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PROPAGATION OF WAVES IN AN INCOMPRESSIBLE TRANSVERSELY
ISOTROPIC ELASTIC SOLID WITH INITIAL STRESS: BIOT REVISITED

RAY W. OGDEN AND BALJEET SINGH

In this paper, the general constitutive equation for a transversely isotropic hyperelastic solid in the pres-
ence of initial stress is derived, based on the theory of invariants. In the general finite deformation case
for a compressible material this requires 18 invariants (17 for an incompressible material). The equa-
tions governing infinitesimal motions superimposed on a finite deformation are then used in conjunction
with the constitutive law to examine the propagation of both homogeneous plane waves and, with the
restriction to two dimensions, Rayleigh surface waves. For this purpose we consider incompressible
materials and a restricted set of invariants that is sufficient to capture both the effects of initial stress and
transverse isotropy. Moreover, the equations are specialized to the undeformed configuration in order to
compare with the classical formulation of Biot. One feature of the general theory is that the speeds of
homogeneous plane waves and surface waves depend nonlinearly on the initial stress, in contrast to the
situation of the more specialized isotropic and orthotropic theories of Biot. The speeds of (homogeneous
plane) shear waves and Rayleigh waves in an incompressible material are obtained and the significant
differences from Biot’s results for both isotropic and transversely isotropic materials are highlighted with
calculations based on a specific form of strain-energy function.

1. Introduction

Initial stresses in solids have an important influence on the mechanical response of the material from an
initially stressed configuration. Applications range from geophysics to the components of engineering
structures and the behavior of soft biological tissues. The term initial stresses embraces situations in
which the stress is accompanied by finite deformation from an unstressed configuration, in which case
the term pre-stresses is commonly used, as, for example, in [Ieşan 1989], and situations in which the
initial stress arises from some other process, such as manufacturing or growth, and is present in the
absence of applied loads. In this latter case the initial stress is referred to as residual stress according to
the definition of [Hoger 1985].

In the present paper we are concerned with the effect of initial stress on the propagation of small
amplitude (linearized) elastic waves. A static theory of initial stress was developed long ago by Biot
[1939]. He then extended it to wave propagation problems [1940]; this work is summarized in [Biot
1965]. In [Biot 1940] he states: “No assumption is made on how the initial state of stress is produced” —
he requires only that it satisfy the equilibrium equations. Biot’s theory has since formed the basis of
many contributions to the literature, particularly in the geophysical context; see, for example, [Tolstoy
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1982] and the more recent [Dey and De 1999; Sharma and Garg 2006]. The latter was concerned with
an initially stressed anisotropic material and further references can be found therein. In the context of
modern continuum theory, however, Biot’s formulation of the equations is not straightforward, and part
of the purpose of the present work is to show how Biot’s formulation fits into a more general and more
transparent framework.

Surface waves in elastic solids were first studied by Lord Rayleigh [1885] for an isotropic elastic
solid. The extension of surface wave analysis and other wave propagation problems to anisotropic
elastic materials has been the subject of many studies; see, for example, [Musgrave 1959; Anderson
1961; Stoneley 1963; Chadwick and Smith 1977; Royer and Dieulesaint 1984; Barnett and Lothe 1985;
Mozhaev 1995; Nair and Sotiropoulos 1997; 1999; Destrade 2001a; 2001b; Destrade et al. 2002; Ting
2002a; 2002c; 2002b; Destrade 2003; Ogden and Vinh 2004]. For problems involving surface waves in
a finitely deformed pre-stressed elastic solid (strain-induced anisotropy) we refer to [Hayes and Rivlin
1961; Flavin 1963; Chadwick and Jarvis 1979; Dowaikh and Ogden 1990; 1991; Norris and Sinha 1995
(concerning a solid/fluid interface); Chadwick 1997; Prikazchikov and Rogerson 2004 (concerning pre-
stressed transversely isotropic solids); Destrade et al. 2005; Edmondson and Fu 2009]; see also [Song and
Fu 2007]. As representatives of other works concerning waves in initially stressed elastic solids we cite
[Norris 1983] on plane waves, the review [Guz 2002] and the analysis [Akbarov and Guz 2004] of waves
in circular cylinders. Here we shall study the effect of initial stress on the propagation of surface waves
based on a general formulation of the constitutive law of an elastic material that would be transversely
isotropic in the absence of initial stress.

In Section 2, the equations governing small amplitude waves in a deformed transversely isotropic elas-
tic solid with initial stress are derived, both for compressible and incompressible materials, the transverse
isotropy being associated with a preferred direction in the initially stressed reference configuration. The
constitutive law of the material is based on a strain-energy function (defined per unit reference volume)
which depends on the combined invariants of the right Cauchy–Green deformation tensor, the initial
stress tensor and the preferred direction. For a compressible material there are 18 such independent
invariants in the general three-dimensional case, a number which reduces to 17 for an incompressible
material. Expressions for the Cauchy stress and nominal stress tensors and the elasticity tensor are given
in general forms but, because the large number of invariants makes the theory unwieldy in general, their
forms are made explicit only for a restricted number of invariants, and attention is then confined largely
to incompressible materials with seven invariants.

In Section 3, the equations of motion are specialized in order to study the effect of initial stress on
the wave speed of homogeneous plane waves. It is noted, in particular, that the wave speed depends in a
nonlinear fashion on the initial stress. In order to make contact with Biot’s theory and to see how it sits
within the general framework considered here, we give, in Appendix B, a derivation of Biot’s equations,
their connection with the equations herein, and a formula for the relation between the components of the
elasticity tensor used here (which depend nonlinearly on the initial stress) and the components of Biot’s
elasticity tensor. In Section 4, the theory is specialized to two-dimensional motions (for incompressible
materials) and then applied, in Section 5, to the study of Rayleigh waves in a half-space subject to initial
stress parallel to its boundary with the preferred direction of transverse isotropy either parallel or normal
to the boundary. The secular equation is derived and then specialized to give corresponding results for
Biot’s isotropic and orthotropic theories. The final section, Section 6, provides numerical results that
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show the significant differences between the predictions of the general theory and of Biot’s theory, and
some concluding discussion is contained therein.

2. Equations of motion

We consider an elastic body whose initial geometry defines a reference configuration, which we denote by
Br . In this configuration the body is in equilibrium and may in general be subject to a stress distribution,
and we denote the Cauchy stress in Br by T . If there is a body force br per unit mass acting then the
equation of equilibrium is

Div T C �r br D 0; (1)

where �r is the mass density of the material in Br and Div is the divergence operator in Br , i.e., with
respect to position vector X in Br . If the traction on the boundary @Br of Br vanishes pointwise then
T is referred to as a residual stress, and it is necessarily non-uniform [Hoger 1985; Ogden 2003]. If
the traction is not zero then we refer to T as an initial stress or pre-stress, and in general this may be
accompanied by some prior deformation required to reach the configuration Br from an unstressed state.
Here we shall not be concerned with how the initial stress is produced.

A motion of the body from Br may be described by a function � so that the current position x of the
material point initially at X is given by x D �.X ; t/, where t is time. The deformation gradient tensor,
denoted F , is given by F D Grad�.X ; t/, where Grad is the gradient operator in Br . Let B be the
configuration occupied by the body at time t .

The constitutive law of an elastic material may be described in terms of a strain-energy function, which
is a function of F and defined per unit volume in Br . We denote this by W .F /, but note that in general
W depends also on the initial stress T and on implicit material symmetries, which are suppressed for the
present. Let S denote the nominal stress tensor in the configuration B. Then, for a material not subject
to any internal mechanical constraints S is given by

S D
@W

@F
: (2)

For an incompressible material the constraint

det F D 1 (3)

is enforced and (2) is modified to

S D
@W

@F
�pF �1; (4)

where p is a Lagrange multiplier associated with the constraint.
The motion � is governed by the equation

Div S C �r bD �r x;t t ; (5)

where b is the body force acting in the current configuration, which may in general be different from
br , and a subscript t following a comma signifies the material time derivative, i.e., the time derivative at
fixed X , so that x;t is the particle velocity and x;t t the acceleration.
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Although this is not strictly necessary, we now assume, for simplicity, that the body force is uniform
and independent of the deformation. Then, bD br and we get from (1) and (5)

Div.S �T /D �r x;t t : (6)

Now consider a finitely deformed equilibrium configuration B0 defined by �0.X/ and let F0 be the
deformation gradient in this configuration and S0 the corresponding nominal stress. Then, Div.S0 �

T / D 0. Next, we consider an incremental motion from this latter configuration with displacement
Px D �.X ; t/��0.X/, and corresponding increment PF D Grad Px D F �F0 in the deformation gradient.
Let PS D S �S0 denote the increment in the nominal stress. Then,

Div PS D �r Px;t t : (7)

For a compressible material the linearized form of PS is

PS DA PF ; PS˛i DA˛iˇj
PFjˇ; (8)

while for an incompressible material

PS DA PF CpF �1 PF F �1
� PpF �1; (9)

where Pp is the increment in p and A is the elasticity tensor, which, for either a compressible or an
incompressible material, is defined by

AD
@2W

@F @F
; A˛iˇj D

@2W

@Fi˛@Fjˇ

DAˇj˛i ; (10)

evaluated in the configuration B0. The convention that Greek indices refer to the configuration Br and
Roman indices to B0 is adopted here. The linearized incompressibility condition is

tr. PF F �1
0 /D 0: (11)

For details of the background on the theory of incremental deformations superimposed on a finite defor-
mation we refer to [Ogden 1984; 2007], for example.

It is convenient to work with B0 as the reference configuration, which requires that all quantities are
updated, i.e., pushed forward, from Br to B0 and incremental quantities are treated as functions of x

and t . In particular, we define the Eulerian form of the displacement vector by u.x; t/ D Px.X ; t/ via
the connection x D �0.X/. The updated forms of the incremental constitutive laws (8) and (9) are,
respectively,

PS0 DA0L; PS0pi DA0piqj Ljq; (12)

and
PS0 DA0LCpL� PpI ; (13)

where L D grad u is the displacement gradient, I is the identity tensor and a subscript 0 indicates a
pushed forward quantity. In particular,

J0A0piqj D F0p˛F0qˇA˛iˇj ; (14)



PROPAGATION OF WAVES IN AN INCOMPRESSIBLE TRANSVERSELY ISOTROPIC ELASTIC SOLID 457

where J0 D det F0 D �r=�0 and �0 is the density in B0. For an incompressible material J0 D 1 and
�0 D �r . The (linearized) incremental form of the incompressibility constraint (11) is then expressed as

tr L� div uD 0: (15)

For a compressible material, the (Cartesian) component form of the equation of motion is

.A0piqj uj ;q/;p D �0ui;t t ; (16)

and for an incompressible material

.A0piqj uj ;q/;p � Pp;i Cp;j uj ;i D �r ui;t t ; with ui;i D 0: (17)

Note that as well as possessing the major symmetry A0piqj D A0qjpi induced by (10), A has the
property

A0piqj C ıjp�0iq DA0ipqj C ıij�0pq (18)

for a compressible material, and

A0piqj C ıjp.�0iqCpıiq/DA0ipqj C ıij .�0pqCpıpq/ (19)

for an incompressible material, where �0ij are the components of the Cauchy stress tensor �0 in B0.
These are easily established by considering the symmetry of Cauchy stress expressed in the form FS D

S TF T, taking the increment of this and then updating the reference configuration to B0 to obtain

PS0CL�0 D
PS T
0 C �0LT: (20)

Suppose now that the material is homogeneous. This requires, in particular, that the initial stress T is
uniform. We recall, however, that a residual stress cannot be uniform [Hoger 1985; Ogden 2003], so the
following analysis does not apply if the initial stress is a residual stress. Suppose further that �0.X/ is a
homogeneous deformation. Then, the configuration B0 is uniform and hence A, A0 and p are constant,
and the equations of motion (16) and (17) reduce to

A0piqj uj ;pq D �0ui;t t (21)

and
A0piqj uj ;pq � Pp;i D �r ui;t t ; ui;i D 0; (22)

respectively.
In general A, and hence A0, depends on the deformation through F , on the initial stress T and on any

material symmetry present in the configuration Br . Here we consider a transversely isotropic material
with preferred direction M in Br , where M is a unit vector. To make the dependence of A (and A0)
on these quantities explicit we consider the scalar invariants of the tensors involved.

2.1. Invariant formulation. By objectivity, the dependence of the strain-energy function W on F is
through the right Cauchy–Green tensor C , which is defined by C D F TF , and we therefore consider
W to depend on the invariants of the three tensors C , T and M ˝M since the material properties are
assumed to be independent of the sense of M .
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The invariants of C most commonly used are the principal invariants, defined by

I1 D tr C ; I2 D
1
2
Œ.tr C /2� tr.C 2/�; I3 D det C : (23)

The (anisotropic) invariants associated with M and C are usually taken as

I4 DM � .CM /; I5 DM � .C 2M /: (24)

The notation I1; : : : ; I5 is fairly standard for these invariants; see, for example, [Merodio and Ogden
2002; 2003]. In the reference configuration Br these reduce to I1 D I2 D 3, I3 D I4 D I5 D 1. A set of
independent invariants of T that do not involve M may be taken as

tr T ; tr.T 2/; tr.T 3/; tr.TC /; tr.TC 2/; tr.T 2C /; tr.T 2C 2/; (25)

invariants of T independent of C as

M � .TM /; M � .T 2M /; (26)

and invariants depending on C ;M and T as

M � .TCM /; M � .TC 2M /; M � .T 2CM /; M � .T 2C 2M /: (27)

These are the only independent invariants, 18 in total. For an incompressible material we have I3 D 1

and hence there are 17 independent invariants in this case. In the reference configuration Br the fourth,
fifth, sixth and seventh invariants in (25) and the invariants (27) reduce to the first two in (25) and the
two in (26). For full discussion of the relevant background on invariants of tensors we refer to [Adkins
1960; Spencer 1971; Zheng 1994]. A set of invariants equivalent to the above has been used by [Hoger
1993a; 1996]. For related work concerned with the constitutive equations and material symmetry for a
residually stressed elastic material we refer to [Coleman and Noll 1964; Hoger 1986; 1993b; Man and
Lu 1987; Johnson and Hoger 1993; Man 1998; Saravanan 2008; Tanuma and Man 2008].

We have not for the moment defined particular notation for the invariants (25)–(27). In the general
case suppose there are N invariants, which we denote by Ii ; i D 1; 2; : : : ;N . Then, the expressions for
the stress and elasticity tensors require the calculation of

@W

@F
D

NX
iD1

Wi
@Ii

@F
(28)

and

@2W

@F @F
D

NX
iD1

Wi
@2Ii

@F @F
C

NX
iD1

NX
jD1

Wij
@Ii

@F
˝
@Ij

@F
; (29)

where we have used the shorthand notations Wi D @W =@Ii ; Wij D @
2W =@Ii@Ij ; i; j D 1; 2; : : : ;N .

Such a large number of invariants is impractical for applications, so for simplicity we restrict atten-
tion to incompressible materials and to the following invariants, which capture the main features of the
combined anisotropy and initial stress. In particular, we omit invariants that are nonlinear in T . Thus,
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we consider

I1 D tr C ; I4 DM � .CM /; I5 DM � .C 2M /; (30)

I6 D tr.TC /; I7 D tr.TC 2/; I8 DM � .TCM /; I9 DM � .TC 2M /, (31)

which identify the invariants I6; I7; I8; I9, while the standard notation I1; I4; I5 is retained and, since
we are considering incompressible materials, I3 � 1. We may also include tr T and M � .TM / in the
functional dependence of W since they do not depend on C and hence their derivatives with respect to
F do not contribute to the stress or elasticity tensors. In the following we give explicit expressions for
the stress tensors and the elasticity tensor based on this restricted set of invariants.

2.2. Stress tensors. The strain-energy function W is now taken to depend on the seven deformation-
dependent invariants I1; I4; : : : ; I9 together (possibly) with tr T and M � .TM /. For the considered
incompressible material we have

S D
@W

@F
�pF �1

D

X
1�i�9
i¤2;3

Wi
@Ii

@F
�pF �1; (32)

and the corresponding Cauchy stress is

� D F
@W

@F
�pI D

X
1�i�9
i¤2;3

WiF
@Ii

@F
�pI ; (33)

where Wi D @W =@Ii ; i D 1; 4; : : : ; 9. The required expressions for @Ii=@F are listed for convenience
in Appendix A in component form. These enable the Cauchy stress to be expanded as

� D�pI C 2W1B C 2W4m˝mC 2W5.m˝BmCBm˝m/

C 2W6†C 2W7.B†C†B/CW8.F TM ˝mCm˝F TM /

CW9.F TM ˝BmCBm˝F TM CFCTM ˝mCm˝FCTM /; (34)

where mD FM , † D F TF T and B D FF T is the left Cauchy–Green deformation tensor.
In the reference configuration Br the Cauchy stress must be equal to the initial stress. Thus, when

(34) is evaluated in Br , we obtain

T D .2W1�p/I C 2.W4C 2W5/M ˝M C 2.W6C 2W7/T

C .W8C 2W9/.TM ˝M CM ˝TM /; (35)

where W1;W4; : : : ;W9 are evaluated in the reference configuration, where F D I , and may in general
depend on tr T and M � .TM /. For consistency it is therefore appropriate to set

p D 2W1; W4C 2W5 D 0; W6C 2W7 D
1
2
; W8C 2W9 D 0; (36)

in the reference configuration. Indeed, if (35) holds for all possible T then these conditions necessarily
follow.
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2.3. The elasticity tensor. Next, we note that the elasticity tensor A is given by

AD
@2W

@F @F
D

X
1�i�9
i¤2;3

Wi
@2Ii

@F @F
C

X
1�i�9
i¤2;3

X
1�j�9
j¤2;3

Wij
@Ii

@F
˝
@Ij

@F
: (37)

This requires expressions for the second derivatives of the invariants. In component form these are given
in Appendix A. Since the resulting formula for the components of A is quite long we do not give it
here. Instead, we give its specialization to the situation in which there is no finite deformation and B0

coincides with Br . The subscript 0 on A0 may now be omitted, and taking account of the conditions
(36) prevailing in the reference configuration the components of A in the reference configuration can be
arranged in the (still fairly lengthy) form

Apiqj D 2W1ıijıpqC 2W5.ıij MpMqC ıpqMiMj C ıiqMj MpC ıjpMiMq/C ıij Tpq

C 2W7.ıij TpqC ıpqTij C ıiqTjpC ıjpTiq/CW9Œıij .MpTqr CMqTpr /

C ıpq.MiTjr CMj Tir /C ıiq.Mj Tpr CMpTjr /C ıjp.MiTqr CMqTir /�Mr

C 4W11ıipıjqC 4.W44C 4W45C 4W55/MiMj MpMq

C 4.W14C 2W15/.ıipMj MqC ıjqMiMp/C 4.W16C 2W17/.ıipTjqC ıjqTip/

C 2.W18C 2W19/Œıip.Mj Tqr CMqTjr /C ıjq.MiTpr CMpTir /�Mr

C 4.W46C 2W47C 2W56C 4W57/.MiMpTjqCMj MqTip/

C 2.W48C 2W49C 2W58C 4W59/.Tir Mj MpMqCTjr MiMpMq

CTpr MiMj MqCTqr MiMj Mp/Mr C 4.W66C 4W67C 4W77/TipTjq

C 2.W68C 2W69C 2W78C 4W79/ŒTip.Tqr Mj CTjr Mq/CTjq.Tpr Mi CTir Mp/�Mr

C .W88C 4W89C 4W99/.MiTpr CMpTir /.Mj TqsCMqTjs/Mr Ms; (38)

all the derivatives of W being evaluated in Br . With the restricted set of invariants adopted these depend
in general on tr T and M � .TM /. Note that when (38) is substituted into the equation of motion all the
terms involving ıjp or ıjq disappear by virtue of the incompressibility condition.

We now consider three special cases that will be used subsequently: (1) the underlying material is
isotropic; (2) TM D 0; (3) T D T M ˝M .

Case 1: Isotropy. If there is no preferred direction in Br and in the absence of initial stress the material
is isotropic then in the presence of initial stress (38) reduces simply to

Apiqj D 2W1ıijıpqC ıij TpqC 2W7.ıij TpqC ıpqTij C ıiqTjpC ıjpTiq/C 4W11ıipıjq

C 4.W16C 2W17/.ıipTjqC ıjqTip/C 4.W66C 4W67C 4W77/TipTjqI (39)

that is, all terms in which W has a subscript 4, 5, 8 or 9 are omitted.

Case 2: TM D 0. In this case all the terms in (38) in which W has a subscript 8 or 9 vanish and (38)
reduces to
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Apiqj D 2W1ıijıpqC 2W5.ıij MpMqC ıpqMiMj C ıiqMj MpC ıjpMiMq/C ıij Tpq

C 2W7.ıij TpqC ıpqTij C ıiqTjpC ıjpTiq/C 4W11ıipıjq

C 4.W44C 4W45C 4W55/MiMj MpMqC 4.W14C 2W15/.ıipMj MqC ıjqMiMp/

C 4.W16C 2W17/.ıipTjqC ıjqTip/C 4.W46C 2W47C 2W56

C 4W57/.MiMpTjqCMj MqTip/C 4.W66C 4W67C 4W77/TipTjq:

We note, in particular, the connections

Aijji DAjiij DAijij � .2W1CTii/DAjiji � .2W1CTjj /; i ¤ j ; (40)

Ajijj DAijjj �Tij ; i ¤ j ; Aijjk DAijkj �Tik ; (41)

where i; j ; k are distinct.

Case 3: T D T M ˝M . In this case the components of A have a relatively simple structure and can
be written compactly as

Apiqj D 2W1ıijıpqC 4W11ıipıjqCA.ıij MpMqC ıpqMiMj C ıiqMj MpC ıjpMiMq/

CB.ıipMj MqC ıjqMiMp/CCMiMj MpMqCT ıij MpMq; (42)

where

AD 2 ŒW5CT .W7CW9/�; (43)

B D 4 ŒW14C2W15CT .W16C2W17/CT 2.W18C2W19/�; (44)

C D 4 ŒW44C4W45C4W55CT .W46C2W47CW48C2W49C2W56C 4W57C2W58C4W59/

CT 2.W66C4W67C4W77CW68C2W69C2W78C4W79CW88C4W89C4W99/�: (45)

It is noteworthy that in each of the three cases the components Apiqj are quadratic in the components
of the initial stress even though we have not included in the model invariants that are nonlinear in the
initial stress.

3. Homogeneous plane waves

With the focus on incompressible materials we now apply the equation of motion and the incompress-
ibility condition in (22) to the analysis of homogeneous plane waves. In particular, we consider the
incremental displacement u and Lagrange multiplier Pp to have the forms

uD f .n �x� vt/d ; Pp D g.n �x� vt/; (46)

where d is a constant unit (polarization) vector, the unit vector n is the direction of propagation of the
plane wave, v is the wave speed, f is a function that need not be made explicit, but is subject to the
restriction f 00 ¤ 0, and g is a function related to f . A prime on f or g indicates differentiation with
respect to its argument.

Substitution of (46) into (22) then yields

ŒQ.n/d � �v2d �f 00�g0nD 0; d �nD 0; (47)
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where the (symmetric) acoustic tensor Q.n/ is defined by

Qij .n/DApiqj npnq: (48)

On taking the dot product of (47)1 with n we obtain g0 D ŒQ.n/d � �nf 00, and on substituting back into
(47)1 and eliminating the factor f 00 we may arrange the resulting propagation condition in the form

ŒQ.n/�n˝Q.n/n�d D �v2d ; (49)

or equivalently as
NQ.n/d D �v2d ; (50)

where NQ.n/ is the projection of Q.n/ on to the plane normal to n defined by

NQ.n/D NIQ.n/ NI ; (51)

where NI D I �n˝n. The symmetrization (51) was originally derived in [Scott and Hayes 1985]. Thus,
NQ.n/ is symmetric and the two-dimensional eigenvalue problem (50) (in the plane normal to n) therefore

has two real solutions for �v2. The wave speeds are real if the two eigenvalues are positive, and this is
guaranteed if the strong ellipticity condition holds. This is expressed as

Œ NQ.n/d � �d > 0 for all nonzero vectors d and n such that d �nD 0: (52)

For given n and d the wave speed v is obtained from

�v2
D Œ NQ.n/d � �d D ŒQ.n/d � �d : (53)

As a first application we consider Case 1 in Section 2.3. Then we obtain

NQ.n/D Œ2W1C .2W7C 1/.Tn/ �n� NI C 2W7
NT C 2.W66C 4W67C 4W77/ NITn˝ NITn; (54)

where NT D NIT NI is the projection of T on to the plane normal to n. The wave speed is then easily
calculated from (53). For illustration we consider the initial stress to be uniaxial and along the x1 axis
with T11DT . Then, if we consider motion in the .x1;x2/ plane with n1D cos � , n2D sin � , d1D� sin � ,
d2 D cos � , we obtain

�v2
D 2W1C 2W7T CT cos2 � C .W66C 4W67C 4W77/T

2 sin2 2�: (55)

Clearly, except for the angles � D 0 and � D �=2 the squared wave speed depends quadratically (at least)
on the initial stress T , bearing in mind that in general the coefficients W1;W7;W66; : : : could depend
on T . If all the invariants had been included in W then the nonlinearity would be quartic (at least). This
is in contrast to the predictions of Biot’s theory, and we now make contact with that for comparison. For
this purpose we have provided in Appendix B a derivation of the connection between the general theory
used here and Biot’s theory. If we denote by Bijkl the material constants used in Biot’s theory then,
from Appendix B, we have

Aijkl DBijkl �
1
2
ıilTjk �

1
2
ıikTjl �

1
2
ıjkTil C

1
2
ıjlTik C ıklTij : (56)

For the present special problem the relevant Bijkl components are given by

B1111 D ��T; B2222 D �; B1122 D���T; B2211 D��; B1212 D �; (57)
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where � > 0 is the shear modulus. It follows that

A1111 D ��T; A2222 D �D�A1122; A1212 D �C
1
2
T; A2121 D ��

1
2
T DA1221: (58)

The wave speed in this case is then given by

�v2
D �� 1

2
T CT cos2 �: (59)

Clearly, this result can be recovered from (55) if we take 2W1 D �, W7 D �
1
4

(and hence, by (36)3,
W6 D 1), and W66 C 4W67 C 4W77 D 0. The individual components in (58) are recovered from the
general expression (39) by also setting W11 D 0 and W16C 2W17 D 0 in (39), except that we obtain
A1122 D 0 instead of �� and A1221 D �T=2 instead of �� T=2. However, this difference is of no
consequence since the sum of these two terms is the same in each case and it is only their sum, as the
coefficient of 2d1d2n1n2, that contributes to the expression for �v2 in (53). In fact, because of the
incompressibility constraint, there is an intrinsic non-uniqueness in the components Aijkl (and hence
in Bijkl ) since a term of the form p�ıilıjk C q�ıijıkl may be added to Aijkl , where p� and q� are
arbitrary scalars, possibly dependent on tr T and M �.TM / in the general case. The term in q� disappears
from the incremental constitutive relation by incompressibility and the term in p� vanishes identically
in the incremental equation of motion, again by incompressibility.

As a second example we consider Case 3 in Section 2.3, for which we obtain

NQ.n/D Œ2W1C .ACT /.M �n/2� NI C ŒACC.M �n/2� NM ˝ NM ; (60)

where NM D NIM , and hence from (53) we obtain

�v2
D 2W1C .ACT /.M �n/2C ŒACC.M �n/2�.M �d/2: (61)

Let us take, for illustration, M to be along the x1 axis with the same d and n as in the previous example,
so the motion is confined to the .x1;x2/ plane. Then

�v2
D 2W1CACT cos2 � CC sin2 � cos2 �; (62)

where A and C are given by (43) and (45), respectively. We note, in particular, that C is quadratic in T .
Again we compare with the corresponding formula from Biot’s theory, which involves two material

constants N and Q for this (two-dimensional orthotropic) situation, for which we obtain

A1111 DN �T; A2222 DN D�A1122; A1212 DQC 1
2
T; A2121 DQ� 1

2
T DA1221; (63)

and hence
�v2
DQ� 1

2
T CT cos2 � C 4.N �Q/ sin2 � cos2 �: (64)

This can be obtained from (62) by setting

2W1 DN; 2W1C 2W5 DQ; W7 D�
1
4
; (65)

C � 4.W44C 4W45C 4W55/D 4.N �Q/; (66)

and all the other derivatives of W to zero. The case of isotropy is recovered by taking N DQD �.
Case 2 produces very similar results when the motion is again restricted to the .x1;x2/ plane. If we

take M now to be aligned along the x2 axis and T as before then we obtain

�v2
D 2W1CA0CT cos2 � CC 0 sin2 � cos2 �: (67)
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Compared with (62) A0 is obtained from A in (43) by omitting the term in W9, while C 0 is given by

C 0D 4 ŒW44C4W45C4W55�2T .W46C2W47C2W56C4W57/C T 2.W66C4W67C4W77/�; (68)

which differs from C in (45).
For each of the cases considered above, the appropriate specialization of the strong ellipticity condition

(52) requires �v2 > 0, and conditions on the material parameters and the initial stress for this to be
satisfied for all angles � may be inferred. For example, from (67), if T D 0 then necessary and sufficient
conditions for �v2 > 0 are W1CW5 > 0 and 2W1C 2W5CW44C 4W45C 4W55 > 0. On the other
hand, if T ¤ 0 then restrictions are imposed on the permissible range of values of T . For example, by
considering � D �=2 and � D 0, we deduce that 2W1CA0 > 0 and 2W1CA0C T > 0, respectively,
are necessary conditions for �v2 > 0, but to obtain necessary and sufficient conditions for �v2 > 0 for
all � requires consideration of several possible cases, depending on the signs of the material coefficients
W7; W46; W66; : : : , and since this is algebraically lengthy the details are omitted.

4. Equations governing two-dimensional motions

In this section we restrict attention to two-dimensional motions of incompressible materials. Specifically,
we consider motions in the .x1;x2/ plane with displacement components uD .u1;u2; 0/, where u1 and
u2 depend only on x1;x2 and t . The two in-plane components of the equations of motion (14) are

Ap1qj uj ;pq � Pp;1 D �u1;t t ; Ap2qj uj ;pq � Pp;2 D �u2;t t ; (69)

where the summation is over indices 1 and 2. In general, the third component of the equations of motion
should also be considered; here this has the form Ap3qj uj ;pq � Pp;3 D 0. However, henceforth we
specialize the form of T and the orientation of M so that this reduces to Pp;3 D 0, i.e., Pp depends only on
x1;x2 and t . In particular, we take the .x1;x2/ plane to be a principal plane of T , with M either lying
parallel to the .x1;x2/ plane or aligned with the x3 direction. Then, it is easy to show that Ap3qj uj ;pq

vanishes identically.
Elimination of Pp by cross differentiation in (69) yields

Ap1qj uj ;pq2�Ap2qj uj ;pq1 D �.u1;2t t �u2;1t t /: (70)

By incompressibility we can introduce a scalar function  such that

u1 D  ;2; u2 D� ;1; (71)

and substitution into (70) then yields an equation for  , namely

A1212 ;1111C 2.A1222�A1211/ ;1112C .A1111CA2222� 2A1122� 2A1221/ ;1122

C 2.A1121�A2221/ ;1222CA2121 ;2222 D �. ;11t t C ;22t t /: (72)

We now apply these equations to Cases 2 and 3 specialized to the .x1;x2/ plane for T D T e1˝ e1,
with M D e2 (Case 2) and M D e1 (Case 3).

Case 2: T D T e1˝ e1 and M D e2. In this case (72) reduces to

.aCT / ;1111C .2aCT C b/ ;1122C a ;2222 D �. ;11t t C ;22t t /; (73)
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where

aDA1212�T DA2121 D 2W1CA0 D 2W1C 2W5C 2T W7; (74)

b DA1111CA2222� 2A1122� 2A1221�A1212�A2121 D C 0

D 4.W44C4W45C4W55/�8T .W46C2W47C2W56C4W57/C4T 2.W66C4W67C4W77/: (75)

Case 3: T D T e1˝ e1 and M D e1. Similarly to the previous case, (72) reduces to

.˛CT / ;1111C .2˛CT Cˇ/ ;1122C˛ ;2222 D �. ;11t t C ;22t t /; (76)

where

˛ DA1212�T DA2121 D 2W1CAD 2W1C 2W5C 2T W7C 2T W9; (77)

ˇ DA1111CA2222� 2A1122� 2A1221�A1212�A2121 D C

D 4 ŒW44C 4W45C 4W55CT .W46C 2W47C 2W56C 4W57CW48C 4W49C 2W58C 4W59/

CT 2.W66C 4W67C 4W77CW68C 2W69C 2W78C 4W79CW88C 4W89C 4W99/�: (78)

If we compare the coefficients of Case 2 and Case 3, it may be remarked that ˛ D a C 2T W9,
while ˇ and b differ significantly, although their structures and the equations are very similar. If there
is no initial stress then T D 0 and the two sets of equations are the same except that I4 and I5 will
be different for the two cases because the directions of M are different. If there is initial stress but
no preferred direction (underlying isotropy) then all the derivatives of W with a subscript 4, 5, 8 or 9
vanish and the two equations are identical, with coefficients reducing to a D ˛ D 2W1C 2T W7 and
b D ˇ D 4T 2.W66C 4W67C 4W77/.

5. Rayleigh surface waves

We now consider a half-space occupying the region x2 < 0 in the reference configuration with boundary
x2D 0 and surface waves propagating along the direction x1. The initial stress and preferred direction are
confined to the .x1;x2/ plane so that the equations of motion (69) are applicable and the third equation
is again satisfied trivially. Furthermore, we take the initial stress to have the form T D T e1˝ e1. Then
the components A1112, A1121, A2212, A2221 all vanish, as for Cases 2 and 3 in Section 4, and the
equations simplify accordingly. On the surface we take the incremental surface traction to vanish, so that
PS021 D 0; PS022 D 0 on x2 D 0. For the considered incompressible material this yields

A2121u1;2C .A2112Cp/u2;1 D 0; A2211u1;1C .A2222Cp/u2;2� Pp D 0 on x2 D 0; (79)

and with u1 D  ;2 and u2 D� ;1 these boundary conditions become

A2121 ;22� .A2112Cp/ ;11 D 0; A2211 ;12� .A2222Cp/ ;12� Pp D 0 on x2 D 0: (80)

The second of these equations may be expressed in terms of  by differentiating with respect to x1 and
then using (69)1, appropriately specialized, to eliminate Pp;1. The result is

.A1111CA2222� 2A1122� 2A2112CA2121/ ;112CA2121 ;222 D � ;2t t : (81)
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The two boundary conditions can now be written compactly as

a. ;22� ;11/D 0; .3aC bCT / ;112C a ;222 D � ;2t t on x2 D 0: (82)

These apply for Case 2. The corresponding equations for Case 3 are obtained by replacing a and b by ˛
and ˇ, respectively. Thus, in the following we work with the parameters a and b.

We consider harmonic waves propagating in the x1 direction and we write  in the form

 .x1;x2; t/D �.z/ expŒik.x1� vt/�; (83)

where k is the wave number, v is the wave speed, z D kx2, and the function � is to be determined.
Substituting this into the equation of motion (73) we obtain

a�0000� .2aC bCT � �v2/�00C .aCT � �v2/� D 0; (84)

wherein and in the following equations a prime on � denotes differentiation with respect to z. In terms
of � the boundary conditions (82) become

�00.0/C�.0/D 0; a�000.0/� .3aC bCT � �v2/�0.0/D 0: (85)

The factor a has been omitted from the first of these equations on the assumption that a¤ 0. For the
solution of (84) we require the decay condition �.x2/! 0 as x2!�1 to hold, and the general solution
satisfying this condition is

�.z/D c1 exp.s1z/C c2 exp.s2z/; (86)

where c1 and c2 are constants and s1; s2 are the solutions of

as4
� .2aC bCT � �v2/s2

C .aCT � �v2/D 0 (87)

with positive real parts. From the latter it follows that

s2
1 C s2

2 D
2aC bCT � �v2

a
; s2

1s2
2 D

aCT � �v2

a
: (88)

If s2
1

and s2
2

are real, then they must be positive to ensure that s1 and s2 have positive real part. If they
are complex then they are conjugate. In either case the product s2

1
s2
2

must be positive. Assuming that
a> 0, a real (surface) wave speed v satisfies the inequality

0< �v2 < aCT: (89)

Note that if T � 0 then this cannot be satisfied unless a> 0, which requires W1CW5CT W7 > 0. In
Biot’s theory, for example, this, in conjunction with (89), yields �2Q< T < 2Q.

Substitution of the solution (86) into the boundary conditions (85) yields the equations

.1C s2
1
/c1C .1C s2

2
/c2 D 0; (90)

Œas3
1
� .3aC bCT � �v2/s1�c1C Œas3

2
� .3aC bCT � �v2/s2�c2 D 0: (91)

In order to construct a nontrivial solution of this system, corresponding to vanishing of the determinant
of coefficients, it is convenient to introduce the notations

NT D
T

a
; � D

�v2

a
; Nb D

b

a
; �D

p
1C NT � �; (92)
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and then we obtain the cubic equation

�3
C �2

C .3C Nb/�� 1D 0 (93)

for �. Once this is solved for (positive) � the wave speed is obtained from the formula

�v2
D a� D aCT � a�2: (94)

The inequalities satisfied by � corresponding to (89) are 0< � <
p

1C NT .
Note that (93) can be written as

.4C NbC NT � �/�C NT � � D 0: (95)

If T D 0 then this can only be satisfied for � > 0 if � < 4C Nb, and hence we must have 4C Nb > 0 in this
case. If T ¤ 0 then since, by definition, �� 0, (95) can only be satisfied if either

NT < � < 4C NbC NT ; (96)

which requires 4C Nb > 0, or
4C NbC NT < � < NT ; (97)

which requires 4C Nb < 0, or the transitional case

� D NT ; (98)

which, since then �D 1, corresponds to 4C Nb D 0. Note that (96) can hold for either positive or negative
T provided 4C NbC NT > 0, but (97) and (98) are only possible if T > 0.

If we denote the function on the left-hand side of (93) by f .�/ and note that f .0/D�1 and f 00.�/ > 0

for �� 0 we see that (93) has a unique positive solution for � 2 .0;
p

1C NT � if f .
p

1C NT /� 0. If T D 0

then this is guaranteed if 4C Nb > 0, and if this inequality holds a unique positive solution also exists for
T > 0 (subject to a > 0). On the other hand, if T < 0 then there is a value NT0 of NT with �1 < NT0 < 0

such that a unique positive solution exists only for NT > NT0. The value of NT0 is determined as the value
of NT satisfying f .

p
1C NT / D 0, bearing in mind that in general Nb depends on T . The exact details

depend in a fairly complicated way on the form of the strain-energy function W and are not discussed
here. Instead we illustrate the results using a specific form of W in the following section.

6. Numerical results and discussion

We remain focused on Case 2 in order to compare the results of the general theory with those of the
Biot theory for both anisotropic and isotropic models. In particular, we compare the wave speeds for
both plane (shear) waves and Rayleigh waves. In each case this involves the initial stress T and material
parameters a and b, which also depend on T . For the general constitutive law considered in Case 2 we
record here the expressions for a and b from Section 4 for ease of reference:

aD 2W1C 2W5C 2T W7; (99)

b D 4.W44C4W45C4W55/�8T .W46C2W47C2W56C4W57/C4T 2.W66C4W67C4W77/: (100)

If the second derivative terms in W involving a subscript 6 or 7 are identically zero then these reduce to

aD 2W1C 2W5C 2T W7; b D 4.W44C 4W45C 4W55/; (101)
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which can be specialized to Biot’s anisotropic case by setting W7 D�
1
4

, 2W1C 2W5 DQ and W44C

4W45 C 4W55 D N �Q in terms of Biot’s constants N and Q. Finally, the case of isotropy is then
recovered by also dropping terms with a subscript 4 or 5, yielding

aD 2W1C 2T W7; b D 0; (102)

and Biot’s case is obtained by setting 2W1 D � and W7 D�
1
4

, where � is the shear modulus.
For plane waves in the .x1;x2/ plane the wave speed v is given by

�v2
D aCT cos2 � C b sin2 � cos2 �; (103)

while the corresponding formula for the Rayleigh wave speed is

�v2
D aCT � a�2; (104)

where � is the unique positive solution of the equation

�3
C �2

C .3C b=a/�� 1D 0; 0< � <
p

1CT=a: (105)

In order to capture the effect of the T 2 term in b, which provides the main distinction from the classical
theory, it suffices for purposes of illustration to consider a specific form of the strain-energy function W .
In the absence of initial stress an incompressible transversely isotropic linear elastic solid is characterized
in terms of three elastic constants. Thus, for the transversely isotropic part of W three material constants
are needed. The connections between the derivatives of W with respect to the invariants I1; I2; I4 and I5

evaluated in the undeformed configuration and the three classical constants were provided in [Merodio
and Ogden 2005] and can be specialized to the present situation in which I2 is omitted. We denote the
transversely isotropic constants here by �, � and � and consider a transversely isotropic strain-energy
function of the form

W D 1
2
�.I1� 3/C 1

2
�.I4� I5/

2
� 2�.I4� 1/C �.I5� 1/; (106)

which consists of an isotropic neo-Hookean term with constant � and two anisotropic terms associated
with the preferred direction and involving two anisotropic constants � and �. The condition W4C2W5D 0

identified in (36) is then satisfied in the reference configuration Br , W45CW55 D 0 and W44 D �.
The initial stress is next incorporated in the model by introducing two additional material constants �

and 
 and the invariants I6 and I7, and ensuring that the condition W6C 2W7 D
1
2

in (36) is satisfied
in the configuration Br . A simple example of this inclusion, which we adopt here, extends (106) to the
form

W D 1
2
�.I1� 3/C 1

2
�.I4� I5/

2
� 2�.I4� 1/C �.I5� 1/C 1

2

I2

6 � 
 .tr T /I6

C.1
2
� 2�/I6C�I7C

1
2

 .tr T /2C .�� 1

2
/ tr T ; (107)

the final two terms being included merely to ensure that W vanishes in Br . They do not contribute to
the stress. The only nonzero derivatives of W when evaluated in Br are the first derivatives

W1 D
1
2
�; W4 D�2�; W5 D �; W6 D

1
2
� 2�; W7 D �; (108)
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and the second derivatives

W44 D �; W45 D��; W55 D �; W66 D 
: (109)

The expressions for a and b become

aD �C 2�C 2�T; b D 4.�C 
T 2/: (110)

Clearly, if �D�1
4

then the term in T within a has the same form as in the Biot theory. Inclusion of the
dimensionless constant � allows more flexibility in the model.

In what follows we present results in dimensionless form by defining the dimensionless quantities

� D �v2=�; a� D a=�; b� D b=�; �� D �=�; �� D �=�; 
 � D 
�; T � D T=�; (111)

and for consistency of notation for the constants we set �� D �.
Thus, for plane waves,

� D 1C 2��C 2��T �CT � cos2 � C 4.��C 
 �T �
2
/ sin2 � cos2 �: (112)

In Figure 1 we plot � as a function of T � for the values 0; �=6; �=4; �=3; �=2 of � and specifically
we take �� D 0:4, �� D 2:2, 
 � D 0:5. The results are qualitatively very similar for other values of these
parameters. The parameter �� has been set at �1

4
. By considering the values � D 0 and � D �=2 it can

be deduced from (112) that T � must be restricted to the range of values �2.1C2��/ < T � < 2.1C2��/.
Also in Figure 1 we show, for comparison, the results corresponding to �� D 0:4, �� D 2:2, 
 � D 0 (the
thick dashed lines — essentially the specialization to Biot’s anisotropic theory) and to �� D 0, �� D 0,
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Figure 1. Plot of dimensionless squared wave speed � D �v2=� against dimensionless
initial stress T � for � D 0 (a), �=6 (b), �=4 (c), �=3 (d), �=2 (e), based on (112): con-
tinuous curves for parameter values �� D 0:4, �� D 2:2, 
 � D 0:5; thick dashed lines
for �� D 0:4, �� D 2:2, 
 � D 0; thin dashed lines for �� D 0, �� D 0, 
 � D 0 (isotropy).
In each case �� D�1

4
. The horizontal dashed lines correspond to � D �=4.
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Figure 2. Dimensionless squared wave speed � D �v2=� versus the angle � 2 Œ0; �=2�,
based on (112), for �� D�1

4
and various values of the dimensionless initial stress T �.

Remaining parameter values are �� D 0:4, �� D 2:2, 
 � D 0:5 (solid curves); �� D 0:4,
�� D 2:2, 
 � D 0 (thick dashed curves); �� D 0, �� D 0, 
 � D 0 (thin dashed curves).


 � D 0 (the thin dashed lines — Biot’s isotropic theory). For � D 0 and � D �=2 there is no difference
between the two anisotropic models. For intermediate values of � there is a very significant difference
between the results for the general model and Biot’s anisotropic model due to the term in T �

2. Note that
in the isotropic case the wave speed vanishes for T � D˙2, which correspond to the extreme values of
T � identified previously.

An alternative view of the results is shown in Figure 2, in which � is plotted against the angle �
separately for four values of T �. For each value of T � the curves corresponding to the three models are
shown. Again the significant difference between the general model and Biot’s anisotropic model should
be noted, which is particularly strong for the larger values of T �.

The parameter �� also has a significant effect and we illustrate this in Figure 3 in which � is plotted
against T � for three different values of �� and for �� D 0:4; �� D 2:2; 
 � D 0:2 and � D �=3. Even
though the (nonlinear) strain-energy function (107) is a considerable specialization of the most general
such model it nevertheless demonstrates that the effect of initial stress on the speed of plane waves can
be much stronger than is the case with the classical Biot theory.

Next we illustrate the effect of the model (107) on the Rayleigh wave speed based on the solution of
(105), with � D �v2=� then given by (104). In Figure 4, � is plotted against T � for representative values
of the parameters (�� D 0:4, �� D 2:2, 
 � D 0:5) and two values of ��: �0:15 and �0:3. In each case
the dependence on T � is effectively linear, and this is found also to be the case even when the coefficient

 � of T �

2 is quite large. Also shown for comparison are the specializations corresponding to Biot’s
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Figure 3. Dimensionless squared wave speed � D �v2=� versus T �, based on (112),
for � D �=3, �� D 0:4, �� D 2:2, 
 � D 0:2 and different values of ��.
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Figure 4. Dimensionless squared Rayleigh wave speed � D �v2=� versus T �, based on
(104) and (105), for different values of ��. Remaining parameter values are �� D 0:4,
�� D 2:2, 
 � D 0:5 (solid lines); �� D 0:4, �� D 2:2, 
 � D 0 (dashed line); �� D 0,
�� D 0, 
 � D 0 (dotted line).

anisotropic and isotropic results, for which, respectively, the parameter values are taken as �� D 0:4,
�� D 2:2, 
 � D 0, �� D�0:25 and �� D 0, �� D 0, 
 � D 0, �� D�0:25.

In the isotropic case we have

� D 1C 1
2
T �� .1� 1

2
T �/�2

0; (113)

where �0 is the unique positive root of (105) when b D 0 and is given approximately as �0 D 0:2956.
As noted earlier, a positive real upper limit for � requires that 1C T �=a� > 0, and for isotropy this
gives �2 < T � < 2. The upper limit corresponds to � D 2, as can be seen in the figure, and this is a
cut-off value beyond which a Rayleigh surface wave cannot propagate. At the lower limit � < 0 and
there is also a cut-off value of T �, approximately �1:679. These limiting values of T � are associated
with the onset of instability of the underlying initially stressed configuration. For a related discussion of
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Figure 5. Dimensionless squared Rayleigh wave speed � D �v2=� versus the parameter
�� for various values of T �, with �� D 2:2, 
 � D 0, and �� D 0:15 (solid lines) or
�� D�0:25 (dashed lines).

such instability in the case of a pre-stressed (and deformed) half-space we refer to [Dowaikh and Ogden
1990]. Analogous cut-off values of T � are evident also for the anisotropic models.

As a further illustration of the influence of the parameter ��, Figure 5 shows � plotted as a function of
the parameter �� for each of the initial stress values T �D�2; 0; 2 and for the set of parameters ��D 2:2,

 � D 0, �� D 0:15 compared with results for the set �� D 2:2, 
 � D 0, �� D�0:25. Clearly, �� has a
significant effect on the value of the wave speed (except, of course, for T �D 0). Thus, as is the case with
plane waves, the initial stress dependence of the nonlinear model (107) can have a strong influence on
the value of the Rayleigh wave speed compared with its classical linear specialization. Moreover, other
specific choices of the nonlinear model within the general framework outlined here can equally and even
more substantially affect the wave speed, when, for example, invariants that are nonlinear in the initial
stress are included in the form of W .

In this paper we have developed a general theory of transversely isotropic hyperelasticity incorporating
initial stress and used a particular specialization of the theory to calculate the elasticity tensor for an unde-
formed initially stressed configuration. This was then used to examine the propagation of homogeneous
plane waves and Rayleigh surface waves with particular reference to the effect of the initial stress. The
results, which involve nonlinear terms in the initial stress, are significantly different from those based on
the classical theory of Biot, which can be recovered as a special case of the present formulation.

Appendix A. Derivatives of the invariants

First derivatives. The first derivatives of the invariants I1; I4; : : : ; I9 with respect to F are obtained, in
component form, as

@I1

@Fi˛
D 2Fi˛;

@I4

@Fi˛
D 2M˛FiˇMˇ;

@I5

@Fi˛
D 2.M˛FiˇCˇ
 CC˛ˇMˇFi
 /M
 ;

@I6

@Fi˛
D 2T˛ˇFiˇ;

@I7

@Fi˛
D 2.T˛ˇCˇ
 CC˛ˇTˇ
 /Fi
 ;
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@I8

@Fi˛
D .T˛ˇMˇFi
 CM˛FiˇTˇ
 /M
 ;

@I9

@Fi˛
D .T˛ˇMˇFi
C
ıCC˛ˇMˇFi
T
ıCM˛FiˇCˇ
T
ıCFiˇMˇC˛
T
ı/Mı:

When evaluated in the reference configuration these reduce to

@I1

@Fi˛
D 2ıi˛; 2

@I4

@Fi˛
D 4MiM˛ D

@I5

@Fi˛
; 2

@I6

@Fi˛
D 4Ti˛ D

@I7

@Fi˛
;

2
@I8

@Fi˛
D 2.MiT˛ˇCM˛Tiˇ/Mˇ D

@I9

@Fi˛
:

Since the latter apply in the reference configuration there is strictly no distinction between Greek and
Roman indices in this case.

Second derivatives. The second derivatives of the invariants I1; I4; : : : ; I9 with respect to F are, in
component form,

@2I1

@Fi˛@Fjˇ

D 2ıijı˛ˇ;
@2I4

@Fi˛@Fjˇ

D 2ıij M˛Mˇ;
@2I6

@Fi˛@Fjˇ

D 2ıij T˛ˇ;

@2I5

@Fi˛@Fjˇ

D 2ıij .M˛Cˇ
 CMˇC˛
 /M


C 2Bij M˛MˇC 2ı˛ˇFi
M
FjıMıC 2.FiˇFj
M˛CFj˛Fi
Mˇ/M
 ;

@2I7

@Fi˛@Fjˇ

D 2 Œıij .T˛
Cˇ
 CTˇ
C˛
 /CBij T˛ˇC ı˛ˇ†ij CFiˇFj
T˛
 CFj˛Fi
Tˇ
 �;

@2I8

@Fi˛@Fjˇ

D ıij .M˛Tˇ
 CMˇT˛
 /M
 ;

@2I9

@Fi˛@Fjˇ

D ıij .T˛
M
CˇıCTˇ
M
C˛ıCC˛
T
ıMˇCCˇ
T
ıM˛/Mı

C ı˛ˇ.Fi
T
ıFj"CFj
T
ıFi"/MıM"CBij .M˛Tˇ
 CT˛
Mˇ/M


C .M˛FiˇFj
 CMˇFj˛Fi
 /T
ıMıC .T˛
FiˇFjıCTˇ
Fj˛Fiı/M
Mı:

When evaluated in the reference configuration these specialize to

@2I1

@Fi˛@Fjˇ

D 2ıijı˛ˇ;
@2I4

@Fi˛@Fjˇ

D 2ıij M˛Mˇ;
@2I6

@Fi˛@Fjˇ

D 2ıij T˛ˇ;

@2I5

@Fi˛@Fjˇ

D 6ıij M˛MˇC 2.ı˛ˇMiMj C ıiˇMj M˛C ıj˛MiMˇ/;

@2I7

@Fi˛@Fjˇ

D 6ıij T˛ˇC 2.ı˛ˇTij C ıiˇTj˛C ıj˛Tiˇ/;

@2I8

@Fi˛@Fjˇ

D ıij .M˛Tˇ
 CMˇT˛
 /M
 ;
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@2I9

@Fi˛@Fjˇ

D 3ıij .M˛Tˇ
 CMˇT˛
 /M
 C ı˛ˇ.MiTj
 CMj Ti
 /M


C ıiˇ.M˛Tj
 CMj T˛
 /M
 C ıj˛.MiTˇ
 CMˇTi
 /M
 :

Appendix B. Connections with Biot’s equations

It is instructive to relate the formulation of the incremental equations adopted here to that of Biot (see,
for example, [Biot 1965] for details). For a compressible material, which we deal with here, the nominal
stress tensor S and Cauchy stress tensor � are related by S D JF �1� , where F is deformation gradient
and J D det F . On taking the increment of this equation we obtain

PS D JF �1
P� C PJF �1� CJ

P
F �1� D JF �1Œ P� C .tr L/� �L� �;

where LD grad u and u is the displacement vector. On updating the reference configuration from Br to
B0 we obtain

PS0 D P� C .tr L/� �L� :

Taking the divergence of both sides leads to

div PS0 D div P� C div Œ.tr L/� �L� �:

If the configuration B0 is uniform then we have

divŒ.tr L/� �L� �DLkk;j�ji �Ljk;j�ki DLkk;j�ji �Ljj ;k�ki D 0;

and the incremental equation of motion becomes

div PS0 � div P� D �u;t t :

Now, Biot works in terms of components referred to different sets of axes, in particular a set of
Cartesian axes and a set of axes obtained by rotation therefrom, with the rotation associated with the
incremental deformation. Let ei ; i D 1; 2; 3, be a Cartesian coordinate basis in B0, and let e0i ; i D 1; 2; 3,
be the axes obtained by the rotation. Then, e0i � ei CWei , where the tensor W is the antisymmetric
part of the displacement gradient L. After the increment the total Cauchy stress is � C P� , which has
components on the rotated axes given by, to the first order in incremental quantities,

Œ.� C P� /e0i � � e
0
j D Œ.� C P� /.ei CWei/� � .ej CWej /D �ij C P�ij C �ikWkj �Wik�kj ;

where the symmetry of � and the antisymmetry of W have been used, and �ij and Wij are their com-
ponents referred to the original axes (note that Wij here are not the same as the second derivatives of
the strain-energy function with respect to the invariants introduced in (29)). The component form of the
incremental equation of motion with uniform � therefore becomes

P�ji;j C �ikWkj ;j � �jkWik;j D �ui;t t :

This is translated into Biot’s notation [1965] by setting �ij D Sij , P�ij D sij and Wij D�!ij , and then
yields Biot’s equation

sij ;j CSjk!ik;j CSik!jk;j D �ui;t t
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appropriate for homogeneous Sij in the absence of body forces [Biot 1965, p. 264]. Biot’s constitutive
equation for incremental deformations may be written in the form P�ij D BijklLkl , where Lkl D uk;l

and
Bijkl DBjikl DBijlk :

Since Wij D .Lij �Lji/=2, it follows that

AijklLlk DBijklLlk �
1
2
.Lik CLki/�kj �

1
2
�ik.Lkj �Ljk/CLkk�ij ;

and since this holds for arbitrary Lij we deduce that

Aijkl DBijkl �
1
2
ıil�jk �

1
2
ıik�jl �

1
2
ıjk�il C

1
2
ıjl�ik C ıkl�ij :

This identity holds in the configuration B0 and when B0 is taken to coincide with Br the Cauchy stress
� becomes the initial stress T . Using the symmetry Aijkl DAklij , it follows that

Bijkl �Bklij D ıij�kl � ıkl�ij ;

which recovers a formula of Biot [1965, p. 71], albeit in different notation.
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