic solids

The limit (26) of (25) can be defined in terms of dimensionless parameters C and €2, and likewise the
limit (34) of (33) in terms of F} and Qg:

Ci—Cy,, Q—=0: ci@)=cp, c_(p)=1, (37a)
Fr—>F, QF—>0: cp(@)=cr, cr-(p)=1, (37b)

In similar fashion, results from [Brock 2010] show that

ciki(@) =iy, ca(@) =c—, c(p)=1, (38a)

C1—>C2, F1—>F2, h1—>h2, Q,QF—>OZ {
cin(@) = cug, (@) =cn—, can(e) =1, (38b)

When orthotropy is weak, i.e., when Cy, Fi, hy, 2, QF are close to the limits indicated in (37) and (38),
asymptotic formulas can be derived. The derivation does not require explicit formulas such as (25a) and
(33a). A first-order variation of (24) and (29), under constraints (23) and (32), gives

8C1 2 ) 2 5
ci(Pp)~cp+—cos“ ¢ — sin” 2¢, c_(¢p)~ 1+ —sin” 29, (39a)
2cp 8mcp 8m
Cp+ (@) = cp+ — cos™ ¢ — —— sin” 29, cr(P)~1+—ro sin’ 2¢, (39b)
ZCF SchF 8m MECE
1 cos? ¢ dhy
[en(@), ex@xerats———— (o=t Q) sin® p+ (et~ )| f8 Fy 1o Cr -+ (cf—ch) S ]
201+ PICH: + 01
(39c)
1 cos® ¢ ’ ) .
[ci(®), con(P)] ~ cn+ + x [QUo+ ey (I — 1)) — ley . QF] sin” ¢

2ens Puchy + Qn
Shi

o ] (39d)

(R, — 1)[lc12&8F1 (1= 1) = 10)8C) + (B — c3) 2t
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@~ 1+ D2 LGy (39%)
c ~ ———————sin , e
. l—cl%—i-mloS

l+l-DQ—I1Qr 1
1 —Icz+mly+2c3(1—1)8

cam(g) ~ 1+ sin® 26, (39f)

where [y = h/hp is the limit value of /., the parameters Pi, Py, Q1, Onr are defined by

Pr=1+4ck—2y, Pyp=1+c}+Ie—2l, (40a)
O1 =305 +lolcg +2( — 1)] — 2¢3, (40b)
On = 3lollo+e( — D]+ loleg +2(e — D] —2(c}, + o), (40c)

and §C1, 6 F1, 8hy, 2, QF are small:

5C1=C1—C2, 8F1=F1—F2, (Shl:hl—hz, (4121)
C Fy ‘ hy ‘ ‘ 14 ‘ YF ‘
— 1K1, — -1 K1, — -1, -1 <1, -1« 1. (41b
‘Cz ‘ F ha Ci+C Fi+F (41)

7. Isotropic case: shear wave reflection for model I

The isotropic half-space x; > O is initially at rest at uniform temperature 7p. An incident plane shear
step-wave travels in the negative x-direction, and reaches surface point (x1, x2) =0 at time t =0 (r = 0):

(Ug,u)=0, Toy=G;+Gi(t+x)(t+x=>0). (42)
Here G;, G; are given constants. In view of (9), the wave (42) generates, for x; = 0 and 7 + x, sin¢ > 0,
0=0, (T2, Ti1)=(cos2¢p,—sin2¢)[G;+ G;(r + xp sin¢)] 43)

Reflection of (43) generates plane waves governed by (11), (28), (29b) and (34). These travel away
from the surface, i.e., in positive x-directions whose angles differ from ¢. In view of (9), (12) and (17),
therefore, we have, for x; =0 and T — x, sin¢g > 0,

6 =0, (T]z, T]]) = (COS 2(,255, —sin 2¢S)[G5 + Gig(‘[ — X2 sin ¢S)] (44)

For x;1 =0, ¢+ — x2 sinf+ > 0 we have

=04+ @;(Clif — Xy sin¢4), (45a)
nwk .
(T2, Tiy) = —d—(Slﬂ 2¢+, C1)[O+ + O (craT — x2 sin )], (45b)
+
Cy=ci, —2sin* ¢y, di=cf —ch, did_=—ech. (45¢)

Here Gy, G/S, ©.4, ®/ are unknown constants. The half-space surface remains traction-free and is
governed by thermal convection [Chadwick 1960]:

X1=OZ T12:T11=0, 319—,39:0 (46)
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Parameter B is related to the Biot number [Boley and Weiner 1985]. Satisfaction of (46) by the summation
of (43)—(45) requires that

¢s=—¢, ¢+=—sin"(ciasing) (crxsing <1). (47)

It follows that (46) produces the equations

C =:I:%(®++®_), A =cos¢, —cos¢_, (48a)

MK(% $in 26, + % sin 2¢_) + Gy cos 2¢s + G; cos 26 =0, (48b)
—MK(S—:C++%C_) + Gy sin2ps — G, sin2p =0, (48¢)

uK% (% sin2¢.y — 1= sin 2¢_> (@4 +O_) + Gy cos 25 + G/ cos 2¢ = 0, (48d)
—MK§ (2—1@ - a4 _)(®+ +©_) + Glysin2¢s — G sin2¢ = 0. (48¢)

Equation (45a) implies a spike (Dirac) function §(t + x; sin ¢) at the wave intersection in the heat flux
term in (46). Therefore (48) is subject to the restriction

-0y cos¢py +crO_cosgp_ =0. (49)

The equation set (48b)—(48e) is solved for (Gs, G, ®+), whereupon (48a) yields ®’,. The surface
temperature change generated by reflection is of particular interest, and it can be shown that, for x; =0
and T +x; sing > 0,

o= Lo CiNasindgrA | )@ +xasing)] (502)
==t - " |— i+ — c1—)(T + xp sin , a
nK  RyuRy LB i
Ru=d_c{ Ry —dict_ R, Na=d_cf Ri+dici R  (k=1,2,3), (50b)
1
Ry =2sin2¢ sin ¢/ 512jE —sin® ¢ —cos?2¢p, s = —. (50c)
Cl+

The function Ry is of the Rayleigh type [Achenbach 1973] in the isothermal case, and Ry is a thermo-
elastic counterpart. Investigation of possible roots of functions (Ng1, Rir) is beyond the scope of this
article, but is necessary to complete this analysis.

Equation (50a) represents the effects of heat production from a shear wave by mode conversion. It is
noted that the step-stress term G; does not contribute to surface temperature. Moreover, restriction (49)
is satisfied only when the incident shear wave parameters (G;, G;) are related by

G.
|:ﬂG—i(cl+ cos¢_ —cr—cos¢y)+ 1 —cos¢y cos ¢_:|R31 — CI2+612_R11 sin® ¢=0 (51
i

That is, the surface in general exhibits a spike in the heat flux.
The restriction in (47) indicates that reflections moving at speed cj_vg travel parallel to the surface
when ¢y sin ¢ = 1. Therefore ¢ = sin™! s, is the minimum grazing angle of incidence. For this angle
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cos ¢4 = 0 and (50) gives

Ri=—(1-25%)% R_= 4s12+\/1 — s12+\/s12_ — st — (1= 2532 (52)

Use of (52) causes distinct changes in the forms of (50a) and (51). However, this does not give corre-
spondingly distinctive behavior.

8. Isotropic case: shear wave reflection for model 11

Equations (29¢) and (34) now govern. Thus (42)—(44) and (45a) hold, but with ci+ replaced by cy+. In
place of (45b) and (45¢) we have, for x; =0 and ¢+t — x2 sin ¢4 > 0,

nkK . .
(Ti2, T1y) = —d—(sm 20+, C)[O4 + O, (hycns + e T — x2sin 1)1, (53a)
+
h
di=ci —c%, dyd_= —gh_“cg (53b)
I

Equations (48a), (48d), (48e) and (49) still hold, with cj+ replaced by cy+. Equations (47), (48b) and
(48c) are replaced by

¢r=—¢, ¢r=—sin"'(cussing)(cnysing < 1), (54a)

( O, . O_ .
uk p+ . sin 2¢4 + p-—sm 2¢>_> + Gscos2ps+ G;cos2¢p =0, (54b)

+ —
—MK<p+%c++p,&c,) + Gy sin2¢s — G sin2¢ = 0, (54¢)
d, d_
pr=1+ ﬁCH hy, p-=1- ECII hi. (54d)
+ A + ’ - A -

In this case, for x; =0 and 7 + x, sin¢ > 0, we have

2 / -
ecy, h G Napsinde A .
o= =DM ZCHRE IR L ey —en )+ sing) | (55a)
uK hy  RonRsm LB -
Rur=d_pycii Ry —dyp cfi_ R, Nai=d pic Ry +dipcf R (k=1,2,3). (55b)

Equation (50c) still holds, with ci+ replaced by cyi+. The counterpart to (51) does not hold and a surface
heat flux spike will arise unless

G; .
B Eﬁ_(cn— cos ¢ — crs €08 ¢_) Rap + (1 — cos ¢ cos ¢_) Ran — ¢y . cfi_Rinsin® ¢ = 0. (56)
1
Here Rsj, R3pp both appear, with 1+ replaced by ¢y in (50b). Completion of this analysis will require
study of possible roots of Nijr, Ry Equation (54a) shows that the minimum grazing angle is ¢ =
sin~! syp;. Then (52) holds, with s; replaced by sy,. Equations (55a) and (56) do not exhibit distinctive

behavior for this angle.
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9. Orthotropic case: thermal wave reflection for model F

Consider the temperature change 6 = ©;, traveling as a plane step-wave with speed cpy vg in the negative

x-direction toward the surface x; = 0 of half-space x; > 0. Arrival at surface point (x, x2) = 0 occurs

at time ¢ = 0 (r = 0). The material is orthotropic and satisfies the Fourier model equations, and (33a)

for cpt+ = cr+(¢) in particular. This problem is treated in [Brock 2010], so only key steps are presented:
For x; =0, cp+(¢)T + x2 sin ¢ > 0 the incident wave generates

Q(CF-‘ra ¢) P(CF+7 ¢)
= 0;, T)1=—-c———0; 57
S (ers. 9) = T (epg ) 67

In (57) the functions Q, P are defined by

0=0; Tpn=-—

0(c, d) = (K1 + K2)c2(¢) sing cos ¢ + Q1 sin® ¢ (1 + 2 cos 2¢) + Qo) cos> ¢ (1 —2cos2¢), (58a)
Q12 = Kim cos® ¢ — K»(C) cos’ ¢ + sin® ¢), (58b)
07 =Kym sin2¢—K1(C2 sin2<]§—|—cos2 o), (58¢)

P(c, §) = [F1 K cos’> ¢ + (mp—1)Kasin® ¢1c*(¢) + [F) Py cos’ ¢ + (mp—1) Posin® @] sin g cos ¢, (59a)
Pi = K (mcos2¢ + 1 +2C, sin® ¢) — K»(C} cos 2¢ + 2m sin® ¢), (59b)
P, = Ky(mcos2¢ — 1 —2C) cos® @) — K1(Ca cos 2¢ — 2m cos’ ¢). (59¢)

The function S is defined by

S(c, ¢)
=[c*(¢) —11(e1 cos® ¢ +&3sin @) +[(Ca — 1) /&1 —m/e2]/E1 +[(C1 — 1) /o2 —m /21 1/E2.  (60)

Here only the condition that the half-space surface remains traction-free is imposed. In accordance with
(28) and (29a), reflected plane waves travel in positive x-directions that form angles ¢+ with the positive
x1-axis at speed cp+(¢+)vg. The temperature steps are @, Equations (58)—(60) hold with ¢ replaced
by ¢4, and for x; = 0 and cp+(¢+)T — x2 sin ¢+ > 0 we have

O(cp+, 9+) P(cp+, ¢+)

0=04, Tpn=—ce6——F7"0s, Ti1=—Ce6——-0+. 61
* 2= TS (e ¢r) ! S (era $r) b
Reflection requires that

Cri (@) iy + i (1) sing =0,  cpy () sind_ +cp_(¢-) sing = 0. (62)

This equation is satisfied when
_, sing

(@)

by =—¢, ¢ =—sin (63a)

1

m\/(l + Fi)ct, () — Fi cos® ¢ — (F2 + Q) sin” . (63b)

chg) =
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Imposing a traction-free surface gives

 O(cpt, @) P(cp—, 9-) — P(cpy, ¢) Q(cp—, ¢-)

" O(cry, =) P(cr—, ) — P(cry, —¢) Qcr—. ¢-)’

S(cp—, ¢-) P(cr+, ¢)Q(cpt, —¢) — Q(cry, ) P(cry, —9)

" S(ery, @) Q(cpr, =) P(cr—, ¢-) — Plcrr, =) Q(ck—, )

It is noted that ®; + ®; + ®_ #0, i.e., the Fourier model predicts surface temperature change. Moreover
a surface heat flux spike occurs in 0;60 unless

O, =0 (64a)

O_=-—

(64b)

(®; —©®4)cos¢p —O_cos¢p_ =0. (65)

The nature of cf; depends on material categorization that differs from the counterpart to (27) mentioned
in Section 5, e.g., yr < 0 implies Q2f < 0, and Qf — m%: > 0 implies Q2 > 0. Therefore (63b) gives the
positive real results

1
v Fi

cE(@ps) =V F cos> Dy + (Fy + Qp cos> D) sin® D . (66b)

E(@ps) = ——=V1+ Fcos? ®pp + Fysin® dyu (662)

However, when (F; — F>)? —4Qr < 0 and (1 + F))(F| — F») —2(F> + QF) > 0, the value of cf’ﬂ2 vanishes
when |¢| = @4 and is imaginary for ®_ < |¢| < &, where

®y =tan"! \/?\/(1 + F)IFI — F £/ (Fi — F2)2 — 4Qg] — 2(F> + QF) (67)

This behavior implies that (63a) is subject to the restriction sin’ ¢ < [c{p2 (¢)]%. It can be shown that the
restriction is satisfied except in the following cases:

Bl: Qp>0, &g <|o|<n/2 (68a)
B2: P§+Q3>0, P <0, Qp <0, <I>2_B<|¢|<d>;rB, (68b)
with
1 1
®,p = tan~! Ps+VPy+Qp,  ®p=tan’ —PsFVP2+05,  (68c)
@\/ 5 2B «/——QB\/ 5
F
Pg=1 —71<1+F1>(1+F2>, Q5 = FiF>,+ Q1 + Fy). (68d)

For angles of incidence ¢ that lie outside of the ranges prescribed by B1 and B2, a reflected wave travels
in the negative x,-direction at speed cpyve. In view of (68) and the thermoelastic counterpart to (27) in
Section 4, (61) and (64) are governed by two cases. A study of the various limits |¢| = P4, D15, CDZiB,
as well as study of possible situations for which (61) and (64) vanish or become unbounded, is beyond

the scope of this single paper. Such efforts are planned for a longer format.
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As observed above the reflections uncouple as a thermal and a shear wave in the isotropic limit. Thus
for x; = 0O the incident and reflected fields give

for cpr +xasing >0: 0=0,, T,=-KL@ g 7 _ _pKP@)g. (6o
mgé& Mgé€

0 = @F’ le — _MKQ(¢F) ®F, Tll — _I’LKP((»bF) ®F; (69b)

for cpt — xp singp > 0:
Mgé€& MmMg€&

for T — xp singpg >0 : 6 =0, Ti» = T cos 2¢s, Ti1 = Ts sin 2¢yg. (69¢)

Here T is the unknown stress T, due to the reflected shear wave, and

Q(¢) = cEsin2¢ — 1+ cos? 2¢, (70a)
P(¢) = ci(ct —2sin’ ¢) + 8sin’ ¢ cos® ¢. (70b)
A traction-free surface now requires that
. _; sing
¢pp=—¢, ¢g=—sin , (71a)
CF
21K ©;
Ts = 2201401 — 2052 26) + ci(ck — 2sin” ¢)] sin 2¢, (71b)
mFD08
Op = 6 [ . Di(cé $in s cos s — sin® 26 cos 2¢bs) sin 24)], (71c)
0
Dy = Q(—¢) sin2¢s — P(—¢) cos 2¢s. (71d)

On the surface we have O + ®; # 0, and a heat flux spike occurs unless

(®; —Og)cos¢p =0. (72)
The parameter c12(¢) equals cgp when F; = F;, and Qp = 0, and for the weakly orthotropic case
SF c .
F () ~ cp + (1 4 cos® ) — — —Qpsin’ ¢. (73)
2cp Mg

Here § F|, QF are governed by (41).

10. Orthotropic isothermal case: stress wave reflection

Consider the situation in Section 9, except that material response is isothermal, and an incident plane
wave moves with speed c (¢)vs toward the half-space surface. In terms of the traction 7;, the wave is
defined in accordance with (20)—(22) as step-stresses

Tox = Tic% ($)[cos” 2¢ + (Ci + C2 — 2C1p) sin® ¢ cos” ¢ — ¢ (B)], (74a)

Tyy = —Tic3(¢)[Casin® ¢ — C cos® ¢ + (2 + C12) cos 2¢] sin ¢ cos ¢, (74b)

Tyy = T;c2(¢)[C12 c0s? 2¢ + (Cy + C2 +2C 12 — 4) sin” ¢ cos® ¢] — T;(C1a + 2 sin® ¢ cos® ¢).  (74c)
For x; =0 and ¢ (¢)T +x2sin¢ > 0, the step-stresses Ty, Ty, Ty, generate traction

Iy =TiP(cy,9), Tin=T;Q(cy, ), (75)



ORTHOTROPY AND THERMOELASTICITY IN PLANE STEP-STRESS WAVE REFLECTION 101

where P, Q are defined by
P(c, $) = *($)[C12 cos> 2¢ +2C, sin® ¢ — C; cos 2¢ — 8 sin” ¢] sin® ¢

+ (Cj cos® ¢ + C, sin® ¢) cos? ¢ + Q cos 2¢ sin® ¢ cos> ¢ — Cyz sin’ ¢, (76a)
Olc,¢) = —c? (D)(C1+Cy) sin’ o) cos’ ¢+ C12(c0s4 ¢+ sin* o)+ cos’ 2¢]sin2¢

+[C12 + Cj cos® ¢ + Cy sin’ ¢ + 282 sin® ¢ cos® ¢] sin ¢ cos ¢. (76b)

(Thus P is symmetric and Q is antisymmetric in ¢.) Reflection generates plane waves T, Ty, Ty, that
travel away from the surface with speed c.(¢+)vg, so that for x; = 0 and ¢ (¢)T — x2 sin¢p+ > 0 we
have

Tii=TsP(ct, d+), Tio=T+Q(ct, P+). (77)

In this case a traction-free surface requires that

br=—6, ¢_——sin! 2NP (78a)
c12(¢)
Qe ®) Pl b = Ol ) Plerd) o)
0(cr, $)Pc_. o)+ 0(c_. 9 )P(cr. )
. O(cs, $)P(cs. $) o5

2T; :
Qe @) P(c—. ¢ )+ Q(c—. ¢ )P(ct. 9)

c2(¢) = \/LC_\/(l +C1)ci(p) — Crcos’ ¢ — (Co+ Q) sin’ ¢ . (78d)
1

The behavior of (78d) is analogous to that of (63b), so that (78a) must be subject to the restriction sin’ o<
c%z(qb). Condition (68) in Section 9 again holds, but with (chz, Qr, F1, F») replaced by (cq2, 22, Cy, Cp).
Consistent with the observations in Sections 7, 8 and 9, study of (78a) in light of (27), (68) and their
analogues, and consideration of cases for which (78b) and (78c) vanish or become unbounded, is reserved
for future work.

However, for some insight into both (27) in Section 4 and the isothermal analogue to (68) given

in Section 9, Table 2 in the Appendix provides calculations for four orthotropic wood materials (see
Table 1) under isothermal conditions. The table entries show that c4 exists for these materials, i.e., there
are no angles ® 44 that restrict angle of incidence ¢. Similarly, the entries show that only the isothermal
counterpart of restriction B1 governs reflection; that is, ®p; exists, but CIDZiB does not.

The isotropic limit case is a standard problem [Achenbach 1973]. However, for completeness some
results are presented here:

i N T,

op=—06, ds=—sin 2P N D Ghop(d —2sint g), (79a)
(65)) R R

N =25sin2¢ sin ¢v/ ¢, — sin® ¢ — (c3, — 2 sin® ¢)?, (79b)

R = 25in2¢ sin ¢v/ c% — sin® ¢ + (c3 — 2sin® ¢)°. (79¢)
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The isothermal counterpart to (73) is

CD

cn(@)~cp+(1+cos”¢p)— — —Qsin“ ¢. (80)
2cp m

Here 5§Cy, 2 are governed by (41).

11. Some observations

The results of Sections 7 and 8 illustrate the alteration in half-space temperature that occurs when an
isothermal (shear) step-stress wave is reflected from its surface, and only the wave class studied in [Brock
2010] is considered. In Section 7 thermal relaxation with a single relaxation time [Lord and Shulman
1960] governs. The [Green and Lindsay 1972] model, with an additional thermal relaxation time, governs
in Section 8, and this time is coupled with the convection parameter 8 in the solution. A minimum grazing
angle of incidence arises in both Sections, but distinctive changes in solution behavior do not seem to
occur at this angle.

Section 9 treats an incident temperature step-wave that propagates without dispersion or attenuation
[Brock 2010] in an orthotropic half-space governed by the Fourier law [Chadwick 1960]. Only two cor-
responding reflection waves arise, so that only the requirement of a traction-free surface is met. Formulas
for reflection angles are also presented. In the isotropic limit one reflection becomes an isothermal shear
wave, and an asymptotic reflection angle formula valid for weak orthotropy is given.

Section 10 involves the commonly studied isothermal wave reflection process in an orthotropic half-
space. For comparison with Section 9 the incident wave is a step-stress. In the isotropic limit the
two waves generated by reflection reduce to the standard dilatational/shear wave pair. As in Section 9,
distinctive behavior does not seem to occur at the minimum grazing angle. The reflection angle, its
isotropic limit, and an asymptotic form for weak orthotropy are also given.

These results can in general be predicted by work in Sections 4 and 5. There governing equations
and associated (dimensionless) speeds for plane wave propagation in a principal plane of isothermal
and thermoelastic orthotropic solids are examined. Only the wave class discussed in [Brock 2010] is
treated in the latter instance. Isotropic limits for the dimensionless wave speeds are also given, as well
as asymptotic formulas for weakly orthotropic solids.

Sections 7, 8 and 9 demonstrate the limited applicability of thermoelastic plane wave ensembles that
travel without dispersion or attenuation [Brock 2010], both for isotropic and orthotropic solids. Because
the Fourier model allows only two signals, stress-free surfaces can result only if a prescribed uniform
temperature and associated heat flux spite form the thermal boundary conditions. General time-harmonic
[Chadwick 1960] or transient [Brock 2005; Brock and Hanson 2006] studies admit three, so the “missing”
signal corresponds to the Fourier paradox of infinite speed.

However, Sections 7, 8 and 9 also demonstrate that there are combinations of speed, wave profile and
angle of incidence that do not couple prescribed stress and thermal boundary conditions. As implied at the
outset, moreover, problems that do couple conditions represent in effect special cases of nonconventional
thermoelastic processes [Ignaczak and Ostoja-Starzewski 2010]. Such boundary conditions are artificial.
Nevertheless, the problems discussed here do illustrate that the transient response of thermoelastic solids
subject to surface reflection can differ from that described by analyses based on time-harmonic waves,
dispersion and attenuation.
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Finally, it is noted again that the restrictions imposed on wave travel by orthotropic elastic solids,
whether thermoelastic or isothermal, need to be examined in more detail. The work by Kraut [1963] and
Payton [1983] in isothermal transversely isotropic cases, and by Ignaczak and Ostoja-Starzewski [2010]
in isotropic thermoelasticity with relaxation, are models in this regard. At present work is also proceeding
on thermoelastic plane waves that exhibit a particular form of attenuation, but without dispersion.

Appendix

Data for four orthotropic wood materials — balsa (B), yellow birch (YB), Douglas fir (DF) and Sitka
spruce (SS) — are taken from [Crandall and Dahl 1959, pp. 224-228] and summarized here:

Soo/S11 0 S33/S11 S12/S11 0 S23/S11 Si13/Sut 0 Saa/Sui Sss/Su o Ses/ St
B 20 70 —0.3 —15 —-0.5 18 200 27
DF 13 20 —-0.5 -9 —-0.5 14 60 15
YB 15 20 —-04 -7 —-0.5 16 140 13
SS 13 23 —-0.4 —6 —-0.5 16 20 16

Table 1. Compliance ratios.

The dimensionless constants Ci, C», Ci» can be obtained from [Jones 1999]:

Se6 [522 S33 $23\2 Se6 | 33 S13\? Ses | S13.523  S33 512
S fSno_(Smy) o, SwfSh_(Sop) o, SefSSn_S»Se]

1= e - - —_— =
S11s LS11 St S11 S1s LS1 St Sis LSt St Su S
g 258 (@)l&(&)ﬁ&(&)ﬁzﬁﬁ%
S11 St St NIRYME S11 NSt Si1 S11 S

Equations (25), (27) and the isothermal analogue of (68) then give results in Table 2 for the various
dimensionless parameters.
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ON THE MYSTERY OF CALDERON’S FORMULA
FOR THE GEOMETRY OF AN INCLUSION IN ELASTIC MATERIALS

Huy DUONG Bul

I write this paper to pay homage to Marie-Louise Steele and in honor of Charles R. Steele. I have had the pleasure and the
honor to serve their journals 1JSS and JoMMS, with George Herrmann. They have made Solids & Structures and now
Material Sciences a subject of nobility to all of us.

We consider the nonlinear inverse problem of determining an inclusion in an elastic body, in antiplane
shear loading. The perturbation of the shear modulus due to the inclusion was determined by Calderén
(1980) in the case of a small amplitude of perturbation. For the general nonlinear case, the problem is
decomposed into two linear problems: a source inverse problem, which determines the geometry of the
inclusion, and a Volterra integral equation of the first kind for determining the amplitude. In this paper,
we deal only with the determination of the inclusion geometry in the two-dimensional problem. We
derive a simple formula for determining the inclusion geometry. This formula enables us to investigate
the mystery of Calderén’s solution for the linearized perturbation A°, raised by Isaacson and Isaacson
(1986), in the case of axisymmetry. By using a series method for numerical analysis, they found that
the supports of the perturbation, in the linearized theory and the nonlinear theory in the axisymmetric
case, are practically the same. We elucidate the mystery by discovering that both theories give exactly
the same support of the perturbation, supp(h°) = supp(h), for the general case of geometry and loadings.
Then, we discuss an application of the geometry method to locate an inclusion and solve the source
inverse problem, which gives an indication of the amplitude of the perturbation.

1. Introduction

Inverse problems for defect and crack identification in elasticity have many applications in medicine
and the mechanics of materials. In medicine, tomography techniques using mechanical loads such as
an antiplane shear loading on animal tissue, are worked out in [Catheline et al. 2004]. Cancer tumors
are expected to have higher density and higher stiffness or shear modulus than sound tissues, so the
difference in material properties between sound and malicious tissues is detected by mechanical loads
and responses. Auscultation by a doctor is nothing but a rudimentary method of endoscopy relying on
the same principle.

In the mechanics of materials, damage is known to result from microcracks which lower locally the
elastic constants. New topics in mechanical tomography have recently been the subjects of several works.
For example, solutions to crack inverse problems in two and three dimensions are known in elasticity
[Andrieux and Ben Abda 1992; Andrieux et al. 1999; Bui et al. 2005] and in viscoelasticity [Bui et al.
2009], in statics as well as in dynamics, under the assumption of small frequencies. In elastodynamics,
solutions of inverse crack problems are obtained in [Bui et al. 2005] where the solution to an earthquake

Keywords: nonlinear inverse problem, inclusion geometry, antiplane problem.
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inverse problem to recover the faulting process was proposed. A review of several exact solutions to
inverse problems is found in [Bui 2006].

The case of distributed defects was first studied in [Calderén 1980] for the scalar elastic equation, then
in [Bui and Chaillat 2009] for the case of dynamic viscoelasticity in the low frequency domain. Most of
the works mentioned used reciprocity functional techniques for solving the following inverse problem.
Find functions 4 and u satisfying the field equation and two superabundant boundary data f and g:

div[(14h(x)) gradu] =0 in L, (1-1)
w=f and g—Z=g in 99. (1-2)

The pair of data (f, g) is compatible with the perturbation 4. We consider normalized constants so that
the shear modulus of an homogeneous body is 1 and the inhomogeneity is characterised by the material
constant 1 + 4(x). We assume nonzero measure of support of 4 which excludes the hair line inclusion
case. For small amplitude of the perturbation /, Calderén [1980] derived explicitly the solution, denoted
hereafter by hO(x).

In this paper, we shall reconsider the nonlinear Calderén inverse problem for identifying distributed
defects in elasticity of arbitrary geometry. First we give a formula for the geometry inclusion. This
nonlinear problem has been solved numerically in [Isaacson and Isaacson 1989] for data corresponding to
a circular geometry of the inclusion and body, under axisymmetric radial loads. They used a series method
to solve the equation in the axisymmetric case, with data (f, g) corresponding to /(r) not necessary of
small amplitude. The data for the numerical test is obtaining first by solving a Dirichlet boundary value
with condition ¥ = f on the boundary and with a given £ on the inclusion. Then the boundary value of
the gradient g = du/dn is calculated. They have shown by numerical experiments (with a series method)
that the support of the inclusion function 4°(x) from Calderén’s formula is almost indiscernible from
the circle introduced for (f, g). This is the mystery of Calderén’s solution, which seems to work for
the nonlinear case as well. It is incredible that a formula derived for a small amplitude perturbation still
works for the general case. We shall clarify the mystery by comparing the geometry inclusions in both
theories. Then we discuss an application to the source inverse problem.

2. The nonlinear Calderon equation for % and the linearized solution

We consider the identification of internal defects in the antiplane problem of elasticity, or stationary
heat/mass transfer phenomena, or electricity conduction. In the antiplane problem the shear modulus is
of the form p(x) = 14 h(x). The shear modulus in the absence of defect (4 = 0) is normalized to unity.
We assume that the defect is characterized by the function 2 (x) with compact support C C €2 and
h = 0 on the boundary 9€2, see Figure 1. Defects may not be necessarily unique.
Consider an adjoint problem for the sound solid 42 = 0 to determine the function ¢:

divgradp =0 in €, (2-1a)
9 _ a(x) on a2, (2-1b)
on

with the equilibrium condition f 9o @dS =0, and let b(x) be the boundary value of ¢.
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U U,

Figure 1. Identification of an inclusion C represented by a perturbation of the material
constant. A mesh for numerical analysis with data U and 0U /on =: U ,.

Combining (1-1) and (2-1a), after multiplying (1-1) by ¢ and (2-1a) by u, integrating by parts and
taking account of 7 = 0 on 92, we obtain the Calderén equation for 4 for any ¢

/ h(x)gradu(x; h) - grad(p(x)dzx =/ (gb— fa)dS =: R(f, g;¢), Vo. (2-2)
c a0

The right-hand side of (2-2) is known from the boundary data (f, g) of the current field # and the data
(a, b) of the adjoint function ¢. In the following, it will be denoted by R(f, g; ¢) or simply R(¢). We
remark that (2-2) is nonlinear in A, firstly because function u(x; /) is yet unknown and secondly because
the integration domain C is unknown. Equation (2-2) constitutes the nonlinear variational equation for
h. The arbitrariness of ¢ is the key point to solve the nonlinear problem, as shown in several examples
given in [Bui 2006]. An important case is when u(x; k) as well as the geometry of C are known, for
which (2-2) becomes linear.

Following [Calderén 1980] we can linearize (2-2) by replacing the unknown function u by the function
u® which satisfies the harmonic equation

div grad =0 inQ. (2-3)
We obtain
/ h(x) grad u® (x) - grad p(x)d*x = R(f, g; ¢). (2-4)
C

Whatever the extended function grad u outside the domain may be, (2-2) can also be written with the
integral over the whole plane because the extended function / vanishes outside the domain:

/ h(x)gradu(x; h) - grad (x)d’x = R(f, g; ¢), Vg. (2-5)
IRZ

In this case boundary data a, b of the harmonic function ¢ may not be specified. We consider the
adjoint harmonic function, which depends on parameters & of the &-plane:

@(x, &) = exp(—i(x1§1 +x262)) exp(—x1& + x261). (2-6)

Calder6n assumed a small amplitude of 4 and expanded the unknown function in the form u(x; h) =
u(x;0)+ O(h). By taking u(x; 0) = ¢(x, &), given in (2-6), he obtained explicitly the solution with
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R(E) =: R(f, g; ¢p(x;8)):

0 __L/ 2 BV i
P == | rR@®ewix od%. 2-7)

Strictly speaking, (2-7) is derived for ( f, g) compatible with small perturbation. What happens when
one applies this formula to the general case of arbitrary /4? It seems, from [Isaacson and Isaacson 1989]
with their example of a circular inclusion in a circular domain, that the support of the solution given by
(2-7) is indiscernible from the circle introduced for obtaining data f, g. To clarify this mystery, we need
to derive the solution for the inclusion geometry, in the general nonlinear theory.

3. Reduction to two successive simpler problems

Let us rewrite (1-1) in the following form:
divgradu 4+ S(x) =0 in Q, (3-1)

where S(x) = div(h(x) gradu(x; h)); see also [Bui and Chaillat 2009].

Determining S with boundary data u = f and du/dn = g is a classical source inverse problem; see
[Isakov 1990; Alves and Ha-Duong 1997]. Here, we consider the source inverse problem already solved,
to obtain the source S(x), its support C, and the true displacement field denoted by U (x) := u(x; h),
even if h(x) is unknown. We obtain also the strain, but not the stress because /4 is yet unknown. It
is interesting to remark that the solution of the source inverse problem (3-1) provides the geometry or
support of the unknown A (x). As a matter of fact, since the true displacement is known as U, we have

Sx)= div(h (x) grad U(x)). (3-2)

The source term (3-2) is a linear combination of derivatives of 4 in the distributional sense. Its support
is the inclusion itself, supp(S) = supp(h) = C. Therefore, we have a first method to derive only the
geometry by solving a source inverse problem. We will discuss next a simpler method. It is based on the
nonlinear Calderén equation rewritten as

fch(x) grad U (x) - grad o (x; §)d*x = R(p(£)). (3-3)

With appropriate choice of ¢, for example given by (2-6), we obtain a Volterra equation of the first kind
for h, with kernel K (x, &) := grad U (x) - grad ¢(x, &) which determines both geometry and amplitude
of the perturbation. However, we do not solve the Volterra integral equation, but show how we derive
the support of & directly.

4. The mystery of Calderén’s solution

The adjoint function (2-6) as well as its gradient grad ¢ (x; §) are analytic in the whole x-space and
&-space (except at infinity), and thus can be expanded into infinite series of x, and &,. We expand

grad o(x; &) = exp(—i (x - §)) exp(—x18 + x261) ((—i&1 — &)e' + (=i + £1)e?) as

2 00
gradp(x; &) = < Z Z aﬁi’;q(iéh)”(iék)mxrpr) exp(—i(x-g)), 4-1)

h.k,r,s=1n,m,p,q=0
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with constant complex vectors af”’j&fq We extend 4 (x) to the infinite plane R? by putting 4 = 0 outside

C and denote its extension by & and obtain the nonlinear Calder6én equation in the form (the dot means
a scalar product between vectors)

2 00
fR ﬁ(x)gradU(x)-( > X a,i’,’;;fqash)"(iék)'"xfx;f)exp(—ix-&)d%c=R(<p<£)), (4-2)

h,k,r,s=1n,m,p,q=0

or equivalently (using the properties of the Fourier transform)

3" o
/ gg;q.ﬁax_m( xPx4h(x) grad U (x)) exp(—ix - §)d*x = R(p(§)).  (4-3)
thrs lnmpqO h k

Let us define the function appearing in the above series by F'(x):

am
Fl) = Z Z i, af g () Erad U ). (4-4)
h,k,r,s=1n,m,p,q=0
/Rz Fx)exp(—ix -§)d"x = R(¢(8)). 4-5)

Because the function F(x) is a linear combination of /(x) and its partial derivatives, it has the same
support C = supp(F) = supp(h). Therefore we get the inclusion geometry C by the support of F which
satisfies (4-5). It follows that function F(x) is the inverse Fourier transform of R(¢(&)). The inclusion
geometry for the nonlinear theory is solved by

1
P = 5 [ R(e®)expirix 6% 4-6)

This exact solution for the geometry of the inclusion enables us to investigate the mystery of Calderén’s
linearized solution which seems to work well for any perturbation. Let us make first a remark about
function F given in terms of R(¢(§)). From the expression of R(¢(£€)) we can easily check, for a
bounded solid, that R is of the “exponential type”, that is, the complex extension R(z) of R(£), obtained
by the substitution & = (&1, &) — (§1+in1, &2 +in2) =: z in R(&), has the bound ||R(z)|| < C exp(allz|)
with C > 0 and a > 0. According to the Paley—Wiener theorem [Schwartz 1966], the function R(§) is
the Fourier transform of a function with compact support. Therefore F(x) given by (4-6) is a compactly
supported function.

Consider now the linearized solution (2-7) for fzo(x) which we recall below:

~ 1
hx)=-— le(s)expox §)d’. (4-7)

Using the properties of the Fourier transform, we can rewrite (4-7) in the form

92 92 j0 _ 1 R . d2 _F is
_5(3 2+E) (x)—m/[Rgz (&) exp(ix - £)d*E = F(x). (4-8)
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The left-hand side of this equation is a function having the same support as 72°(x). Therefore we conclude
that both functions ﬁo(x) of the linearized theory and % (x) of the nonlinear theory have the same geometry
as supp(F). The mystery revealed by [Isaacson and Isaacson 1989] is finally elucidated. It is amazing that
Calderdn’s linearized theory gives the exact solution for the geometry of the inclusion, whatever the per-
turbation may be. Of course, the amplitude of function /4 (x) has to be determined by the Volterra integral
equation, by a standard numerical approach. In the next section, we shall discuss a numerical procedure
to determine not the function £ (x) itself, which can be found by standard techniques for the Volterra
integral equation, but the source term S(x), which is directly related to the amplitude of the perturbation.

5. A numerical approach to the source inverse problem by moving windows

It is known that the Volterra integral equation (3-3) is an ill-posed problem. Numerically it is difficult to
recover exactly a function & which is strictly equal to zero outside the inclusion, which is assumed here to
be unique. Therefore, it is of interest to consider a small moving window which is discretized in regular
meshes and to solve numerically the source inverse problem for N point sources S(x) = Z,N: | Aid(x —a;),
with source points at the centers of finite elements, and unknown amplitudes ;. With a chosen window,
we enforce the condition # = 0 outside it. For a large window enclosing the solid, it is shown in [El Badia
and Ha-Duong 2000] that the solution for a finite number N of sources approaching the source S(x) exists
and is unique. By choosing a particular window inside the solid domain, we search a solution which
vanishes outside it. If the window does not contain entirely the source, we get a wrong solution and
the corresponding image of the numerical solution is then blurred. Only in the case where the window
contains the inclusion is a sharp image obtained. This procedure resembles echography imaging of a
body. For example, by trial and error, one moves the echography device on the body of an expectant
mother in order to search the right location to reveal a sharp image of her fetus. In our examples of the
source problem, studying a tumor in live tissue or a damaged zone in materials, the moving window is
a 4 x 5 mesh. For example, in Figure 2, the image on the left corresponds to the wrong solution, while
the one on the right is correct.

Therefore it is of great interest to know the right location of the initial mesh. This is precisely provided
by the support of the function F given in (4-6).

08 -1

-10 10

Figure 2. Imaging of a defect. Left: bad window, wrong solution. Right: right window,
good solution.
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6. Conclusions

In this paper, we consider the problem of finding the perturbation of a material constant in elastic solids
which satisfies the nonlinear Calderén equation. The nonlinear problem reduces to two successive ones:
a source inverse problem and a Volterra integral equation of the first kind. The first problem provides the
inclusion geometry supp(h) explicitly. The second provides the magnitude of 7. We make a comparison
between the geometry of an inclusion in the small perturbation case and the geometry in the nonlinear
case and find that both inclusion geometries are identical for arbitrary loading and geometry of the solid.
Our result elucidates the mystery of the linearized Calderén solution for geometry which works well for
the nonlinear case, as revealed numerically in the axisymmetric example given in [Isaacson and Isaacson
1989].
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SINGULAR HARMONIC PROBLEMS AT A WEDGE VERTEX:
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DIFFUSION, ELECTROMAGNETISM, AND FLUID DYNAMICS
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Multimaterial wedges are frequently observed in composite materials. They consist of two or more
sectors of dissimilar materials joined together, whose interfaces converge at the same vertex. Due to the
mismatch in material properties such as Young’s modulus, thermal conductivity, dielectric permittivity,
or magnetic permeability, these geometrical configurations can lead to singular fields at the junction
vertex. This paper discusses mathematical analogies, focused on singular harmonic problems, between
antiplane shear problem in elasticity due to mode III loading or torsion, the steady-state heat transfer
problem, and the diffraction of waves in electromagnetism. In the case of a single material wedge, a
mathematical analogy between elasticity and fluid dynamics is also outlined. The proposed unified math-
ematical formulation is particularly convenient for the identification of common types of singularities
(power-law or logarithmic type), the definition of a standardized method to solve nonlinear eigenvalue
problems, and the determination of common geometrical and material configurations allowing the relief
or removal of different singularities.

1. Introduction

Singular stress states occur in many boundary value problems of linear elasticity where different materials
are present (see [England 1971; Paggi and Carpinteri 2008; Sinclair 2004a; 2004b] for a broad overview).
In this context, problems involving multimaterial wedges or junctions have received a great attention from
the scientific community, since they are commonly observed in composite materials. In linear elasticity,
most research has been directed toward the characterization of stress singularities for in-plane loading,
where the problem is governed by a biharmonic equation. Out-of-plane loading, also referred to as the
antiplane shear problem, is governed by a simpler harmonic equation. Stress singularities due to antiplane
loading were firstly addressed by Rao [1971]. Afterwards, Fenner [1976] examined the mode III loading
problem of a crack meeting a bimaterial interface using the eigenfunction expansion method proposed
by Williams [1952]. More recently, Ma and Hour [1989; 1990] analyzed bimaterial wedges using the
Mellin transform technique, whereas Pageau et al. [1995] investigated the singular stress field of bonded
and debonded tri-material junctions according to the eigenfunction expansion method.

Mathematical analogies among elasticity, electromagnetism, and conductivity have been known and
exploited for a long time (see [Hashin and Shtrikman 1962; Duan et al. 2006], for instance). Sinclair
[1980] pointed out the mathematical analogy between the singular steady-state heat transfer and the

Keywords: singularities, multimaterial wedges, elasticity, diffusion, electromagnetism, fluid dynamics.
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singular antiplane loading of composite regions (see also [Paggi and Carpinteri 2008] for a detailed
discussion of the boundary conditions). In [Paggi et al. 2009; 2010] we have established an analogy
between elasticity and electromagnetism in the case of singular fields. In the solution of diffraction
problems, in fact, Bouwkamp [1946] and Meixner [1972] found that the electromagnetic field vectors
may become infinite at the sharp edges of a diffracting obstacle. For in-plane problems, a mathematical
analogy between elasticity and dynamics of viscous fluids also exists; see [Dean and Montagnon 1949;
Paggi and Carpinteri 2008; Carpinteri and Paggi 2009] for more details.

This paper presents mathematical analogies between antiplane shear problem in elasticity due to mode
IIT loading or torsion, the steady-state heat transfer problem, and the diffraction of waves in electromag-
netism. In the case of a single material wedge, a mathematical analogy between antiplane elasticity
and fluid dynamics of incompressible fluids characterized by a potential flow will also be outlined. The
proposed unified mathematical formulation will be based on the eigenfunction expansion method, which
has been proven in [Paggi and Carpinteri 2008] to be mathematically equivalent to the Muskhelishvili
complex function representation and to the Mellin transform technique for the characterization of elastic
singularities at multimaterial junctions. As a main outcome, the order of the stress singularities of various
geometrical and mechanical configurations already determined in the literature can be adopted for the
analogous diffusion, electromagnetic, and fluid dynamics problems, without the need of performing
new calculations. Finally, the possibility to extend the dimensionless numbers used in elasticity to the
other analogous physical problems is discussed. In particular, as the brittleness number related to the
stress-intensity factor rules the competition between brittle crack propagation and plastic flow collapse,
a turbulence number that rules the competition between laminar and turbulent flow is proposed for fluid
dynamics. The use of this new dimensionless number, in addition to the classical Reynolds number, is
expected to be of paramount importance.

2. Stress singularities in antiplane elasticity

The geometry of a plane elastostatic problem consisting of n — 1 dissimilar isotropic, homogeneous
sectors of arbitrary angles perfectly bonded along their interfaces converging to the same vertex O is

I,

s

Figure 1. Geometry of a multimaterial wedge.
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shown in Figure 1. Each of the material regions is denoted by 2; withi =1, ..., n—1, and it is comprised
between the interfaces I'; and I'; 4.

Antiplane shear (mode III) due to out-of-plane loading on composite wedges can lead to stresses that
can be unbounded at the junction vertex O. When out-of-plane deformations only exist, the following
displacements in cylindrical coordinates can be considered with the origin at the vertex O:

u =0, ug=0, u,=u.(r0), 2-1)

where u, is the out-of-plane displacement, which depends on r and 6. For such a system of displacements,
the strain field components become

ou 10u
& =€ =¢& =y =0, )/rz:a_rz, Vez:;a_ez~ (2-2)
From the application of the Hooke’s law, the stress field components are given by:
. . . . , , 8I/li , . Gi aui
0’; :GQZ:GZIZI;QZO’ T;Z:GiyrlZ:Gia_rz’ TéZ:GiyéZ:Ta_ez, (2'3)

where G; is the shear modulus of the i-th material region. The equilibrium equations in absence of body
forces reduce to a single relationship between the tangential stresses:
ati, 10Ty, 1
8—;1 ?ETZZ +-1.=0 forall (r.6) € Q. (2-4)

Introducing (2-3) into (2-4), the Laplace condition upon u, is derived:

Z

9%u! 1 aué 1 Bzu;
orz r ar  r? 962

=Vl =0 forall (r,6) e Q;. (2-5)

In the framework of the eigenfunction expansion method [Paggi and Carpinteri 2008], the following
separable variable form for the longitudinal displacement u; can be adopted, for all (r, ) € Q;:

wl(r,0) = ' fi; ©0,2)), (2-6)
J
where the A; are the eigenvalues and f; ; the eigenfunctions of the problem. Summation over j is
introduced in (2-6) since it is possible to have more than one eigenvalue and the superposition principle
can be applied.
Introducing (2-6) into (2-5), we find the following relation, holding for each eigenvalue A ;:
d*f; ;

}")”2(@4‘)»3}(‘1,]) =0. (2-7)

Hence, the coefficients of the term in r*i—2

combination of trigonometric functions:

must vanish, implying that the eigenfunctions f; ; are a linear

f,-,j(e,)»j) = Ai,j sin()»je)—l-B,;j COS()»J'Q). (2-8)
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If we introduce the series expansion (2-6) into (2-3), the longitudinal displacement and the tangential
stresses can be expressed in terms of the eigenfunction and its first derivative:

u; i fi,j =i [Ai,j Sin()\,ja) + Bi,j COS()\.j@)] , (2-9a)
t). = Giar T f = G T Ay sin(a0) + By j cos(A;6)] (2-9b)
.= Gir* 17 = Gy [y cos(h;0) — By sin(h;0)]. (2-9¢)

The determination of the power of the stress singularity, A; — 1, can be performed by imposing the
boundary conditions (BCs) along the edges I'y and I',, and at the bimaterial interfaces I';, with i =
2,...,n—1. Along the edges I'; and I';,, defined by the angles y; and y,, we consider two possibilities:
one corresponding to unrestrained stress-free edges

% y) =0, T (r, ) =0, (2-10)
and the other for fully restrained (clamped) edges
ul(r,yn) =0, ul(r,ya) =0. (2-11)

At the interfaces, the following continuity conditions of displacements and stresses have to be imposed
i=1,....,n=2):

ul(r, i) = ult o vie), T vie) = T (1 Vi) (2-12)

In this way, a set of 2n — 2 homogeneous equations in the 2n — 1 unknowns A; ;, B; j, and A can be
symbolically written as:
Av=0, (2-13)

where A denotes the coefficient matrix which depends on the eigenvalue, and v represents the vector
that collects the unknowns A; ; and B; ;. More specifically, the coefficient matrix appearing in (2-13) is
characterized by a sparse structure:
m Al
Ny,
1 2
M)/z _MVz
2 3
MVs -M 3
A= B B (2-14)

i-1 i
M, M,

n—=2 _ aqn—1
MVn—l M)/n—]
1
7

e yl —
where the nonnull elementary matrix Mé related to the interface BCs is given by
sin(A ;60) cos(A;0)

M) = (2-15)
Gicos(A;0) —G;sin(A;0)
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and the components of the vector v are
v={v", v% ... v, v e, (2-16)

with v/ = {A; j» Bi, j}T. The two remaining terms Né depend on the BCs along the edges I'; and I',,. For
stress-free edges we have

Ni = {cos(X;6), —sin(%,0)}, (2-17)

whereas for clamped edges it is given by
N}, = {sin(%;0), cos(;6)}. (2-18)

A nontrivial solution of the equation system (2-13) exists if and only if the determinant of the coefficient
matrix vanishes. This condition yields an eigenequation which has to be solved for the eigenvalues A ;
that, in the most general case, do depend on the elastic properties of the materials.

3. Heat flux singularities in diffusion problems

The analogy between steady-state heat transfer and antiplane shear in composite regions was discovered
by Sinclair [1980]. In both problems, the field equations for the longitudinal displacement, u;, and for the
temperature, 7', are harmonic. As a result, the following correspondences between these two problems
can be set down:

V2T =0 = Vil=0,
; aT! ; du’
a=—kig- = =Gigh (3-1)
. kAT - o G; du’
= —— T, =,
=" 50 62 20

where ¢! and qé are the heat flux in the radial and circumferential directions and k; is the thermal
conductivity in the i-th material region. Therefore, the analogy is straightforward: the temperature field
is analogous to the out-of-plane displacement field, whereas the heat flux components are the analogous
counterparts of the stress field components, diverging to infinity as r — 0.

As far as the BCs are concerned, the free-edge conditions (2-10) correspond to insulated edges in
diffusion problems, provided that the elastic variables are replaced by the steady-state heat transfer
variables according to (3-1). Similarly, the clamped BCs (2-11) in elasticity correspond to zero tem-
perature prescribed along the edges. Finally, the continuity of the longitudinal displacement u#, and of
the tangential stress 7y, in (2-12) at the interfaces corresponds to the continuity of temperature, 7, and
heat-flux, gy. The eigenvalue problem for the diffusion problem has therefore the same coefficient matrix
as in (2-13).

4. Singularities in the electromagnetic fields

Consider the multimaterial wedge shown in Figure 2. Each material is isotropic and has a dielectric
permittivity €; and a magnetic permeability p;. We also admit the presence of a perfect electric conductor
(PEC) in the region labeled 1 and defined by the interfaces I'; and I',,.
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I,

Figure 2. Geometry of a multimaterial wedge including one made of a perfect electric conductor.

For periodic fields with circular frequency w, the Maxwell’s equations for each homogeneous angular
domain read as follows [van Bladel 1991]:

ja)é,-Ei:VxHi, —jwuiHi:VXEi’ (4-1)

where E' and H' are, respectively, the electric and magnetic fields, and the symbol j stands for the
imaginary unit.

In cylindrical coordinates r, 8, z, with the z axis perpendicular to the plane of the wedge, and consid-
ering electromagnetic fields independent of z, Maxwell’s equations reduce to the following conditions
upon the components of the electric and magnetic fields:

., 190H] . O0H! ., 1o . 10H!

o€ E, = ———=, jwei By = ———, jo& E; = ——(rHy) — ——+,
r 00 or ror r 00 (4-2)

A ve ar YT rar Y r 00

It is easy to verify that the E ; and Hzi components satisfy the Helmholtz equation [van Bladel 1991]:

9*EL 10EL 1 0%E!
ar2 r ar  r? 962
*H! 19H! 19°H , .

+KPE = V2E 4+ IPEL =0,
(4-3)

where k; = w’€; ;.
In close analogy with the antiplane problem in linear elasticity, the following separable form for E 2
and Hzi can be postulated for all (r, ) € ©2; [Meixner 1972]:

Ei(r.0)=>_rMfi;j 0.h), H.(r0)=> rF ;1) (4-4)

J J

where A; are the eigenvalues, and f; ;, and F; ; are the eigenfunctions.



SINGULAR HARMONIC PROBLEMS AT A WEDGE VERTEX 119

We can introduce (4-4) into (4-3), obtaining the equalities

2 2
B fij o d7F
r}\_/ 2( dez + )\’2‘](‘[ r)"j 2 dezj + A.?Fl,j — O (4'5)

Hence, we find that the eigenfunctions f; ; and F; ; are linear combinations of trigonometric functions,
in perfect analogy with the eigenfunction f; ; in antiplane elasticity (see (2-8)):

f,'J(@,)uj):Ai Sin(kj9)+B,‘ COS()\.]'@), Fi,j(e,)nj):C,- sin(kje)—l—Di COS()\.]‘G). (4-6)

These eigenfunctions are responsible for the singular behavior of the components E’, Eé, H! and Hei
of the electric and magnetic fields near the wedge apex. In particular, from (4-2), we observe that

1 8Hi

El = A A—1F ~ 0 ,
" rjwe; 36 ]a)e Z " 7

. 1 9H!
El=_ Z=_ )\.'Aj_lF"NO A.j_l,

o jwe; Or ja)e,- Z ir b 4 )

1 9E! @7
H =—— = ZA T~ 0T,
rjou; hJ

: 1 JE!

Hj =- Z,\ M~ 0T,

jop or  jopu;

Hence, E! ~ O(r*/) and H! ~ O(r*/) are the analogous counterparts of u’ and remain finite as r — 0.
Moreover, the radial components of the electric and magnetic fields, E! and H', are analogous to ré .
and the circumferential components, Eé and Hé, are analogous to ‘c,"z. More specifically, we have
El =1} /(jweiG)), H! = —1)_/(jou;G)), Ej, = —1!./(jwe;G;) and Hj = t!_/(jou;G;). All of these
components diverge when r — 0 with a power-law singularity of order —1 < (A; —1) < 0.

Regarding the BCs, the tangential components of the electric field vanish along the edges I'y and I',
of the PEC:

Elr,y)=0, E!ryD=0, E'"'r,y)=0, E'"'(r,y)=0, (4-8)

On the PEC surface also Hy = 0, but this condition does not need be enforced, since it is a consequence
of the previous ones. Along each bimaterial interface (i =1, ..., n —2), the tangential components of
the electric and magnetic fields are continuous:

EXr,yit1) =E i+1(r vis1), EL(ryvip) =E i+l(r Yit1)s

Hit! (4-9)
H (r, vit1) = r, Yi+1), H (I’ Vigl) = (r Yit1)-
Using the equations (4-7), the BCs (4-8) become
Hl n—1
Ej(ry) =0, EI7'(ny) =0, —=(ry)= 55— v =0, (4-10)
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whereas those defined by (4-9) become (i =1,...,n—2)

l- 1 0] 1 aH
E.(r,yivD) = E7(r,viv1), ——— @ Yis1) = — (r, Vit+1)
€; 20 €i+1 20
_ ] 4-11)
Hitryie) = H (i), oL (r, Yie)) = — 0E." (r, Vi+1)
2 Vit z » Vi+1), PRET Vi+1 irl 90 s Yi+l

It is interesting that (4-3), (4-10) and (4-11) can be separated into two independent sets of equations,
one involving only H and another involving only E,. Hence, the electromagnetic field for this problem
can be decomposed into two distinct independently evolving fields, the so-called transverse electric (TE)
and transverse magnetic (TM) fields. The TE (resp. TM) field has vanishing electric (resp. magnetic) but
nonzero magnetic (resp. electric) components parallel to the cylinder axis z.

Considering the series expansion for E; and H, along with the expressions for the eigenfunctions f; ;
and F; ;, the boundary value problem consists of two sets of 2n — 2 equations in 2n — 1 unknowns, one
for E; and another for H;. The former equation set (TM case) involves the coefficients A; ;, B; ; and A
and can be symbolically written as

Av=0, (4-12)

where A denotes the coefficient matrix which depends on the eigenvalue and v represents the vector which
collects the unknowns A; ; and B; ;. The coefficient matrix in (4-12) has exactly the same structure as
that for the elasticity problem in (2-13), provided that we consider Né = {sin(A;0), cos(A;0)} and we
set G; = 1/ Wi
The latter equation set (TE case) involves the coefficients C; ;, D; ; and A; and can be symbolically
written as:
Aw=0, (4-13)

where A is the coefficient matrix which depends on the eigenvalue and w represents the vector which
collects the unknowns C; ; and D; ;. Again, the coefficient matrix in (4-13) has exactly the same structure
as that for the elasticity problem in (2-13), provided that we consider Né = {cos(A;0), —sin(A;6)} and
we set G; = 1/¢;.

For the existence of nontrivial solutions, the determinants of the coefficient matrices must vanish,
yielding two eigenequations that, for given values of €; and w;, determine the eigenvalues AJT.E and AJT.M .
Hence, this proves that the analysis of the singularities of the electromagnetic field is mathematically

analogous to that for the elastic field due to antiplane loading.

5. Singularities in fluid dynamics

In fluid dynamics, a large class of problems can be described by a potential flow. In such cases, a stream
function, ¥, can be introduced such that the flow velocity v can be determined from its curl:

v=VxV, (5-1)

where, in polar coordinates and for 2D problems, we have v = (v,, vy, 0)" and ¥ = (0, 0, ¥)”. Moreover,
if the flow is irrotational, the curl of the velocity is zero [Batchelor 1973]:

Vxv=0. (5-2)
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\\\’\V Fluid

0

Solid obstacle *~ Clamped edge

ry Iy

(a) Fluid dynamics (b) Antiplane elasticity

Figure 3. Geometry of a flow meeting a sharp obstacle: analogy between fluid dynamics
and antiplane elasticity.

As a result, introducing (5-1) into (5-2), after some algebra we obtain the Laplace condition upon the
stream function W:

V x (V x W) =V>W¥ =0. (5-3)

For a problem where a fluid flow meets a sharp obstacle, as shown in Figure 3, the flow may have
singularities in the velocities. The power of the singularity can be determined according to an asymptotic
analysis, adopting the eigenfunction expansion method for the stream function W:

W(r,0) =Y rf; 0, 4)), (5-4)
J
where, again, A; are the eigenvalues of the problem and f; (6, A ;) are the eigenfunctions. The Laplace
condition upon W implies that the functions f; (0, A ;) are a combination of trigonometric functions, as
in (2-8):
fi@,1;) =A;sin(A;0)+ Bjcos(A;0). (5-5)

The velocity field components in polar coordinates, v, and vy, can be obtained by differentiating the

stream function W:
_ 10w

i—1 i—1
vr—;%=;l"k/ f]/(e,)\,), U9=—¥=—;)»jr)\/ fj(@,)xj), (5-6)

where f ]’ (0, 1) are the angular derivatives of the eigenfunctions f;(6, A ;).
Hence, the following correspondences between fluid dynamics and antiplane elasticity can be set down:

VW =0 < Vi =0,

v _ Gauz
U@ == _W @ Trz —_— Wa (5'7)

19w G du,

Vp = — <= To; = —

T o0 PR



122 ALBERTO CARPINTERI AND MARCO PAGGI

The boundary conditions along the edges of the obstacle correspond to a vanishing velocity in the
direction normal to the interface. According to Figure 3, this corresponds to the following conditions:

1@ =0)=0, wvg(@=y1)=0. (5-8)

Introducing (5-6); into (5-8), as well as the expression of the eigenfunction in (5-5), the boundary con-
ditions (5-8) reduce to

fi(0,A))=B; =0, fi(y,A;)=A;sin(x;jy1)+ Bjcos(r;yi) =0. (5-9)

Note that the analogous of these boundary conditions in antiplane elasticity corresponds to the clamped
boundary conditions (2-11) along I'g and I'; (see Figure 3). Therefore, it is possible to state that the
singularities in fluid dynamics correspond to those in antiplane elasticity, provided that clamped-clamped
BC:s are considered along the edges of the elastic wedge. More specifically, since (5-9); leads to B; =0
and we are looking for nontrivial solutions, the eigenequation of the problems is

sin(A;y1) =0, (5-10)
from which we determine the lowest eigenvalue

A= (5-11)

T
"
Hence, a singularity exists (A < 1) for y; > =, i.e., when the fluid domain €2; presents a reentrant
corner. Some notable eigenvalues can be found in [Batchelor 1973] and match exactly those provided
in [Sinclair 1980] for the antiplane problem of a single material wedge. For instance, a flow around a
right corner (y; =37/2) has A} = % whereas a uniform flow (y; = ) is nonsingular. The case of a flow
around a thin obstacle (y; = 2x) leads to A| = %, as for an anticrack (rigid line inclusion) in antiplane
elasticity [dal Corso et al. 2008; Bigoni et al. 2008].

6. Discussion and conclusion

In the present paper, we have compared and unified the mathematical formulations for the asymptotic
characterization of the singular fields at multimaterial wedges in antiplane elasticity, diffusion problems,
and electromagnetic diffraction. For a single and homogeneous material sector, we have also established
the analogy between fluid dynamics and antiplane elasticity.

The asymptotic analysis of the stress singularities at the vertex of multimaterial wedges and junctions
in antiplane elasticity is perfectly analogous to the corresponding diffusion problem. The temperature
field plays the same role as the out-of-plane displacement field and the heat fluxes correspond to the
tangential stresses. On the other hand, the analogy with electromagnetism is more complex. In particular,
when an isotropic multimaterial wedge with PEC boundaries is considered, we have shown that two
independent problems can be defined, one for TE fields, associated to an eigenequation for H,, and one
for TM fields, associated to an eigenequation for E,. The eigenequation for E, corresponds exactly to
that obtained for the same geometrical configuration in antiplane elasticity by setting G; = 1/u; and
replacing the PEC region with an infinitely stiff material leading to clamped edge BCs along I'y and I',.
Similarly, the other eigenequation for H, can be obtained in antiplane elasticity for the same geometrical
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configuration by setting G; = 1/¢; and replacing the PEC region with an infinitely soft material leading
to stress-free BCs along I'y and [),.

As far as the analogy for fluid dynamics is concerned, we have found that the stream function W
plays the same role as u, and that the singularities in fluid dynamics correspond to those in antiplane
elasticity, provided that clamped-clamped BCs are considered along the edges of the elastic wedge. These
analogical results are also important for stress concentration problems. For instance, in the case of a flux
around a circular cylinder, the velocity concentration factor is equal to 2, that is the velocity of the
fluid at the border of the cylinder is twice higher than the velocity at infinity. Analogously, the stress
concentration factor for a plate in uniaxial tension with an infinitely stiff round inclusion tends also to 2
[Duan et al. 2005].

Finally, the presence of singularities in diffusion, electromagnetism, and fluid dynamics suggests
extending to these fields the dimensional analysis considerations we have proposed for the scaling of
structural strength in [Carpinteri 1981; 1982a; 1982b; 1983; 1987; Carpinteri and Paggi 2006; 2009]. In
solid mechanics, the presence of a stress singularity of power A — 1 requires the use of a generalized
stress-intensity factor, K*, which has anomalous physical dimensions:

o =K*'r*7f,00,1) = K*=0b'"g, (6-1)

where o is a nominal applied stress, b is the characteristic structural size, and g is a shape factor de-
pending on the geometry of the structure and the topology of the junction. The same reasoning can
therefore be applied to the other analogous fields, defining generalized heat-intensity, electromagnetic-
intensity, and velocity-intensity factors. In structural mechanics, the anomalous physical dimensions of
K* lead to size-scale effects on the nominal strength, i.e., the material strength becomes a function of the
structural size [Carpinteri 1987; Carpinteri and Paggi 2006]. Therefore, size-scale effects in diffusion,
electromagnetism, and fluid dynamics are also expected and can be analyzed using the same mathematical
formalism as in structural mechanics.

Finally, it is well-known that elastic singularities are usually a mathematical artifact and that plasticity
relieves the singularities in elastoplastic materials. Similarly to plasticity, a saturation of the electromag-
netic fields at the sharp tip of an antenna is experimentally found in electromagnetism. In fluid dynamics,
a possible analogous mechanism could be the occurrence of turbulence. In structural mechanics, the
competition between crack propagation and plastic flow collapse is ruled by the brittleness number s
(see [Carpinteri 1981; 1982a; 1982b] for more details):

Kic
5 = AV (6-2)
where K¢, o, and b are, respectively, the fracture toughness, the material strength, and the structural
size. Brittle failure, characterized by small scale yielding, takes place when the brittleness number is
lower than a threshold value. Above that, large scale yielding takes place and plastic flow collapse
prevails over brittle failure. Generalizing these concepts to fluid dynamics, it is possible to define a
similar dimensionless number in the case of a fluid against a thin obstacle. We shall call it turbulence
number, s;, and it is given by:
K¢

= (6-3)

St
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where K¢ and v, are, respectively, a critical velocity-intensity factor and a critical velocity for the appear-
ance of turbulence. This resembles the Reynolds number, Re = v.b/v, where v is the kinematic viscosity
of the fluid, although the proposed turbulence number comes directly from the presence of singularities.
The use of s; in addition to the Reynolds number has never been explored so far. Therefore, further
developments of this work will regard the assessment of the applicability of these concepts to interpret
the laminar-turbulent flow transition in fluid mechanics, a still open problem nowadays.
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DEEP PENETRATION AND LIQUID INJECTION INTO ADIPOSE TISSUE

KERSTYN COMLEY AND NORMAN FLECK

The subcutaneous injection of porcine adipose tissue by a hypodermic needle involves two stages: tissue
penetration followed by the delivery of liquid into the tissue. The force required to penetrate adipose
tissue by a series of conically tipped and flat-bottomed circular punches has been measured. Scanning
electron microscopy and light microscopy are used to observe the mechanism of crack formation during
penetration. The experiments reveal that penetration by either a flat bottomed or 45° conically tipped
punch involves the formation of a mode II ring crack. The predicted penetration pressure according
to the Shergold-Fleck model (Proc. R. Soc. Lond. A 460 (2004), 3037-3058) is in good agreement
with the measured pressure on the punch. The subsequent delivery of liquid into adipose tissue by the
hypodermic needle has also been examined: the injection pressure for phosphate buffered saline has
been measured for a range of flow rates. X-ray images of the injected liquid suggest that micro-cracks
are formed by the fluid pressure within the tissue and this leads to an increase in permeability. A seepage
model is developed, based on the Darcy flow law, to relate the volumetric flow rate to the injection
delivery pressure. Finally, a model of hydraulic fracture is used to assess the toughness associated with
the formation of the micro-cracks during injection.

1. Introduction

A wide range of medical devices exist for the injection of liquid-based drugs into the subcutaneous layer
of adipose tissue. These include a hypodermic needle and a needle-free syringe. Injection involves
two stages: (i) a needle or liquid jet penetrates the tissue to a desired depth (intradermal, subcutaneous,
intramuscular and so on); and (ii) the liquid drug is delivered from the syringe into the tissue. Needle-free
devices achieve control of tissue penetration and liquid delivery through control of the pressure versus
time characteristic of the jet. For example, when subcutaneous injection occurs by a needle-free device,
the dermal and subcutaneous layers are first penetrated by a high pressure jet (static head of order 25 MPa
for 5ms). Subsequent delivery of the bulk of the liquid into the subcutaneous layer follows at a lower
jet pressure (static head of approximately 5 MPa) and typically takes 100 ms [Shergold et al. 2006].
Consider first the penetration stage. Shergold and Fleck [2004] have recently developed two pene-
tration models for soft solids; a model based on the formation of a planar crack and a model based
on the formation of a ring-crack. They demonstrated that the force to penetrate dermis with a sharp
metal punch depends upon the Young’s modulus and toughness of the tissue, and upon the diameter
and tip geometry of the punch. They argue that both a sharp tipped needle and a liquid jet penetrate
a soft solid by the formation and opening of a planar crack, whereas penetration by a flat-bottomed
punch involves the formation of a ring crack. The predicted pressure for penetration of the dermis by a
liquid jet is of similar value to the pressures employed in needle-free injectors [Shergold et al. 2006]. The

Keywords: adipose tissue, soft solids, deep penetration, injection, fracture mechanics, toughness.

127



128 KERSTYN COMLEY AND NORMAN FLECK

Shergold-Fleck model gives the penetration pressure but no explicit information on the penetration depth.
The depth of penetration achieved by high speed liquid jet injections has been measured by Baxter and
Mitragotri [2005]: The depth of penetration into dermis and subcutaneous adipose tissue was a function
of both the diameter and velocity of the jet.

Second, consider the liquid-delivery stage. To date, research into the mechanisms governing the
delivery of liquid injected into soft tissue has been confined to an examination of the depth of the injection
and the degree of dispersion of the liquid within the tissue. Differences in the dispersion behaviour of
liquid injected at low and high speed may affect the rate at which a drug is absorbed and may result
in the formation of different types of wound within the tissue. Cooke et al. [1980] have compared the
bioavailability from a needle-free injection and from a hypodermic needle and syringe for subcutaneous
and intramuscular injections of lignocane into humans. For both injection methods, the injectate was
dispersed to a similar degree within the tissue. More recently, Schramm-Baxter and Mitragotri [2004]
have performed liquid jet injections into human dermis and observed that the shape and dispersion of
the liquid depends upon nozzle diameter and upon the jet velocity. Barry et al. [1995] have developed
a poroelastic model for the seepage of a liquid into a spherical cavity, and have included the effect of
the fluid pressure upon the small-strain elastic deformation of the porous medium. The relevance of this
model to fluid delivery must await an experimental observation of the injection mechanism.

Scope of the paper. The aim of the current study is to investigate the penetration and delivery of liquid
into subcutaneous adipose tissue. We begin by reviewing the microstructure and mechanical properties
of adipose tissue. The study is split into two parts: penetration of adipose tissue by a solid punch,
and liquid injection by hypodermic syringe. In Section 2, penetration tests by conically tipped and flat-
bottom punches are reported, and scanning electron microscopy, light microscopy are used to reveal the
mechanisms of penetration. The results are compared with existing models in Section 3. The response
of adipose tissue to hypodermic injection is described in Section 4. X-ray techniques are used to reveal
the mechanisms of liquid delivery and are combined with the results from the injection tests to motivate
a seepage model in Section 5. Concluding remarks are stated in Section 6.

Review of the microstructure and mechanical properties of adipose tissue. Subcutaneous adipose tissue
is a connective tissue comprising lipid-filled cells called adipocytes and resides directly under the dermal
layer of human skin. The lipid is a triacylglyceride of molecular weight on the order of 900 g mol~! and
viscosity of 40 mPa s at 37° C [Comley and Fleck 2010a]. The adipocytes are of diameter 80 um and
are supported by two interpenetrating collagen-based structures: (i) a reinforced basement membrane in
the form of a collagen mesh, containing primarily type I and IV collagen, surrounds each cell, and (ii) a
type I collagen fibre network, termed the interlobular septa [Bjorntorp and Martinsson 1966; Nakajima
et al. 1998]. The reinforced basement membrane resembles a closed cell foam with a unit cell dimension
of 80 um and walls of thickness 2 um. In contrast, the interlobular septa take the form of an open cell
foam with cell edge length 1 mm and a cell wall thickness of 10 um [Comley and Fleck 2010a]. The
macroscopic stiffness and toughness derive primarily from the reinforced basement membrane.
Additional structures such as blood vessels exist within the tissue, but have negligible influence on the
overall mechanical properties. The intervening space is filled with ground substance. Overall, 60-80%
(by mass) of adipose tissue is lipid, 5-30% is water and the remaining 2-3% is protein [Greenwood
and Johnson 1983]. The large liquid content enforces material incompressibility [Samani et al. 2003].
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Histology of adipose tissue suggests that it is approximately isotropic in structure and is thereby isotropic
in mechanical properties, to a first approximation [Samani et al. 2003; Comley and Fleck 2010a].

Uniaxial compression tests of adipose tissue suggest that at low strain rates (on the order of 1073 s~1)
the tissue has a Young’s modulus of approximately E = 1 kPa, whereas at strain rates of order 1000 s~
the modulus increases by more than three orders of magnitude to £ = 3 MPa [Miller-Young et al. 2002;
Nightingale et al. 2003; Gefen and Haberman 2007; Comley and Fleck 2009]. Comley and Fleck [2011]
demonstrates that the stress versus strain behaviour of adipose tissue can be adequately described by a
one term Ogden strain energy density function [1972] with a shear modulus p = E/3 and strain hardening
exponent o = 20 of the form

2
¢=a—‘;(x‘;‘+xg‘+xg‘—3) 1)

Here, ¢ is the strain energy density per undeformed unit volume and X; are the three principal stretch
ratios.

2. Penetration tests using a solid punch

Test method. Deep penetration tests were performed on samples of adipose tissue using circular, cylindri-
cal punches of conical and flat bottomed headshape. Fresh porcine adipose tissue from the jowl of a pig
was obtained (Dalehead Foods, Linton, Cambridgeshire, UK), cut into rectilinear blocks of approximate
dimension 30 mm x 30 mm by 10 mm thick and stored in phosphate buffered saline (PBS) prior to testing.
Testing always commenced within four hours of slaughter.

Cylindrical steel punches of diameter in the range 2R = 0.4 mm to 2R = 3.9 mm were machined with
either a flat bottom or a conical tip of semi-included apex angle 45°. The punches were then mounted on
the cross-head of a screw-driven tensile test machine. A block of adipose tissue was placed on a PMMA
plate (thickness 10 mm), placed in turn on the test-machine platen. The penetration force F' versus
displacement u was measured at selected displacement rates in the range 0.05mms~' to 10mms~'. The
cross-head was displaced until the punch made contact with the PMMA plate. Three tests were performed
for each configuration of punch and displacement speed. Measurements of the friction force between
the side wall of the punch and the tissue following full penetration of the specimen were additionally
made as follows. A specimen was placed on a PMMA block containing a through hole of diameter three
times that of the punch. The centre-line of the hole was in line with that of the punch and the punch was
depressed until its tip penetrated the lower surface of the tissue and passed into the hole in the support
block. Continued pushing of the punch through the tissue required a friction force Fic.

Force versus displacement results. A representative set of F versus u results for punches with a diameter
2R = 0.6 mm is shown in Figure 1. The response is qualitatively the same for the flat-tipped punch and the
punch with the 45° conical tip. For both headshapes, the force increases steadily with punch displacement
until the front surface of the tissue is penetrated. After penetration of the front face, the punch enters the
tissue and the force oscillates about a mean (plateau) value F,. These oscillations in force are associated
with the propagation of the crack ahead of the punch tip. Similar profiles of force versus displacement
were seen for all punch diameters tested, according to their tip type. Displacement rate was not found
to have a significant effect on the measured force. These additional curves are omitted for the sake of
brevity.
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Figure 1. Force F versus displacement u for the penetration of porcine adipose tissue
with 0.6 mm diameter metal punches with either a flat-bottom (solid line) or a 45° conical

tip (dashed line). The displacement rate was 0.1 mms~!.

The frictional force Fy . between the shaft of the punch and the tissue, following full penetration of
the specimen, was less than 5% of the average plateau force F),. This is consistent with the observation
that the penetration force oscillates about a mean value F),, with no observable rise in F), due to frictional
effects.

Observations of hole formation. Observations of the hole formation in the tissue were made as follows.
Upon removal of the punch the surfaces of a selection of samples were examined with an optical micro-
scope. A separate set of samples were fixed in glutaraldehyde, sectioned along the diametral plane of the
hole and prepared for viewing in a scanning electron microscope (SEM). See [Comley and Fleck 2010a]
for full details of sample preparation.

The hole generated by each punch was observed by both light microscopy and a scanning electron
microscope (SEM). The residual hole at the front face of the tissue is shown in Figure 2, for a range
of punch diameters and headshapes. In all cases, the residual hole was almost circular in shape and of
diameter about 20% less that that of the punch.

SEM images of the fracture surface following penetration are shown in Figure 3 for both the flat-
bottomed punch and the 45° conical tipped punch. Adipocyte cells have ruptured and septa fibres have
pulled out and torn, as labelled in the figure. Reinforced membrane and septa fibres are compacted at
the bottom of each hole.

3. Discussion of the penetration behaviour

The nominal penetration pressure p is now examined for the full range of punch diameters and headshapes
that have been tested. Penetration pressure is a useful quantity for comparison with the penetration models
of [Shergold and Fleck 2004] and for comparison with the pressures required for liquid injection. It is
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Figure 2. Images of the puncture site at the tissue surface following puncture by a range

of metal punches of varying headshape at 0.1 mms~.

Figure 3. SEM images of the fracture surface of adipose tissue punctured by two
punches of diameter 2.4 mm and tip geometry. Left: 45° conical tipped. Middle and
right: flat-bottomed (A: compacted interlobular septa and reinforced basement mem-
brane; B: interlobular septa fibres; C: reinforced basement membrane surrounding an
adipocyte.
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Figure 4. Comparison of the average pressure p required to penetrate adipose tissue
with a range of solid punches of varying headshape. A prediction is shown for the
pressure required to puncture adipose tissue with a flat tipped punch calculated from
(3). The following parameter values were used in the calculations: Je = 4.1kJm~2,
b/R=05,a/R=038, u =E/3=0.3kPa.

defined by
Fp
=R 2)
in terms of punch force F, and punch radius R. For each headshape, the average penetration pressure
p (taken from the pooled set of pressure results across all the displacement rates tested) is plotted as a
function of punch diameter 2R (see Figure 4). For a given punch diameter 2R the penetration pressure
for the flat-bottomed punch exceeds that for the 45° tipped punch.

We note in passing that the pressure to penetrate adipose tissue with a flat-bottomed punch is half the
magnitude of the pressure to penetrate dermal tissue (a related collagen based connective tissue) with
a similar punch. Pressures of 60 MPa were recorded in [Shergold and Fleck 2005] during tests in vivo
on human dermis with a 0.3 mm diameter flat-bottomed punch. This compares to 30 MPa needed to
penetrate adipose with a 0.4 mm diameter flat-tipped punch.

Shergold and Fleck [2004] have developed two models for the deep penetration of a soft solids (see
Section 1). In order to select the appropriate Shergold-Fleck penetration model for comparison with
the measured penetration pressures it is necessary to determine the mode of hole formation, during
penetration. The light microscopy and SEM images of Figures 2 and 3 suggest that both the flat-bottomed
and the 45° conical tipped punches compact a circular cylindrical slug of tissue beneath the punch (see
Figures 3 and 5a). This indicates that a mode II ring crack is generated in adipose tissue during penetration
by either a flat-bottomed or 45° conical tipped punch. The characteristics of the puncture force response,
shown in Figure 1, are consistent with force response observed in [Shergold et al. 2006] for punches that
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Figure 5. Sketches of (a) the hole formation in adipose tissue following deep penetration
by a flat tipped or 45° conical tipped punch, and (b) the hole formation of the Shergold-
Fleck ring-crack model.

generate ring cracks. Also the lack of a frictional component to the measured penetration force provides
further evidence of ring-cracking. It now remains to briefly review the model and then compare the
predictions from the model with the observed penetration pressures reported in Figure 4.

Application of the Shergold-Fleck ring-cracking model. Shergold and Fleck [2004] observed that a flat-
bottomed punch generated a mode II ring crack below the punch. Their model is sketched in Figure 5b.
They predicted that the pressure p s scaled with the toughness Jc and shear modulus p according to

oL@ T )

where b is the radius of the ring crack in the relaxed configuration (Figure 5b). The function f(b/R) does
not exist in closed form but is defined in Equation (3.17) of [Shergold and Fleck 2004]; the details are
omitted here. The pressure given by (3) attains a minimum for a particular value of /R and, following
that paper, we take the minimum value to be the penetration pressure for ring cracking. Upon assuming
that Jo = 4.1kJI m~2, from the trouser-tear tests of [Comley and Fleck 2010b], and taking u = E/3 =
0.3kPa and o = 20 (as discussed in the introduction) we find that as 2R increases from 0.4 mm to
3.9mm, b/R increases from approximately 0.48 to 0.53, whereas p decreases from 17 MPa to 3 MPa.
For simplicity a single value of b/R = 0.5 is used for the remainder of the study.
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The Shergold-Fleck model is now compared to the measured data. Using the values for toughness
Jc, shear modulus o and b/ R given above predictions for the penetration pressure calculated from (3)
are compared to the measured data in Figure 4. The ring-cracking model is in good agreement with the
experimental data for punches of diameter 2R less than 1 mm. The pressure to penetrate adipose tissue
with punches of diameter greater than 1 mm is underestimated by the ring-cracking model. Further
measurements from punches of diameter greater than 10 mm are required in order to establish whether
this discrepancy is a statistical artefact or a physical effect.

Finally the prediction of b/ R = 0.5 can be compared to the measured diameter of the holes, created by
punch penetration, divided by the corresponding punch radius. Recall that the diameters of the holes were
on average 80% smaller than the corresponding punch radius, suggesting an observed /R of 0.8. The
model assumes non-linear elastic behaviour whereas viscoelastic effects would lead to stress relaxation
within the adipose tissue in the vicinity of the penetrator. It is unclear, however, whether viscoelastic
effects are significant in these tests, as no time dependence of residual hole diameter was observed over
a period of minutes following the penetration test. In a parallel study, Comley and Fleck [2009] have
explored the sensitivity of uniaxial response of adipose tissue to strain rate. They found that the response
is independent of strain rate in the range 10~* to 1 s~!, implying that viscoelastic effects are minor over
this regime.

4. Injection tests

Test methods. Measurements were made of the force to inject PBS into blocks of adipose tissue (di-
mension 20 mm x 20 mm x 10 mm) using a hypodermic syringe. A plastic 5 ml syringe was clamped
directly beneath the cross-head of a screw driven tensile test machine (see Figure 6). The syringe body
was clamped at the top, above the rubber seal of the plunger, to prevent distortion of the portion of the
syringe barrel containing the PBS. The syringe was fitted with either a gauge 27 hypodermic needle
(internal orifice diameter D = (.21 mm, needle length L = 20 mm) or a gauge 21 hypodermic needle
(internal orifice of D = 0.51 mm, needle length L = 25 mm). The internal cross-sectional area of the

Hypodermic needle

/ & syringe

0 11.5 mm
\ .
Saline
Adipose tissue
20 - 25 mm
Platen 3
\ ; ]10 mm

[ ]

Figure 6. Experimental setup for injection tests into adipose tissue.
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Figure 7. Force F versus the volume of saline injected ¢ using a 0.4 mm diameter

hypodermic syringe with a cross head displacement rate of 0.1 mms~!.

syringe was As = 103 mm?. In each injection test, the plunger was depressed into the syringe by the
cross-head and the force F versus cross head displacement u were recorded in two stages, as follows:

Stage 1: The force to inject 1 ml PBS into free air was measured.

Stage 2: The syringe was re-filled with PBS. A fresh piece of adipose tissue was placed on the platen
of the test-machine. The clamped syringe was manually lowered to insert the needle into the tissue to a
depth of 4 mm (see Figure 6). The force to inject 1 ml PBS into the tissue was then measured.

Tests were conducted at a cross-head displacement speed in the range of 0.05mms~! to I mms~'. A
fresh needle and syringe was used for each test.

Test results. Representative results for both stage 1 and stage 2 of an injection test are shown in Figure 7,
for a 27 gauge needle and a cross-head displacement rate of 0.1 mms~!. Injection into air requires a
level of force Fy4, equal to 1 N for the data shown. In contrast, the force to inject PBS into the tissue
increases with injected volume to an approximately constant level F;, equal to 5.5 N for the data shown.
The pressure to inject into adipose tissue pp is calculated as

_ (F; — Fa)

A 4)

PD

where Ag is the cross-sectional area of the syringe. The dependence of pp upon the volumetric flow
rate ¢ is shown in Figure 8. A least squares regression reveals a linear relation between pp and ¢ of the
form

pp =¢cq4+ po )
where ¢ and pg are independent of the needle diameter. Values for the coefficients were found to be

¢ =740GPasm~ and py = 23 kPa, with a measure of fit R?> = 0.9. An explanation for the origins of
(5) is given below.
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Figure 8. The mean pressure py=+ s.d. versus volumetric flow rate ¢ for the injection of
PBS into adipose tissue using a 27 gauge needle and a 21 gauge needle. A least squares
regression fit overlays the data.

X-ray imaging of injected liquid. Adipose tissue was injected with 0.5 ml of Urografin 150 (Bayer Plc,
UK) radio-opaque fluid (viscosity similar to water) using a hypodermic syringe with a 21 gauge needle.
Following injection the specimen was immediately placed in an x-ray inspection scanner (HMX160,
X-Tech, Metris, Tring, UK) and 720 images were taken at 0.5° intervals about a 360° rotation. Image
reconstruction software was used to generate a 3D representation from the 2D images.

X-ray images of the injection sites are shown in Figure 9. Examination of cross sections from the 3D
reconstruction of the x-ray images show an ellipsoid shaped bolus of liquid embedded within the tissue.
The injectate is distributed within micro-channels of maximum length 1 mm. The volume of the bolus
is approximately 2300 mm?>. Recall that 0.5 ml Urografin fluid was injected. Consequently the average
volume fraction of Urografin fluid in the overall bolus equals 0.23.

5. Discussion of injection response

The delivery pressure required to injected a liquid at low injection velocity is 10 times less than the
pressure required for deep penetration by a solid punch. This suggests that different fracture mechanisms
are involved. A seepage model for the delivery pressure and a hydraulic fracture model of the micro-
cracks formed during liquid delivery are now assessed.

A model for delivery pressure. A model is now developed which describes the flow of a fluid from a
spherical reservoir at the tip of the needle into micro-cracks that are created within the tissue during
an injection. It is suggested that the dependence of delivery pressure pp on volumetric flow rate ¢ can
be modelled by Darcy’s law [Wang 2000]. Measurements of delivery pressure pp are used to estimate
the permeability k of the tissue during an injection, and possible mechanisms for the formation of the
micro-cracks are assessed.
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Figure 9. X-ray images of injection of 0.5 ml radio opaque dye (150 Urografin) into
porcine adipose tissue by a hypodermic needle and syringe. Image (i) is a composite

x-ray image. Images (ii) and (iii) are cross sections from a 3D reconstruction of 720
images taken at 0.5° around 360° of the sample.

First we examine the use of Darcy’s law to model delivery pressure pp. Darcy’s law describes the
nominal flow rate per unit area u as a function of the pressure gradient V,, and the permeability of the
solid k, where

i =—kV, (6)

A model of the permeation of the injected fluid can be established as follows, see Figure 10. A fluid
at a volumetric flow rate ¢ is injected into adipose tissue. Assume that a fluid-filled reservoir of radius
rp and pressure pp is formed at the tip of the needle, and the surrounding solid is of permeability k (see
Figure 10). The volumetric flow rate g is related to the flow per unit area u(r) according to

q
4rr?

(7)

u(r) =

Substitution of (7) into (6) gives

()
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Figure 10. A sketch of the injection of a liquid into adipose tissue.
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_ 4
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In order to perform an order of magnitude calculation for the permeability & it is assumed that 2rp =
800 wm. This value matches the width of the fluid-filled channels observed in the x-ray images of Figure 9.
Upon matching the regression coefficient ¢ = 740 GPas m™ of (5) to the constant of proportionality in
(9) one obtains

c = (4mkrp)”! (10)

and consequently k =2.7 x 10710 m* N~ s—1,

How does this value compare with data reported in the literature? The permeability of adipose tissue
for quasi-static flow is reported elsewhere to be between 1.8 x 107!2 and 1 x 10~"* m* N~'s~! [Guyton
et al. 1966; Reddy et al. 1981]. These values are 10> and 10° times smaller than the permeability
observed during the current injection tests. This indicates that injection of a pressurised fluid increases
the permeability of the tissue by the creation of a connecting network of micro-cracks as observed in
Figure 9. This phenomenon is analogous to hydraulic fracture of rocks where pumped fluid leads to the
formation of a connecting network of cracks [Wang 2000].

Hydraulic fracture model. 1t is suggested that during injection the fluid tunnels through pathways of
low resistance, possibly between lobules of adipocytes The mode I toughness J¢ associated with the
tunnelling fracture of a micro-crack of width & (see Figure 10), within a tissue of Young’s modulus E
and under a pressure py is given in [Hutchinson and Suo 1991] as

poh

Jo = 11
CT127E (1D




DEEP PENETRATION AND LIQUID INJECTION INTO ADIPOSE TISSUE 139

A measure of the pressure required to generate micro-cracks within the tissue is given by the value of
po = 23 kPa, taken from the least squares regression fit of the pressure data; see (5). Let the Young’s
modulus of adipose tissue be equal to E = 1 kPa [Comley and Fleck 2009]. Then for a crack of width
h = 800 um (matching the width of the observed micro-cracks in Figure 9) the corresponding fracture
toughness is of the order Jc = 330 Jm™2. This is an order of magnitude lower than the fracture toughness
of adipose tissue Jc =4.1kJ m~2, as measured via trouser tear test [Comley and Fleck 2010b]. This
result indicates that the pressurised fluid seeks out relatively brittle interfaces within the adipose tissue.
Further work is required to examine the injection site within the tissue via microscopy, in order to confirm
(or refute) our conjecture of hydraulic fracture along weak paths.

6. Concluding remarks

Measurements have been made of the pressure to penetrate adipose tissue by a solid punch and the
pressure to inject adipose tissue with a low viscosity liquid. The punch pressure is about three orders of
magnitude greater than the injection pressure, indicating that different fracture mechanisms are involved.
It is shown that the deep penetration pressure can be adequately modelled by the Shergold-Fleck model
for ring-cracks. A seepage model based on Darcy flow is presented to account for the linear dependence
of delivery pressure on volumetric flow rate. The seepage model reveals that the permeability of the
tissue is significantly increased during the injection event. X-ray images of the injected bolus within the
tissue indicate the presence of micro-cracks, formed during injection. A hydraulic fracture model reveals
a low value of toughness, Jc = 330 m~2 associated with the formation of these micro-cracks.
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ON SMALL AZIMUTHAL SHEAR DEFORMATION OF FIBRE-REINFORCED
CYLINDRICAL TUBES

MOHAMED A. DAGHER AND KOSTAS P. SOLDATOS

The problem of azimuthal shear deformation of a transversely isotropic elastic circular cylindrical tube
is considered and studied in the small deformation regime. The preferred direction of the transverse
isotropy is assumed to lie on the plane of the tube cross-section and is due to the existence of a single
family of plane spiral fibres. Consideration of the manner that either the tube material or the fibres may
be constrained gives rise to four different versions of the problem which are all susceptible to an exact
closed form solution when fibres are perfectly flexible. Particular attention is paid to the special case of
straight fibres aligned along the radial direction of the tube cross-section, where comparisons are made
between the aforementioned solution obtained when fibres are perfectly flexible and a corresponding
solution obtained when fibres posses bending stiffness. It is found that the conventional linear elasticity
considerations associated with the perfectly flexible fibre assumption cannot adequately account for the
effects of material anisotropy. In contrast, effects of material anisotropy can be accounted for when
fibres posses bending stiffness, by taking into consideration the action of couple-stress and therefore
asymmetric stress. Moreover, an intrinsic material length parameter which appears naturally in the
associated governing equations may be chosen as a representative of the fibre thickness in this case.
It is also seen that deformation patterns of fibres possessing bending stiffness as well as corresponding
stress distributions developed within the tube cross-section fit physical expectation much closer than
their perfectly flexible fibre counterparts.

1. Introduction

The classical version of the problem of azimuthal shear deformation of an elastic circular cylindrical tube
of infinite extent is due to Rivlin [1949] and, in several forms and variations, has been considered and
studied afterwards by several investigators. This refers to a particular, plane-strain type of finite strain
which is applied on the cross-section of an incompressible isotropic hyper-elastic circular cylindrical tube
of infinite extent. Accordingly, under the action of an appropriate set of boundary conditions, the tube
cross-section is subjected to pure azimuthal shear strain during which it remains circular while its inner
and outer radii do not change. A comprehensive review of the relevant literature was presented recently
in [Kassianidis et al. 2008], which introduced further and dealt with a new version of this problem:;
namely the case in which the incompressible material of the tube exhibits some kind of anisotropy. In
some detail, the tube cross-section was considered to be reinforced by a single family of unidirectional
extensible fibres; this consideration furnished the tube material with properties of transverse isotropy.

Dagher’s work was supported through a PhD scholarship awarded by the Egyptian Ministry of Higher Education.
Keywords: anisotropic elasticity, azimuthal shear strain, fibre bending stiffness, fibre-reinforced materials, linear elasticity,

transverse isotropy.
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Most recently, a second family of plane extensible fibres was placed on the tube cross-section [Dorf-
mann et al. 2010], thus assuming that the anisotropy of the material of interest proceeds beyond the
relatively simple symmetries of transverse isotropy. As already implied, the directions of preference
considered in either this latter paper or [Kassianidis et al. 2008] were assumed capable to extend or
contract considerably, allowing thus the incompressible material of the tube to withstand the imposed
conditions of pure azimuthal shear deformation.

A relevant problem was also considered recently in [Soldatos 2010], as an application of a study having
as principal purpose to investigate the influence that some new, second gradient effects have on finite plane
deformations of ideal fibre-reinforced hyper-elastic solids. That problem dealt with azimuthal shear strain
of an incompressible hyper-elastic circular cylindrical tube having its cross-section reinforced by a single
family of inextensible fibres (see also [Soldatos 2009a]); recall that an incompressible material which
is further reinforced by one or more families of inextensible fibres is known as ideal fibre-reinforced
material (see [Spencer 1972], for example). The new development in [Soldatos 2009a; 2010] made clear
that pure azimuthal shear strain is not possible when the incompressible material of the tube contains
an inextensible direction of transverse isotropy. Unlike [Kassianidis et al. 2008] where extension or
contraction of fibres is assumed possible, a single family of inextensible fibres causes change of both
the inner and outer tube radii in a manner that preserves the area of the tube cross-section. It is noted in
passing that, since the cross-sectional area remains also unchanged under conditions of pure azimuthal
shear strain, the latter kind of deformation [Rivlin 1949; Kassianidis et al. 2008; Dorfmann et al. 2010]
becomes essentially a particular case of the outlined “area-preserving” azimuthal shear strain of a circular
cylindrical tube.

The new, second gradient deformation effects that [Soldatos 2010] is mainly interested on are relevant
with the ability of fibres to resist bending. However, the described “area-preserving” azimuthal shear
deformation was found attainable by the ideal fibre-reinforced material considered in [Soldatos 2010]
regardless of whether the inextensible fibres involved possess bending stiffness or not (in the latter case
fibres are assumed perfectly flexible). The analysis in [Soldatos 2009a; 2010] revealed further that, if the
inextensible fibres involved are initially straight and aligned along the radial direction of the tube cross-
section, they remain straight during deformation and force the tube to undergo area-preserving azimuthal
shear strain by changing their slope only. Some link was therefore observed between the strength of fibres
in extension or contraction and their ability to resist bending. It was accordingly concluded that, if the
direction of transverse isotropy is due to the existence of strong fibres, the tube should be expected
to resist the conditions of pure azimuthal shear deformation. Instead, tendency will be observed for
creation of a deformation pattern that couples azimuthal shear strain and radial stretching. Moreover,
fibre bending stiffness should be dominant in the formation of such a pattern.

It is instructive at this point to mention that the principal problem met in nature is essentially the
problem in which the transversely isotropic material of the tube is completely unconstrained. Hence,
by employing the concept of the ideal fibre-reinforced material, the references [Soldatos 2009a; 2010]
dealt essentially with a first approximation to the solution of the finite azimuthal shear strain problem
of a fibre-reinforced cylindrical tube. Many materials are of course nearly incompressible and, similarly,
many kinds of natural or structural fibres are nearly inextensible. Hence, in many cases of interest, either
the incompressible material considered in [Kassianidis et al. 2008] or a compressible material reinforced
by inextensible fibres yields a realistic and plausible simplification of the principal problem. Either case
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is regarded as an intermediate step between the latter problem and that considered in [Soldatos 2009a;
2010] for a corresponding doubly constrained material. Further progress in the subject should therefore
consider to dismiss one or both of the material constraints involved in these two references.

Dismissal of the fibre inextensibility constraint leads to the comprehensive relevant study presented
already in [Kassianidis et al. 2008] where attention was focused on the particular case of pure azimuthal
shear deformation only. In this context, dismissal of either the material incompressibility constraint only
or both of the constraints involved in [Soldatos 2009a; 2010] produces two additional versions of the
problem. Solution to either of those two versions in the finite strain regime seems to be a more difficult
task as compared with the solutions achieved in all three of these references. Nevertheless, the outlined
hierarchical manner of approaching difficult problems met in finite elasticity assists enormously the effort
of achieving basic understanding of associated complicated issues.

Another plausible way for achieving basic understanding of some of those issues is by restricting
initially attention to the small deformation regime within which the material is regarded as linearly
elastic. There exists in fact an extensive literature of linear anisotropic elasticity solutions, most of
which are associated or can become relevant to the mechanics of fibre-reinforced solids. In this context,
the present study adds a new contribution to that literature by focusing attention to the linear elasticity
counterpart of each one of the aforementioned four versions of the azimuthal shear strain problem of a
transversely isotropic circular cylindrical tube. Based on the outlined history of the problem considered,
this investigation aims therefore to identify which of the four versions of the problem anticipate that
within the small strain regime (i) existence of possible coupling between azimuthal shear strain and radial
stretching can cause change of the inner and outer radii of the tube; and/or (ii) the initial deformation
pattern is or may still be interpreted as that of pure azimuthal shear strain, in the sense that the tube inner
and outer radii do not tend to changed during deformation. Moreover, (iii) the particular case of straight
fibres aligned along the radial direction of the tube cross-section is treated separately and, in the light of
the relevant studies initiated in [Soldatos 2009a; 2010], comparisons are made between corresponding
solutions and results obtained when fibres are either perfectly flexible or possess bending stiffness.

Under these considerations, section 2 formulates the problem of axially symmetric plane strain of a
transversely isotropic, linearly elastic, annular disc (the tube cross-section) subjected to external boundary
conditions that may cause pure azimuthal shear strain. It is noted that the formulation detailed in section 2
is based on symmetric elasticity considerations which concur with the assumption that fibres are perfectly
flexible. For the case that the direction of transverse isotropy is due to fibres of a certain spiral shape,
section 3 outlines next the exact, closed form solution obtained for each one of the aforementioned four
versions of the azimuthal shear strain problem; namely, the case in which (i) the material of the tube
is completely unconstrained and therefore compressible, (ii) the material is assumed incompressible but
the fibres can extent or contract, (iii) the material of the tube is compressible but the fibres are assumed
inextensible, and (iv) the material of the tube is incompressible and the fibres are inextensible (ideal fibre-
reinforced material). Section 4 deals separately with the particular case of perfectly flexible straight fibres
aligned along the radial direction of the tube cross-section. This case, along with its counterpart that
considers fibres resistant in bending, was discussed also separately in [Soldatos 2010] for the purposes
of the area-preserving finite azimuthal shear strain problem introduced and studied there.

When the perfectly flexible radial fibres considered in section 4 are replaced with radial fibres that
posses bending stiffness the linear theory of elasticity is required to account further for possible effects of
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couple-stress and therefore asymmetric stress. Moreover, micromechanics considerations reveal that, due
to the natural appearance of an intrinsic material length parameter which is of the fibre thickness scale,
the manner in which fibres are supported on the tube boundaries can also be accounted for, with use of
appropriate boundary conditions. This is the case discussed and resolved completely in section 5, where
the principal governing differential equation of the problem is solved exactly with use of the power-series
method as well as the successive approximate method introduced in [Soldatos and Hadjigeorgiou 1990];
see also [Shuvalov and Soldatos 2003]. Relevant numerical results are presented in section 6, where the
differences between conventional linear elasticity and the new developments introduced in section 5 are
also discussed in detail. Finally, section 7 summarises the main results, observations and conclusions
drawn in this investigation.

2. Problem formulation for perfectly flexible fibres
Consider a circular cylindrical hollow tube defined by
By <r < By, 0=<6<2m, —00 <z < 00, (2-1)

where r, 6 and z are appropriate cylindrical polar coordinate parameters and the nonnegative constants
By and Bj represent the inner and outer radii of the tube, respectively. It is assumed that the tube is made
of a transversely isotropic linearly elastic material and that the preferred direction of transverse isotropy
lies on the plane of the tube cross-section. Accordingly, the preferred material direction is described as
follows (e.g., [Kassianidis et al. 2008]):

0 = G(r) + 0o, G(By) =0, G(B1)=61—0y >0, (2-2)

where 0 < 6y < 2w and 0; — 6 is fixed regardless of the value of 6y. Here, the scalar function G (r)
defines the direction of transverse isotropy which is due to the existence of a single family of plane fibres
making an angle «(r) with the radial direction. It is convenient to assume that 0 < «(r) < /2 and,
hence, that the family of fibres (the a-curves) have the form shown in Figure 1.

t tuu r

tn n (04 i

0
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>

Figure 1. Left: schematic representation of the tube cross-section and associated nota-
tion. Right: illustration of normal in-plane stress components in both the local and polar
coordinate systems.
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The unit tangent a and the unit normal n of this family of material curves form the base of a local
rectangular curvilinear coordinate system. In components, these unit vectors are represented as

a=(a,a)", n=(-ag,a), (2-3)

where
a, =[G +1]"?  a=raO[cG ) +1]"2 (2-4)
and a prime denotes differentiation with respect to r. It follows that

tano =rG'(r), (2-5)

and, therefore, G'(r) > 0.
The material of the tube is assumed to be linearly elastic and, hence, the plane strain version of Hooke’s
law has the form

taa Cin Cpp O €aa
tin | =] C12 C 0O e | t;; = C12€4q + Co3epp, (2-6)
tan 0 0 C66 2ea,,

where .4, thn, tan, t;; and eqq, eq,, eqan represent the nonzero components of the stress and the strain
tensors respectively, in the aforementioned curvilinear local coordinate system (see also Figure 1, right);
C11, C12, C22, Cy3 and Cegg are appropriate nonzero elastic moduli (e.g., [Jones 1998]) which are assumed
constant in what follows. In polar coordinates, (2-6); takes the form

Lrr C?n C:'lz ¢16 €rr
tgg | = | Cr2 Co2 Cog esn |, (2-7)
tro Cie Ca Ces) \2er0

where t,,, tgg, tro and e,,, egy, €r¢ are the corresponding polar components of the stress and strain tensors,
respectively. In general, it is o # O and, hence, the stiffness matrices [C] and [C] appearing in (2-6),
and (2-7) are related according to

[C1=[T1'[ClT] T, (2-8)

where (e.g., [Jones 1998])
cos’a  sinfa  sin2a
[T1=| sina cos?a —sin2a |, (2-9)
%1 sin 2« % sin2a  cos 2«
and a superscript ~7 denotes the inverse of a transposed matrix. It is noted for later use, that both matrices
[C] and [C] are required to be positive definite, in order for the strain-energy of the system to be positive
(e.g., [Ting 1996]).
For the axially symmetric plane deformations of interest, the strain components appearing in (2-7) are
=), ep=""  2e=v(-0, (2-10)
where u(r) and v(r) are the cross-sectional radiafand the azimuthal displacrement components, respec-
tively. The set of available equations is completed with the equations of equilibrium. In the present case,
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these take the form
ot
0z

and, since plane strain assumes that stresses are independent of z, equation (2-11)3 is satisfied identically.

The description of the azimuthal strain problem considered is completed by associating to it appropri-
ate sets of boundary conditions. Accordingly, the boundary conditions imposed in the azimuthal direction
of the tube inner and outer boundaries are

rtl St —tgg =0,  (r’tg) =0, =0, (2-11)

v(Bp) =0, v(B1) =Y. (2-12)

Since the inner boundary is assumed restrained from rotation, the azimuthal displacement y», which
is imposed on the tube outer boundary, is assumed to be the cause of the axially symmetric plane-
strain deformation of interest. If positive (negative), the known displacement i causes an anticlockwise
(clockwise) rotation on the outer boundary of the tube cross-section; the azimuthal boundary traction is
considered unknown on both boundaries and should therefore be determined from the analysis.

Anticipation of possible coupling between azimuthal shear strain and radial stretching is associated
with the ability of the inner and outer tube radii to change during deformation, thus leading to the
additional boundary conditions

trr(Bo) =ty (B1) = 0. (2-13)

However, when pure azimuthal shear strain becomes the principal deformation of interest, the tube radii
remain unchanged during deformation and, hence, the natural boundary conditions (2-13) are replaced
by the geometrical boundary conditions

u(By) =u(By) =0. (2-14)

3. Spiral fibres

For simplicity, it is now considered that « is constant and, hence, the fibres have the form of a logarithmic
spiral; namely, a curve described by the function

G(r)=tanaIn L. (3-1)
By
With this relatively simple choice of G(r), the components of the stiffness matrix [C] become indepen-
dent of the polar distance, r. It is seen next that, as a consequence, an exact closed form solution of the
problem is possible regardless of whether the material of the tube is unconstrained or is subjected to any
combination of the aforementioned incompressibility and inextensibility constrains.
In what follows, equations are made nondimensional with use of the main nondimensional quantities

r*=L’ 13=ﬂ, M*zﬁ, v*zﬁ,
By By v ¥
BOtl“ _ ~.
% j .. % ij ..
= (i,j=r0), Ci=— ((,j=1,2,6). (3-2)
Y YCes Y Ceg



ON SMALL AZIMUTHAL SHEAR DEFORMATION OF FIBRE-REINFORCED CYLINDRICAL TUBES 147

It is also noted that the additional nondimensional quantities
ot = B(Zp, T — BO_T
¥ Cep ¥ Ces
will be employed latter in sections 3.2, 3.3 and 3.4 in order to represent nondimensional forms of the
arbitrary pressure and tension, respectively, introduced there. It is however noted that, for convenience,
asterisks are dropped in all equations met next in sections 3 and 4. Hence, the form of the in-plane

equilibrium equations (2-11); » remains unchanged under the implied nondimensional analysis while the
corresponding nondimensional form of the boundary conditions (2-12), (2-13) and (2-14) is, respectively,

(3-3)

v(1)=0, v(p) =1, (3-4)
trr(1) =1, (,B) =0, (3-5)
u(l) =u(B) =0. (3-6)

3.1. Unconstrained material. Use of the kinematic equations (2-10) and the Hooke’s law (2-7) yields
the nondimensional Navier-type form of the equilibrium equations (2-11); » as follows:
Crir(ru') = Copu + Cier*v” — Cag(rv’ — v) =0,
Cio(r?u’) + Cag(ru) +r2v" +rv/ —v=0. (3-7)
This is a system of two second-order simultaneous, Euler-type ordinary differential equations (ODEs)
which admit solutions of the form u(r) = c1r", v(r) = cr".
Accordingly, the general solution of equations (3-7) is found to be

u(r)y =y Ar=' + A + Asr7,

v(r) = Agr + Air 7 4 Aor 4 y3 AT, (3-8)
where A, Ay, A3 and A, are arbitrary constants of integration, the constants y;, > and ys3 are given in
the Appendix and

772 _ Car — C226
Cll - C126
It can be shown that, due to the positive definiteness of [C], both the numerator and the denominator

appearing in the right-hand side of (3-9) are positive and, therefore, n is always a real constant. Use of
Hooke’s law yields further the associated in-plane nondimensional stress components as follows:

(3-9)

trr = A Fir ™2+ AgFor™ 4 Ay Fyr 171,
tog = Ay Far 2 + Ay Fsr"™' + A3 For !,
trg = A1 (y1(Cas — C16) =2) 12, (3-10)
where the constants Fy (k=1,2,...,6) are given explicitly in the Appendix.
The form of the solution (3-8) makes immediately understood that change of both the inner and outer

radii of the tube is generally always possible in this case, in which the material of the tube is completely
unconstrained. For, if the particular set of boundary conditions (3-4) and (3-5) is considered, all four of
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the arbitrary constants appearing in (3-8) and (3-10) acquire the unique nonzero values given explicitly
in equations (A-3); hence, u(r) # 0 for all 1 <r < 8. In this case, the radial displacement of the inner
and outer boundary of the tube is determined by setting »r = 1 and r = 8 in (3-8),, respectively.

If, on the other hand, the set of boundary conditions (3-4) and (3-6) is taken instead into consideration,
the alternative set of unique nonzero values associated with the aforementioned arbitrary constants — see
equations (A-5) — suggests that, although u(r) #0 for 1 < r < B and, therefore, there is coupling between
azimuthal shear and radial stretching in the interior of the tube, the boundary radii of the tube can be
kept unchanged during deformation. Conditions of pure azimuthal shear can therefore also be observed
in this case, although these require simultaneous action of appropriate nonzero normal tractions on the
tube inner and outer boundaries; those tractions are determined by setting r = 1 and r = § in (3-10);.

It should be finally noted that in the particular case that « = 0 (radial fibres), equations (3-7) become
uncoupled and, as a result, azimuthal shear strain and radial stretching become completely uncoupled
deformations. It will be seen in what follows that this result is valid regardless of whether the material
is constrained or not and, hence, this particular case, in which the fibres are aligned along the radial
direction of the tube cross-section, is discussed separately in Section 4.

3.2. Incompressible material. Incompressibility is a kinematic constraint which requires an arbitrary
hydrostatic pressure p(r) to be superimposed on the stress field; p(r) does no work in any deformation
which is compatible with the incompressibility constraint (tr e = 0). In this case, Hooke’s law (2-7) is
modified and its in-plane part takes the nondimensional form (e.g., [Spencer 1972; 1984])

Ly C:h C:’12 C?lé €rr
tgo | = | Ci2 Ca2 Co6 eop | —p|1]- (3-11)
Iro Cie C 1 2erq 0

where, as already mentioned, the appearing quantities are all nondimensionalized according to (3-2) and
(3-3) before asterisks are dropped. The nondimensional form of the corresponding Navier-type governing
equations then becomes

(_fllr(ru')' — ézzu + 6161’21)” — 626(}’1)/ — v) — rzp’ = O,

Ci6(r’u’) + Caog(ru) +r*v" +rv/ —v =0, (3-12)

and are accompanied by the incompressibility constraint e, + egg = 0, which yields the additional
equation

u'+—=0. (3-13)

r

Solution of (3-13) yields u(r) which is then inserted into (3-12),. The latter yields thus an inhomo-
geneous Euler ODE which is solved in the standard manner for the determination of v(r). Solution of
(3-12); becomes next possible for p(r) and, hence, the general solution of the system of simultaneous
ODEs (3-12) and (3-13) is found to be

u@y=Air~", vr)=Ar+Asr', pr)=As—1(A1(C11 — C) +2A3(Cie+ Cre))r 2, (3-14)
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where Al, Az, Ag and 144 are arbitrary constants of integration. Use of the constitutive equation (3-11)
yields further the associated in-plane nondimensional stress components:

lyr = (%A1(2C_"12 —C11 — C») + A3(Ca — Ci))r 2 — Au,
tog = (—3A1(2C12 — C11 — C22) — A3(Ca6 — C1))r 2 + Ay,
trg = (A1(Cas — C16) — 243)r 2. (3-15)

By considering the particular set of boundary conditions (3-4) and (3-5), Ay, Ay and Aj take unique
nonzero values — see (A-7) — while A4 = 0. Hence, u(r) #0forall 1 <r < B and a change of both the
inner and outer radii of the tube is generally again possible in this case. It is also noted that, despite the
nonzero values of both Al and 143, t.r = tgg = 0 throughout the tube cross-section. Finally, if « = /4,
then C1¢ = Ca and, therefore, u(r) =0 throughout the tube cross-section, thus causing conditions of
pure azimuthal shear strain in this particular case.

Conditions of pure azimuthal shear strain are also possible for o # 0, if only one of the two boundary
conditions (3-6) is satisfied along with (3-4). Due to the form of (3-14), the unused of the geometri-
cal boundary conditions (3-6) is satisfied automatically and should therefore be replaced by its natural
boundary condition counterpart detailed in (3-5). If, for instance, the set of mixed boundary conditions

u(l) =1,(B) =0, (3-16)

is chosen to replace (3 6) while (3-4) still hold, then A1 = 0 and, therefore, u(r) = 0 throughout the
tube cross-section (Az, Ag and A4 are given by (A-8)). Nevertheless, a nonzero normal traction should
act in this case in the radial direction of the tube inner boundarys; this is determined by setting r = 1 in
(3-15);. Similar arguments hold true if (3-16) are replaced by ¢, (1) = u(8) = 0. Pure azimuthal shear
strain is observed again in this case, though a normal traction should be applied radially on the outer
tube boundary.

In the particular case that « = 0, equation (3-12), becomes uncoupled from the set of equations (3-12);
and (3-13). Hence, azimuthal shear strain and radial stretching become again completely uncoupled
deformations. Moreover, since the incompressibility constraint is associated with radial stretching only,
the azimuthal strain problem becomes identical with its unconstrained material counterpart; this is the
case discussed separately in Section 4.

3.3. Inextensible fibres. The constraint of fibre inextensibility (a” ea = 0) requires an arbitrary tension
T (r) to be superimposed on the stress field; this acts along the fibre direction and does no work in any
deformation which conforms with this constraint. In this case Hooke’s law takes the nondimensional
form (e.g., [Spencer 1972; 1984])

Ly C:'11 C:VIZ Cfl6 Err cos? o
too | =|Ci2 Coo Co6| | €00 | +T| sin’a |, (3-17)
tyo Cig Cr 1 2e.9 sin & cos «

where the appearing quantities are again nondimensionalized according to (3-2) and (3-3) before aster-
isks are dropped. The nondimensional form of the corresponding Navier-type governing equations then
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becomes
Ciir(ru') = Copu+ Cier’*v” — Cog(rv/ —v) +r(rT) cos> « — r T sin’ a = 0,
Cio(r*u') + Cag(ru) +r*v” +rv' — v+ Lsin20(*T) = 0. (3-18)

These are accompanied by the inextensibility constraint e,, cot o + egg tan @ + 2e,9 = 0 which, with use
of (2-10), yields the additional equation
/ u / v
u cotot+;tana+v —;=0. (3-19)
Equation (3-18), can immediately be integrated once. A subsequent elimination of v(r) and 7 (r)
from the resulting equations yields an inhomogeneous second-order Euler-type ODE for u(r) which can
be solved in the standard manner. The general solution of the system of simultaneous ODEs (3-18) and
(3-19) can then be obtained with relative ease, to yield

Al —1 ~ -
ulry=———-r_ + A"+ Asr ",
yi(1—m?)
. Aj cot2 . .
0(r) = Aar — - Ay — Aspar
71(1 —m?)
2A C16 — Ca6 —2cot 2
= 2 (1 u=Cumaeae)
sin 2« P1(1 —m?)
2A o 24 _ _
—2 (Bi(m —1) —mCig— Cog) r"™ " + — > (mCig— Pa(m+1) — Co) r™"~',  (3-20)
sin 2o sin 2o

where Al, Az, 143, A4 are arbitrary constants of integration, the constants By, B2, 1 and y, are given
explicitly in the Appendix and

m =2, (3-21)

It can be shown that, due to the positive definiteness of the matrix [C] and the fact that 0 < o < /2,
both the numerator and the denominator in the right-hand side of (3-21) are positive and, therefore,
the constant m is always real. Use of (3-17) yields next the associated in-plane nondimensional stress
components as follows:

A ~ ~
frr = ﬁHﬂ’iz + Aszrmfl + A3H3I"7mil,
Y1(1—m?)
A . .
top = ﬁ[’]ﬂ‘_z + A2H5rm_1 —|—A3H6r_m_1,
Y1l —m?)
tvg = Air—2, (3-22)

where the constants Hy (k =1, 2, ..., 6) are given explicitly in (A-10).

If the set of boundary conditions (3-4) and (3-5) is associated with this solution, all four arbitrary
constants appearing in (3-20) and (3-22) take unique nonzero values (see (A-11)); hence, u(r) # 0
for all 1 <r < B. It follows that a solution anticipating that both the inner and the outer tube radii
change is again possible in this case. If, on the other hand, the alternative set of boundary conditions
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(3-4) and (3-6) is instead considered, the corresponding set of unique nonzero values associated to those
constants — see (A-13)— suggests that conditions of pure azimuthal shear strain can instead also be
observed. Nevertheless, although the boundary radii of the tube do not change during the observed pure
azimuthal shear deformation, it is again u(r) # 0 for 1 < r < B and, therefore, there is again coupling
between azimuthal shear strain and radial stretching in the interior of the tube. It is again anticipated that
appropriate nonzero normal tractions should be applied on the tube inner and outer boundaries; these are
determined by setting r =1 and r = § in (3-22);.

In the case o = 0, radial stretching and azimuthal shear strain become again uncoupled deformations.
The fibre inextensibility constraint becomes associated with radial stretching in this case, so the azimuthal
shear strain problem becomes again identical with its unconstrained material counterpart; see Section 4.

3.4. Ideal fibre-reinforced material. In this case, the material is assumed to be incompressible and also
reinforced by inextensible fibres. Hence, Hooke’s law takes the nondimensional form (e.g., [Spencer
1972; 1984])

Iry Cii Cia Cis err T cos’a—p
togg | = | Ci2 Cyp Cog egp | +| T sin®a — pi, (3-23)
to Cig Cp 1 2e,¢ T sina cos o

where the appearing quantities are all nondimensionalized according to (3-2) and (3-3), before aster-
isks are dropped. The nondimensional form of the corresponding Navier-type governing equations then
becomes
Cir(ru') = Cou + Cior*v” — Cag(rv' — v) +r*(T' cos® a« — p') +rT cos 2 = 0,
Ci6(r*u’) + Cos(ru) +r*v" +rv' — v+ $sin2e(+*T) =0, (3-24)
and are accompanied by both constraint equations (3-13) and (3-19), thus forming a system of four
simultaneous ODE:s for a total of four unknown functions, namely u, v, p and T.

Solution of Equation (3-13) yields u(r), which is then inserted into (3-19) for the determination of v(r).
With the form of u(r) and v(r) becoming thus known, 7T (r) and p(r) are next obtained by consecutively
solving (3-24), and (3-24);, respectively. Hence, the general solution of the system of simultaneous
ODEs (3-24), (3-13) and (3-19) is found to be

u(ry= A",

v(r) = Ayr — Alr*1 cot 2u,

p(r) = A3+ % (As— A1 (Ciy — Coo — 2(Ci6 + Cap) cot 200)) 12,

T(r) = Aar—2, (3-25)

where Ay, Ay, A3z, A4 are arbitrary constants. Use of (3-23) yields next the associated in-plane nondi-
mensional stress components as follows:

Ly = (%Al(ZC_'lg —C11 — Cap +2(C16 — Cap) cot2a) + %A4 cos Za)r_2 — Az,
fogp = (—%A1(2C’12 — 611 - C_'22 + 2(616 - 626) cot 20[) - %A4 COS 20[)1’_2 + A3,
to = (A1(2C_'66 +Crs—Cig) + %A4 sin 20()}’_2. (3-26)
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If the solution (3-25) is associated with the set of boundary conditions (3-4) and (3-5), A;, A, and
A4 take unique nonzero values — (A-15)— while A3 = 0. Hence, u(r) #0 forall 1 <r < f and a
change of both the inner and outer radii of the tube is again possible; it is also noted that, despite of
the nonzero values of A; and Ay, t,, = fg9 = O throughout the tube cross-section. On the other hand,
pure azimuthal shear strain deformation is not possible in this case. For, simultaneous satisfaction of the
boundary conditions (3-4); and (3-6); yields u(r) = v(r) = 0 throughout the tube cross-section.

It is again seen that in the particular case that « = 0, radial stretching and azimuthal shear strain
become again uncoupled problems, while both constraints involved associate themselves with radial
stretching. Hence, the azimuthal shear strain problem becomes again identical with its unconstrained
material counterpart which is discussed in the next section.

4. Perfectly flexible radial fibres

Interest is now focused in the particular case in which the fibres are straight and aligned along the
radial direction of the tube cross-section. This corresponds to the choice G(r) = o = 0 and, since the
local and the polar coordinate systems coincide, the elastic behaviour of the material is described by
(2-6), provided that the appearing local in-plane stress and strain components are replaced by their polar
counterparts appearing in (2-7). It is already seen that, when o = 0, radial stretching and azimuthal shear
strain become completely uncoupled deformations regardless of whether the material is constrained or
not. Restricting, for instance, attention to the unconstrained material case discussed in Section 3.1, one
finds that equations (3-7) become uncoupled when o = 0 and, hence, the resulting azimuthal shear strain
problem is completely described by the Euler differential equation

2" +rv —v=0. 4-1)

This second-order ODE can describe pure azimuthal shear deformation only and, hence, it is associated
with the pair of boundary conditions (3-4) only. Solution of this boundary value problem yields

v(r) = ,BZIB— 1 (r —r_l) , 4-2)
and Hooke’s law (2-6); reveals further that the nondimensional azimuthal shear stress
28,
lyg = ﬁ” ) (4-3)

is the only nonzero stress component associated with this deformation.

Interestingly enough, when the tube material is constrained in the manner suggested in Section 3,
every single one of the problems discussed in sections 3.2, 3.3 and 3.4 provides precisely the same
description for the pure azimuthal shear strain problem, namely (4-1) and (3-4); hence, in each case,
it yields precisely the same solution with the outlined above on the basis of the unconstrained material
version of the problem. It also becomes evident that, since material anisotropy does not enter the outlined
problem description, the obtained solution (4-2) and (4-3) is identical to its isotropic material counterpart.
However, it is already known [Soldatos 2009a; Soldatos 2010] that pure azimuthal shear deformation of
a radially reinforced tube made of ideal fibre reinforced material (see Section 3.4) is not possible in the
finite deformations regime. In contrast, finite pure azimuthal shear strain is indeed possible if the tube
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material is incompressible but the radial fibres involved are free to extend or contract [Kassianidis et al.
2008]. Moreover, the material incompressibility constraint affects in a clear and obvious manner the
relevant finite elasticity solution obtained in this latter reference, whereas this fact is not observed in the
present case of small deformations (Section 3.2). It is instead observed that conventional linear elasticity
theory cannot adequately account for the effects that material anisotropy and/or either of the constraints
of material incompressibility and fibre inextensibility have on the azimuthal shear deformation problem
considered when the tube is reinforced along the radial direction of its cross-section. In what follows, the
infinitesimal strain problem described by (4-1) and (3-4), as well as its relatively simple solution given
by (4-2) and (4-3), will therefore be mainly associated with the case discussed in Section 3.1, where the
material is assumed completely unconstrained.

5. Radial fibres with bending stiffness

When the perfectly flexible fibres considered in the previous sections are replaced with fibres possess-
ing bending stiffness, the theory is required to account further for possible action of couple-stress and
therefore asymmetric stress [Spencer and Soldatos 2007]. The linearized version of the relevant hyper
elasticity theory presented in that paper is considered for a study of the effects that fibre bending stiffness
has on the azimuthal shear strain problem discussed in the preceding section. For convenience, the
restricted part of that linearized theory, which requires use of only one additional elastic modulus, is
employed here.

5.1. Problem formulation. The form of Hooke’s law presented in Section 2 for o = 0, before the nondi-
mensional quantities (3-2) were introduced, is now suitable only for description of the symmetric part of
the stress tensor. Hence,

Lrr Cn Cp2 O €rr
tosg | =|Ci2 Cn2 O eoo |, (5-1)
tro) 0 0 Ce/) \2e9

where #¢)y denotes the symmetric part of the shear stress component f,¢, the matrix [C] is identical to
its counterpart involved in (2-6) and the appearing strain components are given according to (2-10).

The antisymmetric part of ¢, is caused by the action of a relevant couple-stress component, m,,
arising when fibres resist bending. In terms of a notation similar to that adopted in [Soldatos 2009b], this
couple-stress component is given according to

me.=d'k], k] =v"(), (5-2)

where d/ is the aforementioned additional elastic modulus (fibre bending stiffness) and kg represents
the in-plane curvature component of the fibre in the linear elasticity regime. The antisymmetric part of
the shear stress component is then expressed as

tior) = —ti0) = 3m,, = 3d7 0" (r). (5-3)

It thus becomes immediately understood that radial stretching and azimuthal shear strain remain com-
pletely uncoupled deformations regardless of whether the material is constrained or not. Hence, the
azimuthal equation of equilibrium (2-11),, which is again the only governing equation to be considered,
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yields
df m " 2.1 /
(r'v +2rv")— (v 4+rv —v) =0, (5-4)
2Ce6
and makes obvious that the existing material anisotropy is indeed accounted for in this case.

Equation (5-4) is a fourth-order ODE for the azimuthal displacement component v(r) and a unique
determination of its solution requires specification of four boundary conditions. Two of them are evi-
dently (2-12) while two more boundary conditions can be deduced from the relevant discussion detailed
in [Soldatos 2009b]. Accordingly, the outer boundary (r = B)) is assumed free of couple-stress, thus
leading to the additional boundary condition

my-(B1) =0, (5-5)

while the inner boundary (r = By) may be assumed either restrained against rotation or free of couple
stress. It follows that the last of the four boundary conditions sought is one of the following alternatives:

either v (Byp) =0 or m,,(By) =0. (5-6)

It is observed that unlike its perfectly flexible fibres counterpart in (4-1), Equation (5-4) depends on
the tube material properties. In this regard, the notation
dr
—— =21(B1 — By), (5-7)
Ceo
introduces an intrinsic material length parameter /, which may be considered relevant to the fibre thick-
ness. It is evident that when [ = 0, (5-4) reduces to its perfectly flexible fibres counterpart. The role of
nonzero values of [/ will become clearer in what follows.

5.2. Nondimensional form of governing equations. The Navier-type governing differential equation
(5-4) and the boundary conditions associated to it are next nondimensionalized with use of the nondi-
mensional quantities introduced in (3-2) and the additional nondimensional parameter

L d’

By 2CesBo(Bi — Bo)’
Nevertheless, asterisks are again dropped for convenience and, hence, all relevant quantities appearing
without an asterisk in the remaining of this section, as well as Section 6, are those defined in (3-2).

Accordingly, with use of (5-2), the nondimensional version of the present boundary value problem is
found to be

(5-8)

AB =D +2r") — 2 +rv —v) =0,
v(H)=0, vPB) =1, V(B =0, (5-9)
and

either v'(1)=0 or v"(1)=0. (5-10)

It is worth noting that, with simultaneous consideration of (5-9),, either condition in (5-10) resembles the
boundary condition imposed at the end of an elastic slender beam which is clamped or simply supported,
respectively, at 8 = 1.
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With / = 0 in the case of perfectly flexible fibres, the conventional (symmetric) theory of linear elastic-
ity (Sections 2—4) implied that the tube cross-section contains an infinite number of fibres. By associating
the intrinsic length parameter / with the fibre thickness, the nonsymmetric stress theory employed in this
section implies that the number of fibres as well as their density within the cross-section may be accounted
for. Accordingly, if a fibre in the present plane strain case is thought of as a slender rectangle of length
By — By, then its area may be represented by the product /(B — Bp) and, hence, the finite number of
fibres, N/, that can be fitted into the tube cross-section is estimated to be

N f _ 2 B() _ 2_7'[
[ A
It follows that the value of total fibre area is 2w Bo(B; — Bp) and this is independent of the fibre

thickness. It is also of interest to note that, by dividing the total fibre area by the tube cross-sectional
area, the fibre area fraction is estimated to be

s 2By 2
 Bi+By B+1’

and depends solely on the value of 8. It is, therefore, seen that the value of g is indicative of the density
(sparsity) of the fibre distribution within the tube cross-section. This result is illustrated in Table 1, where
the total fibre area is calculated as a percentage of the area of the tube cross-section. It is finally noted
that (5-11) implies A < 27x. With [ « By and, therefore, A <« 1 in many practical applications, this
inequality may be perceived as a natural consequence of the fact that thickness of common structural
fibres is much smaller than the inner tube radius. However, since By may in principle be smaller than
[ even if the fibre thickness is of the order of 10u, values of A > 1 are also anticipated by the present
theory. In this context, the right-hand-side of (5-8) suggests that different physical interpretations of A
and/or [ might also be possible, particularly when O (1) = 1.

(5-11)

(5-12)

B 1 15 2 25 3 4 5 75 10 20 50 100
S/ % 100 80 66.7 57.1 50 40 333 235 182 95 39 2

Table 1. Estimated total area of radial fibres with bending stiffness as a percentage of
the area of the tube cross-section.

Solution of the boundary value problem (5-9) and (5-10) is next achieved analytically, via the power
series method, and computationally, with use of the successive approximation method (SAM) introduced
in [Soldatos and Hadjigeorgiou 1990] (see also [Shuvalov and Soldatos 2003; Ye 2003; Soldatos 2003]).

5.3. Power series solution. Application of the power series method is based on the following Taylor-type
series expansion of the solution sought around r = 1:

o0

() =Y an(r— 1", (5-13)

n=0

where the constant coefficients a,, (n =0, 1,2, ...) are to be determined. Introduction of (5-13) into
(5-9)1, followed by nullification of the coefficients of like powers of r—1, leads to the recurrence
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relations
ay+2a; —21(p —1)3las
“= (B — D4l ’
ag+4a; +6a; — (6A(B— 1)+ 1)3las
== (B —1)5! ’
n—Dm+1)! Cn+Dn+1D!
T B - D+ T B - D+ !
B ((n+1)! B 1 > (n+2)!an+2_2(n+1)an+3, n>2. (5-14)
(n=D! AB-1) (n+4)! (n+4)
where ag, a1, a; and a3 are arbitrary constants. Use of the boundary conditions (5-9), and (5-10); yields
agp =0, a; =0, (5-15)
while use of (5-9), and (5-10), yields
ap=0, a, =0. (5-16)

In both cases, the values of the remaining constants are then determined numerically with use of the
boundary conditions (5-9)3 4, after the series expansion (5-13) is truncated to an appropriate number of
terms that guarantee convergence of the obtained numerical results to a desired accuracy.

5.4. Successive approximation solution. Application of the well established successive approximation
method introduced in [Soldatos and Hadjigeorgiou 1990] requires initially the conversion of (5-9); into
a system of four simultaneous first-order linear ODEs. In matrix form, these may be arranged as

(X)) =[DEOHX 1)}, (X)) = (v, v, 0", 0", (5-17)

where the nonzero elements of the matrix [D(r)] are

2
Dy =Dy =Dz =1, Dy3 =rDy = —r’Dy = Dyy = — (5-18)

1
AB—1)
For sufficiently thin tubes, an approximate solution is obtained by replacing the variable r appearing
in (5-18) with the nondimensional cross-sectional middle-radius parameter R = (8 + 1)/2. The resulting
approximate system of four simultaneous linear ODEs with constant coefficients may then be written in
the form
(XY =IDRUX ()}, (5-19)

and its general solution can be expressed as follows:
(XM} =[K@HNHX D}, l<r<B8. (5-20)

Here {X (1)} denotes the value that the vector {X} takes at the inner boundary of the tube, while the
elements of the exponential matrix [K (r)] = exp[(r — 1) D(R)] can be evaluated analytically in the
manner detailed in [Ye 2003].

If the tube is thick, it is divided in N fictitious, successive and coaxial layers having the same constant
thickness, represented by the nondimensional thickness parameter 2 = (8 — 1)/ N, and the same material
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properties. Upon choosing a suitably large value of N, each individual layer becomes itself a sufficiently
thin elastic tube and, as a result, an approximate solution of the form (5-20) is considered satisfactory for
the study of its behaviour. The approximate solutions thus obtained for all fictitious layers are then suit-
ably connected by means of appropriate continuity conditions imposed on their fictitious interfaces, thus
providing an arbitrarily close solution to that of the exact system (5-17) —see [Shuvalov and Soldatos
2003]. For an illustration of the relevant algorithm, consider the j-th such individual fictitious layer
(j=1,2,..., N), the nondimensional middle-radius parameter of which is given by

RV =1+ (h/2)(2j — 1), (5-21)
giving thus rise to the exponential matrix
[KYD ()] =expl(r — RV +h/2)D(RY)], RV —h/2<r <RY +h)2. (5-22)

By requiring continuity of the azimuthal displacement component, the in-plane rotation component
and the nonzero components of the stress and couple-stress tensors, one obtains the following continuity
conditions on the N — 1 fictitious interfaces:

(XD(RY +h/2)y = {(XUTD(RUTD —ph/2)}, j=1,2,...,N—1. (5-23)
Hence, with recursive use of (5-20), (5-22) and (5-23), the solution sought is constructed as follows:
(XM RN +1/2)) = [K™ (RN + h/2)UX VD RND 4 1/2)}
= [K™MRM +r/ UK VD RND 4 /D)X VD (RN 4 1 /2))

= =[KI{XVRD —h/2)}, (5-24)
where
1
[K]= []‘[ (KD RV +h/2)]]. (5-25)
j=N

With further use of the boundary conditions (5-9); 3 4 and (5-10), Equation (5-24) leads to a linear al-
gebraic system (see [Soldatos and Ye 1995], for example), whose solution yields the distribution of
the azimuthal displacement component throughout the tube cross-section. Note that the solution of the
problem has been obtained by making use of algebraic manipulations involving 4 x 4 matrices only.

6. Numerical results and discussion

Equations (4-2) and (4-3) make clear that a convenient way for presentation of numerical results when
fibres are perfectly flexible (A = 0) is associated with the use of the nondimensional quantities

2 2

1

v(r) = v(ir)y=r—r—-, tro(r) = to(r) =2r"2. (6-1)

It is observed that neither of these nondimensional quantities depends on the nondimensional radius
parameter 8 of the tube outer boundary. This observation suggests that both v and 7,4 maintain the same
distribution profile regardless of the tube thickness. This is of course not the case when fibres resist
bending but, for convenience in the presentation of numerical results, the azimuthal displacement and
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the shear stress distributions predicted in Section 5 are also nondimensionalized further in accordance
with (6-1). In this context the additional nondimensional stress parameter

p*—1
tor =

Tor

is also employed where necessary. It should be emphasized that the profiles of the nondimensional
displacement and stress distributions employed do depend on 8 when fibres resist bending. For a straight-
forward interpretation of the presented numerical results, it is convenient to assume that v > 0 and, hence,
that the cause of the deformation is applied anticlockwise on the outer tube boundary.

Most of the numerical results shown next are related with relatively thick tubes and they are mainly
produced by solving equation (5-9); on the basis of the SAM outlined in Section 5.4. It is worth noting
that corresponding numerical results obtained on the basis of the power series method (Section 5.3) are
practically identical to those based on SAM and, hence, in line with the conclusions made in [Shuvalov
and Soldatos 2003], the two methods are found to be computationally equivalent. However, due mainly
to its slow convergence, the power series method seems to be computationally reliable for relatively thin
tubes only. In contrast, SAM converges faster and is computationally reliable for a much wider range
of the tube thicknesses. Very satisfactory convergence of SAM and accuracy of the obtained results was
achieved by choosing #/RY) < 0.01 where & and R are defined in Section 5.4; this fact is also in
agreement with similar observations made in previous studies that were based on SAM (e.g., [Soldatos
and Ye 1995]). It is convenient at this point to also note that numerical results shown in Figures 2—-5
are obtained under the assumption that the geometric boundary condition (5-10); is applied at the fibre
root, r = 1, while corresponding results plotted in Figures 6-8 are obtained by assuming that the natural
boundary condition (5-10); is applied there.

Figure 2 depicts the first quadrant of the tube cross-section and, for different values of A, shows the
deformation pattern of a fibre initially aligned along the horizontal radius of the tube cross-section having
its outer boundary at 8 = 2.5. It is recalled that A = O represents the deformation pattern of a perfectly

25
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Figure 2. Deformation pattern of a fibre initially aligned along the horizontal radius of
the tube cross-section. The fibre is assumed clamped in the inner tube boundary.
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flexible fibre described by (4-2). As already mentioned, this pattern is identical to that attained by the
horizontal radius of a corresponding isotropic material; having no bending stiffness, a perfectly flexible
radial fibre just seems to follow passively the deformation pattern of an isotropic material. Corresponding
deformation patterns for a fibre that resists bending (A # 0) are plotted in Figure 2 under the assumption
that the additional boundary condition (5-10); is applied on the tube inner boundary; hence, the fibre is
essentially assumed clamped there. It is observed that the slope of the perfectly flexible fibre is nonzero
at the inner boundary of the tube cross-section and is monotonically decreasing with increasing 8. Hence,
a deformed perfectly flexible fibre is concave downwards. In contrast, in their deformed configuration,
fibres with bending stiffness are initially concave upwards and, hence, they resist the applied azimuthal
shear deformation. This resistance increases with A and reflects on the slope of the deformed fibre which
is initially increasing from its zero value imposed on the inner tube boundary. Although the slope of the
fibre begins afterwards to decrease again when A is small, the region of monotonically increasing slope
values becomes larger with increasing A and, therefore, with increasing fibre bending resistance, in line
with physical expectation. For sufficiently large values of A, the slope of the fibre deformation pattern
seems to become monotonically increasing throughout the tube cross-section (1 < r < 2.5) and, hence,
the whole fibre is concave upwards. It is finally noted that the deformed fibre pattern shown in Figure 2
for A = 7 remains practically unchanged if A is increased further.

The dimensionless azimuthal displacement v is plotted in Figure 3 against r, for different values of g
and for A = 0.1. As already mentioned, in the perfectly flexible fibres case (A = 0), v maintains the same
distribution profile regardless of the value of 8. However, each one of the dashed lines (A # 0) begins at
the tube inner boundary, as required by the boundary condition (5-9),, and ends at some different point
of the solid line; namely, at the point 8 where the external azimuthal displacement v is applied on. It is
seen that, for A 7 0, v is decreasing at the vicinity of the tube inner boundary with increasing 8. This
is in line with the expectation that, upon increasing the tube outer radius, the effect of the external cause
of the deformation is decreasing at the root of the clamped fibre where the highest bending resistance is
observed.

sk
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/
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| // — — - X=0.1,8=5
///
/7
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Figure 3. Nondimensional displacement v as a function of r for different values of g
(A=0.1).
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Figure 4. Symmetzric part of nondimensional shear stress #(.g) and nondimensional cou-

—fwc;mrz as a function of r for different values of A (8 =2.5).

ple stress m,, =

For different values of A and for 8 = 2.5, Figure 4 shows the variation of the symmetric part of the
nondimensional shear stress 7,4 and the nondimensional couple-stress m,, against r. It is recalled that
tro = 1y, for the perfectly flexible fibre case (A = 0); this fact is represented by the solid line in the figure.
As a result of the displacement boundary conditions (5-9), and (5-10),, #(-9) is zero at the inner tube
boundary; see also (5-1). It follows that the couple-stress m,, and, therefore, the antisymmetric part of
the shear stress, #.¢], are dominant at the vicinity of the inner tube boundary; in fact the couple-stress
takes naturally its maximum value at the inner tube boundary where highest fibre bending resistance is
observed. However, as distance from the inner tube boundary is increasing, the contribution of #(.g) is
increasing while that of 1, and f[,4] is decreasing fast and becomes gradually negligible. As A increases,
10y decreases within the inner part of the tube cross-section. This decrease of 7,4y is compensated by
the increasing contribution of m,, while the outlined trend is reversed within the outer part of the tube
cross-section.

For different values of A and for 8 = 2.5, Figure 5, top, shows the distribution of the shear stresses 7,4
and 7y, within the tube cross-section. It is seen that, maximum absolute shear stress occurs always at the
inner tube boundary, though 7,4 and 7y, take opposite values there for A # 0; this is due to the fact that
o) =0 atr = 1, as observed in Figure 4. The absolute value of maximum shear stress increases with
increasing the value of A but, away from the fibre root, 7,4 decreases gradually from its maximum positive
value while 7y, increases sharply from its corresponding negative minimum value. This is due to the fact
that fibre bending resistance has not a dominant effect away from the inner tube boundary. Hence, the
stress tensor becomes nearly symmetric outside a certain layer in the vicinity of the inner tube boundary,
where negative 75, values of large magnitude are observed; the width of that layer is naturally increasing
with increasing the fibre bending stiffness. For different values of g and for A = 0.1, Figure 5, bottom,
shows the distribution of 7,9 and 7y, within the tube cross-section. As already mentioned, 7,y maintains
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Figure 5. Distribution of shear stresses 7,4 and 7y, for 8 = 2.5 and different values of A
(top), and for A = 0.1 and different values of 8 (bottom).

again the same distribution profile in the perfectly flexible fibres case (solid line) regardless of the value
of B. The figure shows that, when fibres resist bending (A # 0), t,4 is increasing while 7y, is decreasing
near the tube inner boundary with increasing S. It is observed that, the thicker is the tube the nearer the
dashed lines approach the solid line at the outer tube boundary. Hence, for sufficiently thick tubes, the
effects of fibre bending resistance are essentially confined within the aforementioned layer formed in the
neighbourhood of the inner tube boundary; they are not felt in the vicinity of the outer tube boundary.
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’
0.5 1.0 L5 2.0 2.5

Figure 6. Deformation pattern of a fibre initially aligned along the horizontal radius of
the tube cross-section; the fibre is assumed simply supported in the inner tube boundary.

When the geometrical boundary condition (5-10); is replaced by the natural boundary condition
(5-10);, the numerical values and the physical trends of the results plotted in Figures 2, 4 and 5, top,
change dramatically and transform into those depicted in Figures 6, 7 and 8, respectively. Since the root
of the fibre is essentially subjected to a simply supported type of boundary condition, the slope of the
fibre is nonzero at r = 1; see Figure 6. However, the fibre still exhibits signs of bending resistance which,
according to Figure 7, seem to emerge slightly further away from the fibre root, as soon as nonzero values
of m,, become influential. Nevertheless, the total bending resistance of the fibre influences considerably

Figure 7. Symmetzric part of nondimensional shear stress #(-g) and nondimensional cou-

ple stress m,; = %mrl as a function of r for different values of A (8 =2.5).
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Figure 8. Distribution of shear stresses 7,4 and 7y, for different values of A (8 = 2.5).

the value of the fibre slope at r = 1; see Table 2. As a result, the main difference between the values
of 7,9 and 7y, is again confined within the aforementioned layer near the inner tube boundary (Figure 8).
It is also seen (Figure 6) that the maximum possible deviation of the deformed fibre from the deformed
shape of its perfectly flexible counterpart is now naturally smaller than that observed in Figure 2.

A 0 0005 003 0.1 g
v'(1) 0952 0.887 0.825 0.771 0.674

Table 2. The value of the boundary slope of a fibre supported according to (5-10),.

It is worth observing in this regard that for large values of A (e.g., A = 7 in Figure 6) the shape of
the deformed fibre is approximately still that of a straight line (that shape remains practically unchanged
if the value of A is increased further). A connection is therefore made between this observation and a
conclusion drawn in [Soldatos 2009a; 2010], according to which, in the case of an ideal fibre-reinforced
material, the inextensible radial fibres involved do not bend during azimuthal shear deformation; instead
they remain straight during deformation and they force the tube cross-section to undergo area-preserving
azimuthal shear strain, by changing their slope only. Nevertheless, small area-preserving and small pure
azimuthal shear strain are essentially identical deformations in the present case of interest. Hence, radial
fibres possessing high bending resistance (A > ) appear to remain practically straight during deformation
but they also extend in a manner that satisfies the conditions of pure azimuthal shear strain. If the fibres
were inextensible, they would necessarily force the inner and outer tube boundaries to move, as observed
in those same references, where the tube material was also assumed to be incompressible. However,
as already mentioned, linear elasticity cannot adequately account for the effects that the constraints, of
material incompressibility and/or fibre inextensibility have on the azimuthal shear deformation when the
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tube is reinforced along the radial direction of its cross-section. In this regard, recall that the relevant area
preserving azimuthal shear deformation observed in [Soldatos 2009a; 2010] for ideal fibre-reinforced
materials takes place only in the finite elastic deformation regime.

7. Closure

In dealing with the principal questions addressed in the Introduction, it has been found that, when spiral
fibres are perfectly flexible, both the inner and the outer radii of the tube exhibit a change for all four
versions of the azimuthal shear strain problem considered in Section 3; this change is caused by the
existence of coupling between azimuthal shear strain and radial stretching. Nevertheless, it has been
also observed that conditions of pure azimuthal shear are possible in all but one of the cases considered
and studied in Section 3, though different relevant conditions and/or requirements may apply to different
versions of the problem. The only version of the problem for which small pure azimuthal shear strain
is not possible is that of the ideal fibre-reinforced material discussed in Section 3.4. This result is in
complete agreement with the relevant conclusion made in [Soldatos 2009a; 2010] according which, a
tube made from an ideal fibre-reinforced material should instead be expected to undergo area preserving
azimuthal shear strain. It is however also noted that area preserving azimuthal shear strain for ideal
fibre-reinforced materials [Soldatos 2009a; 2010] is possible only within the finite elastic deformation
regime.

When the fibres are straight and aligned along the radial direction of the tube cross-section, radial
stretching and azimuthal shear strain become completely uncoupled deformations regardless of whether
the tube material is constrained or not, and regardless of whether fibres are perfectly flexible or resist
bending. In the perfectly flexible fibres case, the description and, hence, the solution of the problem
becomes identical to that met in isotropic elasticity. It is therefore observed that conventional linear
elasticity theory cannot adequately account for the effects that the material anisotropy and/or either of
the constraints of material incompressibility and fibre inextensibility have on the azimuthal shear strain
problem considered when the tube is reinforced along the radial direction of its cross-section.

On the other hand, effects of material anisotropy can be accounted for when fibres posses bending
stiffness, by taking into consideration the action of couple-stress and therefore asymmetric stress. It is
also seen that the natural appearance of an intrinsic material length parameter, which is representative
of the fibre thickness, provides ability for consideration of the manner in which the fibres are supported
on the tube boundaries. Hence, when the fibres are assumed clamped in the tube inner boundary, con-
siderable fibre bending resistance is observed within a certain layer in the neighbourhood of the inner
tube boundary; there, the fibres appear concave against the imposed deformation, which is in line with
physical expectations. It is also observed that the absolute maximum values of the couple-stress and the
shear stresses occur at the inner tube boundary where highest bending resistance is anticipated; these
values stay influential within the aforementioned layer near the inner tube boundary. When the fibres are
assumed simply supported at the inner tube boundary, their slope is naturally nonzero there. However,
the fibres still exhibit bending resistance which emerges slightly further away from the fibre root, as
soon as nonzero values of the couple-stress become influential. It is also seen that the maximum possi-
ble deviation of the deformed simply supported fibre from the deformed shape of its perfectly flexible
counterpart is naturally smaller than that observed in the clamped fibre case.
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It is also observed that, for large values of fibre bending stiffness, the deformed simply supported radial
fibre remains approximately straight. This observation is in line with a conclusion drawn in [Soldatos
2009a; 2010] according to which, in the case of an ideal fibre-reinforced material, the inextensible radial
fibres involved do not bend during azimuthal shear deformation; instead they remain straight during
deformation and they force the tube cross-section to undergo area-preserving azimuthal shear strain by
changing their slope only. Nevertheless, small area-preserving and small pure azimuthal shear strain
are essentially identical deformations. Hence, radial fibres possessing high bending resistance appear
to remain practically straight during deformation but they also extend in a manner that satisfies the
conditions of pure azimuthal shear strain. If the fibres were inextensible, they would necessarily force
the inner and outer tube boundaries to move, as observed in [Soldatos 2009a; 2010], where the tube
material was also assumed to be incompressible.

Appendix: Explicit form of auxiliary parameters and formulas

The constants yy, > and y3 appearing in (3-8) are as follows:

2(C16 + Cap) (1C6+ Ca6) (nCi6 — Ca6)
= — Yp=—"" yy3=——" """ (A-1)
Cxn—Ch n—1 n+1
The constants Fy (k=1,2,...,6) appearing in (3-10) are as follows:
Fi = y1(C1a— C11) —2Ci, Fy = y1(Ca — C12) — 2Cas,
F,=Ci+nC1i +72Cis(n— 1), Fs=Can +1C12+y2Cas(n — 1),
F3=Cin—nCi1 —y3Cis(n+ 1), Fs=Cp—nCia—y3Cos(n+1). (A-2)

For the set of boundary conditions (3-4) and (3-5), the arbitrary nonzero constants appearing in (3-8) are
found to be

A= BFF3(B* — 1) i - BFIF3(B"! —1) e —BIFIFy (BT — 1)
1= 2= — s 3= b ,
i BE3(Fy — yaFy) — B2 By (F5 — 3 F1) + BT Fi (v Fs — v3 Fa)

4= I , (A-3)

where
A n2 2n—2 2n+2 n+1
A=B"F(F,—nF) +1) - F(F—yF)(B + D) +28"T Fi(pnaFs—y3F).  (A-4)

For the set of boundary conditions (3-4) and (3-6), the corresponding nonzero constants are found to be

_ 2n _ -1 _ 1_
P Lt VI Y it VIS st V)
A A A
g, =B =D- ,Bnyl()@; y3) + B~ nys) (A-5)

where
A=B BT = D2 =y (BT = DE+(BF = D(B - 1). (A-6)
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For the set of boundary conditions (3-4) and (3-5), the arbitrary constants appearing in (3-14) are
found to be

N 28(Ci6—C . . -
A=— ,3(_ 16 _26) . Azzzi, A3:2—ﬂ, (A7)
(B —=1D(C11 +Cxn2 —2C12) B7—1 B —1
For the set of the boundary conditions (3-4) and (3-16), these constants are found to be
. . — . Ci—C
L= P i P f =GO (A-8)
B> —1 B> —1 B(B*—1)
The constants 81, B2, 1 and y, appearing in (3-20) are as follows:
8 _mcota—l—tana 8 _mcota—tana
T - T mrr
(& cos?
Y= 2 Ginda + - a(cos4a+sin4a),
2 sin o
(& in3
7 = 2 sin2a + % (cost o + sin ). (A-9)
2 cos
The constants Hy (k=1,2,...,6) appearing in (3-22) are as follows:
H, = 612 — 611 +2616 cot2a + cot (616 — 626 —2cot2u + )71(1 —mz)) s
H, = m(_jn + 612 — 6_‘16,81(171 —1)+m COtZOl +1 —COtOt(mC]é +626),
H; = 612 —mC_‘H + 616,32(171 +1)+1 —mcot’ a +COtOl(mCl6 — 626),
Hy = 622 — 612 +2626 cot 2 + tan (616 — 626 —2cot2u + )71(1 —mz)) s
Hs = mé12 + 622 - C_'Z(,,Bl(m —D+m +tan2a — tanoz(mc_‘lf, + (_:2(,),
Hg = 622 — mélz + 626,32(17’1 +1) +tan2(x —m +tana(m6_’16 — 626). (A-10)

For the set of boundary conditions (3-4) and (3-5), the arbitrary constants appearing in (3-20) are found
to be

_ By HaHy (1 —m?)(B*" — 1)

A - ,
A
. —BH H3(p" 1) ~ —B"H Hy("! — 1)
A2 = ~ N A3 = ~ 9
A A
~ B(H2H3(B* — 1) cot2a — B Hi(H3p1 — Hao) — Hi (B*" Hafr — H3p1))
Ay = . : (A-11)
A
where

A= Hi(B*" Hsp1 — Hap2) + HaH3 (8% — 1)(B*" — 1) cot 2a
— B2 (28" H\(H3B1 — Hapo) + Hi (B Ha o — H3B1)).  (A-12)
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For the set of boundary conditions (3-4) and (3-6), these constants are found to be

A 2 2m m—1 mam+1
L el (0 VR Wy V-t S N - (ﬁj -
A A A
A= B™(B1 — B2) — B(B1 — Coiiza) + P (B, — cot2a>’ (A-13)
where
A=BiB2 " =1 = BB — D> + (B — D(B*™ — 1) cot 2. (A-14)

For the set of boundary conditions (3-4) and (3-5), the arbitrary nonzero constants appearing in (3-25)
are found to be

B tan 2« B
Al = 27 1 2= "5 1
B —1 B —1
sec2a tan 2o , - — - = =
A4 = ﬁIBZ—_l (Cll + C22 —_ 2C12 - 2(C16 - C26) cot 20‘) . (A-IS)
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MEDIA WITH SEMIHOLONOMIC INTERNAL STRUCTURE

MARCELO EPSTEIN

This article is dedicated to the memory of Marie-Louise Steele.

The notions of semiholonomic and quasiholonomic Cosserat media are introduced and their differences
outlined. Contrary to the classical holonomic and nonholonomic counterparts, the definition of semi and
quasiholonomic media is not kinematic but constitutive. Possible applications include granular media
embedded in a rigid matrix and colloidal suspensions in an ideal incompressible fluid.

1. Introduction

The publication in 1909 of the French version of the second volume of Chwolson’s Traité de physique
was generally well received by the scientific establishment of the time. Nevertheless, we find in the issue
of Nature of July 21, 1910, a remark to the effect that a “note” by MM. E. and F. Cosserat at the end
of this volume is 220 pages long and “does not in any sense harmonise” with Chwolson’s work, which
is “emphatically experimental in character”, while the note is “strikingly mathematical”. The remark
concludes with the suggestion that “MM. Cosserat’s note is a distinct and useful treatise, and should be
able to stand on its own feet.” And so it was, although the author of the review didn’t seem to have
taken notice. The celebrated book by the Cosserat brothers [1909], was, in fact, identical to that long
note plus an additional 67 pages, which had already appeared in the previous volume of Chwolson’s
treatise. A similar critical remark can be found two years later in a review by Edwin B. Wilson of the
Massachusetts Institute of Technology published in the Bulletin of the American Mathematical Society
(July 1912, pp. 497-508), although six months later (February 1913, pp. 242-246) the same reviewer
found it necessary to publish a separate review of the stand-alone book. Both the detailed content and
the title of this review (“An advance in theoretical mechanics”) demonstrate clearly that the quality of
the enterprise of the brothers Cosserat did not go unnoticed.

Today we mainly recognise the contribution of the Cosserats to the modelling of media with internal
structure. But this does not seem to have been the main intention of the authors, who had in mind
a much wider scope. Their fundamental idea was to try to encompass all physical theories (including
perhaps relativity) under the umbrella of a single principle of Euclidean action, a quantity that is invariant
under Euclidean transformations. They also advanced the notion of the formal equivalence between a
static theory of a deformable n-dimensional manifold and a dynamic theory of a deformable manifold of
dimension n + 1, whereby the action is interpreted as a space-time entity. Another striking feature of the
work is its error-free geometrically nonlinear formulation, particularly in view of the many mistakes made
by succeeding generations, for example, in the realm of shell theory. To recover the conventional theory

Keywords: micromorphic nonholonomic media, Cosserat symmetries, colloids, semiholonomic jets, quasiholonomic Cosserat
media, macromedium, micromedium.
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of elasticity, the Cosserats propose the idea of the hidden triad (“triedre caché”). Similarly, theories
with particular constraints can be recovered by means of the concept of hidden action. Thus, rigid-body
mechanics arises as a particular case of their theory. Had they not insisted on the rigidity of the triad,
they could have also recovered the theory of second-grade materials by considering what we would call
today second-order holonomic frames. Between these frames and the completely nonholonomic frames
(corresponding to a micromorphic, rather than micropolar, continuum), there exists an intermediate type
consisting of the semiholonomic frames. An intriguing question is whether the “hidden action” corre-
sponding to this type of frames might lead to a physically meaningful interpretation. In this short article
it is shown that this is indeed the case if one is willing to consider a material consisting entirely of a
micromedium supported by an incoherent matrix. A distinction is drawn between strictly semiholonomic
Cosserat media and a related category referred to as quasiholonomic. The presentation is intended to be
as self-contained as possible.

2. A one-dimensional picture

The variety of possible Cosserat media' resists any attempt at a simple pictorial representation, and this
deficiency is exacerbated when the picture is limited to the one-dimensional realm. Thus, for example,
rigid-body motions in one dimension are unable to convey the possibility of rotations. Nevertheless, a
picture may be of help in providing some insight and motivating further rigorous investigations:

—U;_1 h —; h > U;+1

= U;—1 —U; U1

The lower row of material points (represented by the lower three elongated rectangles) symbolizes the
macromedium, while the upper counterpart is the micromedium. The corresponding degrees of freedom
are indicated, respectively, with the letters u; and v;, where the subscript runs over the number of particles.
An eventual passage to the continuous limit is suggested, but not directly described. For simplicity, we
represent the constitutive equations by means of linear elastic springs, so that, measured from an assumed
stress-free reference configuration (which may or may not exist), the elastic energy is given, up to an
irrelevant additive constant, by the expression

W =13 (k= h) (i1 — )2 +1(0; — )2+ h(vips — vp)2. -1

The following particular values of the stiffness constants &, &, and [ are of interest:

o Arbitrary k, I, and h: This is the case of the micromorphic medium, also called the nonholonomic
Cosserat medium.

1Althou‘gh the terminology “Cosserat medium” is usually reserved for the particular case of a rigid triad (or micropolar
continuum), in this paper we use it to denote the general case.
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o h =0: This case can be designated as a first-grade macromedium carrying a zero-grade micromedium.
The grains, so to speak, do not interact elastically with each other. Note that the same physical result is
obtained by specifying 4 = k instead of 7 = 0.

e [ — oo: In this case we must necessarily have u; = v;, for all i. This condition spells the disappearance
of the micromedium. The energy expression reduces to the standard form,

W =13 k(uipr —u)?, (2-2)

of an elastic first-grade material. In the one-dimensional case, the specification [ — oo, by making it
rigid, renders the micromedium superfluous. Clearly, in a two- or three-dimensional situation, to achieve
the same effect one would need to also specify & = 0. Otherwise, the mere rigidity of the micromedium
would still allow for an interaction between rigidly rotating microparticles (or grains). This is, in fact, the
definition of a micropolar medium, which is the material originally conceived by the Cosserat brothers
in their magnum opus.

o [ = 0: For the system to remain connected, we attach (in the unstressed state) the (upper) grain to the
midpoint of the corresponding lower spring. The energy expression is given by

W=132(k —h)((vig1 —uis1)* + W@is1 — v)?) +h(vip — v (2-3)

The lower springs (now double in number) connect between contiguous particles, while the upper springs
connect between every second particle. This is the standard representation of a second-grade material.
Notice that in this case the elastic energy (2-3) can also be written more suggestively as

W =133 2k((is1 — uit1)* + Wit — v)?) — h(ipr — 2u4y + )% (2-4)

e k — oo: This is the case of a rigid macromedium. We will soon demonstrate that this situation may
correspond mathematically to a genuinely semiholonomic Cosserat medium.

e k = 0: Physically, this case corresponds to an incoherent matrix within which the micromedium
provides the only degree of elastic coherence. We will use also the terminology quasiholonomic medium
to refer to this type of material.

3. Cosserat bodies

In continuum mechanics, a material body R is defined as a three-dimensional differentiable manifold
that can be covered with a single coordinate chart. A configuration k is defined as an embedding of %
into the three-dimensional Euclidean space E>:

KB —s . (3-1)

In terms of coordinate charts X! (I =1, 2,3) and x’ (i =1, 2, 3) in the body and in space, respectively,
the configuration « is given by three smooth functions:

X' xt =kl (xh. (3-2)

To convey the presence of extra kinematic degrees of freedom, however, these definitions need to be
expanded so that the differential geometry can properly reflect the existence of the microstructure and its
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possible deformability. We recall that, given an m-dimensional differentiable manifold Ji, its principal
frame bundle F M is obtained by adjoining at each point x € Jil the collection F\.l of all the possible bases
of its tangent space T.l. The set thus obtained has a canonical structure of a differentiable manifold of
dimension m 4+ m?. It is endowed with the natural projection map

wy s Fl— M, (3-3)

which assigns to each point p € F.il the point 7(p) € Jl to which it is attached. If x' (i =1, ..., m) is
a coordinate chart on U C Jil with natural basis e; = 9/ dx!, we can construct an associated chart in F.l
by assigning to each point p € ,&1 (U) the numbers {x', p?}, where pj. is the i-th component of the j-th
vector of the frame p in the natural basis {ey, ..., e,}. Expressed in terms of coordinates, the natural
projection is given by
xt, pi- — x'. (3-4)

We define a Cosserat body as the principal frame bundle ' % of an ordinary material body %. The
physical intent is that, while the underlying body % represents the macromedium, each fibre F, B repre-
sents the microparticle or grain at x € RB.

Concomitantly with the enlargement of the scope of material bodies, we need to introduce a more
general definition of the notion of configuration. To this end, we consider fibre-preserving maps

K:F®— FE (3-5)

such that K is a fibre-bundle morphism between F % and its image. By fibre preservation, we mean the
commutativity of the diagram:

FR—~ FE3
lnB ler (3-6)
B —— R3,

where « is a well-defined map between the base manifolds. Thus, a Cosserat deformation K automati-
cally implies the existence of an ordinary deformation «, representing the deformation of the macrostruc-
ture. By fibre-bundle morphism we imply that, fibre by fibre, each of the restrictions K|x (X € )
commutes with the multiplicative right action of the general linear group GL(3; R). In terms of coor-
dinates, this means that there exists an X-dependent matrix K } such that any Cosserat configuration is
completely defined by twelve smooth functions

x' =k (X7) 3-7)

and
Ki=Ki(Xx7). (3-8)
The physical meaning of these assumptions is that each grain can undergo only homogeneous deforma-
tions, as represented by the local matrix K } In other words, each grain behaves as a pseudorigid body.

A more detailed treatment can be found in [Epstein and de Le6n 1996; 1998; Epstein and Elzanowski
2007].

Remark 3.1. As already pointed out, the original formulation by the Cosserat brothers considered the
case in which K } is orthogonal. In the terminology of [Eringen 1999], this case corresponds to the
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micropolar continuum. The more general case in which K } is an arbitrary nonsingular matrix corresponds
to the micromorphic continuum of Eringen. We use the term “Cosserat body” in this more general sense.

We can see that in a Cosserat body there exist two, in principle independent, mechanisms for dragging
vectors by means of a deformation: The first mechanism is the ordinary dragging of vectors by means of
the deformation gradient of the macromedium, represented by the matrix with entries F I’ = xf ;- The sec-
ond mechanism is the one associated with the deformation of the microparticle or grain, and is represented
by the matrix with entries K } Note that in a second-grade body these two mechanisms are identified with
each other, thus suggesting that different kinds of Cosserat media may be obtained by either kinematic
restrictions of this kind or by constitutive restrictions. In fact, the Cosserat brothers themselves already
advanced these possibilities and introduced the outmoded terminology of “triedre caché” (hidden triad)
and “W caché” (hidden strain-energy function) to refer, respectively, to these kinematic or constitutive
restrictions. We will follow in their steps.

4. Nonholonomic, semiholonomic, and holonomic jets

Given two smooth manifolds, / and N, of dimensions m and n, respectively, we say that two maps
f, g : M —> N have the same k-jet at a point X € Jl if: (i) f(X) = g(X), and (ii) in a coordinate chart
in J containing X and a coordinate chart in N’ containing the image f(X), all the partial derivatives of
f and g up to and including the order k are respectively equal.

Although the above definition is formulated in terms of charts, it is not difficult to show by direct
computation that the property of having the same derivatives up to and including order k is in fact
independent of the coordinate systems used in either manifold. Notice that, in order for this to work, it
is imperative to equate all the lower-order derivatives. If, for example, we were to equate just the second
derivatives, without regard to the first, the equality of the second derivatives would not be preserved
under arbitrary coordinate transformations.

The property of having the same k-jet at a point is, clearly, an equivalence relation. The corresponding
equivalence classes are called k-jets at X. Any function in a given k-jet is then called a representative of
the k-jet. The k-jet at X of which a given function f : Ml —> N is a representative is denoted by j § f-
The collection of all k-jets at X € .l is denoted by J )’§ (M, N'). The point X is called the source of j;‘( f
and the image point f(X) is called its rarget.

Let a smooth map f : Ml —> N be given in terms of coordinates X/ (I =1,...,m)andx’ (i=1,...,n)
in Jl and N, respectively, by the functions

X=X LX), Q=10 4-1)
The jet j}% f, for example, is then given by the coordinate expressions
; ox! 92x!

‘oxm, [ ] e 42

% o Laxtle Lax7axt *2)

a total of n +mn + m>n numbers.

We are particularly interested in the case of 1-jets. Let us evaluate, accordingly, the coordinate expres-
sion of j}](K , where K is a Cosserat configuration, as defined in coordinates by (3-7) and (3-8). Notice
that the dimension of both the source and the target manifolds in this case is 12. Following the definition,
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we conclude that j;(K consists of the elements

; ; dx’ K]
! ) Kl ) I:_] ) P ) 4_3
A 28 FAR S *43)
which we can abbreviate as
X Kj. Fp=xli. K. (4-4)
If no further restrictions are imposed on K, we speak of the components (4-4) as the representatives of
a nonholonomic 1-jet at X € 9. It is possible, however, to demand in an intrinsic manner, independent of
the coordinates, that the functions K under consideration satisfy the following compatibility requirement
in a neighbourhood of X:
K;=x'. (4-5)
In this case, the collection of 1-jets obtained is smaller. Not only are the second and third entries in (4-4)
the same, but also, by virtue of the identical satisfaction of (4-5) in a neighbourhood of X, we must have:

Kj,=x';,=K},. (4-6)

In other words, the last element of the jet is symmetric with respect to its lower indices. We will indicate
the coordinate expression of these holonomic jets as follows:

X', Fp, K;,J:Ks,l’ 4-7

Finally, there exists a third type of jet, somewhat intermediate between the two extremes just presented.
It is obtained when the potential representatives K are restricted to satisfy the condition

Kj(X)=x"1(X). (4-8)

Thus, we demand the satisfaction of (4-5) not identically in a neighbourhood of X, but just at the point
X itself. The 1-jets thus obtained are known as semiholonomic jets. The coordinate expression of a
semiholonomic jet is

x', Kj, Kj,. (4-9)
Notice that the last entry is no longer necessarily symmetric.

Remark 4.1. Given an actual arbitrary configuration K, it will give rise automatically to point-wise
nonholonomic jets. If the configuration is restricted so that condition (4-5) is satisfied over the whole
base manifold %, it will give rise to everywhere holonomic jets. In this sense, it is possible to speak of
nonholonomic or holonomic configurations, respectively. On the other hand, it is not possible to define
semiholonomic configurations. Indeed, if condition (4-8) were to be imposed at each point, we would
immediately revert to condition (4-5), thus obtaining a holonomic configuration.

5. Semiholonomic Cosserat media

The last section ended in a definitely pessimistic note. Indeed, if semiholonomic configurations cannot
be properly defined, there seems to be no point in attempting a definition of semiholonomic media. This
kinematic impasse, however, can perhaps be resolved by means of a constitutive statement. We could
say, for example, that a nonholonomic Cosserat medium is semiholonomic if its constitutive equation
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involves only the semiholonomic part of the 1-jet of the configuration. Physically, this would correspond
to a response that is in some sense oblivious of the presence of the macromedium. In this section, we
look into this and other possibilities with some care.

Since we are contemplating a particular case of nonholonomic Cosserat media, it will be useful to
record the law governing the change of constitutive law of such a medium under a change of reference
configuration. For specificity, we will limit ourselves to a single scalar constitutive law, such as the
free-energy density per unit mass . Let the constitutive law with respect to a reference configuration
K be given in a coordinate system X’ by the expression

v =vo(K}, Fj, K} ;; XD, (5-1)
and let the counterpart for a reference configuration K| with coordinates Y4 be given by
Y =Y1Ky, Fy, Ky g Y™, (5-2)

with an obvious notational scheme. The deformation from Ky to K is given by twelve quantities, written
r4=vAx"h, Kk}x). (5-3)

By the law of composition of jets (or derivatives), we obtain between the constitutive expressions the
relation

V(K Fi K g YAXT) = yo(KL K FAFR K K FP + KK} X, (5-4)

where F' = Y4.
The point of bringing this transformation equation to bear is the following result, whose proof is an
immediate consequence of the transformation law (5-4).

Proposition 5.1. If the constitutive law (5-1), in the reference configuration Ky, is independent of the sec-
ond argument (Fy), so is the expression of the same constitutive law in any other reference configuration
K independent of the second argument (F)).

As a direct corollary of this proposition, we can propose the following definition.

Definition 5.2. A nonholonomic Cosserat medium is said to be semiholonomic at X if its constitutive
law at X is independent of the deformation gradient of the macromedium.

From the mathematical standpoint, it is necessary to note that this definition does not imply the ex-
istence of a canonical projection of a nonholonomic jet onto a semiholonomic part. In fact, such a
canonical projection does not exist. What the definition implies is that once a noncanonical choice is
effected in one particular reference configuration, this choice can be convected to all other configurations
by means of the correct application of the transformation (5-4). In particular, this convection involves the
gradient of the change of reference configuration (F' IA). Another way to state the choice of a particular
“projection” is to say that a particular parallelism (whose physical meaning may, for example, be related
to the existence of some particular stress-free configuration) must be chosen as part and parcel of the
constitutive law of a semiholonomic Cosserat medium.

From the physical point of view, a semiholonomic Cosserat medium may be said to consist of an
incoherent matrix upon which a coherent micromedium has been installed. The interaction between the
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grains, however, “remembers” the existence of a particular configuration of the macromedium as the only
remaining physical trace of its existence. It is interesting to remark that, since the macromedium plays
no other role, the configuration space of a semiholonomic medium may be, in a possible application,
assumed to be rigid.

The converse of the above statement is not true: a nonholonomic Cosserat medium with a rigid matrix
is not automatically semiholonomic. Indeed, by a direct application of the principle of frame indifference,
the constitutive law (5-1) can be reduced to the form

v=v(RTK,U, RTVK; X), (5-5)

where the polar decomposition F = RU has been exploited and where block letters stand for the collec-
tions of homonymous indexed quantities used in previous formulas. Using now the polar decomposition

K=R'U, (5-6)
we may write (5-5) as
v=v@U, U, rR"VK; X), (5-7)
where
r=R'R’ (5-8)

is the (referential) relative rotation of the grain with respect to the macromedium. If the macromedium
is rigid, we must have necessarily U = I. But for a semiholonomic body the constitutive law must be
independent of both components U and R of the polar decomposition of F. It follows, therefore, that
rigidity alone does not imply semiholonomy. If, on the other hand, the constitutive law of a rigid-matrix
Cosserat medium is independent of the rotation R, we may choose R = R’ (or, equivalently, r = I),
thereby leading to the following reduced equation of a semiholonomic Cosserat body:

Y =y (U, R"VK; X). (5-9)

In the physical interpretation, we may say that the grains are attached to the rigid macromedium by
means of ideal frictionless pins, so that there is no energetic cost to produce a relative rotation between
them. In the admittedly imperfect pictorial representation of the figure below, the grains in the reference
configuration are depicted as squares pin-jointed at their centres to the rigid matrix and connected to their
neighbours by means of springs (represented by broken lines) designed to detect differential stretches

grain
F [ e &bl
74 spring o .
ORN OO — 4 0 @
5 0E O 1 @ e

A rigid-matrix semiholonomic Cosserat medium.
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and rotations between contiguous grains. The grains themselves behave as pseudorigid bodies, so that
their deformed versions are represented by parallelograms.

The reduced form (5-9) of the constitutive law of a semiholonomic Cosserat material applies whether
or not the matrix is rigid, since in either case the response is independent of both U and R.

6. Quasiholonomic Cosserat media

As defined, a semiholonomic Cosserat medium may not necessarily have any material symmetries. We
want to contrast the above definition with the following one that, by demanding the maximum possible
symmetry of the macromedium, appears to carry the same physical meaning.

Definition 6.1. A nonholonomic Cosserat medium is said to be quasiholonomic at X if, for some (local)
reference configuration, its symmetry group # at X contains the subgroup given by

4=1{{I,G,0}| G e GL3; B}, (6-1)
where [ is the unit of GL(3; R).

The reason to suspect that this definition might be equivalent to the previous one is that, due to the
assumed arbitrariness of G, it seems to imply that the deformation of the macromedium plays no role in
the constitutive response. A direct application of the definition of a nonholonomic symmetry, however,
leads to the conclusion that a quasiholonomic medium must have a constitutive law of the form

v =y (K, K, F; 7 XD (6-2)

in the special reference configuration used in the definition?.

Physically, this means that the price to pay for this large symmetry group is, surprisingly, the reap-
pearance of the deformation gradient of the macromedium in the last argument of the constitutive law so
as to permit the interaction between the grains to take into account their relative spatial locations (rather
than those pulled back to some putative, perhaps unstressed, reference configuration).

The purpose of the following simple example is to shed light on the subtle difference between semi-
holonomic and quasiholonomic media, as conceived in Definitions 5.2 and 6.1, respectively. To this
end, we consider the successive application of two deformations, the first of which can be regarded as
a change of reference configuration so as to bring the notation in line with that of the previous section.
The (Cartesian) coordinate systems X/, Y4, and x' are assumed to coincide with each other. The first
deformation is a uniaxial contraction along the X'-axis, namely

v'=o08x!, v*=x2 vi=x3 Kk}=s]\ (6-3)

The second deformation is a microrotation about the Y3 axis that increases linearly with Y. Specifically:
| cos (%Yl) — sin (%W) 0

=yl =Y =Y., K=, (%w) cos (zyl) ol (6-4)

3
0 0 1

2In any other reference configuration, the symmetry group will contain a conjugate of the group % and the form of the
constitutive law will be, accordingly, somewhat more involved.
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X2 Y2

1.0 0.8

First deformation (top), second deformation (middle), and their composition (bottom).

The effect of each of the two deformations on a unit-width strip in the X!, X% and Y, Y? planes is
shown in the figure above (top and middle parts), together with their composition (bottom part). Notice
that, at the moment of composition, it is the already contracted strip that encounters the values of the
rotation field already in place (as dictated by the second deformation), thus resulting in a maximum
value for the rotation of the grain in the deformed strip of 48° rather than 60°, which was the value at the
right-hand end of the strip as far as the second deformation alone was concerned. If the Cosserat body is
semiholonomic, the gradient of the rotation would be obtained by dividing 48° by the original unit width.
On the other hand, if the Cosserat body is quasiholonomic, it is the width measured in the final deformed
configuration that matters in the calculation of the gradient. Since this width is of 0.8, we verify that
the rotation gradient in the composite deformation turns out to be identical to the gradient in the second
deformation. In other words, the preapplication of the first deformation (in this case a contraction of the
macromedium) is irrelevant for a quasiholonomic medium.
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Among various possible physical applications of both semiholonomic and quasiholonomic Cosserat
media, beyond those with a rigid matrix, we mention the modelling of aggregates [Zhang et al. 2006],
such as colloidal suspensions [Moosaiea and Atefia 2007], when the underlying continuum upon which
the interacting particles dwell is, say, an ideal incompressible fluid. The choice of model depends on the
physical nature of the interactions between the dispersed particles.
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DIAGNOSIS OF CONCRETE DAMS BY FLAT-JACK TESTS AND
INVERSE ANALYSES BASED ON PROPER ORTHOGONAL DECOMPOSITION
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Dedicated to the memory of Marie-Louise Steele and to Charles Steele.

Flat-jack tests have been employed for decades for the assessment of stresses and Young moduli in
possibly deteriorated concrete dams and masonry structures. We propose a procedure for such tests
that includes several innovations: identification of Young moduli and shear modulus in the presence
of orthotropy, of pre-existing normal and shear stresses, and of tensile and compressive strength and
fracture energy; use of full-field displacement measurements by digital image correlation (instead of
extensometers); computer simulations performed once-and-for-all and productive of results which are
subsequently processed out by proper orthogonal decomposition and its truncation; and identification
of parameters in situ, soon after the tests, by portable computer with software able to perform inverse
analyses by mathematical tools newly introduced into this context. The proposed procedure is validated
by means of pseudoexperimental numerical exercises, by employing comparatively, as central computa-
tional tools, artificial neural networks and a trust region algorithm implying only first-order derivatives
(with respect to the sought parameters) of the discrepancy function to minimize.

1. Introduction

Many concrete dams built up several decades ago in developed countries are at present deteriorated, with
possible consequent decrease of safety margins with respect to limit states or collapses. A relatively
frequent cause of damage in dam concrete is the physicochemical process called alkali-silica reaction:
after a dormant period of several years from casting, a substantial decay of mechanical properties and
an expansion generating self-stresses may occur slowly along a period of, say, thirty or forty years, with
nonuniform distribution over the dam volume and sometimes without external visible manifestations of
aging; see, for example, [Swamy 1992; Ahmed et al. 2003; Comi et al. 2009]. Such possible occurrences
clearly require a rather large number of diagnostic analyses on a possibly damaged dam.

Structural diagnostic procedures of a mechanical nature employed in state-of-the-art dam engineering
can be classified as follows (see [Maier et al. 2004], for instance): (a) quasi-nondestructive experiments
by flat jacks on the dam surface [Fedele and Maier 2007]; (b) in depth coring or overcoring tests (similar to
those which are traditional in geomechanics), usually with extraction of specimens for the laboratory (and,
hence, destructive) [Goodman 1989; Fedele et al. 2005; Leite and Corthesy 2001]; (c) overall dynamical
inverse analyses based on excitations by vibrodynes or by ambient vibrations and measurements by

This research was carried out in a PRIN project supported by the Italian Ministry of University and Research (MIUR) on the

subject “Structural monitoring, diagnostic inverse analyses and safety assessments of existing concrete dams”.

Keywords: concrete dams, flat-jack test, inverse analysis, proper orthogonal decomposition, radial basis functions, artificial
neural networks.
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accelerometers [Loh and Wu 2000]; (d) statical overall inverse analyses under loading due to ad hoc
changes of water level in the reservoir, with measurements of consequent displacements by means of
pendulums, collimators and/or interferometric radar [Fedele et al. 2006]; (e) same as (d), but with loading
provided by seasonal, in-service variation of reservoir level (such alternative is much more economical
than (d), however it requires more complex inverse analyses taking into account thermal effects as well
[Ardito et al. 2008]).

Diagnostic procedures (c), (d) and (e) lead to the assessment of Young modulus only. Method (b)
is clearly destructive and expensive. The limitations of procedure (a), traditionally applicable only to
the estimation of the Young modulus and normal stresses, have been recently mitigated, so far only
theoretically, in [Fedele et al. 2005] by recourse to test simulations and inverse analysis.

A step ahead in the development of structural diagnosis based on flat-jack tests and inverse analysis
is provided in this paper, where the following novelties are presented and proposed to the engineering
practice: (i) less destructive geometric configuration of the slots; (ii) use of digital image correlation
(DIC) as full-field displacement measurement technique which economically provides much more exper-
imental data than extensometers; (iii) assessment of inelastic parameters additional to elasticity and of
the existing stress state (assumed as uniform, locally); (iv) parameter identification performed in a fast
and inexpensive fashion (possibly in situ, using a portable computer) by a numerical procedure resting on
proper orthogonal decomposition (POD), radial basis functions (RBF) interpolations and a trust region
algorithm (TRA) or by an alternative procedure based on an artificial neural network (ANN).

Section 2 is primarily devoted to the operative sequence of the procedure to be carried out in situ,
namely in selected locations on the dam surface. The computational procedures proposed for the esti-
mation of elastic moduli and stresses are described, with some details and numerical validations, in the
successive two sections: the techniques centered on POD-RBF-TRA in Section 3, and those based on
POD-ANN in Section 4. In Section 5 preliminary research results are presented on the identification of
plastic and fracture parameters. Section 6 is primarily devoted to prospects of further research.

2. Experimental procedure and its modeling

2.1. Constitutive models. Simple traditional constitutive models, still popular nowadays in dam engi-
neering practice, have been adopted for the present investigation and validation exercises on the proposed
parameter identification methods. Let the x-axis be horizontal on the dam free surface, assumed vertical
for simplicity, let the z-axis be orthogonal to that surface, and, hence, axis y vertical as well. Anisotropy,
specifically orthotropy with transversal isotropy in the horizontal plane, may be generated in dam concrete
by the casting process, especially in roller compacted concrete, more and more frequently adopted in the
last decade. In this case linear elasticity can be described as follows:

€x 1/Ey —vwyu/Ey —vy/Ey O 0 0 o

€y —vg/Ey 1/Ey —vgv/Ey O 0 0 oy

€ | _ —vu/Ey —vwu/Ey  1/Ey 0 0 0 0z (1)
Yry 0 0 0 1/Gy O 0 Ty |’

Yyz 0 0 0 0 1/Gy O Tyy

Yz 0 0 0 0 0 1/Gy Txz
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E, E,
V. =V —_—, = ——
VR, 214 vy)

2)

The material parameters in (1) are the horizontal and vertical Young moduli, E; and Ey; the in-plane (hor-
izontal) and out-of-plane shear moduli, Gy and Gy;; and the Poisson ratios vy, vy and vyy, constrained
by the relationships (2) due to the symmetry of the elastic compliance matrix and to the in-plane elastic
energy balance (same as in the isotropic case), respectively. Therefore only five of these parameters
are independent. The identification procedures developed in Section 3 and 4 will concern the three
parameters E,, Ey and G, which are the ones reasonably expected to play the main role in the system
response in the hypothesis of transversal isotropy (in the horizontal plane) for the dam concrete. We
assume a priori that vy = vy = 0.2; the other parameters in (1) depend on the previous ones through (2).

Isotropy reduces to two the independent elastic parameters, say E and G (since Ey, = Ey =E, G, =
Gy =G, vy =vyy =Vyy = E/(2G) —1). The isotropy hypothesis will be used in Section 5 when focus
is set on the identification of inelastic parameters.

The stress field pre-existing to the test and sought for by the identification procedure can be reasonably
assumed to be a plane stress state (o, = 7, = 7;, =0), assumed as uniform over the whole volume affected
by the test, hence governed by the three components oy; (= 0y), oy (= 0y) and Ty (= Tyy).

For the plastic behavior of concrete the classical Drucker—Prager model is adopted here (perfect plas-
ticity with nonassociated flow rule), depicted in Figure 1a. Fracture is supposed to be first-mode only
and reducible to a cohesive crack model with linear softening, as shown in Figure 1b in terms of normal
stress o versus opening displacement v. The assumptions above on the inelastic behavior of concrete
lead to the following mathematical model formulation

F=t—ptanp—d=<0, d=(1+%wanp)f 3)

(see [Lubliner 1990; Jirasek and Bazant 2001], for instance). The meanings of the symbols in these
formulas and in the figure are as follows: F is the yield function in the plane (Figure 1a) of the average
normal stress p (compression positive) and of the equivalent shear ¢ (/; being the first invariant of
the stress tensor, J, the second invariant of the deviatoric stress tensor); the angles 8 and v represent
internal friction and dilatancy of plastic flow, respectively; the cohesion d and the uniaxial strength f;
are related to each other by (3),, as a consequence of (3);. The dilatancy i is assumed to be ¥ = 40°, a
value frequently adopted in overall analyses of concrete dams in engineering practice. Thus the inelastic

(a) (b)
1=3-J, o
p Ji
&
T
G,
d 1, ’
P=? v

Figure 1. Material models and parameters relevant to diagnostic purposes: (a) Drucker—
Prager no-hardening plasticity; (b) cohesive crack model with linear softening.
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U —

Figure 2. Sequence of steps in the parameter identification procedure: (a) positioning
and (b) cutting of the slots (recording of displacements over the large ROI); (c) jacks
inserted and pressurized (recording of displacements over the large ROI); (d) depressur-
ization of jacks and change of ROI; (e) vertical jack pressurized to higher pressure level
(displacements recorded over the smaller ROI).

parameters to estimate turn out to be three only: the internal friction g, the tensile strength f;, and
the fracture energy G . The uniaxial compressive strength f. can be computed after model calibration
through the following relationship, consequence of (3) for F = 0:

d (1 + % tan ) fi

= = . 4
J 1—%tan,3 1—%tan,8 X

2.2. The test and its simulation. The sequence of operative steps of the proposed diagnostic procedure
based on flat-jack tests is outlined below with reference to Figure 2.

(a) In the selected place on the structure surface, the position of two future orthogonal slots (T-shaped
geometry) is marked and a first photograph is taken by the DIC instrument over the region of interest
(ROI) which is depicted in Figure 2a. In the DIC jargon (see [Hild and Roux 2006; Avril et al. 2008],
for example), ROI is the area over which full-field measurements are performed; zone of interest (ZOI)
is the image subset used by the image matching routine as a correlation window: comparing photos
taken before and after the deformation, every ZOI of the initial image can be located in the deformed
image through its “signature” in terms of gray-level values characterizing the pixel subset in point, as
schematically illustrated in Figure 3. The displacement of the center point of a ZOI is computed as
average of the displacements of the pixels inside the subset. A suitable grid is defined over the ROI,
grid-nodes displacements being measurable by means of subsequent DIC photos.

(b) The two slots are cut (Figure 2b) and a second photo is shot by the DIC equipment so that, as men-
tioned, the displacements due to the release of the pre-existing stresses in the cut can be measured at all
grid nodes and can be dealt with as accurately representative of the displacement full-field over the ROL.

(c) Two flat-jacks are inserted and pressurized by a piston-pumped liquid up to a pre-established
pressure (Figure 2¢). This pressure should correspond to a compromise between the needs to generate
large enough, well measurable displacements in the ROI and to avoid nonnegligible inelastic strains.
Again a DIC photo is taken over the ROI in order to capture the new displacement full-field.

(d) The horizontal jack is removed from its slot and the vertical one is depressurized. The original ROI
employed in the preceding steps is replaced by a smaller ROI appropriate for focusing on one of the two
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Region of interest (ROI)
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Figure 3. Schematic visualization of the DIC measurement procedure. The functions
f and g are gray-level values; x, y are pixel coordinates in the ROI, and éx, §y are the
displacement coordinates of the ZOI central point.

zones, located near the tips of the vertical slot, where inelastic deformations are expected (Figure 2d). A
reference photo is taken of this ROI.

(e) The single flat-jack placed in the vertical slot is highly pressurized in order to generate plastic strains
and a quasi-brittle fracturing process near the tips of the loaded slot where stress concentrations occur
(Figure 2e). A sequence of DIC photos is taken to capture the nonlinear evolution of the displacements
over the ROI, due to such pressure loading. The crack propagation is assumed as confined to the central
vertical plane and to be stable, despite the softening in the cohesive crack behavior. Such localized
fracture can be regarded as quasi-nondestructive in engineering terms. A possible provision to be adopted
which can be beneficial in phase (e) for inelastic material characterization is the following one: two
additional vertical slots (shown in Figure 2f) are cut in order to practically remove the influence on the
fracture process of the horizontal stress; this, however, would make the test slightly more destructive.
This variant is not investigated herein.

Based on these DIC measurements, the parameters identifications are performed according to the
following sequence of phases (see caption of Figure 2): (I) elastic moduli, on the basis of experimental
data concerning transition from stage (b) to (c); (I) stresses, on the basis of the elastic moduli estimates
achieved in phase (I) and of data acquired at stages (a) and (b); (III) inelastic parameters, on the basis
of data concerning the transition from stage (d) to the various deformation stages represented in the
sequence of DIC photos taken in phase (e).

The finite element (FE) model here adopted for the subsequent computer simulations of the tests is
depicted in Figure 4a as for the overall geometry and in Figure 4b as for the mesh. The FE discretization
exhibits the following features: 97,600 tetrahedral elements with linear shape functions for displacements;
57,280 degrees of freedom; boundary conditions with vanishing displacements on the borders separating
the domain from the surrounding volume supposed to be not perturbed by the test. It is worth noting that
the ROI for DIC measurements is significantly reduced in moving from the identification of elastic moduli
and stresses to the estimation of inelastic parameters: in fact for the latter inverse analyses concerning
less uniform and more localized strains field, it is useful to exploit a higher density of the available DIC
pixels.
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(a)

Phases a-b-c

area monitored
by DIC

Phases d-e

area monitored
by DIC

Figure 4. Finite element model for test simulations: (a) overall geometry and (b) mesh.

The simplicity of both the constitutive models and of the FE discretization for the numerical exer-
cises presented in the two subsequent sections is motivated by the following circumstances: the present
purpose is limited to a first numerical validation of novel procedures; consistency is pursued here with
the assumptions and approximations at present adopted for real-life structural analyses of large concrete
dams in view of inevitable uncertainties of several data.

A further simplification of test modeling concerns the flat-jacks: their configurations adopted at present
would suggest to model the two steel laminae and the circumferential welds. Here uniform compressive
traction is assumed throughout the concrete walls of the slot. Such assumption is reasonable: first,
because it represents an acceptable approximation to the present purposes; second, because a new kind
of flat jack based on textile laminae supported by a circumferential rod, now under investigation, is likely
to be adopted in the future, thus making the assumption above more realistic.

For the numerical validation of the novel diagnostic procedures the adopted jack dimensions and test
geometry are similar to those which are at present usual in traditional applications, consistent with usual
sizes of aggregate in concrete. Clearly, larger dimensions with equal procedures can be adopted for dam
concrete when the average aggregate size turns out to be larger.
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3. Identification of elastic moduli and stresses by a POD-RBF-TRA procedure

3.1. The inverse analysis procedure. As usual in diagnostic inverse analyses, the domain in space over
which the search for the material parameters can be confined should be preliminarily chosen according to
expert judgment. For the present purposes, at first with reference to the estimation phase (I), the “feasible
domain” is defined within the three-dimensional space of the elastic parameters in Table 1 by means of
lower and upper bounds. Adopting the step values specified in this table, a grid with M = 1089 nodes is
generated over the feasible domain.

For each of these sets of parameters the test simulation provides, by the FE model of Figure 4, the
displacements measurable by DIC (over the ROI shown in Figure 2) relevant to the operative steps from
(a) to (c¢), namely the displacements due to slot cutting and jack pressurization up to p = 5 MPa in the
elastic range. The relative large size of the ROI makes immaterial, for identification by elastic modeling,
the possible initial development of inelastic strains, localized near the slot tips, as the jack pressure
approaches the maximum value (p = 5 MPa).

The DIC instruments here considered measure (and provide in digitalized form) N = 2086 displace-
ment components (along horizontal and vertical axis on the dam surface, Figure 2a) at the nodes of the
FE model (Figure 4) which coincide with the DIC grid nodes contained in the ROI (Figure 3).

The POD-RBF procedure. The clearly massive and heavy sequence of direct analyses based on the
parameter vectors p; (i =1, ..., M) corresponding to grid nodes has been carried out by a commercial
FE code (ABAQUS). Let the results be gathered in an N x M matrix U: its i-th column u; is a vector,
or snapshot, containing the N pseudoexperimental data belonging to the (now elastic) response to the
pressure loading of the system with elastic moduli gathered in vector p;.

Clearly, since the differences among the system responses arise only from variations of the sought
parameters within the preselected domain in their space, the snapshots turn out to be correlated: they
can be represented by “almost parallel” vectors in their space of N = 2086 dimensions. This correla-
tion suggests the use of approximation, or compression, in the information contained in the snapshot
matrix U = [u; - - - u ] relevant to the elastic behavior of the system, by recourse to a proper orthogonal
decomposition (POD) and truncation based on it.

The mathematical theory and computational procedures related to POD have origins remote in time
and in application fields, and are now presented in a vast and still growing literature, of which we mention
[Chatterjee 2000; Wu et al. 2003; Ostrowski et al. 2008]. Here only the specific procedure selected and
applied to the present purposes is outlined, without analytical details.

Starting from the matrix U defined above, preliminarily obtained from M test simulations by FEM,
the symmetric, positive semidefinite or definite matrix D = UT U is generated. Its (real, nonnegative)

phase (I) phase (II)
E,/GPa E/GPa G./GPa | E,/GPa E,/GPa G,/GPa oy/MPa o,/MPa t,,/MPa
min 10 15 4 10 15 4 —6 =7 -2.5
step 1 1 1 5 5 4 1 1 0.5
max 20 25 12 20 25 12 -2 —1 —0.5

Table 1. Grid in parameter space for phases (I) and (II) of the identification procedure.
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eigenvalues A; and the relevant normalized eigenvectors v; are computed and employed to obtain the
orthonormal basis
o=[® .- &y ], with & =Uyr "% (5)
In view of orthonormality, the M x M matrix A encoding the amplitudes a of the snapshots u is
characterized by the relations

A=[a - ay|=0"U, U=@2A (6)

The correlation among the snapshots (earlier noticed and reasonably expected for measurable re-
sponses to tests at varying parameters over the domain) make negligible many amplitudes a; in the new
basis ®. It was mathematically proved (see e.g., [Nabney 2002; Liang et al. 2002]) that the eigenvalues
A; quantify the negligibility of such amplitudes. By preserving only the M largest eigenvalues, with
M < M, an approximation U is achieved of the N x M snapshot matrix U by means of a truncated basis
® (N x M) and the relevant truncated M x M amplitudes A, namely

U=®A=U, whence A=o"U. @)

The approximation in (7) is regarded as acceptable and negligible in subsequent developments, so
that the amplitudes in A are henceforth computed by (7).

These developments often turn out to be computationally heavy but need to be done once-and-for-all
as preparatory work generating matrices ® and A: these condense (“compress”) the information on the
system behavior contained in the much larger matrix U and can be accommodated in a small computer
to be employed “in situ”.

The snapshot u corresponding to any “new” parameter vector p (new because not included as node
in the preselected grid over the feasible domain in the parameter space) now can be assessed through
(7) by means of its “amplitude” M-vector a(p). This amplitude can be expressed by means of radial
basis function (RBF) interpolation (see, e.g., [Wu 1995; Buhmann 2003; Hassing et al. 2010]) using the
known amplitude vectors a;(p;) corresponding to grid-nodes vectors p;, i =1, ..., M:

M
a(p)=Y) biegp.p)=g"(pb*  k=1,... M, ®)
i=1

where a;(p) is the k-th component of a(p), the bf.‘ are the interpolation coefficients and g(p, p;) are
the radial functions; the vectors g”(p) and b* gather functions and coefficients, respectively. The cubic
RBFs

g, p)=1p—pill’ )
where || - || is the Euclidean norm, are adopted here for the interpolation above. For each component %,
Equation (8), enforced at the j-thnode (j =1, ..., M) of the parameter grid, takes the form [a;(p;)]x =
gl(p j)bk . Assembling all M equations of this type, the following linear system is obtained, with the
coefficients bl’f as unknowns:

Gb* = [ k-th row of matrix A]”, k=1,... .M, (10)

where G = (G ;) with Gj; = g(p;, p;). All the M linear equation systems to be solved share the same
coefficient matrix (which is independent of k).
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When matrix B =[b'...b* ... bM]is available, the interpolation, (8), provides the truncated amplitude
vector a corresponding to any new parameter vector p: ax(p) =[ g( p)]Tbk; and, hence, (7) leads to the
snapshot u of the N measurable quantities, namely to an approximation consistent with the preceding
POD process. Formally:

u(p) =@ a(p)=2B'g(p) (11
where the M —vector g contains the values of the considered RBFs at the parameter node p.

Clearly, (11) may replace with substantial savings test simulations (direct analyses) by FE computer
codes or by other computing tools. This circumstance becomes very meaningful and practically advan-
tageous in inverse analysis of the present kind.

In the present context parameter identification means minimization of a traditional discrepancy func-
tion w of the residuals R (differences between experimental data u; and their computed counterparts u.).
Traditionally, the function w is formulated as quadratic form with the inverse of the covariance matrix C
of the experimental measures:

min, o (p) =min, {R” (p) C"'R (p)} (12)

where
R(p)=u;—u.(p). (13)

In view of the “pseudoexperimental” approach of the present investigation, it is assumed herein C = I
(identity matrix) without methodological limitations.

In order to numerically solve the problem formulated by (12), the popular trust region algorithm (TRA)
is employed in this section and it is outlined below (for details see e.g., [Coleman and Li 1996; Conn
et al. 2000]).

The Jacobian J, the gradient dw/d p of the objective function w and an approximation of the Hessian
H read, respectively:

IR do FPo op
J(P)—E, 5— W—J J. (14)

In each iteration, say the j-th one starting from the current point p;, the following two-variable math-

ematical programming problem has to be solved:

J'R, H(p) =

. 1.T 4T 8a) T
%n{zsjf JSHF(@) si- i SAj}v (15)
where 4
sj=aJ[R; =B I)™ ﬁ- (16)

In (15) A defines the “trust region” to be possibly adjusted after check according to criteria specified
e.g., in [Nocedal and Wright 1999; Conn et al. 2000].

The iteration j of the first-order TRA described by (15) and (16) requires a multiplicity of first deriva-
tives specified in (14) and numerically approximated here by forward finite differences. Therefore a high
number of direct analyses are necessary in each application of TRA to the present inverse problem.

As for TRA and similar sequential mathematical programming technique, the computational burden
is increased by possible nonconvexity (namely by possible local minima) of the objective function
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o (p) which may require different initializations (even if once-and-for-all for a specific kind of tech-
nical situations). In parameter identification problems where lack of discrepancy function convexity is
expected, genetic algorithms may be an advantageous alternative (not examined herein) to mathematical
programming, and the preliminary POD-RBF procedure above becomes very desirable for practical
applications in view of the high number of required direct analyses. Computational savings may arise
from POD-RBF also for sensitivity analysis of many measurable quantities (see [Kleiber et al. 1997],
for example); however, we will not consider this topic further.

In the present diagnostic method the inevitably sequential estimation of parameters (elastic-stresses-
inelastic, Section 2, Figure 2) implies an increase of the parameter space dimensionality and hence a
growth (exponential at equal density) of the number M of grid nodes (and snapshots).

The advantages achievable by the procedure POD-RBF-TRA proposed herein in association with
DIC and flat-jack tests for the identification, in sequence, of elastic moduli and stresses, are evidenced
by numerical examples in Section 3.2.

In the POD-RBF procedure just outlined, truncation represents a clearly important step. The choice
of number M of the preserved eigenvalues of matrix D (much below the number M of snapshots) can
be decided by various criteria (besides the one based on eigenvalues A;, here without a direct physical
meaning), two of which are particularly suitable to the present context: (i) meaningful difference between
a snapshot resulting from a test simulation by FE analysis and the corresponding snapshot computed by
POD-RBF with truncations; (ii) assessment of intrinsic accuracy of POD-RBF at varying the dimen-
sionality M of the new basis ®. The latter has been adopted in the present study and is outlined in what
follows.

Outside the nodes grid but still within the preselected domain, M parameter vectors p; are randomly
generated (here M = 100), and corresponding snapshots of pseudoexperimental data are computed
through FE simulations of the same test. Random noise (here &5 pm) is added to each snapshot which
thus becomes ; (j =1, ..., M). The amplitude vector corresponding to #; is computed using (7):

~

aj(pp)=99"a;(ppy, j=1,....M. (17)

Now an approximation to such amplitude vector has to be attainable by RBF interpolation through (8)
(employing the matrix B) in correspondence with some p:

a*(p)=Bg(p). (18)
Such p can be singled out by defining (for each j-th off-grid node) a residual
R;i(p)=a;(p;)—a""(p) (19)
and then by solving the problem
p; = value of p that minimizes RJT( P)R;(p). (20)

The j-th parameter vector p; originally considered is now compared to its counterpart pj resulting
from minimization (20). Their difference can be regarded as representative of the RBF approximation in
this j-th numerical test. An overall quantification of such error for the whole set of M off-grid nodes, i.e.,
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Figure 5. Errors, according to (21), in the elastic moduli due to the POD-RBF prelim-
inaries as a function of the adopted truncation index M.

the mean error according to (21) below, can be regarded as an assessment of the approximation induced
by the POD-RBF scheme:

1 M
(mean error); = —
=2

j=1

b)), — (P,

= 21
(Pj)[ ( )

where subscript /[ denotes the /-th component of the parameters vectors. Figure 5 shows the mean error
resulting for the elastic constants as a function of POD truncation index M.

3.2. Validation by computational examples. This subsection gathers a sequence of selected numerical
checks of potentialities and limitations of the (deterministic, least squares) diagnostic method presented
in what precedes.

(A) First, inverse analyses have been carried out comparatively by TRA only, with the following
provisions: (i) various initializations in order to check the well-posedness of the problem and, particularly,
absence of local minima; (ii) random perturbations of the (pseudo) experimental input data in order to
check their consequences on the estimates; (iii) same estimation procedure applied comparatively on the
basis of DIC data and on the basis of extensometric data which are traditionally acquired with standard
flat-jack tests.

The reference values of the parameters used in identification examples, carried out by TRA only,
concerning phase (I) and phase (II), are as follows:

elastic parameters: Ey =15GPa Ey=20GPa G, =8GPa vy=vy,; =02
pre-existing stresses: oy =-—-3MPa o,=-5MPa 1, =—1MPa

All three kinds of evaluations led to positive and encouraging results starting from these reference
values, with pseudomeasurements by DIC and by the FE model (Figure 4) same as those specified in
Section 2; pressure of 5 MPa in both jacks; random noises on input data over intervals of +2.5 um and
then of 5.0 um, with uniform probability distribution.

Figure 6 indicates satisfactory stability of the TRA identification with respect to realistic random errors
of DIC pseudoexperimental data considered. For comparison purposes, Figure 7a shows possible mea-
surements by extensometers (specifically, linear variable differential transducers) employed at present
in dam engineering. The elongation of 8 + 8 segments between marks are intended to be monitored
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Figure 6. Identification of elastic parameters by TRA with different random perturba-
tions of input data: (a) 2.5 um; (b) £5.0 um.
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Figure 7. (a) Extensometric measurements and (b) consequent identification of elastic
parameters (normalized by the reference values) by TRA inverse analysis.

and affected by 5.0 um random errors. Actually the considered noise and measurement number are
rather optimistic when compared to the current practice based on extensometers. A TRA inverse analysis
similar to the one leading to Figure 6 has been performed, but now on the basis of snapshots consisting
of the 16 extensometric measurements shown in Figure 7a. Lack of convergence turns out to occur with
extensometers in the comparative example illustrated by Figures 6b and 7b.

(B) The potentiality and accuracy of the whole procedure POD-RBF-TRA have been tested by numerical
exercises like those summarized here below.

With reference to phase (I) of the identification procedure, Table 1 specifies the uniform grid chosen
over the three-dimensional domain of the elastic parameters: the number of nodes amounts to M =
1089. Using this grid, the snapshots u (over the ROI) are computed by FE simulation as response
to jack pressurization at 5 MPa of the two slots, and the corresponding matrices ® and B are generated
according to the POD-RBF procedure described in Section 3 (see page 187). Here the truncation adopted
is quantified by M = 3. On this basis, for any parameter vector p in the feasible domain, the corresponding
snapshot u can be obtained in a fast way by (11) once the vector g(p) is computed.
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Subsequently a set of M =100 off-grid parameter vectors p; is randomly generated and the corre-
sponding snapshots #; (over the ROI) are computed through FE simulations analogous to the previous
ones. Such snapshots, after perturbation by random noise addition, are used as pseudoexperimental data
relevant to the transition from step (b) to step (c) of the test, Figure 2. For each p;, the minimization
(12) is carried out, with #; (now noised) playing the role of uy, vector u.(p) being expressible via (11)
on the basis of the chosen grid. Here the adopted noise value is +5 pum.

The j-th parameter vector p; originally considered is now compared to its counterpart pj* identified
through the minimization (12) and the accuracy of the estimation of each elastic parameter is assessed.
For the j-th identification, the error of the computed estimate ( pjf*)l takes the form

), — (P,

(error) j; = (ﬁj)l

. j=1,...,100, I=1,...,3. (22)

Figure 8a shows the results obtained for the three elastic moduli by means of the 100 inverse analyses
discussed above. In each histogram, the abscissa gives a range for the error of the estimate (in percent),
and the ordinate gives the percentage of cases in which the error lies in the corresponding interval. The
mean error, for the set of M identifications, amounts to 1.02%, 0.99% and 1.87% for the moduli Ey Ey
and Gy, respectively.

We next discuss phase (II) of the diagnostic procedure, the estimation of the pre-existing stresses. The
preliminary POD-RBF procedure must concern not only the three stress components, but also the three
elastic moduli. The six-dimensional grid is specified in Table 1 and has M = 3375 nodes. To avoid too
high a value of M and consequent high computational burden for the preliminary POD-RBF, the steps
adopted for Ey, Ey and Gy in phase (II) are much larger than those in phase (I), as shown in the table.
As for the truncation leading to the new basis ®, (7), the present choice is M = 4.

Similarly to what was described above for phase (I), M =100 off-grid parameter vectors are considered
and for each of them pseudoexperimental results are generated and utilized to perform an identification
by minimizing function @ of (12). It is worth noting that such minimization is to be performed not in the
six-dimensional parameter domain over which the grid is defined, but in its three-dimensional subdomain
of the stress parameters.
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Figure 8. Performance of POD-RBF-TRA procedure for parameter identification
based on pseudoexperimental DIC measurements affected by random noise of £5 um.
In the abscissa, intervals of relative errors; in the ordinate, the percentage of errors found
to fall within each such interval. Estimates of elastic moduli (first three diagrams) and
stresses (remaining diagrams).
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Figure 8b provides a visualization of the accuracy checks now concerning the POD-RBF-TRA estima-
tion of the stresses oy oy Tyy by means of N =2086 measurements (over the ROI) of displacements, in
transition from step (a) to step (b) (see Figure 2), after having introduced as preliminary data the estimates
achieved for the elastic moduli by the preceding identification. The resulting mean error equals to: 0.65%,
0.96% and 1.51% for oy, oy, and Ty, respectively.

The conclusion of the computations described (and other omitted for brevity) is rather encouraging:
the devised method centered on POD, RBF and TRA, confined to elastic behavior, turns out to provide
parameter estimations of both elastic moduli and pre-existing stresses which are expected to be fairly
satisfactory in practical applications.

4. Identification of elastic moduli and stresses by a POD-ANN procedure

4.1. The inverse analysis procedure. Soft-computing methods, particularly artificial neural networks
(ANN), are more and more frequently employed in engineering also to solve economically parameter
identification problems (see e.g., [Waszczyszyn 1999; Fedele et al. 2005]). To the present purposes a
conventional feed-forward neural network is adopted and optimized, in order to comparatively investigate
an alternative to the POD-RBF-TRA procedure presented in what precedes. To achieve computational
economies similar to those described in Section 3, POD is adopted again, and the compression of the
information contained in the set of preliminary test simulations turns out to be useful for the reduction
of the ANN input and for its useful “balance” with corresponding output.

The ANN is intended to provide the sought parameters p starting from the M-dimensional amplitude
vector @ which corresponds to the N-dimensional experimental data vector u (snapshot) in the truncated
basis @ with M <« M, if M is the number of snapshots preliminarily computed by a FE code, like in the
POD-RBF-TRA of Section 3. Since orthonormality is preserved in @ after truncation, (7) gives rise to
the relationship

A=9o"U. (23)

This equation can be specialized to the link between any snapshot u;, (corresponding, through exper-
iment or its simulation, to a parameter vector p;) and its compacted amplitude a;, namely

an (pn) = uy, (pp) where h=1,..., M. (24)

The N x M matrix ® (where N is the number of experimental or pseudoexperimental data and M
the number of preserved eigenvalues of the matrix D = U” U) is computed once and for all by the same
POD procedure presented in Section 3. Equation (24) is essential for the generation of an ANN able to
routinely estimate, fast and possibly in situ, the parameters p on the basis of input a representative of
measurements u through (24) again.

The kind of ANN adopted here is a traditional one and can be outlined as follows (details in [Bishop
1995; Hagan et al. 1996; Bishop 2006])

The chosen ANN category is usually called feed-forward multilayer perceptron. Its architecture con-
sists of a sequence of neurons layers (input, hidden, output). The transformation performed by each
neuron in each active layers (not in the input layer) on received signals consists of a linear combination
(by coefficients to be calibrated, called weights and biases, all gathered in a vector w) and a sigmoid
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transform. The vector w is computed by minimizing a function €2 that quantifies the discrepancy be-
tween expected parameters py (targets) related to the amplitude a; through (24), and their counterparts
generated by the ANN to be trained and, hence, related to the vector w of the minimization variables.
Namely, the problem to solve for the ANN calibration is

M
min 20 = min{ 3 |1 @) - g}, . )] | 05)
h=1

The preselected parameter nodes p in the grid over the domain chosen in the p-space, and the cor-
responding, preliminarily computed, snapshots # together with the associated amplitudes a after POD,
provide, without additional computations, a set of M patterns (pairs of a; and corresponding targets py,).
These patterns are employed partly for ANN training as above (see (25)), and also partly for testing and
validating the ANN. These computational processes are carried out once-and-for-all in order to optimize
the architecture of the ANN for routine later use. ANN optimization is here intended, as usual, to avoid
overfitting and roughness in the parameter estimations.

The solution w* of problem (25) is achieved by the popular Levenberg—Marquardt algorithm, i.e.,
by first order mathematical programming in its back-propagation version, often employed for training
feed-forward ANNs; see [Haykin 1998; Waszczyszyn 1999; Bishop 2006], for example.

4.2. Validation by numerical examples. The chosen domain in the parameter space and grid are again
those specified in Table 1. Therefore the N x M matrices U containing DIC pseudoexperimental data
preliminarily computed once-and-for-all by FE simulations (Figure 4) have dimensions N =2086, M =
1089 and N = 2086, M = 3375 for the identification of elastic moduli and of stresses, respectively.

Also the two POD procedures are the same as in Section 3 but now they are intended to compress
the information contained in the snapshots in order to provide amplitudes in a new truncated basis ® as
input for a suitably trained ANN. The set of snapshots is subdivided into three subsets for various roles
in ANN calibration: 70% for training; 15% for testing; 15% for validation. All pseudoexperimental data
in U are modified by random errors in the range £5 pm.

The number of amplitude components and the number of neurons in the ANN hidden layer (after a
priori choice of an ANN with a single hidden layer architecture) are here established by the following
optimization procedure: the mean error is assessed as a function of the neuron number in the hidden
layer H and in the input layer I. The latter neuron number coincides with the dimensionality M of the
amplitude vector generated by the truncated POD.

Figure 9 shows the influence of H with / =3 and I = 6 on the ANN devoted to estimation of elastic
parameters. The mean errors in Figure 9 are the averages in percentage of the differences between the
expected exact parameters (called fargets) and their values resulting from ANN training and testing. As
a conclusion, the process of generating and checking the computational tool POD-ANN for later routine
estimation of the three elastic parameters, leads to the choice of I = 3 neurons in input layer and H = 6
in hidden layer.

As for the identification of stresses oy, oy and 7,y by means of the DIC measurements in phase (b)
of the flat-jack test (Figure 2), the input layer of the second ANN must include three additional neurons
to receive the estimates of elastic parameters based on DIC data from phase (c), besides the neurons that
receive the amplitude M-vector generated by the truncated POD, (23)+(24), of the snapshot u provided
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Figure 9. Influence of H, the number of neurons in the hidden layer, on the POD-ANN
procedure for estimating the elastic parameters for (a) three and (b) six neurons in the
input layer.
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Figure 10. Performance of POD-ANN procedure for parameter identification based on
pseudoexperimental DIC measurements affected by random noise of £5.0 um. In the
abscissa, intervals of relative errors; in the ordinate, the percentage of errors found to fall
within each such interval. Estimates of elastic moduli (first three diagrams) and stresses
(remaining diagrams).

by DIC. Now M = 3375, consistently with Table 1, and, hence, matrix U has dimensions N x M =
2086 x 3375. The design of the ANN for stresses, through considerations similar to those outlined above
for elastic properties (again with random noise +5 m) here omitted for brevity, leads to the following
ANN architecture: 7-14-3. The set of 100 samples employed for the final accuracy checks of the
POD-RBF-TRA inverse analysis procedure developed in Section 3, has been used for similar checks on
the alternative procedure POD—-ANN described in the present section. Results concerning elastic moduli
and stresses are presented in Figure 10. A comparison of these results with those achieved in Section 3
and illustrated in Figure 8 leads to the conclusion that both procedures POD-RBF-TRA and POD-ANN
associated with flat-jack test with T-geometry and to DIC full-field measurements are adequate to the
identification of orthotropic elasticity parameters and pre-existing plane-stress state. Computer efforts
and estimation accuracy are comparable.

5. Estimation of inelastic parameters

Inelastic parameters, not estimated by flat-jack tests in the state-of-the-art diagnostic methodology, are
the objectives of the operative steps (d) and (e) and of the identification phase (III) in the present method
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(Section 2.2 and Figure 2). A simplification which is adopted herein for inelastic parameter identification
consists of the following two assumptions: (i) elastic isotropy, consistently with the isotropy attributed
to the inelastic model; (ii) a pre-existing plane stress state in which oy is the only nonvanishing stress
component. The elastic modulus E and the stress o are supposed to have been identified in the previous
phases of the procedure.

The concrete inelastic parameters to identify are internal friction angle 8, tensile strength f; and
fracture energy G s; the dilatancy ¥ = 40° is regarded as assumed a priori.

The experimental data supposed to be provided by a DIC photo, now over the smaller area (ROI)
shown in Figure 2d-e, consist of N =210 x 2 = 420 displacement components on the dam surface. The
reduction of the ROI implies a higher resolution in measuring the displacements due to inelastic strains
and quasi-brittle fracture which occur when pressure is increased beyond the elastic threshold. Here it
is assumed that the flat-jack pressure is increased up to the value of 10 MPa and that a sequence of 6
photos is taken at pressure levels p =35, ..., 10 MPa (with increments of 1 MPa).

The inverse problem, (12), is now reformulated so that the displacements monitored at distinct load
levels be all involved in the definition of the residual R and, hence, of the discrepancy function to
minimize. To this purpose vector u becomes a vector consisting of 6 subvectors, each one representing
the displacements of the ROI grid-nodes at one of the considered pressure levels. Therefore, henceforth
in this section, the term snapshot will denote a vector u with 6N = 2520 components. It is worth
noting that the response of the system, now nonlinear under the applied pressure, is influenced by the
effects (mainly the self-stresses) generated during the slot cutting, i.e during the operative step (b) of the
experimental procedure (see Section 2.2). Such effects are accounted for in the FE simulations of the
whole experimental procedure.

The FE model is substantially the same as the one employed for the preceding simulations, Figure 4a
and Figure 4b; only a local mesh refinement is carried out over a volume in the vicinity of the free surface
where the ROI is located, in order to accurately compute displacements at the ROI grid-nodes.

The expert-preselected domain for the three parameters sought is defined as follows:

1 < f; <6MPa, 50<Gy< 300Nm~!, 40° < B < 80°. (26)

In view of the novelty of flat-jack diagnostic tests and of inverse analyses based on them beyond the
elastic range, the identifiability of the three parameters 8, f; and G ; has been investigated by various
numerical exercises, some of which are outlined in what follows.

(A) Using the trust region algorithm (TRA) outlined in Section 3 (but here without POD preliminar-
ies), parameter identifications are carried out using the following reference values of the constitutive
parameters and the stress oy:

elastic parameters and stress: Ey;=15GPa v=02 oy=-3MPa

inelastic parameters:  f; =3MPa B =68° G =180N/m

The input consists of all 2520 pseudoexperimental DIC data generated by a simulation with the FE model
of Figure 4, with the material model of Section 2; first inverse analysis is performed and illustrated in
Figure 11a, starting from input data perturbed by a random noise governed by uniform probability density
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Figure 11. Convergence of TRA applied to inelastic parameter identification with input
perturbed by random noise of (a) £0.25 um and (b) £0.5 um.

function over the interval £0.25 pm. With the same initialization and similar input perturbation amplified
to 0.5 um the TRA consequence is shown in Figure 11b.

This computational exercise (and others not considered here) shows stability of the estimation proce-
dure with respect to (expected) experimental inaccuracies.

(B) In order to endorse the identification of inelastic parameters with the advantages of POD exhibited
by the methodology presented in the preceding sections, the extended POD—ANN procedure (Section 4)
is presented here below by means of a numerical exercise.

Clearly, in the present context, the ANN to design must be fed not only with the amplitude a (in the
truncated basis ®; see (6)) of the new experimental data vector u, but also with the results of the preceding
identifications of the elastic modulus E (isotropic case) and of the pre-existing stress oy;. Therefore a five-
dimensional parameter space has to be considered; by choosing in such space the preselected domain and
grid specified in Table 2, the number of grid nodes and the of corresponding snapshots (to be computed
by FE test simulations once-and-for-all) reach now 5346.

Only M = 6 eigenvalues of the matrix D = UTU of order M = 5346 are preserved in the POD
compression (i.e., after POD truncation). Therefore, each snapshot vector u containing N = 2520 com-
ponents is replaced by its amplitude a of 6 components only; the ANN input layer consists of 6 +2 =8
neurons the additional two being grid values of E and oy,.

The 5346 available patterns (node parameters p emerging from Table 2 and compressed amplitudes a
of the corresponding snapshot #) have been employed to train (using 3742 randomly selected patterns),
test (using 802 patterns) and validate (using 802 patterns) an ANN of the kind specified in Section 4,

E/GPa o0,/MPa f,/MPa G/(N/m) B/°

min 10 —6 1 50 40
step 5 2 1 25 5
max 20 -2 6 300 80

Table 2. Grid in parameter space for phase (III) of the identification procedure.
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Figure 12. Influence of H, the number of neurons in the hidden layer, on the POD-ANN
procedure for estimating the inelastic parameters for / = 8 input neurons.

by the same procedure outlined there. The optimal architecture turned out to consist of a single hidden
layer with 12 neurons; see Figure 12.

The following numerical exercise (among others omitted for brevity) carried out by the POD-ANN
procedure above, not only tests it but also provides motivation for further developments in terms of
experimental techniques.

Over the five-dimensional domain specified by Table 2, a set of 100 points is randomly chosen. The
corresponding snapshots are computed by the same FE and constitutive material models described in
Section 2. Inverse analyses are performed, with perturbation noise of £0.25 um and £0.50 um, by
POD-ANN calibrated in what precedes. The resulting estimates of inelastic parameters are compared to
their “exact values” employed as input for the direct analyses which led to the snapshots. The differences
are shown in Figure 13, in a fashion similar to that of Figures 8 and 10 for comparisons.

Clearly, the scatter of the estimation error for the fracture energy G r is rather large. Such undesirable
circumstance can be explained as follows: when preexisting horizontal compression oy or tensile strength
[y are rather large within the selected domain, with the assumed jack pressure the fracturing process is
very limited and, therefore, fracture energy has small influence on the DIC measurable displacements;
hence, larger becomes the sensitivity of its estimate to perturbations (including experimental errors and
round-off errors in the numerical identification procedure).
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Figure 13. Performance of POD—ANN procedure for inelastic parameter identification
based on pseudoexperimental DIC measurements affected by random noise of +0.5 um.
In the abscissa, intervals of relative errors; in the ordinate, the percentage of errors found
to fall within each such interval.
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Possible remedies, consistent with desirable progress in dam monitoring practice, are the following
provisions: (i) an assessment of the crack opening displacement near the slot tip is extracted from the
DIC measurements and employed to control the pressure growth in the flat-jack; the test is performed
when the assessed displacement exceeds a pre-established threshold; (ii) two additional vertical slots are
cut as shown in Figure 2f in order to practically eliminate the horizontal compressive stress.

Provision (i) would imply that the jack pressure is no longer selected a priori, once and for all, but
becomes variable and represents an additional input into the ANN. The geometry change (ii) obviously
makes the test somewhat more costly and more destructive. Both of these prospects could be worth of
further investigations.

6. Closing remarks

The procedure resulting from this study on diagnostic analysis of concrete dams based on flat-jack tests,
exhibits the following main advantages with respect to the present practice and also with respect to recent
results achieved on the same subject (see e.g., [Fedele and Maier 2007]): (a) less damaging slots, due to
the T-shaped geometry adopted here; (b) more experimental data which can be economically acquired
by digital image correlation (DIC) and which regularize the inverse problem to solve; (c) assessment of
inelastic properties of concrete, besides the elastic ones and the stress state considered so far; (d) compu-
tational efforts concentrated in a preparatory stage of multiple test simulations (say by a finite element
commercial code) and much alleviated in applications, which can now be performed routinely in situ,
either by soft computing, specifically by means of artificial neural networks (ANN), or by a popular
mathematical programming procedure (TRA).

Besides obvious improvements of FE modeling and of constitutive models, meaningful further devel-
opments (which are partly in progress and partly desirable in the near future) can be listed as follows:
(i) experimental validation in real-life engineering circumstances, particularly, as for the operative aspects
of DIC measurements, on a concrete dam surface, after selection of suitable instruments and supports;
(i1) improved jacks, with suitable textile instead of steel sheet in order to reduce friction and weld effects,
and with larger radius complying with possible large size of aggregate in dam concrete; (iii) extension of
the present approach and methodology to inhomogeneous periodic materials such as masonry, on which
traditional flat-jack tests are frequently adopted to structural diagnosis purposes; (iv) transition from the
present deterministic batch estimation methodology to the stochastic one (methodologically like, e.g., in
[Fedele and Maier 2007] for a first step in this direction), with elaboration of both experimental data and
their random errors in order to reach estimates accompanied by their covariance matrices.

An inverse analysis performable in situ with economy and brevity by exploiting preliminary computa-
tional results (and their POD approximation) achieved in a computing center, as proposed in this paper,
turns out to be promising for structural diagnosis and for mechanical characterization, in dam engineering
as well as in other technologies.
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A ZERO-STIFFNESS ELASTIC SHELL STRUCTURE

SIMON D. GUEST, ELIZBAR KEBADZE AND SERGIO PELLEGRINO

A remarkable shell structure is described that, due to a particular combination of geometry and initial
stress, has zero stiffness for any finite deformation along a twisting path; the shell is in a neutrally stable
state of equilibrium. Initially the shell is straight in a longitudinal direction, but has a constant, nonzero
curvature in the transverse direction. If residual stresses are induced in the shell by, for example, plastic
deformation, to leave a particular resultant bending moment, then an analytical inextensional model of
the shell shows it to have no change in energy along a path of twisted configurations. Real shells become
closer to the inextensional idealization as their thickness is decreased; experimental thin-shell models
have confirmed the neutrally stable configurations predicted by the inextensional theory. A simple model
is described that shows that the resultant bending moment that leads to zero stiffness gives the shell a
hidden symmetry, which explains this remarkable property.

1. Introduction

A novel zero-stiffness structure is described. The structure is a thin shell that is initially straight in a
longitudinal direction, but has a uniform, nonzero curvature in the transverse direction. The structure is
prestressed, and the interaction of the elastic properties with the prestress is such that the structure can
be deformed without any applied load; this is not a local phenomenon — the structure can continue to
be deformed in a finite closed path. Equivalently, the structure is neutrally stable: there is no change in
total internal strain energy as the structure is deformed, even though any particular component of strain
energy will vary. An experimental model of this structure, made from a sheet of copper beryllium of
thickness 0.1 mm and width 30 mm, is shown in Figure 1.

The ability to deform a structure without load is quite unexpected when initially observed, and is
clearly a function of the prestress that the shell carries. Certainly it is well known that the stiffness
of structures changes with applied load. Stable structures can become unstable when loaded: a simple
example is the buckling of a strut through the application of axial load. At the cusp between stability
and instability there may then be a point of neutral stability, where a structure has zero stiffness: to first
order, there is no change in load with displacement. However, while typically for buckling phenomena
this point of neutral stability/zero stiffness is isolated, it is also possible to engineer systems which, when
they buckle, are neutrally stable for large deformations [Tarnai 2003].

The stiffness of structures also changes through prestress, where the structure is loaded against itself.
A classical example of this behaviour is provided by tensegrity structures [Calladine 1978; Guest 2011],
which typically rely on prestress in order to be able to act as structures at all. However, even for tenseg-
rities with rigid compression members, increasing the relative level of prestress can reduce the stiffness

Keywords: zero-stiffness, morphing structure, reconfigurable structure.
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Figure 1. A series of different configurations of the same zero-stiffness shell structure.
In each configuration, the shell is held in place by no more than the friction with the
underlying surface. The shell can be transformed between configurations in both direc-
tions, clockwise and anticlockwise. The analytical model in Section 2 predicts that the
shell will, in each case, be wrapped around an underlying cylinder (see Figure 3) of
constant radius, and it can be seen that this is the case here.

of some modes of deformation, and for extreme levels of prestress, can also lead to structures with zero
stiffness, even for large deformations [Schenk et al. 2007].

The present paper deals with thin shell structures that are straight longitudinally, but uniformly curved
in the transverse direction, as shown in Figure 2a. Shell structures of this type are used in steel tape
measures and also as lightweight deployable booms for spacecraft [Rimrott 1965]. The mechanics of

() (b) (©)

R 1/xy

Figure 2. (a) A shell that is straight longitudinally, but curved transversely, with two
coiling modes, (b) and (c). A configuration change from (a) to (b) involves same-sense
bending: the centres of curvature are on the same side of the shell. A configuration
change from (a) to (c) involves opposite-sense bending: the centres of curvature are on
opposite sides of the shell.
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such structures has been studied extensively [Mansfield 1973; Seffen and Pellegrino 1999], although
until recently most studies have focussed on structures that are both isotropic and initially unstressed.

Recently, it has become clear that interesting properties, and in particular bistability, can be engendered
if these curved thin shell structures are made to be anisotropic [Guest and Pellegrino 2006], or if the
structures are prestressed [Kebadze et al. 2004]. If the shells are given the correct set of anisotropic
bending properties, for example, through being manufactured in fibre-reinforced plastic, then the shell
can be made bistable so that the second stable state has the same sense of bending, as shown in Figures
2a and 2b. Alternatively, if an isotropic shell is correctly prestressed, then the shell can be made bistable
with the second stable state having the opposite sense of bending, as shown in Figures 2a and 2c. In
this case, in the initial configuration, the shell is prestressed in bending, so that it wishes to coil up, but
this is prevented by the structural depth of the curved shape. In [Pellegrino 2005] a shell is described
that exploits this mode while ensuring that the two states have the same stored strain energy, so that a
partially coiled shell can coil and uncoil without change of energy, and is neutrally stable. This is the
only previous example of a zero-stiffness shell of which we are aware.

The present paper explores the case of an isotropic shell which is prestressed in the opposite sense to
that studied in [Kebadze et al. 2004], so that the prestress favours same-sense bending. It will show that
bistability cannot be engendered, but remarkably, for a particular value of prestress, the structure can be
left without any torsional stiffness.

2. Analytical model

The basic analytical model that we use is essentially identical to that described in [Kebadze et al. 2004;
Guest and Pellegrino 2006]. We make two geometric assumptions: that the shell is inextensional, and
that the curvature of the shell is uniform across its midsurface. The inextensional assumption is valid for
thin shells, where the energy required to stretch the shell dwarfs the energy required to bend the shell.
A consequence of our assumptions is that we are neglecting boundary effects; for further discussion of
this, see [Galletly and Guest 2004]. The two geometric assumptions together imply that we can consider
the shell midsurface as lying on an underlying cylindrical surface, as shown in Figure 3. The (uniform)
curvature of the surface can then be described in terms of two parameters, the nonzero principal curvature
of the underlying cylinder, C, and the orientation of the local axes (x, y) with respect to the axis of the
cylinder, defined by an angle 6.

; e
[

0=mn/4 0=mn/2
0=0

Figure 3. Definition of the geometry of the shell in terms of an underlying cylinder with
curvature C. The angle 6 specifies the orientation of the shell with respect to the cylinder.
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The curvature of the shell can thus be described by the curvature vector k:

Ky c 1 —cos26
k=| ky |=+|1+cos20 |. (D)
2Ky 28in 26
The curvature components are given by «, = —3w/dx?, Ky = —9%w/dy?, and Ky = —9%w/dxdy,

where w is the relative displacement out of the plane defined by x and y. The transformation to the x, y
curvilinear coordinates is obtained from, for example, a Mohr circle construction, as described in [Guest
and Pellegrino 2006]. Note that the definition «,, = —3%w/dx dy for the twisting curvature is standard
in the plates and shells literature, including [Kebadze et al. 2004], but is only half the value commonly
used in the composites literature, including [Guest and Pellegrino 2006].

We assume an initial configuration for the shell with 8p = 0 and Cy = 1/R, so the change in curvature
to any other configuration is given by

1 —cos26
_C 2
Alc—2 1+C0829_ﬁ . ()
2sin 26

We also assume that the shell is prestressed in the initial configuration. As the shell is straight in the
x-direction, it cannot sustain any moment/unit length along the edge normal to the y-axis, so in the
initial configuration m, = m,, = 0. However, because of the curvature in the y-direction, the depth of
the cross-section allows a uniform initial moment m, = m to be equilibrated by midplane forces in the
shell, as shown in Figure 4.

In a general configuration we define the moment/unit length carried by the shell as a vector m,

m=|m | 3)

Figure 4. Initial prestress in the shell. The uniform moment/unit length m, = m is
equilibrated by a distribution of midplane forces in the shell. The moment m is uniform
throughout the shell, except for a narrow boundary layer at the free ends.
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with an initial value
m
mgy = 0f. (4)
0

We assume linear-elastic material behaviour, and therefore in a general configuration, the moment will
be given by
m = DAk + my. &)

The bending stiffness matrix D is given by

1 v 0
D=D|v 1 0 , (6)
00 (1-v)/2

where v is the Poisson’s ratio of the material, and D is the shell bending stiffness, defined in terms of

the Young’s modulus E, thickness ¢, and the Poisson’s ratio as
D— Et? o
C12(1—v)?

We define the strain energy U as the energy stored in the shell per unit area due to its deformation away
from the initial configuration, and so

U= %AKTDAK + AkTmy. (8)

Finally, we write everything in a nondimensional form (with a hat, *) in terms of the bending stiffness,
D, and initial radius of curvature R:
~ _UR?

U—D, D=

%, K = Rk, ﬁz:%m, C =CR.
In [Kebadze et al. 2004] the behaviour of this system was explored when the initial moment m =
mR /D is positive, which leads to bistable behaviour. The present paper notes the remarkable behaviour

associated with the value
m=—(1-—v). )

Figure 5 shows the variation of U with C and 6 for three values of /i: m = 0, i = —(1 — v), and
m=-=2(1-v).

The key plot is Figure 5b. For m = —(1 —v), there is no change in stored energy U with 6. Thus, from
the initial configuration, a series of new twisted configurations with the same underlying curvature c=1
are possible, and these are clearly shown in the experimental results shown in Figure 1. The structure is
in a state of neutral equilibrium, and has zero stiffness, even for large excursions along this deformation
path.

Figures 5a and 5c¢ represent the behaviour of the shell for values of m respectively greater or smaller
than the critical value of —(1 — v). Figure 5a shows the case where m = 0, and is hence identical to the
isotropic plot in [Guest and Pellegrino 2006]. There are two equilibrium configurations, marked M and
N: M is the stable initial configuration, and N is an unstable coiled configuration, where 6 = 7 /2. In
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20=m/2 20 =m/2

) m=—2(1—v)

Figure 5. Polar plots of the nondimensional energy U plotted as a function of C and
0 for three values of initial moment 7. The initial configuration is labelled as M, and
U = 0 at this point. Contours are plotted for U= ...,—0.1,0,0.1, ..., with U=0
plotted as a dashed line.

fact, for any value of /i in the range 0 > m > —(1 — v) similar behaviour is observed, with a stable initial
configuration, and an unstable coiled configuration.

Figure 5¢ shows the case where m is twice the critical value of —(1 — v). Again there are two
equilibrium configurations, marked M and N: M is the initial configuration, which is now unstable, and
N is a coiled configuration with 6 = 7r/2, which is now stable. In fact, for any value of m < —(1 —v)
similar behaviour is observed, with an unstable initial configuration, and a stable coiled configuration.
The energy U is negative at N, but this is simply a consequence of arbitrarily setting U =0 at the original
configuration M.
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Note that in each of the plots, there appears to be a maximum in U at C = 0, but this is simply an
artefact of the way the data is plotted: U will continue to increase for C < 0, but this portion of the
data is not plotted in the present paper, as no interesting behaviour is observed in this regime (unlike in
[Kebadze et al. 2004], where additional stable states are found with C <0 for i positive).

3. Experimental results

Experimental verification of the zero stiffness behaviour was obtained through models made from a thin
sheet of copper beryllium (CuBe). The basic manufacturing protocol was as described in [Kebadze et al.
2004]. The shells were formed in a curved initial state from annealed CuBe with ¢t = 0.1 mm and a width
of 30 mm, and were then age-hardened to give a stress-free curved shell.

The prestress moment was imposed by passing the unstressed shell through a set of rollers, which leads
to a residual moment m through the mechanism described in [Kebadze et al. 2004]. Although Section 2
gives a precise value of m for zero stiffness, it is actually difficult to predict the rolling parameters that
will give this value of m, as this depends on the precise strain-hardening characteristics of the CuBe
as it yields. Thus, in practice we proceeded by trial and error to fine-tune the rolling process to give
shells that had no torsional stiffness. The final result of this process is shown in Figure 1, where a series
of configurations of the same shell is shown, each with an underlying curvature C ~ 1/12.5mm. In
each configuration, the shell is only held in place by friction with the underlying surface. We have not
attempted any detailed experimental measurements on these models.

4. Conceptual disk model

This section describes a simple conceptual model that has two aims: firstly it will reveal a “hidden”
symmetry that provides an explanation for the particular value of prestress moment m that provides zero
stiffness; and secondly, it describes a zero-stiffness shell structure that doesn’t require an assumption that
the shell is so thin that it can be considered to be inextensional.

Consider a thin circular bimetallic flat disk — for example, one made of brass and steel, as in Figure 6a.
As the disk is heated from its initial flat stress-free state, the brass will want to expand more than the steel,

O <

(b) ()

Figure 6. A conceptual model of the formation of a zero-stiffness shell from a bimetallic
disk. As the disk is heated from (a), it will initially form a domed structure, as in (b).
After further heating, the bending response will bifurcate and become nonisotropic; and
in the limit the structure will become cylindrical; see (c). The principal directions of
bending in (c) are arbitrary — any other choice of bending direction would lead to a
twisted form of the structure having the same stored internal energy.
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and if the disk is to remain flat, this will lead to a uniform residual moment in the shell. In practice, the
disk will dome slightly, as shown in Figure 6b, but to do this the surface changes its Gaussian curvature,
which requires in-plane stretching [Calladine 1988]. At some point (which depends on the thickness
of the shell) a bifurcation will take place, following which the curvature will no longer be uniform
in all directions: in some arbitrary principal direction the curvature will decrease, while the curvature
will increase in the perpendicular direction. As heating is further increased, the disk will approach a
cylindrical configuration, as shown in Figure 6c¢; this process is described in more detail in [Freund
2000; Seffen and McMahon 2007].

It is clear that the process of heating a bimetallic disk must lead to a zero-stiffness shell at any point
after the disk has bifurcated. The bifurcation takes place about an arbitrary axis, and whichever axis is
chosen the stored strain energy will be the same. Deforming the shell on the continuous path through
states with varying axes of bifurcation will not change the stored energy, and hence it can be concluded
that the path is neutrally stable. We shall see that in the extreme case of a thin shell with no in-plane
deformation, this will reproduce the mode described in Section 2; but the bifurcated bimetallic disk does
not require any assumption about being thin, or about boundary conditions, to have zero stiffness.

For the assumption of a thin inextensional shell, the bimetallic disk model can be used to calculate the
critical value of prestress moment found in Section 2. Consider a preliminary state of the disk where the
disk has been heated, but is held flat. In this state, there will be a uniform (negatively valued) moment
due to the temperature change, m,, but no curvature:

m; 0
m; = \|\my |, K = 0]. (10)
0 0

Consider now that the disk is released, and is allowed to increase its curvature in the y-direction until the
moment m, becomes zero, at which point it has reached the initial state (m, ko) considered in Section 2.
As the change from the preliminary to the initial state is elastic, we can write

mo = D (ko — k;) +m;, (11)
and hence
m 1 v 0 0 m;
0|=D]|v 1 0 I/R|+|m;|. (12)
0 00 (d-v)/2 0 0
To satisfy this equation in the y-direction, we must have
D
me=—p, (13)
and hence b b
v
=R ® 14
Thus, the residual prestress moment, written in nondimensional form,
=" = (1), (15)

is exactly the critical moment identified in Section 2.
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5. Conclusion

The disk model presented in Section 4 has shown that the zero-stiffness mode identified in Section 2
can be explained simply by consideration of a hidden symmetry of the shell structure: if the structure is
flattened, then the resultant moment in the shell doesn’t vary with direction, and bending about any axis
is equally preferable. There may be minor effects associated with boundary conditions, but these didn’t
have a noticeable effect on the experimental structures that we manufactured, and they will certainly not
be present for a circular shell structure.
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Dedicated to the memory of the late Marie-Louise and in the honor of Professor Charles R. Steele

It is mainly the matrix in composite structures that exhibits fuzzy randomness of the material parameters.
When extending the work on two-layer and symmetric, three-layer viscoelastic beam, plate, and shell
structures based on the definition of an equivalent effective homogeneous model, to include either fuzzy
pure elastic interface slip or fuzzy core stiffness, by means of modal analysis we succeed in working out
the effects on the dynamic properties of these fuzzy structures. Modal coupling by the light damping
forces is neglected. Fully analyzed within the scope of this paper is a simply supported sandwich beam
with fuzzy elastic core material parameters. The analysis of this illustrative example is based on the
interval representation (that is, on the set of a-cuts) with a triangular membership function of the core
shear stiffness prescribed. Membership functions of the undamped natural frequencies are defined using
fuzzy set theory, however, avoiding artificial uncertainties. Under time-harmonic excitation, the dynamic
magnification factors and, with light and deterministic modal structural damping taken into account, the
fuzzy phase angles of the steady modal response are evaluated. Where appropriate, envelope functions
are defined.

1. Introduction

The material of the matrix in composite lightweight structures has a large volume fraction and thus should
be of low density and low cost: as a consequence of the technological processes its material parameters
are less standardized when compared to high-strength fibers or reinforcing sheets. To predict the safe
limits of the structural response and to account for such a variety of the structural properties a fuzzy
randomness in the material parameters is prescribed. Thus generally, analyses require application of
the fuzzy finite element method; see, for example, [Hanss and Willner 2000; Moller and Beer 2004].
Alternatively, for the formulation using stochastic finite elements, see, for example, [Dasgupta 2008].
When extending the work on two-layer and symmetric viscoelastic three-layer beam, plate, and shell
structures based on the essential definition of an effective equivalently homogenized model, see [Adam
et al. 2000; Irschik et al. 2000; Hansen et al. 2005; Heuer 2007], to include either fuzzy pure elastic
interface slip (the physical interface exhibits a large variability in the material parameters differing from
those of the neighboring layers) or fuzzy core stiffness (the lightweight core material is of similar con-
sistency to a matrix material), we can avoid numerical analysis schemes and analytically work out the
effects on the dynamic properties of these fuzzy thin-walled structures. Within the scope of this paper,
a simply supported sandwich beam with fuzzy elastic core material parameters is fully analyzed by way
of example. It should be mentioned that the solution technique remains applicable to even polygonal

Keywords: layered beams, fuzziness, interlayer slip, modal analysis, isosceles uncertainty.
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composite plates since a decomposition into two “membranes” has been explored [Heuer et al. 1992;
Heuer 2007].

The analysis of the illustrative example, mentioned above, is based on the interval formulation by
referring to the set of a-cuts with a (triangular) membership function of the core shear stiffness prescribed.
Another interpretation of such an interval number in a closed set is a random variable whose probability
density function is unknown but nonzero only in the range of the interval. A recent interval dynamic
modal analysis of an uncertain cantilevered shear beam with prescribed lower and upper bounds of the
closed set of the shear modulus, [Modares et al. 2010], transformed the deterministic natural frequencies
to their inclusive set values. Similarly, membership functions of the more complex undamped natural
frequencies of the fuzzy layered beam are defined using fuzzy set theory [Zadeh 1965; Dubois and
Prade 1997; Viertl and Hareter 2006], however, avoiding artificial uncertainties. Under time-harmonic
excitation the problem is solved in closed form: the dynamic magnification factors and, with light modal
structural damping taken into account (thereby neglecting the effects of modal coupling by the light
damping forces), the fuzzy phase angles of the modal response are evaluated. Where possible, envelope
functions are defined. Such modal response studies of layered beams within the interval formulation
allow us to consider the worst case, by either putting the lower limit of the shear modulus of the core
material to zero or by taking into account fully delaminated layers. Thus, with the deterministic assigned
stiffness known, the lower branch of the membership function can be defined without the requirement
of additional data. However, precision engineering may require narrowing the limits of the set of a-cuts
of selected natural frequencies: the consequence on the allowable material variability (lower and upper
bounds) is addressed. Subsequently, some practically important effects caused by asymmetric uncertainty
of the material parameters with respect to the upper branch of the membership function are discussed.
Consequently, it can be concluded that the fuzzy set of the core material provides the most appropri-
ate model: starting with the worst-case scenario, all more restrictive bounds can be considered in an
inversely taken step of rather simple additional computation without prior knowledge of material data.
Since the action of imposed eigenstrains (for example, in the case of nonstationary thermal loads or
in the case of piezoelectric strains in smart layers) is considered in the homogenized equivalent fuzzy
beam, a fuzzy controller can be designed to annihilate the forced vibrations even under the condition
of no additional stress or, relaxed, of no additional stress resultants (see [Ziegler 2005] for “impotent
eigenstrains”); the definition is given by [Mura 1991]. To explore the variability of the (light) damping
effects related to a fuzzy retardation time of the linear viscous model is left for future investigations since
modal decomposition is crucial for the analytical results presented in this paper.

2. Linear viscoelastic layered beams

2.1. Three-layer beams. Sandwich structures are commonly defined as three-layer type constructions
consisting of two thin face layers of high-strength material attached to a moderately thick core layer
of low strength and density [Plantema 1966; Stamm and Witte 1974; Altenbach et al. 2004]. Dynamic
response analyses require higher-order theories. A review of the equivalent single layer and layerwise
laminate theories is provided by [Reddy 1993]; see also [Irschik 1993; Backstrém and Nilsson 2005].
The effects of interlayer slip have been discussed for elastic bonding in [Hoischen 1954; Goodman and
Popov 1968; Chonan 1982], and for more general interlayer slip laws in [Murakami 1984]. In [Heuer
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2004], complete analogies are presented between various models of viscoelastic sandwich structures,
with or without interlayer slip, with homogenized single-layer structures of effective parameters.
Figure 1 shows the free-body diagram of a three-layer beam. Introducing the parameter

a="71" (1)

and applying conservation of angular momentum to all three layers gives the relations

h
My, — 01— T172 — Ny xd =0,

h
My, — Oy +(Ty + Tz)72 =0, (2)

h
Ms, — 03— T272 + N3 ,d =0,

where 77 and 7, denote the interlaminar shear forces per unit length, and Q; is the transverse shear force
in the i-th layer. The bending moments M; refer to the individual layer axes. Conservation of momentum
in the axial and transverse directions renders

Nix+Ti =0, Nox—T1+ T2 =0, N3x—Tr =0, 3)
3 3

D Qixtp=pb,  u=) pA. )

i=1 i=1

Summation of (2) yields the global, classical conservation of momentum:
M,—-0Q=0, (&)
where
3 3
M=) M;—(N\—N»d, Q=) 0 6)
i=1 i=1
p

N
rp R m e o] e Y
W o ———>—>—> ¥
- | —— — —— —— <
h2 X N2
@) | ey,
g Y oy
d_ 2 "¢ > > > >
P t— 4— 4+— +—— < N
@Z - thy=hy - > =77 Q3_3> M,
y

23

Figure 1. Geometry and stress resultants of a laterally loaded symmetric three-layer beam.
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Considering the kinematic assumptions according to the first-order shear-deformation theory applied
to each layer, the displacement field in the i-th layer is of the form
0)
[ l]:[”z +Z"’“] i=1,23, (7)
Wi w
where ul@ and ; are respectively the axial deformation and cross-sectional rotation of the i-th layer.
Applying the linearized strain-displacement relations together with a linear viscoelastic constitutive law,
and denoting by ¢ the retardation time of the single parameter viscous model,

(Gxx(x, zZ; t)> . (E(Zi)[éxx(x, i)+ 0é(x, 25 1) — €5, (x, 2i3 f)])

. , . , 8)
rXZ(x9 <5 t) G(Zi)[)’xz(x’ Zi’t)+ﬁ7xz(xv Zi’t)]

the stress resultants of each layer are determined from

N; D; 0 0 ”E,O)? + 0”1(0)3 —e;
M |=|0 B 0 Vix + 0 — , 1=1,2,3, ©)
Qi 0 0 Sl vyi+w,+92Wh+iy)
where
1 1
=g [ an =g [ e (10
and
bh? 2 2
D;=E;A; =E;bh;, Bi=E;J = Eiﬁs Si=«k"GiA; =«"G;bh;; (11)
€5 ys e?‘, and Ki* are the imposed strain, the imposed mean strain, and the curvature (of thermal nature

or resulting from electromagnetic fields applied to smart layers), respectively. The dimensions b and A;
denote a constantly assumed width and the individual layer thickness, respectively; x2 stands for a shear
factor.

For symmetrically three-layer beams with perfect bonds the following assumptions are made:

(1) The thin faces of high strength material are rigid in shear:

Vi=vY3=—w,,
W =uf” + 5w — hayr), 12)

U’ =uy” = 3 (hiw x — o).
(2) The individual bending stiffness of the faces are not neglected:

bh3 .
B,-=E,-1—2’ £0, i=1,3. (13)

(3) The bending stiffness of the core (its material is of low density and strength) is neglected:

By=0 = My=By(Y2, + 02, —k3)=0. (14)
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Alternatively, for sandwich beams with viscoelastic interlayer slip [Adam et al. 2000], the classical
assumption of all three layers being rigid in shear is made, with the shear traction in the physical interfaces
of vanishing thickness being proportional to the displacement jumps with a viscoelastic interface stiffness
understood. Hence, contrary to perfectly bonded laminates, elastic interlayer slips, Au; between upper
face and core and Au; between lower face and core, are considered. The displacement field in the i-th

layer is of the form
0
Mot T EW 22,3 (15)
wl w b ’ b )

)

where the axial deformations u;~ can be written as

u§0) = uéo) + (dwx — Auy), ugo) = uéo) —(dw ; — Aup). (16)

The relative horizontal displacement between two layers causes linear viscoelastic shear tractions at
the interfaces,

T; = k(Aui + 0 Au;), a7
where the parameter k denotes the slip modulus and

Aug =dw,x+u§0)—u§0), Auzzdw,x—ug))—i-ugo). (18)

Differentiating (17) with respect to the axial coordinate x by taking into account (18) and substituting
(3) and (9) renders

k .
Nl,xx - N3,xx - E(Nl - N3) + 2kd(w,xx + ﬁw,xx) - k(e)f - e;) =0. (19)

Furthermore, by means of (6); and (9), the difference of the axial forces can be expressed by
1 : | <
N1 =Ny =S [Bo(wx + 9 +6*O) + ML, By = 21: B, «0= B 21: Bik}. (20)
1= 1=

Inserting (20) into (19) and using (4) and (5) to eliminate the bending moment M, the equation of
motion takes on the desired form, namely of an exact homogenization of the viscoelastic composite
beam,

(w,xxxxxx + ﬁw,xxxxxx) - )Mz(w,xxxx + ﬁw,xxxx) + ﬂw,xx - AzLi[)
BO Boo

A2 1
=g Pt Pt Ak — 0 @D

In (21), p denotes the lateral load per unit of length. In smart layers, we may impose eigenstrains €,
for example, piezoelectric strain, for control purpose. Consequently, the eigencurvature terms have been
considered in (21) for the sake of completeness in the case of nonstationary thermal loads and further



218 RUDOLF HEUER AND FRANZ ZIEGLER

investigations of vibration control and smart piezoelectric layers,

(22)
3
K”‘:L 2Dd 1 *dz—i erdz Z ezdz .
BOO h3 h3 h — !

In addition, with the self-explanatory effective parameters — see Figure 1 and Equation (1) for the
notation — we have
bh3

w=2p1hy+ p2hy, Dy = D3 = Ebhy, B =By=E —,
! 12 (23)

By=Bi+ B3,  Boo=By+2Did*>,  Bo/Boc=[1+3(1+hy/h)’]"" <1.

The shear coefficient in (21) is either proportional to the core’s shear modulus G, in the case of
perfectly bonded interfaces, i.e., (see [Heuer 2004])

2b B

2
G,
= (k )thB

(24)
or, for the symmetric three-layer beam with elastic interlayer slip, it becomes proportional to the elastic
stiffness & when common to both physical interfaces:

2 Boo

A=k . 25
D1 B, (25)

Thus, (24) and (25) when substituted in (21) render qualitatively one and the same result with, for
example, hard-hinged supports of a single-span beam understood.

For completeness we note also the gross bending moment and the shear force related to the deflection
w and its derivatives:

. B~
M:_Boo(w,xx+ﬁw,xx +K*)+ )\2 (wxxxx+0wxxxx+B_w+K*(O))’ Q:M,x- (26)
0

Since (26) contains high-order spatial derivatives, numerical calculations require further considera-
tions: the deflection should be partitioned into its quasistatic part and the (modally expanded and trun-
cated) complementary dynamic response. The quasistatic solution is either evaluated in exact closed form
or determined by means of the method of influence functions. For details of the partitioning procedure
see again [Adam et al. 2000].

2.2. Two-layer beams with interlayer slip. In the following section the governing homogenized equation
(21) given above for symmetric three-layer sandwich beams is modified for asymmetric two-layer elastic
beams exhibiting the important defect of viscoelastic interlayer slip. Such a model refers to the practically
very important case of a single-span compound bridge consisting, for example, of a steel girder connected
(elastically) to the concrete deck; for details see, for example, [Girhammar and Pan 1993]. Figure 2 shows
the free body diagram of such a two-layer beam with marked centroids, S; and S, of the individual
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Figure 2. Geometry and stress resultants of a laterally loaded two-layer beam with linear
(visco)elastic interlayer slip.

cross-sections, and, as well, global elastic center, S, of the gross composite cross-section. The partial
cross-sectional areas are denoted by A and A,; thus, the lateral coordinate of S is determined by
D, .
Zoo:Fd’ Dy = Dy + D», D;=EA;, i=1,2. (27)
0
Neglecting the effect of rotational inertia, the conservation of the angular momentum about the lateral
y-axis yields the classical relationship

M, =0, M =M+ M, — Nid, (28)

where M is the gross bending moment (see again Figure 2). In the case of no external axial forces the
equilibrium condition becomes simply

N1+ N, =0. (29)

Conservation of momentum in the axial direction, when applied in the free body diagram to both indi-
vidual layers, gives

Ny =-T1, Ny =T, (30)

and the continuity condition of the interfacial shear force T renders
T=T =T1. (31)

T is the shear force per unit of length continuously transmitted through the interface between the two
layers.

Due to the interlayer slip to be considered between the layers (see again Figure 2), the Bernoulli-Euler
hypothesis is not applicable for the cross-section as a whole. However, the assumption that plane sections
remain plane after deformation is still valid for either layer, respectively. Considering geometrically
linearized conditions for both, the lateral and the axial deformations yield

w=w; = w,, Auzuéo)—ugo)—l-dw,x. (32)
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The relative horizontal displacement between the two layers causes shear tractions at the interface,
where again a linear viscoelastic relation is assigned, see Equation (17),

T =k(Au+ 9 Aun), (33)
where k is the elastic slip modulus [Hoischen 1954; Girhammar and Pan 1993]. Differentiating (33) with
respect to the axial coordinate x and substituting (29), (30), and (32), lead to

1 1
Nior = kN1 (5 + -
1,xx 1 Dl + D2
The axial force is expressed by means of (28), with cross-sectional resultants of the constitutive
relations inserted,

) S kd (W ay + O 1) — k(e — €)= 0. (34)

2 2
1 . 1
N =_E[B0(w,xx+ﬁw,xx +K*(0))+M]7 By = E B;, K*(O)=B_O E :BiKi*' (35)
i=l1 i=1

Finally, the exactly homogenized equation of motion results qualitatively in the form of (21); however
the definitions (22) and (23) must be properly adapted to account for the beam with two layers — see
(38) below — and essentially, this new parameter is to be substituted in (21):

1 1 d2>. (36)

2 2 _ b b a
A —>k2_k(Dl+D2+BO

3. The linear elastic layered beam with fuzzy stiffness

To explore the effects of fuzzy elastic material parameters and to make a modal analysis possible, the
viscous effects in the homogenized equation (21) are neglected. Fuzziness of the light damping forces
can be based on (21) but needs a separate investigation and thus is left for future consideration. Since no
attempts are made within this paper to control the vibrations and no thermally driven vibrations are ana-
lyzed, the terms in (21) referring to imposed strains are no longer taken into account. Consequently, (21)
takes on the simpler form, see also [Heuer et al. 2003], however, generalized by its explicit dependence
on a fuzzy parameter,
22 1

W xxxxxx — )\zw,xxxx + Bﬂow,xx - )‘ZBLQD = _B_p + B_Op,xx- (37)
00 00

Thus, the shear coefficient in (37) is considered proportional to the fuzzy core shear modulus G,
either in the case of perfectly bonded interfaces of a symmetric three-layered beam, when (24) applies,
or in the practically even more important case of a two-layer beam with fuzzy elastic interface slip, with
(36) substituted. In addition, the latter case requires a change in the expression of the limiting flexural
stiffness given in (23); it becomes

By = By + ——d". 38
o] 0 D, + D, ( )

Fuzziness in (37) is thus simply introduced by inserting, for example, a triangular membership function
either for the core’s shear modulus in (24) or for the physical interface stiffness in (36). Consequently
the analysis of the illustrative example of a simply supported beam, as mentioned above, is based on



MODAL ANALYSIS OF LAMINATED BEAMS WITH FUZZY CORE STIFFNESS/FUZZY INTERLAYER SLIP 221

the interval representation, that is, the set of «-cuts. In both cases, the analysis can be based on the
structurally relevant worst-case assumption of the lower bound, that is, of a maximum width of the fuzzy
set by the cut at o« = 0, to include either the classical sandwich beam of vanishing core stiffness or no
bond at the interface between two layers (fully delaminated), thereby avoiding the use of unreliable data
on the variability of the material parameters.

Subsequently, we consider the fuzzy core stiffness of the three-layer beam in some detail.

3.1. Modal analysis of the elastic three-layer beam, hard-hinged support. For the single-span beam
with hard hinged support, the homogeneous equation (37) yields the simple orthonormalized mode shapes

of free vibrations:
1

) ! 2 2 —2
bu(0) = Apsinfrx,  Pu=nw/l, A= B (2 Bw) | (39)
2 \ B Bop
with A2 in that case substituted from (24).
The corresponding (undamped) circular natural frequencies are
(ah(a))z__(BO/BaQ‘+}kaZQX) (40)
Wnoo L+ y2 nka(e)
when referred to

Wpoo = Bl Boo/ 1t (41)

with the fuzzy nondimensional elastic material constant of the core (typically made of a low-density,
low-cost matrix material) substituted:

k(@) = [kK3G2(a)]/ (kK3 G2)o. (42)

The assigned constants are referred to the mean shear rigidity of the core (see again Figure 1):

2b

2 2 2
k5G2)o = [k5;G2(a = 1)], n=w5Gr)o——.
(k5G2)o = [k5Ga( )] Yo = (K3 2)0/312’1D1h2

(43)
In this relation, the shear coefficient x, must not be numerically specified. The monotonic behavior of
the eigenfrequencies of positive-definite mechanical systems was proven by [Mullen and Modares 2009];
see (40).

The normalizing factor in (39) becomes fuzzy too. The largest level set at « = 0 may include the worst
case of a core with vanishing stiffness (or a delaminated composite). Due to the lack of reliable core
material data, such a choice is recommended for the analysis. Putting constraints on the fuzziness of the
dynamic parameters inversely results in a more narrow specification of the allowable largest parameter
interval of the core material (see Section 4.2 for details):

Akzg = A(k3G2)o/ (k3G2)o < 1. (44)

The linear functions plotted in Figure 3, both intersecting at = 1, arise when, for the sake of simplicity,
an isosceles triangular membership function is assumed:

minky(o) =1— Akyo(1 —), maxky(a) =14 Akyo(1 — ). 45)
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Figure 3. Three-layer beam: uncertainty of the core shear stiffness, under the assump-
tion of an isosceles membership function.

These two equations are substituted into (40), when considering the fuzzy set in Figure 3, giving
respectively the lower and upper branches of the membership functions of the natural frequencies.

Since light modal damping is commonly considered in the steady-state response of the modal oscil-
lators to time-harmonic forcing (thus neglecting any modal coupling resulting from the viscous defor-
mations) the dynamic magnification factor and the phase angle for every assigned forcing frequency
(w/wnoo) become uncertain functions with the parameter «. For the sake of simplicity, constant light

modal damping coefficients are assumed, £ =&, < 1,n=1,2, 3, .... The dynamic magnification factor
can be delineated in the proper form (see, for example, [Ziegler 1998]),
2 4y-1/2
Xn:{1—2(1—2§)( ) +( ) } . (46)
wy (o) wy ()

However, clearly any set of light modal damping coefficients {; < { < --- < ¢, <, + 1 can be
accounted for in (46) when estimated according to a design class of the beam.

The phase angle is given for every assigned nondimensional forcing frequency (w/wp~) as a function
of «, as follows (see [Ziegler 1998]):

1
tan¢n :25 @ |:C()n(0l)/wnoo_( @ >2 Onoo ] . (47)

Wnoo Wnoo/ Wy ()

When (40) is substituted in (46) and (47), these equations become explicitly dependent on the fuzzy
variable, (42); in particular, we get

-1
By/B k 2 1 nk
tan ¢, = 26— (Bo/Boo) + ya.nka(e) _( w ) + vanka(a) ' 48)
Wnoo 1+ y2nka(a) Wnoo/ \| (Bo/Boo) + V2,nka(@)
Again, considering the fuzzy set in Figure 3, (45) is respectively substituted in (40), (46), and (47), to
yield explicitly the envelope functions of the fuzzy dynamic magnification factor and of the fuzzy phase

angle as well.

4. Numerical results: fuzzy sandwich beam



MODAL ANALYSIS OF LAMINATED BEAMS WITH FUZZY CORE STIFFNESS/FUZZY INTERLAYER SLIP 223

/9, ,/Q,)

max k, (c)

mink, (o)

X ] o
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Figure 4. Three-layer beam. Left: uncertainty of the fundamental frequency ratio for
various widths of fuzzy core stiffness. Right: uncertainty of the natural frequencies
relative to the natural frequencies of the same order for « = 1, for largest width of fuzzy
core stiffness.

4.1. Isosceles uncertainty. (See Figure 3.) Two basic parameters are assigned for the elastic three-layer
beam of Section 3, with constant light modal damping &, = £ = 0.05 understood throughout:
By/Bs =0.1 < 1, Vane1 = 0.25. (49)

In the course of numerical analyses, it was found to be most illustrative to refer the frequencies to the
deterministic natural circular frequencies at « = 1. With 2, = w, (1), Equation (40) reads

( Qy >2 _ (Bo/Boo) + Von

(50)
1 + Y2.n

Wpoo
This equation is evaluated first to explore the influence of the width of uncertainty on the fundamental
frequency; see Figure 4, left. Considering the largest structurally possible uncertainty in the isosceles
membership function of Figure 3, the intervals of uncertainty of the natural frequencies of higher order,
n < 10, are depicted in Figure 4, right, relative to their values at « = 1, (50). These membership functions
become more informative when referred to the assigned fundamental frequency €21: see Figure 5.

The envelope function of the dynamic magnification factor of the basic mode, that is, putting n =1
in (46), is plotted in Figure 6 varying the width of uncertainty according to Figure 3 in the @ = 0.2 cut;
the forcing frequency is referred to ©2;. Considering maximum uncertainty (the worst-case scenario) but
taking into account the whole range of parameter « gives the envelope surfaces in Figure 7. The « = 0.2
cut yields the envelope functions of the first three modes as plotted in Figure 8.

Complementary to Figure 6, the variations of the range of uncertainty of the phase angle of the basic
mode with the width of uncertainty according to Figure 3 in the @ = 0.2 cut are shown in Figure 9; the
forcing frequency is again referred to the assigned fundamental frequency €2;. To complement Figure 8,
the ranges of uncertainty of the first three phase angles are plotted in Figure 10.

4.2. Constraints affecting the uncertain natural frequencies. Constraints on the design uncertainty,
say on the uncertainty of the core shear stiffness of the three-layered beam, are often based on limiting
the maximum allowable variability of the natural frequencies in a given frequency window, see [Massa
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et al. 2008]. By inspection of Figure 5 it is easily recognized that such constraints can be expressed in
assigning fractions of the frequency intervals (where the maximum structural width of uncertainty has
been considered) that are maximum at o« = 0. Thus, a 50% reduction of that maximum result interval is
chosen and, we refer to the assigned fundamental frequency 21,

a)n,max(a) - C’)n,min(w)
2

S [wn,max(a:0)_wn,min(a:0)]/291a n= 1’27 "'95‘ (51)

The frequency window includes and is limited by the mode number 5 for some practical reasons.
Hence, the resulting «-cut is determined by solving the equation

a)S,max(a) — W5 min (o)

O = [wS,max (¢=0)— wS,min(a = 0)]/291 . (52)
1
with (45) substituted.
(w, /)
15" ]
I r=3 Ak, =1
I n=4
10+ .
: n=3
5 L |
I n=2
[ n=1
0 C1 I I I Il L L L Il L L L Il L L L Il L L L |
0.0 0.2 04 0.6 0.8 o 1.0

Figure 5. Three-layer beam: uncertainty of the first five natural frequencies relative to
the fundamental frequency for o = 1; increasing fuzziness observed.

% (@ /Q) min k(o) max k, (o)

10

8 ¢ 1
= Akz,o

Figure 6. Three-layer beam: uncertainty of the first dynamic magnification factor for
the single « = 0.2 cut, varying the maximum interval of the fuzzy core stiffness.
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Figure 7. Three-layer beam: uncertainty surfaces of the dynamic magnification factor
of the fundamental mode, light modal damping assigned.
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Figure 8. Three-layer beam: envelopes of the first three dynamic magnification factors
for the single o = 0.2 cut; increasing fuzziness observed.

Alternatively, it might fit the needs of precision design to limit the uncertainty relatively to the sure
natural frequency of the same order of the mode (see Figure 6). We thus refer to <2,,:

a)n,max((x) - wn,min(a)
Q,

In that case of relative uncertainty, the fundamental frequency interval gives the maximum tolerable
uncertainty in the core shear stiffness if we solve for « the equation

=< [wn,max(a =0) — C’)n,min(a =0)]/2,, n=1,2,3,.... (53)

“)Lmax(“)g;lwl’mi“(a) = [®1,max (@ = 0) — w1, min (& = 0)]/2€2;. (54)
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Figure 9. Three-layer beam: uncertainty of the first phase angle for the single « = 0.2
cut, maximum interval of the fuzzy core stiffness varied; complement of Figure 6.

©/Q)
Figure 10. Three-layer beam: the envelopes of three phase angles for the single o« = 0.2
cut: complementing Figure 8; increasing fuzziness observed.

Since the largest width of uncertainty of the core shear stiffness is considered in Figures 5 and 6, the
constraints allow the definition of the allowable «-cuts by solving either (52), to render a(n = 5) = 0.50,
or alternatively, (54), to yield the less stringent condition at «(n = 1) = 0.44. The maximum bases of
the allowable isosceles membership functions of the uncertainty of the core shear stiffness in the more

precise designs are plotted in Figure 11.

4.3. Some effects of nonsymmetric uncertainty. We consider the extreme (worst) case of Aky g =1,
that is, (45) when generalized reduces to mink; (o) = o, maxky(@) = 1+ A(1l — «), where A > 1
renders the maximum core stiffness enlarged in Figure 3. The extremes of upper and lower bounds of
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the neighboring natural frequencies thus are obtained for the o = O cut, (42) is properly adapted,

( W, )2 (Bo/Boo) + y2.1(1 + A)/n? )
max{ —— ==
a=0

: o oo =1 Bl | (Boo/ 1),

®n. 00 L+ 1(14+A)/n? (55)
2
. Wy
m1n<—+1> = (Bo/Boo) < 1/4, wi—i—l,oo =+ 1)4/3?,1(300/“)'
wl’l-‘r],OO a=0

A first effect of asymmetric uncertainty in an ensemble of fuzzy beams is observed by putting max w?> =

2=
min a)ﬁ 1 rendering the coefficient of asymmetry,

(Bo/B)  [(31)*—1]
Y21 [1 - (Bo/Boo)(%f]

The parameters assumed in Section 4.1, (By/Bso) = 0.1 and y» | = 0.25, exclude a solution of (56) for
n =1 and yield the coefficients of asymmetry: A(n =2) =12.16, A(n =3) =10.37, A(n =4) =11.20,
An=5)=12.54, A(n=6) =14.07, A(n =7) = 15.68, .. .. Equation (56), when virtually considered
for continuous order n exhibits a singularity at n = 1.28. It is moved to n = 1 for the smaller ratio of the
flexural stiffness By/Boo = 1/16 =~ 0.063. Since max By/Bs, = 0.25, reported in (23), the singularity
at n = 2 is still possible for the flexural stiffness ratio By/ B = 0.198, but no effect on higher modes
is observed for n > 3. Consequently, for these two ratios of the flexural stiffness, a violation of the
assumption of a triangular membership function of uncertainty is observed and consequently the solution
for the coefficient of asymmetry becomes invalid.

A=AMn) = > 0. (56)

5. Conclusions

For symmetric three-layer slender beam, thin plate and thin shell structures, and for a two-layer com-
posite an exact homogenization exists, which is worked out in detail for the hard hinged supported

A G
1 —
0.50 i }
044 [/ \
J \
q \
] \
kylo)
| >
!
Ak, ,(n=5)
|
T
Ak, ,(n=1)

Figure 11. Three-layer beam: reduction of the intervals of uncertainty under the condi-
tions of 50% constraints of either uncertainty of the first five natural frequency intervals,
n =3, or of the relative natural frequency intervals, n = 1.
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beam. Consequently, interval mathematics becomes applicable to the solution of the sixth-order result-
ing homogenized equation with a fuzzy parameter either of a fuzzy core shear stiffness and/or fuzzy
stiffness of the physical interface between layers to define the intervals of the dynamic response. A
detailed study of a three-layer simply hard supported beam with fuzzy core of an isosceles membership
function is performed, giving lower and upper bounds of the natural frequencies and providing deep
insights into level-sets of the dynamic magnification factors and of the phase angles in forced time
harmonic vibrations. Fuzziness of dynamic parameters like natural frequencies, dynamic magnification
factors, and modal phase angles increases with frequency as expressed by the modal order. This efficient
analysis can be performed without reliable knowledge of the uncertainty of the material parameters
by considering structurally inherent worst-case scenarios. It yields exact and robust results, preserves
the problem’s physics, and obtaining bounds does not require expensive stochastic procedures such as
Monte Carlo simulations. Putting constraints on the variability, say of the natural frequencies, leads to
the maximum tolerable uncertainty in the core shear stiffness and/or that of the stiffness of the physical
interface. Effects within an ensemble of such beams, for example, overlapping of the intervals of their
natural frequencies, however, under the assumption of a nonsymmetric triangular membership function
of the core stiffness uncertainty, are shown to be limited to the first and second modes. Either fuzzy
modal superposition or fuzzy control of vibrations can be based on the results of this paper. However,
since the normalizing factor of the orthogonal mode shapes turns out to be fuzzy too, the complexity of
modal superposition is increased. Thus, modal superposition of forced vibrations becomes fuzzy in both
time records and amplitude response. Superposition of the modal maxima by considering the square root
of sum of squares yields the (approximate) total displacement response even in this more complex case.
The analysis of a fuzzy retardation time of viscoelastic layers (such a fuzzy parameter is included in the
homogenized equation) leads to coupled modal equations even in a Ritz—Galerkin approximation and is
out of the scope of this paper. It is left to future investigations.
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PATH-INDEPENDENT H-INTEGRAL FOR INTERFACE CORNERS UNDER
THERMAL LOADINGS

CHYANBIN HWU, TAI-LIANG KUO AND CHUN-CHIH HUANG

It is well known that the path-independent H-integral is an appropriate tool for calculating the mixed
mode stress intensity factors for the interface corners between dissimilar elastic materials. To extend the
applicability of the H-integral from the mechanical loading condition to the thermal loading condition,
a modified H-integral is proposed in this paper. This modified H-integral possesses an extra domain
integral which needs the input of temperature field. Moreover, this domain integral contains singular
functions that come from the strain components of the auxiliary system, and a special treatment should
be made for the accurate computation of stress intensity factors. The near-tip solutions and auxiliary
solutions of displacements, stresses, and temperature required in the calculation of H-integral are all pro-
vided in this paper. The validity and versatility of the proposed approach are then shown by carrying out
several numerical examples such as cracks under mixed-mode thermal loadings, interface cracks/corners
under uniform heat flow or uniform temperature change, and an electronic package, in which the chip
has a heat generation rate, placed at a constant temperature ambiance.

1. Introduction

Many engineering objects, for example electronic packages, engines of power vehicles, solar panels,
and so on, are operated in thermal environments. Temperature changes, heat flux on the object sur-
face, and heat generation in the interior can deform the object and induce stress when restrictions on
deformation are imposed, such as a clamped boundary condition or a perfect-bonded condition along an
interface between dissimilar materials. Interface corners commonly appear in these engineering objects
and failures initiate from these critical regions due to discontinuities of geometry and material properties.
Hence, methods of fracture analysis for estimating the potential of failure and the mode of fracture
of interface corners in elastic materials subjected to thermal loading are of great importance. Orders
of stress singularity and stress intensity factors are two commonly used parameters when we perform
fracture analyses within the category of linear elastic fracture mechanics.

This paper provides an accurate, efficient, and systematic solution technique to calculate these two
parameters for interface corners between dissimilar elastic materials subjected to thermal loading.

Studies of fracture analysis of interface cracks subjected to thermal loadings include [Erdogan 1965;
Brown and Erdogan 1968; Hwu 1990; 1992; Ikeda and Sun 2001; Banks-Sills and Dolev 2004; Nagai
et al. 2007]. Relatively few studies have dealt with interface corners; they include [Munz and Yang
1992; 1993; Banks-Sills and Ishbir 2004; Hwu and Lee 2004; Nomura et al. 2009]. To understand the

The authors thank the National Science Council, Taiwan, for support through Grant NSC 98-2221-E-006-121-MY3.

Keywords: interface corner, order of stress singularity, order of heat flux singularity, stress intensity factor, Stroh formalism,
thermoelasticity.
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mechanical behavior of anisotropic elastic materials under thermal environments, Stroh formalism [Stroh
1958; Ting 1996; Hwu 2010] for two-dimensional linear anisotropic thermoelasticity has been employed
in many works [Clements 1973; Hwu 1990]. By this formalism, analytical closed-form solutions for the
orders of heat flux/stress singularity and near-tip solutions of multimaterial anisotropic wedges under
thermal loadings have been obtained in [Hwu and Lee 2004]. To understand the fracture behavior of
interface corners, a unified definition of stress intensity factors for connecting cracks, corners, interface
cracks, and interface corners was proposed in [Hwu and Kuo 2007]. In that work, in order to avoid the
oscillatory singular problems of interface corners a path-independent H-integral [Bueckner 1973; Stern
1976] was suggested to calculate the stress intensity factors. Based on these works, in this paper the
H-integral is further modified to be suitable for the thermal loading condition.

The modified H-integral contains an additional domain integral that is not included in the H-integral
for pure mechanical loading. The integrand in this domain integral contains singular functions that come
from the strain components in the auxiliary system. Considerable numerical error will be induced if we
perform this domain integral via normal numerical methods, for example, Simpson’s rule and Gaussian
quadrature. To deal with this problem, the domain integral is separated into two parts. One is the
near-tip part, to be integrated analytically, and the other is the adjacent part, to be calculated numerically.
A similar approach has been proposed by [Banks-Sills and Ishbir 2004; Nomura et al. 2009].

Several numerical examples are analyzed for the purpose of verification: a center crack under mixed-
mode thermal loading, a center interface crack under uniform heat flow, edge interface cracks under
uniform temperature change, and interface corners under uniform temperature change. In addition, an
example about electronic packages is analyzed to show the feasibility and practicability of the modified
H-integral.

2. Thermoelastic analysis of interface corners

In a fixed rectangular coordinate system x;,i = 1, 2,3, let u;, o;;, €, T, and h; be, respectively,
the displacement, stress, strain, temperature, and heat flux. The heat conduction, energy equation,
strain-displacement relation, constitutive law, and equilibrium equations for the uncoupled steady state
thermoelastic problems can be written as [Nowacki 1962]

hi =—ki;T;, h;i; =0, ;= %(”i,j +uj;), 0ij=Cijkseks — Bij T, 0ij,j =0, i, jk,s=1,23, (1)

where repeated indices imply summation, a comma stands for differentiation, and C;jiy, k;;, and B;; are,
respectively, the elastic constants, heat conduction coefficients, and thermal moduli. C;ji, are assumed
to be fully symmetric, that is, C;jxs = Cjixs = Cijsk = Cisij» and are required to be positive definite due
to the positiveness of the strain energy. B;; and k;; are also assumed to be symmetric, that is, 8;; = B;;
and ki j = k ji-

Consider an interface corner between two dissimilar anisotropic elastic materials (Figure 1) in which
a local polar coordinate system (r, 6) is specified at the corner tip. Assume a perfect bond along the
interface. The displacement, traction, temperature, and heat flux continuity across the interface 6 = 0
can be written as [Hwu and Lee 2004 ]

u1(0) =u2(0), ¢1(0)=¢2(0), T1(0)=T72(0), hi(0)=h3(0), (2a)
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corner flanks

(traction-free) interface, 6, Iy

=r, +T+I;+T,, T

=-T,, V=V,-V,

P P

Figure 1. A closed contour I" and its domain V for the H-integral of an interface corner.

where u and ¢ are, respectively, the displacement vector and stress function vector; 2* is the heat flux
in the direction normal to the interface; the subscripts 1 and 2 stand for the values related to materials
1 and 2; and the argument O denotes the value on the interface. The corner flanks are both assumed to
be traction-free which can be expressed by the stress function as

$1(60) = $2(62) = 0. (2b)
Four different thermal conditions on the corner flanks are considered in this paper:
isothermal-isothermal: 7y ,(6p) = T5,,(62) =0,
insulated-insulated: 17 (6p) = h3(62) =0,
insulated-isothermal: A} (6p) = T»,,(62) =0,
isothermal-insulated: 7} ,(6p) = h3(62) = 0.

(2¢)

Note that the components of stress function vector, ¢;, i =1, 2, 3, are related to the stresses o;; and
the surface traction #; by

do;

5 3)

oi1=—¢i2, On=0¢1, l=o0;jn;=

where n; is the normal of the surface and s is the tangential.

3. Near-tip solutions

The near-tip solutions satisfying all the basic equations (1) and boundary conditions (2) were obtained
in our previous study [Hwu and Lee 2004] as

v(r,0) = =81 =8)r ' T Oy, w(r,0)=r'""2{—=8(1—=8)F@©)vy+ E®)wo}, (4a)
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where

w(r,@):I;g’gi}, v(r,O):{Z;:((:’g))}, woz{x}, vo:{T;:}_ (4b)
s ’ 0

In (4), § is the singular order and I' (8), F (6), and E(6) are the matrices related to the material properties
and corner angles and have different expressions for materials 1 and 2 (given in the Appendix). The
eigenvectors associated with the singular order § are wy and vy, and can be determined by

KPuy=0, ¢o=0, vy=0, (5a)

where K€(3) is a 3 x 3 submatrix of K, defined by

1) @)
_ | K K K. =N, (62, 6)N! (61,6 5b
e = K(3) K(4) ’ e = 1Vy (62, 601) 1 (61, 60), (5b)
e e
and N is the key matrix introduced in [Hwu et al. 2003]. In (4) and hereafter, the subscript k denoting
the values related to the k-th material is dropped to lighten the notation.

In (5a), the equalities Kf)uo =0 and ¢y = 0 come from the traction-free boundary condition set in
(2b), and vy = 0 comes from the requirement that the temperature is not allowed to be singular near the
corner tip. From (4a) we see that if vy # 0, both temperature and heat flux will be singular if the stresses
are singular. If the stresses are singular and the strain energy cannot be unbounded, only the singular
orders located in 0 < Re(§) < 1 are considered in this paper.

With vy = 0, the near-tip solutions (4a) become

v(r,0)=0, w(r0) =r'"E®)w,, (6)

which are the solutions without considering thermal effects. Since the singular order § may be distinct
or repeated, real or complex, combination of all the possible solutions associated with the most critical
singular order whose real part §x is maximal leads, as in [Hwu and Kuo 2007; Hwu and Ikeda 2008],
from (6) to
T(r,0)=0, hi(r,0) =0,
1
NGz

o, 0) = \/%rl_‘sRA(Gx(l —8r+i€y)  (r/ Dy A7 k.

u(r, ) = FIORV(0) (1 — 8k +ieg) " (r/ D)y A7k,

(7

In (7) the angular brackets <) stand for a diagonal matrix in which each component is varied according to
the subscript «, for example, <z,) = diag[z], z2, z3]; 6 and €, are, respectively, the real and imaginary
parts of the most critical singular order 5. determined by (5a) with 0 < Re(8) < 1; [ is a length parameter
which may be chosen arbitrarily as long as it is held fixed when specimens of a given material pair are
compared; V(6) and A(0) are eigenfunction matrices related to E(0)wgy; A = A(0), detailed expressions
for which can be found in [Hwu and Kuo 2007; Kuo and Hwu 2010]; and k is a vector containing different
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modes of stress intensity factors and is defined by

Ky . 0ro
k=1 K :lir%«/an‘sRA<(r/l)_’E“>A_l 000 ¢ - (8)
K =0 03¢

4. Path-independent H-integral for thermoelastic problems

According to the definition of stress intensity factors (8), to calculate their values we need to know
the stresses near the tips of interface corners. However, due to the singular and possibly oscillatory
behaviors of the near-tip stresses, it is not easy to get convergent values for the stress intensity factors
directly from the definition (8). To overcome this problem, several path-independent integrals have been
proposed for crack problems such as the J-integral [Rice 1968], the L-integral [Choi and Earmme 1992],
the M-integral [Im and Kim 2000], and the H-integral [Bueckner 1973; Stern 1976; Sinclair et al. 1984;
Chen 1985]. For corner problems that are usually in the status of mixed-mode intensity, the H-integral
was suggested by [Hwu and Kuo 2007] for two-dimensional interface corners, and modified by [Kuo
and Hwu 2010] for three-dimensional interface corners, which are valid for pure mechanical loading
conditions. For interface corners under thermal loadings, the H-integral was modified by [Banks-Sills
and Ishbir 2004; Nomura et al. 2009]. However, some important details that should be clarified were
not interpreted in their works, such as the near-tip temperature field and the reason why the thermal
effect disappears in near-tip solutions of displacements and stresses. Their H-integral cannot calculate
the mixed-mode stress intensity factors via one expression. To have a complete picture of the H-integral
for thermoelastic problems, in this section we first prove the path-independence property for the proposed
modified H-integral, then provide a special treatment for the extra domain integral added in the modified
H-integral.

4.1. Path-independence of the modified H-integral. If an elastic body is subjected to two different
thermal loading systems (indicated by a hat or its absence), the constitutive laws shown in (1) give

f3ij€ijdV=f(Cijks€kseij—ﬁi,-fei,-)dv, (9a)
v v
fGijéijdv:f(Cijksekséij—,BijTéi]‘)dV. (9b)
v v

Subtracting (9a) from (9b) and using the symmetry property of elastic constants, we get a conservative
integral for thermoelastic problems,

/V(&ijei,- —0i;éi;)dV +fvﬂij(feij —Té&;)dV =0. (10a)
If one prefers the use of stresses instead of strains, (10a) can be rewritten as

/V(&ije,-j — ;&) dV +/Vaij(foij —T6;;)dV =0, (10b)
where «;; are the thermal expansion coefficients which are related to the thermal moduli ;; by

Bij = CijksCs. (11)
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By using the strain-displacement relation (1)3, the symmetric property of stresses, Cauchy’s formula
t; = ojjnj, and Gauss’s divergence theorem [, (...) ;dV = [.(...)n;dI the first domain integral in
(10a) can be further reduced to a path integral, and consequently the following relation can be obtained

/(f,u, —t;u;)dI’ —|—f ﬁ,‘j(fé,‘j — T@ij)dv =0. (12)
r \%

In (12), I' can be any positively oriented closed contour in a simply connected region. If I' is selected
tobe —I'y +T'1 +T'g+T2and V (= Vg — V,) is the domain enclosed by I' (see Figure 1), due to the
traction-free condition on the corner flanks, that is, t; = #; = 0 along I'y and I'p, (12) now leads to

(fiui—tiﬁi)dr-i-f ,Bij(féij—T@ij)dVI/ (fiui—fiﬁi)dr-i'/ Bij(Tej —Tédv, (13)
r, V, T'g VR

which means that the following modified H-integral is path-independent:

H=| @'i—a"odr+ | Bij(Te;—Té;dv. (14)
Ir Vr
The superscript T denotes a transpose; ['g is a counterclockwise integral path with arbitrary shape which
emanates from the lower corner flank (6 = ) and terminates on the upper flank (6 = 6,); u and ¢ are the
displacement and traction vectors of the actual system, which can be obtained through any method, for
example, finite element analyses, boundary element analyses, or even experimental measurement, while
@ and £ are those of the auxiliary system with singular order 2 — §.
In order to use the path-independence property of the modified H-integral to calculate the stress inten-
sity factors, we can first select I'g to be a circular path which passes the region dominated by the singular
field. Along the circular path, we have

t=¢o/r and dI' =rdob;

and hence (14) can be rewritten as

3

H=| w'é, —ﬁT¢,9)d9+/ Bij(Teij — T&;)dV, (15)
6o \%4

in which u, @, €;;, and T are the near-tip solutions given in (7), and u, 4]3, € j» and T are the auxiliary
solutions, which can be obtained by

a(r,0) =r"" V@O T E, $(r,0) =r"TTA@) e, T(r,6)=0. (16)

Since the temperature fields in both the near-tip and auxiliary solutions are zero, the H-integral passing
through the singular field will be exactly the same as that for the pure mechanical loading problems.
Since the relation between the stress intensity factors k and the H-integral is obtained from the results
of the H-integral passing through the singular field, it can now be written by referring to the relation
obtained for the pure mechanical loading problem [Hwu and Kuo 2007], that is,

k=27 A1 —8g +iex)l'y H* 'h, (17a)
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where
6 . H;
H = | [ATOWV©O) -VIO)ANP1ds, h={H}. (17b)
6() H3

In (17b), the prime ’ denotes differentiation with respect to 0; H;, i = 1,2, 3, are the values of H
calculated from (14) using the auxiliary solutions given in (16) with ¢; =1 and ¢; =0, i # j. Since
the path-independence property has been proved through (13), the integral path calculating H; can be
chosen arbitrarily and u, ¢, and T of the actual system can be provided through any method, such as
finite element analysis.

4.2. Special treatment of the extra domain integral. The difference between the modified H-integral
(14) and the H-integral for the pure mechanical loading problem is the additional domain integral in the
second term of (14). By selecting the auxiliary temperature field 7 = 0, the domain integral becomes

_/ T e, dV. (18)
VR

From the auxiliary solutions given in (16), we see that the auxiliary strain é;; has a strong singularity as
r3=2, where 0 < Re(8) < 1. This term will cause tremendous numerical error and hence should be treated
with special attention. Banks-Sills and Ishbir [2004] proposed that the domain Vx can be separated into
two parts: one is close to the corner tip, V, in Figure 1, which can be integrated analytically, and the
other adjacent part, V = Vg — V,, in Figure 1, can be calculated numerically. However, in their study no
analytical solution has been provided for the near-tip solution of temperature field, and hence no further
analytical solution was provided for the integration. In [Nomura et al. 2009], this domain integral was
calculated analytically for a circular integral path in which the circular sector domain is divided into
several small elements whose temperature is assumed to be constant in each element. In the present
study, the analytical integration is further simplified by using the near-tip solution of the temperature
field.

Based upon the analytical solutions given in (4a) we see that the near-tip solution of the temperature
field can be obtained by integrating (4a); with respect to r, which will lead to

T(r,0)=(1—8)r "y @®)c; +ca, (19)

where y (0) is a function related to I"(f) of (4a); c; and c; are the coefficients to be determined via the
actual temperature field which can come from analytical solution or numerical analysis. Here, §; is the
singular order of heat flux, which is located in the region of —1 < Re(§;,) < 0 and will not induce a
singularity in temperature or stresses.

According to the thermal conditions on the corner flanks (2c), the singular orders of heat flux have
been obtained from the following relations [Hwu and Lee 2004]:

isothermal-isothermal: K ;2) =0, insulated-insulated: K ;3) =0, 20)
insulated-isothermal: K (Tl) =0, isothermal-insulated: K (T4) =0,

where K (T’ ), i=1,2,3, 4, are the components of K, which is a 2 x 2 matrix related to the heat conduction
coefficients and corner angles.



238 CHYANBIN HWU, TAI-LIANG KUO AND CHUN-CHIH HUANG

To evaluate (18) analytically for the part of V,, the auxiliary strain ¢;; obtained from (16) can be
expressed as

en=ilday, én =10, €33 =0,
A 1T A ST A A 1:T A N 1:T A (21a)
€n=s50u1+ijuy), e3=s3izuy,  €3=5i3U],
where
u)= r®2(cosHe; — sinbey), )= r% =2 (sinOe; + cos bey), 1b)
il =[100], iJ=[010], ii=[001],
and
e1=V(O)((Sr— 1 —ie)r ¢, ey =V'(0)r e (21c)
Substituting (19) and (21) into (18), and letting dV = rdrd6 for V,, we get
/ Tﬁijgij dVv = I, —I-/ Tﬂijéijdv, (22a)
Vi V=V,

where I, is the integral that has been integrated analytically with respect to r in the near-tip domain V/,
whose result is

02
o= [ entp.0)0. (22b)
Bo
in which
eo(p,0) =BT (O)V(O)((Br — 1 —i€)galp, 0) ¢+ BT (O)V'(0)(gu(p, O) &, (22¢)
and
1—6 —n .
2a(p, 0) = {%y@ 1 }p—“ﬂ, (224)
R—0On —i€qy dr — i€y
Bii B21
Bi(0) =cosB B +sinb B, P5(0)=—sinh By +cosb B, Bi=13PBi2¢, Po=3PBnyg. (22)
B3 B3

In (22a)-(22c), p is the radius of a small circle ahead of the corner tip. Since 0 < g < 1 and
—1 < Re(dy) < 0, from the results of (22a)—(22e) we see that the singular problem of (18) has been
solved through the analytical integration /,,. To have a proper choice of p, the convergent test about p
should be done in a numerical calculation, which will be illustrated by an example shown in the next
section. Since the singular problem in the near-tip domain occurs from approaching zero distance, that
is, r — 0, whether to obtain the analytical integration with respect to € is not the main concern of our
study. Therefore, due to the complexity of y(8) and V(@) in eg(p, 0), the analytical integration of /,
shown in (22b) is only for the variable r not including 6.

5. Numerical examples

To provide a stable and efficient computing approach for the general mixed-mode stress intensity factors
under thermal loadings, the path-independent H-integral proposed in the literature [Hwu and Kuo 2007]
has been modified by adding an extra domain integral as shown in (14). This integral is applicable to
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cracks, interface cracks, corners, and interface corners, and the materials containing the cracks/corners
can be any kinds of anisotropic materials, including degenerate materials such as isotropic materials. The
stress intensity factors calculated through the H-integral include the pure mode and mixed mode, and also
the factors associated with lower singular orders [Kuo and Hwu 2010]. The main feature of the present
approach is that one unified H-integral can deal with several different kinds of thermal problems which
are generally discussed separately. Thus, to provide an enhanced comparison, several different kinds of
materials and cracks/corners considered in the literature are shown in the following examples. In order to
show that the modified H-integral is path-independent, the data shown below will be presented by stress
intensity factors with different radius of integral path.

All the examples presented in this section consider the state of plane strain. The physical quantities of
the actual system, u, ¢, and T, needed for the calculation of the H-integral in (14) are obtained from the
commercial finite element software ANSYS. A two-dimensional 4-node thermal element PLANESS is
adopted to perform the thermal analyses, and then the temperature results are read into a two-dimensional
4-node structural solid element PLANE42 and treated as the body force to proceed with the stress anal-
yses. Since the numerical output will depend on element meshes, the convergent test needs to be done
before performing all the following examples. In our numerical implementation, the number of elements
for the most refined mesh is 29574 for modeling the electronic package, and 7484 for modeling the
interface crack. For convenience, the H-integral path doesn’t need to pass through nodal points, while
the integration points can be arbitrary points whose numerical data are produced by extrapolating the
results of their surrounding nodal points [Lancaster and Salkauskas 1981; Nomura et al. 2009] and
then integrated by Gaussian quadrature. Note that although the path-independence property of the H-
integral has been proved theoretically in Section 4, when using the H-integral to calculate the stress
intensity factors we still have to avoid taking the numerical results overly close to the corner tip due to
the incorrect stress information in the neighborhood of the corner tip provided by finite element analysis.
Also note that although the solution techniques proposed in this paper are applicable to the most general
two-dimensional problems, such as the generalized plane strain and generalized plane stress, due to the
limitation of two-dimensional elements provided by the finite element software ANSYS only the plane
strain condition is considered in our examples.

5.1. Comparison with existing solutions. In order to prove the path-independence property numerically,
to verify the correctness of the stress intensity factors calculated by the proposed H-integral and to show
the versatility of the present unified approach, six different kinds of cracks/corners under thermal loadings
are implemented and compared with the existing solutions presented in the literature. They are:

Case 1: A center crack under mode I thermal loading (Figure 2, left).

Case 2: A center crack under mixed-mode thermal loading (Figure 2, right).

Case 3: A center interface crack under uniform heat flow (Figure 3, left).

Case 4: Edge interface cracks under uniform temperature change (Figure 3, right).
Case 5: Edge interface corners under uniform temperature change (Figure 4, left).
Case 6: An interface corner under uniform temperature change (Figure 4, right).

Point A in Figures 2—4 stands for the corner or crack tip we are concerned with in these problems.
The geometry, loading, and material properties of these problems are collected in Table 1. The results of
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Figure 2. A center crack in a square plate under mode I (left, Case 1) and mixed-mode
(right, Case 2) thermal loadings.
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Figure 3. A center interface crack (left, Case 3) and edge interface cracks (right, Case 4)
in a square bimaterial plate.
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Figure 4. Edge interface corners (left, Case 5) and an interface corner (right, Case 6) in
a bimaterial plate.
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Case 1 (Figure 2, left)  Center crack under mode I thermal loading, isotropic material
a =4 mm w = 10a Tn =0°C Touwe = 100°C
E =1MPa v=0.3 a=10"4°C"! k=1W/m°C

Case 2 (Figure 2, right) Center crack under mixed-modes thermal loading, orthotropic material (y = 0°),
anisotropic material (y = 30°)

a=1mm w = 30a g =10°W/m?

Eq; =144.23GPa E» = E33=9.65GPa G, =4.14GPa o =0.88 x 1076°C!
vip = 13 = 0.301 vy = 0.49 G3 =4.14 GPa o =31 x 10-%°C!
kjn =448W/m°C  kyp=ki3=321W/m°C Gy =3.45GPa a33 =31 x1076°C"!
Case 3 (Figure 3, left)  Center interface crack under uniform heat flow, isotropic bimaterials
a=4mm w = 20a g =10°W/m?

E; = 1000 GPa v =0.3 oy =10"6°C"! ki =100W/m*°C

E; =100 GPa v, =0.3 o =10"7°C"! ky =100W/m°C

Case 4 (Figure 3, right) Edge interface crack under uniform temperature change, isotropic bimaterials
a=1mm w = 100a T. =100°C

E; = 1000GPa v =0.3 oy =10"6°C"!

E; = 100GPa v, =0.3 oy =10""°C"!

Case 5 (Figure 4, left)  Edge interface corner under uniform temperature change, isotropic bimaterials
w = 1000 mm wi; =461 mm wy = 359 mm T.=-100°C

E, =72GPa v =0.3 o =18.95x 1076°C!

E; =280GPa v, =0.26 oy =2.5x1076°C!

Case 6 (Figure 4, right) Interface corner under uniform temperature change, anisotropic bimaterials
a=1.6mm, d=0.1mm, hA=75mm, w=3mm, g=20° T.=-20°C,

223 108 985 0 84 0 87.8 26.3 36.6 0 18.75 0
150 %02 8 33.63 8 87 263 0 1035 0
51 — 87.8 0 18.75 0
CGSO = 788 0 6.6 [GPa], Caragonite = 42 0 07 [GPa],
sym. 68.8 0 sym. 60.27 0
82.7 42
44 0 0 2250 0
agso= | 0 14 0 |[[1076°C~! o e = [ 017 0 ] 10=6°C-!
GSO [ 00 6.8:| [ ], aragonite 0 0225 [ ]»

Table 1. Geometries, loading, and material properties of numerical examples.

the order of stress singularity §, the order of heat flux singularity &, the stress intensity factors Ky and
K1 versus the radius of path integral r/a, and the reference solutions are all shown in Table 2.

From this table we see that the results calculated by the present approach are not only path-independent
but also agree well with those presented in the literature for all different cases, for example, Case 1 [Sumi
and Katayama 1980; Maiti 1992; Mukhopadhyay et al. 1999], Case 2 [Hwu 1990], Case 3 [Banks-Sills
and Dolev 2004], Case 4 [Erdogan 1965], and Case 5 [Banks-Sills and Ishbir 2004]. In Case 6, due to
the limitations of two-dimensional elements of ANSYS only the plane strain condition is considered, and
hence in our example the thermal expansion coefficient 13 considered in the reference paper [Nomura
et al. 2009], which may induce deformation in the third direction, is neglected. With this neglect, as
shown in Table 2 our results are slightly different from those presented in [Nomura et al. 2009]. Table 3
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Figure 5. A sample electronic package.

Case Singular order ra K; (MPa x mm %®) Ky (MPa x mm °k)
) S Present Reference Present Reference
0.3 0.01722 0.0173911 0
1 0.5 —-0.5 0.6 0.01722 0.01695%! 0 0
0.8 0.01722 0.017228! 0
(Orthotropic material)
0.3 0 —0.02699
0.6 0 0 —0.02702 —0.0269314
2 0.5 —-0.5 0.8 0 —0.02700
(Anisotropic material)
0.3 0.01147 —0.03375
0.6 0.01148 0.01150M! —0.03375 —0.033574
0.8 0.01148 —0.03376
03 —1.611x10° —8.890 x 10°
3* 0.5+ 0.076i —-0.5 06 —1.615x10° —1.636x10°0P1 —8.850x 10° —8.908 x 103 %
0.8 —1.615x10° —8.817 x 10°
0.3 —1.559 10.65
4* 0.5+ 0.076i —-0.5 0.6 —1.577 —1.52611 10.69 10.071!
0.9 —1.537 10.63
0.03 1.867 x 10° —317.6
5% 0.111 -1 006 1.869x 10° 1.848 x 1037 —-317.9 -
0.09 1.867 x 10° —-317.5
0.6 3.540 16.67
Fokok . [8] (8]
6 0.482+40.041i 0.8 3572 3.278 16.47 22.90

d: order of stress singularity; &;: order of heat flux singularity; dz: real part of stress singular order;
*: reference length [ is selected to be 2a; **: normalized factor a is replaced by w = 1000 mm in Figure 4, left;

Kok,

: reference length [ is selected to be 10 um and normalized factor a is replaced by d = 0.1 mm in Figure 4,

right; ! [Sumi and Katayama 1980]; ! [Maiti 1992]; 3! [Mukhopadhyay et al. 1999]; “! [Hwu 1990];
151 [Banks-Sills and Dolev 2004]; ! [Erdogan 1965]; 7! [Banks-Sills and Ishbir 2004]; ®! [Nomura et al. 2009].

Table 2. Comparison of stress intensity factors.
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(r/a=0.3) (r/a=0.6)
pla 05 05 05 05
Ki(GPa x mm"”) Kp(GPax mm”™)  K{(GPax mm"™) Kp(GPax mm®”)
0.0001 —161.2 —9.093 —161.4 —8.942
0.001 —161.3 —9.075 —161.5 —8.925
0.005 —161.1 —8.910 —161.5 —8.880
0.01 —161.1 —8.890 —161.5 —8.850
0.05 —161.2 —8.878 —161.5 —8.813
0.1 —161.4 —8.952 —161.6 —8.801
0.2 —161.6 —8.861 —161.8 —8.710
0.3 —161.9 —8.672
0.4 —162.3 —8.236
0.5 —162.5 —17.856
0.6 —162.7 —17.381

Table 3. Effects of radius p on the stress intensity factors for Case 3.

shows the effects of the radius p of the small circle chosen for the analytical area integral of (22b). From
this table, we see that the effect of p is very trifling on the results of the stress intensity factors when
p/a <0.2, and this phenomenon is consistent with the results presented in [Banks-Sills and Ishbir 2004].
Note that the bigger p is, the more mesh and computation time we can save, and this vindicates to the
use of analytical integration in (22b).

5.2. Application to electronic packages. A typical example of electronic packages is shown in Figure 5.
This package consists of three different parts: silicon die, epoxy molding compound (EMC), and bis-
maleimide triazine (BT) substrate. Their mechanical properties are shown in Table 4. Due to the dis-
continuity of geometries and/or material properties, stress concentration usually occurs at the corners or
interface corners, such as points A, B, C, D, E, and F shown in Figure 5. To know which corner is the
most critical corner, we first calculate the orders of stress/heat flux singularity. Table 5 shows the results
of singular orders of these corners, in which the values of points A, B, and F are calculated from (5a)

Material E [GPa] v o [107°°C~1] &k [W/m°C]
Silicon die 131 0.3 2.8 300
EMC 16 0.25 8 14

BT substrate 26 0.11 15 0.95

Table 4. Material properties of the sample electronic package.

Singular order Location
B C D E F
) 0.280 0 0.143 0.277 0.253 0
Sn -0.979 -1 —0.894 —-0.699 -1

Table 5. Orders of stress/heat flux singularity of the sample electronic package.
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Figure 6. Stress intensity factors versus environmental temperature (top) and versus

heat generation rate (bottom).

and (20), for stress and heat flux singularity respectively. For points C, D, and E, whose corner edges
are not traction-free, related formulae can be found in [Hwu and Lee 2004]. From Table 5, we see that
point A is the most critical point.

To study the effects of thermal environment on the stress intensity factors, we now consider two
different thermal conditions: (1) the package is placed within an environmental temperature maintained
at a constant temperature 7., and the chip (silicon die) has a heat generation rate of 10 W; (2) the package
is placed amid an environment with reference temperature T = 25 °C before the chip begins to generate
heat, convection with heat transfer coefficient 10 W/m?2°C is imposed on all the outer edges, and the chip
(silicon die) has a heat generation rate Q. It is assumed that this package doesn’t deform at 0 °C. By using
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the modified H-integral proposed in this paper, the stress intensity factors associated with the singular
order 6 = 0.28 of point A are calculated by varying T, for the first case and varying Q for the second
case. Figure 6 shows that both of the mode I and mode II stress intensity factors vary linearly with
environmental temperature 7, and heat generation rate Q.

6. Conclusions

In this investigation, the modified H-integral is proposed to calculate the stress intensity factors of in-
terface corners subjected to thermal loadings, and its required near-tip solutions and auxiliary solutions
of displacements, stresses, and temperature are all provided. Through several different material types,
corner types, and thermal loading types used in the numerical examples, the H-integral proves its va-
lidity and versatility in thermal problems. Moreover, the path-independence property of the modified
H-integral in thermal problems has been proved both theoretically and numerically. A special treatment
for the strongly singular function in the domain integral of the modified H-integral saves us a lot of
computational time and also raises the accuracy for the calculation of stress intensity factors.

Appendix: Explicit expressions of the near-tip solutions

Under thermal effects, the field solutions near the tip of multimaterial wedges has been shown in Equation
(53) of [Hwu and Lee 2004]. To explicitly show the r-dependent relation of the near-tip solutions by
using Equation (27) of the same reference, we may let the solutions along the wedge surface 6 = 6y be

v1(00) = =81 =8)r " Puvy,  wiB) =r'Cwo. (A-1)

Substituting (A-1) into [Hwu and Lee 2004, (53)], the near-tip solutions can be expressed as those shown
in (4a) and (4b), in which

re) = I'70) when 6y <6 < 6y,
| 5@ (Kr)1 when 6 <6 <6,
E (6 hen 6y <6 <0y,
E@ =" et =r = (A2)
E3(0)(K.)1 whent) <6 <0,,
F(O) = F{(9) when 6y <6 <6y,
| 3 @) (Kp)i + E5(0)(Ko)1 when 6; <6 <6,
where
T (0) = 0,<E° (0. 61O ' Ef(0) =N (6. 61),
1 L L o - (A-3)
F{ ()= (N2, 0D Uk = Ui (B0, 6k 1} B2 (0k-1, 00 4O, k=1,2,

5(1—9)
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and
(K7)1 =T7(0601), (Ko)1=E7©61), (Ko)i=F),

1 1 _ |k ck
O = |:—ik0 iko]k’ Ve = [dk dk]’
Ay zk} CICNY! 0 B! A!

N76.6") = [ B B

0 Gl 00| | Bl AL (A-4)

0’ —sin@’
[0 (0.6") = cos(6 —0') +sin@ — 0)1a(0),  1g(®') = 2o — 70

—— > a=1,2,3,
U SIN6O’ +cos b

Tgcos®’ —sin6’

25(0.0") = cos(0 —0) +sin(0 —0")75(0"), T5(0') = B=1,2,

T4 8in 0’ + cos '’
In (A-2)-(A-4), subscript k (taking the values 1, 2) denotes the quantities related to the k-th wedge,
whereas subscript o and 8 denote the diagonal components of the diagonal matrix. i = +/—1 is an
imaginary unit; a bar above a letter denotes complex conjugation; kg is a real constant related to the heat

conduction coefficients k;; by
ko =/ kitkar — ki, (A-5)

e and tg are the elastic eigenvalues and thermal eigenvalues; and A, B and ¢, d are the elastic eigen-
vector matrices and thermal eigenvectors of the Stroh formalism of anisotropic elasticity; see [Ting 1996;
Hwu 2010].
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THREE-DIMENSIONAL ISOFIELD MICROMECHANICS MODEL
FOR EFFECTIVE ELECTROTHERMOELASTIC PROPERTIES
OF PIEZOELECTRIC COMPOSITES

SANTOSH KAPURIA AND POONAM KUMARI

A fully coupled three-dimensional micromechanics model based on the isofield method is developed
for the effective electrothermoelastic properties of piezoelectric fiber-reinforced composite (PFRC) ma-
terials with poling and an electric field applied normal to the fiber direction. In the isofield method,
the strain and electric field components parallel to the plane connecting two phases are assumed to be
uniform across both phases, and likewise for the stress and electric displacement components normal to
the connecting plane. The model employs the isofield assumptions for two possible connectivities, which
are then combined so as to yield transverse isotropy of the effective properties when both constituents are
transversely isotropic. The assumption of uniform electric field across two phases made by some existing
theories can be achieved as a special case of the present formulation when the dielectric constants of the
fiber and matrix phases are equal. The effects of the fiber volume fraction and dielectric ratio on the
effective properties are studied for two PFRC systems, PZT-7A/epoxy and PZT-5H/epoxy. The results
are compared with those available in the literature based on uniform electric field assumptions. It is
found that the dielectric ratio has a very significant effect on the electromechanical and electrothermal
coupling constants of PFRCs.

1. Introduction

Piezoelectric materials are being increasingly used as distributed sensors and actuators in structural health
monitoring [Park et al. 2010] and control [Dong et al. 2006] applications. Their advantages over other
available smart materials include easy commercial availability, efficient conversion of energy, relatively
linear electromechanical behavior (at low fields), and large useful bandwidth [Chopra 2002]. However,
for large-scale structural control applications such as in aerospace, automotive, and ship structures, mono-
lithic piezoelectric actuators and sensors suffer from shortcomings with regard to tailorable anisotropic
actuation, that is, directional actuation, robustness against damage during use and handling, ability to
cover the entire structure for distributed actuation and sensing, and conformability to curved shell-type
structural members. To address these concerns, piezoelectric fiber-reinforced composites (PFRCs) have
been developed recently by embedding piezoceramic fibers in a resin matrix system, which, in addition
to overcoming all the above-mentioned shortcomings, also possess higher specific stiffness, toughness,
operating voltage range (from —1500 to 42800 V), and lifespan (200 million cycles) than the bulk
material [Uchino 2000]. For designing such PFRC sensors and actuators as well as smart laminates
integrated with these, it is necessary to have micromechanics models capable of estimating the effective
electrothermoelastic properties of a unidirectional PFRC layer from the properties of its constituents.

Keywords: micromechanics, piezoelectric composite, electrothermoelastic, isofield method.

249



250 SANTOSH KAPURIA AND POONAM KUMARI

A number of micromechanics models have been proposed for piezoelectric composites in which the
piezoelectric fibers are oriented along the thickness direction (Figure 1a). In this case, the poling and
electric field directions are parallel to the fiber axis, causing a ds3 effect, which is useful in ultrasonic
transducer applications. These micromechanics models have been developed based on the Voigt-type
isofield method [Chan and Unsworth 1989; Smith and Auld 1991], the Mori-Tanaka method [Dunn and
Taya 1993], the self-consistent method [Dunn and Taya 1993; Levin et al. 2000], the generalized method
of cells [Aboudi 1998], and the asymptotic homogenization method [Sabina et al. 2001; Levin et al.
2008].

Commonly used piezoelectric materials such as PZT and PVDF are transversely isotropic about their
poling axes (class mm6 symmetry). Thus, when the piezoelectric fibers are aligned along the poling
direction and the matrix is also transversely isotropic about the fiber direction, the transverse isotropy
is retained in the composite system. All the above micromechanics models are thus concerned with
transversely isotropic effective properties. In [Kar-Gupta and Venkatesh 2005], a unit cell-based finite
element model was employed to obtain the electromechanical effective properties of a 1-3 piezoelectric
composite system. In this system, the fibers are oriented along the thickness direction, while the fiber and
matrix phases are poled along different directions (parallel or normal to the fiber direction) to generate
a wide range of specific acoustic impedances.

For structural applications, however, the stiff piezoceramic fibers must be oriented in the plane of
the structures (Figure 1b) and the poling as well as the electric field directions are perpendicular to
the fiber axis, resulting in a d3; effect. In this case, the composite system is no longer transversely
isotropic about the fiber axis, particularly with regard to the piezoelectric properties. Very few studies
have been reported on the micromechanics of PFRC laminas of this type. The first such model was
presented in [Bent 1994] using the isofield method for computing effective electroelastic properties. In
that work, even though a general methodology was briefly outlined for calculation of effective material
properties for the three-dimensional (3D) stress field considering two possible connectivity planes of the
constituent phases, the detailed closed-form solutions and the results for effective material properties
were presented by considering the uniaxial stress field only. The results for the 3D stress field based on
this method have been presented only recently [Kapuria and Kumari 2010]. In [Mallik and Ray 2003;

X3 X3
A Matrix Pohng A

direction Poling direction
Y LY L&Y |

Y A &
E N —>x;
Y & E;
NNNNOS

Piezoelectric fiber X1
Matrix Piezoelectric fiber

(@) (b)
Figure 1. Schematic representation of PFRC with poling and electric field directions
(a) parallel and (b) normal to fiber.



MICROMECHANICS FOR PIEZOELECTRIC COMPOSITES 251

Ray 2006] a simpler model was presented using the uniform fields concept with a single connectivity
plane (parallel to the fiber axis) for computing the effective electroelastic properties of PFRCs, which
has been recently extended to the thermoelectroelastic case in [Kumar and Chakraborty 2009]. In this
formulation, however, the electric field is assumed to be uniform across both the piezoelectric fiber and
elastic matrix phases, which is not achievable when the electric field is applied across the thickness of
the lamina, due to large difference in the dielectric constants of the two phases. The assumption is valid
only when the two phases have the same dielectric constants, which is not the case for the materials
commonly used for the purpose. Their formulation thus gives unrealistically high values (upper bounds)
of the effective piezoelectric constants.

This paper presents a coupled 3D isofield model for estimating the effective electrothermoelastic
properties of a unidirectional PFRC lamina with in-plane fibers and poling and electric field applied along
the thickness direction. The effective properties are obtained for representative volume elements (RVEs)
with two possible connectivity planes for the piezoelectric fiber and matrix phases, namely, parallel
and normal to the fiber plane. The two models are combined in a way which maintains the transverse
isotropy in the effective properties when both constituents are transversely isotropic about the fiber axis.
Results are presented for two PFRC systems comprising, respectively, PZT-7A and PZT-5H fibers with
an epoxy matrix. The results are compared with those of [Ray 2006; Kumar and Chakraborty 2009]
obtained based on the uniform electric field assumption. The effect of the ratio of transverse dielectric
constants of the fiber and matrix phases (hereafter called the dielectric ratio) on the effective piezoelectric
and pyroelectric constants is illustrated. It is revealed that both effective piezoelectric and pyroelectric
constants are maximal when the dielectric ratio is unity, and reduce drastically as the ratio increases. The
effective thermoelastic properties are also compared with simplified models such as the rule of mixtures
(ROM) and the modified rule of mixtures (MROM) [Gibson 2007] so as to ascertain their validity.

2. 3D isofield micromechanics model

2.1. Constitutive relations. The effective thermoelectroelastic constants of PFRC materials are deter-
mined from the properties of individual phases (fiber and matrix) by generalizing the 3D isofield ap-
proach of [Bent 1994; Kapuria and Kumari 2010] for the electrothermomechanical field. In order to
have a unified treatment, both fiber and matrix are assumed to be piezoelectric materials, which are of
orthotropic class mm?2 symmetry, with principal material axes xy, x», and x3, and are polarized along the
thickness direction x3. The 3D linear constitutive equations of such a piezoelectric continuum are given
by [Auld 1973]

&1 _S11 S12 513 0 0 0 0 0 d31 o1 (03]

1) S12 S22 8§23 0 0 0 0 0 d32 (o)) o)

&3 $13 8§23 533 0 0 0 0 0 d33 o3 (6%}

V23 0 0 0 sgg 0O O O dg O 3 0

V31| = 0 0 O 0 ss5 0 dis 0 O |+ 0|7, (D
Y12 0 0 0 0 0 S66 0 0 0 T12 0

D1 0 0 0 0 d15 0 €11 0 0 E1 0

D2 0 0 0 d24 0 0 0 €22 0 E2 0
| D3| [ds1diadiz O 0 0 O O e3 || E3| |[g3]
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where ¢; and y;; denote the normal and shearing strain components, o; and 7;; denote the normal and
shear stress components, D; denotes the electric displacements, E; denotes the electric field components
in the principal material axis system, and 7" denotes the temperature change over the reference stress-free
temperature. Constants s;;, d;;, €;;, &;, and g3 are the elastic compliances, piezoelectric strain constants,
dielectric constants, thermal expansion coefficients and pyroelectric constant, respectively.

The physical background of the isofield micromechanics model including its assumptions is described
in Appendix A. In the generalized 3D isofield approach, the effective properties are first obtained for
RVE:s of two possible connectivities for the piezoelectric fiber and matrix phases: models A and B with
material connectivity on the x;-x, and x;-x3 planes respectively, as shown in Figure 2. The strain and
electric field components parallel to the connecting plane of the two phases in a given RVE are assumed to
be uniform across both phases (isofield condition), while isostress and isoelectric displacement conditions
are assumed to exist along the direction normal to the connecting plane. The computations for the
effective properties for the two models A and B are described below followed by the procedure of
combining the two.

2.2. Model A. In model A, the connecting plane is x;-x;, and hence the strain components (g1, €2, ¥12)
and electric field components (E|, E;) which are parallel to the connecting plane are assumed to be
uniform across both phases, and isostress and isoelectric displacement conditions are assumed to exist
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Figure 2. RVEs for isofield model (p: piezoceramic, m: matrix).
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for (o3, 123, T13) and D3, which are normal to the connecting plane. The electric field is considered to be
applied along the thickness direction only, and the in-plane electric field components that may be used
due to direct piezoelectric effect is neglected being small in comparison to E3, that is, £} >~ E, >~ 0.
It follows from (1) that, for this case, y3; and y;2 become electromechanically uncoupled and hence
the expressions for the effective shear compliances s55 and see (both normal to the fiber axis) will be
similar. Hence, only one strain components y» is included in the following derivation, without any loss
in generality. Thus, the isofield conditions for this case can be written as

U'=Uy=Uy with U®=e1, 2,03 123, 12, D3]T- 2)

The superscript a corresponds to model A. An overbar denotes the average value, and subscripts p
and m (also used as superscripts elsewhere) denote piezoelectric fiber and matrix phases, respectively.
Temperature change is assumed to be uniform over fiber and matrix phases, that is, T = T,=T,. The
average value of the complimentary field components o1, 02, €3, ¥23, T12, and E3 will have contributions
from each phase in proportion to their volume fractions v3p and v5' (=1 — vé’ ) measured along the x3
direction:

"/a = U;V; + U3m ,Z with V9= [(71, 02, €3, V23, T12, E3]T . (3)

The dependent field variables V¢ can be expressed in terms of the independent variables U“ using the
constitutive equation (1) as

B qv - v
aip—arx az 0 0 ag as
—aip ax ax 0 0 axy ap
= . —a;3—ax azxz 0 0 aze y ar
VE=AYU*+ A'T with A = , A= 4
Y 14 d 0 0 O au O O ! 0|’ “)
0 0 0 0 as5 O 0
| a6 ax —azs 0 0 aee | | di6 |
where y = p, m and the constants aiyj and atyj are given by
sh s st
y _ 222 y __ 12 Y _ 8 vy _ .d y _ 211 Y _ 8 v _ .d
ap = s ap, = s a3 ="Py, dig=PDPy, 4p= s a3 =Py Gy = Py
Y _ s/ s/ / y _ d. d./ / Yy _ Yy 1
a3y = prsi3+ pisys +833 —dssdyy,  azg = parsi;z+pisytdiy, Ay =i, dss = Seg”
v _ d y d y 1 ;o d3j ;o ’ o ;2
agg = —Pady — prdy + —, d3j__’ Sij—sij_d3id3jv S=s1Sn =51,
€33 €33 (5)
Y _ ot Y _ ot Y _ ot Y o ot I
a; =Py Ap=p\, a3=p3, ag=Pps o =0oj—d3;qs,
i
t ot ot / t /ot /ot q3 t o ro (=D
P3=S13P2 T 5301 T3, pe=—d3 py —dyp) — e’ pi = (510 _521'051)—(S ,
-1 (-1
N /A 7 ( d /g7 /g7 . .
pi = (8i153 —321'513)—(S . Pi = (spd3 —Szid31)—8 ., i=12, j=123.

Substituting (4) for y = p and m into (3) and applying (2) yields

V= () AP + V8 AMU + (v AP + V3 AT = AU + A, T, (6)
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and therefore
U= AV®+A,T, A=A, A, =—A""A,. (7)

Rearranging (7) in the form of (1), the effective constitutive equation and hence the effective material
properties of PFRC for model A are obtained as

-_ - - —A - - - A
€1 si1os12 si3 0 0 dsy o1 aq
52 $12 8§22 8§23 0 0 d32 6'2 [6%)
3 0 0 d & B}
€3 | _ | 513 $23 833 33 73 4 o3 T )
Y23 0 0 0 s44 0 O 23 0
7712 0 0 0 O S66 0 'EIZ 0
| D3| |dsidnndiz 0 0 en| | E3| |43
where sl.’}, df]‘., eg, ozl.A, and qg‘ are the effective material properties for model A, given by

A~ ga A A A _ A A
Si3 = a;3/a33, s33 = 1/ass, d33 = asze/ass,
A_ A AA /A A _ A A A A .
8ij = Gij — S3573/533, dy; = aej —diy3sj3/s33, fori, j=1,2,
A ~ A _ 4 A~ AN2 /A
Sqq = 1/dsa, Se6 = A55, €33 = de6 — (d33) /533, )
A ~ A A A A ~ A A A
ay =d; — a;3d;s/ass, Q) = dpp — dx3a,3/as3,
A PN A ~ A A A
a3 = —as3/ass, q3 = di6 — d630s3/A33.

2.3. Model B. In this case, the connecting plane being x| — x3, the isofield condition over both phases
is assumed to exist for €1, o2, €3, 723, ¥31, T12, and E3, and their complimentary counterparts, o1, &2, 03,
v23, 103, Y12, and D3 are averaged over the two phases

T (10)

i} T
VP =0lVl v, VP =01, €2, 03, y23. 12, D3] (11)

b b b b
U"=U,=U,, U® = [e1, 02, €3, 123, T12, E3]

where vf is the volume fraction of the fiber phase measured in model B along the x, direction (see
Figure 2) and v}’ =1 — vé’ . Using the constitutive equation (1), the dependent variables V}f’ can be
expressed in terms of the independent variables U fj as

(b1 —b1y biz 0 0 —big | (b, ]
b1y by by 0 0 by by
- b1z bz b 0O 0 -b b
b b y . 13 —b23 b33 36 v 13
=B'UY+ BT with BY = BY = 12
Vy=B"U,+BT wi 0 0 0by o of B=|o| {12

0 0 0 0 bs5 O 0
| D16 b b3s O 0 D | bis
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where y = p, m and the elements b;; and b]; are given by
bl| = s33/81,

biy = —s13/61,

by = s11/61,

y y

b1, = (533512 — 513523) /81, b3y, = s20 — $21D12 — 523b23,
y

bie = (s33d31 — s13d33) /01,

by, = (511823 — $13512) /31,

Y
by = d32 — s21b16 — $23b36,

by = €33 — d31b16 — d33b3e,

v y ¥ (13)
by, = 544, b3 = (s11d33 — s13d31) /91, by, = (—s3301 +s1303) /81,
bks = se6. b)5 = (s21bs1 + 523b43 + @2), by = (—sio3 + s1301) /61,
81 = 533511 — 513, bl = d31b.1 + d33bi3 + gs.
Substituting (13) for y = p and m into (11) and applying (10) yields
VP = () B? + v B™U" + (W) B +v5'B"T = BU” + B, T. (14)
Rewriting (14) in the original form of (1) yields the effective constitutive equation for model B as
-_ =4 r “Br-- o -8B
&1 s11 812 s13 0 0 d3 o1 o
52 S12 $22 §23 0 0 d32 0_'2 (%)
€3 s13 523 533 0 0 ds3 03 | =
_ = _ T, 15
V23 0 0 0 s44 O O T23+0 (15)
Y12 0 0 0 0 s¢ O T12 0
| D3| |dnidndi 0 0 exn| |Es| |43
where the effective coefficients for model B are obtained as
st =b33/82, sS4y = bua, sty = (bsbio —b13b23) /82, sty =—bi3/82,
5% =b11/8,  s& = bss, s3y =bo +s55b3 +sthbia, 53y = (—=biabiz +bazbi1) /8,
d3 = (=bseh13 +bi6b33) /82, d3h = bag+dybio +diybys,  diy = (—bi6b13 +bssh1) /82, (16)

82 = byzbyy — 5%3,
af = (=basb + b13bs3) /62,

g% =bigaf +bysa? + by,

B A B A B A
oy =b210€1 +b230l3 +b,2,

63% = beo + d3311;16 +d%l536,

af = (bisbi — b11by3) /62,

2.4. Combined model. For the case of the combined model AB, the material properties of the piezo-
electric fiber phase in model B are replaced with the effective properties from model A. Since the shear
stresses are uncoupled, it is readily possible to obtain the closed-form expressions for the effective s44
and s¢ from model AB using (9) and (16) as

p.P .m m . m P .m m_ P
AB _ Py om AB _ V256656 T V3 Sg6 (V3 S5 + U5 Se0) (17
S44° = VfSyq T UmSas, Se6 = 7 om mop )
(V3866 + V3 S66)
where vy = vf vé’ , Um = 1 —vy. Similarly, sg‘SB can be obtained as
PP m . m\ .m
SAB _ (V3555 + V3'855) 555 (18)
55 = pom

me, P .m m.P\"
v; 855 + 3 (V3 855 + 13 555)
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Usually v} is taken as equal to v}, in which case v} = v{ = /vy, where vy is the overall volume fraction
of fiber.

For fiber and matrix phases which are transversely isotropic about the fiber direction x, the effective
material properties of the combined model should exhibit transverse isotropy. However, it can be seen
from (17) and (18) that s B and s B will not be equal for this case. A similar inequality is observed among
the other pairs of effectlve constants such as 517 and 513, and s2; and s33, which should also be equal for
the transversely isotropic case. This discrepancy exists in the electromechanical micromechanics model
of [Bent 1994]. To eliminate it, the effective properties of the combined model BA are obtained by
replacing the properties of the fiber phase of model A with the effective properties from model B. The
final effective properties P are then obtained by averaging those of models AB and BA:

Pf = (P8 4 pEYy)2. (19)
While the expression for s A is the same as for model AB given in (17), the expressions for s A and

s66 are obtained by 1nterchangmg their expressions for model AB given by (17) and (18).

2.5. Thermal conductivity. The 3D heat conduction, according to Fourier’s law, is governed by
Qi=—kT; for i=1,2,3, (20)

where k;, Q;, and T'; denote respectively the thermal conductivities, heat flux, and temperature gradient
along the x; direction. To obtain the effective thermal conductivities using the isofield method, the
temperature gradients parallel to the connecting plane of two phases and the heat flux along the normal
to the connecting plane are assumed to be uniform over the two phases. The remaining complementary
field variables are averaged over the two phases. For models A and B, this yields:

Model A:

A% = H® = HE, H=[T1. T2 03], ,
_ (2D
M“:vé’Ml‘;—i-vg"M,ﬁi, M”=[Q1,Q2,T,3]T
Model B:
HY Hb HY, Hb=[T,1’Q2»T,3]T,
(22)

i} T
MV =viM)+viM),.  MP=[0Q). T, Qs]

Using (20), the dependent variables M7 and Mf} (y = p, m) are expressed, respectively, in terms of the
independent variables Hy and H]f , and the resulting equations are arranged in the form of (20), to yield
the effective thermal conductivities for models A and B. As before, the effective thermal conductivities
kiAB of the combined model AB are then obtained by using the effective thermal conductivities obtained
from model A in model B as the conductivities of its fiber phase, which yields

vé’kfk? +vf (k’2")2 AB_ V2 k”k’” + vy kS (k5w +v§1k§)

kAB—=y k! + v, k", kAB= .k
L T ey oy Wk ok vikY + 0T kL

. (23)

In the combined model BA, the expression for the effective k; is the same as for model AB, and the
expressions for the effective k» and k3 get interchanged. The final effective k{ are obtained using (19).
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3. Results and discussion

Numerical results for the effective thermoelectroelastic properties are presented for two PFRC systems
made, respectively, of PZT-7A and PZT-5H fibers and an epoxy matrix. The material properties of the
fibers and the matrix are listed in Table 1. The following nondimensional parameters are introduced to
compare the effective properties of the PFRC materials with the corresponding piezoelectric fibers:

e e e e
€3; _ d3; a; -

d - ' . .
R;iz_p’ R3,-—d—p, Oli=—;,, k,-=—;, fori=1,2,3;
€3; 3 o; ;
e e e
s¢. € q
S 2 ; . € 33 q 3
sl]=_p forl=1’276$ R33=_p, R3=_P
Sij €33 q3

The effective elastic stiffness constants cfj of the PZT-7A/epoxy system are plotted in Figure 3 against
the fiber volume fraction vy and compared with those predicted by [Ray 2006]. Due to two-way elec-
tromechanical coupling, the effective stiffness is affected by the piezoelectric coupling constants d;;. In
order to ascertain this effect, the elastic constants cfj computed considering d;; = 0 are also compared in
Figure 3. It is observed that the electromechanical coupling has a stiffening effect on PFRC resulting in
greater values for constants c{;, ¢55, and c{,. While the c{; predicted by [Ray 2006] match closely with
the present estimate with d;; =0, there are appreciable differences between the two results for c53, ¢{,, and
55 The difference increases for all constants, when the d;; are not considered zero in the present model.

The variations of nondimensional effective piezoelectric stress constants RS; with fiber volume fraction
are plotted in Figure 4 for the same PFRC system for different values of the dielectric ratio (DR = e§’3 /€33)-
The DR was varied by varying the matrix property (€33) keeping the fiber property fixed. The case of
DR =1 leads to uniform electric field E3 across both fiber and matrix phases, a condition assumed by

Material 1 (&%) €33 c12 €23 31 Cas Css C66
PZT-7A! 148 148 131 76.2 74.2 74.2 254 254 359
PZT-5H* 126 126 117 79.5 84.1 84.1 23 23 23.25
epoxy’ 3.86 3.86 3.86 2.57 2.57 2.57 0.645 0.645 0.645
€31 €32 €33 €14 €24 €33
PZT-7A! -2.1 -2.1 9.5 9.2 9.2 2.07
PZT-5H? -6.5 -6.5 23.3 17 17 30.42
epoxy! 0 0 0 0 0 0.079
oy ar a3 ki1 9) k33 P3
PZT-7A! 1 1 1 - - - 2
PZT-5H3 9.64 9.64 396 50 50 75 5.483
epoxyl 4 24 24 24 0.18 0.18 0.18 0.0

Table 1. Material properties: c;; in GPa, ¢;; in Cm~2, €33 in 107°CV~!'m™!, o; in
107 °K~1, k;; in WK™'m~!, p; in 1075Cm? K.

! [Kumar and Chakraborty 2009] 2 [Kapuria and Hagedorn 2007] 3 [Chen 2006]
4 [Gibson 2007, Table 3.2, p. 106].
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Figure 3. Variation of effective stiffness constants of PZT-7A/epoxy with fiber volume fraction.

[Ray 2006]. While the value of R, predicted by the present model for DR = 1 is in close agreement
with the reference solution, values of RS, and RS, predicted by the later model are much lower than the
present solution. In the present model, &, and o3 are uniform over two phases in model A, while o, and
€3 are uniform in model B, according to the respective connecting planes, which are consistent with the
actual boundary conditions of the RVE. However, in the model of [Ray 2006], both 0 and o3 are assumed
to have a uniform variation over the two phases, simultaneously. This explains the difference between
the two results even though both correspond to the uniform electric field case. Figure 4 also reveals
that the effective piezoelectric constants of PFRC are highly sensitive to the DR and reduce drastically
with its increase. This is because the ratio of electric field across the fiber phase to that applied across
the PFRC thickness decreases with the increase in DR. Even though both constituents exhibit transverse
isotropy about axis x3, effective values of e3; and es; differ, since the connectivity between the fiber and
matrix phases does not follow symmetry about axis x3. This difference between e3; and e3; in PFRC
enables directional (anisotropic) in-plane actuation, which is desirable in many control applications. The
effective thermal stress coefficients B and B3 for the PZT-7A/epoxy system for varying v s, computed
with and without making d;; = 0, are compared with those of [Kumar and Chakraborty 2009] in Figure 5.
Once again, the present results match with the reference solution, when computed with d;; = 0, but
otherwise differ considerably for intermediate values of v .

In Figures 6 and 7, nondimensionalized compliances (511, S12, S¢6) and coefficients of thermal expan-
sion (&1, ap) are compared with the simple rule of mixtures (ROM)/inverse rule of mixtures (IROM)
and the modified rule of mixtures (MROM) given in Appendix B. The effective values of the thermoe-
lastic constants predicted by the present model are close to those predicted by the ROM for longitudinal
constants s{; and o] and by the MROM for the transverse constants s¢, and o3, but are not so for the
transverse compliance constants 55, and s5;. The nondimensionalized effective thermal conductivities /Ef
and 12; are also plotted in Figure 7.

The variations of the ratios Rgll. (i=1,2,3) of effective values of piezoelectric strain constants d3; to the
corresponding values for the bulk PZT are plotted in Figure 8 for both PZT-7A/epoxy and PZT-5H/epoxy
systems for different values for DR ranging from 1 to 100. Similar to constants es;, the effective values
of d3; are maximum for DR = 1, when the electric field is uniform across piezoelectric and matrix phases,
and decrease sharply with the increase in DR, as happens for commonly used matrix materials. Even
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Figure 4. Variation of effective piezoelectric stress constant ratios of PZT-7A/epoxy
with fiber volume fraction.
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at a low fiber volume fraction of 10%, there is a large difference between the results of d;l. at DR=1
and DR = 5. This is because the electric field Ef across the piezoelectric phase in model A is only a
fraction of the overall electric field E3 and is dependent on both v3p and DR. For example, ignoring the
electromechanical coupling, Ef in model A can be easily obtained, using (2)—(8), as

Ef 1

E; v+ vl (DR)
Thus, E_f is more sensitive to DR at a lower value of the fiber volume fraction. The performance of these
PFRCs can thus be improved either by using suitable matrix materials with dielectric constant €53 of the
order of 653 or by directly applying electric fields across the piezoelectric fibers. It is also revealed from
Figure 8 that above 90% of the value of d3; of the bulk PZT can be achieved in the PFRC with a fiber
volume fraction of only 25% for the uniform field case. While the values of effective piezoelectric strain
constants d3; vary from zero to those of the piezoelectric fibers, the effective values of piezoelectric stress
constants e3; can exceed those of the bulk piezoelectric material at an intermediate value of v, (Figure 4).
The latter leads to an impression that a higher electromechanical coupling can be achieved in PFRC than
the bulk piezoelectric material [Ray 2006], which is clearly not true. Thus, the fundamental constants d;;
(and not ¢;;) should be used for evaluating the effective electromechanical coupling property of PFRC.

The variations of nondimensionalized effective dielectric and pyroelectric constants with v are plot-
ted in Figure 9. The effective pyroelectric constant almost follows the ROM for DR of unity, but

1.0 | e

\
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\
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Lo b b b by

T
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Figure 9. Variation of effective dielectric and pyroelectric constants of PFRCs with fiber
volume fraction: PZT-7A/epoxy (left column) and PZT-5H/epoxy (right column).
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PZT-5H/epoxy PZT-7A/epoxy
Entity 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
7 65.12 3476 2391 18.56 4325 2259 1539 11.83
55, 23377 1413 85.06 45.60 2228 1328 7799 39.37
553 225.1  135.1 80.58  43.16 2126 1253 7220 35.28
57, -30.39 -16.63 -11.27 -8.15 -21.75 -11.66 -7.79 -5.61
573 -20.84 -10.33 -7.08 -6.07 -10.73 439 =260 -2.11
553 -89.88 -39.37 -17.06 -8.07 -86.29 -35.26 -13.16 —4.28
i 1250 950 650 345 1250 950 640 340
555 1010 680 420 215 1010 680 420 210
S¢e 1010 680 420 214 1000 670 410 200
ds, -33.15 -41.25 -57.01 -94.32 -524 -639 -8.88 -15.14
ds, -19.33 -33.07 -51.94 -91.40 -336 548 -8.45 -14.99
ds; 50.38 73,52 1112 1953 872 12770 19.56 35.81
€33 2.27 3.30 5.16 9.49 0.12 0.18 028 053
q5 -099 200 374 -7.78 0.44 1.15 247 571
af 11.07 10.24 9.94 9.77 3.09 219 184 1.59
o 2533 2153 1746 1348 25.12  19.06 1293 7.01
o 2202 17.03 1232 7.96 2412 1755 11.23 540
ki 1120 2090 30.60 40.30 1.56 1.62 168 1.74
kS 0.78 1.18 1.95 4.14 0.63 0.80 101 133
kS 0.79 1.19 1.97 4.26 0.63 0.80 101 133

Table 2. Effective electrothermoelastic properties for PFRCs: sfj in 10712 Pa~!, ds j in
pmV~L € innFm™!, ¢¢ in uCm2K~!, & in 1070 K1, k¢ in Wm~! K.

drops sharply as the DR increases. Effective material properties for PZT-5H/epoxy with DR = 20 and
PZT-7A/epoxy with DR = 26.2 are presented in Table 2 for four values of the fiber volume fraction
(vy =0.2,0.4,0.6,0.8). These properties are directly useful for 1D/2D/3D thermoelectromechanical
analysis of smart laminated structures integrated with these PFRCs.

4. Conclusions

A coupled 3D isofield-based micromechanical model is presented for calculating effective electrother-
moelastic properties of piezoelectric fiber-reinforced composite (PFRC) materials with poling and elec-
tric field applied along the normal to the fiber direction. The model employs the isofield method on
representative volume elements (RVEs) of two possible connectivities, A and B, for the fiber and matrix
phases. The two RVEs are combined in sequences AB and BA, so as to achieve transverse isotropy in the
effective properties when both the constituents are transversely isotropic. The model considers differen-
tial electric fields in fiber and matrix phases due to their different dielectric constants. The assumption of
uniform electric field across the two phases made by some existing theories can be achieved as a special
case of the present formulation when the dielectric ratio (DR) is unity.
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Results presented for two PFRC systems, PZT-7A/epoxy and PZT-5H/epoxy, reveal that it is possi-
ble to achieve effective piezoelectric strain constant d3; of magnitude greater than 90% of that of bulk
piezoelectric material with even a low fiber volume fraction of 25%, if the DR is close to unity. The
effective piezoelectric constants, however, reduce drastically as the DR increases. While the magnitudes
of effective d3; of PFRC vary from zero to those of the piezoelectric fiber, the effective e3; can exceed its
value for the fiber at an intermediate value of v, giving a false notion of improved performance, for DR
close to unity. Therefore, constants d;; should be used to evaluate electromechanical coupling of PFRCs.
The effective pyroelectric constant nearly follows the rule of mixtures for DR of unity, but reduces as
DR increases.

Appendix A

The isofield micromechanics model, also known as the uniform field model, is basically a generalization
of the strength of materials approach of estimating overall properties of two-phase composite materials.
The basic assumption, as the name implies, is that all fields are uniform within each material phase. This
assumption makes the model independent of the geometry of its microstructure, and it is possible to refer
to the two phases in a RVE as two cuboidal blocks connected at a plane. This forms the basis of the
RVE representation in Figure 2. The model actually violates some of the compatibility and equilibrium
conditions at the interface. However, it has been successfully used in the past (see, for example, [Jones
1975]) for estimating mechanical and transport (conductivity, thermal expansion coefficient) properties
of fiber-reinforced composite materials. The large mismatch in the material properties makes the method
particularly well suited for modeling such fibrous composites. Its accuracy largely depends on the spatial
scale of the phase distributions. For finely distributed phases, it is expected to yield good estimates of
the averaged response. A major advantage of this method is that it provides simple analytical solutions
for the effective properties, which allows physical insight into the problem.

For uniaxial fields, the uniform field assumption leads to the well-known rules of mixtures, compris-
ing of parallel and series (Voigt and Reuss) additions for estimating the effective properties along and
perpendicular to the fiber direction, respectively. For the 3D fields, however, it is not as straightforward.
Typically, the conventional model with parallel connectivity yields very good estimates of longitudinal
properties, but the series model at best yields a lower bound of the transverse properties. This is improved
by using a combination model, wherein the two phases in the RVE are connected at two orthogonal planes
(x1-x2 and x;-x3) parallel to the fiber direction (x;), instead of only one plane as in the conventional
model, as shown in Figure 2 (combined model). The combination model is treated as follows: blocks of
piezoelectric (p) and matrix (m) phases are connected at the x-x, plane and they together are connected
to a matrix phase at the x-x3 plane, and vice versa. Thus, models A and B with the two phases connected
at the x-x, and x;-x3 planes, respectively, form the building blocks of the combination model.

The other assumptions in the present model are that

« the two material phases are perfectly bonded,

 deformation and electric fields are small enough that linear constitutive equations can be applied,
and

« the piezoelectric materials are uniformly polarized along the x3 direction.
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Appendix B

The expressions for the effective Young’s moduli Y7, shear modulus G¢,, and thermal expansion coef-
ficients a according to the rule of mixtures (ROM)/inverse rule of mixtures (IROM) and the modified
rule of mixtures (MROM) based on the strength of materials approach can be found in [Gibson 2007].
These are given below:

» ROM/IROM e p m e Ylpalpvf+Y1ma’1nvm
=Y v+ Y] v, o= P m ’
Yive+ Y] vy
2 _ Y W L _ v m
LD N £ . G Gh
« MROM

/U f i|

1— /Uf(l—Yén/Yz) ’
VU y G :|

1 f(l 12/ 12) ’

e m p e e P m
ay = (1 +vp)ay vy + A +vpayve —ajvi,, where v, =vvp+ V"0,

Yf:Yé"[(l—\/v_f)—i-

= '1nz|:(1 - Jvp)+
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ACCURATE SIMULATION OF MIXED-MODE COHESIVE CRACK
PROPAGATION IN QUASI-BRITTLE STRUCTURES USING EXACT
ASYMPTOTIC FIELDS IN XFEM: AN OVERVIEW

BHUSHAN LAL KARIHALOO AND QI-ZHI XIAO

The extended finite element (XFEM) enriches the standard local FE approximations with known infor-
mation about the problem, with the use of the partition of unity. This allows the use of meshes that do not
conform to a discontinuity and avoids adaptive re-meshing as the discontinuity grows as required with the
conventional FEM. When the crack tip asymptotic field is available and used as the enrichment function,
XFEM is more accurate than FEM allowing the use of a much coarser mesh around the crack tip. Such
asymptotic fields have been known for a long time for traction-free cracks (the Williams expansions)
but have only recently been derived for cohesive cracks (Karihaloo—Xiao expansions). In this paper an
overview of latter expansions is given for a range of cohesive laws and their usefulness in the simulation
of cohesive crack propagation is demonstrated on two examples of concrete and fibre-reinforced concrete
flexural members.

1. Introduction

The cohesive zone (or crack) model of Hillerborg et al. [1976] has been extensively used in the study
of localization and failure in quasi-brittle materials (such as concrete and fibre-reinforced concrete) and
structures. Borst et al. [2004] have given a concise overview of the various ways for the numerical
implementation of the cohesive zone methodology.

The knowledge of the asymptotic crack tip displacement fields is especially useful in the recently
developed extended finite element methodology (XFEM) (see [Moés et al. 1999; Strouboulis et al. 2001;
Babuska et al. 2003; Karihaloo and Xiao 2003], for example). XFEM enriches the standard local FE
approximations with known information about the problem, with the use of the partition of unity (PU). It
avoids meshes conforming with the discontinuity and adaptive re-meshing as the discontinuity grows as
is the case with the FEM. In [Karihaloo and Xiao 2003] we demonstrated that for a crack with traction-
free faces, when the crack tip asymptotic field is available and used as enrichment function, XFEM not
only avoids using a mesh conforming with the crack but is also more accurate than FEM. Hence XFEM
can use a much coarser mesh around the crack tip. However, when the enrichment function differs from
the true asymptotic crack tip field, the mesh needs to be refined in the same manner as in the FEM. Thus
it is necessary to know the true asymptotic displacement field around a cohesive crack tip in order to
exploit fully the advantages of XFEM.

The application of XFEM to the simulation of the growth of cohesive cracks in quasi-brittle materials
has received considerable attention. However, adjacent to the cohesive crack tip, the enrichment function
is chosen as the jump function [Wells and Sluys 2001; Hansbo and Hansbo 2004; Zi and Belytschko 2003]

Keywords: Asymptotic displacement field, asymptotic stress field, cohesive crack, extended finite element (XFEM).
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or a (branch) function which does not represent the true asymptotic nature of the displacement/stress field
there [Moés and Belytschko 2002]. Since there is no singularity at the tip of a cohesive crack, a stress
criterion is often used to judge the initiation and propagation of the crack. Therefore a reliable analysis
of cohesive crack propagation requires an accurate knowledge of the crack tip field. However, although
no singularity exists at the tip of a cohesive crack, the stresses obtained by direct differentiation of the
displacements are not accurate, and cannot be used to predict accurately the growth of the tip, exactly as
in the traction-free cracks.

In [Xiao and Karihaloo 2006a; Karihaloo and Xiao 2008; 2010] we have obtained universal asymptotic
expansions at a cohesive crack tip, analogous to the Williams expansions at a traction-free crack tip
for any normal cohesion-separation law (softening law) that can be expressed in a special polynomial
with integer or fractional powers. This special form ensures that the radial and angular variations of
the asymptotic fields are separable as in the Williams expansions. The coefficients of the expansions
of course depend nonlinearly on the softening law and the boundary conditions. They demonstrated
that many commonly used cohesion-separation laws, e.g., rectangular, linear, bilinear and exponential,
can indeed be expressed very accurately in this special form. They also obtained universal asymptotic
expansions when the cohesive crack faces are subjected to Coulomb friction. In [Liu et al. 2004; Xiao
and Karihaloo 2006b; Xiao et al. 2007] we used this true crack tip asymptotic displacement field as
a crack tip enrichment function in XFEM for the simulation of mode I cohesive crack propagation in
quasi-brittle materials to improve the prediction of the stress field ahead of the cohesive crack even with
a coarse mesh.

In cohesive cracks, the friction is considered for a finite opening. In this sense frictional cohesive
cracks are different from the frictional contact of crack faces, where the crack faces are in contact and
not open. However, in cohesive cracks, although the crack faces are not in contact because of the applied
cohesive stresses, frictional forces can come into play between the faces when there is relative sliding.
Many studies on the mixed mode cohesive cracks can also be found in the literature, but there is doubt
about the accuracy of the cohesion-sliding relation because it is difficult to isolate it from frictional forces
between the rough cohesive crack faces in quasi-brittle materials such as concrete.

In this paper, the Karihaloo—Xiao asymptotic expansions are reviewed for a range of cohesive laws
and their usefulness in the simulation of cohesive crack propagation by XFEM is demonstrated on two
examples of concrete and fibre-reinforced concrete flexural members.

This paper is organised as follows: Section 2 gives cohesive laws of concrete and fibre-reinforced
concrete suitable for the asymptotic analysis of cohesive cracks; Section 3 gives a brief overview of
the mathematical formulation and boundary conditions and of the asymptotic fields for several cases;
Section 4 discusses the implementation of the asymptotic fields in XFEM. Two illustrative examples of
concrete and fibre-reinforced concrete flexural members are given and discussed in Section 5.

2. Cohesive laws for concrete and fibre-reinforced concrete

Cornelissen et al. [1986] introduced the following exponential relation to fit their results from uniaxial
tests on double edge notched normal and lightweight concrete panels:

RGO GO R L2
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It fits their experimental results with a high degree of accuracy. In (1), o and f; are the stress normal to the
cohesive crack face and the uniaxial tensile strength, respectively; w and w, are the opening displacement
of the cohesive crack faces, and the critical opening displacement of the pre-existing macrocrack tip at
which the cohesive crack tip begins to grow; and C; and C, are fitting parameters. Details of the test set
up as well as the cohesive relation (1) can be found in [Karihaloo 1995]. Other widely used softening
laws for concrete are the linear relation

6=1-w, 2)
the bilinear relation R
1—<1—f1>%1 if0<d, < fi,

A

oy = A 3)
fi o .
—1_w1(1—w) if fi<oy, <1,
and the power-law relationship
6+ =1 (4)

In (2)—(4) we have 6, =0,/ f;, W =w/w,, f1 = f1/f;» w1 = wy/w., and m ranges from 0.20 to 0.27
for different concrete grades. Moreover, the two linear parts of (3) can be rewritten into two linear laws.
The first part can be written into (2) using a new definition of w, as

w1
We = . &)
1-fi
The second part can be written into (2) using a new definition of f; as
fi
Ji= 1 ~ - (6)

We shall also consider two further cohesion-separation laws not commonly associated with concrete,
namely
oy =1 (7
and
Gy=1—-*tD L =123 ... (8)
The cohesion-separation law (7) is akin to the Dugdale [1960] model of plasticity in thin metallic sheets,
which is also frequently used in fibre-reinforced polymeric materials, whereas the law (8) is commonly
used in studying the fracture process zone embedded within the large plastic zone in metals.
For the high-performance fibre-reinforced concrete CARDIFRC [Benson and Karihaloo 2005], tensile
tests showed that the post-peak cohesion-separation curve can be accurately represented by the polyno-
mial

6y = 116.760" — 468.08° + 738.121° — 612.100* +272.71%° — 59.33* +2.89w + 1,  (9)

in which f; = 16 MPa and w, = 6.5 mm.
In [Xiao and Karihaloo 2006a] we showed that the polynomial

L L
Gy=1+) a®¥ — (1 +Za,~)1i)(2/3)(L+l) (10)
i=1

i=1
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not only fits the experimental results of Cornelissen et al. (Equation (1) above), but also many commonly
used cohesion-separation laws, including the rectangular (7), linear (2), and bilinear (3).

The choice of the special form of the cohesion-separation relation (10) involving as it does fractional
powers of W may seem strange but it ensures that the asymptotic fields at the cohesive crack tip are
separable into radial and angular variations exactly as Williams expansions at a traction-free crack tip.

In [Karihaloo and Xiao 2008] we showed that separable asymptotic crack tip fields are also obtainable
for the following cohesion-separation relation not involving fractional powers of w:

L L
Gy =14 ad* - (1+Za,~)ﬁ)2(L+l), (11)
i=1 i=1
where L is an integer.

3. Mathematical formulation

The mathematical formulation is fully described in [Karihaloo and Xiao 2008], so that only a very brief
overview will suffice here. For plane problems, the stresses and displacements in the Cartesian coordinate
system centred at the cohesive crack tip can be expressed in terms of two analytic functions ¢ (z) and
% (z) of the complex variable z = re'?:
oy +oy=2[¢'(2) +¢'(2)],
oy — 0y +2itTey, =2[2¢"(2) + x" @], (12)
2u(u+iv) =x¢(2) —29'(z) = x'(2),

where a prime denotes differentiation with respect to z and an overbar the complex conjugate. In (12),
uw = E/[2(1 4 v)] is the shear modulus; the Kolosov constant is k = 3 — 4v for plane strain or k¥ =
(3 —v)/(1+v) for plane stress; E and v are Young’s modulus and Poisson’s ratio, respectively.

For a general plane mixed mode I + II problem, the complex functions ¢(z) and x(z) can be chosen
as series of complex eigenvalue Goursat functions

b(z) = ZAnZA" _ Z Aprtne™? | y(z) = Z B! = Z B, it gl Gt D0 (13)
n=0 n=0 n=0 n=0
where the complex coefficients are A, = aj, + iay, and B, = by, + iby,. The eigenvalues A, and
coefficients ay,, az,, bi,, by, are real.
Substitution of the complex functions (13) into (12) gives the complete series expansions of the dis-
placements and stresses near the tip of the crack. For details, see [Karihaloo and Xiao 2008].
These solutions need to satisfy the proper symmetry conditions along the line of extension ahead of
the cohesive crack, and boundary conditions on the cohesive crack faces. Considering frictional cohesive
crack faces, the boundary conditions on the cohesive crack (0 =r =1,) are

Uy|9:n = Uyl@:—n #0, txy|9:rr = fxyl&:—n = _May|9:in7 (14)

where 11 equals the positive or negative value of the coefficient of kinetic friction, which is assumed to be
constant, depending on the relative sliding direction of the two crack faces. Specifically, iy > 0 when the
sliding displacement § is positive and py < 0 when § < 0. The length of the process (cohesive) zone /), is
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either prescribed (i.e., an initial cohesive zone exists before the loading is applied, and does not propagate
under the present loading) or is determined by the condition w = 1 in the normal cohesion-separation
relation (10) or (11) at the instant of growth of the pre-existing traction-free crack.

The separated crack tip asymptotic solutions can be obtained after satisfying the boundary conditions
(14). The complete asymptotic solutions are composed of two parts, corresponding to integer (A, =n+1)
and noninteger (A, = (2n + 3)/2) eigenvalues, respectively. These solutions are given in [Karihaloo and
Xiao 2008].

The displacements corresponding to the first integer eigenvalue are

2uu = r{lajy(c — 1) cos @ — 2y sin @] — asy (i + 1) sin @ — 2bf((cos 6 + puf sin0)},

(15)
2uv = r{[afo(/c —1)sin€ +2uyr cos 0] — aéo(lc +1)cos6 + beo(sine — iy cos6)}.
The displacements corresponding to the second integer eigenvalue are
2uu = r*{af, (k cos 20 — 2 — 3y sin 20) + a3, [—(k+1) sin 20 +2] — 3b1, (cos 26 + s sin20)}, (6)
2Uv = rz{afl (k sin20 —2 — 3z cos 20) + aél[(/c +1)cos20 +2]+ 3bf1(sin 20 — puy cos 20)}.
The displacements corresponding to the first noninteger (fractional) eigenvalue are
2pu = r3/2{a{0[(lc +1)cos 20 — 3 cos 16] +a20[ (k +32)sin 36 — 3 sin 161}, a7
20 = r¥{al [(c — 1) sin 30 — 3 sin 101 4 af [(c — 3) cos 20 + 3 cos 167
The displacements corresponding to the second noninteger eigenvalue are
2uu = rs/z{a‘lf1 [(« + %) cos %9 — % cos %9] + a{l [—(k + %) sin %9 + % sin %9]}, (18)

2uv =r¥{a] | [(c — 3)sin 30 + 3 sin 1014 af, [(c — 1) cos 30 + 3 cos 101).

Here superscript I distinguishes coefficients associated with integer eigenvalues, whereas superscript f
distinguishes coefficients associated with noninteger (fractional) eigenvalues.

For integer eigenvalues the opening displacement (COD) behind the cohesive zone tip and the sliding
displacement of the cohesive crack faces vanish

W="Vlg—x —Vlp=—x =0, S=ulo—g —ulo=—z =0, (19)

while oy and 7, are nonzero along the cohesive crack faces with

Oy =~ | p—tn chr —1+ch : (20)
fl 0<r<l
where
I I
) = (n+ 1) (n+2)(ay, +by,) cosnm o
fi
with
I I
= .2("10"‘[710)’ 22)
fi

since oy|g—+r = fr atr = 0.
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For noninteger eigenvalues,

Uy|9::|:7r =0, (23)
=2 =S d,r@2 = 332 4 Zd‘nr(Zn-i-S)/Z’ (24)
We O=r=i, n=0 n=1
Kk+1 f ©on+3y2 .. 2n+3
Slo<r<t, = — m Zaznr( n+3)/2 §in Trr, (25)
n=0
dy="Tlaf sin 2035 (26)

Set dy = dy and d, = d,/dy for n > 1. Then

f

do= - Tl d, =G in 234 @7)
HWe 19 2

By enforcing the cohesion-separation law (10) or (11), nonlinear relationships between d, and ¢, are
obtained. The general relationships can be found in [12]. In [13], these general relationships have been
explicitly derived for the simpler cohesion-separations laws (7) and (8).

4. Implementation in XFEM

To model the cohesive cracks in XFEM [Moés et al. 1999; Strouboulis et al. 2001; Babuska et al. 2003;
Karihaloo and Xiao 2003], a standard local FE displacement approximation around the crack is enriched
with discontinuous Heaviside functions along the crack faces behind the crack tip including the open
traction-free part, and the crack tip asymptotic displacement fields at nodes surrounding the cohesive
crack tip using the PU. The approximation of displacements for an element can be expressed in the form

ul (x) uo; by; Um (tip-4)
{vh(x)}:Z¢i(x){vgi}+ 3 ¢,-<x>H(x){b;{}+ 3 ¢m(x){vm} L8

iel jeanI J meMNI

where [ is the set of all nodes in the element, (uq;, vo;) are the regular degrees of freedom at node i, ¢;
is the FE shape function associated with node i, J is the subset of nodes whose support is intersected by
the crack but do not cover any cohesive crack tips, the function H(x) is the Heaviside function centred
on the crack discontinuity, and (b j, by ;) are the corresponding additional degrees of freedom. M is
the subset of nodes that are enriched around the cohesive crack tip £ with the asymptotic displacements
u(tip,/c) and v(tip,/()‘

The general asymptotic field for each integer eigenvalue has three independent terms, e.g., (15)—(16),
and each noninteger (fractional) eigenvalue has two independent terms, e.g., (17)—(18). The fields for
integer and noninteger eigenvalues need to be used together to produce the crack opening and non-
vanishing tractions.
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In order to improve the accuracy of stresses, we may use eight terms corresponding to one noninteger
eigenvalue and two integer eigenvalues as crack tip enrichment functions in (28)

) = 00, 09 (29)
where q(‘ip) = [a{o, a2’0, b{o, a{o, ago, all 1 aél, b{ I]T are additional nodal degrees of freedom at the
enriched nodes to be solved together with nodal displacements of conventional FEM.

In (29), ® is the matrix formed by (r, 8) terms dependent on the additional unknown coefficients in
(15)—(18).
For a mode I frictionless cohesive crack, the leading asymptotic displacement terms which correspond

to a first noninteger eigenvalue adopted in [Xiao and Karihaloo 2006a] that gives a normal displacement
discontinuity over the cohesive-crack faces can be used as crack tip enrichment functions:

32 1 30— 3 cos Lo 30

u= "5 il +3) cos 30 — 3 cos 30, (30)
r3/2 1\ oin 3 3einl

V= _ZM al[(K — z) sin 29 ) S 20] (31)

There are two possible ways to implement the above expansions in the XFEM. The first is to con-
sider directly the nonlinear relationships between d,, and ¢, and to obtain the cohesive stresses from
the expansions. This avoids iterations on the cohesion-separation law, but requires solution of a system
of algebraic equations with nonlinear constraints. The second way is to treat ¢, and d, as independent
variables, and satisfy the cohesion-separation law (10) or (11) iteratively. The cohesive stresses in this
case are obtained from the cohesion-separation law but not the expansions. However, these expansions
can be used to smooth the numerically computed results. This way is generally more convenient to
implement [11-13], and will also be used in the two examples below.

5. Examples, results and discussion

In this section, we will analyze typical mode I cohesive cracking problems of plain and fibre-reinforced
concrete using the above asymptotic fields and XFEM. We consider three-point bend beams without any
initial crack (Figure 1, left) made of plain concrete with the constant softening law (7), and of CARDIFRC
with the softening law (9). We actually assume a very small initial crack of length 0.1 mm at the bottom
midpoint of the beam. A state of plane strain is considered for all specimens. The geometrical parameters
are [ =4b, and t = b, where ¢ is the specimen thickness in the out-of-plane direction. The x-direction
of nodes with coordinates (0, 0) and (0, /) and y-direction of the node with coordinates (b, [/2) are
constrained; the central “point” load is distributed over two elements.

We consider first the three-point bend plain concrete beams with b = 150 mm. This problem was solved
in [11] with XFEM using the enrichment functions (30) and (31) for the linear and bilinear cohesion
separation relations (2) and (3). It was shown that very accurate results could be obtained in this way
with a coarse mesh (Figure 1, right) that would have required a much finer mesh with conventional FEM.

We have re-analysed the three-point bend beam using the constant traction law (7) with

f; =3.14MPa, w,=0.03886mm, G = 122N/m (32)
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Figure 1. Left: three-point bend beam. Right: coarse mesh for one half of the specimen
to the left of midspan (note rotation).

in order to study the influence of the shape of the cohesion-separation law on the global response. We
have used the same coarse mesh as before (Figure 1, right). However to improve the accuracy further,
we have used (15)-(18) as crack tip enrichment functions instead of the leading asymptotic displacement
terms of a mode I frictionless cohesive crack (30) and (31) adopted in [Xiao and Karihaloo 2006a].
The nondimensional load-midspan deflection curve is shown in Figure 2 and compared with that of the
bilinear law (loc. cit.). It is clear that although the tensile strength f; and specific fracture energy G
are the same, the initial branch of the cohesion-separation law produces very different responses: the
constant traction law produces a higher peak load but a more brittle overall response with a significant
snapback.

04
0.35 1 ---- Bilinear
0.3 4
0.25 - ~\
02 !
0.15
0.1

0.05 - e

0 \ \ \

— Constant

Load/(f;bt)

Deflection/bx10*

Figure 2. The nondimensional load-midspan deflection curves of the three-point bend
beam with constant traction and bilinear softening laws.
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Three-point bend fibre-reinforced concrete beam. We now consider a smaller three-point bend beam
b = 100 mm made of CARDIFRC. We found it convenient to approximate the polynomial form of
its cohesion separation relationship (9) by the bilinear relationship (3) with the material parameters
E =48 GPa, f; = 16 MPa, w; = 2.29 mm, f; = 3.9088 MPa and the Poisson’s ratio v equals 0.2. The
constraint and loading conditions are identical to the plain concrete beam. The discretised mesh is also
identical to that shown in Figure 1, right, after scaling the coordinates by a factor of 2/3. The asymptotic
displacements (30) and (31) are used as crack tip enrichment functions.

In the simulation, the first increment of the cohesive crack is 2.9 mm; thereafter the cohesive crack
propagates by a segment of length 2 mm after each step. When the cohesive crack has developed over the
entire depth of the specimen at a midspan deflection of about 3 mm, jump functions are used to enrich
all nodes on the crack faces. The simulation is continued by increasing the deflection by 0.5 mm in each
step. The load-midspan deflection curves are shown in Figure 3. The overall shape of the curve, peak
load and the corresponding displacement from the XFEM simulation using the bilinear law (figure inset)
agrees very well with the experiment (thin curve). The effect of large deformation has been ignored in
the present simulation, which may be significant at the final stage. If this effect is taken into account, the
agreement may be further improved.
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Figure 3. Large graph: load-deflection curves from experiments (thin curve) compared
with an approximate method (thick curve/squares) in which the cohesive zone is regarded
as a “hinge” in the central plane. Inset: load-deflection curve from the XFEM simulation.
The agreement with the experimental curve is excellent both in terms of the shape and
the maximum load carrying capacity.
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MECHANICS OF MATERIALS AND STRUCTURES:
A SIMULATION-DRIVEN DESIGN APPROACH

LENNART KARLSSON, ANDREAS PAHKAMAA, MAGNUS KARLBERG,
MAGNUS LOFSTRAND, JOHN GOLDAK AND JONAS PAVASSON

Engineering product development has developed considerably over the past decade. In order for industry
to keep up with continuously changing requirements, it is necessary to develop new and innovative
simulation methods. However, few tools and methods for simulation-driven design have been applied in
industrial settings and proven to actually drive the development and selection of the ideal solution. Such
tools, based on fundamental equations, are the focus of this paper.

In this paper the work is based on two cases of mechanics of materials and structures: welding and
rotor dynamical simulations. These two examples of simulation-driven design indicate that a larger
design space can be explored and that more possible solutions can be evaluated. Therefore, the approach
improves the probability of innovations and finding optimal solutions.

A calibrated block dumping approach can be used to increase the efficiency of welding simulations
when many simulations are required.

1. Introduction

Engineering product development has evolved considerably over the past decade. The vision of the
sustainable society and a global context for many industries is now forcing manufacturing companies
to develop innovative ways of developing their products. In addition, the product life-cycle will likely
be shorter in the future, partly because customers will demand shorter delivery times. Suppliers will
have to be more efficient than today and be able to assemble products from a large number of parts
from subsuppliers. Increasingly, the value of the product originates outside the physical artifact (the
hardware), in the form of services and add-ons. Instead of hardware ownership, other needs such as
availability, productivity and risk minimization increasingly need to be catered for. In such a challenging
environment and in order for industry to keep up with demand, it is necessary to develop new and
innovative simulation methods, knowledge management methods and tools and methods for distributed
work, to name a few.

In this paper, the focus is mainly on simulation-driven design applied on welding simulations (me-
chanics of materials) and rotor dynamical design (mechanics of structures). Below, the basic equations
for modeling and simulation of welding and the basic equations for modeling and simulation of nonlinear
dynamics are solved. For these two important problems, the way in which this fundamental modeling
can effectively be used in simulation-driven product development is demonstrated.

Keywords: simulation-driven design, calibrated block dumping, welding simulations, rotor dynamical simulations.
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Concept System-level Detail Testing and Production
& development design design refinement ramp-up

Figure 1. An example of a product development process.

Most industrial companies of any size follow some development process when developing their prod-
ucts. Figure 1 shows an example of such a development process from planning to production ramp-up
[Ulrich and Eppinger 1995].

Product development literature provides a broad view of how to understand customer needs, develop
and sell products, and includes discussions concerning best practices [Ulrich and Eppinger 1995; Wheel-
wright and Clark 1992; Cross 2000]. For example, Smith and Reinertsen [1998] offer a general view and
aim to describe methods for generating a product to meet customer needs. Recently, product development
processes have been extended to cover the whole process from needs to recycling.

Within the hardware product development domain, numerous tools have been developed to support
the creation of excellent goods; e.g., computer aided engineering for geometric representation [LaCourse
1995] and the finite element method for stress calculation, exemplified in this paper. Typically, this
work has been about making knowledge explicit and expressible and support tools have over time been
developed to aid the creation of the hardware.

Simulations are ideally supposed to be used in the earliest stages of the development process. Often,
however, there are few analyses involved until the detailed design stage is reached. At this stage simula-
tions are often used in a verifying sense, meaning that the designer submits a model to the analysts who
perform the analysis and then deliver the results to the designer. The results are used by the designer to
verify whether or not the proposed design will meet the criteria. If not, the designer needs to upgrade
the initial design, and then propose a new design for the analysts who perform a new simulation and so
on, see Figure 2.

This sequential simulation usage workflow in combination with little usage of simulations in the earli-
est stages of the development process gives an ineffective product development process. To overcome this
problem strategies for simulation-driven development have been proposed by some researchers [Courter
2009; Sellgren 1995; Wall 2007]. Naturally, such work has been ongoing for a relatively long time, as
exemplified by [Hansen 1974] and [Gero 1981]. The development processes discussed in literature are
often analyzed from an abstract point of view, while few reports exist on how simulation tools shall be
designed and used to enable such methodologies. That is, few tools and methods have been applied in
industrial settings and proven to actually drive the development and selection of the ideal solution.

Given these challenges, this paper is focused on briefly introducing the area of simulation driven
design (SDD) [Courter 2009], and based on that approach describing a block dumping technique applied
in welding simulations. Another application of the SDD approach is presented in the application area of
rotor dynamical design.

Proposed . - . -
detailed design Analysis H Redesign H Analysis H Redesign ‘

Figure 2. Sequential verifying simulation usage workflow.
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Thus, the objective of this paper is to show how tools for modeling and simulation of mechanics of
materials and structures shall be designed and used to enable simulation-driven product development.
The objective is exemplified through two cases of mechanics of materials and structures: welding and
rotor dynamical simulations.

2. Simulation-driven design methodology

In this paper a simulation-driven methodology is used [Bylund 2004; Goldak et al. 2007]. Bylund states
that one way of reaching simulation-driven design is by providing simulation tools that can be used by
the designers themselves. Designers thereby avoid having to send models and results back and forth,
often among several different people. For designers not used to analysis work to be able to perform the
necessary analyses, tools that are intuitive and include expert knowledge through equations of mechanics
of materials and structures are required. The results from the analyses must further be derived quickly
and must be easy to interpret. Hence, the demands on the simulation tools affect the preprocessing, the
solver and the postprocessing.

3. Simulation-driven design of welded structures

Welding is one of the most commonly used methods of joining metal pieces. In fusion welding, the
metal pieces are heated until they melt together, resulting in strong coupling between thermal, mechan-
ical and metallurgical (microstructural) properties. Due to the complexity of the welding applications,
the governing equations as well as the thermal, mechanical and metallurgical couplings, computational
support is necessary for prediction of distortions and residual stresses. The development of the field
of computational welding mechanics has been described in, for example, [Karlsson 1986; Goldak and
Akhlaghi 2005; Lindgren 2001a; 2001b; 2001c; 2007]. Much research has focused on predictions of
residual stresses and distortions [Chen and Sheng 1992; Lee et al. 2008; Ueda et al. 1988; Ueda and
Yuan 1993].

Several reports exist regarding validation of predictions of residual stresses and deformation [Barroso
et al. 2010; Karlsson et al. 1989; Mochizuki et al. 2000; Ueda et al. 1986]. The European Network
on Neutron Techniques Standardization for Structural Integrity (NeT) has a benchmark problem for a
single weld bead-on-plate specimen [Truman and Smith 2009]. By using finite element simulations, NeT
members have predicted and measured residual stresses and thermal fields of this benchmark problem by
different methods, the results of which have been compiled [Smith and Smith 2009a; 2009b]. In those
reports, different sources of errors are discussed, and it was also found that “there is much room for
improvement” regarding prediction accuracy.

In product development, residual stresses and distortions often need predicting to verify alignment
tolerances, strength demands, fatigue requirements, etc. It is important, for example, to keep track of the
residual stress- and deformation history when simulating a sequence of manufacturing processes [Deng
et al. 2009; Astrom 2004]. Different approaches have been developed for how to use welding simulations
to predict suitable sequences of weld paths. Troive et al. [1998] compared different predefined paths,
while Voutchkov et al. [2005] used surrogate models to solve a combinatorial weld path planning problem.
Efforts have further been made to show effects of deposition sequences regarding, for instance, residual
stresses and distortions [Ogawa et al. 2009]. Although a lot of research has been conducted on welding
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simulations, there is still a need for development of more efficient welding simulations and methodologies
for using such simulations to support design processes.

In this article, a strategy for improved efficiency of welding simulations is used as proposed in [Pahka-
maa et al. 2010], aiming at developing a simulation-driven design methodology for welding simulations.
In this work, the modeling and simulation software VrWeld from Goldak Technologies Inc. [Goldak
Technologies 2010] has been used to demonstrate the proposed strategy.

3.1. Welding simulation theory. The field of welding simulations described in this paper (computational
welding mechanics) is partially built upon earlier work within the fields of thermal, mechanical and metal-
lurgical (microstructural) properties of materials. The principles and applications of welding simulations
have been described in [Goldak and Akhlaghi 2005; Lindgren 2001b]. Welding simulation is a good
example of how mechanics of materials and structures can be put to practical use with the support of
computers. The essential features of computational weld mechanics (CWM) are [Goldak 2009]:

« It requires solving the nonlinear, coupled 3D transient partial differential equations (PDEs) for heat
flow (conservation of energy), microstructure evolution and stress-strain evolution (conservation of
momentum).

» The material properties are temperature, history dependent and involve phase changes.

The welding process usually adds material (filler metal), making the geometric domain a time-
dependent free surface problem.

The boundary conditions applied by fixtures, clamps and tack welds are complex and transient.

o The geometry of welded structures is often complex with many parts.

Modeling the heat source of the arc is itself complex.

3.1.1. Welding simulation software (VrWeld). VrWeld, part of the VrSuite software package, is a finite
element program used to simulate welding processes. VrSuite [Goldak Technologies 2010] uses operator
splitting to solve the system of equations needed to model manufacturing processes such as welding and
heat treating and the in-service behavior of assemblies of such manufactured parts. Each equation in
the system is solved with the algorithm, domain, parameters, initial conditions, boundary conditions,
length scale and time scale that best approximate the physics of the phenomena that the equation models.
Maps are created to map data from this equation to each equation that it is coupled to. Each equation
is solved iteratively using solvers such as frontal, multifrontal, ICCG, GMRES, MG and AMG [Saad
1996]. Limits and bifurcation points are computed using the Wriggers—Simo algorithm [Wriggers and
Simo 1990]. A version of Crisfield’s arc-length method [Ramm 1981] is used to follow the path of the
solution in nonlinear analysis. The meshing is largely automated. Domain decomposition and adaptive
meshing play an important role. Solvers run in-core using processors with 8 GB of RAM. The CPU-
intensive code is written in C++. The high-level code is written in a scripting language such as Tcl/Tk
or HTML.

3.1.2. Block dumping (fast simulations in VrWeld). Traditional transient welding simulations often use
a moving heat source such as the Gaussian double ellipsoid [Goldak and Akhlaghi 2005]; see Figure 3.
This approach has proved to accurately predict the temperature history, residual stresses and welding
distortions [Goldak and Akhlaghi 2005; Lindgren 2001a; 2001b; 2001c; 2007]. It is suggested that the
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Flux q(J/ms)—\\

Figure 3. Double ellipsoid heat source with Gaussian heat distribution [Goldak and
Akhlaghi 2005].

heat source may move no more than half of the weld pool length to function properly in three dimensional
welding simulations [Goldak et al. 1986]. This suggestion causes a transient welding simulation that
uses a moving heat source to be quite time consuming, even with present-day computational power.
The problem gets even more difficult when a large design space is to be explored, meaning that many
simulations are required.

A faster way to simulate the thermal history of a weld is the block dumping method [Goldak et al.
1986], also referred to as the prolonged Gaussian heat source [Cai and Zhao 2003]. The block dumping
approach heats the whole weld, or large pieces of it, in a single time step. This approach can reduce
the number of time steps in the welding simulation significantly and thereby reduce the total calculation
time without any appreciable decrease in accuracy [Pahkamaa et al. 2010]. With the block dumping
technique, the same parameters as the Gaussian Ellipsoid heat source are used to calculate the amount
of heat distributed to each element, i.e., voltage, current, efficiency, welding speed and parameters a;,
ay, b and c in Figure 3. The total amount of heat distributed to the model is identical to the heat input
of a traditional transient simulation. The difference is the time in which the heat is diffused. In each
block dump, the amount of heat added is exactly the same as the heat that would be added in a transient
analysis for this length of weld, and it is added in exactly the same way with the same transient time steps.
However, no heat diffusion is done until all heat has been added for this length of weld. Then one heating
time step is done with these applied nodal thermal loads to heat this length of weld. Following this heating
time step, the heat equation is solved for the structure as it cools with exponentially increasing length of
time steps. Usually, 4 to 6 cooling time steps are applied. The designer can choose to allow each block
dump to cool to ambient temperature or use a shorter cooling time in which the structure does not fully
cool, the latter approach is used in this paper. In the heating and cooling steps, the thermal-elastoplastic
stress analysis problem is solved. This process is applied for each block dump in the sequence of block
dumps specified by the designer.

3.2. Simulation strategy. The welding simulation strategy proposed in [Pahkamaa et al. 2010] (Figure 4),
which will be verified in this study, reduces the calculation time for welding simulations by replacing the
traditional moving heat source with a calibrated block dumping heat source. The block dumping heat
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1. Welding and material parameters. Gather information about the real welding process such as welding
method, welding speed, welding power and welding efficiency. The material parameters include thermal

and mechanical properties.

2. Geometry and preprocessing. Create CAD geometries of welded parts and possibly each weld and
import them into the welding simulation software (STL-files in VrWeld) where the initial simulation mesh
is created. Another approach is to create the initial mesh with external software and then import it into the
welding simulation software (ABAQUS is one example of a mesh format supported in VrWeld). Define me-
chanical and thermal constraints, material models and weld paths. Apply boundary conditions and external

loads.

3. Heat source and mesh calibration. (a) Calibrate the moving heat input model, for example, by results
from thermocouple measurements or weld cross-section samples. (b) Calibrate the mesh for a suitable com-
promise between accuracy and calculation time. This is normally done by running 3 or more simulations
with varying mesh density, and then evaluating how the result converges.

l

4. Block dump calibration. Run a series of block dump weld simulations with varying numbers of block
dumps. Compare the results from a moving heat source simulation with the block dump simulation results
to evaluate how many block dumps are needed to achieve the needed accuracy of the simulation. If a moving
heat source simulation will be too time consuming, the needed number of block dumps can be decided by
observing result convergence for an increasing number of block dumps. The level of accuracy is often
case-specific. Therefore, the decided number of block dumps can be applicable for similar products.

l

5. Design Space Exploration (DSE). Use the calibrated block dumping simulation to explore the design
space: welding sequences, welding parameters, weld geometries, designs, and so on. The use of design of
experiments (DoE) or optimization can further increase the efficiency of the DSE.

l

6. Verifying results with moving heat source simulation. Compare a portion of the result from the DSE
to corresponding simulations with a moving heat source or with an increased number of block dumps to
ensure that results obtained in the previous step are accurate enough.

l

7. Physical testing and/or manufacturing. Proceed with physical testing and/or manufacturing based on
the results achieved from the welding simulations. The amount of physical testing should at this stage have
been reduced compared to a situation where no welding simulations have been performed.

Figure 4. Suggested welding simulation strategy for simulation-driven design. From
[Pahkamaa et al. 2010].
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Figure 5. Rear frame and rear axle bridge.

source is calibrated to give a good compromise between simulation accuracy and calculation time, thus
allowing a larger design space to be explored during a given period of time. A rear axle bridge from
a Volvo Construction Equipment wheel loader is used as a demonstrator case to show that steps 1-6
work on an industrial application. Twenty different welding sequences are compared to find the welding
sequence that gives the smallest welding distortion at key positions.

3.3. Welding case study. The object of this case study is a rear axle bridge from a Volvo Construction
Equipment wheel loader. The axle bridge is positioned in the rear frame as in Figure 5. An axle working
as a pivot for the rear axle assembly is mounted in the two holes in the axle bridge. The axle is supported
by journal bearings, which are lubricated with oil from the rear axle differential. The concentricity
between the two holes and the parallelism and perpendicular alignment between the plates are two im-
portant tolerance demands for the axle bridge. Due to these requirements, it is important that the welding
process used to manufacture the axle bridge does not introduce excessive deformations. Therefore, the
aim of this case study is to derive a suitable welding sequence that minimizes the welding distortion in
the axle bridge. Identifying the proper welding sequences is done by use of the proposed simulation
strategy; see Figure 4.

3.3.1. Welding and material properties. The three plates are joined by welds, marked a—d in Figure 6;
the welds have a throat size of 6 mm. The axle bridge is manually tack-welded with 40 mm long tack
welds at start, mid and end of the four welds. The tack welding is performed in a separate fixture; the
tack welded axle bridge is then positioned in the welding fixture shown in Figure 6. An automated MAG
welding process then applies the four welds, with the following parameters:

Power: 10880W (34V, 320A)
Efficiency: 85%
Welding speed: 37 cm/min

3.3.2. Geometry and preprocessing. A CAD model of the axle bridge assembly was provided by the
manufacturer. This CAD model was imported to Siemens PLM NX6, where small features were re-
moved to ease the meshing process. The idealized part shown in Figure 7 was exported to the welding
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Figure 6. Real axle bridge placed in its welding fixture. The weld joints (a—d) are
marked with white lines; welds a and c¢ are placed underneath the center plate.

simulation software (VrWeld) in STL-format. The simulation model was then created in VrWeld by
defining weld joints, assigning materials, creating an initial mesh and assigning initial conditions and
boundary conditions, etc. The material model described in [Andersson 1978] was used for both plates
and filler metal. The used fixture shown in Figure 7 prevents rigid body motions (locks six DOFs)
without restraining the growth/shrinkage of the plates. This fixture modeling method was used, since the
real fixture only clamps one of the plates, and should therefore not have a large impact on the welding
distortions. The welding distortion in the rear axle bridge was measured as the global displacement of
points P1 and P2. The global ambient temperature is set to 300° K.

dx=dv=0 dx=dy=dz =0

Figure 7. Idealized axle bridge, evaluation points and constraints.
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Figure 8. Comparison of weld cross section photograph and simulated heat input.

3.3.3. Moving heat input calibration. The moving heat input model was calibrated by use of a weld
cross section photograph, see Figure 8. The trial and error method was used to find suitable heat input
parameters that describe the shape of the Double Ellipsoid heat source. The calibrated parameters are as
follows (see Figure 3):

a; = 10mm a, = 6mm b =6mm c =8 mm

3.3.4. Mesh and block dump calibration. Three models with different mesh density were created, as

follows:
Mesh # Volume elements Elements in weld joint (cross-section)

1 13237 5
2 27142 7-9
3 42665 12-15

For each of them, seven welding simulations were run, with an increasing number of block dumps (4,
8, 15, 20, 30, 40, 50). Ten cooling time steps were used in each block dump simulation. The “Fast
Simulation” option in VrWeld uses the same number of block dumps for all welds. Therefore, a full-
length weld will be welded with the same number of block dumps as a half-length weld. Thus, a welding
sequence with full-length welds and, for example, 20 block dumps will be simulated in 90 time steps
(4 welds x 20 block dumps + 10 cooling time steps), while a welding sequence with half-length welds
will be simulated in 170 time steps (8 welds x 20 block dumps + 10 cooling time steps). The case used
to calibrate the mesh and number of block dumps has four half-length welds and two full-length welds
(see Appendix).

The absolute displacement of points P1 and P2 (see Figure 7) was used to evaluate the results. Figure 9
shows results for point P1, similar results were obtained for point P2. From Figure 9 it can be concluded
that there is little difference in results between mesh 2 and 3, while the results from mesh 1 deviate
significantly. The difference between mesh 2 and 3 is only 0.1 mm when 40 block dumps are used. Based
on these results, mesh number 2 and 40 block dumps will be used for the DSE. The chosen simulation
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Figure 9. Mesh and block dump calibration. There is a difference of 0.1 mm between
Mesh 2 and Mesh 3 when 40 block dumps are used.

Figure 10. The chosen simulation mesh has 8 elements across the weld joint and 27142
elements in total.

mesh is shown in Figure 10. To verify predictions made by use of the chosen mesh and number of block
dumps, the results should be compared with the results from simulations with a moving heat source. If
the same best welding sequence is being predicted by the two models, the chosen mesh and number of
block dumps are considered to be sufficient.

3.3.5. Design space exploration. A structure that has four welds, such as the axle bridge, can be welded
in 384 (2* x 4!) different ways. The large number of combinations is possible when allowing the welds
to be laid in any order (4!) and in both directions 4. If only half welds are allowed, the number of
possible welding combinations grows to about 10 million possible combinations (28 x 8!). Design space
exploration (DSE) refers to exploring the set of possible welding combinations and selecting a subset
which meets the requirements. In this case, it is not practical to explore the entire design space. To
show how welding sequences influence the displacements in P1 and P2, twenty different sequences are
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Figure 11. Comparison of displacement of points P1 (top) and P2 (bottom) for welding
sequences 1-20. The displacement is plotted as x-, y- and z-components and absolute
displacement.

simulated; see the Appendix. The results from the twenty welding sequences are shown in Figure 11.
Here, the displacement in the x-, y- and z-directions as well as the absolute value is presented for points
P1 and P2 for each welding sequence. These results show that welding sequences 9, 10, 16 and 17 give
the smallest displacements for P1 and P2, while welding sequences 14, 15, 18 and 19 give the largest
displacements in these points. To further illustrate the difference between the welding sequences, the
sum of the absolute displacement of points P1 and P2 is shown in Figure 12. This figure shows that
welding sequences 16 and 17 give the smallest total displacement (3.8 mm), while welding sequences 15
and 19 give the largest total displacement (13.0 mm). Figure 13 shows the displacement field amplified
20 times for welding sequences 17 and 15.

3.3.6. Verification of simulation strategy. To ensure that the chosen number of block dumps gives suf-
ficient accuracy, it is suggested that a small number of moving heat source simulations are performed.
In this case, to show that high accuracy has been achieved with the block dumping method, simulations
with a moving heat source for all twenty welding sequences were conducted. It was found that the block
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Figure 12. Total displacement calculated as the sum of the absolute displacement of
points P1 and P2. Notice that welding sequences 16 and 17 give the smallest total dis-
placement (4 mm), while welding sequences 15 and 19 give the largest total displacement
(13 mm).

0.00448
0.00431

Figure 13. Comparison of best (#17) and worst (#15) welding sequences. Colors indi-
cate displacements, given in mm on the scale on the right and magnified 20 times in the
geometric representation.

dumped simulations deviate by 0.7 mm (mean value) compared to the moving heat source simulations.
Both simulation approaches predict the same welding sequences to give the smallest and largest welding
distortions in P1 and P2. Welding sequences 1-4 are welded with full-length welds only and simulated
in 170 time steps. Welding sequence 20 is welded with two full-length welds and four half-length welds
and simulated in 250 time steps. Welding sequences 5—-19 are welded with eight half-length welds and
simulated in 330 time steps. The moving heat source is simulated in 450 time steps. Hence, the number
of time steps has then been reduced by 60% (welding sequences 1-4), 45% (welding sequence 20) and
25% (welding sequences 5-19).

3.4. Welding case discussion. This case study has shown that calibrated block dumping simulations
can reduce the calculation time compared to moving heat source simulations. The results from the block
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Figure 14. Comparison between block dumped and moving heat source simulations.

dumped simulations were able to point out the best (16 and 17) and worst (15 and 19) welding sequences
(Figure 14), which was identical to the results obtained with the moving heat source simulations. The
block dump calibration and mesh calibration for this case study was performed by running 21 simulations.
Thus, using the calibrated block dump method to simulate as few as twenty welding sequences will not
save much time. The strength of this method becomes obvious when a larger design space is explored,
when hundreds or thousands of welding simulations are performed.

This work is done on the assumption that the 3D transient welding simulations approach used in this
paper is able to predict residual stresses and welding distortions correctly. Future work should involve
validation of the simulation results obtained in this paper.

This case study has shown that it should be possible to use a simulation-driven design approach in
the design process regarding welded structures. Twenty different welding sequences were compared,
showing that welding sequences 16 and 17 gave the smallest welding distortions in P1 and P2 and could
therefore be considered as the best suited for this structure.

Future work should explore the possibilities of combining the calibrated block dumping simulations
with design of experiments or optimization routines to further rationalize the design process of welded
structures. A computer program made to generate suitable welding sequences to be explored would
significantly decrease designer manual labor. The welding sequences listed in Table 2 where defined
manually, which was a quite time consuming task.

It would also be valuable to perform a similar case study where the block dumps are defined by their
length instead of the number of block dumps per weld.

4. Simulation-driven rotor dynamical design

Few CAE systems support rotor dynamical analysis, and if they do they have restricted functionality.
Therefore, specialized software is commonly used when designing rotating machinery. These specialized
rotor dynamical codes often include a lot of functionality, but for nonexperts, they can be difficult to use.
In order to facilitate simulation-driven design, an in-house rigid body rotor dynamical demonstrator code
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called RESORS has been developed at Lulea University of Technology, Division of Computer Aided
Design. The aim is to enable nonexperts to conduct advanced nonlinear rotor dynamical analyses very
early in the product development process. By this strategy, sending analysis requests to experts can be
avoided, allowing possibilities for exploring a larger part of the design space.

4.1. Rotor dynamical theory. Rotor dynamical theory was basically developed during the last century,
but started earlier, with Rankine [1869], who incorrectly predicted that the first critical speed could not
be exceeded. In the late nineteenth century, de Laval practically proved (see [Childs 1993]) that rotating
machinery can run supercritically, which was later verified by Jeffcott [1919]. Since it was introduced, the
Jeffcott rotor model has been widely used for different scientific purposes; see for example [Childs 1982;
Karlberg and Aidanpéd 2003; Karlberg and Aidanpdi 2004]. In linear rotor dynamics, eigenfrequencies
depend on the spin speed due to the gyroscopic effect. In addition, the direction of the vibration is
important, and forward whirl therefore has to be distinguished from backward whirl [Genta 1999]. Some
rotor dynamical systems become strongly nonlinear due to for example clearances [Chu and Zhang 1997;
Edwards et al. 1999; Ganesan 1996; Goldman and Muszynska 1995; Muszynska and Goldman 1995],
processes [Karlberg and Aidanpéa 2007], bearings [Harris 1991] etc. Hence, in rotor dynamical software,
it is important to enable predictions of linear as well as nonlinear analysis of rotating machinery

4.2. Simulation strategy. To show how RESORS rationalizes a design process at early stages of the
product development process, an SDD approach is applied on an industrial development case. The SDD
approach can (in this example) be divided into three steps, starting with gathering of information —
requirements, limitations, parameter ranges, etc. Even if nonlinear systems are to be designed, the
designer should start with a linearized simulation model. This model is primarily used to decide the mesh
density and to set suitable damping but also to get an understanding of critical speeds and mode shapes
(which may be of interest even in nonlinear systems). To avoid vibration problems due to nonlinearities,
at the final step, a fully nonlinear simulation model is studied. Since common postprocessing methods
fail in nonlinear systems (Campbell diagrams, critical speeds, mode shapes, etc.), other methods are
required.

4.3. Rotor dynamical case study. In every product development project there are limits to the design
space. Before starting modeling and simulation work, information regarding design space boundaries
needs to be gathered.

4.3.1. Information gathering. In the industrial case used for this paper an overhung rotor system will
be designed. The shaft will be supported by radial bearings in order to enable axial displacement during
operation. The machinery will be powered by an electrical motor running at 1500 rpm. Earlier concepts
were subcritical, but in the scenario presented here a supercritical machine is to be developed.

In previous designs, bearings without clearance were used. Table 1, on the next page, lists the needed
properties from the latest design, which will be used as a starting point.

The damping ratios are between 0.6% and 16% when considering all vibration modes. In this scenario
it is assumed that all parameters shown in Table 1 are fixed except for the rotor mass, the pedestal stiffness,
the clearance and the allowed rotor mass. The rotor mass is allowed to be varied between 1800 kg and
2200 kg, the pedestal stiffness between 10’—10° N/m and the clearance between 0.01-0.1 mm.
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Shaft: Density 7800 kg/m? Rotor : Shaft position Right end
Young’s modulus 200 GPa Mass 2000 kg
Length Im Polar mass 1 200 kg m?
Radius 0.1m Transversal mass I 100 kg m?
Pedestals : Shaft position 0/0.8m Load: Rotor unbalance  10~*m
Type Radial, no clearance Gravity 9.8 m/s>

Isotropic stiffness 10% N/m (both)

Table 1. Properties of latest design (/ = moment of inertia).

4.3.2. Analysis by use of linearized simulation model. To rapidly converge on suitable solutions a lin-
earized simulation model, without clearance, is initially used. The objective of this analysis is to find
suitable pedestal stiffness and rotor mass that give a supercritical system.

Preprocessing. Figure 16a (next page) shows the graphical user interface (GUI) for the preprocessing
step in RESORS. Here, the designer is requested to enter data for the model (concept) to be analyzed.
The GUI is designed so that the in-data fields are directly coupled to physical properties, and thus easy to
understand. The designer enters data about the shaft, the rotor (disc), the pedestals (supporting structure),
the load, the spin speed and damping. To simplify implementation of pedestal data, different types of
supporting structures (stiffness matrices) are predefined for the designer to test (see Figure 16b). Another
common issue to deal with is damping. In RESORS (and other commercial software) proportional damp-
ing is implemented and hence two parameters, o and 3, can be chosen to get suitable damping. The choice
of o and B usually requires some experience; therefore, a procedure has been implemented in RESORS
showing the minimum and maximum damping ratio for each set of parameters. This gives direct feedback
to the designer, who can then choose suitable ranges for the damping ratios (see Figure 16¢). Entering
all in-data to the preprocessor typically takes a few minutes.

Mesh convergence. In the next step of the design process it is suggested that the mesh density is checked
by means of variation of eigenvalues. Figure 15 shows the preprocessed model (by use of in-data from
Table 1) with three different mesh densities: two, seven and fifteen elements.

Eigenfrequencies are derived without numerical simulation in time domain. In RESORS, the deriva-
tion of Campbell diagrams is therefore implemented directly in the postprocessor and is usually obtained

0.5 0.5 0.5
g 9 g
Unbal. 1 Unbal. 1 Unbal. 1
> 0 - > 0 - > 0 -
[TTTI LTI
. " isc. 1 " . isc. 1 . . isc. 1
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-0.5 0 025 1 1.5 -0.5 0 025 1 15 -0.5 0 025 1 1.5

Figure 15. Three different mesh densities.
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Figure 16. (a) Preprocessing GUI in RESORS. (b) Pedestal selection. (c) Damping ratio selection.

within a few seconds. Figure 17 (page 293) shows how the eigenfrequencies as a function of spin speed
(Campbell diagram) depend on the mesh density of the case studied (the black dots, triangles and plus
markers). From this figure it can be concluded that, except for the second forward whirl mode at large
spin speeds, the eigenfrequencies show little mesh density dependency.

In this scenario, a machine running just above the first forward whirl frequency is to be designed and,
hence, even the coarsest mesh gives enough accuracy and will therefore be used henceforth.

Selection of pedestal stiffness and rotor mass. When a suitable mesh density has been obtained, the
designer can test different concepts by changing parameters in the preprocessor, conduct numerical sim-
ulation (when needed) and postprocess and analyze the results. The blue ring in Figure 17 shows that the
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Figure 17. Campbell diagram for different mesh densities.

first critical speed, i.e., the intersection between the unbalance excitation frequency and the first forward
whirl frequency (dashed line and black dotted line in Figure 17), is somewhere between 25Hz and 30 Hz.
Since a supercritical machine will be designed, the critical speed must be decreased below 25 Hz. The
red lines in Figure 17 show the Campbell diagram when increasing the mass to 2100 kg and decreasing
the pedestal stiffness to 5 x 107 N/m. The gray ring in Figure 17 shows that, by these design justifications,
the critical speed is around 20 Hz and, hence, the machine will run supercritically. A set of parameters
that give a suitable Campbell diagram can typically be found in a few minutes.

4.3.3. Analyses by use of fully nonlinear simulation model. Karlberg [2010] showed that the pedestal
stiffness may depend on the amount of clearance in bearings. Karlberg et al. [2010] showed that this
clearance can give rise to a significant decrease in resonance frequencies. It was also shown that due
to clearance, the unbalance may excite both forward and backward whirl motion. Hence, in order to
indicate that the machine will run supercritically as predicted by the linearized model, a fully nonlinear
analysis including the clearance must be conducted.

Analysis of clearance dependency. In this step of the analysis process, the designer returns to the prepro-
cessor and changes the linear pedestals with pedestals including bearings with clearance, which is done
from drop-down lists. In RESORS the possibility of varying parameters has been implemented. This
is done by choosing the parameter to be varied from a drop-down list, and then entering the parameter
ranges and where on the model to store the data. Since the system is nonlinear, regular analysis measures
such as eigenfrequencies cannot be used. Therefore, a transfer function approach has been implemented
in RESORS, where random load is applied to the model leading to vibrations, which are measured.
Figure 18 shows the transfer function of 6 as a function of the bearing clearance at the rotor when a
random load was applied in the x-direction at the rear bearing. Red indicates high vibration amplitudes,
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Figure 18. Resonance frequencies as a function of bearing clearance.

while blue indicates low vibration amplitudes. The model has a spin speed of 25 Hz Figure 18 shows
that the first four eigenfrequencies at zero clearance are 16 Hz, 18 Hz, 58 Hz and 92 Hz.

Figure 18 shows that when the clearance in the bearings is increased to 0.2 mm the resonance frequen-
cies decrease up to 20 Hz. The resonance frequencies within this clearance range do not coincide with
the spin speed, but a clearance below 0.1 mm is still recommended, since the first multiple of the spin
speed (50 Hz) may also excite the system and hence cause resonance. In order to verify that a suitable
design has been developed, in the final step the designer runs an unbalance response simulation of the
fully nonlinear model. The dashed line in Figure 19 is the unbalance response for the largest acceptable
clearance (0.1 mm). As a reference, the unbalance response of the linearized model is also shown (solid
line in Figure 19). Unlike the linear model, analysis of the nonlinear unbalance response shows that
critical speeds can occur at more intersections than between the spin speed and the first forward whirl
frequency.

The time needed to conduct the nonlinear analysis described above is usually around one hour.

4.4. Rotor dynamical case discussion. To show how simulation-driven rotor dynamical design can be
conducted a tool named RESORS has been developed and evaluated. The proposed methodology consists
of three steps: gathering of information, analysis by use of linearized models, and by use of nonlinear
models.

In RESORS, information based on expert knowledge has been implemented, such as different pedestal
types, choice of damping parameters, postprocessing tools as transfer functions for nonlinear systems,
etc., meaning that the designer does not have to bother about rotor dynamical details. The GUI of
RESORS has further been designed to be intuitive and easy to use, featuring e.g., clear descriptions
of in-data fields and units, drop-down lists for specific choices, few steps in pre and postprocessing,
etc. The post processor in RESORS is designed so that important engineering measures are directly
derived without further data processing, e.g., Campbell diagrams, mode shapes, transfer functions and
load responses (maximum vibration amplitudes).
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Figure 19. Unbalance response of linearized model (solid line) and nonlinear model
(dashed line).

For the specific case used in this paper an overcritical rotating machine including bearings with clear-
ance was to be developed, meaning that the system becomes strongly nonlinear and, hence, traditional
analysis fails. By comparing the results from the linearized model (used to derive a suitable mesh den-
sity) with the results from the fully nonlinear model it was found that the resonance frequencies have a
strong dependency on the clearance. Hence, a nonlinear analysis is necessary when designing rotating
machinery supported on bearings with clearance. Although advanced equations and simulation strategies
are required for this type of analysis, with RESORS, analysis is still easy for the designer.

The total time to finish one loop of the proposed three-step methodology is typically around one and
a half hours, to be compared with traditional “over the wall” strategies, which usually take days or even
weeks per iteration. Hence, by use of the proposed simulation-driven design methodology and effective
and intuitive simulation software, a lot of time is saved (days or even weeks). This time can instead
be used to test other possible solutions to the problem —in other words, a larger design space can be
explored, thereby improving the innovation probability.

5. Conclusions

To show how tools for modeling and simulation of mechanics of materials and structures can be designed
and used to enable simulation-driven product development two case studies have been used. In both cases,
fundamental equations as discussed in Sections 3.1 and 4.1, serve as basis for the software design and
development in this paper.

The first case study concerned welding simulations of a Volvo Construction Equipment wheel loader
rear axle bridge (mechanics of materials), while the second case study concerned design of a supercritical
rotating machine (mechanics of structures).

In the welding case study, a simulation-driven design methodology is applied in order to find suitable
welding sequences for a Volvo Construction Equipment wheel loader rear axle bridge. It can be concluded
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that by use of a calibrated mesh density and block dumping heat source, the efficiency of the welding
simulations was improved with sufficient simulation accuracy.

A program (RESORS) enabling simulation-driven design has been developed and used for the rotor
dynamical case study. This software has been designed for improved usability compared to commercial
codes used for rotor dynamical analysis through the GUI, being developed purposely for the specific
application. The software has been found to be intuitive, efficient and easy to use for designers and
improves postprocessing and analysis even for challenging, nonlinear problems.

The methodology used in the two widely different cases both shows that the efficiency in the analysis
of challenging problems can be significantly improved through developing advanced tools suitable for use
by design engineers. Important features for enabling simulation design by designers are (i) a graphical
use interface enabling simulation-driven design; (ii) software built on ambient expert knowledge, made
usable for the designer; (iii) significantly decreased time from preprocessing to analysis compared to
commercially available codes; and (iv) postprocessing and analysis made easy for designers.

These two examples of simulation-driven design by designers indicate that a larger design space can
be explored and that more possible solutions can be evaluated. Therefore, the approach improves the
probabilities of innovation and finding optimal solutions.

Furthermore, the calibrated block dumping results presented in Section 3.3 can be used to increase
the efficiency of welding simulations when many simulations are required.
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Appendix: Design space exploration: simulated welding sequences

Sequence Welding sequence WeldPath | nbSubPasses | StartWF | EndWF StartTime (s)
number 1st | 2nd 1st | 2nd 1st | 2nd
[ '
Dump and 5 S a(l) 1 0.0 1.0 0
Mesh - Pt b(2) 1 1.0 0.0 158
Calibration LA -7 c(3.4) 2 0.011.0 | 0.510.5 3171396
e d (5,6) 2 0.011.0 | 0.510.5 4751554
1
- a(l) 1 0.0 1.0 0
._«-’ 3 2 b (2) 1 0.0 1.0 158
~27 c(3) 1 0.0 1.0 317
. d4) 1 0.0 1.0 475
2 4
a(l) 1 0.0 1.0 0
A 3T b(3) 1 0.0 1.0 317
-7 c(2) 1 0.0 1.0 158
o d 4) 1 0.0 1.0 475
3
T a(l) 1 0.0 1.0 0
&3 It b(?2) 1 1.0 0.0 158
ol c(3) 1 0.0 1.0 317
. d4) 1 1.0 0.0 475
4
a(l) 1 0.0 1.0 0
b (3) 1 1.0 0.0 317
c(2) 1 0.0 1.0 158
d@) 1 1.0 0.0 475
5
a(1,2) 2 0.011.0 | 0.510.5 0179
b (3,4) 2 0.011.0 | 0.510.5 1581237
¢ (5,6) 2 0.011.0 | 0.510.5 3171396
d(7.8) 2 0.011.0 | 0.510.5 4751554
6
a(1,2) 2 0.510.5 | 0.011.0 0179
b (3.4) 2 0.510.5 | 0.011.0 1581237
¢ (5,6) 2 0.510.5 | 0.011.0 3171396
d(7.8) 2 0.510.5 | 0.011.0 4751554
7
a(1,2) 2 0.510.5 | 0.011.0 0179
b (3,4) 2 0.510.5 | 0.011.0 1581237
¢ (5,6) 2 0.011.0 | 0.510.5 3171396
d(7,8) 2 0.011.0 | 0.510.5 4751554
8
a(1,2) 2 0.510.5 | 0.011.0 0179
b (3,4) 2 0.011.0 | 0.510.5 1581237
¢ (5,6) 2 0.510.5 | 0.011.0 3171396
d(7.8) 2 0.011.0 | 0.510.5 4751554
9
a(1,3) 2 0.011.0 | 0.510.5 01158
b (2,4) 2 1.010.0 | 05105 791237
c(5,7) 2 0.011.0 | 0.510.5 3171475
d (6,8) 2 1.010.0 | 05105 396 1 554
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10
a(1,3) 2 0.510.5 | 0.011.0 01158
b (2,4) 2 05105 | 1.010.0 791237
c(5,7) 2 05105 | 0.011.0 3171475
d (6,8) 2 05105 | 1.010.0 396 | 554
11
a(1,2) 2 05100 | 1.0105 0179
b (3.4) 2 05100 | 1.0105 1581237
¢ (5,6) 2 05100 | 1.0105 3171396
d (7.8) 2 05100 | 1.0105 4751554
12
a(1,2) 2 05110 | 0.0105 0179
b (3.4) 2 05110 | 0.0105 1581237
c (5,6 2 05100 | 1.010.5 3171396
d(7,8) 2 05100 | 1.0105 4751554
13
a(1,2) 2 05110 | 0.0105 0179
b (3.4) 2 05100 | 1.0105 1581237
¢ (5,6) 2 05110 | 00105 3171396
d (7,8) 2 05100 | 1.0105 4751554
14
a(1,3) 2 00110 | 05105 01158
b (2,4) 2 00110 | 05105 791237
c(5,7) 2 0.011.0 | 05105 3171475
d (6,8) 2 00110 | 05105 3961554
15
a(1,3) 2 05105 | 0.011.0 01158
b (2,4) 2 05105 | 0.011.0 791237
¢ (5,7) 2 05105 | 0.011.0 3171475
d (6,8) 2 05105 | 0.011.0 396 | 554
16
a(1,4) 2 00110 | 05105 01237
b(2.3) 2 00110 | 05105 791158
c(5,8) 2 0.011.0 | 05105 3171554
d (6,7) 2 00110 | 05105 3961475
17
a(1,4) 2 0.510.5 | 0.011.0 01237
b(2.3) 2 05105 | 0.011.0 791158
c(5,8) 2 05105 | 0.011.0 3171554
d (6,7) 2 05105 | 0.011.0 3961475
18
a(1,5) 2 0.011.0 | 05105 01317
b (2,6) 2 00110 | 05105 791396
c(3,7) 2 00110 | 05105 1581475
d4,8) 2 00110 | 05105 2371554
19
a(1,5) 2 05105 | 0.011.0 01317
b (2,6) 2 05105 | 0.011.0 791396
c(3,7) 2 05105 | 0.011.0 158 1475
d (4,8) 2 05105 | 0.011.0 2371554
20
i a(l) 1 1.0 0.0 0
— b(Q2) 1 0.0 1.0 158
* 5 c (4,6) 2 1.010.0 | 05105 3961554
d (3,5) 2 1.010.0 | 05105 3171475
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DISSIPATION ENERGY AS A STIMULUS FOR CORTICAL BONE ADAPTATION

NATARAJAN CHENNIMALAI KUMAR, IWONA JASIUK AND JONATHAN DANTZIG

We present a finite element study of a poroelastic rectangular beam subjected to oscillatory bending
loads. This geometric model is chosen for simplicity, as an idealized representation of cortical bone. We
then propose the use of the dissipation energy of the poroelastic flow as a mechanical stimulus for bone
adaptation, and show that it can predict the effect of frequency of the applied load. Surface adaptation
in the model depends on the weighted average of the mechanical stimulus in a “zone of influence” near
each surface point, in order to incorporate the non-locality in the mechanotransduction of osteocytes
present in the lacunae. We show that the dissipation energy stimulus and the resulting increase in second
moment of inertia of the cross section increase linearly with frequency in the low frequency range (less
than 10 Hz) and saturate at the higher frequency range (greater than 10 Hz). Similar non-linear adaptation
frequency response also has been observed in numerous experiments. Our framework is readily extended
to the modeling of cortical bone using actual bone geometries.

1. Introduction

Bone is a mechanically sensitive biological tissue, which adapts its size, shape, mass and density based
on its mechanical environment [Cowin 2001]. It has been long recognized that a dynamic stimulus is re-
quired for bone adaptation [Rubin and Lanyon 1984; Turner 1998; Lanyon and Rubin 1984]. Researchers
have shown that the adaptation depends on a combination of different mechanical stimuli such as the
magnitude [Rubin and Lanyon 1984; Burr et al. 2002; Lanyon et al. 1982] and frequency of applied load
[Burr et al. 2002; Lanyon et al. 1982; Hsieh and Turner 2001; Warden and Turner 2004], number of cycles
[Rubin and Lanyon 1984; Turner 1998], and bouts of the applied loading [Robling et al. 2000; Robling
et al. 2001; 2002]. The adaptation response is initiated when the applied strain exceeds a threshold value,
and increases with the magnitude of applied strain [Rubin and Lanyon 1984; Lanyon et al. 1982]. Turner
et al. [1994] observed significant cortical bone adaptation when the loading frequency exceeded 0.5 Hz.
At low frequencies (between 0.5 and 10 Hz), it has been observed that adaptation in rat ulnae follows an
approximately linear dose-response relationship with frequency [Hsieh and Turner 2001]. Warden and
Turner [2004] found no significant increase in the adaptation response when the frequency of loading
was increased beyond 10 Hz. Rubin and coworkers investigated the effect of very low magnitude high
frequency (greater than 30 Hz) loading on sheep standing on a vibrating plate 20 minutes per day for a
year. Trabecular bone volume increased more than 30%, but no significant changes were found in the
cortical bone [Rubin et al. 2001; 2002]. Qin et al. [2001; 2000; 1999] showed that cortical bone responds
to applied pressure gradients in the intermedullary fluid through periosteal bone formation, without any
applied mechanical loading.

Keywords: poroelasticity, dissipation energy, interstitial fluid flow, cortical bone adaptation, finite element modeling, evolution
law.
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Several groups have examined the relationship between mechanical loading on bone and the associated
fluid flow inside the various internal porosities. Knothe Tate and Knothe observed the fluid flow in and
out of cortical bone in sheep forearms under applied load [Knothe Tate and Knothe 2000]. Knothe Tate
et al. showed similar load-induced fluid flow in rat tibia subjected to bending, and also indicated the role
of the fluid flow in mechanotransduction [Knothe Tate et al. 2000]. Numerous mechanisms have been
proposed to explain the effect of fluid flow on the osteocytes e.g., via shear stress on the cell surface
[Reich et al. 1990], drag force on the transverse fibrils that tether the osteocyte to the canalicular walls
[Weinbaum et al. 1994], strain generated electric potentials [Pollack et al. 1984; Salzstein and Pollack
19871, or biochemical diffusive gradients [Robling et al. 2008].

Weinbaum and co-workers developed an analytical model that describes the hierarchical nature of
the lacunocanalicular porosity in the cortical bone, using the results from Zhang and Cowin [Zhang and
Cowin 1994] at the macroscale, coupled to mechanical model at the cellular length-scale [Zhang and
Cowin 1994; You et al. 2001; Han et al. 2004]. These works demonstrated that the fluid-induced shear
stress and drag force on the osteocyte process tethering fibers can amplify local strains by more than 50
times compared to the tissue level strains [Han et al. 2004]. They also showed that the strain amplification
factor varies non-linearly with respect to the loading frequency, in a similar way as the adaptation re-
sponse observed in the experiments mentioned earlier. Fritton and Weinbaum’s extensive review [2009]
provides a more complete description of fluid flow induced mechanotransduction in cortical bone.

In [Chennimalai Kumar et al. 2010] we developed a framework for modeling cortical bone adapta-
tion which included: elastic finite element (FE) analysis of loading applied to geometrically accurate
models of bone, extraction of a mechanical stimulus from the FE results to be used in an adaptation
law, and simulation of adaptation by direct modification of the FE model. The adaptation procedure is
implemented in a generic way so that it can be used to simulate the effect of the different mechanical
loading parameters such as magnitude, frequency, number of bouts of loading, time between bouts, and
other factors. We showed that an elastic material model and a simple growth law using strain energy
density as the mechanical stimulus could predict the effect of load magnitude and the number of bouts of
loading on adaptation of rat ulnae [Chennimalai Kumar et al. 2010]. In this paper, we extend that work to
incorporate poroelastic analysis. Previous works have included poroelasticity in the adaptation equation,
using the fluid shear stress and octahedral strain to compute the tissue phenotype for fracture [Lacroix and
Prendergast 2002; Prendergast et al. 1997]. We propose a new mechanical stimulus based on the viscous
dissipation energy due to the fluid flow as the stimulus for adaptation. We show that this stimulus can
simulate the dependence of adaptation on loading frequency similar to the adaptation response observed
experimentally. We consider the idealized bone geometry in the shape of a rectangular beam (following
[Zhang and Cowin 1994]). This allows us to focus on the frequency trends by conducting a parametric
study with relatively small computational resources.

The paper is organized as follows: We begin with a brief description of the theory of poroelasticity
as it applies to bone, and identify a problem with an analytical solution to test our formulation. We then
develop a measure of the mechanical stimulus to be used in an adaptation law. The results of simulations
performed for a range of frequencies are presented, and these results are then interpreted in the context
of mechanotransduction.
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2. Theory of poroelasticity

Cortical bone is a porous structure with different porosities at different length scales [Cowin 1999], the
most important being:

Vascular porosity: which is comprised of the cylindrical pathways of blood flow in the Haversian
and Volkmann canals that form the osteonal structure of the cortical bone. The fluid permeability
at this scale is of the order of 10~!2 m? [Zhang et al. 1998a]. This porosity plays an important role
in adaptation by delivering nutrients to the cells that form or resorb bone. Since the blood flow is
from the vascular system, the pressure of the fluid in the vascular porosity is of the order of the
physiological blood pressure.

Lacunocanalicular porosity: consisting of the porous regions of the lacunae surrounding the center
of the osteon and the interconnecting canaliculi. The stimuli-sensing osteocyte cells reside within
the pores of the lacunae and their processes are housed in the canaliculi. Zhang et al. [1998b]
estimated permeability at this scale of porosity to be 1071% — 102! m?.

Collagen-apatite porosity: is seen at the nanostructural scale. This porosity contains water which is
considered to be part of bone’s collagen-apatite nanostructure. The flow of water through the pores
between the organic collagen and the apatite mineral can be neglected [Cowin 2001].

It has been shown in a number of experimental and analytical works that the mechanical loading acting
on bone induces the flow of fluid in and out of these different porosities [Knothe Tate 2001]. Weinbaum
and co-workers showed the importance of the lacunocanalicular porosity for mechanotransduction in
bone, where they hypothesize that osteocytes are deformed through the viscous shear stress due to the
fluid flow inside the canaliculi [Weinbaum et al. 1994; You et al. 2001; Han et al. 2004]. These studies
motivate the use of a poroelastic material model for the cortical bone with lacunocanalicular porosity.

We provide here a short overview of the theory of poroelasticity to establish the context for the poro-
elastic analyses presented in this paper, and refer the interested reader to more comprehensive treatments
in the literature, such as [Biot 1941; Biot and Willis 1957; Coussy 1995; Detournay and Cheng 1993].
A poroelastic medium is made up of a solid matrix and pores. We consider saturated media, in which
all of the pores are filled with fluid. There are four field variables: stress tensor o, strain tensor €, pore
pressure p, and the variation in fluid content . The medium is characterized by its porosity n,, the
bulk modulus of the solid K, shear modulus of the solid G, Poisson’s ratio for the solid v, and the bulk
modulus of the fluid K ;. The constitutive equations for an isotropic linear poroelastic material are

ZGE,‘]‘ = O‘,'j — (V—_T_l)o*kk&j + a(%)p&j, ZGC = Ol< 11:-21)”> (O’kk + %),
where we have introduced two additional parameters: the Willis coefficient v, and Skempton’s coefficient
B. The Willis coefficient can be thought of as the ratio of fluid volume gained (or lost) in a poroelastic
element due to volume change when loaded under drained condition (p = 0). It can be shown that
o =1— K/K,, where K is the drained bulk modulus. Similarly, Skempton’s coefficient B is obtained

from the undrained condition (¢ = 0) as p = —Bo/3.
The fluid flow rate is computed from the pressure using Darcy’s law,
0
gi = —x (1)

Bxi
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Figure 1. Schematic of the four-point bending setup of the rectangular poroelastic beam:
isometric view (top left) and orthographic view with boundary conditions.

where the subscript i represents the coordinate direction, and ¢; is the fluid mass flow rate and « is the
hydraulic permeability (« = k/u, where k is the isotropic intrinsic permeability with units of m? and
is the dynamic viscosity of the fluid). The fluid mass flow rate g; is related to the fluid flow velocity vlﬁ
asg;, =n pvlﬁ, where pg is the density of the fluid.

Inserting the constitutive equations and Darcy’s law into the mass and momentum balance equations
leads to the following equation for the pore pressure:

cV? (Gkk + %P) = % (Ukk + % ) (2

where c is the hydraulic diffusivity, defined as
_ 2GB%* (1 —v)(1+v,)?
9 —v)(vy —v)

where v, is the undrained Poisson’s ratio. Scaling the length in all directions by a characteristic length
d (that is, X* = x /d), and scaling time using the frequency w (7™ = wt), Equation (2) becomes

3)

oo o+ 30) =rogh(on+ 30)

where Fo = wd?/c is the Fourier number, which represents the ratio of the timescale for hydraulic
diffusion (d? /c) to the timescale of the applied load (1/w). For small Fourier number (Fo < 1), the
transient term on the right hand side can be neglected in comparison to the left hand side, and the pressure
solution will be essentially quasi-static. For large values of Fourier number (Fo >> 1), the Laplacian on
the left hand side of the equation can be neglected and the pore pressure follows the stress solution.
When Fo is of order one, the two sides balance. This observation will help us explain the results of our
simulations.
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The objective of this paper is to establish a frequency-dependent mechanical stimulus. To this end, we
use as a test problem the bending of a poroelastic rectangular beam, similar to that considered in [Zhang
and Cowin 1994]. Since our eventual goal is to analyze geometrically accurate bone models, we solve
this problem using the finite element (FE) method, as implemented in the commercial software ABAQUS
[2008]. We consider a beam of length L, width b, and thickness d, subjected to a cyclic 4-point bending
load of the form P = Py/2(1 — cos wt). The geometry and boundary conditions (BC) are illustrated in
Figure 1. In order to simulate the BCs of a 4-point beam bending, we set u, = 0 at both ends of the
beam, and constrain one point, such that u, = 0 and u, = 0 as well to avoid rigid body motion. The
bending loads are at a distance / from each end of the beam, as shown. The periosteal (outer) surface
of a long bone is highly impermeable and the endosteal (inner) surface is highly permeable [Steck et al.
2003]. To simulate these properties in our model, we apply a zero pressure BC on the bottom surface,
and zero flow BC on the top surface. We note that the latter BC is actually implemented via Darcy’s law
(1) as Vp-n =0, where n is the normal vector.

3. Development of the stimulus for the growth law

The general form of the growth law used to model the bone adaptation is

db

qr =A@ — Oret) (&)

where b is a material characteristic (such as density, mass or shape), T is the growth timescale,A is a
proportionality constant which we refer to as “gain”, ¢ is a mechanical stimulus, and ¢ is the reference
stimulus that must be exceeded to trigger bone growth. Different types of growth stimuli have been
proposed in the literature, such as strain energy density [Weinans et al. 1992; Huiskes et al. 2000], strain
[Cowin and Hegedus 1976], daily stress [Carter et al. 1989; Carter et al. 1996], and others. In [Chenni-
malai Kumar et al. 2010] we used the strain energy density as the mechanical stimulus to numerically
model the bone growth response in a rat ulna using the growth algorithm shown in Figure 2. We describe
the approach here briefly.

Mechanical
Loading

l

FEM model ~ [*— ‘pmoothing BITAT — pT 4 Z;fAT
A
Adaptation
|
Compute ¢ > Zl; = A (¢ — Pres)

Figure 2. Flowchart describing the implementation of the adaptation procedure.
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Figure 3. Schematic of the spherical zone of influence on a typical bone cross section.
The shading is intended to show the decreasing influence of stimulus with distance from
the surface node.

The FE model of the bone is created from micro-CT images, and a set of nodes on the outermost
surface are identified as movable. An elastic analysis is carried out to compute the stresses and strains in
the bone under an applied load. The strain energy densities in each finite element, including all surface
nodes, are determined, and the displacement of a surface node is calculated based on the growth law

db; _ {A(¢i — Gret) 1 @i > Pret,
0 if ¢i < ¢ref .

a7

where b; is the displacement of the surface node i and ¢; is the local strain energy density at node
i. Resorption was not observed in the experiments that were simulated [Robling et al. 2002], so we
precluded resorption in our model. Note that the growth-timescale T is much longer than the timescale
of loading (¢ in the poroelastic field equations). Once the rates of change of the position of the surface
nodes are computed, the new positions of the nodes are computed using a forward Euler scheme for (6),
followed by application of a smoothing filter. See [Chennimalai Kumar et al. 2010] for details. The new
FE model is then constructed and the procedure is repeated. We were able to find significant agreement
between the model and experiments using the strain energy density stimulus, for an elastic material
model and quasi-static loading. However, the strain energy density cannot simulate the effect of loading
frequency. Our goal in this work is to develop a stimulus similar to the strain energy density that is
dependent on frequency.

We would like to have a stimulus that captures the fluid flow in the bone, and reduces it to a convenient
scalar quantity. To that end, we choose the dissipation due to the viscous fluid flow [Coussy 1995], defined
as

(6)

¢=-—n,w"-Vp=1L(n,o") k" (n,o") @)

where v is the fluid velocity vector, V p is the pressure gradient, and « is the hydraulic permeability
tensor. We choose this form because it has been shown in a number of experiments, and hypothesized
in analytical models, that the shear stress exerted by the fluid flow on the osteocyte cells is a possible
candidate for mechanotransduction. Note that in the work that follows, we will take « to be isotropic.



DISSIPATION ENERGY AS A STIMULUS FOR CORTICAL BONE ADAPTATION 309

Osteocytes are interconnected through the processes inside the canalicular space. We hypothesize
that they can communicate with each other through these processes and exchange information on the
current state of the stimulus at each location. To simulate this non-local behavior, we propose the use
of a spatially averaged stimulus over a “zone of influence” (ZOI), shown schematically in Figure 3. For
the sake of simplicity, we choose a spherical zone of influence of radius r. The stimulus that triggers the
growth response at a surface node i is then defined as

T
fv(/o %npvﬂ-lfl ~npvﬂ dt)f(|x|) dv
¢i = Jyf(xDdv

®)

where f(|x|) is a function that weights the dissipation potential at an inner node by its distance |x| from
the surface node i, and V is the volume of the zone of influence. Mullender et al. [1994] introduced
a similar zone of influence in a study of internal remodeling, in which they used the strain energy in
the neighborhood of each point, weighted by an exponential function, as the stimulus for remodeling.
In the results presented below, we chose the form, f(|x|) = exp(—5|x|/d), where d is the thickness of
the beam. The factor five was selected to ensure that any spurious high velocities at the inner surface,
resulting from the boundary condition, do not affect the response. Numerical experiments showed that
the results were not very sensitive to this factor, as long as it was larger than five.

4. Simulation details

The various material parameters used in the rectangular beam simulations, tabulated in Table 1, were
chosen to be similar to properties of rat bone. The material properties given in the table are similar to
those used in [Zhang and Cowin 1994]. The permeability of the lacunocanalicular porosity is reported to
be in the range of 107! to 1072! m? [Weinbaum et al. 1994; Salzstein and Pollack 1987]. Permeability
will be shown to be a very important parameter in this problem, which directly affects the timescale of
fluid diffusion in the poroelastic medium. The value of permeability we chose results in a significant
range of Fourier numbers (from 12 to 380) for the physiological range of frequencies (1 Hz to 30 Hz).
The hydraulic diffusivity corresponding to the permeability given in Table 1 is ¢ = 0.5606 mm?/s. One
can then estimate the characteristic time for hydraulic diffusion in a 1 mm thick beam to be of the order
of one second.

Property Value  Units
Young’s modulus of bone E 12.0 GPa
Fluid bulk modulus K/ 2.3 GPa
Solid bulk modulus K 17.0 GPa
Porosity n,, 0.05 -
Drained Poisson’s ratio v 0.3 -
Intrinsic permeability k 3x10720  m?

Table 1. Values of different poroelastic parameters used in the analysis.
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Figure 4. Finite element mesh of the rectangular beam. Note the biased mesh across
the cross-section.

The FE mesh for our analyses, shown in Figure 4, consists of 18,821 nodes and 4000 triquadratic
hexahedral elements. The elements are graded along the y-axis in order to accurately enforce the zero-
flow boundary condition. A grid convergence study showed that this grid resulted in velocities of the order
10~*mm/s on the top surface, which when compared to velocities in the bulk (of the order of 1 mm/s)
were judged to be sufficiently small. The poroelastic solver in ABAQUS [2008] uses an unconditionally
stable backward Euler integration scheme to solve (2). The accuracy of the solution still depends on the
size of the timestep. We performed a convergence study to establish the timestep size as well, and we
found that accurate results were obtained for At < 0.5h2/c, where h is the characteristic length of the
smallest element. For the grid and properties used in the simulations reported below, this criterion gives
At =5 x 107*s. The applied load Py was chosen as 100 N.

5. Results

Figure 5 shows the time evolution of pore pressure and the fluid velocity at different points in the rectan-
gular cross section for several different frequencies. In each case, there is an initial transient in both the
pore pressure and fluid velocity that dies out after about 0.5 sec, which is of the order of the timescale
of hydraulic diffusion noted earlier. After this time, pore pressure and velocity at each point follow a
sinusoidal profile with the same frequency as the applied load. This is important, because it allows us
to extrapolate the pore pressure and velocity solutions at the end of the initial transient to the entire
duration of the experiments, which may be several minutes [Warden and Turner 2004], thus reducing the
computational cost significantly. The velocities are maximal at the bottom surface, falling to zero at the
top. Note that both the pore pressure at the upper surface, and the velocity at the lower surface, are out
of phase with their respective values at the neutral axis.

Figure 6 shows the pore pressure and velocity profiles through the thickness for frequencies at 1 Hz,
5 Hz and 30 Hz, at different times within a single load cycle after the initial transient. We denote the
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Figure 5. Plots of pore pressure (left column) and fluid flow velocity (right column)
solutions as a function of time for three frequencies: 5 Hz, 10 Hz, and 20 Hz.
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Figure 6. Plots of pore pressure (left column) and fluid flow velocity (right column)
solutions across the cross-section at different points of time in a loading cycle (shown
here as the phase angle) for three frequencies: 1 Hz, 5 Hz and 30 Hz.
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Figure 7. Plot of pore pressure solution across the cross-section for different frequencies
at the end of a loading cycle.

various times within the cycle in degrees, where zero corresponds to the maximum in the load cycle.
At 1 Hz (Figure 6, top left), the slope of the pore pressure distribution reaches zero midway between
the bottom surface and the neutral axis, indicating zero flow velocity there. Figure 6, top right, which
shows the corresponding fluid velocity, indicates that the velocity on the bottom surface is of a higher
magnitude and has a smooth variation throughout the profile. The zero velocity solution is observed at
the same location throughout the loading period.

At 5 Hz (Figure 6, middle), the pore pressure remains very close to zero at the neutral axis throughout
the load cycle. The location of the zero-slope in the pressure solution (zero velocity by Darcy’s law)
varies with time of loading, and the velocity is nearly uniform over much of the beam cross-section
above the neutral axis for parts of the load cycle. These effects are more pronounced at 30 Hz (Figure 6,
bottom). There is very large variation in pore pressure near the bottom surface, which then falls to almost
zero at the neutral axis. The velocity is also very large near the bottom surface, and then nearly uniform
(and much smaller) over most of the remainder of the cross-section. Note that the computed velocities
and pore pressures are considerably larger than those reported in [Rémond et al. 2008; Nguyen et al.
2010]. This is due to the application of a much larger load in our analysis. These quantities should be
proportional to the magnitude of the applied load, because the problem is linear. We will address this
issue in a future paper, in which we apply the current analysis to the deformation of a rat ulna.

The results of our calculations are summarized in Figures 7 and 8, which compare the pore pressure and
fluid velocity through the thickness for different frequencies. As the frequency increases, the variation
in pore pressure increases near the bottom surface, and becomes close to linear between y = —0.3 mm
to y = 0.3 mm of the thickness. It should also be noted that the magnitude of pore pressure near the
top surface (where the pressure gradient is zero) increases for frequencies from 1 to 10 Hz, but starts
decreasing for frequencies greater than 10 Hz. Figure 8 shows that for frequencies less than 10 Hz, the
flow is significant to about 50% of the thickness, i.e., up to the neutral axis, whereas at higher frequencies,
even though the velocity at the bottom surface increases, the flow velocity becomes very small before
reaching 25% of the thickness.
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Figure 8. Plot of the fluid velocity pressure solution across the cross-section for different
frequencies at the end of a loading cycle.

The dissipation energy, given by the time integral of the dissipation potential (7), was then computed
from the solutions extrapolated to 100 s using the results at the end of the initial transient. Figure 9 shows
that the dissipation energy in the beam follows a similar trend as the fluid velocity. The dissipation energy
at the bottom surface increases with frequency. Since the bottom surface is farthest from the top surface,
where significant adaptation occurs, we hypothesize that the effect of the dissipation energy at the bottom
surface will be very small on the adaptation at the top. To implement this hypothesis in our analysis, we
choose the exponential weighting function described earlier, and also shown in Figure 9.
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Figure 9. Plot of dissipation energy (time integral of dissipation potential) as a function
of the y-coordinate for different frequencies. The influence function is also superim-
posed on the plot. We chose exp(—5]||x||/d) as the influence function for our simulations.
We have zoomed in on the plot to show the variation in the dissipation energy inside the
beam, and so the very high values near y = —0.5 mm are cut off.
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Figure 10. Left: plot of dissipation energy stimulus at a surface node as a function of
loading frequency. Right: plot of percentage increase in the moment of inertia of the
rectangular cross section due to adaptation as a function of frequency.

Figure 10, left, shows the adaptation stimulus (8) at a top surface node at the midspan of the beam as
a function of the frequency of loading. We can see clearly that the adaptation stimulus increases rapidly
at low frequencies, then saturates at about 10 Hz. We then used the growth law (6) to simulate growth
of the rectangular beam for two growth timesteps, using a sensitivity ¢t = 1000 N/mm? and a gain
A =0.01 mm?/N/timestep. We express the results as the percentage change in the moment of inertia
of the rectangular cross section due to the adaptation. Figure 10, right, shows that the growth depends
on frequency in a manner similar to the stimulus. This behavior is typical of that observed in numerous
experiments; see [Burr et al. 2002; Lanyon et al. 1982; Hsieh and Turner 2001], and especially [Warden
and Turner 2004].

6. Discussion

We have proposed the dissipation energy of the poroelastic flow induced by mechanical loading as the
stimulus to trigger adaptation in cortical bone. We implemented this model using a rectangular beam
because: (a) the geometry is simple and so the pressure and velocity solutions can be understood in
greater detail; (b) and the problem has an analytical solution, which makes it easier to understand the
role of the various physical parameters.

We found that at low frequencies, the flow first increases with loading frequency, but that as the
frequency increases beyond 10 Hz, the amount of fluid that penetrates through the thickness of the beam
decreases. This means that at the higher frequencies, there is less flow seen by the osteocytes in the
lacunae, and hence they experience smaller shear and drag forces. The dissipation energy represents
the work done by these forces, and thus at higher frequencies, the dissipation energy stimulus saturates,
and hence one can expect the adaptation to saturate as well. Weinbaum and co-workers [Zhang and
Cowin 1994; You et al. 2001; Han et al. 2004] analyzed the shear and drag forces on the osteocyte cell
membrane due to the poroelastic flow at the cellular level, and showed that the amplification of the strains
on the osteocyte cell membrane has a similar frequency response to our results for dissipation energy
stimulus and increase in moment of inertia (Figure 10). The proposed dissipation energy stimulus that
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we have put forth in this paper is thus qualitatively consistent with the strain amplification hypothesis
and experimental observations.

We have also proposed the use of a “zone of influence” in order to simulate the effect of the distributed
network of osteocytes and their communication. Osteocytes have been identified as the mechanosensory
cells in the cortical bone. It has not yet been proven experimentally whether the osteocytes communicate
with each other, and if so, what their mode of communication is. A series of experiments by Turner
and coworkers on the expression of the sclerostin protein in response to in vivo mechanical loading
suggest that there is such osteocyte communication, and also suggest the existence of a zone of influence.
Robling et al. [2008] found that the expression of sclerostin protein, which is found almost exclusively in
the osteocyte cells, is reduced considerably by in vivo mechanical loading, and further that the reduction
in the sclerostin expression is much greater in the regions experiencing higher strains. The most pertinent
observation for our work is that the expression of sclerostin is reduced on a group of osteocyte cells near
the regions where higher bone growth is observed. This is a possible indication of the existence of a
zone of influence within a real bone. Further experimental investigation of the expression of sclerostin
at the scale of the osteocyte network could be used to inform the model as to the shape of the zone of
influence.

7. Conclusions

We have performed poroelastic analyses on a simplified geometric model using the commercial FE soft-
ware ABAQUS. We investigated the variations in pore pressure and fluid velocity with time and location
in the beam, and their dependence on frequency. Based on these results, we propose the use of the
dissipation energy as a mechanical stimulus for adaptation that can accommodate the effect of frequency.
We also included the effect of non-locality of mechanotransduction of osteocytes present in the lacunae
in the cortical bone through the use of a zone of influence. The dissipation energy stimulus evaluated
in this manner is shown to increase linearly with frequency in the low frequency range, and saturate at
the higher frequency range. The implementation of the poroelastic material model and the dissipation
energy stimulus can be seamlessly integrated into our framework to simulate adaptation response on
cortical bone. We are in the process of extending the poroelastic material model and the dissipation
energy stimulus to the actual rat ulna FE model, and to quantitatively validate the numerical model with
experimental observations.
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Exogenous environmental changes are known to affect the intrinsic characteristics of biological organ-
isms. For instance, the synthesis rate of the morphogen decapentaplegic (Dpp) in a Drosophila wing
imaginal disc has been found to double with an increase of 5.9°C in ambient temperature. If not compen-
sated, such a change would alter the signaling Dpp gradient significantly and thereby the development
of the wing imaginal disc. To learn how flies continue to develop “normally” under such an exogenous
change, we formulate in this paper a spatially two-dimensional reaction-diffusion system of partial dif-
ferential equations (PDE) that accounts for the biological processes at work in the Drosophila wing disc
essential for the formation of signaling Dpp gradient. By way of this PDE model, we investigate the effect
of the apical-basal thickness and anteroposterior span of the wing on the shape of signaling gradients
and the robustness of wing development in an altered environment (including an enhanced morphogen
synthesis rate). Our principal result is a delineation of the role of wing disc size change in maintaining
the magnitude and shape of the signaling Dpp gradient. The result provides a theoretical basis for the
observed robustness of wing development, preserving relative but not absolute tissue pattern, when the
morphogen synthesis rate is significantly altered. A similar robustness consideration for simultaneous
changes of multiple intrinsic system characteristics is also discussed briefly.

1. Morphogen gradients and temperature change

Morphogens (also known as ligands in biochemistry and developmental biology) are molecular sub-
stances that bind to cell surface receptors and other molecules. The concentration gradients of different
morphogen-receptor complexes [Entchev et al. 2000; Gurdon and Bourillot 2001; Teleman and Cohen
2000] are known to be responsible for cell differentiation and patterning of biological tissues during the
developmental phase of a biological organism. For a number of morphogen families, including Dpp in the
wing imaginal disc of fruit flies of the genus Drosophila, it is well established experimentally and by anal-
yses of appropriate mathematical models that the signaling gradients are formed by morphogens being
transported from a localized source and binding to cell surface receptors downstream (see references cited
in [Lander et al. 2002; 2005a; 2005b]). However, biochemical processes leading to morphogen gradient
formation are influenced by highly cooperative events such as protein folding and membrane fluidity, and

The research was supported in part by NIH grants P50-GM076516, R01-GM067247 and RO1-GM075309. The two NIH RO1
grants were awarded through the Joint NSF/NIGMS Initiative to Support Research in the Area of Mathematical Biology.
Keywords: morphogen gradients, robust development, environmental changes, Dpp.
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exhibit considerable idiosyncratic effects from exogenous (external environmental) changes. More specif-
ically, it has been observed that the wing size of an adult Drosophila may differ by about 15% for substan-
tially different ambient temperature, with larger fly parts in a colder climate and smaller near the equator
[de Moed et al. 1997; French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. However,
similar data on Drosophila wing imaginal discs relevant to our investigation do not seem to be available.
(An imaginal disc is a group of undifferentiated cells that develops, at the (later) pupa stage, into a specific
adult structure such as eyes, antennae, limbs and wings, with the developmental fate of cells in different
zones of such a disc determined by a different combination of morphogen gradients.) At the molecular
level, we expect correspondingly that rate constants for diffusion, protein synthesis, binding, internaliza-
tion, degradation, etc., of fruit flies to change in varying degrees in response to such a temperature change.
How significant would such rate constant changes be over the temperature ranges organisms encounter
in the wild? Surprisingly little data on this subject (at least for insect cells) can be found in the literature.
Preliminary results by metabolic labeling of Drosophila S2 cells (through the efforts in A. D. Lander’s
lab, particularly by his student S. Zhou) showed that overall protein synthesis rate doubles approximately
every 5.9°C. In the absence of analogous data on biochemical processes other than protein synthesis rate,
we cannot explicitly explore the effects of temperature on any of the known morphogen gradient systems.

The necessity to accommodate temperature (or any other exogenous environmental) change is a major
performance objective of morphogen systems. A thorough quantitative analysis of the effects of such
a change on the signaling morphogen gradients is imperative. It is therefore important to be clear the
reasons why we do not (and cannot) undertake such an endeavor at this time. These include:

» Experimental and field study data are available for adult Drosophila while the impact of ambient
changes (including signaling morphogen gradient formation) starts at the embryonic stage.

» An ambient change typically affects many systems characteristics including the various rate con-
stants and synthesis rates) but there is a lack of data on most such effects.

Still, we may obtain some insights from exact or approximate analytical solutions, qualitative analyses,
and numerical simulations of mathematical models for these systems. For example, we have recently
looked at effects of perturbations in which every protein synthesis rate, every endo- and exocytotic rate
constant, and every degradation rate constant is doubled, but diffusion and binding constants remain
unchanged [Lander et al. 2005¢]. We consider such changes to constitute a crude model of the effects
due to a 5.9°C temperature increase, and define robustness measures to quantify the sensitivity of the
system to the changes made.

In contrast to the work in [Lander et al. 2005¢] and in [Khong and Wan 2007] on the effect of a
Hill-type feedback (in Dpp synthesis rate) on the signaling Dpp gradient, we pursue a different and more
limited objective prompted by the observations in the works cited at the top of the page. Specifically, we
determine (by analyzing appropriate mathematical models) whether and how adjusting the size of the
wing disc (an abbreviation for “wing imaginal disc” henceforth) would maintain the morphogen gradient
shape and thereby provide optimal, or near-optimal, strategies for meeting the performance objective of
ensuring a normal development. For this more limited goal, we take as our starting point the available
experimental evidence (from the Lander lab) that the Dpp synthesis rate doubles with a 5.9°C temperature
increase. With all other system characteristics fixed, a change in synthesis rate would cause a change
in the steady state signaling morphogen gradient, possibly substantial and unacceptable from the view



SIZE-NORMALIZED ROBUSTNESS OF Dpp GRADIENT IN DROSOPHILA WING IMAGINAL DISC 323

point of normal development as quantified herein (see Section 8 and also [Lander et al. 2005c]). We
determine whether a particular aspect of system architecture, namely the size of wing disc, confers the
potential for the biological development to be robust to such change. More specifically, the principal aim
of our research is to understand

« the reason for the exaggerated slenderness of the wing disc cells in the apical-basal direction, and

« the role of a size change of the wing disc in its development.

In the process, how the signaling Dpp gradient may be maintained in the face of significant Dpp synthesis
rate changes (due to a temperature or any other exogenous environmental change) is delineated.

An interesting, but challenging aspect of robustness of biological development comes from the known
interrelationships between temperature, growth, and morphogen signaling. At colder temperature, flies
grow slower but end up larger, including having larger but otherwise normal wings; in contrast flies
grow faster and are smaller in a hotter climate [de Moed et al. 1997; French et al. 1998; Bitner-Mathé
and Klaczko 1999; Azevedo et al. 2002]. The remarkably normal patterning that they display [Bitner-
Mathé and Klaczko 1999] is only normal in the context of their altered size. This strongly suggests that
the objective of development is to preserve relative, not absolute, pattern. At the very least we need
to examine our models to see if they would allow for temperature-dependent scaling of field sizes and
size-normalized measures of robustness.

The effect of size on the robustness of biological species development has been investigated recently —
see [Umulis et al. 2008] and references therein — for general models in the form of partial differential
equations of the reaction diffusion type with Neumann or mixed conditions at the boundary of the solu-
tion domain. Their main concern is uncovering conditions on the biological system characteristics that
would ensure the corresponding model problem to be scale-invariant. Within a scale-invariant species,
a common structure in individuals of different size develops in proportion to size. (We will refer to such
size-mediated developments of a common biological structure as relative (or size-mediated) robustness
as the development of structural proportion is insensitivity to size changes.) Our concern here is with a
specific model of the Drosophila wing imaginal disc in the plane of the proximal-distal and apical-basal
axes which is not scale-invariant and does not satisfy the conditions for scale-invariance developed in
[Umulis et al. 2008]. Nevertheless, we show how size changes may still be exploited for such a system to
maintain near relative robustness for size-normalized development in the presence of a significant change
in its system characteristics caused by environmental perturbations. Specific quantitative measures of
(relative) robustness are adopted for determining (different levels of) robustness. We investigate at first
only a change in the Dpp synthesis rate for which we have experimental data, and then also simultaneous
changes in several system parameters including degradation and binding rate constants for multifactor
robustness. The results are consistent with the observations of smaller Drosophila melanogaster flies
near the earth’s equator and larger one in colder climates away from the equator.

Still, we may obtain some insights from exact or approximate analytical solutions, qualitative analyses,
and numerical simulations of mathematical models for these systems. As mentioned earlier, we have re-
cently looked at effects of perturbations in which every protein synthesis rate, every endo- and exocytotic
rate constant, and every degradation rate constant is doubled, but diffusion and binding constants remain
unchanged [Lander et al. 2005c]. We consider such changes to constitute a crude model of the effects
due to a 5.9°C temperature increase, and define robustness measures to quantify the sensitivity of the
system to the changes made.
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2. A spatially two-dimensional formulation

We take advantage of the approximate symmetry between the anterior compartment and posterior com-
partment of the Drosophila wing imaginal disc and consider here an extracellular model of the posterior
compartment. With the Dpp synthesis rate taken to be uniform in the distal-proximal direction, the
development is essentially uniform along the distal-proximal axis (Y -axis) except possibly for layer
phenomena near the edges (see [Vargas 2007]). Our model of the Dpp gradient formation focuses on
the uniform development. This allows us to consider a typical cross section of the wing imaginal disc
as in Figure 1 idealized as a rectangle orthogonal to the Y-axis away from the distal and proximal ends.
We take for this rectangle X-and Z-axis to be in the anteroposterior direction and the apical-proximal
direction, respectively.

The new model is essentially an extended version of the one-dimensional model in [Lander et al.
2005b] to allow for variations in the apical-basal direction including biologically realistic Dpp leakage
through the basement membrane. In this new two-dimensional model, morphogen is introduced into
the extracellular space at a rate V;, through a localized source uniform in the plane perpendicular to the
anteroposterior direction. The localized source spans a small interval (— Xy, 0), where — Xy is the

Imaginal Wing Disc Adult Wing

Dpp Production Region

One Cell Thick
Wing Disc

1
-Xmin Xmax

— Zma'x

Y
4

Figure 1. Wing imaginal disc and posterior compartment of Drosophila. Courtesy
Dr. Oana Marcu of NASA Ames.
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location of the border between (and the line of symmetry of) the anterior compartment and the posterior
compartment of the wing disc. The morphogen produced in this localized region diffuses throughout the
extracellular space in the posterior compartment (according to Fick’s second law), between Z = 0 and
Z = Zmax in the apical-basal direction and from X = — X, toward the sink at the edge X = X, of the
posterior compartment. Along the way, some morphogen molecules bind themselves with cell surface
bound receptors at the binding rate ko, [L][R], where [L(X, Z, T)] and [R(X, Z, T')] are, respectively,
concentration of free Dpp and unoccupied signaling receptor Thickvein (Tkv) at time 7' and location
(X, Z). The resulting morphogen-receptor complexes of concentration [LR(X, Z, T)] are bound to cell
surface membrane since the receptors are. These complexes in turn dissociate at the rate kog[LR] and
degrade at the rate kgeg[LR].

The time evolution of concentrations of free morphogen, morphogen-receptor complexes and unoccu-
pied receptors is then described by the partial differential equations (1)-(3) below governing the rate of
change of [L], [LR] and [R], respectively, with kon, koff, and kgeg known as the binding rate constant, the
dissociation rate constant, and the degradation rate constant, respectively. Altogether, the three (time)
rate of changes in (1)—(3) account for the reversible binding, degradation (of both bound and unoccupied
receptors), and synthesis of new morphogen and receptors, analogous to the one-dimensional system of
[Lou et al. 2004; Lander et al. 2005b]:

a[L] _ _ (9%L] | L]
ST = D <W W) —kon[L1[R] + kott[LR]+ Vi.(X, Z, T), (D
J[LR
% = kon[L1[R] — (kofs + kdeg)[LR]» (2)
Jd[R]
T = VR(X, Z, T) — kon[ LI[R] + kogt[LR] — kr[R], 3)

for —Xmin < X < Xmax, 0 < Z < Znax, and T > 0, where V. (X, Z, T) and Vg(X, Z, T) are the rate
at which the morphogen Dpp and receptors Tkv are synthesized, respectively, and kp is the degradation
rate constant for unoccupied Tkv. As in [Lander et al. 2005b], we are interested principally in the [LR]
gradient in the portion of the wing disc corresponding to X > 0 where there is no morphogen production
(so that V. (X, Z, T) =0 for X > 0). In this paper, we focus on a time-invariant morphogen and receptor
synthesis rates so that Vo (X, Z,T) = Vi (X, Z) and Vr(X, Z, T) = Vr(X, Z).

With — X i, being the midpoint of the Dpp production region, we have by symmetry

d[L]

at X = —Xmin: a—X

=0, “4)
for T > 0 and 0 < Z < Zpyax. At the far end, the edge of the posterior compartment is taken to be a sink,

so that
at X = Xpax: [L]=0 ®))

for T > 0 and 0 < Z < Znax. We also investigate the limiting case of X,x = 00 since the edge at X«
is not strictly absorbing. In the apical-basal direction, we have an essentially sealed wall at the apical
face Z =0, so that

oLl

tZ=0: =0, 6
a Y (6)
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for 7 > 0 and —Xnin < X < Xmax,While at the basal face, there is leakage of free morphogens at a rate
proportional to its concentration:
L] v
at Z = Znax: —+ =—-[L]=0, 7

max 0z "7 [L] (7
for T > 0 and —Xpin < X < Xmax. Here, the dimensionless constant y, = 1/0, = Zyx['; is a prescribed
leakage parameter. In one extreme case y, = 0, we have d[L]/9Z = 0 so that the end is sealed without
leakage. At the other extreme o, = 0, the end Z = Z,« is absorbing. For a finite nonzero y,, the larger
the y, value the higher is the flux across the end surface.

At the onset of the morphogen synthesis (at 7 = 0), we have the initial conditions

[L]=[LR] =0, [R]= Ro(X, Z) ®)

for —Xmin < X < Xmax and 0 < Z < Zxx, reflecting the fact that there was no Dpp in the system and the
receptor concentration is in a steady state (as a consequence of a time-invariant receptor synthesis rate).

The extracellular model above is adequate for our purpose. The model can be extended to incorporate
the effects of internalization of [LR] complexes through endocytosis prior to degradation as was done in
[Lander et al. 2006; Lou et al. 2004] for one-dimensional studies. However, the corresponding system for
steady state gradients of interest here has been shown to reduce to the same BVP with modified system
rate constants (loc. cit.).

To reduce the number of parameters in the problem, we introduce a reference unoccupied receptor
concentration level Ry (to be specified later) and the normalized quantities

D
I=TT7 {-xngvxva}= {X’ XmaX,XminaZ}’ (9)
Zmax Zmax

Zl'zl"]ax 1
{ve, vr} = ——={VL, Vr}, {a, b, r,ro} = ={[L], [LR], [R], Ro}, (10)

DRy Ry

1 _

{flag29 grahz}= m{koff’ kdegakR,konRO}- (11)

In terms of these new quantities, we write the initial-boundary value problem (IBVP) (1)—(8) in the
normalized form

9

a—fzvza—hzarJrfszL(x,z) (x.2) € Q, (12)
ab or _
E =hzar_(fz+gz)bv EZUR(X, Z)_hzar_grr'i'fzb’ ()C,Z)EQ, (13)

where 2 is the rectangular domain {—x,, <x < £);,0 <z < 1} and Q= {—xp <x<fly,0<z<1}is
its closure. The auxiliary conditions supplementing the differential equations become

0

a—“:o atx=~fy: a=0 O<z<1), (14)
x

d 0

% _0 atz = 1: —a+yza:0 (—xm <x <{ly), (15)

0z 0z

at x = —x,:

atz =0:



SIZE-NORMALIZED ROBUSTNESS OF Dpp GRADIENT IN DROSOPHILA WING IMAGINAL DISC 327

for t > 0 and
atr =0: a=>b=0, r=ro(x,2) (16)

for all (x, z) in 2.

3. Time-independent steady state behavior

3.1. Time-independent synthesis rates. With both morphogen and the receptor synthesis rates uniform
in time, the possibility of a time-independent steady state behavior exists for our model. The two synthesis
rates V; and Vg are to a good approximation uniform in Z so that V; = V (X) and Vg = Vg(X). For the
present investigation, we ignore possible feedback effects and, unless indicated otherwise, approximate
Vi to be a step function with V (X) = V. H(—X) for some constant V. Correspondingly, we have with

} v N VL/Ro
vy =V =0, H(—x)=1{"° with v, = 17
L=vr(x) =v:H(-x) {O “= D a7
We also take the nonnegative receptor synthesis rate to be
Ve =V,H(—=X)+ V,H(X) = V,{p’H(-X) + H(X)},
for T > 0 with 0 < ,o2 = Vn / \_/p < 1, unless indicated otherwise. In that case, we have
vg = vR(xX) = p{ P H(=X)+ H(X)} = v,r0(x) (> 0). (18)
where L
V,/Ro P> (x <0),
5= 220 )= (19)
D/Z: .« I (x>0).

In the extreme case p” = 0, there is no receptor synthesized in the morphogen production region. At the
other extreme, p> = 1, the receptor synthesis rate is uniform through out the posterior compartment, i.e.,
for all (x, z) in €. With the initial receptor concentration taken to be the steady state receptor distribution
prior to the onset of morphogen production, Ro(x) = Vr(X)/kr = Vpro (x)/ kg, we take

1%
Ry= -2, (20)
kr

so that
U, =g,  Ro(x)=Roro(x) = Ro{p>H(=X)+ H(X)}. (21)

We are interested in a time-independent steady state solution a(x, z), b(x, z), and 7 (x, z) for the system
(12)—(16). For such a solution, we may set all time derivatives in these equations to zero to get
0=V2%a—h.ar+ f.b+ vy (x), (22)
and
0=h.ar —(f.+g2)b, 0=vgr(x) —hear — g7+ fzb, (23)

for (x, z) € Q. The nonlinear system of ODE (22)—(23) is augmented by the boundary conditions (14)-
(15). With vy (x) and vg(x) both piecewise constant, the form of the (22)—(23) requires that a and its
first derivative to be continuous at x = 0.
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3.2. Reduction to a single equation for a(x). The two equations in (23) may be solved for b and 7 in
terms of a to obtain

Fo 2o g rota (24)
o, +Ca o, +Ca
where . P
8z de; 8+ /2
CZ_Z:_g’ aZ:—Z Z_ (25)
8r kg h;

The expressions in (24) are now used to eliminate 7 and b from (22) to get a second-order PDE for a
alone:
 gro(oa
o, +¢a
Equation (26) is supplemented by the four boundary conditions (14)—(15) applied to a, keeping in mind
also the continuity conditions on the unknown and its normal derivative at x = 0.
For our choice of synthesis rates V;, and Vg, we have vy =0 and ry(x) = 1 for the range 0 < x < £y
so that

Vvia +v(x)=0 (x,2) € Q. (26)

_ 8za _— gra_’ o = &Olz (27)
a;+¢a or+a 8z
for (x,z) in Qo ={0 <x < £y, 0 <z < 1}. In the complementary range 2, = {—x,, <x <0, O <z <1},

we have vy = v, and ro(x) = p? so that

Via

— 4 v, =0, (28)

for (x, z) in ,, and for some known p? in the range 0 < p < 1.

3.3. Existence and uniqueness of steady state behavior. The governing PDE (26) for the present extra-
cellular model is similar to the corresponding ODE investigated in [Lander et al. 2005b]. This observation
effectively allows us to extend the results for the one-dimensional model there to show existence and
uniqueness for the two-dimensional model of this paper.

Proposition 1. There is a unique set of nonnegative steady state concentration gradients a(x, z), b(x, z)
and 7 (x, z) characterized by the two-point boundary value problem (14), (15), (26) and the continuity
conditions on a and da/dx at x = 0.

To prove existence, we observe that ay(x, z) = 0 is a lower solution of the BVP for a(x, z) [Sattinger
1972] since it satisfies the inequality

garo(ar _

—V[a,] +
L] o +Cag

vp(x) =—vp(x) = —v,H(—x) <0, (x,2) e

and the four relevant boundary conditions, the latter exactly. Also,
au(x, 2) = 0z { (s — x)oxm + 5(63 = x)]

with

day _
(X)=—0,(x+x) <0 (=xp <x <lp),

(i) au(x) =0, (i) o
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is an upper solution [Sattinger 1972]. Note that property (ii) ensures 0 < a, (x) < a,(—xp,) in [—x,, £pr].
With a, (x) > 0 for —x,,, < x < £)7, we have

g:ro(x)ay _ 8z0y 8z0u
V2 a, )+ oy () =0, 2y x)>—>0 x,7) €
et e, O T e Y 2 e, (2
and
day
=0, ay(Ly) =0,
8x X=—Xm

aau 8au
+v.a > 0, =0.
|: 8Z v u:|z:l |: aZ ]z:O

There exists then a solution a(x, z) of the BVP (26), (14) and (15) with
0=ai(x) <a(x,z) <a,(x),

for (x, z) € Q (see [Amann 1972], [Sattinger 1972], and [Smoller 1983]). It follows that a(x, z) must be
nonnegative in the whole solution domain.

To show that there is only one solution, suppose a;(x, z) and a(x, z) are two (nonnegative) solutions
and a(x, z) = a;(x, z) —ax(x, z). Then as a consequence of the differential equation (26) for a; and a»,
the difference a(x, z) satisfies the differential equation

V2 + g:8azro(x)a _
(az +¢ar)(o: +Laz)
Form the following double integral of the PDE above over the solution domain to get
1 by
/ / [_vza n g.Laroa ] wdrde—o. 29)
0 Jx, (az +Cai)(a; +Eaz)

Upon integration by parts (by way of Green’s theorem), observing continuity of a and its first derivatives,
and application of the boundary conditions in (14) and (15), the relation (29) may be transformed into

w2 1 ply (. 2
/ [“—} dx+/ / {lVa|2+ 8L cloa }dx dz=0. (30)
—xm LOz 1z=1 0 J—x, (a; +¢ay)(a; +¢az)
All terms in the integrands in (30) are nonnegative; therefore we must have a(x) = 0 and uniqueness is
proved. (|

Note that there is no restriction on the magnitude of the (dimensionless) morphogen production rate
v, or the (dimensionless) degradation rate g, for the existence of steady state concentration gradients.
Accordingly, Proposition 1 allows us to obtain exact or approximate solution of the BVP by any choice
of analytical or numerical methods.

4. Linear stability

4.1. A nonlinear eigenvalue problem. In addition to the existence of unique steady state concentrations
a(x, z), b(x,z),and r(x, z), it is important for these concentrations to be asymptotically stable (at least
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with respect to small perturbations). To investigate the stability of the steady state solution known to
exist from Proposition 1, we consider small perturbations in the form

{a,b,r} ={a(x, 2), b(x,2), F(x, D)} + e “{alx, 2), b(x, 2), F(x, 2)}. (31

After linearization, the differential equations (12)—(13) become

—wa = V% — h.(Fa +af) + f.b, (32)
—wb = h,(Fa+ar) — (f. + g.)b, (33)
—wF = —h.(Fa +ar) — g7 + f-b. (34)
The relations (33) and (34) are then solved for b and 7 in terms of & making use of b= % to get
8z(a T oy
P hz(w_gz)f(xaf)& ’ (35)
(gr —)(f; + 8 —w)+halx,2)(g; —w)
b h (g — w)r(x, f)& ' 36)
(gr —)(f; + 8 —w)+halx,2)(g; —w)
The expressions (36) and (35) are used to eliminate b and 7 from (32) to obtain
Va+[w—q-(x;z, w)]a=0, (37)
where
h r k) r -
0 7. ) = 7 (x, 2)(8 w)(giz ) (38)
(&r —w)(g: + f: —w) + hza(x, 2)(g; — w)
_ 1 hero(x)(gr — w)(g; — w) (39)
1+¢BnA (g —w)(g: + fr —w) + (g + [2)(g: — w)Bn A
1 Ny(x; z,
_ _ (x;z, ) ’ (40)
1+¢BnA(x,2) Dr(x; 2, )
where we have set
ax,z) =a:fnAlx, 2), (41)

with A(—x,,, 0) = 1 so that a(—x,,, 0) = «, Bm Note that ,B_m is known to be positive from the solution
of the steady state problem of the previous section. Let

)z
2,8—m or equivalently B = 'O—ﬂ”i;
pPe— ; IBm 1 + ; :Bm

then B, = b(—x, 0) is positive.

The PDE (37) is supplemented by the boundary conditions (14)—(15) applied to a(x, z). Together, (37),
(14) and (15) define an eigenvalue problem with w as the eigenvalue parameter. Though the PDE for
a(x, z) is linear, the eigenvalue problem is nonlinear since w appears nonlinearly in g, (x; z, @) so that the
homogeneous boundary value problem defined by (37), (14) and (15) is not a Sturm-Liouville problem.
Given that ro(x) (and hence also 7(x, z) and b(x, z)) may have at most a simple jump discontinuity at
x = 0, we expect a and da/dx to be continuous at x = 0. In the next subsection, we show that the

B = (42)
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eigenvalues of the homogeneous boundary value problem must be positive. The steady state gradients
a(x, z), b(x, z), and 7 (x, z) are therefore asymptotically stable by linear stability theory. Since the proof
is based on the same technique as that used for one-dimensional models (see [Lander et al. 2005b] for
example), we give it below for the simpler case of uniform receptor synthesis rate which can be easily
extended to a discontinuous vg(x) (leading to a discontinuous ry(x)).

4.2. Positive eigenvalues and asymptotic stability. For p> = 1, so that ro(x) = 1 for (x,z) € Q, the
various gradient concentrations are continuous across x = 0.
Proposition 2. All the eigenvalues of the nonlinear eigenvalue problem (37), (14) and (15) are real.

To prove this assertion, suppose w is a complex eigenvalue and a,,(x) an associated nontrivial (gen-
erally complex) eigenfunction, then w™ is also an eigenvalue with eigenfunction a (x), where * denotes
complex conjugation. The bilinear relation

1 ply
/ f la}V?a, —a,V?alldx dz =0
0 J—x,

(which can be established by integration by parts and applications of the boundary conditions in (14) and
(15)) requires

1 ply
/ / {(w—0") —[gr(x; 2, ®) — g, (x; 2, )]} (a}sa0) dx dz = 0. (43)
0 —Xm
It is straightforward to verify g, (x; z, ®) — g, (x; z, ®*) = — (0w — ") D (x; z, Ww™), Where

_ hz{sz(gp, )+ (g; + fz)BmA(xa 2)0(gz, w)}
(1+2BnA) Dy (x; 2, 0) Dy (x; 2, 0*)

D (x, 7; ww*)

k)

with D, (x; z, w) as defined in (40) and
0(y, ®) = [y —Re(®)]* + [Im(w)]* > 0.

In that case, the condition (43) becomes

1 ply
(a)—a)*)/ / apay[l+ ®(x; z, ™) dx dz = 0. (44)
0 J—x,

Since the double integral is positive for any nontrivial function a,(x, z; @), we must have w — w* = 0.
Hence, w does not have an imaginary part.

Proposition 3. All eigenvalues of the nonlinear eigenvalue problem (32)—(34), (14) and (15) are positive
and the steady state concentrations a(x, z), b(x, z) and r(x, z) are asymptotically stable by a linear
stability analysis.

If the assertion is false and w < 0, let a,,(x) be a nontrivial eigenfunction of the homogeneous BVP
(37), (14) and (15) for the nonpositive eigenvalue w = — |w|. Multiply (37) by a,, and integrate over the
solution domain to get

197]

1 ply 1
/ f {60V2a0 — q,(x; 2, ©)(a0)*} dxdz = —o f (4)* dx dz.
0 J—x, 0

—Xm
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After integration by parts and applications of the homogeneous boundary conditions (14) and (15), we

obtain
// (aw)zdxdz—//

With w = — |w| < 0, we have

%aw dxdz+// gr(x; 2, 0) () dx dz. (45)

r(x, 2)h: (g + @) (gp + |wl)
(&r t+lwD(g; + f: + o)) + h.a(x, 2)(g; + |w])
in €2. For any nontrivial solution of the eigenvalue problem under the assumption w < 0, the right-hand

side of (45) is positive, which contradicts the assumption @ = — |w| < 0. Hence the eigenvalues of the
eigenvalue problem for & must be positive and the proposition is proved.

qr(x;z, — o)) =

5. Perturbation solution for ¢ < 1 and gradient robustness

For Dpp gradients in Drosophila wing disc, kgeg is typically smaller than the degradation rate constant
kg of the signaling receptor Tkv so that { < 1. For this case, a perturbation solution in ¢ is appropriate
for moderate Dpp synthesis rate resulting in low receptor occupancy (see [Bender and Orszag 1999]):

o
a(x,z:0) =) ax, )*. (46)
k=0
For sufficiently small values of ¢ so that {a < «_, the leading term ag(x, z), determined by the linear

PDE
2 &z

Via — piro(0)do + oL (x) =0, pi=-% (47)
Z

and the four boundary condition (14)—(15) applied to ag, is an adequate approximation of the exact
solution. Here, we have, in terms of the Heaviside unit step function H (- ), ro(x) = {H (x) + p*H(—x)}
and vy (x) = v, H(—x) with v, = (VL/RO)/(D/ZmaX) The omission of the {a term in (26) to get the
leading term approximation (47) may also be viewed as a case of low receptor occupancy resulting from
a sufficiently high receptor synthesis rate (or a sufficiently low morphogen synthesis rate). With plenty
of unoccupied receptors available to capture any free Dpp, the normalized morphogen concentration a
would be sufficiently low for ¢a to be negligible compared to «;.

The linear BVP (47), (14)—(15) can be solved by Fourier cosine series in the z variable:

{ao(x, 2), v (x)} = Z{An(X), Un Uz H (—x)} cos (A,2) (48)
n=1
where {A,,} are roots of
cot(r) =o; A, o, = )/l 49)

so that ag(x, z) satisfies the boundary condition at both z = 0 and z = 1. Orthogonality of the eigenfunc-
tions {cos (A,z)} requires

4 sin(A,)
2A, +sin(2A,,)

v, =
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and
Al — A2A, +v,0,H(—x) =0, Ay = A +ro(x)us, (50)
where ug = g./o;, with
A (=xp) =0, An(ly) =0 (51
forn=1,2,3,.... When p> =1, we expect A, (x) and A} (x) to be continuous at x = 0.

Remark 1. The leading term perturbation solution in the small parameter ¢ is generally an accurate
characterization of the actual nonlinear phenomenon. If ¢a(x, z) should not be small compared to «;,
the gradient [LR] for p = 1 would be nearly uniform in the anteroposterior direction except for a boundary
layer near the edge of the wing disc. Such [LR] gradients are not biologically realistic for patterning. We
may therefore focus our attention on the low receptor occupancy case (with {a(x, z) < «;) independent
of the magnitude of ¢ to investigate the effects of size on the signaling morphogen gradient.

To extract useful information from the Fourier cosine series solution (48)—(51), we deduce below a
simple but adequate approximation of the leading term perturbation solution, focusing on the special
case p(x) =1 so that ro(x) = 1 and give special attention to the limiting case of £,; = oc.

5.1. Finite €. For special case p(x) = 1, the exact solution for A;(x) is

I_JZ vj COSh(AjZM)
1-— h(A ; —xm <x <0),
A2 ( cosh(A j(Ly + X)) cosh(Aj(xy +x)) | (=am <x <0)
Aj(x) = I (52)
v,v; sinh(A jx,,) .
> sinh(A ;(£y — x)) O=<x=<ty).
Aj cosh(A;(Lyr + X))
Correspondingly, we have
(e8] . .
- _ _ v; sinh(A ;x,;) sinh(A ;€y)
0,2) ~ap(0,z) = L Jom J A7),
a0, z) ~ (0, 2) vz; A2 cosh(A, Cur + 1) cos(1;z)
v cosh(A i€uy)
_ - _ j jtm
—Xm, 2) ~ ag(—Xp, 2) = —|1- AiZ).
(=X, 2) ~ dg(—Xm, 2) %Z;ﬁ< mmmﬂw+mﬁ%““@
With (v; /A?) /(v /A%) <« 1 for j > 1, we have as a leading term approximation
1. 1 - 1
b(x,z) ~—a(x,z) ~ —ap(x,z) ® —Aj(x) cos(rz)
oy o z
Sor sinh(Au) (53)
V1 sin 1Xm .
= sinh(A (£ — x)) cos(A12).
277 Gosh(As (B ey SO By = 3)) s (ha)

5.2. The limiting case of £y = oo. For the wing imaginal disc of Drosophila species, Xmax > Zmax SO
£y > 1. It often suffices for our purpose to consider the limiting case of £,y = oo (and p = 1) for which

U;? {1 —e™ %% cosh(Aj(x +xm))}  (—xm <x <0),
A =15 v/ : (54)
5" sinh(A jx,)e ™A ) (0 <x < o00).

A2

J
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with
o0
a0, z) ~ap(0, z) = v, Z —JZ ~A%n sinh(A jx,,) cos(hz), (55)
j=1 ]
o0 Vi
(=X, 2) ~ do(—Xm, 2) =V ) Afz (1— e~ M) cos(h2). (56)

j=1

To a leading term approximation, we have for £, = oo

1 1 1
b(x,z) ~—a(x,z) ~ —do(x, 2) ® —Aj(x) cos(A2)

o o (644
= 2 sinh(A e 0T cos(2) (0= x < 00). 7
o, 1

For an [LR] gradient to be biologically useful in developing tissue patterns, its graph must be neither
nearly uniform nor a boundary layer phenomenon near the source. It follows that the concentration of
signaling Dpp—Tkv complexes [LR] should be in a state of low receptor occupancy throughout the wing
disc with both free and bound Dpp approximately in a state of simple exponential decay from the source
end to the sink at the edge of wing disc. With the free Dpp expression exponentially small away from
the source, the actual location of the absorbing edge should not have a significant effect on the signaling
Dpp gradient and may be taken to be far away at infinity.

6. Approximate expressions for the eigenvalues {A,}

6.1. A sealed basement membrane (y, = 0). For the limiting case of y, = 0, both apical and basal faces
are sealed (see (15)) given that
da(x, da(x,
|: a(x z):| =|: ax Z)] _o. (58)
9z z=1 9z z=0

Upon writing the equation (49) for the eigenvalues as

¥, cos(A) = A sin(A),
we have for y, =0
A=m—Dm n=1,2,...). (59)

It follows that
v =1, v, =0 (n>2).

The concentration gradient is therefore a uniform distribution in z. In that case, the solution for the
(normalized) free morphogen concentration a is uniform in z so that

a(x,z) ~ap(x){l1+ 0(5)}

and ap(x) is just the corresponding solution for the spatially one-dimensional problem previously treated
in [Lander et al. 2005b].
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For the case £;; = oo (and p = 1), we have from (57)

[LR(x,2)] _do(x) _ | (Vz/g){1 — e cosh(uz(x +2u))}  (=xm =x =0),

- (60)
Ro o (D/g,) sinh(j1,x,, e He(r+xm) (0 <x < 00).
with - o
8 - VL/Ro v, VL/Ro
pi=oth, Ui=—a—. —= : (61)
aZ D/Zmax gZ kdeg
With 7. = O(10™") for typical wing disc parameter values, we have 1.x,, < 1 and therewith
et sinh(o ) = pexm {1 4+ O (223},
o) ) ) .
Ro _ % _ ViXoin -
[LR(x, 2)] ~ —2dag(x) & — pxpe " = == e oo (62)
(6% deg kdeg

for the signaling region 0 < x < oo, with kon = \/kOHRO/D.

We know from biological evidence that the basal end is not sealed, so that the limiting case of y, =0
only demonstrates the validity and consistency of our more general solution, but is otherwise biologically
unrealistic and of no relevance to the actual problem. The analytical consequences of a sealed end, as seen
from (62), are shown in the next section to be also unacceptable from the view point of size adjustment
for robustness with respect to a substantial change in the Dpp synthesis rate.

6.2. An absorbing basement membrane (o, = 0). At the other extreme, Equation (49) in the case of
o, = 1/y, =0 becomes cot(A) = 0, so that

M=m—Pr  (=12,3,...). (63)
It follows that, for the limiting case of £)y = oc and p =1,

(0,0 /A>{1 — e M%m cosh(A i (x + X))} (—xm < x < 0),
Ajeo = | - AN " (64)
(Uzv;/A3) sinh(A jx)e™ jtm) (0 <x < o0).
where
2
A=kt =m— +pl, w=r"= (=123,

n

Correspondingly, we have for the signaling region 0 < x < oo

[L] Uz

—= ~ A1(x)cos (h12) = — sinh(A 1 x,,)e 210+ cos (42) (65)
Ro A2

LR A v

_[ ] ~ 1(x) cos (A7) = Uzvlz sinh(Alxm)e_A‘(x“’") cos (A12) . (66)
Ry oy o Af

max
Since ,u% is small compared to 7% /4 (and much smaller than (n — %)2712 forn >2)and A x,, < 1, we

have the following accurate approximation for the various Fourier components of the Dpp concentration:

With f, < g, the expression for u% is accurately approximated by h, = konRo/(D/Z2,,) = O(1071).
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Ai = A% + ,u% ~ )\i =mn- %)2712, sinh(A X )e 1 2 A X, (67)
V,U;
Aj(x) =~ % sinh(hjx,)e %) (0 < x < 00) (68)
j
so that B
_ _ Rov,v1x
[L]~ Rodo(x,z) ~ RoA;(x) cos(h12) =~ %e—“ cos(hi2), (69)
_ _ 1
R Rov
[LR] ~ =2ag(x, 7) o —2 M p=hax o2 2), (70)

oy oA

for 0 < x < co. Upon observing (67) and setting A,% ~ kﬁ, (69) and (70) become

VLXmianax 8 _ 2 1
(L]~ —=m e [ e 2 cos () | (71)
Vi XminZ
[LR] ~ L A min4max |: 8 ze—nx/Z COS(%”Z)] , (72)
D oI

for 0 < x < oo. The signaling Dpp gradient given in (70) and (72) is qualitatively different from that
in (62) and (72). While the limiting case of o, = 0 is also not biologically realistic as the basement
membrane is neither completely sealed nor absorbing [Dowd et al. 1999], the consequences of (70) are
more characteristic of the [LR] gradient than those of (62) in the actual range of y, as we shall see in the
next subsection.

It may seem rather remarkable that (the leading term asymptotic behavior of) [LR] does not depend
on the receptor synthesis rate. However the inherent assumption of low receptor occupancy in effect
corresponds to (an abundance of receptors resulting from) a sufficiently high receptor synthesis rate to
make its magnitude inconsequential in a first approximation theory.

6.3. Eigenvalues for small and large ,. We now turn to the biologically more realistic case of a leaky
basement membrane at Z = Zp,x with a finite y, = 1/0,. For the wing disc problem, we have 0 < o, < 1
and a perturbation solution for A in a power series in o, gives

M=n—3)r[l-0,+ 0], (73)

forn=1,2,3,.... Nonew eigenpairs arise from nonpositive integers n. We conclude (as in the limiting
case of an absorbing basal end):

Proposition 4. For 0 <o, =1/y, < 1, the expression (70) is an accurate leading term approximation for
the signaling Dpp gradient outside the Dpp production region where the [LR] gradient is instrumental
for the wing disc development. Thus, with a permeable (leaky) basement membrane with 0 < o, < 1,
the slope and convexity (but not the magnitude) of the signaling Dpp gradient in both X and Z direction
depends only on the parameter o, for the biologically realistic case of low receptor occupancy.

It appears that a leaky basement membrane serves the purpose of regulating the availability of Dpp
at a level that maintain the signaling Dpp gradient shape. That is, the slope and convexity of the [LR]
concentration gradient are not sensitive to the synthesis rate V; as it changes with significant environ-
mental perturbations. On the other hand, the magnitude of the bound morphogen concentration is seen
from (72) to be proportional to v, (as well as the two length quantities X, and Zp,x and inversely
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proportional to the diffusion coefficient D and the composite parameter o, = (Koff + kdeg) / Rokop of the
binding, dissociation and degradation rate constants).

For completeness, consider also the low leakage case of o, > 1 or 0 < y, « 1. For this case, we may
seek a singular perturbation solution for A in y, to obtain

M VT = dyet 00D]. g~ |14 oy + 002)] (4)

for k=1, 2, ..., with no new eigenpair arising from negative square roots and negative k. The results
reduce to those of the limiting case of y, = 0 given in (59) with leading term approximation for [LR(x, z)]
for £3y = oo and p =1 as previously given in (62). For this (biologically unrealistic) low leakage case,
the signaling gradient shape is much more sensitive to the leakage parameter y, and the degradation-to-
binding rate ratio (but not the Dpp synthesis rate V; ) since we have now

AT =27+l ~ v+l

7. Signaling gradient and wing disc size change

The need to accommodate exogenous environmental changes is a major performance objective of mor-
phogen systems. Given a lack of information on the change in system characteristics caused by such
changes, we pursue in this and the next section a more limited objective by investigating the change of
signaling morphogen gradient in response to a doubling of Dpp synthesis rate (whatever the cause may
be) while all system characteristics remain unchanged. We determine here whether a specific aspect of
system architecture, namely, the wing disc size, offers the potential of meeting the performance objective
by maintaining the [LR] concentration magnitude and its gradient shape (and thereby preserving tissue
pattern) relative to the new size. The concept of robustness is quantified in the next section (see also
[Lander et al. 2005¢; Vargas 2007]) and used to analyze the sensitivity of the signaling Dpp gradient to
the morphogen synthesis rate change and how wing disc size changes may ameliorate this sensitivity. In
this section, robustness is taken informally to mean no biologically or functionally significant change in
the magnitude and shape of the signaling Dpp gradient [LR] under a significant change in Dpp synthesis
rate. (More quantitative measures of robustness will be discussed in the next section.)

We begin by focusing on the case £j; = 0o and recalling the following four observations from the
results of the previous sections:

1. The apical-basal height of wing disc cells of Drosophilas is considerably larger than the lineal di-
mension of its cross section in the plane of the wing disc. Typically, we have of x,, = Xmin/Zmax =
0(1071) « 1 or smaller so that 0 < Ajx,, < 1, resulting in sinh(A1x,,)e 1% & A x,,.

2. The basal membrane is in reality neither sealed nor completely absorbing; instead there is a significant
amount of leakage with y, = 1/0, > 1. Consequently, the approximate expression (73) for the
eigenvalues {A;} and Proposition 4 for the signaling gradient apply.

3. With u? accurately given by h, = konRo/(D/Z2,,) = O(10~!) < 1 < 72/4 for a wing imaginal disc
with a relatively high leakage through the basal membrane, it follows from (67) that
2
A=l = 0(%) (75)

for y, = 1/0, > 1 so that Ax,, < 1 and sinh(A x,,)e 1% >~ Aix,,.
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4. Anticipating the need to reduce wing disc span (Xpnax and Xpin) and cell height (Zp,x) to maintain
robustness, we note that the approximation A% ~ k% for the relevant range y, = 1/0, > 1 improves
with smaller wing disc size. It follows from the fact that a reduction in Z,,x further reduces the
effect of M? (which was already minimal according to Proposition 4). This allows us to make the
same approximation for smaller Z,x (or Xpin and Xp,x). For Zmax = Zmax / V2, we have

A \/1+u2/xz \/1+M2/2,\2 o
-2
Al \/1+M%/)\-2 \/1+/"Lz/)"2 4)\1

so that the approximation [\% ~ A% is accurate to within than 4%.

(76)

Given that the higher harmonic terms in the eigenfunction expansion for ag(x, z) are negligibly small
compared to the leading term, the four observations above lead to the following accurate approximate
expression for the signaling gradient

VL XminZmax

[LR] ~ Lgo——e=" cos(hiz),  Lgo= —LominZmax 77)
az)q D

in the range 0 < x < oo as was found earlier in (70). Averaging [LR] over the interval [0, Z,ax] gives

V] o sin(Aq)
oA A

(78)

1 Zmax 1
[LR] = / [LR1dZ = / [LR]dz ~ Lgo
Zmax 0 0

with Ay &2 (1 —o0;)/2for0 <o, < %

We now arrive at the key development of this paper. Suppose the Dpp synthesis rate is doubled from
V. to V= 2V;. The maximum magnitude of the signal morphogen gradient (which, for the signaling
range [0, 00), occurs at x = 0) would then be doubled since the signaling gradient is proportional to
V,. The factor (v; Jaz1)e~ % in (77) does not depend on Xy and Zp,ax explicitly, so the magnitude of
[LR],—o (at least the leading term approximation) may be brought back down to the same level prior to the
synthesis rate doubling by reducing either X i, or Zyax by half. Either change would lead to a significant
distortion of the developed wing disc. There is however the biologically more realistic alternative of
reducing both size parameters by a factor of V2. Given X pmin = Xmin / V2 and Zpax = Zmax / V2 along with
observation (4) above, the new signaling gradient with the modified parameters of this option becomes

~ ~ v _ v _
[LR],—o ~ Lro——e ™" = Lo Ax

O(Z)xl Otz)ul

e 0 <x <00), (79)
with L RO = VL)?mianax /D = Vi X minZmax /D = Lpgo. The right-hand side is just the expression for
[LR];—o in (77). Since the signaling gradient [LR] remains a decaying exponential with the same mag-
nitude at the same scaled proximal-distal location, the size-normalized signaling gradient is identical to
the corresponding gradient prior to morphogen synthesis rate doubling (though the wing disc size has
been reduced). We refer to such preservation of signal gradient shape as size-normalized robustness in
subsequent developments. Note that the apical-basal average of [LR] as given in (78) is clearly also
size—normalized robust.

Among the three options for maintaining the signaling gradient shape after Dpp synthesis rate doubling,
halving the anteroposterior span (and hence X, and Xy,x) alone would mean a more drastic reduction
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in the wing disc span in the distal-proximal direction. The resulting new wing disc would be skewed

in one direction. At the other extreme, halving Z,x alone would change the shape of the gradient for

—A1x _)LIX/Zmax — e_}\l(X/Zmax)/z.

x > 0, given that the exponential factor e becomes e Neither is consistent
with the often observed consequence of a substantial increase in ambient temperature: a smaller wing
disc that is essentially similar to the normal wing imaginal disc in tissue patterning [de Moed et al. 1997;
French et al. 1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]. Hence, we are led to the

following proposition (for £, = 00):

Proposition 5. When there is a significant increase in the Dpp synthesis rate by a factor M with V=
MV and the approximation (77) for [LR] holds, the Drosophila wing imaginal disc patterning is pre-
served by the size reduction Xmin = Xmin/~v M and Zyax = Zmax/~ M.

The reduction of X i, and Zx (as well as X« in the case of a finite £,7) by the same amplification
factor 1/+/M is known as self-similar size reduction. With such a size reduction, the development of
the wing disc is insensitive to an M fold increase in Dpp synthesis rate and is therefore size-normalized
robustness.

It is worth digressing to comment briefly on the biologically unrealistic case y, = 0. Had the basal
end been sealed so that (62) applies with

ViXmin- 1
[LR(x, 2)] ~ —=" e~ fonX, (80)
kdeg
the only way to maintain the concentration magnitude [LR(0, z)] by a size change when V; is doubled
would be to reduce X, by half (instead of by V/2 as in the case of a leaking basal membrane). The
size reduction would not be self-similar unless Zp,,x is also reduced by half. In this latter case, the size
reduction would be self-similar size but substantially more drastic than those observed. Thus a porous
basement membrane appears to serve an important function in the robust development of the wing disc.
For the case of a large but finite X,,x, the expression (53) simplifies to
Ry _ Ry _ Ry
[LR(x, 2)] ~ —a(x,z) ~ —ap(x, z) ® — Aj(x) cos(Ar2)
aZ aZ aZ (8 1 )

—A1X
~ Lgo (1 — e 211 =9) cos (1 2),

oAl

for Ayx,,; >~ A1x, < 1 (keeping in mind that Lgo = Vi X min Zmax /D). We have from this the following
extension of Proposition 5:

Proposition 6. For a finite (dimensionless) anteroposterior span £y, the signaling Dpp gradient is (size-
normalized) robust after a Dpp synthesis rate doubling provided that Xy is also reduced by the same
factor V2 (as Xmin and Z pmax).

We emphasize that there are at least three advantages in changing both Xy, and Zy,« (as well as
X max) by the same factor to maintain the shape (that is, slope and convexity) of the signaling gradient
[LR] when the Dpp synthesis rate is doubled:

1. The size of the wing disc is reduced in all dimensions but the physical shape remains geometrically
similar before and after the reduction.
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2. The reduction is less drastic, by only a factor of +/2 instead of half.

3. Most importantly, it is consistent with the observation that fly wings are smaller physically in all
directions under the higher temperature, not just in the direction of the anteroposterior axis.

8. Robustness of signaling gradients

We saw from the eigenfunction expansion for the leading term perturbation solution that the signaling
[LR] gradient is generally sensitive to system parameter changes. Yet actual biological systems are
generally robust to such changes (up to a self-similar size change [de Moed et al. 1997; French et al.
1998; Bitner-Mathé and Klaczko 1999; Azevedo et al. 2002]). The analysis of the previous section
showed that the magnitude and shape of the signaling gradient [LR] can be maintained even when the
Dpp synthesis rate increases substantially by changing the anteroposterior span (including the width of
the localized Dpp synthesis region) and apical-basal cell height of the wing disc. In this section we
quantify this observation by way of either of the two robustness indices to be introduced below and
generalize the mechanism of self-similar size reduction for more flexible applications. To be concrete,
we focus on robustness with respect to a two-fold change in the Dpp synthesis rate in our model problem
as in [Lander et al. 2005c]. The general methodology developed for this parameter change is extended
to allow for multifactor changes and robustness with respect to other parameter changes in Section 9.

With a doubling of the morphogen synthesis rate V, =2V, we have chosen in the preV10us section an
“amplification” (or a “diminution”) factor « (with Xmln = Kk X1min, Zmax =Kk Zmax as well as X max = K Xmax)
to be 1/ \/_ =1/ «/_ 2 to maintain the order of magnitude of A;(0). However, the shape of the new
signaling gradient is preserved by such a change only after the approximation 1~\% ~ A2 Fory, =2
however, the error incurred for the dominant » = 1 term in the eigenfunction expansion is about 15%.
We explore in this section how we may limit the effects on A7 (and more generally A2) resulting from
more general size changes of Zy,x and X, when 3, = O(1) (but < 2).

For the particular case of Dpp synthesis rate doubling, there is nothing canonical about reducing Zx
and X i, by a factor /2 to minimize the change in [LR(0, z)]. If we should reduce Z.x (as well as
Xmin and Xax) by a different factor « instead,

{Xmin» Zmax, Xmax} =K {Xmin» Zmax, Xmax} P (82)

(e.g,k =1/ V3 3), the new concentration parameter L go would generally not be the same as Lyo as
desired, smaller if k% < 1 (e g, L RO =2Lgo/3 whenk =1/ V3 3) and greater if x% > 1. While neither
appears ideal for malntalnlng the magnitude of [LR] at x = O after synthesis rate doubhng, the added
flexibility may offer alternative benefits for x > 0 given that (75) is only an approximate relation and
(73) only holds for the biologically realistic range o, < 1. This flexibility is explored in the next two
subsections. For those developments, it should be noted that the ratio (76) describing the change in the
gradient shape factor A is modified to become

Ay 1HE2u2/a3 2
(83)

—=—~1+<x ppacs e
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which remains nearly 1 for a basal membrane with high leakage. The possibility of specifying « enables
us to choose it to minimize the effect of size changes on two robustness indices that measures the relative
change in the magnitude and shape of the signaling [LR] gradient downstream.

8.1. Root—mean-square differential signaling. To quantify the advantage of a smaller « (than 1/+/2),
we let b(x, z) and b(x z) be the normalized signaling morphogen-receptor gradients for morphogen
synthesis rate V; andV, =2V, respectlvely We have, for the low receptor occupancy case,

- ~ _ 5 A ~
(b(x, 2), bx, D}~ (ao(x, 2), o, ) ~ L4, (), 4y (0))
Z Z
where A (x) (for p =1 and £,; = 00) is as in (54) and Al(x z)is Al(x) with v, = (VL/RO)/(D/ < ax
replaced by v, = (VL/RO)/(D/Zmax) for Zmax = K Zmax (and {Xmlm max} = K{Xmin, Xmax}). Con-
sider the following measure of deviation from the signaling Dpp concentration [LR], namely, the signal
robustness index R, defined by

Ry(ic) = 