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THREE-DIMENSIONAL ISOFIELD MICROMECHANICS MODEL
FOR EFFECTIVE ELECTROTHERMOELASTIC PROPERTIES

OF PIEZOELECTRIC COMPOSITES

SANTOSH KAPURIA AND POONAM KUMARI

A fully coupled three-dimensional micromechanics model based on the isofield method is developed
for the effective electrothermoelastic properties of piezoelectric fiber-reinforced composite (PFRC) ma-
terials with poling and an electric field applied normal to the fiber direction. In the isofield method,
the strain and electric field components parallel to the plane connecting two phases are assumed to be
uniform across both phases, and likewise for the stress and electric displacement components normal to
the connecting plane. The model employs the isofield assumptions for two possible connectivities, which
are then combined so as to yield transverse isotropy of the effective properties when both constituents are
transversely isotropic. The assumption of uniform electric field across two phases made by some existing
theories can be achieved as a special case of the present formulation when the dielectric constants of the
fiber and matrix phases are equal. The effects of the fiber volume fraction and dielectric ratio on the
effective properties are studied for two PFRC systems, PZT-7A/epoxy and PZT-5H/epoxy. The results
are compared with those available in the literature based on uniform electric field assumptions. It is
found that the dielectric ratio has a very significant effect on the electromechanical and electrothermal
coupling constants of PFRCs.

1. Introduction

Piezoelectric materials are being increasingly used as distributed sensors and actuators in structural health
monitoring [Park et al. 2010] and control [Dong et al. 2006] applications. Their advantages over other
available smart materials include easy commercial availability, efficient conversion of energy, relatively
linear electromechanical behavior (at low fields), and large useful bandwidth [Chopra 2002]. However,
for large-scale structural control applications such as in aerospace, automotive, and ship structures, mono-
lithic piezoelectric actuators and sensors suffer from shortcomings with regard to tailorable anisotropic
actuation, that is, directional actuation, robustness against damage during use and handling, ability to
cover the entire structure for distributed actuation and sensing, and conformability to curved shell-type
structural members. To address these concerns, piezoelectric fiber-reinforced composites (PFRCs) have
been developed recently by embedding piezoceramic fibers in a resin matrix system, which, in addition
to overcoming all the above-mentioned shortcomings, also possess higher specific stiffness, toughness,
operating voltage range (from −1500 to +2800 V), and lifespan (200 million cycles) than the bulk
material [Uchino 2000]. For designing such PFRC sensors and actuators as well as smart laminates
integrated with these, it is necessary to have micromechanics models capable of estimating the effective
electrothermoelastic properties of a unidirectional PFRC layer from the properties of its constituents.
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A number of micromechanics models have been proposed for piezoelectric composites in which the
piezoelectric fibers are oriented along the thickness direction (Figure 1a). In this case, the poling and
electric field directions are parallel to the fiber axis, causing a d33 effect, which is useful in ultrasonic
transducer applications. These micromechanics models have been developed based on the Voigt-type
isofield method [Chan and Unsworth 1989; Smith and Auld 1991], the Mori–Tanaka method [Dunn and
Taya 1993], the self-consistent method [Dunn and Taya 1993; Levin et al. 2000], the generalized method
of cells [Aboudi 1998], and the asymptotic homogenization method [Sabina et al. 2001; Levin et al.
2008].

Commonly used piezoelectric materials such as PZT and PVDF are transversely isotropic about their
poling axes (class mm6 symmetry). Thus, when the piezoelectric fibers are aligned along the poling
direction and the matrix is also transversely isotropic about the fiber direction, the transverse isotropy
is retained in the composite system. All the above micromechanics models are thus concerned with
transversely isotropic effective properties. In [Kar-Gupta and Venkatesh 2005], a unit cell-based finite
element model was employed to obtain the electromechanical effective properties of a 1-3 piezoelectric
composite system. In this system, the fibers are oriented along the thickness direction, while the fiber and
matrix phases are poled along different directions (parallel or normal to the fiber direction) to generate
a wide range of specific acoustic impedances.

For structural applications, however, the stiff piezoceramic fibers must be oriented in the plane of
the structures (Figure 1b) and the poling as well as the electric field directions are perpendicular to
the fiber axis, resulting in a d31 effect. In this case, the composite system is no longer transversely
isotropic about the fiber axis, particularly with regard to the piezoelectric properties. Very few studies
have been reported on the micromechanics of PFRC laminas of this type. The first such model was
presented in [Bent 1994] using the isofield method for computing effective electroelastic properties. In
that work, even though a general methodology was briefly outlined for calculation of effective material
properties for the three-dimensional (3D) stress field considering two possible connectivity planes of the
constituent phases, the detailed closed-form solutions and the results for effective material properties
were presented by considering the uniaxial stress field only. The results for the 3D stress field based on
this method have been presented only recently [Kapuria and Kumari 2010]. In [Mallik and Ray 2003;

(a) (b)
Figure 1. Schematic representation of PFRC with poling and electric field directions
(a) parallel and (b) normal to fiber.
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Ray 2006] a simpler model was presented using the uniform fields concept with a single connectivity
plane (parallel to the fiber axis) for computing the effective electroelastic properties of PFRCs, which
has been recently extended to the thermoelectroelastic case in [Kumar and Chakraborty 2009]. In this
formulation, however, the electric field is assumed to be uniform across both the piezoelectric fiber and
elastic matrix phases, which is not achievable when the electric field is applied across the thickness of
the lamina, due to large difference in the dielectric constants of the two phases. The assumption is valid
only when the two phases have the same dielectric constants, which is not the case for the materials
commonly used for the purpose. Their formulation thus gives unrealistically high values (upper bounds)
of the effective piezoelectric constants.

This paper presents a coupled 3D isofield model for estimating the effective electrothermoelastic
properties of a unidirectional PFRC lamina with in-plane fibers and poling and electric field applied along
the thickness direction. The effective properties are obtained for representative volume elements (RVEs)
with two possible connectivity planes for the piezoelectric fiber and matrix phases, namely, parallel
and normal to the fiber plane. The two models are combined in a way which maintains the transverse
isotropy in the effective properties when both constituents are transversely isotropic about the fiber axis.
Results are presented for two PFRC systems comprising, respectively, PZT-7A and PZT-5H fibers with
an epoxy matrix. The results are compared with those of [Ray 2006; Kumar and Chakraborty 2009]
obtained based on the uniform electric field assumption. The effect of the ratio of transverse dielectric
constants of the fiber and matrix phases (hereafter called the dielectric ratio) on the effective piezoelectric
and pyroelectric constants is illustrated. It is revealed that both effective piezoelectric and pyroelectric
constants are maximal when the dielectric ratio is unity, and reduce drastically as the ratio increases. The
effective thermoelastic properties are also compared with simplified models such as the rule of mixtures
(ROM) and the modified rule of mixtures (MROM) [Gibson 2007] so as to ascertain their validity.

2. 3D isofield micromechanics model

2.1. Constitutive relations. The effective thermoelectroelastic constants of PFRC materials are deter-
mined from the properties of individual phases (fiber and matrix) by generalizing the 3D isofield ap-
proach of [Bent 1994; Kapuria and Kumari 2010] for the electrothermomechanical field. In order to
have a unified treatment, both fiber and matrix are assumed to be piezoelectric materials, which are of
orthotropic class mm2 symmetry, with principal material axes x1, x2, and x3, and are polarized along the
thickness direction x3. The 3D linear constitutive equations of such a piezoelectric continuum are given
by [Auld 1973] 

ε1

ε2

ε3

γ23

γ31

γ12

D1

D2

D3


=



s11 s12 s13 0 0 0 0 0 d31
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where εi and γi j denote the normal and shearing strain components, σi and τi j denote the normal and
shear stress components, Di denotes the electric displacements, Ei denotes the electric field components
in the principal material axis system, and T denotes the temperature change over the reference stress-free
temperature. Constants si j , di j , εi j , αi , and q3 are the elastic compliances, piezoelectric strain constants,
dielectric constants, thermal expansion coefficients and pyroelectric constant, respectively.

The physical background of the isofield micromechanics model including its assumptions is described
in Appendix A. In the generalized 3D isofield approach, the effective properties are first obtained for
RVEs of two possible connectivities for the piezoelectric fiber and matrix phases: models A and B with
material connectivity on the x1-x2 and x1-x3 planes respectively, as shown in Figure 2. The strain and
electric field components parallel to the connecting plane of the two phases in a given RVE are assumed to
be uniform across both phases (isofield condition), while isostress and isoelectric displacement conditions
are assumed to exist along the direction normal to the connecting plane. The computations for the
effective properties for the two models A and B are described below followed by the procedure of
combining the two.

2.2. Model A. In model A, the connecting plane is x1-x2, and hence the strain components (ε1, ε2, γ12)
and electric field components (E1, E2) which are parallel to the connecting plane are assumed to be
uniform across both phases, and isostress and isoelectric displacement conditions are assumed to exist

Figure 2. RVEs for isofield model (p: piezoceramic, m: matrix).



MICROMECHANICS FOR PIEZOELECTRIC COMPOSITES 253

for (σ3, τ23, τ13) and D3, which are normal to the connecting plane. The electric field is considered to be
applied along the thickness direction only, and the in-plane electric field components that may be used
due to direct piezoelectric effect is neglected being small in comparison to E3, that is, E1 ' E2 ' 0.
It follows from (1) that, for this case, γ31 and γ12 become electromechanically uncoupled and hence
the expressions for the effective shear compliances s55 and s66 (both normal to the fiber axis) will be
similar. Hence, only one strain components γ12 is included in the following derivation, without any loss
in generality. Thus, the isofield conditions for this case can be written as

Ū a
=U a

p =U a
m with U a

=
[
ε1, ε2, σ3, τ23, γ12, D3

]T
. (2)

The superscript a corresponds to model A. An overbar denotes the average value, and subscripts p
and m (also used as superscripts elsewhere) denote piezoelectric fiber and matrix phases, respectively.
Temperature change is assumed to be uniform over fiber and matrix phases, that is, T̄ = Tp = Tm . The
average value of the complimentary field components σ1, σ2, ε3, γ23, τ12, and E3 will have contributions
from each phase in proportion to their volume fractions v p

3 and vm
3 (= 1− v p

3 ) measured along the x3

direction:
V̄ a
= v

p
3 V a

p + v
m
3 V a

m with V a
=
[
σ1, σ2, ε3, γ23, τ12, E3

]T
. (3)

The dependent field variables V a can be expressed in terms of the independent variables U a using the
constitutive equation (1) as

V a
γ = AγU a

γ + Aγt T̄ with Aγ =



a11 –a12 a13 0 0 a16

–a12 a22 a23 0 0 a26

–a13 –a23 a33 0 0 a36

0 0 0 a44 0 0
0 0 0 0 a55 0

a16 a26 –a36 0 0 a66



γ

, Aγt =



at1

at2

at3

0
0

at6



γ

, (4)

where γ = p,m and the constants aγi j and aγt j are given by
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2− s ′2iα
′

1)
(−1)i

δ
,
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′

13)
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δ
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i = (s
′

i1d ′32− s ′2i d
′

31)
(−1)i

δ
, i = 1, 2, j = 1, 2, 3.

(5)

Substituting (4) for γ = p and m into (3) and applying (2) yields

V̄ a
= (v

p
3 Ap
+ vm

3 Am)Ū a
+ (v

p
3 Ap

t + v
m
3 Am

t )T̄ = AŪ a
+ At T̄ , (6)



254 SANTOSH KAPURIA AND POONAM KUMARI

and therefore

Ū a
= ÂV̄ a

+ Ât T̄ , Â = A−1, Ât =−A−1 At . (7)

Rearranging (7) in the form of (1), the effective constitutive equation and hence the effective material
properties of PFRC for model A are obtained as



ε̄1

ε̄2

ε̄3

γ̄23

γ̄12

D̄3


=



s11 s12 s13 0 0 d31

s12 s22 s23 0 0 d32

s13 s23 s33 0 0 d33

0 0 0 s44 0 0
0 0 0 0 s66 0

d31 d32 d33 0 0 ε33



A 
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σ̄2

σ̄3

τ̄23
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Ē3


+



α1

α2

α3

0
0
q3



A

T̄ , (8)

where s A
i j , d A

i j , ε
A
33, αA

i , and q A
3 are the effective material properties for model A, given by

s A
i3 = âi3/â33, s A

33 = 1/â33, d A
33 = â36/â33,

s A
i j = âi j − s A

i3s A
j3/s

A
33, d A

3 j = â6 j − d A
33s A

j3/s
A
33, for i, j = 1, 2,

s A
44 = 1/â44, s A

66 = â55, εA
33 = â66− (d A

33)
2/s A

33,

αA
1 = ât1− â13ât3/â33, αA

2 = ât2− â23ât3/â33,

αA
3 =−ât3/â33, q A

3 = ât6− â63ât3/â33.

(9)

2.3. Model B. In this case, the connecting plane being x1− x3, the isofield condition over both phases
is assumed to exist for ε1, σ2, ε3, τ23, γ31, τ12, and E3, and their complimentary counterparts, σ1, ε2, σ3,
γ23, τ23, γ12, and D3 are averaged over the two phases

Ū b
=U b

p =U b
m, U b

=
[
ε1, σ2, ε3, τ23, τ12, E3

]T
, (10)

V̄ b
= v

p
2 V b

p + v
m
2 V b

m, V b
=
[
σ1, ε2, σ3, γ23, γ12, D3

]T
, (11)

where v p
2 is the volume fraction of the fiber phase measured in model B along the x2 direction (see

Figure 2) and vm
2 = 1− v p

2 . Using the constitutive equation (1), the dependent variables V b
γ can be

expressed in terms of the independent variables U b
γ as

V b
γ = BγU b

γ + Bγt T̄ with Bγ =



b11 –b12 b13 0 0 –b16

b12 b22 b23 0 0 b26

b13 –b23 b33 0 0 –b36

0 0 0 b44 0 0
0 0 0 0 b55 0

b16 b26 b36 0 0 b66



γ

, Bγt =
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bt3

0
0

bt6



γ
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where γ = p,m and the elements bγi j and bγt j are given by

bγ11 = s33/δ1, bγ12 = (s33s12− s13s23)/δ1, bγ22 = s22− s21b12− s23b23,

bγ13 =−s13/δ1, bγ16 = (s33d31− s13d33)/δ1, bγ26 = d32− s21b16− s23b36,

bγ33 = s11/δ1, bγ23 = (s11s23− s13s12)/δ1, bγ66 = ε33− d31b16− d33b36,

bγ44 = s44, bγ36 = (s11d33− s13d31)/δ1, bγt1 = (−s33α1+ s13α3)/δ1,

bγ55 = s66, bγt2 = (s21bt1+ s23bt3+α2), bγt3 = (−s11α3+ s13α1)/δ1,

δ1 = s33s11− s2
13, bγt6 = d31bt1+ d33bt3+ q3.

(13)

Substituting (13) for γ = p and m into (11) and applying (10) yields

V̄ b
= (v

p
2 B p
+ vm

2 Bm)Ū b
+ (v

p
2 B p

t + v
m
2 Bm

t )T̄ = B̄Ū b
+ B̄t T̄ . (14)

Rewriting (14) in the original form of (1) yields the effective constitutive equation for model B as
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γ̄23

γ̄12

D̄3


=



s11 s12 s13 0 0 d31

s12 s22 s23 0 0 d32

s13 s23 s33 0 0 d33

0 0 0 s44 0 0
0 0 0 0 s66 0

d31 d32 d33 0 0 ε33



B 
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σ̄2

σ̄3

τ̄23

τ̄12

Ē3


+



α1

α2

α3

0
0
q3



B

T̄ , (15)

where the effective coefficients for model B are obtained as

s B
11 = b̄33/δ2, s B

44 = b̄44, s B
12 = (b̄33b̄12− b̄13b̄23)/δ2, s B

13 =−b̄13/δ2,

s B
33 = b̄11/δ2, s B

66 = b̄55, s B
22 = b̄22+ s B

23b̄23+ s B
12b̄12, s B

23 = (−b̄12b̄13+ b̄23b̄11)/δ2,

d B
31 = (−b̄36b̄13+ b̄16b̄33)/δ2, d B

32 = b̄26+ d B
31b̄12+ d B

33b̄23, d B
33 = (−b̄16b̄13+ b̄36b̄11)/δ2,

δ2 = b̄33b̄11− b̄2
13, q B

3 = b̄16α
B
1 + b̄36α

B
3 + b̄t6, εB

33 = b̄66+ d B
31b̄16+ d B

33b̄36,

αB
1 = (−b̄33b̄t1+ b̄13b̄t3)/δ2, αB

2 = b̄21α
B
1 + b̄23α

B
3 + b̄t2, αB

3 = (b̄13b̄t1− b̄11b̄t3)/δ2,

(16)

2.4. Combined model. For the case of the combined model AB, the material properties of the piezo-
electric fiber phase in model B are replaced with the effective properties from model A. Since the shear
stresses are uncoupled, it is readily possible to obtain the closed-form expressions for the effective s44

and s66 from model AB using (9) and (16) as

s AB
44 = v f s p

44+ vmsm
44, s AB

66 =
v

p
2 s p

66sm
66+ v

m
2 sm

66(v
p
3 sm

66+ v
m
3 s p

66)

(v
p
3 sm

66+ v
m
3 s p

66)
, (17)

where v f = v
p
2 v

p
3 , vm = 1− v f . Similarly, s AB

55 can be obtained as

s AB
55 =

(v
p
3 s p

55+ v
m
3 sm

55)s
m
55

v
p
2 sm

55+ v
m
2 (v

p
2 sm

55+ v
m
2 s p

55)
. (18)
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Usually v p
2 is taken as equal to v p

3 , in which case v p
2 = v

p
3 =
√
v f , where v f is the overall volume fraction

of fiber.
For fiber and matrix phases which are transversely isotropic about the fiber direction x1, the effective

material properties of the combined model should exhibit transverse isotropy. However, it can be seen
from (17) and (18) that s AB

66 and s AB
55 will not be equal for this case. A similar inequality is observed among

the other pairs of effective constants such as s12 and s13, and s22 and s33, which should also be equal for
the transversely isotropic case. This discrepancy exists in the electromechanical micromechanics model
of [Bent 1994]. To eliminate it, the effective properties of the combined model BA are obtained by
replacing the properties of the fiber phase of model A with the effective properties from model B. The
final effective properties Pe

i are then obtained by averaging those of models AB and BA:

Pe
i = (P

AB
i + P B A

i )/2. (19)

While the expression for s B A
44 is the same as for model AB given in (17), the expressions for s B A

55 and
s B A

66 are obtained by interchanging their expressions for model AB given by (17) and (18).

2.5. Thermal conductivity. The 3D heat conduction, according to Fourier’s law, is governed by

Qi =−ki T,i for i = 1, 2, 3, (20)

where ki , Qi , and T,i denote respectively the thermal conductivities, heat flux, and temperature gradient
along the xi direction. To obtain the effective thermal conductivities using the isofield method, the
temperature gradients parallel to the connecting plane of two phases and the heat flux along the normal
to the connecting plane are assumed to be uniform over the two phases. The remaining complementary
field variables are averaged over the two phases. For models A and B, this yields:

Model A:
H̄a
= Ha

p = Ha
m, Ha

=
[
T,1, T,2, Q3

]T
,

M̄a
= v

p
3 Ma

p + v
m
3 Ma

m, Ma
=
[
Q1, Q2, T,3

]T
.

(21)

Model B:
H̄ b
= H b

p = H b
m, H b

=
[
T,1, Q2, T,3

]T
,

M̄b
= v

p
3 Mb

p + v
m
3 Mb

m, Mb
=
[
Q1, T,2, Q3

]T
.

(22)

Using (20), the dependent variables Ma
γ and Mb

γ (γ = p,m) are expressed, respectively, in terms of the
independent variables Ha

γ and H b
γ , and the resulting equations are arranged in the form of (20), to yield

the effective thermal conductivities for models A and B. As before, the effective thermal conductivities
k AB

i of the combined model AB are then obtained by using the effective thermal conductivities obtained
from model A in model B as the conductivities of its fiber phase, which yields

k AB
1 =v f k p

1 +vmkm
1 , k AB

2 =
v

p
3 k p

2 km
2 + v

m
3 (k

m
2 )

2

v
p
2 km

2 + v
m
2 (v

p
3 k p

2+v
m
3 km

2 )
, k AB

3 =
v

p
2 k p

3 km
3 + v

m
2 km

3 (k
m
3 v

p
3+v

m
3 k p

3 )

v
p
3 km

3 + v
m
3 k p

3
. (23)

In the combined model BA, the expression for the effective k1 is the same as for model AB, and the
expressions for the effective k2 and k3 get interchanged. The final effective ke

i are obtained using (19).
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3. Results and discussion

Numerical results for the effective thermoelectroelastic properties are presented for two PFRC systems
made, respectively, of PZT-7A and PZT-5H fibers and an epoxy matrix. The material properties of the
fibers and the matrix are listed in Table 1. The following nondimensional parameters are introduced to
compare the effective properties of the PFRC materials with the corresponding piezoelectric fibers:

Re
3i =

ee
3i

ep
3i
, Rd

3i =
de

3i

d p
3i
, ᾱi =

αe
i

α
p
i
, k̄i =

ke
i

k p
i

for i = 1, 2, 3;

s̄i j =
se

i j

s p
i j

for i = 1, 2, 6; Rε33 =
εe

33

ε
p
33
, Rq

3 =
qe

3

q p
3
.

The effective elastic stiffness constants ce
i j of the PZT-7A/epoxy system are plotted in Figure 3 against

the fiber volume fraction v f and compared with those predicted by [Ray 2006]. Due to two-way elec-
tromechanical coupling, the effective stiffness is affected by the piezoelectric coupling constants di j . In
order to ascertain this effect, the elastic constants ce

i j computed considering di j = 0 are also compared in
Figure 3. It is observed that the electromechanical coupling has a stiffening effect on PFRC resulting in
greater values for constants ce

11, ce
33, and ce

12. While the ce
11 predicted by [Ray 2006] match closely with

the present estimate with di j = 0, there are appreciable differences between the two results for ce
33, ce

12, and
ce

23. The difference increases for all constants, when the di j are not considered zero in the present model.
The variations of nondimensional effective piezoelectric stress constants Re

3i with fiber volume fraction
are plotted in Figure 4 for the same PFRC system for different values of the dielectric ratio (DR= ε p

33/ε
m
33).

The DR was varied by varying the matrix property (εm
33) keeping the fiber property fixed. The case of

DR= 1 leads to uniform electric field E3 across both fiber and matrix phases, a condition assumed by

Material c11 c22 c33 c12 c23 c31 c44 c55 c66

PZT-7A1 148 148 131 76.2 74.2 74.2 25.4 25.4 35.9
PZT-5H2 126 126 117 79.5 84.1 84.1 23 23 23.25
epoxy1 3.86 3.86 3.86 2.57 2.57 2.57 0.645 0.645 0.645

e31 e32 e33 e14 e24 ε33

PZT-7A1 –2.1 –2.1 9.5 9.2 9.2 2.07
PZT-5H2 –6.5 –6.5 23.3 17 17 30.42
epoxy1 0 0 0 0 0 0.079

α1 α2 α3 k11 k22 k33 p3

PZT-7A1 1 1 1 – – – 2
PZT-5H3 9.64 9.64 3.96 50 50 75 5.483
epoxy1,4 24 24 24 0.18 0.18 0.18 0.0

Table 1. Material properties: ci j in GPa, ei j in C m−2, ε33 in 10−9 C V−1 m−1, αi in
10−6 K−1, ki j in W K−1 m−1, pi in 10−5 C m2 K−1.
1 [Kumar and Chakraborty 2009] 2 [Kapuria and Hagedorn 2007] 3 [Chen 2006]
4 [Gibson 2007, Table 3.2, p. 106].
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Figure 3. Variation of effective stiffness constants of PZT-7A/epoxy with fiber volume fraction.

[Ray 2006]. While the value of Re
31 predicted by the present model for DR = 1 is in close agreement

with the reference solution, values of Re
32 and Re

33 predicted by the later model are much lower than the
present solution. In the present model, ε2 and σ3 are uniform over two phases in model A, while σ2 and
ε3 are uniform in model B, according to the respective connecting planes, which are consistent with the
actual boundary conditions of the RVE. However, in the model of [Ray 2006], both σ2 and σ3 are assumed
to have a uniform variation over the two phases, simultaneously. This explains the difference between
the two results even though both correspond to the uniform electric field case. Figure 4 also reveals
that the effective piezoelectric constants of PFRC are highly sensitive to the DR and reduce drastically
with its increase. This is because the ratio of electric field across the fiber phase to that applied across
the PFRC thickness decreases with the increase in DR. Even though both constituents exhibit transverse
isotropy about axis x3, effective values of e31 and e32 differ, since the connectivity between the fiber and
matrix phases does not follow symmetry about axis x3. This difference between e31 and e32 in PFRC
enables directional (anisotropic) in-plane actuation, which is desirable in many control applications. The
effective thermal stress coefficients β1 and β3 for the PZT-7A/epoxy system for varying v f , computed
with and without making di j = 0, are compared with those of [Kumar and Chakraborty 2009] in Figure 5.
Once again, the present results match with the reference solution, when computed with di j = 0, but
otherwise differ considerably for intermediate values of v f .

In Figures 6 and 7, nondimensionalized compliances (s̄11, s̄12, s̄66) and coefficients of thermal expan-
sion (ᾱ1, ᾱ2) are compared with the simple rule of mixtures (ROM)/inverse rule of mixtures (IROM)
and the modified rule of mixtures (MROM) given in Appendix B. The effective values of the thermoe-
lastic constants predicted by the present model are close to those predicted by the ROM for longitudinal
constants se

11 and αe
1 and by the MROM for the transverse constants se

66 and αe
2, but are not so for the

transverse compliance constants se
22 and se

33. The nondimensionalized effective thermal conductivities k̄e
1

and k̄e
3 are also plotted in Figure 7.

The variations of the ratios Rd
3i (i = 1, 2, 3) of effective values of piezoelectric strain constants d3i to the

corresponding values for the bulk PZT are plotted in Figure 8 for both PZT-7A/epoxy and PZT-5H/epoxy
systems for different values for DR ranging from 1 to 100. Similar to constants e3i , the effective values
of d3i are maximum for DR= 1, when the electric field is uniform across piezoelectric and matrix phases,
and decrease sharply with the increase in DR, as happens for commonly used matrix materials. Even
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Figure 4. Variation of effective piezoelectric stress constant ratios of PZT-7A/epoxy
with fiber volume fraction.

Figure 5. Variation of effective thermal stress coefficients of PZT-7A/epoxy with fiber
volume fraction.
∗ [Kumar and Chakraborty 2009].

Figure 6. Variation of effective compliance coefficients of PZT-5H/epoxy with fiber
volume fraction.
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Figure 7. Variation of effective thermal expansion coefficients and conductivities of
PZT-5H/epoxy with fiber volume fraction.

(a)

(b)

Figure 8. Effect of DR on effective piezoelectric strain constants of PFRCs, for
(a) PZT-7A/epoxy and (b) PZT-5H/epoxy.
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at a low fiber volume fraction of 10%, there is a large difference between the results of de
3i at DR = 1

and DR = 5. This is because the electric field E p
3 across the piezoelectric phase in model A is only a

fraction of the overall electric field Ē3 and is dependent on both v p
3 and DR. For example, ignoring the

electromechanical coupling, E p
3 in model A can be easily obtained, using (2)–(8), as

E p
3

Ē3
=

1
v

p
3 + v

m
3 (DR)

.

Thus, E p
3 is more sensitive to DR at a lower value of the fiber volume fraction. The performance of these

PFRCs can thus be improved either by using suitable matrix materials with dielectric constant εm
33 of the

order of ε p
33 or by directly applying electric fields across the piezoelectric fibers. It is also revealed from

Figure 8 that above 90% of the value of d31 of the bulk PZT can be achieved in the PFRC with a fiber
volume fraction of only 25% for the uniform field case. While the values of effective piezoelectric strain
constants de

3i vary from zero to those of the piezoelectric fibers, the effective values of piezoelectric stress
constants e3i can exceed those of the bulk piezoelectric material at an intermediate value of v f (Figure 4).
The latter leads to an impression that a higher electromechanical coupling can be achieved in PFRC than
the bulk piezoelectric material [Ray 2006], which is clearly not true. Thus, the fundamental constants di j

(and not ei j ) should be used for evaluating the effective electromechanical coupling property of PFRC.
The variations of nondimensionalized effective dielectric and pyroelectric constants with v f are plot-

ted in Figure 9. The effective pyroelectric constant almost follows the ROM for DR of unity, but

Figure 9. Variation of effective dielectric and pyroelectric constants of PFRCs with fiber
volume fraction: PZT-7A/epoxy (left column) and PZT-5H/epoxy (right column).
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PZT-5H/epoxy PZT-7A/epoxy
Entity 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

se
11 65.12 34.76 23.91 18.56 43.25 22.59 15.39 11.83

se
22 233.7 141.3 85.06 45.60 222.8 132.8 77.99 39.37

se
33 225.1 135.1 80.58 43.16 212.6 125.3 72.20 35.28

se
12 –30.39 –16.63 –11.27 –8.15 –21.75 –11.66 –7.79 –5.61

se
13 –20.84 –10.33 –7.08 –6.07 –10.73 –4.39 –2.60 –2.11

se
23 –89.88 –39.37 –17.06 –8.07 –86.29 –35.26 –13.16 –4.28

se
44 1250 950 650 345 1250 950 640 340

se
55 1010 680 420 215 1010 680 420 210

se
66 1010 680 420 214 1000 670 410 200

de
31 –33.15 –41.25 –57.01 –94.32 –5.24 –6.39 –8.88 –15.14

de
32 –19.33 –33.07 –51.94 –91.40 –3.36 –5.48 –8.45 –14.99

de
33 50.38 73.52 111.2 195.3 8.72 12.70 19.56 35.81
εe

33 2.27 3.30 5.16 9.49 0.12 0.18 0.28 0.53
qe

3 –0.99 –2.00 –3.74 –7.78 0.44 1.15 2.47 5.71
αe

1 11.07 10.24 9.94 9.77 3.09 2.19 1.84 1.59
αe

2 25.33 21.53 17.46 13.48 25.12 19.06 12.93 7.01
αe

3 22.02 17.03 12.32 7.96 24.12 17.55 11.23 5.40
ke

1 11.20 20.90 30.60 40.30 1.56 1.62 1.68 1.74
ke

2 0.78 1.18 1.95 4.14 0.63 0.80 1.01 1.33
ke

3 0.79 1.19 1.97 4.26 0.63 0.80 1.01 1.33

Table 2. Effective electrothermoelastic properties for PFRCs: se
i j in 10−12 Pa−1, de

3 j in
pm V−1, εe

33 in nF m−1, qe
3 in µC m−2 K−1, αe

i in 10−6 K−1, ke
i in W m−1 K−1.

drops sharply as the DR increases. Effective material properties for PZT-5H/epoxy with DR= 20 and
PZT-7A/epoxy with DR = 26.2 are presented in Table 2 for four values of the fiber volume fraction
(v f = 0.2, 0.4, 0.6, 0.8). These properties are directly useful for 1D/2D/3D thermoelectromechanical
analysis of smart laminated structures integrated with these PFRCs.

4. Conclusions

A coupled 3D isofield-based micromechanical model is presented for calculating effective electrother-
moelastic properties of piezoelectric fiber-reinforced composite (PFRC) materials with poling and elec-
tric field applied along the normal to the fiber direction. The model employs the isofield method on
representative volume elements (RVEs) of two possible connectivities, A and B, for the fiber and matrix
phases. The two RVEs are combined in sequences AB and BA, so as to achieve transverse isotropy in the
effective properties when both the constituents are transversely isotropic. The model considers differen-
tial electric fields in fiber and matrix phases due to their different dielectric constants. The assumption of
uniform electric field across the two phases made by some existing theories can be achieved as a special
case of the present formulation when the dielectric ratio (DR) is unity.
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Results presented for two PFRC systems, PZT-7A/epoxy and PZT-5H/epoxy, reveal that it is possi-
ble to achieve effective piezoelectric strain constant d31 of magnitude greater than 90% of that of bulk
piezoelectric material with even a low fiber volume fraction of 25%, if the DR is close to unity. The
effective piezoelectric constants, however, reduce drastically as the DR increases. While the magnitudes
of effective d3i of PFRC vary from zero to those of the piezoelectric fiber, the effective e3i can exceed its
value for the fiber at an intermediate value of v f , giving a false notion of improved performance, for DR
close to unity. Therefore, constants di j should be used to evaluate electromechanical coupling of PFRCs.
The effective pyroelectric constant nearly follows the rule of mixtures for DR of unity, but reduces as
DR increases.

Appendix A

The isofield micromechanics model, also known as the uniform field model, is basically a generalization
of the strength of materials approach of estimating overall properties of two-phase composite materials.
The basic assumption, as the name implies, is that all fields are uniform within each material phase. This
assumption makes the model independent of the geometry of its microstructure, and it is possible to refer
to the two phases in a RVE as two cuboidal blocks connected at a plane. This forms the basis of the
RVE representation in Figure 2. The model actually violates some of the compatibility and equilibrium
conditions at the interface. However, it has been successfully used in the past (see, for example, [Jones
1975]) for estimating mechanical and transport (conductivity, thermal expansion coefficient) properties
of fiber-reinforced composite materials. The large mismatch in the material properties makes the method
particularly well suited for modeling such fibrous composites. Its accuracy largely depends on the spatial
scale of the phase distributions. For finely distributed phases, it is expected to yield good estimates of
the averaged response. A major advantage of this method is that it provides simple analytical solutions
for the effective properties, which allows physical insight into the problem.

For uniaxial fields, the uniform field assumption leads to the well-known rules of mixtures, compris-
ing of parallel and series (Voigt and Reuss) additions for estimating the effective properties along and
perpendicular to the fiber direction, respectively. For the 3D fields, however, it is not as straightforward.
Typically, the conventional model with parallel connectivity yields very good estimates of longitudinal
properties, but the series model at best yields a lower bound of the transverse properties. This is improved
by using a combination model, wherein the two phases in the RVE are connected at two orthogonal planes
(x1-x2 and x1-x3) parallel to the fiber direction (x1), instead of only one plane as in the conventional
model, as shown in Figure 2 (combined model). The combination model is treated as follows: blocks of
piezoelectric (p) and matrix (m) phases are connected at the x1-x2 plane and they together are connected
to a matrix phase at the x1-x3 plane, and vice versa. Thus, models A and B with the two phases connected
at the x1-x2 and x1-x3 planes, respectively, form the building blocks of the combination model.

The other assumptions in the present model are that

• the two material phases are perfectly bonded,

• deformation and electric fields are small enough that linear constitutive equations can be applied,
and

• the piezoelectric materials are uniformly polarized along the x3 direction.
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Appendix B

The expressions for the effective Young’s moduli Y e
i , shear modulus Ge

12, and thermal expansion coef-
ficients αe

i according to the rule of mixtures (ROM)/inverse rule of mixtures (IROM) and the modified
rule of mixtures (MROM) based on the strength of materials approach can be found in [Gibson 2007].
These are given below:

• ROM/IROM
Y e

1 = Y p
1 v f + Y m

1 vm, αe
1 =

Y p
1 α

p
1 v f + Y m

1 α
m
1 vm

Y p
1 v f + Y m

1 vm
,

1
Y e

2
=
v f

Y p
2
+
vm

Y m
2
,

1
Ge

12
=
v f

G p
12
+
vm

Gm
12
.

• MROM

Y e
2 = Y m

2

[
(1−
√
v f )+

√
v f

1−√v f (1− Y m
2 /Y p

2 )

]
,

Ge
12 = Gm

12

[
(1−
√
v f )+

√
v f

1−√v f (1−Gm
12/G p

12)

]
,

αe
2 = (1+ νm)α

m
2 vm + (1+ νp)α

p
2 v f −α1ν

e
12, where νe

12 = ν
p
12v f + ν

mvm .
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