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ANALYSIS OF HARD COATINGS ON A SUBSTRATE CONTAINING
INHOMOGENEITIES

KUN ZHOU, LEON M. KEER AND Q. JANE WANG

We investigate the effect stiff inhomogeneities in the substrate beneath a hard coating have on the elastic
field. The solution of multiple interacting three-dimensional inhomogeneities in a half-space is utilized
by modeling a coating layer as an inhomogeneity of finite size. The study shows that stiff inhomo-
geneities in the substrate do not worsen the cracking and debonding of hard coatings, but are still detri-
mental to the yielding behavior of the substrate even though it is under the protection of a hard coating.

1. Introduction

Inhomogeneities with elastic moduli different from those of their surrounding matrix are ubiquitous in
solid materials, and their presence significantly affects the physical and mechanical properties of materi-
als at the local and the global scale [Mortensen 2007]. For a given matrix material, inhomogeneities are
categorized into two types: stiff ones which have larger Young’s modulus than the matrix and compliant
ones with smaller Young’s modulus. Generally, stiff inhomogeneities can cause stress to increase in
the matrix material, compared with compliant inhomogeneities. Nonmetallic inhomogeneities such as
oxides and nitrides are typical stiff inhomogeneities in steels.

Hard coatings have been used to protect substrate matrix materials from wear and yielding damage;
however, they are subject to interfacial cracking and debonding and surface cracking failure under com-
bined heavy normal and tangential loading. Such failure may be more likely when inhomogeneities
in the substrate are closer to the interface of the coating-substrate system. To improve reliability and
functionality, it would be useful to understand how and to what extent inhomogeneities degrade the
performance of coatings. However, almost no theoretical or experimental studies on such problems exist,
due to the complex nature of the solution for the elastic field of inhomogeneities in a coating-substrate
system. Such a solution would be a foundation for further studies but is not yet available.

Eshelby [1957] pioneered the work on inhomogeneities by solving the elastic field of an ellipsoidal
inhomogeneity embedded in an infinite matrix with the equivalent inclusion method (EIM). The EIM
assumes that an inhomogeneity can be modeled by a homogenous inclusion with unknown equivalent
eigenstrain to be determined. A homogeneous inclusion has the same material properties as the matrix
but contains eigenstrain, a generic term that refers to inelastic strain such as plastic strain, misfit strain,
thermal expansion and phase transformation [Mura 1987]. Since then, the EIM has been used extensively
to investigate a single inhomogeneity [Johnson et al. 1980a; 1980b; Nakasone et al. 2000; Dong et al.
2002; Kirilyuk and Levchuk 2005], two interacting inhomogeneities [Moschovidis and Mura 1975; Fond
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et al. 2001; Shodja and Sarvestani 2001; Shodja et al. 2003], and multiple inhomogeneities [Nemat-
Nasser et al. 1982; 1993; Luo and Weng 1987; Hori and Nemat-Nasser 1993; Shodja and Roumi 2005;
Duan et al. 2006] in an infinite matrix. However, the interactions of all inhomogeneities were not fully
taken into account in the referred studies of multiple inhomogeneities. Other methods have also been
used to study a single or two inhomogeneities in an infinite matrix, e.g., the complex function method
[Kushch et al. 2005], the boundary element method [Tan et al. 1992], and the volume integral equation
method [Dong et al. 2003].

So far, few investigations have been conducted on inhomogeneities in a half-space. These studies
include a circular rigid disc [Hunter and Gamblen 1974; Selvadurai 2001], an ellipsoidal inhomogeneity
[Tsuchida and Mura 1983], a hemispheroidal inhomogeneity [Kouris and Mura 1989], a spheroidal in-
homogeneity [Tsuchida et al. 2000], two concentric spherical inhomogeneities [Molchanov et al. 2002],
and one or multiple two-dimensional arbitrarily shaped inhomogeneities [Kuo 2007; 2008] The bound-
ary element method was used in these last two works, while the Papkovich–Neuber or the Boussinesq
displacement potential was used to solve the problems in the other referred works. Studies were also
performed on a single or multiple inhomogeneities in one of two joining half-surfaces of dissimilar
materials, e.g., [Meguid and Zhu 1995; Yu and Kuang 2003; Brusselaars et al. 2007]. The results of
those studies can be applicable to the problems of inhomogeneities in a half-space when one of the two
joining half-spaces is set free.

Recently, Zhou et al. [2010] solved multiple interacting three-dimensional inhomogeneities of arbitrary
shape in a half-space using the EIM. In this paper, we apply this solution to study the effect of inhomo-
geneities embedded in the substrate of a coating-substrate system on the elastic field of the coating by
modeling the coating as an inhomogeneity with respect to the substrate.

2. Methodology

Consider a coating-substrate system that contains multiple inhomogeneities in the substrate and is subject
to external loading on the surface of the coating. The loading is prescribed as a known function and
assumed to be located within a circular area of radius R. The solution strategy is to model the coating
by a cuboidal inhomogeneity of size L x × L y × H with H equal to the thickness of the coating. The
dimensions L x and L y are set to be much larger than both R and H to simulate the infinite dimensions
of the coating in the x-y plane. In this way, the original coating-substrate problem with inhomogeneities
is converted into a half-space problem with inhomogeneities.

Let us now turn to a half-space with elastic moduli Ci jkl (i, j, k, l = 1, 2, 3) that contains n inhomo-
geneities �ψ (ψ = 1, 2, . . . , n) with elastic moduli CΨ

i jkl . Since there is no inelastic strain within �ψ ,
the total strain εi j at any point within �ψ is the elastic strain εe

i j . According to Hooke’s law, the stress σi j

within �ψ is given by σi j = CΨ
i jklεkl . Using the EIM, each �ψ is simulated by a homogeneous inclusion

�I
ψ that has the same elastic moduli as the matrix but contains equivalent eigenstrain ε∗i j to be determined.

The equivalent eigenstrains ε∗i j are introduced to represent material differences of the inhomogeneities,
the interactions among them, and their responses to the external load (applied stresses). The total strain
εi j within �I

ψ contains elastic strain εe
i j and equivalent eigenstrain ε∗i j , and according to Hooke’s law,

the stress σi j within �I
ψ is given by σi j = Ci jkl(εkl − ε

∗

kl). Furthermore, σi j can be decomposed into
σi j = σ

∗

i j + σ
0
i j , where σ ∗i j is the eigenstress caused by the equivalent eigenstrains ε∗i j in all �I

ψ and σ 0
i j
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the applied stress due to the external load. From these three stress expressions, the governing equation
is established as

CΨ
i jklC

−1
klmqσ

∗

mq − σ
∗

i j +CΨ
i jklε

∗

kl = σ
0
i j −CΨ

i jklC
−1
lkmqσ

0
mq (ψ = 1, 2, . . . , n; i, j, k, l,m, q = 1, 2, 3). (1)

where the equivalent eigenstrains ε∗i j are unknowns. This equation cannot be solved until the relationship
between σ ∗i j and ε∗i j is determined.

Figure 1 illustrates a cuboidal computational domain D of size L x × L y × L z that contains n inhomo-
geneities �ψ in a half-space, which is bounded by the surface plane z = 0 in the x-y-z coordinate system.
The cuboidal inhomogeneity �1 of size L x × L y× H at the surface is used to model a layer of coating of
thickness H . The domain D is discretized into Nx × Ny × Nz small cuboidal elements of the same size,
and each �ψ is then geometrically approximated by a collection of such cuboidal elements. The finer
the discretization, the more accurate the approximation would be. If the size of the cuboidal element is
small enough, each cuboidal inhomogeneity within �ψ can be treated as containing uniform eigenstrain.
It is noted that the eigenstrain within �ψ is still nonuniform. For convenience, each cuboidal element is
indexed by a sequence of three integers [α, β, γ ] (0≤α≤ Nx−1, 0≤β ≤ Ny−1, 0≤ γ ≤ Nz−1). Using
the EIM, each cuboidal inhomogeneity is simulated as a cuboidal homogenous inclusion with uniform
equivalent eigenstrain. Thus, (1) can be recast into

(Cα,β,γC−1
− I)σ ∗α,β,γ +Cα,β,γ ε

∗

α,β,γ = (I−Cα,β,γC−1)σ 0
α,β,γ ,

(Cα,β,γ ∈ Cψ (ψ = 1, 2, . . . , n), 0≤ α ≤ Nx − 1, 0≤ β ≤ Ny − 1, 0≤ γ ≤ Nz − 1), (2)

where C, ε∗, σ ∗ and σ 0 are written in matrix form and I is a unit matrix. The symbol C denotes the
elastic moduli of the substrate matrix, Cα,β,γ denotes the elastic moduli of the cuboid [α, β, γ ] within
�ψ , ε∗α,β,γ the uniform equivalent eigenstrain within [α, β, γ ], σ ∗α,β,γ the stress at an observation point
inside [α, β, γ ] caused by the equivalent eigenstrains in all the cuboidal inclusions, and σ 0

α,β,γ the applied
stress at the observation point. All the observation points are chosen to be at the center of each cuboid.
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Figure 1. Discretization of a computational domain D into Nx × Ny × Nz cuboids. The
domain D contains n arbitrarily shaped inhomogeneities in an isotropic half-space, where
�1 is used to model a layer of coating on the substrate matrix.
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The final solvable form for (2) is given in [Zhou et al. 2010] as

(Cα,β,γC−1
− I)

Nz−1∑
φ=0

Ny−1∑
ζ=0

Nx−1∑
ξ=0

Aα−ξ,β−ζ,γ−φε
∗

ξ,ζ,φ +Cα,β,γ ε
∗

α,β,γ = (I−Cα,β,γC−1)σ 0
α,β,γ

(Cα,β,γ ∈ Cψ(ψ = 1, 2, . . . , n), 0≤ α ≤ Nx − 1, 0≤ β ≤ Ny − 1, 0≤ γ ≤ Nz − 1). (3)

where Aα−ξ,β−ζ,γ−ϕ relates the eigenstress σ ∗α,β,γ at the observation point in the cuboid [α, β, γ ] to
the uniform eigenstrain ε∗ξ,ζ,ϕ in the cuboid [ξ, ζ, ϕ]. The expression for Aα−ξ,β−ζ,γ−φ is given in the
paper by Chiu [1978] who solved the elastic field of a cuboid containing uniform eigenstrain in a half-
space. Chiu’s solution shows that there are stress singularities at certain edges and corners of the cuboid,
depending upon the types of eigenstrain in the cuboid (also see [Chiu 1977; Mura 1987]). Nevertheless,
the stress singularities would not affect the solution of (3) because the observation points where the
stresses are concerned are taken only at the center of each cuboid.

Equation (3) can be solved by the conjugated gradient method [Shewchuk 1994], a well-established
method for solving linear equations by iteration. Furthermore, the fast Fourier transform technique can
be used for rapid calculation of the summations in (3) to achieve computational efficiency [Zhou et al.
2009]. Once all the eigenstrains ε∗ are determined, the eigenstress σ ∗ due to ε∗ is known and then the
overall stress field σ is obtained by σ = σ ∗+ σ 0.

3. Results and discussion

The study is performed on the elastic analysis of a layer of WC hard coating on a steel substrate in which
a stiff cuboidal Al2O3 inhomogeneity is formed near the substrate surface prior to coating deposition, as
illustrated in Figure 2. The steel matrix has Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.28,
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Figure 2. Schematic of a cuboidal inhomogeneity located beneath the interface of a
coating-substrate system. The surface of the coating is subject to pressure and friction
force.
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the WC coating has E1 = 670 GPa and ν1 = 0.28, and the Al2O3 inhomogeneity has E2 = 344 GPa and
ν2 = 0.25. The coating surface, bounded by the plane z = 0 in the x-y-z Cartesian coordinate system,
is subjected to the prescribed normal pressure p(x, y)= p0

(
1− (x/R)2− (y/R)2

)1/2 and friction force
f (x, y) = µp(x, y) in a circle of radius R. The coating thickness is denoted by H , and the cases
of h ≤ 0.5R are mainly investigated. The cuboidal inhomogeneity has dimensions cx = cy = R and
cz = 0.5R; its depth from the interface is denoted by w. The center of the cuboid is located in the plane
y = 0 and distanced from the plane x = 0 by |l| with l being the x-coordinate value of the center.

In the calculation, a computational domain of size 16R × 16R × 1.5R is used and the coating is
simulated by the cuboidal inhomogeneity �1 of 16R × 16R × H . The cuboid �1 has much larger
dimension in the length and width directions than in the thickness direction in order to approximate the
effect of infinite dimensions that the coating has in the x-y plane. The dimension 16R is also much larger
than the radius R of the pressure area on the coating surface. The inhomogeneity, as mentioned, may
have singularities at its edges and corners, but these singularities would not affect the stress calculation.

The case of H =0.5R, w=0.25R, l=0, and µ=0.3 is first studied and shows that both the surface and
interfacial stresses of the coating approach zero approximately at x =±4R. Therefore, it is justifiable to
model the infinitely extended coating by an inhomogeneity of finite size embedded at x =±8R. Figure 3
presents the surface stress component σ surf

x and the interfacial stress components σ int
x , σ int

z and σ int
xz within

the coating in the central plane y = 0 and along the x direction. All the stress components are normalized
by the peak pressure p0 at (0, 0, 0). Results show that the surface normal stress σ surf

x is tensile in the area
behind the friction direction (x <−R), but compressive both in the pressure area and in the area ahead
of the friction direction (x >−R). The stress σ surf

x reaches its maximum tensile value around the edge
of the pressure area at x =−R, and therefore is likely to cause crack nucleation there. The interfacial
normal stress σ int

x within the coating is tensile in the area under the surface pressure and its maximum
value is comparable to that of σ surf

x . This tensile stress may cause cracks to nucleate at the interface
and then grow into the film along the direction perpendicular to the interface or cause the kinking of
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Figure 3. The component σ surf
x of the surface stress and the components σ int

x , σ int
z , and

σ int
xz of the interfacial stress in the coating along the x-axis direction in the computational

domain of size 16R× 16R× 1.5R.
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Figure 4. Effect of the horizontal position of the inhomogeneity �2 on the interfacial
normal stress σ int

x (top) and shear stress σ int
xz (bottom) within the coating.

interfacial cracks. Besides cracking within the coating, interfacial debonding of the coating is another
damage phenomenon that needs to be considered. The interfacial shear stresses σ int

xz affect the adhesion
of the coating onto the substrate; their low magnitude would generally lead to good adhesion, thereby
preventing the occurrence of interfacial debonding. Figure 3 shows that σ int

xz reaches positive and negative
maximum values in the locations approximately beneath the edges of surface pressure area (x =±R). It
is predicted that interfacial debonding is likely to start at such locations.

We then study the effect of the inhomogeneity �2 on cracking and debonding of the coating. Figure 4
compares the interfacial stress components σ int

x and σ int
xz among the cases for different horizontal locations

of the inhomogeneity �2. The results show that the presence of �2 decreases the tensile values of σ int
x ,

compared with when �2 is absent (l =∞). The maximum tensile value of σ int
x is decreased by about

17% when �2 is directly beneath the peak surface pressure (l = 0). The decrease becomes smaller when
�2 is horizontally displaced from l = 0 to l =−R or l = R. On the other hand, the change in both the
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Figure 5. Effect of the depths of the inhomogeneity �2 on the interfacial normal stress
σ int

x (top) and shear stress σ int
xz (bottom) within the coating.

maximum positive and negative magnitudes of σ int
xz is almost inappreciable. At l = 0, σ int

xz decreases in
the areas near the points of maximum negative and positive magnitudes, while at l =−R (l = R), σ int

xz
increases in the area near the point of the maximum positive (negative) magnitude. Nevertheless, the
overall change in σ int

xz is not significant.
Figure 5 compares the interfacial stress components σ int

x and σ int
xz among the cases for different depths

of the inhomogeneity �2 at l = 0 and shows that as �2 approaches the interface, the maximum tensile
value of σ int

x decreases and the reduction reaches about 27% at the depth w= 0.125R. The overall change
in σ int

xz is not significant except that the peak and valley shapes of σ int
xz are narrower in the presence of �2

than in the absence of �2 (w =∞).
Figures 4 and 5 demonstrate that the presence of stiff inhomogeneities in the substrate would not

worsen the cracking and debonding of a hard coating and instead may likely play a role to decrease the
possibility of their occurrence.
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Figure 6. Effect of the depths of the inhomogeneity �2 on the von Mises stress field in
the coating-substrate system. The coating has a thickness of 0.5R.

Figure 6 further presents the normalized von Mises stresses σ̄vm in both the coating and the substrate
for different depths of the inhomogeneity �2 at l = 0. In the absence of �2 (w =∞), the maximum von
Mises stress σ̄max

vm in the coating reaches 0.937 at the interface location approximately beneath the peak
surface pressure. As �2 approaches the interface, σ̄max

vm in the coating slightly increases to 0.953 and then
decreases to 0.923, and its location remains the same. The increase in σ̄max

vm is almost negligible (about
1.7%). In contrast, σ̄max

vm in the substrate monotonically increases from 0.586 to 0.642, and its location
changes from the interface location to the edge plane of the inhomogeneity �2. The increase in σ̄max

vm
is significant (about 8.7%) and means yielding is more likely to occur in the substrate. Therefore, stiff
inhomogeneities are still detrimental to the yielding behavior of the substrate even though it is protected
by a layer of hard coating.

The thickness of a coating is a key parameter that affects its performance. The previous examples
consider coatings of thickness H = 0.5R. The coatings with a thinner thickness H = 0.25R are also
studied. In Figure 7, the solid lines plot the surface stress component σ surf

x and the interfacial stress
components σ int

x and σ int
xz in the coating for the case of H = 0.25R, w = 0.25R, l = 0, and µ = 0.3

along the x-axis, while the dashed lines represent the corresponding stress components for the case in
the absence of the inhomogeneity �2. Their comparison shows that the presence of �2 does not increase
σ surf

x , σ int
x and σ int

xz or cause significant change to them. Thus, for a thinner hard coating, it is still valid
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x and the interfacial stress components σ int

x
and σ int

xz in the coating of thickness H = 0.25R along the x-axis direction.

to draw the conclusion that stiff inhomogeneities in the substrate would not worsen the cracking and
debonding of the coating.

Figure 7 shows that the maximum surface tensile stress σ surf
x is much larger than the maximum in-

terfacial tensile stress σ int
x , which leads to the conclusion that surface cracking may start much earlier

than cracking nucleated at the interface or dominate the damage mechanisms. An optimal design of hard
coatings should balance the two cracking mechanisms to avoid the early occurrence of either one of them.
The proper selection of coating thickness is a way to achieve this balance. Figure 3 demonstrates that
when the coating is selected to have the thickness of H = 0.5R, the maximum tensile value of σ surf

x is
close to that of σ int

x .
The normalized von Mises stresses σ̄vm in both the coating and the substrate are presented in Figure 8

and show that as the inhomogeneity is located closer to the coating-substrate interface, σ̄vm in the substrate
increases and the increase reaches about 11%, which demonstrates again that detrimental effect of the
stiff inhomogeneity on the yielding behavior of the substrate must be accounted for. Furthermore, the
comparison between Figures 6 and 8 shows that a thicker coating (X = 0.5R) can provide better yielding
protection to the substrate than a thinner coating (H = 0.25R).

Inhomogeneities can become stringers or clusters during their formation process. We investigate a
stringer of Al2O3 inhomogeneities in the WC-coated steel substrate. The stringer is modeled as three
identical cuboidal Al2O3 inhomogeneities, which have the same dimension as the previously studied
single inhomogeneity and are equally distanced by 0.25R. Figure 9 compares the von Mises stress field
of the stringer between the two cases in which the coating has different thicknesses of H = 0.5R and
h = 0.25R. The stringer is located beneath the interface at the depth w = 0.125R and shows that the
interactions among the inhomogeneities distort the stress field around them and the distortion becomes
stronger as the coating becomes thinner.

Although this study focuses on inhomogeneities of cuboidal shape, it should be noted that the present
method is also capable of handling inhomogeneities of any arbitrary shapes. An arbitrarily shaped geom-
etry can be approximated by the appropriate arrangement of multiple infinitesimal cuboidal elements.
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4. Conclusions

The effect of stiff inhomogeneities on the elastic field of hard coatings is studied by using the solution
of multiple interacting three-dimensional inhomogeneities of arbitrary shape in a half-space. In the
utilization of the inhomogeneity solution, a layer of coating is modeled by an inhomogeneity of finite
size embedded in the half-space, which has much larger dimensions in the horizontal directions than in
the depth direction to simulate the effect of the finitely extended dimensions of the coating. The study
shows:

(1) Stiff inhomogeneities formed in the substrate would not worsen the cracking and debonding of a
hard coating.

(2) Stiff inhomogeneities are still detrimental to the yielding behavior of the substrate even though
coated by a layer of hard coating.

These considerations may provide guidance to minimize the potential damage induced by inhomo-
geneities to coating-substrate systems.

This study also suggests that the effect of inhomogeneities on yielding and plastic zone expansion
cannot be neglected when a film-substrate system containing inhomogeneities is subject to elastic-plastic
indentation. Based on the present method, a further study can be conducted to develop an elastic-plastic
indentation model that takes into account inhomogeneities for indentation tests.
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