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DYNAMICAL CHARACTERIZATION OF MIXED FRACTAL STRUCTURES

LUIZ BEVILACQUA AND MARCELO M. BARROS

It is because of people like Marie-Louise and Charles that it is worth fighting for a better world.

We present a new technique to determine the fractal or self-similarity dimension of a sequence of curves.
The geometric characterization of the sequence is obtained from the mechanical properties of harmonic
oscillators with the same shape of the terms composing the given sequence of curves. The definition
of “dynamical dimension” is briefly introduced with the help of simple examples. The theory is proved
to be valid for a particular type of curves as those of the Koch family. The method is applied to more
complex plane curves obtained by superposing two generators of the Koch family with different fractal
dimensions. It is shown that this structure is composed by two series of objects one of which is fractal
and the other which is not rigorously a fractal sequence but approaches asymptotically a fractal object.
The notion of quasifractal structures is introduced. The results are shown to provide good information
about the structure formation. It is shown that the dynamical dimension can identify randomness for
certain fractal curves.

1. Introduction

The correlation between the form and the physical properties of certain objects and the fractal char-
acteristics of their geometry has called the attention of several researchers [Feder 1988; Gouyet 1996;
Mandelbrot 1982; Mauroy et al. 2004]. However the determination of the geometric fractal dimension
of a given sequence of objects using the associated sequence of a selected physical property has not yet
been explored as far as we know. In previous papers we have shown that coupling between physics and
geometry of fractal objects can be used to determine the fractal dimension of curves belonging to the
Koch family.

It was shown that dynamical properties of curves belonging to a fractal sequence can also be fractal.
Namely, the periods of a sequence of simple oscillators associated to a given Koch sequence have been
successfully used to determine the geometric fractal dimension of the given sequence [Bevilacqua et al.
2008]. We present below the more important results obtained for Koch curves that will help to understand
the numerical approach used here to deal with complex curves as explained later on.

We say that a sequence of curves belongs to the Koch family if the k-th order term contains Nk

segments with the same length λk . The number of segments and the respective lengths are given by
Nk = pk and λk = L0/qk where L0 is the initial basis or the initiator and p, q are integers. We will use
this definition throughout this paper.

Consider a sequence of springs consisting of wires folded in such a way as to reproduce the same
geometric shape of the corresponding terms of a given sequence of fractal curves. With these springs is
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Figure 1. Top: two terms of the fractal geometric sequence. Bottom: Corresponding
dynamic oscillators used to characterize the geometric sequence. The mass attached at
the extremity of the spring is represented by m.

then possible to construct a simple spring-mass harmonic oscillators sequence by clamping one of the
extremities and attaching a mass m at the free extremity. This oscillator sequence as shown in Figure 1
will be called the dynamic characteristic sequence.

It can be shown that it is possible to derive relatively simple relations between the geometric fractal
dimension of Koch curves and the fundamental periods of the related harmonic oscillators. Note that the
fundamental periods refer to each oscillator as a single isolated spring mass system. That is for a sequence
comprising n terms each one defined by the pair (Nk, λk) k = 1, 2, . . . , n where Nk and λk stand for
the number of terms and their lengths respectively there will be n simple harmonic oscillators each one
characterized by the corresponding fundamental period T f

k . The superscript f stays for the respective
degree of freedom excited by the initial conditions induced by a horizontal force H , a vertical force V or
a moment M . Since Nk can be written as a function of λk it is therefore possible to plot the elementary
length λk against the fundamental frequency T f

k . Figure 2 illustrates the polygonal curve representing
the relation between the logarithm of the normalized variables λk/L0 and T H

k /T H
0 up to the sixth term

for a given Koch sequence corresponding to an initial excitation induced by a horizontal force H .
We claim that the slopes of the segments composing the polygonal curve tend to a fixed value s which

is correlated with the fractal dimension D of the Koch sequence. That is limk→∞ sk = s and consequently
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Figure 2. The vertices of the polygonal curve represent the relation between the terms
of order k and the normalized frequencies of the corresponding oscillators.
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Figure 3. Oscillator corresponding to a term k of the Koch triadic carrying a mass m at
the free end and excited by an initial displacement induced by a horizontal force H .

the slope of the last segment in the polygonal curve leads to the fractal dimension of the Koch sequence
with increasing precision.

In order to keep this paper as self-contained as possible we will reproduce the proof of the convergence
of the slopes sk to the slope s as k→∞ or equivalently as λk→ 0.

Consider the Koch triadic sequence. Figure 3 represents the simple oscillator corresponding to a
general term k in the sequence.

Let us assume that all the independent oscillators carry an equal mass m at the free end. Imposing an
initial displacement generated by a horizontal force H applied at the free end the motion is governed by
the elementary equation

m
d2wk

dt2 +
wk

c(k)11

= 0, (1)

where wk is the generalized displacement and c(k)11 is the compliance or the inverse of the rigidity. For
linear elastic structures the compliance is given by

c(k)11 =
∂Wk

∂H

∣∣∣
H=1

(2)

Wk stands for the stored elastic energy. For the system under consideration the elastic energy stored in
a general term k is primarily due to the bending moment distributed along the Nk segments with length
λk composing the term of order k in the Koch triadic. Therefore the stored bending energy for the k-th
order term is

Wk =
1
2

∫ L t

0

M2
k (s)
E I

ds =
1
2

1
E I

Nk∑
i=0

∫ λk

0
(M (k)

i−1,i (s))
2ds, (3)

where E is the Young modulus of the wire material and I the moment of inertia of the wire cross
section. Both will be assumed constant for all the oscillators. M (k)

i−1,i is the bending moment acting on
the elementary segment (i −1, i) as shown in Figure 4 and Nk is the total number of segments in the k-th
order term. We are disregarding the contribution of the shear and normal forces to the strain energy. Now
all the oscillators, for all k, fit into a box L0× h0 as can be seen from Figure 4. The bending moment
along a segment (i − 1, i) is

M (k)
i−1,i (s)= H [y(k)i−1+ (y

(k)
i − y(k)i−1)s] where 0≤ s ≤ 1. (4)
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Figure 4. Bending moment along the segment (i − 1, i) for a general term k of the
oscillator sequence.

Now introducing (4) into (3), integrating over all segments λk and summing up we get

Wk =
1
2

H 2

Ek Ik
λkh2

0 Nk�k,

where
�k =

1
Nk

Nk∑
i=1
αi (k)

and αi (k)= 1
3 [z

2
i−1+ zi−1zi + z2

i ] with z j = y j/h0.
From the definition of h0 clearly z j ≤ 1 for all j , and consequently αi (k)≤ 1.
The compliance can now be derived from the stored energy function Wk :

c(k)11 =
∂Wk

∂H

∣∣∣
H=1
=

h2
0

Ek Ik
Nkλk�(k). (5)

Introducing this expression into (1) we obtain

d2uk

dt2 +
1

(T H
k )

2
uk = 0, (6)

where the period T H
k is given by

T H
k =

(
mh2

0L0

E I
λk

L0
Nk�k

)1/2

. (7)

Now from the definitions of Nk and λk for curves of the Koch family there comes immediately

log Nk =− log
(
λk

L0

)
log p
log q

. (8)

Introducing the value of Nk given by the equation above into (7) and after some straightforward calcula-
tions we obtain

log
T H

k

T I
0
=

1
2

log�k +
1
2
(1− D) log

λk

L0
, (9a)
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where D = log p/ log q and T I
0 is a reference period:

(T I
0 )

2
=

m0h2
0L0

E0 I0
.

The parameter D is the dynamical fractal dimension. It coincides with the box and the Hausdorff fractal
dimensions provided that the mass, the Young modulus and the diameter of the wire cross section are all
constant.

Now, if the geometric fractal dimension of the Koch sequence can be determined through the sequence
of the periods of the corresponding oscillators, it is necessary that the (9a) plotted on the plane Yk × Xk ,
with Yk = log(Tk/T0) and Xk = log(λk/L0), approaches a straight line whose angular coefficient is equal
to (1−D)/2 as shown in Figure 2. Define the functional relation Yk⇔ Xk as a polygonal curve composed
by straight segments connecting the points (Xk, Yk); (Xk+1, Yk+1). Let us prove the asymptotic behavior
of the polygonal curve. The following lemma is proved in the Appendix.

Lemma. For curves belonging to the Koch family — class of curves defined by Nk = pk and λk/L0 =

1/qk — the first order differential form of the quadratic term �k with respect to λk is finite for increasing
values of k, or equivalently decreasing values of λk . That is,

lim
k→∞

(1�k/1λk)= lim
λk→0

(1�k/1λk)

is finite.

Now recalling (9a) and with Yk = log(Tk/T0) and Xk = log(λk/L0) the calculation of the differential
ratio 1Yk/1Xk after some simple operations gives

1Yk

1Xk
=

1
2�k

1�k

1λk
λk +

1
2(1− D).

Therefore from the lemma and since �k is finite and nonzero we have

lim
λk→0

1Yk

1Xk
=

1
2(1− D).

Proposition 1. As k→∞ the curve given by (9a) approaches asymptotically a straight line with slope
equal to (1− D)/2.

It was shown that the oscillation period sequence approaches asymptotically a fractal sequence whose
fractal dimension exhibits a simple correlation with the geometric fractal dimension for the case of an
excitation induced by a horizontal force. Similarly it can be shown that the sequences corresponding to
the other two initial conditions, triggered by a vertical force or a moment, are governed by similar laws,
namely

log
T V

k

T II
0
=

1
2 log9k +

1
2(1− D) log

λk

L0
(9b)

for a vertical force and

log
T M

k

T III
0
=

1
2(1− D) log

λk

L0
(9c)

for a moment.
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The parameter D is the fractal dimension of the primordial geometric sequence provided that the
mechanical properties of the wires acting as springs are the same for all elements.

Note that for the initial condition induced by a moment the sequence of the normalized periods of
the simple oscillators follow exactly a power law. The reason is that for this case the bending moment
is the same for all the elementary segments, that is, the strain energy is uniformly distributed along the
elements composing the respective curve.

Numerical experiments have clearly shown that the fractal dimension of a generalized Koch curve can
be determined by the periods of a related oscillator sequence provided that the wire cross section and
Young modulus remain the same for all oscillators. It can be shown that if the mass m at the free end is
not constant but proportional to the total curve length, for each oscillator, that is, for the k-th oscillator
mk = ρNkλk the factor multiplying log(λk/L0) in (9a)–(9c) should be 1− D instead of (1− D)/2.

The fractal dimension determined with the method introduce above will be called dynamical fractal
dimension irrespectively of the value of the mass, constant or not.

Now suppose we are given just one term, sufficiently large, of a hypothetically fractal sequence. The
problem now is to find out if the given sample really belongs to some fractal sequence and if so to
determine the respective fractal dimension. Let us call this first curve the reference term. Following the
same technique exposed before build a spring-mass system using a folded wire with the same shape as
the reference term carrying a mass m at one of the extremities and keeping the other clamped (Figure 5,
left). It is possible, as already discussed [Bevilacqua et al. 2008] to find three fundamental frequencies
corresponding to three selected excitation introduced by a horizontal force H , a vertical force V and a
concentrated moment M .

From the reference term — Figure 5, left — cut a piece off the extremity to obtain a new sample with
length Ln+1 = bLn where b < 1 is the scale factor. This operation may be repeated successively to
obtain a sequence of samples. Now to each sample corresponds a simple harmonic oscillator and the
corresponding periods for all three types of excitation can be determined. Performing this operation in
successive steps (Figure 5) it is possible to find a correlation between the periods and the lengths of the
sample projections on the horizontal axis. It is convenient, in order to simplify the calculations, to agree
on a constant reduction factor b = Lm/Lm−1 to cut the successive samples.

Call bm the variable representing the ratio Lm/Ln where Lm is the length of the horizontal projection
of the sample m and Ln is the length of the horizontal projection of the reference term. Therefore we
have bm = bm . For the classical Koch curves it is possible to show that:

λn λn λn

m

m m

Ln Lr Lm

(a) (c)

m

Figure 5. Sequence of three general samples (m > r > n) taken from the reference term
whose projections on the horizontal axis are Lm , Lr , Ln . The scale b is defined by
Lr−1 = bLr .



DYNAMICAL CHARACTERIZATION OF MIXED FRACTAL STRUCTURES 57

(A) For oscillations induced by the action of a concentrated moment:(
log

Tn/m

Tn

)(M)
=

D
2

log(bm)+8
(M)
m . (10a)

(B) For oscillations induced by the action of a horizontal force or a vertical force we obtain the
equations (

log
Tn/m

Tn

)(H)
=

(
1+

D
2

)
log bm +8

(H)
m (10b)(

log
Tn/m

Tn

)(V )
=

(
1+

D
2

)
log bm +8

(V )
m . (10c)

The parameters 8(M,H,V )m in these equation can be interpreted as a kind of noise perturbation intrinsic
to the method. The interval of variation of the perturbation 8(M,H,V )m as function of m depends on several
conditions other than the scale factor b, as the type of the initial excitation and the geometry of the curves.
The analysis of 8(M,H,V )m as a function of m is rather complex even for simple Koch curves. It is possible
to show that a first estimation of the relative deviation of the sequence of normalized periods (Tn/m/Tn)

from the theoretical power law given by (bm)
(1+D/2) is

Tn/m/Tn

(bm)(1+D/2) ∝

√
1− 2mε0

1−m Dε0
, where ε0 = 1− b > 0.

Several numerical experiments were tried for different types of Koch curves. It has been observed that
for oscillations induced by a horizontal force the local perturbation is large while for the other two types
of excitation induced by vertical force and concentrated moment the noise is very small. In any case the
average values obtained with this technique for all boundary conditions are very good particularly for
ratios Lm/Ln > 0.6.

This paper is intended to show that the dynamical approach is equally applicable for a new class
of more complex curves that will be called mixed fractals. Numerical experiments with mixed fractal
geometries confirm that the theory developed for Koch curves presents just as good results. In other
words, Equations (9a)–(9c) and (10a)–(10c) can be extended to more complex curves.

2. Mixed fractals and quasifractal structures

Figure 6 shows two types of Koch curves CA and CB with self-similar or fractal dimensions DA and DB

respectively. From the definition of Koch curves we may write

log Nk = k log p

and
log

λk

L0
=−k log q.

Eliminating k we obtain

log Nk =−D log
λk

L0
, where D =

log p
log q

.
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Figure 6. Koch curves CA and CB used to generate a new object O . The fractal dimen-
sions are DA = log 4/ log 3 and DB = 1.5.

The parameter D is the self-similarity dimension or the fractal dimension. For the Koch triadic CA and
the Koch quadratic CB , we get DA = log 4/ log 3= 1.261859 and DB = log 8/ log 4= 1.5 respectively.

This paper deals with a series of objects O : {O1, O2, . . . , On, . . . } generated with the help of a
particular arrangement of two or more curves of the Koch type. We will call this class of objects mixed
fractal curves. In order to illustrate these ideas let us build a mixed fractal sequence with the help of two
particular curves, namely the Koch triadic (CA) and the Koch quadratic (CB).

The generation process of a mixed fractal curve using the Koch curves CA and CB with fractal dimen-
sions DA and DB respectively is governed by the following law of formation.

The first term O1 coincides exactly with the first term, the generator, of the CA series assembled
on a basis with length L0. That is O1 consists of N A

1 = pA segments with length λA
1 = L0/qA. The

second term of the O series is obtained by selecting pA generators of the series CB properly scaled such
that all of them fit to a basis of length λA

1 . This means that O2 consists of pA pB segments with length
λB

1 = λ
A
1 /qB = L0/qAqB . The next curves can be obtained repeating the procedure described above, that

is by using the elementary segments of the current curve as basis for the following generator of CA or of
CB properly downscaled. Switching these generators in successive steps all terms of the mixed fractal
sequence may be obtained.

Let CA be the Koch triadic and CB the Koch quadratic. Taking as initiator the generator of the Koch
triadic, ignoring the trivial initiator L0, the process is simply to switch step by step the generators of both
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Figure 7. Terms of the series O built up with the Koch curves CA and CB .

curves properly scaled to build up a new term of the series O as described above. Figure 7 depicts four
terms of the series.

Now, let us investigate the fractal characteristics of this new series built by overlaying alternatively the
generators of the triadic and of the quadratic Koch curves on each other properly scaled. Let us assume
that the mixed fractal curve belongs to the same class as Koch curves. Then we may write

D̄k =−
log N̄k

log(λ̄k/L0)
. (11)

If the mixed curve is really a self-similar fractal then D̄k is independent of k.
Recalling the formation law it is not difficult to calculate the number of segments N̄k = (pA)

i (pB)
j

and the segment length λ̄k = L0q−i
A q− j

B corresponding to the k-th order term. The integers i and j are
either equal or differ by one. That is,

{i, j} : [i − j = 0 or i − j = 1].

Clearly i + j = k. This can be expressed analytically by

i = b(k+ 1)/2c, j = bk/2c,

where the b c indicates the floor function (returning the integer part of a rational number). The expressions
for Nk and λk can be rewritten using these expressions:

log N̄k = i log pA+ j log pB (12)

and
log(λ̄k/L0)=−(i log qA+ j log qB). (13)

Now using (12) and (13) after some simple operations, the expression (11) becomes

D̄k =
k log pA+bk/2c(log pB − log pA)

k log qA+bk/2c(log qB − log qA)
. (14)
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Note that the dimension D̄k depends on the iteration order k. So it is not possible to say that a mixed
curve is fractal, further investigation is necessary. Let us separate the series O into two subsets, the odd
series Oodd and the even series Oeven.

For even iterations (14) reads

D̄even
=

log pA+ log pB

log qA+ log qB
. (15)

The sequence of even terms has a classical fractal structure with D̄even independent of k. For odd iterations
we have

D̄odd
k =

(k− 1) log pA+ (k− 2) log pB

(k− 1) log qA+ (k− 2) log qB
for k > 1. (16)

Then odd iterations are not strictly fractals. Clearly in the limit, when k→∞, the expression (16) tends
to expression (15) and we may say that the odd sequence approaches asymptotically a fractal sequence.
It is remarkable that the series O can be split into two series, Oeven which is a fractal series and Oodd

which is not strictly a fractal series, but we could say that it tends to a fractal object when k→∞. It is
possible to generalize the result above to include several fractal curves composing a mixed fractal.

Definition. An infinite set of curves {C1,C2, . . . ,Ck, . . . }with the same basis L0 is said to be a quasifrac-
tal Koch sequence if, letting N̄k be the number of segments — all of same length λ̄k — corresponding to
the term Ck , the sequence {D̄1, D̄2, . . . , D̄k, . . . } given by

D̄k =−
log N̄k

log(λ̄k/L0)
.

satisfies D̄i 6= D̄ j and has a limit

D̄ = lim
k→∞

D̄k .

Suppose that the number of elementary segments and the respective lengths corresponding to a general
term Ck are given by

N̄k = pi1
1 pi2

2 · · · p
im
m and (λ̄1/L0)= q−i1

1 q−i2
2 · · · q

−im
m i1+ i2+ · · ·+ im = k,

where the pair (p j , L0q−1
j ) j = 1, 2, . . . ,m corresponds to a simple generator K j belonging to the Koch

family and the exponents iα are integers function of k, iα = fα(k). Then the definition of D̄k gives

D̄k =
( f1(k)/ fβ(k)) log p1+ ( f2(k)/ fβ(k)) log p2+ · · ·+ log pβ + · · ·+ ( fm(k)/ fβ(k)) log pm

( f1(k)/ fβ(k)) log q1+ ( f2(k)/ fβ(k)) log q2+ · · ·+ log qβ + · · ·+ ( fm(k)/ fβ(k)) log qm
.

Now if at least one f j (k)/ fβ(k) 6= 1 and limk→∞[ f j (k)/ fβ(k)] → 1 then according to the previous
definition the sequence of curves Ck , k = 1, 2, . . . , n, . . . is quasifractal. �

According to this definition the odd sequence obtained with the process described above is clearly
quasifractal since from (16) we immediately obtain

lim
k→∞

D̄odd
k =

log pA+ log pB

log qA+ log qB
= D̄even.
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Figure 8. Normalized period log Tk/T0 versus the normalized length of segments
log λk/L0 for odd (left) iterations and even (right) iterations of the triadic-quadratic
mixed curve.

It is interesting to note that if qA is close to qB , that is, if

log qB

log qA
= 1+ ε,

the expression (15) can be written as

D̄even
k =

DA+ (1+ ε)DB

1+ (1+ ε)
.

When ε→ 0 we find that the fractal dimension tends to the mean value

D̄even
k ≈ (DA+ DB)/2.

3. Dynamical fractal dimension of mixed fractals

In this section we will use the technique presented in the previous section to investigate the fractal
characteristic of the mixed curve presented in the Section 2. The results obtained here, despite the fact
that we are dealing with a particular case, suggest that we may expect equally good results for other
mixed fractals belonging to the Koch family.

3.1. Test with a finite subset of consecutive terms removed from a mixed fractal sequence. Let us test
the dynamic fractal dimension method for mixed curves generated by the triadic-quadratic process given
the first eight terms. Let eight simple harmonic oscillators be built after the geometry presented in the
Figure 7. The eight terms are separated into two sets each one consisting of four terms corresponding
respectively to the even sequence and the odd sequence. For the first numerical experiment the oscillators
carry a constant mass and are excited by a moment, a horizontal force or a vertical force separately. The
results for four terms of each series, the odd series Oodd and the even series Oeven are presented in the
Figure 8-a and Figure 8-b. The approximated fractal dimension Dapprox was obtained with the slope
Ddyn of the segment joining the points on the graph of Figure 8 corresponding to the two highest order
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Exciting force Mass M0
Odd iterations Even iterations
Ddyn Dapprox Ddyn Dapprox

Couple −0.197354 1.394708 −0.197355 1.394710
Vertical force Constant −0.199822 1.399644 −0.200063 1.400126

Horizontal force −0.200496 1.400992 −0.200745 1.401490
Couple −0.394709 1.394709 −0.394711 1.394711

Vertical force Variable −0.397130 1.397130 −0.395132 1.395132
Horizontal force −0.398592 1.398592 −0.398576 1.398576

Table 1. Characterization using four terms of each sequence. Dynamic fractal dimen-
sion of odd and even iterations for the mixed triadic-quadratic Koch. Results for two
distinct assemblages: constant mass and variable mass proportional to the curve length.

terms in the sequence. According to the theoretical predictions (9a)–(9c), those slopes should relate with
the geometric fractal dimension as Dapprox = 1− 2Ddyn. The results are displayed on the Table 1 and
agree satisfactorily with the correct value of the geometric fractal dimension given by (15). Note that the
approximation of the fractal dimension for the odd sequence is indistinguishable from the approximation
for the even fractal sequence for practical proposes.

The results for a second numerical experiment with variable mass proportional to the total spring
length of the corresponding geometric term are also presented in the Table 1. For this case the fractal
geometric dimension expected from the theoretical results should be related to the dynamical fractal
dimension according to Dapprox = 1− Ddyn as stated before.

It is important to mention that the oscillator periods were calculated taking into account only the elastic
energy stored by the bending moment, disregarding shear and normal forces. The fractal dimension
relative to the even iterations is D̄even

0 = 1.39471 independent of k. As shown in the Table 1, the deviation
from this value is not more than 1.5%. The results are very consistent. It is also interesting to notice
that the results for the odd iterations are quite satisfactory if we think of the limit value as k→∞. The
numerical experiment corroborate the conjecture that the technique that has proved to work out for regular
Koch curves are also efficient to calculate the dynamical fractal dimension for mixed fractal objects. We
believe that this approach opens up a very rich topic for both theoretical and numerical investigation.

3.2. Test with a single term removed from the mixed fractal sequence. For this identification problem
just one term of the reference sequence is given to find out the respective fractal dimension. Let us take
the eighth order term of the Koch triadic-quadratic mixed fractal series. The projection of this curve on
the horizontal axis is therefore equal to the initiator length, that is Ln = L0. Figure 6 shows how the
normalized periods for 14 samples obtained from the reference curve as explained in the introduction
varies with respect to the successive length ratios. The cuts were made following a rather large scale
b = 1/2 reducing each sample successively according to the rate Lk = (Lk−1)/2.

Figure 9 shows the normalized periods versus the sample lengths for the three excitation types. The
Table 2 shows the slope Ddyn of interpolated straight lines corresponding to the points on the figure rep-
resenting the three excitation types and the derived approximated fractal dimension Dapprox. According
to the theoretical prediction (9a)–(9c), the relations between the geometric fractal dimension and the
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Exciting force Ddyn Dapprox

Couple 0.608081 1.397961
Vertical force 1.699156 1.398312
Horizontal force 1.710820 1.421658

Table 2. Slope of the lines which minimizes the sum of the square of the errors of the
respective data.

-6

-5

-4

-3

-2

-1

 0

 1

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

l
o
g
(
T
m
/
T
0
)

log(Lm/L0)

couple
vertical force

horizontal forc

Figure 9. The normalized period log(Tk/T0) versus the normalized horizontal projec-
tion of the length of the curve log(Lk/L0) for 14 samples obtained from the eighth order
term of the mixed triadic-quadratic Koch sequence, with b = 1/2.

dynamical fractal dimension should give Dapprox = 2Ddyn for the case of excitation induced by a moment
and Dapprox = 2(Ddyn − 1) for the case of excitation induced by a horizontal or vertical force. The
interpolated straight lines were adjusted to fit the point sets {Tk/T0, Lk/L0} displayed on the Figure 6
with the least mean square deviation method.

The mass was assumed constant for all oscillators. As shown in the Table 2 the maximum error ob-
tained with this technique is less than 3% and corresponds to the horizontal excitation. Clearly the points
corresponding to the horizontal excitation presents a large dispersion. For excitations corresponding to
a couple or a vertical force the errors do not exceed 1.2%.

3.3. Random mixed structures. It has been shown that the dynamical approach provides very good and
consistent results for regular, deterministic curves belonging to the Koch family. The method has also
proved to be successful in determining the fractal characteristics of mixed fractal curves.

For the classical Koch curves, besides providing means to determine the classical fractal dimension,
the dynamical approach tell us if the geometry is random or not. For the regular generation process,
the n-th order term is obtained from the (n − 1)-th term following a well determined rule. What we
call random geometry is that one obtained in a similar way except that the regular rule is replaced by a
random orientation procedure.
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Figure 10. The first two terms of two Koch triadic curves: the classical deterministic
curve (top) and a random generation (bottom). Both have the same Hausdorff dimension.

Figure 10 illustrates what we mean by a random fractal, taking as an example the classical Koch
triadic. Note that the cover set for both curves is the same and therefore they have the same Hausdorff
dimension. However note that the random series doesn’t present the self-similarity property. Also, if the
box counting technique were applied to compute the fractal dimension of these curves the results would
be the same for all curves. The dynamical approach however is able to identify the random character of
the curve.

Consider four terms of the triadic-quadratic odd series Oodd corresponding to five different random
generations. Consider the corresponding simple oscillators excited by a horizontal force. The results
correlating the normalized periods Tk/T0 and the relative lengths λk/L0 are displayed in Figure 11.
The curves obtained by connecting the point set {Tk/T0, λk/L0} for each random series clearly do not
coincide. However similar construction connecting the point set derived from the excitation induced by
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length of the elementary segment for five random triadic-quadratic sequences taking
only odd iterations with initial conditions induced by a horizontal force.
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a concentrated moment would lead to just one and the same curve. The reason is that for this particular
type of excitation, that is, a concentrated moment, the strain energy is uniformly distributed along the
curve which is the dynamical equivalent to the set covering introduced in the Hausdorff theory [Falconer
1990].

Indeed, recall that we are considering only the elastic energy induced by the bending moment. For
the case of a moment this energy is independent of the orientation of the segments in the oscillator and
consequently the results are the same for all random curves of the same order k. Now for excitations
due to a horizontal or a vertical force the bending moment distribution depends on the position of each
segment in the oscillator. This indicates that the elastic energy stored in the oscillator is sensitive to the
position of the segments in the structure and this is translated in the point set distribution identifying
the randomness of the structure formation. The slopes of the interpolated straight lines representing the
points {Tk/T0, Lk/L0} for each random series lead as expected to a unique value related closely to the
Hausdorff dimension. That is on the average the result coincides with the other classical methods but
the slight dispersion of the points reveals the random character of the series.

4. Conclusions

The technique proposed in a series of papers [Bevilacqua and Barros 2007; Bevilacqua et al. 2008] is
applied here to mixed structures. The results reproduce the expected output of the method. All the exper-
iments lead to the conclusion that this method is powerful and justify further exploration, encompassing
both theoretical and computational fields. What the method suggests is that the dynamical properties of
fractal, self-similar structures and random structures hide very rich information that need to be further
investigated. In order to detect details as that associated to multi-fractals structures, random formation,
mixed fractals and the like it would be convenient to use more complex oscillators for the identification
problem with several added masses, that is extend the method to multi-mass systems. Possibly the
frequency spectrum of those more complex structures will provide the information needed for the cor-
responding characterization. Application can be found in the determination of fractal dimension, if any,
of protein chains, tissues and biological membranes [Bassingthwaighte et al. 1994]. It is also important
to remark that this technique can be applied to physical objects, that is, characterization through labo-
ratory experimentation. Therefore laboratory experiments can be designed to determine the dynamical
properties of biological tissues or fibers and consequently the fractal characterization of the sample. The
fractal characterization of composite materials may also be obtained using samples of the material to be
analyzed and applying the procedure described above.

In [Bassingthwaighte et al. 1994, Chapter 12] the question is raised of “fractals where the physical
mechanism must be different at different scales”, referring to problems related to neural networks. The
analysis introduced here may give some clues to explain this kind of puzzling behavior. Indeed if the
mechanical properties of the oscillators are different at different scales then the sequence of periods of
the oscillators may follow a power law quite different from that characterizing the geometric sequence,
or even not be fractal at all. This means that for the general case the physical behavior may generate a
sequence of physical properties quite different from the geometric characteristics.
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Figure 12. Mean value ȳi−1·i and difference 1yi−1,i .

Finally we would like to remark the interesting property of mixed fractals formed by two Koch curves
that split up into two different sets. One is fractal and the other is quasifractal. To the best of our knowl-
edge this is a new result that needs further investigation and generalization for structures constructed
with more than two Koch curves.

Appendix

We show that the first derivative of the bilinear term �k with respect to λk is finite for increasing values
of k. Recall that

�k =
1

Nk

Nk∑
i=0

αi (k) and αi (k)= 1
3 [z

2
i−1+ zi−1zi + z2

i ].

First let us write αi (k) under the form

αi (k)= z̄2
i−1,i +

1
31z2

i−1,i , (17)

where
z̄i−1,i = (zi−1+ zi )/2 and 1zi−1.i = (zi − zi−1)/2.

Introducing (17) in the expression for �k we get

�k =
1

Nk

Nk∑
i=0

(z̄2
i−1,i +

1
31z2

i−1,i ). (18)

Clearly z̄i ≤ 1 and |1zi−1,i | ≤ 1.
Consider the second term on the right-hand side of (18). By definition 1yi−1,i = yi − yi−1 as shown

in Figure 12 and therefore it is possible to write

1yi−1,i = γi−1,iλk with γi−1,i ≤ 1.

From this it follows that

1zi−1,i =
1

2h0
1yi−1,i =

1
2h0

γ i−1,iλk = βi−1,iλk .
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Introducing this expression in (18) we get

�k =
1

Nk

Nk∑
i=0

(z̄2
i−1,i +

1
3β

2
i−1,iλ

2
k). (19)

Now define the vector functions

z̄T
k =

[
z̄(k)0,1 z̄(k)1,2 · · · z̄

(k)
i−1,i · · · z̄

(k)
Nk−1,Nk

]
and

βT
k =

1

2
√

3h0

[
β(k)

0,1
β
(k)
1,2 · · ·β

(k)
i−1,i · · ·β

(k)
Nk−1,Nk

]
.

Then (19) reads, in vector notation,

�k =
1

Nk
(zT

k zk + λ
2
kβ

T
k βk).

Since |zi−1,i | ≤ 1, |βi−1,i | ≤ 1 and λk ≤ M for all k, we conclude that �k remains bounded as k→∞.
Similarly the term of order k+ 1 can be written as

�k+1 =
1

Nk+1

(
z̄T

k+1 z̄k+1+
1
3λ

2
k+1β

T
k+1βk+1

)
,

where the components of zk+1 are proportional to the ordinates of the corners of the curve corresponding
to the term of order k+ 1. In general we may write

zT
k+1 =

1
h0

[
y(k+1)

0 y(k+1)
1 y(k+1)

2 · · · y(k+1)
Nk+1

]
.

Referring to the preceding term in the sequence as shown in Figure 13 we have

zT
k+1 =

1
h0

[
y(k)0 y(k)01 · · · y

(k)
0(p−1)y

(k)
1 · · · y

(k)
1(p−1) · · · y

(k)
Nk

]
Note that

y(k)Nk
= y(k+1)

pNk
,

y(k)i = y(k+1)
pi ,

y(k)i j = y(k+1)
pi+ j , i = 0, . . . , Nk − 1; j = 1, . . . , p− 1

represent respectively the ordinates of the corners of the k-th curve in the sequence and the ordinates of
the added corners for the (k+ 1)-th curve. It is possible then to decompose the vector zk+1 as

zk+1 =
U1

h0

[
y(k)0 y(k)1 · · · y

(k)
Nk

]T
+

U2

h0

[
y(k)01 · · · y

(k)
0(p−1)y

(k)
1 · · · y

(k)
1(p−1) · · · y

(k)
(Nk−1)(p−1)

]
,

where U1 and U2 are Boolean matrices.
Now, with this decomposition it is not difficult to show that the vector z̄k+1 can be written as

z̄k+1 = Rz̄k + R(1zk)+ λkρk+1, where |ρ(k+1)
i | ≤ 1
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Figure 13. Term of order k+1 attached to the previous term of order k. M N =λk Mm=
mn = no= or = r N = λk+1.

and R = [ri j ] is a Boolean matrix defined as follows (where i, j, p are integers):

ri j =

{
1 if p( j − 1) < i ≤ pj,
0 otherwise.

Now using the definition of �k+1 and recalling that (1zk)= λkβk we get

�k+1 =�
∗

k+1+
1

3Nk+1
λ2

k+1β
T
k+1βk+1,

where

�∗k+1 =
1

Nk+1
( z̄T

k RT Rz̄k + λ
2
kβ

T
k RT Rβk)

+
2

Nk+1
(λkβ

T
k RT Rz̄k + λkρ

T
k+1 Rz̄k + λ

2
kρ

T
k+1 Rβk)+

1
Nk+1

(λ2
kρ

T
k+1ρk+1).

Recalling that

|z(k)i | ≤ 1, |β(k)i | ≤ 1, |β(k+1)
i | ≤ 1, |ρ(k+1)

i | ≤ 1, Nk+1 = pNk, λk+1 = λk/q

and that R according to the definition above has the property RT R = p I we arrive at

�k+1 =
1

Nk+1

(
p( z̄T

k z̄k +
1
3λ

2
kβ

T
k βk)

)
+ λk R1(k, k+ 1)+ λ2

k R2(k, k+ 1),

where R1(k, k+ 1) and R2(k, k+ 1) are finite for all k, max(R1, R2) < M (finite). Finally recalling that
Nk+1 = pNk we get

�k+1 =�k + λk R1(k, k+ 1)+ λ2
k R2(k, k+ 1).

Now noting that

1λk = λk+1− λk = λk

(1
q
− 1

)
.

We may write
1�k

1λk
=

(1
q
− 1

)−1
(R1(k, k+ 1)+ λk R2(k, k+ 1)).
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Lemma. For curves belonging to the Koch family — the class of curves defined by Nk = pk and λk/L0 =

1/qk — the first order differential form of the quadratic term �k with respect to λk is finite for increasing
values of k, or equivalently decreasing values of λk . That is, the limit

lim
k→∞

(1�k/1λk)= lim
λk→0

(1�k/1λk)

is finite.
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