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GENERALIZED THERMOELASTIC WAVES IN CYLINDERS
DUE TO LOCALIZED HEATING

HAO BAI, RAVI CHITIKIREDDY, ARVIND H. SHAH AND SUBHENDU K. DATTA

This paper presents a theoretical study of propagation of thermoelastic waves generated by concentrated
heating of the outer surface of circular cylindrical shells. The generalized thermoelastic theory proposed
by Lord and Shulman is used to model the response of a circular cylindrical shell to a pulsed laser focused
on the surface of the cylinder. Guided wave modes in the cylinder are obtained by a semianalytical finite
element method. Dynamic response is constructed numerically by superposition of guided wave modes.
In this method, the cylinder is discretized in the radial direction into several coaxial circular cylinders
(subcylinders) and the radial dependence of the displacement and temperature in each subcylinder is
approximated by quadratic interpolation polynomials. Numerical results for the variation through the
thickness of various physical quantities of interest at a location away from the source are presented
for a silicon nitride (Si3N4) tube for illustration purposes. The frequency dependence of the response
quantities is discussed and attention is focused on convergence and accuracy of the computed results.

1. Introduction

Laser-based ultrasonic techniques have been used in several recent studies to generate elastic waves in
solids. These techniques provide a number of advantages over conventional ultrasonic methods, such
as higher spatial resolution, noncontact generation and detection of waves, and the ability to operate on
curved and rough surfaces [Scruby and Drain 1990]. The use of generalized thermoelasticity theories to
analyze thermoelastic waves generated by a pulsed laser beam has received some attention in recent years.
The classical theory of heat conduction in solids treats the flux of heat as proportional to the gradient of
temperature in the media. Thus, the heat conduction equation is a parabolic partial differential equation,
which predicts an infinite thermal wave speed. This assumption of infinite speed of heat propagation is
contrary to physical reality. To rectify this paradox, several generalizations to the classical heat conduc-
tion equation and the thermoelastic wave equations have been proposed. These generalizations take into
account the finite wave speed of the thermal pulse travelling through the body.

Lord and Shulman [1967] presented a generalized theory of thermoelasticity for an isotropic body that
was a modification of the Fourier law of heat conduction by the inclusion of a relaxation time. This then
predicts a finite thermal wave speed. Other generalizations were proposed by Green and Lindsay [1972],
who developed a temperature-rate dependent theory that included two relaxation times, and by Green
and Naghdi [1993], who introduced a thermoelasticity theory without energy dissipation. See [Ignaczak
and Ostoja-Starzewski 2010] for a theoretical development of thermoelasticity with finite wave speeds.
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Guided surface (Rayleigh) waves and Rayleigh–Lamb waves in plates have been studied by sev-
eral investigators using generalized thermoelasticity theories. Rayleigh–Lamb waves in plates using
Lord–Shulman theory have been discussed in [Datta and Shah 2009]. References to many other works
can be found in [Sharma et al. 2000; Verma and Hasebe 2001; Verma 2002; Al-Qahtani and Datta 2004;
Al-Qahtani et al. 2005]. Compared to many studies that have dealt with plates, there is a very limited
amount of reported work on waves in cylinders using generalized thermoelastic theories.

Dispersion of longitudinal thermoelastic wave propagation in a circular isotropic cylinder was studied
by Erbay and Şuhubi [1986], who considered the cylinder surface to be stress-free and at a constant
temperature. Elnagar and Abd-Alla [1987] studied the influence of the initial stress on Rayleigh wave
propagation in a generalized thermoelastic cylinder. Three-dimensional vibration of a homogeneous
transversely isotropic thermoelastic cylindrical panel was investigated in [Sharma 2001; Sharma and
Sharma 2002]. Recently, wave propagation in a thermoelastic cylinder of an arbitrary cross section was
reported by Ponnusamy [2007], who used a collocation method to study the dispersive waves.

Circumferential isothermal elastic waves in an isotropic cylinder generated by a laser pulse and their
scattering by a surface defect was studied experimentally in [Clorennec and Royer 2003]. Pan et al. [2004;
2006] investigated theoretically and experimentally the isothermal acoustic waves generated by a laser
point pulse in an isotropic and a transversely isotropic cylinder. Three-dimensional Fourier transforms
were used to find the dynamic displacements at the cylinder surface.

In this work, we present an analysis of generalized thermoelastic waves in cylinders due to a pulsed
laser beam focused on the surface of the cylinders. The generalized heat conduction theory of [Lord and
Shulman 1967] has been adopted here. A semianalytical finite element (SAFE) method was employed
earlier in [Chitikireddy et al. 2010] to obtain the dispersion relations for guided thermoelastic waves in
free cylinders. These modes are used here to represent the time-harmonic solutions for the field quantities
due to the laser excitation. Based on this solution, the steady-state Green’s function for the thermoelastic
cylinder can also be constructed. Zhuang et al. [1999] used the SAFE method to study the steady-state
Green’s function for isothermal composite cylinders. The response in the time domain can be obtained
by applying an inverse Fourier transform. Here, the distributions of the stresses, displacements, and
heat flux through the thickness of the cylinder are presented at certain chosen frequencies to show the
convergence of the results.

2. Formulation

2.1. Governing equations. Consider an infinite thermoelastic cylinder of inner radius ri and outer radius
ro in the cylindrical coordinate system (r, θ, z) with the origin at the centre of the cross section of the
cylinder as shown in Figure 1. The generalized Lord–Shulman governing equations of thermoelasticity,
in the presence of a body force and heat source, are given by [Al-Qahtani et al. 2005]

σi j, j + fi = ρüi , T0ρη̇+ Q =−qi,i , σi j = Ci jklεkl −βi j T,

ρη̇ = βi j ε̇i j +
ρcE
T0

Ṫ , qi + τ0q̇i =−ki j T, j .
(1)

The physical quantities and material constants appearing in these equations are: σi j , the components
of the stress tensor; ui , the components of the displacement; εi j , the components of the strain tensor;
Ci jkl , the elastic constants; qi , the components of the heat flux vector; ρ, the mass density; T0, the
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reference temperature; η, the entropy density; T , the temperature change; cE , the specific heat at constant
deformation; τ0, the thermal relaxation time; βi j , the thermal coefficients; ki j , the coefficients of thermal
conductivity; fi , the body force per unit volume; and Q, the heat source. In the above equations, a
superposed dot indicates the derivative with respect to time.

We define nondimensional quantities

r∗i =
ri
H
, u∗i =

ui
δH

, T ∗ = T
T̄
, t∗ = v̄

H
t, σ ∗i j =

σi j

δc̄
, q∗i =

qi
q̄
, ε∗i j =

εi j

δ
,

ρ∗ =
ρ

ρ̄
, c∗E =

cE
c̄E
, β∗i j =

βi j

β̄
, k∗i j =

ki j

k̄
, c∗i jkl =

ci jkl

c̄
, τ ∗0 =

v̄

H
τ0, T ∗0 =

T0

T̄
,

(2)

where

v̄ =

√
c̄
ρ̄
, δ =

√
k̄ T̄

H v̄c̄
, q̄ = k̄ T̄

H
, β̄ =

δc̄
T̄
, c̄E =

k̄
ρ̄v̄H

. (3)

In the sequel, two more nondimensional quantities are defined: the wave number k∗ = k H and frequency
ω∗ = ωH/v̄. Here ρ̄, k̄, c̄, H , and T̄ are the basic normalization quantities, and the rest can be derived
from them as shown above. Note that ρ̄, k̄, c̄, and T̄ can be taken suitably depending upon the material
properties of the cylinder. This nondimensionalization scheme yields all dimensionless equations in
the same form as their dimensional counterparts. Therefore, this normalization could be used to solve
multilayer structures.

Using (1), the governing coupled thermoelastic equations can be written as

ci jkluk,l j −βi j T, j + fi = ρüi ,
(

1+ τ0
∂

∂t

)
[T0βi j ε̇i j + ρcE Ṫ + Q] = ki j T,i j . (4)

Writing these equations in terms of the nondimensional quantities defined in (2) and introducing

f ∗i =
H
δc̄

fi , Q∗ = H 2

k̄ T̄

(
1+ τ ∗0

∂

∂t∗
)

Q,

Figure 1. Geometry of the cylinder.
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we obtain
c∗i jklu

∗

k,l j −β
∗

i j T
∗

, j + f ∗i = ρ
∗ü∗i ,

β∗i j T
∗

0

(
1+ τ ∗0

∂

∂t∗
)

u̇∗i, j − k∗i j T
∗

,i j + ρ
∗c∗E

(
1+ τ ∗0

∂

∂t∗
)

Ṫ ∗ =−Q∗.
(5)

These two equations have to be solved by numerical techniques for a generally anisotropic medium. If
the material of the cylinder is transversely isotropic with the symmetry axis coinciding with the z-axis,
the equations can be solved analytically in terms of Bessel functions. This will be discussed in a future
publication. In the following, we will use the SAFE method to solve the problem. For convenience, the
superscript * will be dropped.

2.2. Semianalytical finite element formulation. In this method, the radial dependence of the displace-
ment u and the temperature T are approximated by one-dimensional isoparametric finite elements. The
total thickness of the cylinder H is composed of cylindrical layers and each layer can have distinct
thermoelastic properties and thickness. By using the SAFE method, the thickness of the cylinder is dis-
cretized into N laminas. Quadratic interpolation polynomials are used to approximate the displacement
and temperature field over each lamina in the radial direction.

The displacement and temperature of the k-th lamina are expressed as

u(r, θ, z, t)= N1(ξ)ue(θ, z, t),

T (r, θ, z, t)= N2(ξ)T e(θ, z, t),
(6)

with

r = N2(ξ)Re. (7)

Here

N1(ξ)=

n1 0 0 n2 0 0 n3 0 0
0 n1 0 0 n2 0 0 n3 0
0 0 n1 0 0 n2 0 0 n3

 , N2(ξ)=
[
n1 n2 n3

]
, (8)

ue
= (ur1, uθ1, uz1, ur2, uθ2, uz2, ur3, uθ3, uz3)

T , T e
= (T1, T2, T3)

T , Re
= (Rb, Rm, R f )

T . (9)

In (8), the shape functions are

n1 =
1
2 ξ(ξ − 1), n2 = 1− ξ 2, n3 =

1
2 ξ(ξ + 1), −1≤ ξ ≤ 1. (10)

In (9) the nodal displacements ur j , uθ j , and uz j and temperature T j , where j = 1, 2, 3, are taken at
the inner surface (r = Rb), middle layer (r = Rm = (Rb+ R f )/2), and outer surface (r = R f ) of the k-th
lamina.

The strain tensor and temperature gradient are expressed as

ε = D1ue
+ D2ue

,θ + D3ue
,z, T ′ = B1T e

+ B2T e
,θ + B3T e

,z. (11)

The matrices B1, B2, B3, D1, D2, and D3 are defined in the Appendix. The stress vector is given by

σ = C(D1ue
+ D2ue

,θ + D3ue
,z)−βN2T e. (12)
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The variational principle of thermoelasticity [Al-Qahtani et al. 2005] is∫ t1

t0

∫
V

(
δεTσ − δT ′T K T ′− δT ′T (q+ τ0q̇)

)
dV dt =

∫ t1

t0

∫
V
( f − δuTρ ü) dV dt. (13)

The first term on the left-hand side is∫ t1

t0

∫
V
δεTσ dV dt =

∫ t1

t0

∫
V
(D1δue

+ D2δue
,θ + D3δue

,z)
T
[C(D1ue

+ D2ue
,θ + D3ue

,z)−βN2T e
] dV dt

=

∫ t1

t0

∫
z

∫
θ

δueT

K11ue
+ (K12−K21)ue

,θ + (K13−K31)ue
,z−

K22ue
,θθ − (K23+ K32)ue

,θ z− K33ue
,zz−

K e
01T e
+ K e

02T e
,θ + K e

03T e
,z

 dθ dz dt. (14)

The second term in (13) is∫ t1

t0

∫
V
δT ′T K T ′ dV dt =

∫ t1

t0

∫
V
(δT eT BT

1 + δT eT
,θ BT

2 + δT eT
,z BT

3 )K (B1T e
+B2T e

,θ+B3T e
,z) dV dt

=

∫ t1

t0

∫
z

∫
θ

δT eT (g11T e
− g22T e

,θθ − g33T e
,zz) dθ dz dt . (15)

The third term in (13) is∫ t1

t0

∫
V
δT ′T (q+ τ0q̇) dV dt =−

∫ t1

t0

∫
V
δT T (∇ · q+ τ0∇ · q̇) dV dt

=

∫ t1

t0

∫
V
δT T (T0ρη̇+ Q+ τ0T0ρη̈+ τ0 Q̇) dV dt

=

∫ t1

t0

∫
V
δT T (T0β

T ε̇+ ρCE Ṫ + Q+ τ0(T0β
T ε̈+ ρCE T̈ + Q̇)

)
dV dt

=

∫ t1

t0

∫
z

∫
θ

δT eT
[
( f1u̇e

+ f2u̇e
,θ + f3u̇e

,z +m0Ṫ e)+

τ0( f1üe
+ f2üe

,θ + f3üe
,z +m0T̈ e)+ Qe

]
dθ dz dt.

(16)

The right-hand side of (13) has the form∫ t1

t0

∫
V
δuT ( f − ρ ü) dV dt =

∫ t1

t0

∫
z

∫
θ

δueT ( f e
−Müe) dθ dz dt. (17)

The element matrices appearing in equations (14)–(17) are defined in the Appendix. Equating the coef-
ficients of δue in (13) to zero gives the equation

Müe
+ K11ue

− K01T e
+ (K12− K21)ue

,θ + K02T e
,θ

+ (K13− K31)ue
,z + K03T e

,z − K22ue
,θθ − (K23+ K32)ue

,θ z − K33ue
,zz = f e. (18)

Similarly, equating the coefficients of δT e in (13) yields

τ0 f1üe
+τ0m0T̈ e

+τ0 f2üe
,θ+τ0 f3üe

,z+m0Ṫ e
+ f1u̇e

+ f2u̇e
,θ+ f3u̇e

,z+ g11T e
− g22T e

,θθ− g33T e
,zz = Qe.

(19)
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Combining (18) and (19) and assembling the element matrices into global matrices leads to the governing
equations of motion

H1V̈+H2V̈,θ+H3V̈,z+H4V̇+H5V̇,θ+H6V̇,z+H7V+H8V,θ+H9V,z+H10V,θθ+H11V,θ z+H12V,zz

= F, (20)

where Hi (i = 1, 2, . . . , 12) are the global matrices, given in the Appendix, V is the global nodal dis-
placement and temperature vector, and F is a load vector defined by

F =
[

f e

Qe

]
. (21)

The traction-free boundary conditions on surfaces of the cylinder require that the stresses at the inner
and outer surfaces of the cylinder are zero:

σrr = σrθ = σr z = 0 at r = ri and r = ro. (22)

The thermal boundary conditions are considered as

T,r = 0 at r = ri and r = ro. (23)

These thermal boundary conditions imply that heat does not flow into or out of the system via the
boundaries. Note that for a free cylinder without body forces and heat sources the right-hand side
of (20) will be zero. Then, the homogeneous equation (20) leads to the eigenvalue problem for the
determination of the dispersion relation between the frequency ω and the z-direction wave number k for
a fixed circumferential integral wave number n. This was studied in [Chitikireddy et al. 2010].

3. Solution procedure for steady-state loading

In (20), the force vector F and the response V are assumed to be time harmonic with frequency ω. The
θ -dependence of the load and response can be expressed in Fourier series as:

F(θ, z, t)= e−iωt F(θ, z)= e−iωt
n=+∞∑
n=−∞

Fn(z)einθ ,

V (θ, z, t)= e−iωt V (θ, z)= e−iωt
n=+∞∑
n=−∞

Vn(z)einθ .

(24)

Substitution of (24) into (20) yields a system of ordinary differential equations with Fourier coefficients
Vn in terms of z. For each circumferential wave number (n), we obtain

H12Vn,zz + (−ω
2 H3− iωH6+ H9+ in H11)Vn,z

− [ω2(H1+ in H2)+ iω(H4+ in H5)− (H7+ in H8− n2 H10)]Vn = Fn. (25)

The following Fourier integral transform pairs are used to treat the z-dependence in (25):

V̄n(kn)=

∫
+∞

−∞

Vn(z)e−ikn z dz, Vn(z)=
1

2π

∫
+∞

−∞

V̄n(kn)eikn z dkn. (26)
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Application of Fourier transformation to (25) yields an algebraic equation in terms of the transform
parameter (kn):

−k2
n H12V̄n + kn HB V̄n + HAV̄n = F̄n, (27)

where
HB =−iω2 H3+ωH6+ i H9− n H11,

HA =−ω
2(H1+ in H2)− iω(H4+ in H5)+ (H7+ in H8− n2 H10).

Equation (27) is the governing equation for the n-th circumferential harmonic in the transformed domain.
The solution of (27) will be obtained in the form of an expansion in guided wave modes in the

z-direction. For this purpose, we consider the homogeneous equation, which is a three-parameter alge-
braic eigensystem in ω, n, and kn . If kn serves as an eigenvalue for given values of ω and n, (27) gives a
quadratic eigenvalue problem. Equation (27) can be converted into two first-order equations in the form[

0 I
HA HB

]{
V̄n

kn V̄n

}
− kn

[
I 0
0 H12

]{
V̄n

kn V̄n

}
=

[
0
F̄n

]
, (28)

which we rewrite more compactly as

[A− kn B]Un = Pn. (29)

If the displacement and temperature vector V̄n has dimension M , the dimension of Un in (29) is 2M .
A nontrivial solution to the homogeneous form of (29) in terms of kn yields 2M roots, denoted by knm .
They represent axial wave numbers which can be real, purely imaginary, or complex. A real wave number
represents a propagating wave and purely imaginary or complex wave numbers represent nonpropagating
(evanescent) waves.

Once the wavenumbers and wave functions are found from (29), the response due to the n-th circumfer-
ential mode in the Fourier series representation of the applied loads can be obtained by modal summation.
Associated with each eigenvalue there are right and left eigenvectors, 8R

nm and 8L
nm , respectively, and

they satisfy the equations

[A− kn B]8R
nm = 0, [AT

− kn BT
]8L

nm = 0. (30)

The right and left eigenvectors also satisfy the biorthogonality relations

8LT

nm B8R
np = diag(Bnm), 8LT

nm A8R
np = diag(knm Bnm), (31)

where diag( ) denotes a diagonal matrix. The eigenvectors can also be partitioned into the following
upper and lower halves (represented by subscript u and l, respectively):

8R
nm =

[
8R

nmu
8R

nml

]
, 8L

nm =

[
8L

nmu
8L

nml

]
. (32)

The solution of (29) is expressed by summation of right eigenvectors as

Un =

2M∑
m=1

Unm8
R
nm . (33)
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The coefficients Unm are calculated by substituting (33) into (28) and using the biorthogonality relations
(31). Then, the solution vector Un is written as

Un =

2M∑
m=1

8LT

mn Pn

(knm − kn)Bnm
8R

nm . (34)

The solution vector V̄n in (28), occupying the upper half of Un , takes the form

V̄n =

2M∑
m=1

8LT

mnl F̄n

(knm − kn)Bnm
8R

nmu . (35)

Inverse Fourier transform of (35) gives the response, Vn(z), of the n-th circumferential harmonic in the
spatial domain:

Vn(z)=
1

2π

2M∑
m=1

∫
+∞

−∞

8LT

mnl F̄n

(knm − kn)Bnm
8R

nmueikn z dkn. (36)

In many problems, F̄n , 8L
mn , 8R

nm , and Bnm are independent of wave number kn , so that application of the
Cauchy residue theorem yields the modal response Vn(z) in a straightforward way. The eigendata can be
divided into two groups for travelling or decaying modes from the origin in ±z directions, respectively.
Therefore, Vn(z) can be expressed as summation of motions in the positive and negative directions as

Vn(z, ω)=−i
M∑

m=1

8LT

mnl F̄n

Bnm
8R

nmueiknm z
− i

2M∑
m=M+1

8LT

mnl F̄n

Bnm
8R

nmue−iknm z. (37)

The response in the time domain is now obtained by applying an inverse Fourier transformation to
(37) and is calculated numerically as

Vn(z, t)= 1
2π

∫
+∞

−∞

Vn(z, ω)e−iωt dω. (38)

4. Heat source representation

The heat input due to the laser pulse is assumed to be of the form

Q = I0 f (t)δ(θ)gr (r)gz(z), (39)

where I0 is the energy of the laser pulse. The temporal profile f (t) is assumed as

f (t)= t
t2
0

e
−

t
t0 , (40)

where t0 is the pulse rise time. The spatial profile gz(z) is assumed to have a Gaussian profile in the
z-direction,

gz(z)=
1
√
πa

e−z2/a2
, (41)
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where a is the radius of the laser beam. The depth dependence, gr (r), of the pulse is taken as

gr (r)=
γ

r
e−γ (r0−r), (42)

where γ is the extinction coefficient. A schematic representation of the pulse and the frequency spectrum
of f (t) are shown in Figures 2 and 3, respectively. Here, the nondimensional frequency, ω∗ = ωH/ν̄,
where ν̄ = 2.5× 102 m/s. Note that the rise time of the pulse, t0, has been taken to be 1µs.

 

g
z
(z)

Z

f(t)

r

 

t

g
r
(r)

 

 

 

Figure 2. Temporal and spatial profiles of the pulse.

Figure 3. Frequency spectrum of f (t).
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Once the fundamental response functions 0(z) are constructed due to Q = I0 f (t)δ(θ)gr (r)δ(z), the
response due to the heat source Q, represented by (39), can be calculated as

v(z0)=

∫
+∞

−∞

0(z)gz(z− z0) dz. (43)

In the present work, only the thermal load is considered for constructing the response function. The
spatial representation of the heat source along the radial profile in the frequency domain is

Q = I0 f̄ (ω)δ(θ)δ(z)Q0, (44)

where Q0 = (Q1, Q2, . . . , Qk, . . . , Q2N+1)
T and Qk is the value of gr (r) at the k-th node using a

consistent load formulation. The solution procedure involves expansion of δ(θ) in a Fourier series. It is
well known that the Fourier series representation of a δ-function does not converge. Hence, it is necessary
to replace the point source by a uniform spatial pulse of intensity q0 over a circumferential distance 2roθ0.
For equivalence of a unit concentrated source, q0 is given by∫

+θ0

−θ0

q0rodθ = 1 or q0 =
1

2roθ0
. (45)

Therefore, the θ-dependence of Q in (44) is represented by a Fourier series expansion in the circumfer-
ential direction as

Q =
n=+∞∑
n=−∞

einθ Qnθ , (46)

where

Qnθ =
1

2πro

sin nθ0

nθ0
I0 f̄ (ω)δ(z)Q0. (47)

The Fourier transform of Qnθ in the z-direction is

Q̄nθ =
1

2πro

sin nθ0

nθ0
I0 f̄ (ω)Q0. (48)

Since mechanical load is not considered here, the load vector in (27) becomes

F̄n =

[
0

Q̄nθ

]
=

I0 f̄ (ω)
2πro

sin nθ0

nθ0
F0, (49)

where F0=
[
0 Q0

]T
. Substitution of (49) into (37) and considering propagation only in the+z directions

yields the n-th circumferential mode displacement and temperature response functions as

Vn(z, ω)=
−i I0 f̄ (ω)

2πro

sin nθ0

nθ0

M∑
m=1

8LT

mnl F0

Bnm
8R

nmueiknm z. (50)

Using (50) in (46), we obtain

V (θ, z, ω)=
−i I0 f̄ (ω)

2πro

n=+∞∑
n=−∞

sin nθ0

nθ0
einθ

M∑
m=1

8LT

mnl F0

Bnm
8R

nmueiknm z. (51)
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Equation (51) is used in the next section to calculate the vector V at a given location (θ, z) for different
frequencies ω. Attention is focused on the convergence of the numerical results by varying the number
of nodes through the thickness of the cylinder, the number of terms |n| in the Fourier series, and the
number of modes M .

5. Numerical results and discussion

In this section, we consider propagation of thermoelastic waves in a cylindrical shell generated by the heat
source represented by (39). The material of the cylinder is taken to be silicon nitride (Si3N4). Amorphous
and textured Si3N4 has been widely studied in the past for its excellent mechanical properties, such as high
resistance to thermal shock, resistance to chemical attack, high fracture toughness, and good tribological
and wear properties. A good review of the processing and anisotropic properties of silicon nitride for
various automotive and aerospace applications can be found in [Zhu and Sakka 2008] (see also [Kitayama
et al. 1999; Vogelgesang et al. 2000; Yokota and Ibukiyama 2003]). Dispersion of thermoelastic guided
waves in Si3N4 plates and cylindrical shells was reported in [Al-Qahtani and Datta 2004; Chitikireddy
et al. 2010]. Here, we present results for the frequency dependent displacements, stresses, temperature,
and thermal flux at an observation point due to the laser generated heating represented by (39).

We consider an infinite cylindrical tube with thickness 0.1 mm and inner radius 0.95 mm. Thus, the
nondimensional inner and outer radii are ri = 9.5 and ro = 10.5. The shell is discretized into N equally

Quantity Units Silicon nitride

ρ = ρ̄ kg/m3 3.20× 103

c11 N/m2 4.33× 1011

c12 N/m2 1.95× 1011

c13 N/m2 1.27× 1011

c33 N/m2 5.74× 1011

c44 N/m2 1.08× 1011

βrr N/m2 ◦K 2.71× 106

βzz N/m2 ◦K 3.22× 106

Krr W/m ◦K 43.5
Kzz = k̄ W/m ◦K 55.4
cE J/kg ◦K 0.67× 103

T0 = T̄ ◦K 296
τ0 s 4.32× 10−13

a µm 100
t0 µs 1.0
H mm 0.1
γ m−1 1 × 105

I0 Nm 1.0
c̄ N/m2 2 × 108

Table 1. Thermomechanical properties of Si3N4.
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thick coaxial circular cylinders, where N is allowed to take different values (25 and 50) in order to check
for the convergence of the results. As discussed later, numerical results indicate that the heat flux in the
radial direction, |qr |, has sharp gradients near the inner and outer surfaces of the cylinder. So, numerical
results are obtained also when the thickness is subdivided into 10 layers (5 at the outer end and 5 at the
inner), each of thickness 0.00175 mm, and 25 layers of thickness 0.0033 mm each in the middle.

As mentioned above, the material of the cylinder is Si3N4, whose properties, from [Al-Qahtani and
Datta 2004], are listed in Table 1. The symmetry axis of the material is aligned with the axis of the
cylinder. The localized heat source is represented by (39) with gz(z) taken as δ(z). As noted before,
once the response due to this source is known, that due to any other function gz(z) can be found by
convolution; see (43). In the frequency domain, the frequency spectrum of f (t) is shown in Figure 3. It
is seen that the dominant contribution comes from the interval 0≤ω∗ ≤ 5, that is, the dominant frequency
is between 0 and 1.99 MHz.

All the numerical results obtained here are in nondimensional forms. The nondimensional material
properties of the tube are given by

ρ∗ = 1.0, T ∗0 = 1.0, τ ∗0 = 1.081× 10−6, β∗rr = 70.03, β∗θθ = 70.03,

β∗zz = 83.21, k∗rr = 0.785, k∗θθ = 0.785, k∗zz = 1.00, c∗E = 967.50.
(52)

The nondimensional elastic stiffness tensor is given by

C∗ =



2165 975 635 0 0 0
975 2165 635 0 0 0
635 635 2870 0 0 0
0 0 0 540 0 0
0 0 0 0 540 0
0 0 0 0 0 765


. (53)

Dispersion curves for circumferential modes n = 0 are shown in Figure 4, and for n = 1 in Figure 5,
where γR and γI are the real and imaginary parts of the wavenumber k∗n . It is found that the elastic modes
are not affected significantly by the thermal effects within the frequency range considered here. This is
consistent with the findings reported in [Chitikireddy et al. 2010].

The computation of V (θ, z, ω) using (51) involves two summations: one over the number of axial
modes M for a fixed circumferential mode n and the other over circumferential modes n. The first is
determined by the number of finite elements Ne used to discretize the thickness of the cylinder. The
value of θ0, appearing in (45), has been chosen as 0.01 radians. The observation location is at θ = π/4
and z = rmean/4. Furthermore, gz(z) is taken to be δ(z) and γ appearing in (42) is chosen as 105 m−1

(see Table 1).
To test the convergence of the series with the number of elements Ne for an appropriate choice of |n|,

results were obtained for Ne as 15, 20, 35, and 50 keeping |n| fixed at 50. The value of ω∗ was taken
as 5. Figure 6 shows the variation of displacement, temperature, stress, and radial heat flux through
the thickness with the number Ne. It is seen that 35 elements are sufficient to assure convergence.
It is interesting to note the variation of |T | and |qr | through the thickness. The former decreases in
a nearly linear manner from the boundaries towards the middle of the shell. Note the sharp change
near the boundaries so that the slopes vanish at the boundaries to satisfy the zero heat flux conditions.
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Figure 4. Frequency spectra of silicon nitride cylinder for n = 0. The two-dimensional
diagram, corresponding to the plane γI = 0, shows the propagating (purely real) modes.

Figure 5. Frequency spectra of silicon nitride cylinder for n = 1. The two-dimensional
diagram, corresponding to the plane γI = 0, shows the propagating (purely real) modes.

Consequently, the radial heat flux is nearly flat through most of the thickness and then drops steeply to
zero at the boundaries. It is seen that convergence is achieved with both 35 and 50 elements.

Figures 7–9 show the changes in the distribution of the field quantities through the thickness at fre-
quencies ω∗ = 1, 3, and 5. They also show variations with increasing |n|, which was assumed to take the
values 20, 40, 50, and 60. The number of elements was kept at 35. It is seen that results converged when
|n| was 50. It is interesting to note that the rate of convergence increases with ω∗. This may be explained
by noting the fact that the amplitudes decrease (because of diffusion) as the frequency increases. This is
seen clearly in these figures.

Other features of these figures are as follows.
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Figure 6. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 5.0 with 25, 35, and 50 elements. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 7. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 1.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 8. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 3.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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Figure 9. Through-the-thickness dependence of numerically calculated quantities for a
silicon nitride cylinder at ω∗ = 5.0 with |n| = 20, 40, and 50. The top two rows show
the displacement components and the temperature distribution; the bottom two rows, the
stress components and the heat flux.
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(1) At low frequencies, |uθ | decreases in a linear fashion from the inner to the outer surface. As the
frequency increases, it decreases first from the inner surface, reaches a minimum, and then increases
with increasing radius. Both |uz| and |T | also decrease first starting from the inner surface and then
increase as the radius increases. The former attains the highest value at the outer surface, whereas
the latter has the highest value at the outer surface at low frequencies; this feature is reversed at high
frequencies.

(2) The radial displacement component and all the traction components increase from the inner surface
(the latter being zero at both boundaries), reach maxima, and then decrease as the radius increases.

(3) Radial heat flux has the distinctive feature that it increases steeply from zero at the inner surface,
reaches a plateau (slightly sloping towards the outer surface), and then decreases steeply to zero.

6. Conclusion

Propagation of thermoelastic waves in a circular cylindrical shell excited by a concentrated heat input has
been studied in this paper. The generalized thermoelasticity theory developed by Lord and Shulman has
been adopted. This theory includes a single thermal relaxation time. The material of the cylinder has been
taken to be transversely isotropic Si3N4 as an illustrative example. However, the semianalytical finite
element (SAFE) method that has been used here can also be used for generally anisotropic materials.

The heat input resembles that due to heating by a pulsed laser. It is focused at r = ro, θ = 0, z = 0,
with a radial dependence that decays with decreasing r and acts on a small circular arc 2roθ0, where
θ0 = .01 radians. The solution can then be used for more general dependence on z and θ .

Although the solution presented here is for a concentrated heat source only, a concentrated mechanical
load can easily be incorporated in the SAFE computations. This will be communicated in a future paper.

The results presented here are for discrete frequencies and the emphasis is on a study of convergence
and distribution of the field quantities over the thickness of the cylinder. However, transient wave forms
can be obtained by converting the continuous frequency spectrum using an inverse Fourier transform.

Appendix

B1 =

n1,r n2,r n3,r

0 0 0
0 0 0

 , B2 =


0 0 0
n1
r

n2
r

n3
r

0 0 0

 , B3 =

 0 0 0
0 0 0
n1 n2 n3

 ,

D1 =



n1,r 0 0 n2,r 0 0 n3,r 0 0
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0 0 n2,r −
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r
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,
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
,

K jk =

∫
r

DT
j C Dk r dr ( j, k = 1, 2, 3), K0k =

∫
r

DT
j βN2r dr (k = 1, 2, 3),

M =
∫

r
ρNT

1 N1r dr, g j j =

∫
r

BT
j K B jr dr ( j = 1, 2, 3),

f j =

∫
r

T0 NT
2 β

T D jr dr ( j = 1, 2, 3), m0 =

∫
r
ρcE NT

2 N2r dr, f e
=

∫
r

NT
2 f r dr,

H1 =

[
M 0
τ0 f1 τ0m0

]
, H2 =

[
0 0
τ0 f2 0

]
, H3 =

[
0 0
τ0 f3 0

]
, H4 =

[
0 0
f1 m0

]
, H5 =

[
0 0
f2 0

]
,

H6 =

[
0 0
f3 0

]
, H7 =

[
K11 −K01

0 g11

]
, H8 =

[
K12− K21 K02

0 0

]
, H9 =

[
K13− K31 K03

0 0
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,

H10 =

[
−K22 0

0 −g22

]
, H11 =

[
−(K23+ K32) 0

0 0
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, H12 =

[
−K33 0
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.
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