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AN AXISYMMETRIC PARACHUTE MODEL WITH WRINKLING
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We are honored to dedicate this paper to Charles Steele and to the memory of Marie-Louise Steele.
Charles was my admired teacher at Stanford, and has opened my eyes to the wonderful world of shells.

Marie-Louise was a friend who always had a few warm words for a PhD student undergoing stressful times.
I will always remember her very fondly. – Dan Givoli

The deformation and stresses in a parachute canopy are analyzed, using an axisymmetric model. The
canopy is modeled as an ideal or nearly ideal elastic membrane shell. Steady state is assumed. No
restriction is imposed on the size of the deformation, and thus the problem is strongly nonlinear. Wrinkles
which form over parts of the surface are taken into consideration approximately via the use of wrinkle
fields (tension fields). The solution is obtained by a double-iteration numerical procedure, based on
a shooting technique and incremental loading. First a basic parachute model is considered in which
the material is assumed isotropic and Hookean, the pressure distribution is assumed uniform (but with
unknown magnitude), and the canopy is assumed to have a small central hole. Later all these assumptions
are relaxed. Numerical examples are presented for some representative cases.

1. Introduction

Analysis of deformation and stresses in a parachute under general conditions is extremely complicated.
Treatment of the full problem in the literature is scarce; the impressive computational work of Tezduyar’s
group [Stein et al. 2000; 2001] and that of [Kim and Peskin 2006; 2009], which takes into account the
complete fluid-structure interaction, should be mentioned in this context. The structural analysis of the
canopy is considered, for example, in [Liu et al. 2001; Lu et al. 2001]. These two papers take into
account the wrinkles which are generally formed in the parachute canopy. Information on such wrinkles
is important since they may affect the deformation and stress distribution in the canopy and thus may
have an influence on the overall parachute performance.

In this paper we propose a much simpler method of analysis for parachutes. Although the actual
behavior of real parachutes and their design are beyond the scope of this paper, we briefly mention a few
facts related to this subject, with particular attention to the issues of shape, stability, and wrinkles. The
classical paper [Taylor 1919] recognized that “if stability were the chief thing to be desired, a parachute
in the form of rounded cone is desirable. . . If lightness is the most important quality, it appears that
one should make one’s parachute as flat as possible, provided it will remain distended. If, however, the
parachute is made too flat, radial crinkles or pleats will appear and these must mean a waste of material.”
Taylor then proceeds to determine the optimal deformed shape of a parachute, and obtains a theoretical
shape determined by elliptic function curves. He comments that this theoretical shape differs from actual
shapes of parachutes in that the curvature of the profile near the edge is smaller in the former, and he
attributes this to the assumption of uniform pressure underlying his analysis.
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The parachute studied in [Taylor 1919] assumes that inextensible wires woven into the fabric extend
radially from the center to the edge. In between these wires the fabric bulges out, to form a lobed
shape. In contrast, the parachute considered in the present paper is assumed to be axisymmetric, and
therefore cannot account for canopy lobes. Admittedly, axisymmetry is rather a strong simplification
in practical parachute analysis, since it neglects the presence of the lobes. Moreover, in some cases
the axisymmetric solution may be an unstable equilibrium solution of the parachute problem, while
a stable solution deviates from the axisymmetric configuration. Baginski et al. [2006] and Deng and
Pellegrino [2008] demonstrate such symmetry-breaking clefting in the case of pumpkin balloons. In the
case of smooth surfaces, wrinkles coalesce and form a small number of localized folds, as in Mylar party
balloons. Both papers obtain stable solutions that deviate from the axisymmetric shape as the pressure
is decreased from a nominal value by using detailed three-dimensional finite element analyses. The
method of analysis proposed here is, of course, oblivious to all these effects, which is its main limitation.
Despite this fact, we believe that the types of results that this simple method can produce are very helpful
in preliminary design stages, and can serve as basis for more detailed asymmetric analysis.

In this context, the spectrum of analysis methods for parachutes should be recognized. On one end of
this spectrum one can find the complete numerical analysis methods mentioned above, usually based on
finite element discretization in space. On the other end of the spectrum are crude calculations or analytical
solutions, usually associated with linear elasticity, namely with the assumption of small deformation and
linear material behavior. Our proposed method is somewhere inside this interval; it does make a few
basic assumptions, the most limiting of which being axisymmetry, but on the other hand it assumes
neither small deformation nor linear material behavior.

The canopy may be thought of as an ideal or nearly ideal elastic membrane shell. Ideal membranes
will wrinkle rather than support compressive stresses. Often this results in the formation of wrinkle
zones over portions of the deformed surface. These zones, in which the principal stress resultants are
everywhere nonnegative, provide a mechanism for carrying the imposed loads. Within a wrinkle zone,
the crests and troughs of the wrinkles are parallel to the direction of principal tension, and the stress
resultant in the direction normal to them (in the tangent plane) vanishes.

The parachute behaves essentially as a pulled axisymmetric membrane with surface of positive Gauss-
ian curvature. To illustrate the basic phenomena involved, Figure 1 describes the behavior of a model
of a membrane with surface of positive Gaussian curvature, albeit significantly simpler than that of the
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Figure 1. Wrinkles forming in an axisymmetric pulled membrane: (a) the unloaded
membrane; (b) the wrinkled cone generated by a slight pulling force; (c) the wrinkle
region (BD) and the two doubly tense regions (CB and ED) formed by a medium-sized
pulling force; (d) the all-tense surface generated by a large pulling force.
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parachute to be discussed later. The membrane is subjected to a pulling force, as was considered in
[Libai and Givoli 2002]. The membrane is attached to two rigid plates along its two edges C and E, as
shown in Figure 1a. The bottom plate is assumed to be fixed, whereas the top plate is pulled upwards.
During the pull, the upper plate remains parallel to the lower plate and does not rotate with respect to
it. The application of a slight pulling force P = 0+ to the upper plate results in the formation of merid-
ional wrinkles, and the membrane surface becomes a “wrinkled cone;” see Figure 1b. The formation of
wrinkles is due to the fact that the circumferential stress resultants, which would have existed in such
a membrane, must be negative, and are replaced by the wrinkle field. In addition, the requirements of
equilibrium in the direction of the normal to the membrane demand that the curvature of the meridional
lines be zero. Thus, the meridional wrinkle field takes on the shape of a cone.

In the vast majority of materials for membranes, a Poisson-like effect exists, such that a tensile stress
in one direction is accompanied by contraction (negative strain) in the directions normal to it. If this
contraction were prevented, say, along a boundary, then positive stresses would form along it and in its
immediate neighborhood. The rigid plates at the upper and lower edges of the membrane prevent the
transverse contraction, which would have occurred due to the pulling, and, thus, positive circumferential
stresses accompany the positive pulling stresses. A biaxial state of stress is, thus, formed at and near the
edges. The size of the edge zones is o(e), where e is a typical meridional strain; see [Libai 1990]. The
entire effect is strongly nonlinear.

An increase in the pulling force leads to a corresponding increase in e, so that the edge zones dete-
riorate. Thus, increasingly larger doubly tense regions are formed near the boundaries, where both the
meridional and tangential (hoop) stress resultants are positive, while the central region remains wrinkled,
as illustrated in Figure 1c. In the absence of internal pressure, the meridional curvature of the surface
in the doubly tense regions is always negative; see, for example, [Libai and Simmonds 1998; Libai and
Givoli 2002]. A further increase in the force causes the central wrinkle region to shrink, until, finally, a
tensile biaxial state of stress exists over the entire surface; see Figure 1d.

In the case of large wrinkle zones in a membrane, direct and full treatment of the wrinkles is generally
difficult. This fact gave rise to the notion of wrinkle fields, or tension fields, which represent the wrinkles
in a “homogenized” sense. The basic idea in the theory of wrinkle fields is to avoid studying the wrinkle
region in detail by replacing it with a smoothed-out pseudosurface. This pseudosurface must be in
equilibrium, and the minimum principal stress resultant must vanish on it. Obviously, the stretch of the
pseudosurface in the direction of the zero minimum principal stress resultant is nonphysical, in that it is
not equal to that of the actual wrinkled surface.

In [Wu 1978] the first complete treatment of wrinkling in nonlinearly elastic membranes of revolution
was given. Zak [1982] extended the theory to wrinkling of films of arbitrary shape. Pipkin [1986]
proposed the notion of “relaxed energy density” in this context. Steigman and coworkers have made
extensive theoretical studies [Steigmann and Pipkin 1989; Steigmann 1990; Li and Steigmann 1995a;
1995b] of the behavior of wrinkled and partly wrinkled membranes in various cases, including that of
pressurized spherical and toroidal membranes. Libai [1990] presented a complete theoretical analysis of
the transition zone between the doubly tense and wrinkle regions for pulled spherical membranes. Tait
et al. [1996] and Tait and Connor [1997] solved wrinkling problems for cylindrical membranes. Rod-
deman et al. [1987a; 1987b], Jeong and Kwak [1992], Chiu et al. [1993], and Muttin [1996] developed
finite element methods for the solution of partly wrinkled membranes. See [Libai and Simmonds 1998,
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Chapters 5 and 7] for a detailed exposition on the subject and additional references. Recent publications
making computational use of wrinkle fields for various applications include [Raible et al. 2005; Cavicchi
et al. 2009; Mosler and Cirak 2009; Liu and Sze 2009].

In this paper we use wrinkle fields to analyze the deformation and stresses in a parachute canopy, using
an axisymmetric model. We model the parachute as an ideal or nearly ideal elastic membrane shell.
“Nearly ideal” means that the membrane is allowed to sustain small compressive stresses; it wrinkles
only under larger compressive stresses. Thus, the minimal principal stress resultant is Ncr, where Ncr is
a nonpositive parameter assumed to be a material property. For ideal membranes Ncr = 0, and for nearly
ideal membranes Ncr has a small negative (given) value.

The idea to use Ncr 6= 0 in a membrane was suggested in [Rimrott and Cvercko 1986] in the context of
pulled flat rectangular membranes. The authors claim that the formation of a finite number of wrinkles,
which is typically observed in experiments in real membranes, is evidence of the presence of some small
bending stiffness, since in the absence of such stiffness there should be an infinite number of wrinkles.
Based on the experimental observation that, after the initial wrinkles form, additional deformation does
not affect their number, Rimrott and Cvercko obtained a relation which connects the parameter Ncr to
the number of wrinkles in the membrane, that is, to the wavelength of a single wrinkle. This relation can
be exploited to effectively measure Ncr by counting the number of wrinkles.

Wong and Pellegrino [2006] derive another relation, based on a simple buckling model, in which Ncr

depends on the material properties (Young’s modulus and Poisson’s ratio), the thickness of the membrane,
and the half-wavelength of the wrinkle. They use this relation and the condition Nθ = Ncr (where Nθ is
the transverse stress resultant) to calculate the wrinkle half-wavelength, namely the number of wrinkles.

In the present paper we calculate solutions for both ideal membranes (Ncr = 0) and nearly ideal
membranes (Ncr < 0). In the latter case, our choice for the value of Ncr is rather arbitrary and does not
necessarily correspond to an actual membrane material and thickness. We simply increase |Ncr| from
zero until the effect of this parameter becomes significant. Choosing Ncr in a more judicious way would
require an additional analysis, such as that of Wong and Pellegrino.

We assume steady state, namely that the canopy is fully open and the air pressure acting on it is
quasistatic. On the other hand, we pose no restriction on the size of the deformation, which may be
very large, thus making the problem strongly nonlinear. We solve the problem using a double-iteration
numerical procedure, based on a shooting technique and incremental loading. We demonstrate that
the method works very well despite the complexity of the problem which involves the highly nonlinear
membrane shell equations, different regions with interfaces which are unknown a priori, and deformation-
dependent pressure magnitude.

We first consider a basic parachute model in which we assume the material to be isotropic and Hookean,
the pressure distribution to be uniform, although with an unknown magnitude, and the canopy to have
a small hole in its center. Later we relax all these assumptions and consider also an orthotropic canopy
(which allows us to represent the higher stiffness in the meridional direction due to the canopy cords),
neo-Hookean material, nonuniform pressure (with a known distribution but unknown magnitude), and
canopies without a central hole. In the latter case, some numerical difficulties arise near the apex, and
we overcome them by slightly modifying the calculation procedure in the apex vicinity.

Summary. In Section 2 we present the parachute model and its governing equations. In Section 3
we outline the computational scheme for the solution of the parachute problem, for the basic model. In
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Section 4 we discuss the four extensions mentioned above. In Section 5 we present some representative
numerical results. We end with some concluding remarks in Section 6.

2. Parachute model and governing equations

2.1. Basic model and notation. We consider a thin curved axisymmetric hyperelastic membrane with a
positive Gaussian curvature (the canopy) subjected to a given axial pulling force P (the carried weight),
as illustrated in Figure 2. The meridian of the membrane extends between points C and E. The force
P is transferred to the canopy through tensed cords of given length L , which must be tangential to the
meridian at point C (see Figure 2) since the membrane has no bending stiffness. The entire model is
axisymmetric, and thus the cords are represented by a continuous “cone” revolving around the axis of
symmetry. The tension of this “axisymmetric cord” in the deformed configuration is denoted T , and
the angle it forms with the axial direction β, both unknown. The pressure acting on the membrane is
assumed to be uniform, but its magnitude, denoted p, is unknown.

The upper edge of the shell, point E, is fixed to a rigid ring of given radius, which encloses and
reinforces a small hole in the center of the canopy. For arbitrary external forces P and p, an axial
reaction force R would act at this point. Since the parachute is known to be in equilibrium under P and
p alone, we require that this reaction vanish, that is, R = 0, which will give us a condition that will be
essential in determining the pressure p.

We expect the membrane to have doubly tense regions near the lower and upper edges, and possibly
a wrinkle field in a central region of the meridian, bounded by points B and D (see Figure 2).

We define the notation needed to describe the geometry of the shell. The surface of the unloaded
membrane is described by the function r = r(z), where r and z are the radial and axial coordinates,
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Figure 2. The basic parachute model.
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respectively. The arc length coordinate along the meridian is denoted s. We use a superposed bar to
denote quantities in the deformed configuration. Thus, we let r̄ , z̄, and s̄ denote, respectively, the radial,
axial, and arc length locations of a material point in the deformed configuration. Thus, the surface of
the deformed membrane is described by the function r̄ = r̄(z̄). We let φ̄ be the angle between the axial
direction and the normal to the deformed surface. We denote quantities related to the lower edge of
the meridian (point C) by the subscript 0. Thus, φ̄0 is the angle φ̄ at the lower edge in the deformed
configuration.

We let Ns and Nθ be the meridional and tangential stress resultants per unit undeformed length, and
N̄s and N̄θ be the meridional and tangential stress resultants per unit deformed length. We let λs and λθ
be the principal stretches.

2.2. Governing equations and boundary conditions. In this section we summarize all the equations and
boundary conditions that constitute our model. We first write down all the equations that hold in a doubly
tense region, and then we comment on the changes that need to be made in these equations in a wrinkle
region.

Basic relations connecting quantities in the deformed and undeformed configurations. Classical relations
of axisymmetric membrane shell theory are used. The relations among the stress resultants are given by

r Ns = r̄ N̄s, ds Nθ = ds̄ N̄θ , (1)

which actually define the stress resultants in the undeformed configuration. The principal stretches are
related to the geometry through

λs = ds̄/ds, (2)

λθ = r̄/r. (3)

Axial equilibrium. Consideration of the axial equilibrium of a portion of the membrane which lies on
the lower side of a circumferential cross section yields

P − 2π r̄ N̄s sin φ̄− I = 0, (4)

where

I ≡
∫ s̄

0
2πpr̄ ′ cos φ̄′ds̄ ′. (5)

The integral I is the total axial force due to the pressure p acting from the lower edge of the membrane
along the meridian up to the point under consideration. A prime ( ′ ) denotes a quantity calculated at the
integral variable point s̄ ′ ∈ [0, s̄]. Using (1) in (4) we also obtain

Ns =
P − I

2πr sin φ̄
. (6)

This equation holds in the entire membrane.

Normal equilibrium. In the doubly tense regions, we also consider the normal equilibrium of an element,
which yields the equation

N̄θ
ρ̄θ
+

N̄s

ρ̄s
= p. (7)
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Here, ρ̄s and ρ̄θ are the meridional and tangential radii of curvature of the deformed membrane, which
satisfy

1
ρ̄s
=−φ̄,s̄, ρ̄θ =

r̄
sin φ̄

. (8)

In (8) and elsewhere, a comma indicates differentiation. We use (1), (7), and (8) to obtain

Nθ =
r Ns φ̄,s + pr̄ s̄,s

sin φ̄
. (9)

Substituting Ns from (6) yields

Nθ =
pr̄ s̄,s
sin φ̄

−
(cot φ̄),s

2π
(P − I ). (10)

Compatibility equation. The compatibility relation simply relates r̄ , s̄, and φ̄ through

dr̄
ds̄
=− cos φ̄. (11)

The minus sign in (11) comes from the fact that in the region where the cosine is positive, namely where
φ̄ < π/2 (for example, as in the segment CB shown in Figure 1c), r̄ is a decreasing function of s̄.

Constitutive relations. The constitutive relations complete the set of differential equations governing the
membrane’s behavior. It is assumed that the membrane is isotropic hyperelastic, namely it possesses a
strain energy function W (λs, λθ ) per unit area of the undeformed surface, such that

Ns =W,λs , Nθ =W,λθ , (12)

in the doubly tense regions.
In our basic model we consider a Hookean (linear elastic) isotropic material. In this case, the strain

energy function is quadratic:

W (λs, λθ )=
Eh

1− ν2

(1
2 (λ

2
s + λ

2
θ )+ νλsλθ − (1+ ν)(λs + λθ − 1)

)
. (13)

Here h is the membrane thickness, E is the Young’s modulus and ν is the Poisson’s ratio. With this
strain energy function, the relations (12) in the doubly tense regions become

Ns =
Eh

1− ν2 (λs + νλθ )−
Eh

1−ν
, (14)

Nθ =
Eh

1− ν2 (λθ + νλs)−
Eh

1−ν
. (15)

Modified equations in the wrinkle region. Equations (1), (2), (4)–(6), and (11) hold in the entire mem-
brane. The other equations written above hold in the doubly tense regions, and have to be modified
in the wrinkle region. Equation (3) is not relevant in the wrinkle region since λθ is not physical there.
Equation (10) is simply replaced by Nθ = Ncr in the wrinkle region. Here Ncr is a nonpositive quantity
assumed to be a material property. For ideal membranes Ncr = 0, and for nearly ideal membranes Ncr

has a small negative (given) value.
The constitutive equations (14) and (15) are replaced by an effective constitutive equation in the

wrinkle region. Since Nθ = Ncr there, (15) furnishes then a relation between λs and λθ . This relation
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can be used to eliminate λθ from (14), thus obtaining a modified unidirectional constitutive relation for
Ns . After some algebra, the end result is

Ns = Eh(λs − 1)+ νNcr. (16)

Geometrical relations at the lower edge. A few geometrical relations may be inferred from the setup
shown in Figure 2, in the deformed configuration:

φ̄0 = β +π/2, (17)

r̄0 = L sinβ, (18)

P = 2π r̄0T cosβ. (19)

From the last two relations, a simple relation between the unknown quantities β and T can be deduced:

T = P
πL sin 2β

. (20)

Boundary and interface conditions. To complete the statement of the problem, the equations given above
must be accompanied by boundary conditions at the two ends of the membrane. At the lower end (point
C in Figure 2) we have

(N̄s)0 = T, (21)

since T is tangent to the meridian at this point. At the upper end (point E in Figure 2) we have

rE = r̄E or (λθ )E = 1, (22)

since the membrane is fixed to a rigid ring there. The second equality in (22) follows from (3).
We also need interface conditions at the meridional junctions of the doubly tense and wrinkle regions

(points B and D in Figure 2). These conditions are:

Nθ = Ncr and φ̄ is continuous at B and D. (23)

From (6) and (16) we conclude that Ns and λs are also continuous at the interfaces. This completes the
statement of the problem for given pressure p.

Global equilibrium. Since the entire parachute is in self equilibrium under load P and pressure p, we
must have

P − IE = 0, (24)

where IE is the value of I defined by (5) at point E, which is the total axial force due to the pressure p
along the entire meridian. This equation will serve us in determining the pressure p.

We remark that from (24) and (6) it follows that at point E either Ns = 0 or φ̄ = 0. However, we do
not enforce this boundary condition directly, but rather enforce the global equilibrium condition (24), as
will be explained in the next section.
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3. Computational scheme

3.1. The overall scheme. The problem involves a single given loading parameter, namely the carried
weight P . We approach the parachute problem via incremental loading, by increasing the load P in
small discrete steps from zero to its final value. This serves two purposes. First, for a given undeformed
geometry of the canopy, this provides us with a family of solutions for various carried weights. Second,
this procedure helps us to detect critical values of P for which essential changes occur in the nature of
the solution.

For a given value of P , the computational scheme that we use in order to solve the problem stated in
the previous section involves two nested iteration processes. The outer iteration loop may be described
as follows. We make an initial guess p̃ for the pressure value p. Then we step into the inner iteration
loop (to be described in the next subsection) and compute all deformation and stress variables along the
entire meridian. Based on this solution, we calculate the reaction R (see Figure 2) by

R = P − IE . (25)

Of course, we know that R should vanish, since the whole parachute is self-equilibrated; see (24). Com-
putationally, we check if the criterion

|R| ≤ δ1 P (26)

is satisfied, where δ1 is a small given tolerance. If this criterion is satisfied, our guess was correct, and
thus p̃ ' p and the whole problem is solved. If not, we change the guess p̃ and repeat the inner iteration
loop. This process continues, until (26) is satisfied.

Despite the strong nonlinear nature of the whole problem, numerical experiments show that the relation
between the reaction R and the assumed applied pressure p̃ is almost linear! This is demonstrated
in Figure 3, where the reaction-pressure relation is shown for a typical set of input parameters (ideal
membrane, elliptic initial shape, vertical force P = 0.1). This surprising fact can be explained by the
following calculation. Let us evaluate the integral I defined by (5) at the upper point E (see Figure 2)
for a guessed pressure value p̃:

IE = 2π p̃
∫ s̄E

0
r̄ ′ cos φ̄′ds̄ ′. (27)

Defining

ÎE =

∫ s̄E

0
r̄ ′ cos φ̄′ds̄ ′, (28)

and using (25), we have

R( p̃)= P − 2π p̃ ÎE . (29)

We calculate ÎE using (28), (3), (11), and (22):

ÎE =

∫ s̄E

0
r̄ ′ cos φ̄′ds̄ ′ =−

∫ r̄E

r̄0

r̄ ′dr̄ ′ =− 1
2(r̄

2
E − r̄2

0 )=−
1
2(r

2
E − r̄2

0 )=−
1
2

(
r2

E − r2
0 (λθ )

2
0
)
. (30)

Now we make the assumption that the hoop strain at the lower point is small, namely that (λθ )0 is close
to one. (This assumption was verified numerically in the example problems that we have solved.) We
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write this assumption is the form

(λθ )0 = 1+ ε f ( p̃)= 1+ O(ε). (31)

Then from the last calculation we have

ÎE =−
1
2

(
r2

E − r2
0 + O(ε)

)
. (32)

Using this result in (29) finally yields

R( p̃)= P +π
(
r2

E − r2
0 + O(ε)

)
p̃. (33)

This is an approximate linear relation between R and p̃, which explains the observation above.
The fact that R is almost proportional with p̃ is a considerable aid in the numerical convergence of the

scheme. By taking advantage of this fact, one is able to find an excellent approximation for the pressure
p by making only two calculations, with two values of p̃, and linearly extrapolating the results as implied
by Figure 3.

Incidentally, from the calculation above we can deduce another almost linear relation, namely the
relation between the true pressure p and the weight P . With the true pressure we should get R = 0, and
from (29) we thus have

P − 2πp ÎE = 0. (34)

Therefore,

p =
P

2π ÎE
, (35)

and using (32) we have

p =−
P

π(r2
E − r2

0 + O(ε))
. (36)
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Figure 3. The reaction R as a function of the pressure p̃ for a typical set of input
parameters. The five dots along the straight line correspond to the numerical results of
five runs of the inner iteration loop with different values of p̃.
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This proves the claim, which was also verified numerically. If the term O(ε) is dropped as an approxi-
mation, we get the simple result p = P/[π(r2

0 − r2
E)] which can be obtained directly from summation of

forces in the z direction, and is valid also in the case of no hole (rE = 0).

3.2. The inner-loop iterative procedure. The inner-loop iteration procedure is a generalization of the
one used in [Libai and Givoli 2002] to analyze a pulled membrane without internal pressure and with
simpler boundary conditions. This procedure is based on a shooting technique and on approximately
integrating the equations along the meridian. (The use of such a technique was suggested to the third
author by D. J. Steigmann; see also [Li and Steigmann 1995a; 1995b]).

The numerical scheme is outlined as follows. The value of the pulling force P is given. Also given is
the function r(z) describing the shape of the unloaded membrane, where z ranges from 0 to the height of
the undeformed membrane Z . We divide the z axis into M small intervals [zm−1, zm] for m = 0, . . . ,M .
For simplicity we take the intervals to be of uniform size 1z ≡ zm − zm−1 = Z/M . We start from the
lower edge of the membrane, that is, point C in Figure 2. To initiate the integration process, we first
guess the value of the hoop stretch at point C, (λθ )0. Then we integrate the equations numerically as will
be described shortly, until we reach the other edge, that is, point E. We check if the boundary condition
(22) is satisfied at point E to within a desired precision; if it is, the solution process has terminated. If
not, the guessed value of (λθ )0 is adjusted, and the integration starts all over again from point C. This
process is repeated until the boundary condition (22) is satisfied at point E.

The scheme is now described in full detail. The value of a variable v at location zm is denoted vm .
The pressure p̃ is assumed to be known, having been set in the outer loop.

(1) The lower doubly tense zone (from point C to point B; see Figure 2).
(a) Choose an initial value (λθ )0 for the hoop stretch at point C.
(b) Set m = 0, s0 = s̄0 = 0, z0 = z̄0 = 0 and I0=0.
(c) Use (3), (17), (18), and (20) to compute

r̄0 = r0(λθ )0, β = sin−1(r̄0/L), φ̄0 = β +π/2, T = P/(πL sin 2β).

(d) Use the equilibrium equation (6) to calculate

(Ns)m = (P − Im)/(2πrm sin φ̄m).

(e) Use the constitutive equation (14) to calculate (λs)m from (Ns)m and (λθ )m :

(λs)m =
1−ν2

Eh
(Ns)m − ν(λθ )m + 1+ ν.

(f) Use the constitutive equation (15) to calculate (Nθ )m from (λs)m and (λθ )m .
(g) Check if (Nθ )m ≤ Ncr. If yes, point B is reached (see Figure 2); move to step 2.
(h) Calculate

zm+1 = zm +1z, 1rm = rm+1− rm, 1sm =
√
(1rm)2+ (1z)2, sm+1 = sm +1sm .

(i) Use (2) to calculate

1s̄m =1sm(λs)m, s̄m+1 = s̄m +1s̄m .
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(j) Integrate the equilibrium equation (10) to calculate

φ̄m+1 = cot−1[cot φ̄m −
(
2π/(P − Im)

)(
1sm(Nθ )m − p̃r̄m1s̄m/ sin φ̄m

)]
.

(k) Use the compatibility equation (11) to calculate

1r̄m =−1s̄m cos φ̄m+1, r̄m+1 = r̄m +1r̄m .

(l) Use (3) to calculate
(λθ )m+1 = r̄m+1/rm+1.

(m) Calculate
1z̄m =

√
(1s̄m)2− (1r̄m)2, z̄m+1 = z̄m +1z̄m .

(n) Use (5) to calculate
Im+1 = Im + 2π p̃ cos(φ̄m)r̄m1s̄m .

(o) Set m← m+ 1 and return to substep (d).

(2) The wrinkle zone (from point B to point D; see Figure 2).
(a) Calculate

zm+1 = zm +1z, 1rm = rm+1− rm, 1sm =
√
(1rm)2+ (1z)2,

sm+1 = sm +1sm, 1s̄m =1sm(λs)m, s̄m+1 = s̄m +1s̄m .

(b) Set (Nθ )m+1 = Ncr.
(c) Integrate the equilibrium equation (10) to calculate

φ̄m+1 = cot−1[cot φ̄m −
(
2π/(P − Im)

)
(1sm Ncr− p̃r̄m1s̄m/ sin φ̄m)

]
.

(d) Use the compatibility equation (11) to calculate

1r̄m =−1s̄m cos φ̄m+1, r̄m+1 = r̄m +1r̄m .

(e) Use (5) to calculate
Im+1 = Im + 2π p̃ cos(φ̄m)r̄m1s̄m .

(f) Use the equilibrium equation (6) to calculate

(Ns)m+1 = (P − Im+1)/(2πrm+1 sin φ̄m+1).

(g) Use the constitutive equation (16) to calculate (λs)m+1 from (Ns)m+1:

(λs)m+1 = 1+
(
1/(Eh)

)(
(Ns)m+1− νNcr

)
.

(h) Calculate
1z̄m =

√
(1s̄m)2− (1r̄m)2, z̄m+1 = z̄m +1z̄m .

(i) Use (3) to calculate a nonphysical value of λθ :

(λNP
θ )m+1 = r̄m+1/rm+1.
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(j) Use the constitutive equation (15) to calculate a nonphysical value of (Nθ )m+1, denoted by
(N NP

θ )m+1, from (λs)m+1 and (λNP
θ )m+1.

(k) Check if (N NP
θ )m+1 ≥ Ncr. If yes — point D is reached (see Figure 2); skip to step 3.

(l) Set m← m+ 1 and return to substep (a).

(3) The upper doubly tense zone (from point D to point E; see Figure 2).
(a) Repeat substeps (d)–(f) and (h)–(o) of step 1. Continue the integration process till the last step

m = M , namely till zm = Z .
(b) Based on the value (λθ )M at point E, calculate µ= |1− (λθ )M |. Check if µ < δ2, where δ2 is

a predetermined small tolerance. If yes, the solution process has ended. Otherwise, adjust the
value of (λθ )0 (see step 1, substep (a)) and start the whole process again.

Numerical experiments show that the adjustment of the value of (λθ )0 is easy in practice. The “output”
(λθ )M turns out to be a monotonely increasing function of the “input” (λθ )0, so by using a bisection-type
technique the correct value of (λθ )0 can be found after a few trials. Numerical experiments also show
that the convergence of the results as the number of subintervals M increases is fast. Moreover, the
entire calculation is explicit and therefore very efficient. For example, we have used M = 10,000 for
the problems presented in Section 5, and the running time in each case on a personal workstation was a
few seconds. Thus, despite the fact that the solution process involves two nested iteration schemes, it is
extremely fast.

4. Extensions

In the basic model described above the material was assumed isotropic and Hookean, the pressure dis-
tribution was assumed uniform, and the canopy was assumed to have a small hole in its center. Now we
show how each of these assumptions may be relaxed.

4.1. Orthotropic canopies. In real parachutes, the canopy is stiffened with a finite number of meridional
cords. Classical analysis [Taylor 1919] assumes that these cords are inextensible and the membrane forms
lobes between each pair of adjacent cords. In the framework of our basic axisymmetric assumption,
we cannot handle individual cords. Instead, we assume that the cords cause a global stiffening effect
in the meridional direction. Thus we consider an effective canopy material which is homogeneous but
orthotropic. Thus, different material properties are associated with the meridional and the circumferential
directions. Of course, the only change caused by this extension in our formulation is in the constitutive
equations (14)–(16).

We denote the meridional and circumferential Young’s moduli by Es and Eθ , and the corresponding
Poisson’s ratios by νs and νθ . Then, in the doubly tense regions, (14) and (15) are replaced by

Ns =
Esh

1−νsνθ
(λs + νsλθ )−

Esh
1−νsνθ

(1+ νs), (37)

Nθ =
Eθh

1−νsνθ
(λθ + νθλs)−

Eθh
1−νsνθ

(1+ νθ ). (38)

In the wrinkle region, in which Nθ = Ncr, we obtain, in a similar manner to the isotropic case,

Ns = Esh(λs − 1)+ (Es/Eθ )νs Ncr, (39)
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which replaces (16).
These modified equations imply obvious changes in the algorithm presented in the previous section.

4.2. Neo-Hookean material. In the case of a neo-Hookean material, the strain energy function (13) is
replaced by

W (λs, λθ )= Ch
(
λ2

s + λ
2
θ + (λsλθ )

−2
− 3

)
, (40)

where C is a material constant. In this case the relations (12) in the doubly tense regions become

Ns = 2Ch(λs − λ
−3
s λ−2

θ ), (41)

Nθ = 2Ch(λθ − λ−2
s λ−3

θ ), (42)

and the modified constitutive law in the wrinkle region becomes

Ns = 2Ch(λs − λ
−2
s ). (43)

It should be noted that this relation is valid for an ideal membrane only.
An algorithmic complication arises from the fact that the numerical scheme presented above requires

(see steps 1, substep (e) and 2, substep (g)) the inversion of the constitutive equations (41) and (43), so
that in the doubly tense regions λs is expressed explicitly in terms of Ns and λθ , and in the wrinkle region
λs is expressed as a function of Ns . In the Hookean case this inversion was trivial, but in the neo-Hookean
case it involves the solution of a quartic equation and a cubic equation. Closed-form formulas for the
solutions of these two equations were obtained in [Libai and Givoli 2002] — an exact formula for the
cubic equation and a 4th-order asymptotic solution for the quartic solution; see more details in [Libai
and Givoli 2002].

4.3. Nonuniform pressure. The assumption of uniform pressure distribution is typically a reasonable
one; in many cases the pressure on the canopy is nearly uniform except in a thin boundary layer near the
outer edge of the membrane and the edge of the central hole (if any), where the pressure drops rapidly to
the atmospheric pressure. However, in some cases a more significant deviation from uniformity occurs,
which the analyzer may want to take into account.

To demonstrate this capability, we use as an example the pressure distribution found via computational
fluid dynamics in [Sahu et al. 1995], and adopted in [Shannon 2001, p. 117]. According to this result,
the internal pressure on the canopy is almost uniform but the external pressure is nonuniform, leading
to a nonuniform net pressure, that reaches a maximum around the center of the meridian. By using a
piecewise cubic polynomial approximation we interpolate this pressure distribution. This is shown in
Figure 4 as a function f (χ) defined over the unit interval χ ∈ [0, 1]. The actual pressure p(s) can then
be expressed as a function of the undeformed arc length coordinate s by

p(s)= p0 f (s/S). (44)

Here p0 is the pressure magnitude, which is unknown as in the uniform-pressure case, and S is the total
arc length of the meridian in the undeformed configuration, which can easily be computed in advance
from the known geometry of the undeformed meridian.

Obvious changes have to be applied to the algorithm presented in the previous section in order to
replace the uniform pressure by the nonuniform pressure (44).
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Figure 4. Nonuniform pressure distribution function, after [Sahu et al. 1995].

4.4. Canopy without a hole. The most involved extension
to the basic setup presented in Section 2 is the consideration
of a canopy without a central hole, as shown in Figure 5.

0
r 

T  

D

  

C  

B  

p 

P 

β  
0
φ  

L 

E

  

Figure 5. Parachute model with no hole.

The governing equations in this case are identical to those
in Section 2. However, the boundary condition (22) at point
E needs to be modified. At the apex E we require that the
membrane be continuous and have no kink (and thus must
be flat there), namely

r̄E = 0, φ̄E = 0. (45)

From the condition φ̄E = 0 and from (6), we deduce that (24)
is also satisfied, and thus we do not need to require global
equilibrium as an additional condition.

A numerical difficulty arises when trying to apply the
inner-loop scheme presented in Section 3.2 to this case. In
the close vicinity of the apex, owing to the conditions r̄E = 0
and φ̄E = 0, we have r̄ ' 0, φ̄ ' 0, and P − I ' 0, and we
also know that r ' 0. These approximate equalities give
rise to large roundoff errors near the apex. For example, using (λθ )m+1 = r̄m+1/rm+1 (see the inner-loop
scheme, step 1, substep (l), which is repeated in step 3) becomes impossible, since the quantity on the
right side approaches a 0/0 type limit at the apex.

To circumvent this difficulty, we approximate the deformed shape of the membrane in the close vicinity
of the apex by the parabola

z̄(r̄)= ar̄2
+ br̄ + c, (46)
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where a, b, and c are constants. A similar technique has been used in the context of hot air balloon
analysis [Irvine and Montauban 1980]. In that paper, the governing equations are simple enough to
observe that in the limit r→ 0 an equation of a circle is obtained near the apex; therefore, for a 1◦ arc
near the apex the shape of the membrane is assumed to be circular. In our case, the equations are not
simple enough to observe the actual limit. However, in assuming the parabolic shape (46) we are guided
by the fact that any smooth contour can be locally approximated by a parabolic curve.

We assume that (46) is the form of the deformed membrane when the condition φ̄ < εφ is satisfied,
where εφ is a predetermined tolerance. This defines the point Q on the meridian, where the usual equations
are to be replaced by modified equations based on the approximation (46). Since the parabola must be
flat at the apex, we require

∂ z̄
∂ r̄

∣∣∣
r̄=0
≡ b = 0. (47)

With the form (46) and (47) given, it is easy to calculate the limit of r̄/φ̄ at the apex, and we find

r̄/φ̄ ' r̄/ tan φ̄ = r̄/(−dz̄/dr̄)=−1/(2a). (48)

Equations (47) and (48) are used in the scheme to pose two practical conditions on a and b:

|b|< ε1, 1/2+ (r̄/φ̄)a < ε2, (49)

where ε1 and ε2 are given tolerances. We note that the second condition involves the ratio r̄/φ̄ that is
numerically problematic at the apex. However, this condition is checked only at point Q, which is on the
border of the apex region where roundoff error is not yet significant.

In the close vicinity of the apex, the canopy behaves like a flat circular membrane under axisymmetric
tension. Therefore we can assume

λs ' λθ ' constant, Ns ' Nθ ' constant. (50)

From this and (3) we deduce

λs = λθ =
r̄Q

rQ
. (51)

From axial equilibrium calculated from the apex to the point under consideration (see (4), which is
calculated from the lower edge) we obtain, with η = S̄− s̄,

2π r̄ N̄s sin φ̄ =
∫ η̄

0
2πpr̄ ′ cos φ̄′dη̄′. (52)

We use sin φ̄ ' φ̄, cos φ̄ ' 1, and η̄ ' r̄ , calculate the integral, and finally use (48) to get

N̄s '−p/4a. (53)

Using this result with (50), (1), and (3) we have

Nθ = Ns =−
p

4a
r̄Q

rQ
. (54)

Accordingly, step 3 in the inner-loop scheme of Section 3.2 should be modified for the case of no
central hole in the following manner:
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(3) The upper doubly tense zone (from point D to point E; see Figure 2).
(a) Repeat substeps (d)–(f) and (h)–(o) of step 1. Continue the integration process till the condition

φ̄ < εφ is satisfied. Once this condition is satisfied, point Q is reached; denote the current
meridional-step m by m Q , and proceed to (b).

(b) Use the values of r̄ and z̄ at the last three grid points (m Q , m Q − 1, and m Q − 2) to perform
parabolic extrapolation and compute the constants a, b, and c in the parabola (46).

(c) Check the condition 1/2+ (r̄Q/φ̄Q)a < ε2 (see (49)). If it is satisfied, proceed to (d). Otherwise,
adjust the value of (λθ )0 (see step 1, substep (a)) and start the whole process again.

(d) Calculate λs = λθ = r̄Q/rQ and Nθ = Ns = −(p/4a)(r̄Q)(rQ). These values are valid in the
interval from Q to E.

(e) For m = m Q, . . . ,M calculate r̄m = λθrm , φ̄m =−2ar̄m , and z̄m = ar̄2
m + c.

In the outer loop (see Section 3.1), we check if the condition |b|< ε1 (see (49)) is satisfied. If it is, our
guess for p̃ was correct, and thus p̃ ' p and the whole problem is solved. If not, we change the guess
p̃ and repeat the inner iteration loop. This process continues, until the condition |b|< ε1 is satisfied.

5. Numerical examples

We apply the proposed method to two example canopies, which differ in their initial (undeformed) shape.
We consider a parabolic undeformed membrane described by

r(z)=−1.9z2
+ 2.9z+ 2, z ∈ [0, 2], (55)

and an elliptic undeformed membrane described by

r(z)= 3.3
√

1− (z− 1)2/4, z ∈ [0, 2.99]. (56)

The elliptic undeformed canopy shape chosen here is inspired by [Lennon and Pellegrino 2005], and
is such that the deformed shape turns out to be quite similar to the oval shape obtained in the analysis
of [Taylor 1919], but without the lobes (see discussion in Section 1). Moreover, in Taylor’s optimal
parachute the ratio of minimum to maximum diameter is about 0.6, and this is also the ratio obtained in
our case. The parabolic shape was chosen not due to physical reasons but simply because this was the
family of shapes considered in our previous investigation (see [Libai and Givoli 2002]).

We assume uniformly distributed pressure, except in one case discussed at the end of this section.
We use nondimensional parameter values which were chosen based on the following normalization.

Denoting dimensional quantities with a ∗, we first define two reference quantities: the length L∗, related
to the height Z of the undeformed membrane, and the force F∗ = E∗h∗L∗. Due to technical reasons
that we omit here, we define L∗ = Z/2 for the parabolic canopy and L∗ = Z/3 for the elliptic canopy,
although of course the choice L∗ = Z would have been equally legitimate. Then all the parameters and
variables are normalized, according to their units, with respect to a product of powers of L∗ and F∗.
Thus, for example, p = p∗/(E∗h) and T = T ∗/(E∗h∗). This normalization method always gives the
nondimensional quantity Eh = 1. All parameters that appear in the examples below are unitless, having
been defined by using this method of normalization. In all the examples shown here we use the Hookean
material law, and ν = 0.5.
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Figure 6. Undeformed and deformed shapes of a parabolic canopy with a central hole,
under the applied load P = 0.4.

The computational tolerances needed for the double iteration loop are set as follows. In the case of a
canopy with a central hole we use the tolerances δ1 = 0.01 and δ2 = 10−3, while in the case of a canopy
without a central hole we use εφ = 0.07, ε1 = 10−4, and ε2 = 5 · 10−3. In all cases we take 10,000 steps
in the z direction. This choice is based on practical convergence analysis; see [Ofir 2009] for the details
and a convergence graph.

Figure 6 shows the undeformed and deformed shapes of the parabolic canopy with a central hole,
under the load P = 0.4. The deformed shapes of both an ideal membrane and a nearly ideal membrane
with Ncr = −0.05 are shown. Here and in subsequent figures, the boundaries of the wrinkle zone are
marked on the deformed meridian by two × marks. It is clear that the wrinkle zone is much larger in the
ideal membrane, as it should be. We also see that the deformed membranes are almost flat at the upper
edge, which is consistent with the discussion at the end of Section 2.2.

Figure 7 shows the size of the wrinkle zone, relative to the entire meridian length, as a function of
the applied load P , for four values of Ncr. In the case of the ideal membrane (Ncr = 0), the wrinkle
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 Figure 7. The wrinkle zone size as a function of the applied load P in a parabolic
canopy with a central hole.
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Figure 8. Response of a parabolic canopy with a central hole: undeformed and de-
formed shapes for three values of the vertical load P .

zone shrinks as P increases, up to a load value of about P = 1.9, beyond which the entire membrane
becomes doubly tense. In the case of a nearly ideal membrane (that is, for any nonzero value of Ncr),
the wrinkling behavior is considerably different. When the applied forces are very small, no wrinkles
are present since the membrane has a certain capability of carrying compressional hoop stresses. When
the applied loads are large enough, wrinkles start to form. Increasing the load further causes the wrinkle
zone to expand, up to a maximal size. Increasing the load even further causes the wrinkle zone to shrink
until it totally vanishes. The wrinkled regime shrinks when the value of |Ncr| is increased. The latter
behavior is the more physical one, since real membranes are not ideal. Additional numerical examples
in this context can be found in [Ofir 2009].

Figures 8 and 9 show the responses of the ideal parabolic canopy with a central hole, under an in-
creasing applied load. In Figure 8 we show the undeformed and deformed shapes, and in Figure 9 the
distribution of the stress resultants Ns and Nθ and the distribution of the stretches λs and λθ . Note that
in the wrinkle zone Nθ ≡ 0, and the hoop stretch λθ becomes nonphysical and is therefore not shown in
this zone. For the three load values considered in these figures, the lowest one (P = 0.01) yields a very
large wrinkle zone, the intermediate one (P = 0.3) gives a smaller wrinkle zone, and the highest one
(P = 1.9) causes the membrane to be doubly tense along the entire meridian.

Figure 10 summarizes the response of a parabolic canopy with a central hole as a function of the
applied load P . We show the maximal values along the meridian of the stress resultants Ns and Nθ and
of the stretches λs and λθ . These functions are monotone but are far from being linear.

Figures 11 and 12 show the responses of a nearly ideal elliptic canopy with no central hole, under
an increasing applied load. Here we set Ncr =−0.002. Again we show the undeformed and deformed
shapes (Figure 11), and the distributions of the stress resultants Ns and Nθ and of the stretches λs and
λθ (Figure 12). In this case the response of the membrane is more sensitive to changes of the load value
than in the previous case. Already for P = 0.4 the entire meridian is doubly tense.

Figure 13 shows the response of the ideal elliptic canopy with a central hole in two cases: one in which
the pressure along the meridian is uniformly distributed, and the other in which it is distributed nonuni-
formly according to the function shown in Figure 4. We show the two deformed shapes in Figure 13a
and the two meridional stress resultants in Figure 13b, for P = 0.3. The difference between the two
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Figure 9. Response of a parabolic canopy with a central hole, stress resultant, and
stretch distribution: (a) P = 0.01, stress resultants, (b) P = 0.01, stretches, (c) P = 0.3,
stress resultants, (d) P = 0.3, stretches, (e) P = 1.9, stress resultants, (f) P = 1.9,
stretches.



AN AXISYMMETRIC PARACHUTE MODEL WITH WRINKLING 437

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P

N
s

m
a

x

, 
N
θθ θθ

m
a

x

 

 

N
s

max

N
θ

max

 

0 0.5 1 1.5 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

P

λλ λλ
s

m
a

x

, 
λλ λλ
θθ θθ

m
a

x

 

 

λ
s

max

λ
θ

max

 (a) (b)

Figure 10. Response of a parabolic canopy with a central hole as a function of the
applied load P: (a) maximal stress resultants, (b) maximal stretches.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

r

z

 

 

undeformed

P=0.1

P=0.3

P=0.4

 

Figure 11. Response of a nearly ideal elliptic canopy with no central hole: undeformed
and deformed shapes for three values of the vertical load P .

deformed shapes is small, although wrinkles are formed only in the case of uniform pressure distribution.
However, the meridional stress in the vicinity of the hole is much larger in the case of uniform pressure.
This shows that ignoring the effect of nonuniformity of pressure distribution on the mechanical response
of the canopy is not always justified.

Finally we consider the case of an orthotropic canopy (see Section 4.1). We use an ideal membrane
with the elliptic undeformed shape and a central hole, and with the vertical load P = 0.3. The nondimen-
sional Young’s modulus in the circumferential direction is still Eθh = 1, while in the meridional direction
we take Es = 2Eθ = 2. The Poisson ratio is taken as 0.5 in both directions. In Figures 14a and 14b we
compare the meridional stress resultant Ns and stretch λs , respectively, in the isotropic and orthotropic
cases. We see that the orthotropy does not affect Ns along the meridian except near the hole surface, where
the effect is very strong. The stretch λs is affected almost uniformly along the meridian. The deformation
and circumferential stress and stretch (not shown here) are affected much less by the orthotropy.
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Figure 12. Response of a nearly ideal elliptic canopy with no central hole, stress re-
sultants, and stretch distribution: (a) P = 0.1, stress resultants, (b) P = 0.1, stretches,
(c) P = 0.3, stress resultants, (d) P = 0.3, stretches, (e) P = 0.4, stress resultants,
(f) P = 0.4, stretches.
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Figure 13. An ideal elliptic canopy with a central hole — responses in the cases of
uniformly and nonuniformly distributed pressure: (a) deformed shapes, (b) meridional
stress resultant.
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Figure 14. Comparison between the responses of isotropic and orthotropic canopies:
(a) meridional stress resultant Ns , (b) meridional stretch λs .

6. Concluding remarks

The problem considered in this paper, of the quasistatic behavior of parachute canopies including the
effects of large deformation and wrinkling, belongs to an important class of problems in nonlinear
membrane shell theory. Other examples of such problems can be found, for example, in biology. In
the present paper we have extended [Libai and Givoli 2002], which used wrinkle fields (also called
tension fields) to model the wrinkle zones, but considered a much simplified setup.

The model introduced here, which represents a parachute under axisymmetric geometry, material
properties, and loading, was analyzed via a double-iteration numerical procedure, based on a shooting
technique and incremental loading. We first considered a canopy with a small central hole, made of an
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isotropic Hookean material, and we assumed uniform pressure distribution. Later we showed how to
relax these assumptions.

The advantage of the proposed numerical scheme employed here, over, say, the finite element method
(FEM), is that it is quite simple, very easy to implement, and exhibits fast convergence, despite the
complexity of the problem which involves the highly nonlinear membrane shell equations, different
regions with interfaces which are unknown a priori, and deformation-dependent pressure magnitude. An
attack of the same class of axisymmetric problems by FEM would be much more complicated. However,
our method is restricted by the strong assumption of axial symmetry. It may be possible to extend it
for more realistic nonaxisymmetric scenarios by using Fourier decomposition and considering the modal
response to sinusoidal loading (see, for example, [Givoli and Libai 1995]). However, it may well be the
case that for such problems one should resort to FEM.
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