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STRESS AND BUCKLING ANALYSES OF LAMINATES
WITH A CUTOUT USING A {3, 0}-PLATE THEORY

ATILA BARUT, ERDOGAN MADENCI AND MICHAEL P. NEMETH

A semianalytical solution method to predict stress field and structural bifurcation in laminates having
a cutout by employing a simple {3, 0}-plate theory is presented. The stress analysis includes both in-
plane and bending stress fields. In this theory, the in-plane and out-of-plane displacement fields are
respectively assumed in the forms of cubic and uniform through-the-thickness expansions. The cubic
expansion ensures the correct behavior of transverse shear deformations while satisfying the condition
of zero transverse shear stresses at the laminate faces. The equations of equilibrium for the stress and
buckling analysis are derived based on the principle of stationary potential energy. Comparison against
the classical laminate and {1, 2}-plate theories proves this semianalytical method credible.

1. Introduction

Understanding the behavior of laminated composite plates is an important part of designing ultralightweight,
high-performance aircraft structures. Typically, these structures are relatively thin and are designed by
using analyses based on the classical laminated plate theory (CLPT) [Jones 1975]. However, there are
instances in which using a higher-order refined theory becomes unavoidable in order to include accurately
the effects of transverse shear flexibility on the structural response to obtain an initial design that is
conservative or to verify margins of safety of a current design. The refined theories can be classified
as equivalent single-layer, layer-wise, zigzag, and variational asymptotic. Although there are many
different refined plate theories, they have not found wide acceptance in standard industry design practices
because of the extensive experience base with CLPT. Thus, the focus of this study is to formulate new,
advanced special-purpose analysis and design tools by using a refined plate theory that contains CLPT
as an explicit, well-defined subset of the governing equations. A refined theory of this type may be
useful in developing nondimensional design parameters that characterize the effects of transverse shear
deformation and in extending the current design practice accepted by industry in a cautious building-
block manner. Moreover, company-validated legacy computer codes can be retained and updated to
include the effects of transverse shear flexibility with only some additional validation costs.

Each of the many refined theories for laminated composite plates has its own merits and range of
validity associated with a given class of problems. Obviously, the choice of which theory to use depends
on the nature of response characteristics. For example, for global response phenomena, such as elastic
buckling and vibration response, that are not characterized by short wavelengths, it is likely that an
equivalent single-layer theory would be sufficiently adequate. Attributes of several of these theories
have been investigated and discussed in works such as [Liu and Li 1996; Reddy 1997; Altenbach 1998;
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Barut et al. 2002; Yu and Hodges 2004; Demasi and Yu 2009]. A recent extensive discussion of the
layer-wise and zigzag theories can be found in [Tessler et al. 2009].

In the development of special-purpose analysis tools that account for the effects of transverse shear
flexibility for use in preliminary designs, rapid navigation of the design-parameter space is desired. As a
result, computational efficiency is a major concern. This desire is driven by the wide range of laminated
composite constructions available and the potential weight savings that can be obtained through laminate
tailoring. Thus, it follows logically that a relatively simple equivalent single-layer refined plate theory is
generally the starting point in the enhancement of legacy analysis tools that are based on CLPT. However,
many of these theories, such as the first-order shear deformation theory (FSDT) first derived by Reissner
[1944; 1945], do not contain the dependent kinematic variables of CLPT as an explicit subset. In the
parlance of functional analysis, when the dependent kinematic variables of CLPT appear explicitly as
a subset, the dependent kinematic variables of the refined theory possess a well-conditioned, linearly
independent basis that also spans the CLPT subspace — analytically and computationally. According
to [Shimpi 1999; Ray 2003], this attribute eliminates the numerical ill-conditioning that causes shear
locking in finite element analyses of thin shear-deformable plates that are based on theories that use the
rotations of the material line element, which is normal to the plate midplane, as dependent variables. The
ill-conditioning arises from the fact that CLPT solutions are not recovered directly, but in an asymptotic
sense, as the plate thickness is reduced and the transverse shear stiffness is increased.

There are laminated-plate theories that account for the effects of transverse shear flexibility and that
do contain the dependent kinematic variables of CLPT as an explicitly defined subset. Reddy [1990]
presented a review of all the existing third-order theories and showed that they are actually special
cases of his third-order plate theory [Reddy 1984], in which the in-plane displacement components are
cubic through-the-thickness expansions, yielding a quadratic variation of transverse shear strains, and the
transverse displacement component is constant through the thickness, excluding the transverse normal
deformations. While this formulation is applicable to plates with simply supported boundary conditions
[Sun and Hsu 1990], it yields physically unacceptable zero transverse shear strains when both in-plane
displacement components are fixed along the plate edges, as pointed out in [Krishna Murty 1987]. The
problem was remedied by decomposing the transverse displacement component into separate parts for
the displacements associated with bending and shear deformations. This has been applied successfully
to stress [Krishna Murty 1987; Iyengar and Chakraborty 2004], buckling [Senthilnathan et al. 1987], and
large deflection analyses [Reddy 1987; 1990; Singh et al. 1994] of isotropic and laminated plates. An
alternative to decomposing the transverse displacement field in order to avoid zero transverse shearing
along fixed-edge boundaries was proposed in [Voyiadjis and Shi 1991] for thick cylindrical shells and
later reduced to plate kinematics in [Shi 2007]. In this alternative approach, average displacement and
slope variables were utilized that produce an equivalent transverse shear strain energy density. The
present study adopts the use of average displacements and slopes around plate boundaries by using
Reissner’s weighted-average displacement and slope definitions [Reissner 1944; 1945].

Other forms of higher-order theories for plates and shells have also been proposed. For example,
[Soldatos and Timarci 1993; Timarci and Aydogdu 2005] employed higher-order theories based on
polynomial, trigonometric, hyperbolic, and exponential expansions of in-plane displacements through
the thickness and compared their relative accuracy in stress and buckling analyses of plates and shells.
Shu and Sun [1994] introduced a third-order shear deformation theory that satisfies continuity of in-plane
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displacements and transverse shear stresses between adjacent layers. However, their representation of the
displacement variables resembles that of FSDT. Recently, Ray [2003] extended the zeroth-order shear de-
formation theory (ZSDT) of Shimpi [1999] to perform vibration analysis of simply supported laminated
composites. It can be shown that the ZSDT of Shimpi and Ray is a special case of the form introduced
in [Timarci and Aydogdu 2005]. The present study employs the kinematics of Shimpi’s ZSDT because
of its accuracy and simplicity in predicting the responses of laminated plates [Ray 2003]. Because of
the cubic and constant through-the-thickness expansions used for the representation of, respectively, the
in-plane and transverse displacement components of ZSDT, we use the term {3, 0}-plate theory. Notation
of this type was originally introduced in [Tessler 1993].

Pertinent to the focus of the present refined single-layer theory, several results have been presented in
the literature that show the relative accuracy of third-order plate theories. For example, Reddy [1997]
presented results for bending, vibration, and buckling of flat rectangular laminated plates using his third-
order plate theory. He presented solutions for simply supported, square, symmetric, and antisymmet-
ric cross-ply laminates under sinusoidal pressure distributions. Transverse deflection of laminates with
thickness-to-length ratios (h/L) as large as 1

4 were compared against the exact elasticity solutions, CLPT
and FSDT. Ramm [2000] presented the historical evolution of the FSDT and introduced a second-order
plate theory whose kinematics account for both uniform and linear expansion modes in the thickness
direction in addition to the transverse shear strains. In particular, in [Noor and Malik 2000] four model-
ing approaches were studied, based on first-order, second-order, third-order, and discrete-layer theories.
Rohwer et al. [2001] presented the existing higher-order theories that are in polynomial form as trun-
cated power series expansions of displacements with constant coefficients. The constant coefficients and
truncation of the power series were determined based on term-by-term matching of the power series with
the corresponding kinematic representation. They also introduced a generic fifth-order plate theory. Al-
though this theory does not generally satisfy shear and normal traction-free boundary conditions at plate
surfaces, it yields more accurate results than the third-order theories for simply supported orthotropic,
symmetric, and nonsymmetric cross-ply laminates. In [Bosia et al. 2002] the validity of CLPT and FSDT
were investigated by comparing numerical predictions of laminates under bending against experimental
measurements. The results indicate that both CLPT and FSDT fail to capture the correct response for
plates whose span-to-thickness ratio is lower than 25.

In [Tessler and Saether 1991; Tessler 1993] a second-order shear-deformation theory was introduced
that includes quadratic expansions of transverse shear deformations and a linear expansion of transverse
normal deformations through the thickness. Similarly, in [Reddy 1990; Barut et al. 2002] third-order
plate theories were formulated for thick laminates, taking into account both transverse normal and shear
deformations, as well as cubic variation of in-plane deformations. Also, the survey of the existing higher-
order plate theories [Ghugal and Shimpi 2002] focuses on first-order, second-order, and various forms
of higher-order shear deformation theories that have been developed for isotropic and laminated plates.

None of the previous studies considered laminates with cutouts, which can cause local gradients in
the stress and strain fields that may lead to premature structural failure, especially due to structural
buckling. Thus, it is important to understand how cutouts affect the transverse shear flexibility of lami-
nates. Therefore, the objective of the present study is to derive the governing equations of a {3, 0}-plate
theory for stress and buckling analysis of laminated composite plates under general loading and boundary
conditions. This plate theory contains the dependent variables of CLPT as a proper subspace, provides
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the quadratic variation of transverse shear stresses through the thickness of the laminate, satisfies the
condition of zero transverse shear stresses on the top and bottom surfaces of the laminate, and does not
require a transverse shear correction factor.

This study presents a semianalytical solution method for predicting the bending and buckling behav-
ior of a moderately thick laminate with a cutout. While employing the {3, 0}-plate theory, the present
approach utilizes the principle of stationary potential energy to derive the governing equations for bend-
ing deformation and structural bifurcation. The solutions of these governing equations are obtained by
employing global and local function sets that mathematically take into account the presence of cutouts
and general boundary conditions. Two sets of results are presented for selected structural configurations
with a cutout. These sets are linear-bending analysis results, which address the accurate representation of
local through-the-thickness effects, and buckling analysis results, which address global stiffness-critical
effects. For both sets of results, all deformations are presumed to be elastic.

2. Overview of the {3, 0}-plate theory

The nonlinear plate theory used in the present study is based on the kinematic equations presented in
[Sun and Hsu 1990] and is a special case of the formulation presented in [Soldatos and Timarci 1993;
Timarci and Aydogdu 2005]. In particular, the in-plane and transverse displacement fields of a material
point (x, y, z) are expressed in Cartesian coordinates (see Figure 1 on page 832) as

Ux(x, y, z)= ux(x, y)− zuz,x(x, y)+3(z)8xz(x, y), (1a)

Uy(x, y, z)= u y(x, y)− zuz,y(x, y)+3(z)8yz(x, y), (1b)

Uz(x, y, z)= uz(x, y), (1c)

where the displacements Ux , Uy , and Uz are associated with the x , y, and z-directions, respectively. The
functions ux and u y represent the in-plane displacements, and uz represents the out-of-plane displacement
of the point (x, y, 0) on the laminate midplane; a subscript after a comma denotes partial differentiation.
Inspection of these equations reveals that the kinematic equations of CLPT appear explicitly. The function
3(z) is selected to satisfy the traction-free boundary conditions on shear stresses at the outer, bounding
surfaces of a laminate and to satisfy the conditions Ux(x, y, 0) = ux(x, y) and Uy(x, y, 0) = u y(x, y).
As noted in [Timarci and Aydogdu 2005], the choice of 3(z) is not unique. In the present study, 3(z)
is specified as a cubic through-the-thickness distribution, which is one of the special cases examined
by Timarci and Aydogdu. Because the corresponding functional representations of the displacement
fields consist of cubic polynomial expansions in the through-the-thickness coordinate z for the in-plane
displacements and no expansion for the out-of-plane displacement, the theory is denoted herein as a
{3, 0}-plate theory based on the notation of [Tessler 1993].

The kinematic assumptions given by (1) are modified forms of those given in [Ray 2003]. In particular,
the unknown functions 8xz(x, y) and 8yz(x, y) are, generally, not the stiffness-weighted transverse shear
stress resultants of CLPT, used by Ray and initially suggested in [Shimpi 1999]. This representation
permits the application of the plate theory to the entire class of laminated plates and is consistent with
full coupling of the transverse shearing stress and transverse shearing strains, through the constitutive
equations.
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Reddy [1990] showed that the {3, 0} theory presented herein can be obtained from his {3, 0} theory by
a simple transformation of the dependent kinematic variables. As a result, the inherent physical accuracy
of the two {3, 0} theories are expected to be identical. However, the computational attributes are likely
to be quite different, particularly for large relative values of the transverse shear stiffnesses.

The boundary conditions associated with the {3, 0}-plate theory include terms arising from the pres-
ence of higher-order in-plane deformation modes. It is difficult to interpret and associate the higher-
order terms, 8xz and 8yz , with commonly used boundary displacements and slopes. In this study, this
difficulty is avoided by introducing independent boundary displacements, Ũα, with α = x, y, z. Based
on the kinematics of the Mindlin plate theory, these boundary displacements are defined as

Ũx(x, y, z)= ũx(x, y)− zϑ̃x(x, y), (2a)

Ũy(x, y, z)= ũ y(x, y)− zϑ̃y(x, y), (2b)

Ũz(x, y, z)= ũz(x, y), (2c)

in which ũx(x, y), ũ y(x, y), and ũz(x, y) represent the weighted-average displacements and ϑ̃x(x, y)
and ϑ̃y(x, y) rotations. Their representation in terms of the kinematics of the {3, 0} theory presented
herein is achieved by minimizing the error between Uα and Ũα (α = x, y, z), that is,

min
[∫ h/2

−h/2
{(Ũx −Ux)

2
+ (Ũy −Uy)

2
+ (Ũz −Uz)

2
} dz

]
. (3)

The minimization of (3) with respect to the independent quantities, ũα(x, y) with α = x, y, z and
ϑ̃β(x, y) with β = x, y, leads to the following weighted averages:

(ũx , ũ y, ũz)=
1
h

∫ h/2

−h/2
(Ux ,Uy,Uz) dz, (ϑ̃x , ϑ̃y)=

12
h3

∫ h/2

−h/2
z(Ux ,Uy) dz. (4)

Substituting Ux , Uy , and Uz from (1) into these equations results in the following explicit forms given
in terms of the kinematics of the {3, 0} theory:

ũα(x, y)= uα(x, y) with α = x, y, z, (5a)

ϑ̃β(x, y)= uz,β(x, y)− 6
5h
8βz(x, y) with β = x, y. (5b)

Hence, this representation of the boundary displacements and slopes is the least-squares equivalent of
the {3, 0} theory kinematics along the boundary.

The nonlinear strain-displacement relations used in the present study are based on the Green–Lagrange
strains of elasticity theory, simplified for a flexible plate-like solid exhibiting small strains and moderately
small rotations by using the von Kármán assumptions [Fung and Tong 2001].

The corresponding nonlinear plate strains are obtained by substituting (1) into the simplified Green–
Lagrange strains. Work-conjugate stress resultants are identified by substituting the plate strains into the
strain energy and then reducing it to a two-dimensional quantity by through-the-thickness integration.
The laminate constitutive equations are obtained by substituting the expressions for the laminate strains
into the stress-strain relations for a generally orthotropic material, in a state of plane stress, and by then
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substituting the resulting equations for the stresses into the definitions of the stress resultants and perform-
ing the through-the-thickness integrations. The nonlinear equilibrium equations and the corresponding
boundary conditions are obtained by taking the variation of the total potential energy of the laminate and
using Green’s integral theorem to enforce the fundamental theorem of the calculus of variations.

3. Problem description

The general boundary-value problem considered in the present study consists of a rectangular laminate
with an elliptical cutout that is located arbitrarily (Figure 1). The cutout has a semimajor axis and
a semiminor axis with lengths 2a and 2b, respectively. As shown in Figure 1, the local Cartesian
coordinate system (x ′, y′, z′), whose origin is located at the center of the cutout, coincides with the
principal coordinates of the elliptical cutout. The global structural coordinates are denoted by (x, y, z),
and the orientation of the cutout with respect to the global horizontal axis is defined by the angle ψ . The
laminate is made of K specially orthotropic layers, and each layer has an orientation angle, θk , that is
defined with respect to the x-axis (see Figure 1). The total laminate thickness is denoted by h. Each layer
has a thickness of hk ; elastic moduli E11, E22, and E33; shear moduli G12, G23, and G31; and Poisson’s
ratios ν12, ν23, and ν31; the subscripts 1, 2, and 3 represent the fiber, transverse, and thickness directions,
respectively.

A special, practical set of loading conditions are considered in the present study. As shown in Figure 1,
0σ represents the laminate edges that are traction free, and 0u denotes the part of the laminate boundary

Figure 1. Description of geometry and loading of composite plate with an elliptical cutout.
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that is kinematically restrained. The laminate boundary on which the kinematics of the boundary is
constrained by uniform edge displacements is represented by 01. This boundary can be clamped or
simply supported against bending while allowing for uniform in-plane edge displacements. As depicted
in Figure 1, uniform edge displacement is achieved in the present study through use of a rigid load
fixture (rigid bar) that is subjected to concentrated edge forces. This approach is used to represent the
most commonly employed experimental loading conditions. Throughout this paper, a variable with the
superscript “∗” is treated as a known quantity, arising from the externally applied loads or from prescribed
displacements and rotations.

The laminate can be subjected to an arbitrary lateral distributed load of p∗(x, y) pointing in the neg-
ative z-direction, as shown in Figure 1. The positive-valued stress and moment resultants of applied
boundary tractions, (N ∗x , N ∗y , N ∗z ) and (M∗x ,M∗y ), are applied along the edges as shown in Figure 1. The
concentrated forces, P∗x and P∗y , applied to the ends of the laminate through a rigid end-bar, as shown in
Figure 2, lead to uniform edge displacements with unknown magnitudes 1x and 1y .

The prescribed edge displacements on the midplane (ũ∗x , ũ∗y, ũ∗z ) and edge slopes (ϑ̃∗x , ϑ̃
∗
y ) on the x-z

and y-z planes, respectively, are imposed as

ũi (x, y)= ũ∗i (i = x, y, z),

ϑ̃i = ϑ̃
∗

i (i = x, y),
(6)

where ũx , ũ y , and ũz denote the weighted-average boundary displacements and ϑ̃x and ϑ̃y are the
weighted-average slope quantities.

As shown in Figure 2, the kinematic boundary conditions are imposed by employing elastic spring
supports. Zero-valued displacement and rotation kinematic boundary conditions are enforced in an indi-
rect manner by specifying values for the spring stiffnesses that are large compared to the corresponding
laminate stiffnesses. This approach effectively yields a prescribed kinematic boundary condition in the
limit as the relative stiffness of the spring becomes much greater than that of the corresponding laminate
stiffness. Similarly, values for the spring stiffnesses can be selected corresponding to a given uniform

Figure 2. Distributed elastic spring supports along the edges of a laminate.
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elastic restraint along an edge, similar to that provided by a rigid end-bar. This capability is important
and useful because in some test fixtures, or actual structures, the edge supports may not be stiff enough to
simulate a fully clamped boundary condition or flexible enough to simulate a simply supported boundary
condition. The extensional and rotational springs have constants Sx , Sy , and Sz associated with the edge
displacements and Jϑx and Jϑy with the slopes. In addition, a rigid end-bar is linked to the plate edge
through extensional springs in the directions normal and tangent to the boundary with stiffness values of
sx and sy . The specification of a sufficiently large value of spring stiffness for sx and sy causes the plate
edge to behave as a rigid end-bar with uniform displacements, 1x and 1y . Conversely, a sufficiently
small spring stiffness between the plate edge and the rigid end-bar eliminates the presence of a rigid end-
bar. In the case of buckling analysis, this type of edge support, commonly used in buckling experiments,
permits the determination of the end shortening of the plate.

4. Nonlinear equations of the {3, 0}-plate theory

The nonlinear equations of the plate theory are derived by considering the variation of the total potential
energy of the laminate. In the present study, the total potential energy consists of the potential energy of
the elastic spring supports in addition to the internal strain energy of deformation and the work of the
applied loads.

Strain field and potential energy. The internal strain energy of deformation is generated by the presence
of a strain field within a laminate. For the plate kinematics defined by (1), the corresponding nonlinear
strain-displacement relations that correspond to small strains and moderate rotations are given by

ε = ε0
+ zκ0

+3(z)00, (7a)

γ =3′(z)8, (7b)

where the vectors ε, γ , ε0, κ0, 00, and 8 are defined as

εT
= {εxx , εyy, γxy}, γ T

= {γxz, γyz}, (7c)

ε0T
=
{[

ux,x +
1
2 (uz,x)

2], [u y,y +
1
2 (uz,y)

2], (ux,y + u y,x + uz,x uz,y)
}
, (7d)

κ0T
=−{uz,xx , uz,yy, 2uz,xy}, 00T

= {8xz,x ,8yz,y, (8xz,y +8yz,x)}, 8T
= {8xz,8yz}. (7e)

The prime mark in (7b) denotes differentiation with respect to the through-the-thickness coordinate z.
The transverse normal strain, εzz , is zero-valued, consistent with assumption of a uniform through-the-
thickness out-of-plane displacement specified by (1c). In addition, defining average transverse shearing
strains γ 0

xz and γ 0
yz by

γ 0
=

{
γ 0

xz
γ 0

yz

}
=

1
h

∫
+h/2

−h/2

{
γxz

γyz

}
dz, (8)

where h denotes the uniform thickness of the plate, gives

γ 0
=

1
h

(
3
(h

2

)
−3

(
−

h
2

)){
8xz

8yz

}
. (9)
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Inspection of (7b) reveals that the transverse shearing strains vanish at the bounding surfaces of the plate
given by z =±h/2 provided that

3′(h/2)=3′(−h/2)= 0. (10)

The strain energy of a laminate is obtained by substituting the expressions for the strains in Equa-
tions (7) into the strain energy expression for a three-dimensional elastic solid and performing through-
the-thickness integration of the resulting equations. This process yields the strain energy of a laminate
as

U = 1
2

∫
A
(NT ε0

+MT κ0
+ FT00

+ f T8) dx dy, (11)

with

NT
= {Nxx , Nyy, Nxy}, MT

= {Mxx ,Myy,Mxy}, FT
= {Fxx , Fyy, Fxy}, f T

= { fxz, fyz}, (12)

where the definitions of the stress resultants appearing in this expression, Ni j , Mi j , and Fi j with i, j = x, y
and fi z with i = x, y, are given in Appendix A. It is convenient to express (11) in the following compact
form:

U = 1
2

∫
A

sT e d A, (13)

where s and e are vectors of the stress and strain resultants given by

sT
= {NT , MT , FT , f T

}, (14a)

eT
= {ε0T

, κ0T
,00T

,8T
}. (14b)

For the elastic materials considered herein, the stress resultant vector s is related to the strain resultant
vector e through the constitutive matrix C as

s = Ce, (15)

in which

C =


A B E 0

D F 0
H 0

G

 . (16)

The submatrices A, B, D, E, F, G, and H are explicitly defined in Appendix A. Substituting (15) into
(13) yields the desired form of the laminate strain energy given by

U = 1
2

∫
A

eT Ce d A. (17)

As described in the preceding section, elastic extensional and rotational springs are employed to ac-
commodate the enforcement of prescribed edge displacements (ũ∗x , ũ∗y , and ũ∗z ) and slopes (ϑ̃∗x and ϑ̃∗y )
defined in (6), along the boundary of the laminate, 0u . Associated with these displacements ũ∗x , ũ∗y , ũ∗z
and with the slopes ϑ̃∗x , ϑ̃∗y are the extensional and rotational spring stiffnesses Sx , Sy , Sz and Jϑx , Jϑy ,
respectively. As the concentrated loads P∗x and P∗y are applied to the rigid bar shown in Figure 1, the
laminate undergoes the uniform edge displacements 1x and 1y . Associated with these uniform edge
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displacements are the extensional spring stiffnesses, sx and sy . The potential energy that results from the
elastic deformation of the springs, consistent with the {3, 0}-theory used herein, is given by

�=
1
2

∫
0u

(ũ− ũ∗)T ku(ũ− ũ∗) d0+ 1
2

∫
01

(ũ−1)T ku(ũ−1) d0, (18)

where the vectors ũ, ũ∗, and 1, and the matrices ku and k1, are defined as

ũT
= {ũx , ũ y, ũz, ϑ̃x , ϑ̃y}, (19a)

ũ∗
T
= {ũ∗x , ũ∗y, ũ∗z , ϑ̃

∗

x , ϑ̃
∗

y }, (19b)

1T
= {1x ,1y, 0, 0, 0}, (19c)

and

ku =


Sx

Sy

Sz

Jϑx

Jϑy

 , k1 =


Sx

Sy

0
0

0

 . (19d)

The potential energy of the lateral pressure p∗, the external edge tractions (t∗x , t∗y , t∗z ), and the concen-
trated forces P∗x and P∗y acting on the rigid end-bar is given by

V =
∫
0σ

∫ h/2

−h/2
(t∗x Ũx + t∗y Ũy + t∗z Ũz) dz d0+

∫
A

p∗Uz d A+ P∗x 1x + P∗y1y . (20)

Substituting (1), (2), and (5) into this expression and integrating through the thickness yields

V =
∫
0σ

(
N ∗x ux + N ∗y u y + N ∗z uz −M∗x

(
uz,x −

6
5h
8xz

)
−M∗y

(
uz,y −

6
5h
8yz

))
d0

+

∫
A

p∗uz d A+ P∗x 1x + P∗y1y, (21a)

or

V =
∫
0σ

T∗T ũ d0+
∫

A
p∗uz d A+ P∗T

1, (21b)

in which the vector containing the resultant forces and moments acting along the boundary is given by

T∗T
= {N ∗x , N ∗y , N ∗z ,−M∗x ,−M∗y }, (22a)

and the prescribed point forces acting on the rigid end-bar are defined as

P∗T
= {P∗x , P∗y , 0, 0, 0}. (22b)

The explicit definitions of the stress and moment resultants (N ∗x , N ∗y , N ∗z ) and (M∗x ,M∗y ) in (22) are given
in Appendix A.
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Equilibrium equations and boundary conditions. The nonlinear equilibrium equations and the corre-
sponding boundary conditions are obtained by requiring the variation of the total potential energy of the
laminate to vanish, that is,

δπ = δU + δ�− δV = 0, (23)

in which δU and δ� represent the variation of strain energies of the laminate and the elastic edge supports
(springs) due to the internal forces, and δV represents the variation of potential energy due to external
boundary loads acting on the surface and around the boundary of the laminate. Their first variations
are readily obtained from (17), (18), and (21) and are given explicitly in Appendix B. The resulting
nonlinear partial differential equations and boundary conditions constitute a boundary-value problem
that defines the stresses and displacements associated with stable and unstable deformation states in
the realm of small strains and moderate rotations. The equations are applicable to laminates subjected
to general loading conditions that exhibit anisotropy that couples all modes of deformation present in
laminates with a general asymmetric lamination scheme. The equations needed to perform linear stress
analysis can be obtained by direct linearization of the nonlinear plate equations. The specific form of
these linearized equations is also given in Appendix B.

When a laminate is subjected to only in-plane loads, with monotonically increasing magnitudes, it
may exhibit a flat stable equilibrium configuration for relatively small magnitudes of the loads. Then, a
load level is reached at which a bent or buckled equilibrium configuration exists. This particular load
level is obtained herein by linearizing the nonlinear plate equation with respect to the flat equilibrium con-
figuration incipient to buckling [Brush and Almroth 1975]. The explicit forms of the resulting equations
for buckling analyses are also given in Appendix B.

5. Solution method

Exact solutions for linear stress and buckling analyses of a composite laminate with a cutout are not
mathematically tractable, especially when transverse shear deformations are included in the analyses.
Therefore, a semianalytical approximate solution was constructed based on the principle of stationary
potential energy.

In this approximate solution method, the midplane displacements ux(x, y), u y(x, y), and uz(x, y)
and the higher-order in-plane deformation modes 8xz(x, y) and 8yz(x, y) are partitioned into global
and local contributions. In particular,

ui = ūi + ¯̄ui with i = x, y, z, (24a)

and
8i z = 8̄i z +

¯̄8i z with i = x, y, (24b)

where single and double overbars represent the global and local quantities, respectively. In the present
formulation, no kinematic admissibility requirements on the local or global functions exist because of
the presence of the elastic springs in the formulation. Robust, uniformly convergent Laurent series
(used for doubly connected regions) are used for the local functions to enhance capturing steep stress
gradients and deformations near a cutout, and complete sets of Chebyshev polynomials are used in
series expansions primarily to capture the overall global response of the laminate. The global functions
are defined to include all of the possible rigid-body modes associated with global translation and rotation
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of the laminate. These rigid-body modes are eliminated in the analysis by enforcing the appropriate
displacement boundary conditions. The Laurent series for the local quantities generally yield multival-
ued displacements. Therefore, single-valuedness of the local quantities must be enforced. This task
is achieved by using Lagrange multipliers to enforce the required constraint conditions. The Lagrange
multipliers can be viewed as the forces that are needed to enforce the corresponding constraints. The
explicit form of the local and global quantities appearing in (24) and the constraint conditions are given
in Appendix C.

In the solution method of the present study, the series expansions for the global and local quantities
appearing in (24) are expressed in matrix form to yield

ui = V T
i q with i = x, y, z, (25a)

8i z = V T
i z q with i = x, y. (25b)

In these expressions, the unknown coefficients of the local and global functions are arranged in the vector
q, which is referred to herein as the vector of generalized coordinates. The explicit form for the vector
of unknowns, q, and the known vector functions, Vi , are given in detail in Appendix C. Using (25), the
total potential energy, π , of the laminate is expressed as

π(q,1,λ)=U (q)+�(q,1)− V (q,1)+W (q,λ), (26)

in which U and � represent the strain energies of the laminate and the elastic edge supports (springs), and
V represents the potential energy due to external boundary loads acting inside and around the boundary
of the laminate. The vector 1 includes the unknown uniform edge-displacements that arise from the
prescribed concentrated loads that are applied through the rigid end-bar. Because elastic edge supports
are used as a means to relax the kinematic admissibility requirements on the assumed displacement
functions, the potential energy of the constraint forces arising from the constraint equations must van-
ish. Therefore, the constraint equations are included in the total potential energy formulation by using
Lagrange multipliers that produce zero potential energy; that is,

W(q,λ)= λT Gcq ≡ 0, (27)

where W is the potential energy of constraint forces, Gc is the coefficient matrix of the constraint
equations, and λ is a vector of Lagrange multipliers. The vector λ contains the unknown Lagrange
multipliers of the constraint equations, and they represent the constraint forces. A detailed derivation is
given in Appendix C.

Stress analysis. Under the presumption of infinitesimal displacement gradients, the potential energy is
linearized by disregarding products of the displacement gradients. Thus, the vector of unknown gener-
alized coordinates of the laminate, q, is associated only with the linear terms in the expression for total
potential energy. The requirement that the first variation of the total potential vanish, δπ = 0, yields the
following equations for linear stress analysis:[

Kqq + Sqq GT
c

Gc 0

]{
q
λ

}
=

{
p∗z + N∗− S∗q

0

}
, (28)
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in which the matrices Kqq and Sqq represent the stiffness of the laminate with a general stacking sequence
and the stiffness of the springs associated with the deformation of the laminate, respectively. The vector
S∗q represents the loading that arises from displacements prescribed along the edges. The load vectors
N∗ and p∗z are associated with the external tractions acting on the unrestrained edges of the laminate and
the distributed loads acting over the surface of the laminate, respectively. The explicit forms of these
matrices and vectors are given in Appendix D. Solving for the unknown vectors, q and λ, in (28) permits
the calculation of the displacements, strains, and stresses at any point of the laminate under general
loading conditions.

Buckling analysis. As mentioned previously, the equations needed to perform buckling analyses are ob-
tained by linearizing the nonlinear field equations about the known flat, stable, equilibrium configuration
incipient to buckling. To simplify the linearization process, the vector of generalized coordinates q, the
uniform edge-displacement vector 1, and the constraint force vector λ are combined into a single vector
of unknowns, Q, given by

QT
= {qT ,1T ,λT

}. (29)

As part of the linearization procedure, the vector Q is expressed as

Q = Q(0)
+ e Q(1), (30)

where Q(0) and Q(1) correspond to the incipient prebuckling and adjacent equilibrium states, respectively,
and e is a real number that can be made as small as required. The vector Q(0) is obtained from a linear
stress analysis and is presumed known in the buckling equations. Next, (30) is used to express the total
potential energy in the form

π(Q)= π (0)(Q(0))+ eπ (1)(Q(0), Q(1))+ e2π (2)(Q(0), Q(1))+ O(e3), (31)

where π (0), π (1), and π (2) are functionals that are defined explicitly in Appendix E. The equations gov-
erning the prebuckling state incipient to buckling are obtained by enforcing

δπ (0) = 0, (32a)

and the equations that define the load level for which an adjacent equilibrium state exists are obtained
from

δπ (2) = 0, (32b)

which is referred to as Treftz’s criterion [Brush and Almroth 1975]. The boundary conditions associated
with (32b) are homogeneous. Hence, the extensional and rotational springs are utilized only to apply
fixed kinematic boundary conditions in the buckling analysis.

Enforcing the variational statement given by (32a) yields the matrix equation

K Q(0)
= F (33a)

for the prebuckling equilibrium states. The boundary conditions associated with (33a) are nonhomo-
geneous, so (33a) constitutes a well-posed linear boundary-value problem. In the solution of buckling
problems, the applied loads are scaled proportionally by a loading parameter λc and, as a result, the
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solution vector Q(0) depends on the loading parameter. Thus, every prebuckling equilibrium state corre-
sponds to a different value of λc. The relationship between the loading parameter, the relative proportions
of the applied loads acting on a plate, and the solution vector Q(0) can be expressed conveniently as

Q(0)
= λc Q(0), (33b)

where Q(0) represents a known prebuckling reference state. Similarly, enforcing the variational statement
given by (32b) and using (33b) yields the matrix equation[

K + λc H(Q(0))
]

Q(1)
= 0, (33c)

which constitutes a linear generalized eigenvalue problem in which the loading parameter λc is the eigen-
value. The smallest positive value of λc represents the smallest load level at which the laminate has a
nonflat adjacent equilibrium state in the shape of the corresponding eigenvector.

The matrices appearing in (33a) and (33c) are given by

K =

 Kqq −sq1 GT
c

−sT
q1 s11 0

Gc 0 0

 , H(Q(0))=

Hs(Q(0)) 0 0
0 0 0
0 0 0

 , (34)

with

Kqq = KC + Sqq , F =


N∗

P∗

0

 . (35)

The matrix KC represents the stiffness of a symmetric laminate, as defined by (D7), and the matrix Sqq

represents the stiffness of the springs associated with the deformation of the laminate, as defined in (D9a).
The matrix HS , whose explicit form is given in Appendix E, is the stress-induced geometric stiffness of
the laminate. The matrices Sqq , s11, and sq1 represent the stiffness of the springs associated with the
deformation of the laminate, the end-displacements, and their coupling, respectively. The derivation of
these matrices is given in Appendix E. The load vectors N∗ and P∗ that appear in (35) are associated
with the external tractions acting on the unrestrained edges of the laminate and the concentrated in-plane
loads acting on the rigid end-bar, respectively. These vectors are defined as

N∗
T
= {N ∗x , N ∗y , 0, 0, 0, 0, 0}, P∗T = {P∗x , P∗y , 0, 0, 0}. (36)

6. Numerical results

Results for two problems are presented in order to demonstrate the accuracy of the {3, 0}-plate theory
for stress and buckling analyses. The first problem considered is the stress analysis of an angle-ply
laminate with a centrally located circular cutout, subjected to a uniform lateral pressure load, as depicted
in Figure 3 for a general rectangular laminate. The second problem considered is the buckling analysis of
a square laminate that is subjected to uniform end-shortening and has a centrally located circular cutout.
For both of these problems, the dimensions of the square laminate are given by W = L = 10 in and the
cutout diameter is denoted by the symbol d . In addition, each ply is made of graphite-epoxy material with
elastic lamina properties E11 = 18.5× 106 psi, E22 = E33 = 1.6× 106 psi, G12 = G13= 1.0× 106 psi,
G23 = 0.64× 106 psi, ν12 = ν13 = 0.35, and ν23 = 0.25. Results are presented for several laminate
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thickness-to-width ratios, h/W . As the value of this ratio changes, the ply thicknesses, tk , are given by
tk = h/20.

Stress-analysis problem. For this problem, a square [±θ ]5s angle-ply laminate with a centrally located
circular cutout is subjected to a uniform transverse pressure with a unit-magnitude intensity of p0 = 1 psi,
as depicted in Figure 3. The laminate is simply supported along the edges x = 0 and x =W , such that

ũz(x, y)= 0, ϑ̃y(x, y)= 0, (37a)

and is clamped along the edges y = 0 and y =W , such that

ũx(x, y)= 0, ũ y(x, y)= 0, ũz(x, y)= 0, ϑ̃x(x, y)= 0, ϑ̃y(x, y)= 0. (37b)

Several results were obtained for this problem by using the analysis process of the present study.
Corresponding results were also obtained from finite element analysis (FEA) based on the {1, 2}-plate
theory of [Tessler and Saether 1991]. The finite element implementation of this theory was developed
in [Tessler 1993] for linear analysis and extended to geometrically nonlinear analysis in [Barut et al.
1998]. The nonlinear element has three nodes with six degrees of freedom per node, and two additional
element-dependent C−1 continuous fields that represent higher-order transverse displacement modes. As
a result of a convergence study, the finite element model used consists of 6400 elements and 3360 nodes.
In contrast, converged results were obtained with the present {3, 0}-plate theory by using Chebyshev
polynomial series with 12 terms for the global displacement quantities and Laurent series with 6 terms
for the local displacement quantities. The total number of unknowns in the solution vector, without the
additional three constraint equations arising from the removal of the redundancy of the local kinematic
field, is 575.

Critical in-plane stresses are expected to exist at the intersections of the cutout boundary with the
cutout diameter that is parallel to the clamped edges. One of these points is labeled as A and located at
the coordinates (x, y, z)= (5+ d/2, 5, 0), where d is the cutout diameter. Similarly, critical transverse
shear stresses are expected to occur at the midpoint of the straight laminate edges. These points are
labeled B and C , and are located, respectively, at the coordinates (10, 5, 0) and (5, 10, 0). Therefore,

Tk

Simply supported

Simply supported

Clamped

y z

x

Clamped

C

A B

W

h

L

a

p*

Figure 3. Square laminate with a central circular cutout, subjected to a uniform trans-
verse pressure.
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three points on the laminate midplane were selected for comparisons of selected stress variations obtained
from the present analysis and the FEA.

Results are presented in Table 1 for [±45]5s laminates with a fixed thickness-to-width ratio given by
h/W = 0.1. In particular, values of the out-of-plane displacement at the point (x, y, z)= (5+ d/2, 5, 0)
are given for select cutout sizes in the range 0.2≤ d/W ≤ 0.6. These results indicate small differences
between the displacements predicted by the two analyses that range from 0.47% to 1.65% as the cutout
size increases from d/W = 0.2 to 0.6. Additional results are presented in Table 2 for the [±45]5s

laminates with a fixed cutout size given by d/W = 0.3 and for select values of 0.05 ≤ h/W ≤ 0.2.
These results correspond to the point (x, y, z)= (6.5, 5, 0) and also indicate small differences between
the displacements predicted by the two analyses that range from 0.81% to 1.12% as the thickness-to-
width ratio increases from h/W = 0.05 to 0.2. Similar results are presented in Table 3 for [±θ ]5s

uz (in) ×105

d/W Present: {3, 0} FEA: {1, 2} % Difference

0.2 4.25 4.23 0.47
0.3 3.86 3.84 0.52
0.4 3.23 3.21 0.62
0.5 2.52 2.49 1.19
0.6 1.82 1.79 1.65

Table 1. Out-of-plane displacement at (x, y, z)= (5+d/2, 5, 0) for [±45◦]5s laminates
with h/W = 0.1 as a function of cutout size d/W .

uz (in) ×105)
h/W Present: {3, 0} FEA: {1, 2} % Difference

0.05 19.79 19.63 0.81
0.10 3.234 3.208 0.80
0.15 1.285 1.274 0.86
0.20 0.717 0.709 1.12

Table 2. Out-of-plane displacement at (x, y, z)= (6.5, 5, 0) for [±45◦]5s laminates with
d/W = 0.3 as a function the thickness-to-width ratio h/W .

uz (in) ×105)
θ Present: {3, 0} FEA: {1, 2} % Difference

0 8.243 8.200 0.52
30 4.144 4.099 1.09
60 2.905 2.879 0.90
90 3.085 3.070 0.49

Table 3. Out-of-plane displacement at (x, y, z) = (6.5, 5, 0) for [θ/−θ ]5s laminates
with d/W = 0.3 and h/W = 0.1 as a function of the fiber angle θ .
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Figure 4. Effect of cutout size on the through-the-thickness variation of σyy at point A
for a square [±45]5s graphite-epoxy laminate with a central circular cutout, subjected to
uniform pressure (h/W = 0.1).

laminates with a fixed thickness-to-width ratio given by h/W = 0.1 and a fixed cutout size given by
d/W = 0.3. Specifically, results are given for select values of the ply orientation angle in the range
0≤ θ ≤ 90 degrees. These results also correspond to the point (x, y, z)= (6.5, 5, 0) and indicate a very
small effect of variations in the fiber angle.

Variations of through-the-thickness normal stress σyy at point A on the cutout edge, normalized by the
magnitude of the applied pressure, are shown in Figure 4 for a [±45]5s laminate with a thickness-to-width
ratio of h/W = 0.1. Similarly, distributions of the normalized transverse shearing stresses σxz at point B
on the simply supported edge and σyz at point C on the clamped edge are shown for this laminate in
Figure 5. Several curves are shown in each figure for values of cutout diameter-to-width ratios given by
d/W = 0.2, 0.3, 0.4, 0.5, and 0.6. The black solid lines correspond to results from the present analysis

Figure 5. Effect of cutout size for a square [±45]5s graphite-epoxy laminate with a
central circular cutout, subjected to uniform pressure (h/W = 0.1). Left: through-
the-thickness variation of σxz at point B (simply supported edge). Right: through-the-
thickness variation of σyz at point C (clamped edge).
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Figure 6. Effect of the plate thickness-to-width ratio on the through-the-thickness vari-
ation of σyy at point A for a square [±45]5s graphite-epoxy laminate with a central
circular cutout, subjected to uniform pressure (d/W = 0.3).

and the red dashed lines with triangular symbols correspond to results from the FEA. Discontinuities in
the point-wise slope of the curves are associated with the piecewise constant lamina properties that are
used to calculate stresses based on continuous through-the-thickness strain distributions.

The results in Figure 4 indicate that the present analysis yields a nonlinear variation σyy/p0 at point A
whereas the finite-element solution based on the {1, 2}-plate theory yields a linear variation. Although
results from the two analyses are only shown for d/W = 0.2, similar results were obtained for the other
values of d/W that show the same trend. The maximum difference in the stresses predicted by the two
theories is 26%, in contrast to the maximum difference in the corresponding out-of-plane displacements,
which is less than 2%.

The results in Figure 5 indicate that the present analysis and the FEA yield identical through-the-
thickness transverse shear stress distributions at points B and C , with slightly different amplitudes. The
largest difference in the transverse shear stresses for the two plate theories is 2%. In these figures, the
red dashed lines with triangular symbols (FEA) are shown only for the two extreme cases of d/W = 0.2
and 0.6, for clarity. Altogether, the results in Figures 4 and 5 indicate that the variation of the in-plane
and transverse shear stresses diminishes with increasing cutout size. This trend is expected because
increasing the hole size decreases the extent of loading surface and, as a result, reduces the net force
applied to the laminate. Reducing the net applied force reduces the magnitude and through-the-thickness
variation of all the stresses.

Variations of through-the-thickness normal stress σyy at point A on the cutout edge, normalized by the
magnitude of the applied pressure, are shown in Figure 6 for a [±45]5s laminate with a cutout diameter-
to-width ratio d/W = 0.3. Similarly, distributions of the normalized transverse shearing stresses σxz

at point B on the simply supported edge and σyz at point C on the clamped edge are shown for this
laminate in Figure 7. Several curves are shown in each figure for values of thickness-to-width ratios of
h/W = 0.05, 0.10, 0.15, and 0.20. The black solid lines correspond to results from the present analysis
and the red dashed lines with triangular symbols correspond to results from the FEA. Discontinuities in
the point-wise slope of these curves are also associated with the piecewise constant lamina properties
that are used to calculate stresses based on continuous through-the-thickness strain distributions.
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Figure 7. Effect of the plate thickness-to-width ratio for a square [±45]5s graphite-
epoxy laminate with a central circular cutout, subjected to uniform pressure (d/W = 0.3).
Left: through-the-thickness variation of σxz at point B (simply supported edge). Right:
through-the-thickness variation of σyz at point C (clamped edge).

As expected, the results in Figure 6 also indicate that the present analysis yields a nonlinear variation
σyy/p0 at point A whereas the finite-element solution based on the {1, 2}-plate theory yields a linear
variation. Although results from the two analyses are only shown for h/W = 0.05, similar results were
obtained for the other values of h/W that show the same trend. Altogether, the maximum differences
in the in-plane and transverse shear stresses predicted by the two theories for h/W = 0.05 and 0.1 are
29% and 4.8%, respectively. The results in Figures 6 and 7 also show an increase in stresses as h/W
decreases. This increase in stresses is due to the reduction in bending stiffness with decreasing h/W and
the fact that the laminate must carry the same applied load.

The effect of fiber angle, θ , on through-the-thickness variation σyy at point A located on the cutout
edge is shown for [±θ ]5s laminates with d/W = 0.3 and h/W = 0.1 in Figure 8. The corresponding

Figure 8. Effect of fiber angle on the through-the-thickness variation of σyy at point A
for a square [±θ ]5s graphite-epoxy laminate with a central circular cutout, subjected to
uniform pressure (d/W = 0.3, h/W = 0.1).
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Figure 9. Effect of fiber angle for a [±θ ]5s graphite-epoxy laminate with a central cir-
cular cutout, subjected to uniform pressure (d/W = 0.3, h/W = 0.1). Left: through-
the-thickness variation of σxz at point B (simply supported edge). Right: through-the-
thickness variation of σyz at point C (clamped edge).

distributions of the normalized transverse shearing stresses σxz at point B (on the simply supported edge)
and σyz at point C (on the clamped edge) are shown for this laminate in Figure 9. Several curves are
shown in each figure for values of θ = 0, 30, 60, and 90 degrees. The black solid lines correspond
to results from the present analysis and the red dashed lines with triangular symbols for θ = 0 and
90 degrees correspond to results from the FEA. Discontinuities in the point-wise slope of these curves
are also associated with the piecewise constant lamina properties that are used to calculate stresses based
on continuous through-the-thickness strain distributions.

The results in Figure 8 show that the largest variation in the in-plane stress σyy occurs for θ = 0 degrees.
Similarly, the results in Figure 9 show the largest variations in σxz and σyz for θ = 30 and 60 degrees,
respectively. The results in Figure 8 also show better agreement in predicted values of σyy at point A
obtained from the two theories for θ = 90 degrees than for θ = 0 degrees. Likewise, the results in
Figure 9, right, show better agreement in predicted values of σyz at point C for θ = 90 degrees than for
θ = 0 degrees. In contrast, the results in Figure 9, left, show better agreement in predicted values of σxz

at point B for θ = 0 degrees than for θ = 90 degrees.

Buckling-analysis problem. The second problem considered is buckling of a square [+θ5/−θ5]s lami-
nate with a central circular cutout, subjected to uniform end-shortening, as shown in Figure 10. This
pathological family of laminates was chosen because of the high degree of anisotropy that exists in
the form of coupling between pure-bending and twisting deformations. The dimensions of this square
laminate are also given by W = L= 10 in and the diameter of the cutout is specified as d= 6 in. The values
of the thickness-to-width ratios considered for this problem are h/W ≤ 0.05, and were chosen such that
elastic buckling is likely to occur prior to a first-ply failure. This range of h/W values was determined
by using the point-stress failure criteria of [Whitney and Nuismer 1974] with a critical strength value
of X = 320 ksi. Two sets of boundary conditions are also considered. Specifically, the edges at x = 0
and x =W are simply supported, and those at y = 0 and y = L are either simply supported or clamped.
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Figure 10. Square laminate with a circular cutout, subjected to uniform end-shortening.

The load is introduced into the laminate as a uniform end-shortening, 1y , that results from applying the
concentrated force −P∗y to a rigid end-bar. In addition, the unloaded lateral edges are free to expand and
contract. In particular, the two sets of boundary are specified and designated as follows.

• Two simply supported and two clamped opposite edges (SS-CL):

ũz = ϑ̃y = 0 at x = 0 and x =W, (38a)

ũ y = ũz = ϑ̃x = ϑ̃y = 0 at y = 0, (38b)

ũz = ϑ̃x = ϑ̃y = 0 and ũ y =1y through − P∗y at y = L . (38c)

• All edges simply supported (SS-SS):

ũz = ϑ̃y = 0 at x = 0 and x =W, (39a)

ũ y = ũz = ϑ̃x = 0 at y = 0, (39b)

ũz = ϑ̃x = 0 and ũ y =1y through − P∗y at y = L . (39c)

Several buckling predictions obtained by using the present analysis were compared with corresponding
results obtained from the FEA based on a {1, 2}-order plate theory developed in [Barut et al. 1998]. In
these analyses, converged solutions were obtained by using the finite element model with 6400 elements
and 3360 nodes that was used in the stress analyses. Likewise, 12-term Chebyshev polynomial series
and 6-term Laurent series were used in the present analysis. In addition, corresponding results were also
obtained by using the semianalytical method developed in [Barut and Madenci 2001], which is based on
classical laminated plate theory (CLPT) and formulated in a manner similar to the present analysis.

The buckling loads obtained by using the three analysis methods are presented in Tables 4 and 5 for
[+θ5/−θ5]s laminates with h/W = 0.035 and d/W = 0.6. The results in Tables 4 and 5 are for laminates
with SS-CL and SS-SS boundary conditions, respectively, and are given for select values of the fiber angle
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Figure 11. Effects of boundary conditions and transverse shear flexibility on the buck-
ling resistance of [+θ5/−θ5]s angle-ply laminates with a central circular cutout, sub-
jected to uniform end-shortening (h/W = 0.035, d/W = 0.6).

θ . These results are also shown in Figure 11, where the buckling load is given in nondimensional form as
PcrW/(π2 D), and where D denotes the bending stiffness defined as D = ET h3/[12(1− ν2

LT)] and Pcr is
the value of the applied load at buckling. The results obtained from the present analysis are represented
by the solid lines in the figures, FEA results are represented by the thick-dashed lines, and results based
on CLPT are represented by the dash-dotted lines. Also, the red and black lines correspond to results for
the SS-CL and SS-SS boundary conditions, respectively.

The results in these tables and in Figure 11 show very good agreement between the present analysis and
the FEA. For all values of θ the differences in the buckling loads predicted by the two shear-deformation-
based theories are less than 3%. The results also indicate maximum differences between the buckling
loads obtained by using the present analysis and the CLPT analysis of approximately 6% and 9% for the

Buckling load (kips)
Fiber angle, θ (deg) Present: {3, 0} FEA: {1, 2} CLPT

0 55.646 57.463 56.504
15 73.762 75.043 75.892
30 114.532 114.000 121.201
45 156.650 156.490 167.471
60 198.143 199.574 213.171
75 228.638 230.546 246.813
90 235.416 236.930 256.077

Table 4. Buckling loads of [+θ5/−θ5]s angle-ply laminates with a central circular
cutout, subjected to uniform end-shortening, with SS-CL boundary conditions (h/W =
0.035, d/W = 0.6).
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Figure 12. Effect of thickness-to-width ratio and transverse shear flexibility on the
buckling resistance of angle-ply laminates with a central circular cutout, subjected to
uniform end-shortening (d/W = 0.6). Left: [+45◦5/−45◦5]s laminate. Right: [90◦]20

unidirectional laminate.

laminates with SS-SS and SS-CL boundary conditions, respectively. Moreover, the maximum difference
occurred for θ = 30 and 90 degrees for the laminates with SS-SS and SS-CL boundary conditions,
respectively. The results in Figure 11 also indicate that the boundary conditions influence the importance
of transverse shear flexibility in addition to how fiber angle affects buckling resistance.

The effects of the thickness-to-width ratio h/W on the buckling predictions for [+θ5/−θ5]s angle-
ply laminates with d/W = 0.6 are shown in Figure 12 for θ = 45 and 90 degrees. Laminates with
θ = 45 degrees have a very high degree of anisotropy in the form of coupling between pure-bending and
twisting deformations. In contrast, laminates with θ = 90 degrees are unidirectional, aligned with the
loading direction, and have a very high degree of orthotropy. Two groups of curves, one red and one

Buckling load (kips)
Fiber angle, θ (deg) Present: {3, 0} FEA: {1, 2} CLPT

0 55.012 56.270 55.523
15 63.399 64.226 65.254
30 82.521 82.667 86.091
45 92.826 93.636 96.268
60 88.736 89.926 92.261
75 77.121 77.438 78.997
90 71.160 70.701 72.464

Table 5. Buckling loads of [+θ5/−θ5]s angle-ply laminates with a central circular
cutout, subjected to uniform end-shortening, with SS-SS boundary conditions (h/W =
0.035, d/W = 0.6).
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black, are shown in each figure, corresponding to laminates with SS-SS and SS-CL boundary conditions,
respectively. In each group of curves, the solid lines correspond to results obtained with the present
analysis, while thick dashed and dash-dotted lines correspond to results obtained from the CLPT-based
analysis and the FEA, respectively.

The results in Figure 12, left, for θ = 45 degrees, generally show discrepancies between the results
obtained by using all three analysis methods that are more pronounced for the SS-CL than for the SS-
SS boundary condition. For the thinner laminates, the results obtained from the present analysis and the
CLPT-based analysis are in very good agreement, but neither set of results agrees with the corresponding
results obtained by using the FEA. For the thinner laminates, the FEA overpredicts the buckling loads.
As the laminate thickness increases, the agreement between the results obtained from the present analysis
and the FEA becomes very good, but neither set of results agrees with the corresponding results obtained
by using the CLPT-based analysis. In addition, the CLPT results significantly overpredict the buckling
loads for the larger values of h/W . In particular, the largest difference in the results obtained from the
CLPT-based analysis and the two shear-deformation-based analyses is 11% for the SS-SS laminates and
5% in the case of SS-CL laminates, for the upper limit of h/W = 0.05 shown in the figure. The results in
Figure 12, right, for θ = 90 degrees, show the same trends for the SS-CL laminates; however, the results
for the SS-SS laminates obtained from the three analysis methods are in very good agreement. The largest
differences in the results obtained from the CLPT-based analysis and the two shear-deformation-based
analyses are 15% for the SS-SS laminates and less than 2% in the case of SS-CL laminates, for the upper
limit of h/W = 0.05 shown in Figure 12, left.

Typical buckling modes are shown in Figures 13 and 14 for the laminates with θ = 45 and 90 degrees,
respectively, and with h/W = 0.035 and d/W = 0.6. Two modes are shown in each figure that correspond
to the SS-CL and SS-SS boundary conditions. The mode shapes shown in Figure 13 for the laminates with

Figure 13. Buckling modes for a [45◦5/−45◦5]s laminate with h/W = 0.035 and
d/W = 0.6: (a) SS-CL and (b) SS-SS boundary conditions.
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Figure 14. Buckling modes for a [90◦]20 laminate with h/W = 0.035 and d/W = 0.6:
(a) SC and (b) SS-type boundary conditions.

θ = 45 degrees are skewed for both boundary-condition cases, as a result of the high degree of bending-
twisting anisotropy. In addition, the buckle pattern for the SS-CL boundary condition (Figure 13a) is
flatter than that for the SS-SS boundary condition (Figure 13b), as expected. The buckle patterns shown
in Figure 14 for the laminates with θ = 90 degrees exhibit bilateral symmetry for both sets of boundary
conditions. However, the buckle pattern for the unidirectional laminate with the clamped loaded edges
exhibits three half waves in the horizontal x-direction (weak direction), as shown in Figure 14a, as
compared to one half wave for the SS-SS laminate shown in Figure 14b. The buckling mode shown in
Figure 14a for the SS-CL boundary conditions has the same features as the experimentally determined
buckle pattern of a similar specially orthotropic plate that was presented in [Nemeth 1990].

7. Conclusions

A semianalytical solution method for predicting the bending and buckling behavior of a moderately
thick laminate with a cutout has been presented. The analysis method has been validated for linear stress
analyses of laminates with a cutout and subjected to uniform lateral pressure against corresponding
results obtained from finite element analyses (FEA) based on a {1, 2} shear deformation plate theory
appearing in the literature. The agreement between the present method and the FEA was found to be
excellent. In all cases considered, the maximum difference in the out-of-plane displacements predicted
by the two methods is less than 2%. Comparisons of the through-the-thickness stress variations also
showed favorable agreement between the two approaches, despite the fact that the FEA are based on a
plate theory that cannot capture nonuniform through-the-thickness variations of the in-plane stresses for
thick plates.
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The present method has also been validated for the buckling analyses of pathological highly orthotropic
and highly anisotropic laminates with relatively large cutouts, subjected to uniform end-shortening. Com-
parisons of results obtained by the present method with the corresponding results obtained from the FEA
and from a similar semianalytical solution method based on CLPT have been presented for two sets
of boundary conditions. The comparisons with the FEA show close agreement between the two shear-
deformation-based analyses, for the most part. Differences were found for relatively small values of the
thickness-to-width ratio, h/W . In contrast, very good agreement between the present analysis and the
FEA was found for the larger values of h/W . Results have also been presented that show the effects of
laminate orthotropy and anisotropy, and boundary conditions, on the importance of including transverse
shear flexibility in the analysis. Overall, the analysis method presented herein successfully captures the
effects of transverse shear flexibility and represents boundary conditions adequately, which is problematic
for some analyses based on a transverse shear deformation theory.

Appendix A: Stress resultants and constitutive equations

The stress resultants appearing in (12) are defined as
Nxx

Nyy

Nxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

 dz,


Mxx

Myy

Mxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

 z dz, (A1a)


Fxx

Fyy

Fxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

3(z) dz,
{

qxz

qyz

}
=

∫
+h/2

−h/2

{
σxz

σyz

}
3′(z) dz, (A1b)

where h is the plate thickness. In terms of the notation used in [Ray 2003],
Fxx

Fyy

Fxy

= 3
2h


Mxx

Myy

Mxy

− 4
3h2


Pxx

Pyy

Pxy


, {

fxz

fyz

}
=

3
2h

({
Qx

Q y

}
−

4
h2

{
Rx

Ry

})
, (A1c)

where Qx and Q y are the transverse shear stress resultants of CLPT given by{
Qxz

Q yz

}
=

∫
+h/2

−h/2

{
σxz

σyz

}
dz, (A2a)

and 
Pxx

Pyy

Pxy

=
∫
+h/2

−h/2


σxx

σyy

σxy

 z3 dz,
{

Rx

Ry

}
=

∫
+h/2

−h/2

{
σxz

σyz

}
z2 dz. (A2b)

The constitutive equations used in the present theory are those for a plate made of one or more layers of
linear elastic, specially orthotropic materials. As a result, the plate is generally inhomogeneous through
the thickness. These equations, referred to the corresponding (x, y, z) plate coordinate system, are given
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by 
σxx

σyy

σxy

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


εxx

εyy

γxy

 ,
{
σyz

σxz

}
=

[
C44 C45

C45 C55

]{
γyz

γxz

}
, (A3)

where the subscripted σi j with i, j = x, y, z are the stress components, Qi j = Qi j (z) are the transformed,
reduced stiffness matrix coefficients of CLPT, and C i j = C i j (z) are the transformed transverse shearing
stiffnesses of the FSDT [Jones 1975]. These equations reveal that, if the transverse shearing strains
vanish on the bounding surfaces of a plate, the transverse shearing stresses also vanish on the bounding
surfaces of the plate.

The submatrices in (16) are defined as

A=

A11 A12 A16

A12 A22 A26

A16 A26 A66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 dz, (A4a)

B =

B11 B12 B16

B12 B22 B26

B16 B26 B66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 z dz, (A4b)

D =

D11 D12 D16

D12 D22 D26

D16 D26 D66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 z2 dz, (A4c)

E =

E11 E12 E16

E12 E22 E26

E16 E26 E66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

3(z) dz, (A4d)

F =

F11 F12 F16

F12 F22 F26

F16 F26 F66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

3(z)z dz, (A4e)

H =

H11 H12 H16

H12 H22 H26

H16 H26 H66

= ∫ +h/2

−h/2

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 (3(z))2 dz, (A4f)

G =
[

G55 G45

G45 G44

]
=

∫
+h/2

−h/2

[
C55 C45

C45 C44

]
(3′(z))2 dz. (A4g)

Substituting the strain expressions given by (7a) and (7b) into the stresses given by (A3) and perform-
ing the through-the-thickness integrations in (A1) yields the laminate constitutive equations as

N = Aε0
+ Bκ0

+ E00, M = Bε0
+ Dκ0

+ F00, F = Eε0
+ Fκ0

+ H00, (A5a)

f = G8. (A5b)

For the laminated plates investigated in [Ray 2003], the expression

3(z)= 3
2(z/h)− 2(z/h)3 (A6)
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was used to obtain the laminate constitutive equations given by (A5a). In particular, using (A6) with
(A5a) the constitutive equations reduce to

N = Aε0, M = Dκ0
+ F00, F = Fκ0

+ H00, (A7)

for symmetrically laminated plates. The first of these equations indicates that there is no coupling be-
tween membrane action and bending or transverse shearing actions. In contrast, the last two parts of
(A7) indicate strong coupling between bending and/or transverse shearing actions.

The resultant forces and moments appearing in (22) that are associated with the applied edge tractions
are defined as

N ∗x =
∫ h/2

−h/2
t∗x dz, N ∗y =

∫ h/2

−h/2
t∗y dz, N ∗z =

∫ h/2

−h/2
t∗z dz, (A8a)

M∗x =
∫ h/2

−h/2
zt∗x dz, M∗y =

∫ h/2

−h/2
zt∗y dz. (A8b)

Appendix B: Nonlinear and linearized forms of equations for stress and buckling analyses

The first variations of the strain energies of the laminate, the elastic edge supports (springs) due to the
internal forces, and the potential energy due to external boundary loads acting on the surface and around
the boundary of the laminate, δU , δ�, and δV , respectively, are derived in the form

δU =−
∫

A

{
(Nxx,x + Nxy,y)δux + (Nyy,y + Nxy,x)δu y

+
(
Mxx,xx + 2Mxy,xy +Myy,yy + [Nxx uz,x + Nxyuz,y],x + [Nyyuz,y + Nxyuz,x ],y

)
δuz

+ (Fxx,x + Fxy,y − qxz)δ8xz + (Fyy,y + Fxy,y − qyz)δ8yz
}

d A

+

∫
0

{
(Nxx nx+Nxyny)δux + (Nyyny+Nxynx)δu y

+
(
Mxx,x nx+Myy,yny+Mxy,ynx+Mxy,x ny+Nxx uz,x nx+Nyyuz,yny+Nxyuz,x ny+Nxyuz,x ny

)
δuz

− (Mxx nx+Mxyny)δuz,x − (Myyny+Mxynx)δuz,y+ (Fxx nx+Fxyny)δ8xz+ (Fyyny+Fxynx)δ8yz
}

d0,
(B1a)

δ�=

∫
0u

{
Sx(ux − ũ∗x)δux + Sy(u y − ũ∗x)δu y + Sz(uz − ũ∗x)δuz

+ Jϑx

(
uz,x −

6
5h
8xz − ϑ̃

∗

x

)(
δuz,x −

6
5h
δ8xz

)
+ Jϑy

(
uz,y −

6
5h
8yz − ϑ̃

∗

y

)(
δuz,y −

6
5h
δ8yz

)}
d0

+

∫
01

{
sx(ux −1x)δ(ux −1x)+ sy(u y −1y)δ(u y −1y)

}
d0, (B1b)

and

δV =
∫
0σ

N ∗x δux + N ∗y δu y + N ∗z δuz −M∗x uz,x −M∗y δuz,y +
5

6h
M∗x δ8xz +

5
6h

M∗y δ8yz d0

+

∫
A

p∗δuz d A+ P∗x 1x + P∗y1y . (B1c)
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Substituting these expressions for δU , δ�, and δV into (23) and enforcing the fundamental theorem of
the calculus of variations leads to the equilibrium equations

Nxx,x + Nxy,y

Nxy,x + Nyy,y

Mxx,xx + 2Mxy,xy +Myy,yy + Nxx uz,xx + 2Nxyuz,xy + Nyyuz,yy − p∗

Fxx,x + Fxy,y − fxz

Fxy,x + Fyy,y − fyz

= 0. (B2)

For external forces and moments applied along the boundary 0σ , the boundary conditions are obtained
as

(bx + b1x)nx + (by + b1y)ny = f ∗, (B3)

where
bT

x = {Nxx , Nxy, (Mxx,x+Mxy,y),Mxx ,Mxy, Fxx , Fxy},

bT
1x = {0, 0, (Nxx uz,x+Nxyuz,y), 0, 0, 0, 0},

bT
y = {Nxy, Nyy, (Mxy,x+Myy,y),Mxy,Myy, Fxy, Fyy},

bT
1y = {0, 0, 0, (Nxyuz,x+Nyyuz,y), 0, 0, 0},

f ∗T =
{

N ∗x , N ∗y , N ∗z ,M∗x ,M∗y ,
6

5h
M∗x ,

6
5h

M∗y
}
.

(B4)

For prescribed displacements and rotations applied through the elastic springs along the boundary 0u ,
with unit normal n, the boundary conditions are obtained as

(cx + c1x)nx + (cy + c1y)ny + cu + c1 = g∗u + g∗1, (B5)

where

cT
x = {Nxx , Nxy, (Mxx,x +Mxy,y),−Mxx ,−Mxy, Fxx , Fxy, 0, 0},

cT
1x = {0, 0, (Nxx uz,x + Nxyuz,y), 0, 0, 0, 0, 0, 0},

cT
y = {Nxy, Nyy, (Mxy,x +Myy,y),−Mxy,−Myy, Fxy, Fyy, 0, 0},

cT
1y = {0, 0, 0, (Nxyuz,x + Nyyuz,y), 0, 0, 0, 0, 0},

cT
u =

{
Sx ux , Syu y, Szuz, Jϑx

(
uz,x −

6
5h
8xz

)
, Jϑy

(
uz,y −

6
5h
8yz

)
,

−
6

5h
Jϑx

(
uz,x −

6
5h
8xz

)
,−

6
5h

Jϑy

(
uz,y −

6
5h
8yz

)
, 0, 0

}
,

cT
1 = {sx(ux −1x), sy(u y −1y), 0, 0, 0, 0, 0, sx(1x − ux), sy(1y − u y)},

g∗
T

u =

{
Sx ũ∗x , Sy ũ∗y, Sx ũ∗z , Jϑxϑ

∗

x , Jϑyϑ
∗

y ,−
6

5h
Jϑxϑ

∗

x ,−
6

5h
Jϑyϑ

∗

y , 0, 0
}
,

g∗
T

1 =

{
0, 0, 0, 0, 0, 0, 0,

P∗x
L
,

P∗y
L

}
.

(B6)
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Equations for stress analysis. The equations needed to perform a linear stress analysis are obtained by
direct linearization of the nonlinear plate equations. Under the presumption of infinitesimal displacement
gradients, the product terms appearing in the in-plane strains given by (7d) and the equilibrium equations
given by (B2) are neglected. The resulting equilibrium equations are

Nxx,x + Nxy,y

Nxy,x + Nyy,y

Mxx,xx + 2Mxy,xy +Myy,yy − p∗

Fxx,x + Fxy,y − fxz

Fxy,x + Fyy,y − fyz

= 0. (B7)

Similarly, the boundary conditions on 0σ that are given by (B3) reduce to

bx nx + byny = f ∗, (B8)

where the vectors are defined as

bT
x = {Nxx , Nxy, (Mxx,x +Mxy,y),Mxx ,Mxy, Fxx , Fxy},

bT
y = {Nxy, Nyy, (Mxy,x +Myy,y),Mxy,Myy, Fxy, Fyy},

f ∗
T
=

{
N ∗x , N ∗y , N ∗z ,M∗x ,M∗y ,

6
5h

M∗x ,
6

5h
M∗y
}
.

(B9)

For the boundary 0u , the boundary conditions given by (B5) reduce to

cx nx + cyny + cu + c1 = g∗u + g∗1, (B10)

where the vectors are defined as

cT
x = {Nxx , Nxy, (Mxx,x +Mxy,y),−Mxx ,−Mxy, Fxx , Fxy, 0, 0},

cT
y = {Nxy, Nyy, (Mxy,x +Myy,y),−Mxy,−Myy, Fxy, Fyy, 0, 0},

cT
u =

{
Sx ux , Syu y, Szuz, Jϑx

(
uz,x −

6
5h
8xz

)
, Jϑy

(
uz,y −

6
5h
8yz

)
,

−
6

5h
Jϑx

(
uz,x −

6
5h
8xz

)
,−

6
5h

Jϑy

(
uz,y −

6
5h
8yz

)
, 0, 0

}
,

cT
1 = {sx(ux −1x), sy(u y −1y), 0, 0, 0, 0, 0, sx(1x − ux), sy(1y − u y)},

g∗
T

u =

{
Sx ũ∗x , Sy ũ∗y, Sx ũ∗z , Jϑxϑ

∗

x , Jϑyϑ
∗

y ,−
6

5h
Jϑxϑ

∗

x ,−
6

5h
Jϑyϑ

∗

y , 0, 0
}
,

g∗
T

1 =

{
0, 0, 0, 0, 0, 0, 0,

P∗x
L
,

P∗y
L

}
.

(B11)

These equations constitute a linear boundary-value problem that defines the stresses and displacements
associated with stable deformations. Typically, this boundary-value problem has nonhomogeneous partial
differential equations and nonhomogeneous boundary conditions.

Equations for buckling analysis. In a classical linear bifurcation analysis, the displacement field is lin-
earized about a stable, initially flat prebuckling state. In particular, each dependent kinematic variable is
partitioned into a linear prebuckling part plus an infinitesimal increment. The displacement expansions
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are then substituted into the nonlinear strain-displacement relations, the linear constitutive equations, the
nonlinear equilibrium equations, the boundary conditions, and the potential energy. By collecting like
terms and retaining only terms that are linear in the infinitesimal increments of the dependent kinematic
variables, the field equations are separated into two groups. The first group is a set of linear equations
that are a subset of the equations used for the linear stress analysis in which only in-plane loads are
considered and out-of-plane displacements are negligible. This linear boundary-value problem defines
the in-plane stresses and displacements associated with the initial, stable prebuckling state and is referred
to as the prebuckling problem.

The second group of equations, associated with infinitesimal increments in the kinematic variables,
consists of homogeneous linear differential equations and homogeneous boundary conditions. Thus,
these equations constitute a linear boundary-eigenvalue problem, which is referred to as the buckling
problem. This type of analysis presumes that the initial prebuckling configuration of the laminate is
flat, which places requirements on the nature of the applied loads. For a general in-plane loading state
and multiply connected domain, the prebuckling stress state is nonuniform, with respect to the in-plane
coordinates. This nonuniformity manifests itself as variable coefficients in the differential equations that
define the buckling kinematic variables (incremental kinematic variables). Moreover, it is these variable
coefficients that relate the buckling displacement to the magnitude of the in-plane loads.

The stable prebuckling equilibrium state of the plate is denoted by the superscript (0) while the incre-
mental state, just after buckling occurs, is denoted by the superscript (1). It is assumed that the plate is
symmetrically laminated (B = 0) and remains flat prior to buckling. During the linearization procedure,
no out-of-plane displacement and transverse shear deformations occur during the prebuckling state; thus,
u(0)z = 0 and 8(0)xz =8

(0)
yz = 0. Also, the out-of-plane displacement component in the incremental state

is moderately large as compared to the incremental in-plane displacements (von Kármán assumptions
are applied), that is, u(1)z � u(1)x , u(1)y , 8x z(1), 8yz(1). During transition to an adjacent equilibrium state,
the external loads do not change and the prebuckling in-plane stresses are much higher than those in the
incremental state, that is, N (0)

αβ � N (1)
αβ .

Prebuckling equations. In the linearization process, the terms with only superscript (0) are associated
with flat stable equilibrium states and are isolated to obtain the equilibrium equations{

N (0)
xx,x + N (0)

xy,y

N (0)
yy,y + N (0)

xy,x

}
= 0, (B12)

and the boundary conditions

b0x nx + b0yny = f ∗0 , (B13)

on the boundary, 0σ , in which

bT
0x =

{
N (0)

xx , N (0)
xy
}
, bT

0y =
{

N (0)
xy , N (0)

yy
}
, f ∗

T

0 = {N
∗

x , N ∗y }. (B14)

Likewise, linearization gives the boundary conditions

c0x nx + c0yny + c0u + c01 = g∗0u + g∗01 (B15)
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on the boundary, 0u , in which

cT
0x =

{
N (0)

xx , N (0)
xy , 0, 0

}
, cT

0y =
{

N (0)
xy , N (0)

yy , 0, 0
}
, cT

0s =
{

Sx u(0)x , Syu(0)y , 0, 0
}
, (B16a)

cT
01 =

{
sx
(
u(0)x −1

(0)
x
)
, sy
(
u(0)y −1

(0)
y
)
, sx
(
1(0)x − u(0)x

)
, sy
(
1(0)y − u(0)y

)}
, (B16b)

g∗0u
T
=
{

Sx ũ∗(0)x , Sy ũ∗(0)y , 0, 0
}
, g∗01

T
=

{
0, 0,

P∗x
L
,

P∗y
L

}
, (B16c)

where L represents the length of the edge mounted to the rigid bar.

Buckling equations. In the linearization process, the terms involving only superscript (1) correspond to
the adjacent equilibrium state, and products of these small terms are neglected. The equilibrium equations
obtained are 

N (1)
xx,x + N (1)

xy,y

N (1)
yy,y + N (1)

xy,x

M (1)
xx,xx + 2M (1)

xy,xy +M (1)
yy,yy + N (0)

xx u(1)z,xx + 2N (0)
xy u(1)z,xy + N (0)

yy u(1)z,yy

F (1)xx,x + F (1)xy,y − f (1)xz

F (1)yy,y + F (1)xy,x − f (1)yz


= 0, (B17)

and the boundary conditions on the edge 0σ are

(bx + b1x)nx + (by + b1y)ny = 0, (B18)

where
bT

x =
{

N (1)
xx , N (1)

xy ,
(
M (1)

xx,x +M (1)
xy,y

)
,M (1)

xx ,M (1)
xy , F (1)xx , F (1)xy

}
,

bT
y =

{
N (1)

xy , N (1)
yy ,

(
M (1)

xy,x +M (1)
yy,y

)
,M (1)

xy ,M (1)
yy , F (1)xy , F (1)yy

}
,

bT
1x =

{
0, 0,

(
N (0)

xx u(1)z,x + N (0)
xy u(1)z,y

)
, 0, 0, 0, 0

}
,

bT
1y =

{
0, 0, 0,

(
N (1)

xy u(1)z,x + N (1)
yy u(1)z,y

)
, 0, 0, 0

}
.

(B19)

Similarly, the boundary conditions on the edges 0u and 01 obtained from linearization are

(cx + c1x)nx + (cy + c1y)ny + cu + c1 = 0, (B20)

where

cT
x =

{
N (1)

xx , N (1)
xy ,

(
M (1)

xx,x +M (1)
xy,y

)
,−M (1)

xx ,−M (1)
xy , F (1)xx , F (1)xy , 0, 0

}
,

cT
1x =

{
0, 0,

(
N (0)

xx u(1)z,x + N (0)
xy u(1)z,y

)
, 0, 0, 0, 0, 0, 0

}
,

cT
y =

{
N (1)

xy , N (1)
yy ,

(
M (1)

xy,x +M (1)
yy,y

)
,−M (1)

xy ,−M (1)
yy , F (1)xy , F (1)yy , 0, 0

}
,

cT
1y =

{
0, 0, 0,

(
N (0)

xy u(1)z,x + N (0)
yy u(1)z,y

)
, 0, 0, 0, 0, 0

}
,

cT
u =

{
Sx u(1)x , Syu(1)y , Szu(1)z , Jϑx

(
u(1)z,x −

6
5h
8(1)xz

)
, Jϑy

(
u(1)z,y −

6
5h
8(1)yz

)
,

−
6

5h
Jϑx

(
u(1)z,x −

6
5h
8(1)xz

)
,−

6
5h

Jϑy

(
u(1)z,y −

6
5h
8(1)yz

)
, 0, 0

}
,

cT
1 =

{
Sx
(
u(1)x −1

(1)
x
)
, Sy

(
u(1)y −1

(1)
y
)
, 0, 0, 0, 0, 0, Sx

(
1(1)x − u(1)x

)
, Sy

(
1(1)y − u(1)y

)}
.

(B21)



STRESS AND BUCKLING ANALYSES OF LAMINATES WITH A CUTOUT USING A {3, 0}-PLATE THEORY 859

Appendix C: Representation of the displacement quantities

The local displacement quantities ūi and 8̄i z that appear in (24) are specified in the form of Laurent
series

ūα = 2h(ρ)Re
N∑

n=−N
n 6=0

a(α)n ξ n, ūz = 2h(ρ)Re
N∑

n=−N
n 6=0

a(z)n

∫
ξ n dz̄, 8̄αz = 2h(ρ)Re

N∑
n=−N

n 6=0

a(αz)
n ξ n

(α = x, y), (C1)

where ā(α)n and ā(αz)
n are complex-valued unknown coefficients and the complex variable z̄ is defined as

z̄ = x ′+ iy′ with respect to the local x ′-y′ coordinate system shown in Figure 1. In (C1), all the series
expansions are defined in terms of a complex variable ξ that is analytic outside of a unit circle and related
to the complex variable z̄ through a mapping function ω(z̄) as

z̄ = ω−1(z̄)= rξ − s
ξ
. (C2)

In this mapping, r and s are real-valued constants defined in terms of the cutout geometry as

r = 1
2 (a+ b), (C3a)

and
s = 1

2 (a− b). (C3b)

The mapping function, ω(z̄), transforms the complex plane, z̄, with an elliptic cutout to another complex
plane, ξ , with an internal boundary as a unit-radius circle while the external boundaries preserve their
90 degree angles [Bowie 1956], thus enabling use of Laurent series. Furthermore, a domain-of-influence
function h(ρ) is defined as the fifth-order polynomial

h(ρ)=

1− 10
(
ρ

ρ0

)3
+ 15

(
ρ

ρ0

)4
− 6

(
ρ

ρ0

)5
if 0≤ ρ ≤ ρ0,

0 if ρ ≥ ρ0,

(C4)

in which ρ =
√

x ′ 2+ y′ 2 and ρ0 is the radius of influence of h(ρ) outside the cutout (that is, ρ0 >

max[a, b]). Note that the function h(ρ) and its derivatives vanish for ρ ≥ ρ0.
The global displacement quantities ¯̄ui and ¯̄8αz are specified as Chebyshev series in the form

¯̄uα =
M∑

m=0

m∑
n=0

c(α)mn Tm(s1)Tn(s2),
¯̄8αz =

M∑
m=0

m∑
n=0

c(αz)
mn Tm(s1)Tn(s2) (α = x, y), (C5)

where Tk is the kth term of the Chebyshev series with Tk+1(x)= 2xTk(x)− Tk−1(x) while T0(x)= 1 and
T1(x)= x . The nondimensional coordinates s1 and s2 are defined as s1 = 2x/W and s2 = 2y/L , where
W and L are the characteristic width and length of the plate, respectively.

The vector of unknown generalized coordinates q that appears in (25) contains all the unknown real
and complex-valued constants that appear in (C1) and (C5). Specifically,

qT
= {q̄T

x , q̄T
y , q̄T

z , q̄T
xz,
¯̄qT

yz,
¯̄qT

x ,
¯̄qT

y ,
¯̄qT

z ,
¯̄qT

xz,
¯̄qT

yz}, (C6)
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where

q̄T
α =

{
a(α)
−N

T
, a(α)
−N+1

T
, . . . , a(α)

−1
T
, a(α)1

T
, . . . , a(α)N−1

T
, a(α)N

T }
,

q̄T
αz =

{
a(αz)
−N

T
, a(αz)
−N+1

T
, . . . , a(αz)

−1
T
, a(αz)

1
T
, . . . , a(αz)

N−1
T
, a(αz)

N
T }
,

¯̄qT
α =

{
c(α)00

T
, c(α)10

T
, c(α)01

T
, . . . , c(α)M0

T
, c(α)(M−1)1

T
, c(α)(M−2)2

T
, . . . , c(α)1(M−1)

T
, c(α)0M

T }
,

¯̄qT
αz =

{
c(αz)

00
T
, c(αz)

10
T
, c(αz)

01
T
, . . . , c(αz)

M0
T
, c(αz)
(M−1)1

T
, c(αz)
(M−2)2

T
, . . . , c(αz)

1(M−1)
T
, c(αz)

0M
T }
,

(α = x, y, z).

(C7)
The corresponding vectors of known functions, Vi and Vαz (i = x, y, z;α = x, y) in (25) for all displace-
ment quantities are defined as

V T
x = {V̄

T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T , 0T , 0T , 0T
},

V T
y = {0

T , V̄ T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T , 0T , 0T
},

V T
y = {0

T , 0T , V̄ T
z , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T , 0T
},

V T
xz = {0

T , 0T , 0T , V̄ T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 , 0T
},

V T
yz = {0

T , 0T , 0T , 0T , V̄ T
0 , 0T , 0T , 0T , 0T , ¯̄V T

0 },

(C8)

where the vectors V̄0, V̄ z, and ¯̄V0 are defined in the form

V̄ T
β =

{
V̄ T
β(−N ), V̄ T

β(−N+1), . . . , V̄ T
β(−1), V̄ T

β(1), . . . , V̄ T
β(N−1), V̄ T

β(N )
}

(β = 0, z), (C9)

with

V̄ T
0(n) = {2 Re[ξ nh(ρ)],−2 Im[ξ nh(ρ)]}, (C10a)

V̄ T
z(n) =

{
2 Re

[(∫
ξ n dz̄

)
h(ρ)

]
,−2 Im

[(∫
ξ n dz̄

)
h(ρ)

]}
, (C10b)

and

¯̄V T
0 = {T0(s1)T0(s2), T1(s1)T0(s2), T0(s1)T1(s2), . . . , TM(s1)T0(s2),

TM−1(s1)T1(s2), . . . , T1(s1)TM−1(s2), T0(s1)TM(s2)}. (C11)

The integral term,
∫
ξ n dz̄, in (C10b) is expressed as

∫
ξ n dz̄ =


r ξ

n+1

n+1
− s ξ

n−1

n−1
if |n|> 1,

r ln ξ + s ξ
−2

2
if n =−1,

r ξ
2

2
− s ln ξ if n = 1.

(C12)

The functions chosen for representing the local displacement quantities produce multivalued modes,
because of the presence of the logarithmic terms in (C12), and must be made single-valued to obtain
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unique representations. In matrix form, the single-valuedness conditions are expressed as

Gcq = 0, (C13)

in which Gc is the coefficient matrix of the constraint equations and is defined as

Gc =

[
Gr

Gs

]
, (C14)

where

GT
r =

{
0T , 0T , . . . , 0T , g(−1), 0T , 0T , . . . , 0T , 0T }, (C15a)

GT
s =

{
0T , 0T , . . . , 0T , 0T , g(1), 0T , . . . , 0T , 0T }, (C15b)

with

gT
(−1) = {0, r}, (C16a)

and

gT
(1) = {0, s}. (C16b)

Note that the subscripts (−1) and (1) denote the locations of the terms in the local series. Finally,
the matrix constraint equations in (C13) are integrated into the total potential energy formulation via
Lagrange multipliers, producing zero potential energy, in the form

W = λT Gcq ≡ 0, (C17)

where W is the potential energy of constraint forces, and λ denotes the vector of unknown Lagrange
multipliers given by

λT
= {λr , λs}, (C18)

where λr and λs denote the unknown constraint forces (Lagrange multipliers) that enforce the conditions
in (C13).

Appendix D: Details of the solution method

Using the representations of the displacement fields in (25), the linearized form of the vector of strain
quantities, e, given by (14b), is expressed in terms of the unknown generalized coordinates as

e= Bq, (D1)

where the matrix B is defined as

B =


Bε

Bκ

B0

B8

 , (D2)
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and the coefficient matrices Bε , Bκ , B0, and B8 are defined as

Bε
=

 V T
x,x

V T
y,y

V T
x,y + V T

y,x

 , Bκ
=

 −V T
z,xx

−V T
z,yy

−2V T
z,xy

 , B0
=

 V T
xz,x

V T
yz,y

V T
xz,y + V T

yz,x

 , B8
=

[
V T

xz

V T
yz

]
. (D3)

The weighted-average boundary displacement vector (19a) is also expressed in terms of the unknown
generalized coordinates as

ũ = ṼB q, (D4)

where the matrix ṼB is defined as

ṼB =


V T

x

V T
y

V T
z

V T
z,x −

6
5 V T

xz

V T
z,y −

6
5 V T

yz

 . (D5)

Substituting the matrix representation of e given by (D1) into the strain energy expression for the laminate
defined by (17) and rearranging the terms, the linearized form of the strain energy is expressed in terms
of the unknown generalized coordinates as

U = 1
2

qT KC q, (D6)

where the matrix KC is defined as

KC =

∫
A

BT C B d A. (D7)

Substituting (D4) for the boundary displacement vector ũ into the strain energy of the elastic spring
supports, given by (18) and rearranging the terms, the linearized form of the strain energy � is expressed
in terms of the unknown generalized coordinates as

�= 1
2 qT Sqq q− qT S∗q +�

∗, (D8)

where the matrix Sqq and the vector S∗q are defined as

Sqq =

∫
0u

Ṽ T
B ku ṼB d0 (D9a)

and

S∗q =
∫
0u

Ṽ T
B ku ũ∗ d0. (D9b)

The strain energy of the elastic spring arising from the applied displacement constraints �∗ is written as

�∗ =
1
2

∫
0u

ũ∗T ku ũ∗ d0. (D10)

Substituting (D4) and the transverse displacement uz given by (25a) into the potential energy of external
loads given by (21) and rearranging the terms, the linearized form of the potential energy V is expressed
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in terms of the unknown generalized coordinates as

V =−qT N∗− qT p∗z , (D11)

where the vectors N∗ and p∗z are defined as

N∗ =
∫
0(σ )

Ṽ T
B T∗ d0, p∗z =

∫
A

p∗Vz d A. (D12)

Appendix E: Details of the bifurcation analysis

In the bifurcation analysis, the displacement vector u, weighted-average boundary displacement vector
ũ, vector of generalized coordinates q, uniform-edge-displacement vector 1, and constraint force vector
λ are expressed as

u = u(0)+ eu(1), (E1a)

ũ = ũ(0)+ eũ(1), (E1b)

q = q(0)+ eq(1), (E1c)

1=1(0)+ e1(1), (E1d)

λ= λ(0)+ eλ(1). (E1e)

By using these expressions, the terms appearing in the potential energy expansion given by (31) are
obtained as

π (0)
(

Q(0))
=U (0)(q(0))+�(0)(q(0),1(0))+ V (0)(q(0),1(0))+W (0)(q(0),λ(0)), (E2a)

π (1)
(

Q(0), Q(1))
=U (1)(q(0), q(1)

)
+�(1)

(
q(0),1(0), q(1),1(1)

)
+ V (1)(q(0),1(0), q(1),1(1)

)
+W (1)(q(0),λ(0), q(1),λ(1)

)
, (E2b)

π (2)
(

Q(0), Q(1))
=U (1)(q(0), q(1)

)
+�(1)

(
q(1),1(1)

)
+W (1)(q(1),λ(1)). (E2c)

The corresponding displacement vectors for the prebuckling and adjacent equilibrium states, u(0) and
u(1), are given by

u(0)T =
{
u(0)x , u(0)y , 0, 0, 0, 0, 0

}
, (E3)

u(1)T =
{
u(1)x , u(1)y , u(1)z ,8(1)xz ,8

(1)
yz , u(1)z,x , u(1)z,y

}
. (E4)

The zero values in (E3) indicate an absence of bending deformations in the prebuckling equilibrium state.
The strain vector e, defined by (14b), becomes

e(x, y)= e(0)(x, y)+ ee(1)(x, y)+ e2e(2)(x, y)+ O(e3), (E5)
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where third-order terms in the parameter e are disregarded. The first three terms in (E5) are given by

e(0)T =
{
u(0)x,x , u(0)y,y, u(0)x,y+u(0)y,x , 0, 0, 0, 0, 0, 0, 0, 0

}
, (E6a)

e(1)T =
{
u(1)x,x ,u

(1)
y,y,u

(1)
x,y+u(1)y,x ,−u(1)z,xx ,−u(1)z,yy,−2u(1)z,xy,8

(1)
xz,x ,8

(1)
yz,y,8

(1)
xz,y+8

(1)
yz,x ,8

(1)
xz ,8

(1)
yz
}
, (E6b)

e(2)T = 1
2

{(
u(1)z,x

)2
,
(
u(1)z,y

)2
, 2u(1)z,x u(1)z,y, 0, 0, 0, 0, 0, 0, 0, 0

}
. (E6c)

Applying the bifurcation procedure to (25), the displacement quantities ui (i = x, y, z) and 8i z (i = x, y)
for each state are found to be

u(k)i = V T
i q(k) with i = x, y, z, 8

(k)
i z = V T

i z q(k) with i = x, y, (E7)

in which k = 0, 1. Using these representations, the strain vectors e(0), e(1), and e(2) are rewritten in matrix
form in terms of the unknown generalized coordinates as

e(0) = BL q(0), e(1) = Bq(1), e(1)N = BN q(1), (E8)

where the matrices BL and BN are defined as

BL =


Bε

0
0
0

 , BN =


Bε

N
0
0
0

 , (E9)

and the coefficient matrix Bε
N is defined as

Bε
N =

[
V T

z,x

V T
z,y

]
. (E10)

Substituting (E5) into the constitutive equations given by (15) yields

s(x, y)= s(0)(x, y)+ es(1)(x, y)+ e2s(2)(x, y)+ O(e3), (E11)

where
s(0) = Ce(0), s(1) = Ce(1), s(2) = Ce(2), (E12)

and C is for symmetrically laminated plates, that is,

C =


A 0 0 0
0 D F 0
0 F H 0
0 0 0 G

 . (E13)

Thus, the stress resultant vector for each state becomes

s(0)T =
{

N (0)
xx , N (0)

yy , N (0)
xy , 0, 0, 0, 0, 0, 0, 0, 0

}
, (E14a)

s(1)T =
{

N (1)
xx , N (1)

yy , N (1)
xy ,M (1)

xx ,M (1)
yy ,M (1)

xy , F (1)xx , F (1)yy , F (1)xy , q(1)xz , q(1)yz
}
, (E14b)

and s(2) involves only the contribution of the matrix A and the nonlinear components of the in-plane
strains appearing in (E6c).
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Next, substituting (E5) and (E11) into (13) and noting that s(k)T e( j)
= s( j)T e(k) gives the strain energy

expansion

U =U (0)
+ eU (1)

+ e2U (2)
+ O(e3), (E15)

where

U (0)
=

1
2

∫ ∫
A

e(0)T Ce(0) dx dy,

U (1)
=

∫ ∫
A

s(1)T e(0) dx dy,

U (2)
=

∫ ∫
A

(1
2

e(1)T Ce(1)+ s(0)T e(2)
)

dx dy.

(E16)

The terms U (1) and U (2) represent the first and second variations of the strain energy, respectively. It is
convenient to represent the second term of U (2) as the quadratic form

s(0)T e(2) = e(1)TN N (0)e(1)N , (E17)

where

e(1)TN =
{
u(1)z,x , u(1)z,y

}
, N (0)

=

[
N (0)

xx N (0)
xy

N (0)
xy N (0)

yy

]
, (E18)

leading to

U (2)
=

∫ ∫
A

(1
2

e(1)T Ce(1)+ e(1)TN N (0)e(1)N

)
dx dy. (E19)

Substituting for the matrix representation of the strain resultant vectors e(k) (k = 0, 1, 2) given by (E8)
into the strain energy expression given by (E16) and rearranging the terms, the expressions for U (k)

(k = 0, 1, 2) are expressed in terms of the unknown generalized coordinates as

U (0)
=

1
2 q(0)T KL0q(0), U (1)

=−
1
2 q(0)T KL01q(1)− 1

2 q(0)T K T
L01q(1),

U (2)
=

1
2 q(1)T KL1q(1)+ 1

2 q(1)T Hq(1),
(E20)

where the matrices KL0, KL1, KL01, and H are defined as

KL0 =

∫
A

BT
L0C BL0 d A, KL1 =

∫
A

BT
L1C BL1 d A,

KL01 =

∫
A

BT
L0C BL1 d A, H =

∫
A

BT
N N (0)BN d A.

(E21)

Similarly, substituting (E1b) into the expression for the strain energy of the elastic spring supports
given by (18) results in

�=�(0)+ e�(1)+ e2�(2), (E22)
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where

�(0) =
1
2

∫
0u

(
ũ(0)− ũ∗

)T ku
(
ũ(0)− ũ∗

)
d0+ 1

2

∫
01

(
ũ(0)−1(0)

)T ku
(
ũ(0)−1(0)

)
d0, (E23a)

�(1) =

∫
0u

(
ũ(0)− ũ∗

)T ku ũ(1) d0+
∫
01

(
ũ(1)−1(1)

)T ku
(
ũ(0)−1(0)

)
d0, (E23b)

�(2) =
1
2

∫
0u

ũ(1)T ku ũ(1) d0+ 1
2

∫
01

(
ũ(1)−1(1)

)T ku
(
ũ(1)−1(1)

)
d0. (E23c)

Substituting for the vector representation of the weighted-average boundary displacement field ũ, given
by (D4), the expressions for �(k) are rewritten as

�(0)= 1
2 q(0)T Sqq q(0)−q(0)T S∗q+�

∗
+

1
21

(0)T s111(0) (E24a)

−
1
21

(0)T sT
q1q(0)− 1

2 q(0)T sq11
(0)
+

1
2 q(0)T S11q(0), (E24b)

�(1)= q(0)T Sqq q(1)−q(1)T S∗q+1
(1)T s111(0)−1(1)

T sT
q1q(0)−q(1)T sq11

(0)
+q(1)T S11q(0), (E24c)

�(2)= 1
2 q(1)T Sqq q(1)+ 1

21
(1)T s111(1)−1

21
(1)T sT

q1q(1)− 1
2 q(1)T sq11

(1)
+

1
2 q(1)T S11q(1), (E24d)

where the matrices S11, s11, and sq1 are defined as

S11 =
∫
01

Ṽ T
B k1ṼB d0, s11 =

∫
01

k1 d0, sq1 =

∫
01

Ṽ T
B k1 d0. (E25)

In these integrals, 01 represents the boundary segment having extensional springs that remain between
the laminate boundary and the rigid bar.

Substituting (E1a) into the potential energy given by (21) with only the in-plane external forces acting
along the edges of the laminate included gives

V =
(
V (0)
σ + eV (1)

σ

)
+
(
V (0)
1 + eV (1)

1

)
, (E26)

where

V (0)
σ =

∫
0σ

T∗T ũ(0) d0, V (1)
σ =

∫
0σ

T∗T ũ(1) d0, (E27)

and
V (k)
1 = P∗T

1(k) on 01 with k = 0, 1. (E28)

In these integrals, T∗T = {N ∗x , N ∗y , 0, 0, 0}. Note that only the in-plane loads, N ∗x and N ∗y , are included
in vector T∗ in order to avoid bending deformations in the prebuckling state. Substituting the vector
representation of the weighted-average boundary displacement field ũ into (E27), the linearized forms
of the potential energy of elastic restraints, V (k)

σ , are rewritten as

V (k)
σ = q(k)T N∗ with k = 0, 1. (E29)

The vector N∗ is defined as

N∗T
=

∫
0σ

Ṽ T
B T∗ d0. (E30)
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The zeroth, first, and second variations of the constraint forces are obtained by substituting the vector
of unknown generalized coordinates given by (E1c) and (E1e) into (C17) and rearranging the terms. This
process yields

W (0)
= λ(0)

T Gcq(0), W (1)
= λ(0)

T Gcq(1)+λ(1)T Gcq(0), W (2)
= λ(1)

T Gcq(1). (E31)
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