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DISPERSION RELATIONS FOR SH WAVES ON A MAGNETOELECTROELASTIC
HETEROSTRUCTURE WITH IMPERFECT INTERFACES

JOSÉ A. OTERO, HÉCTOR CALAS, REINALDO RODRÍGUEZ-RAMOS,
JULIÁN BRAVO-CASTILLERO, ADAIR R. AGUIAR AND GUILLERMO MONSIVAIS

The dispersion relations of surface SH waves in an A/B/A heterostructure with magnetoelectroelastic
properties and imperfect (electromagnetically permeable or absorbent, mechanically spring-type) bond-
ing at the interfaces are obtained taking the geometric symmetry of the system into account. Conse-
quently, the results for the symmetric and antisymmetric modes are presented. Different limit cases are
considered. Numerical calculations for relevant realizations of the heterostructure are investigated for
different values of the material parameter describing the assumed mechanically imperfect bonding. In
all the studied cases, the propagation velocities of the SH waves increase for increasing values of this
parameter and are limited by the velocities on the homogeneous phases A and B.

1. Introduction

The development of smart structures is currently receiving widespread attention owing to potential ap-
plications in several branches of engineering, such as in integrated control architecture with highly dis-
tributed sensors and actuators. More recently, applications can be found in the design of smart materials,
where piezoelectric and piezomagnetic properties are involved. The problem of wave propagation in
this type of material has been studied by different authors using different geometries. For instance, in
[Alshits et al. 1994] the existence of localized acoustic waves was studied on the interface between two
piezocrystals of arbitrary anisotropy. In [Pan 2001] an exact closed-form solution was derived for the
static deformation of multilayered piezoelectric and piezomagnetic plates based on quasi-Stroh formalism
and using the propagator matrix method. In [Pan and Heyliger 2002] the analytical method of [Pan 2001]
was extended to the free vibration of three-dimensional, anisotropic linearly magnetoelectroelastic (MEE)
simply supported, and multilayered rectangular plates. In [Wang et al. 2003] the state vector equations for
three-dimensional, orthotropic, and linearly MEE media were derived. The solution of these equations
is based on a mixed formulation, where the basic unknowns are not only the displacements, electrical
potential, and magnetic potential, but also the stresses, electric displacements, and magnetic induction.
Recently, [Chen et al. 2007] presented an analytical treatment for the propagation of harmonic waves in
infinitely extended MEE multilayered plates based on the state vector approach.
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project No. 82474 and DGAPA UNAM/México project IN119509, for their support of this research. JBC is also grateful for
the support provided by CGCI/CAPES/Brazil project No. 0452-11/2010.
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The existence of interfaces is a usual feature of both composite materials and structures. Depending
on the materials involved and how they are put together (for example, by different glues), a thin layer
with its own material properties, which are noticeably different from those of the participating materials,
may manifest itself at the interface. The simplest description of the mechanical behavior of an interface
is modeled as a layer that geometrically has a zero thickness but still possesses elasticity and interface
elastic strain energy, for example, the shear-lag model of [Cheng et al. 1996; Handge 2002], in which
the tangential displacement at an interface is allowed to be different from both sides of the interface
to account for the deformation of the interface layer. At the same time, the inertia of the interface is
neglected so that the traction across the interface is continuous and is proportional to the displacement
jump across the interface. In this description, an interface is essentially considered as having many
massless springs. A similar description can also be applied in the normal direction of an interface.

In practice, due to various causes such as microdefects, diffusion impurity, damage, weak bonding, et
cetera, two dissimilar materials cannot be perfectly bonded, and an interface or transition with thickness
in the range of 30–240 nm exists across the contact surfaces [Termonia 1990]. These transition zones
weaken the interfacial continuity, and further affect the performance of the heterogeneous structure; in par-
ticular, the interfacial characteristics [Margetan et al. 1992; Wu et al. 2002]. An adequate description of
such an interface is quite complex. A simplified model consists of considering an imperfect interface with
vanishing thickness, at which the stresses can transfer continuously, but the displacements have a jump.
In general, linear spring relations are assumed between the normal stress and the displacement jump in the
normal direction and between the tangential stress and the displacement jump in the tangential direction
[Hashin 1991; Klarbring and Movchan 1998; Zhong et al. 2009]. Using this modeling, the effects of
interfacial imperfection on waves propagating in an isotropic elastic bimaterial have been analyzed in
[Rokhlin and Wang 1991; Huang and Rokhlin 1992; Deng 2006]. For a class of smart materials, when the
bonding interface is fully debonded, a small gap appears; the gap wave propagation has been investigated
in [Li and Yang 2006]. The effects of an imperfectly bonded interface of piezoelectric waves near such
interface have been studied in [Fan et al. 2006b] and [Yang et al. 2006], respectively, for two bonded
piezoelectric materials. For an imperfect interface of a two-phase piezoelectric/piezomagnetic structure,
interfacial shear horizontal waves propagating along an imperfect interface have been formulated in
[Huang et al. 2009].

Shear-lag type interface models have been mainly used in static analysis. Recently, theoretical analysis
was given on vibrations and waves propagating in structures with interfaces described by the shear-lag
model [Chen et al. 2004; Yang et al. 2006].

The present work is motivated by recent contributions dealing with the effects of the elastic interface
on vibration and wave propagation in composites. For instance, in [Fan et al. 2006a; 2006b; Chen et al.
2008; Melkumyan and Mai 2008] waves propagating in composite structures with imperfectly bonded
interfaces were studied. Here, we propose a generalization of [Calas et al. 2008] to the case of imperfect
contact conditions. In that study, the authors considered the case of perfect bonding at the interfaces
of dissimilar media. In the present contribution, the interface is modeled by the shear-lag model for
imperfect bonding. Here, the behavior of stationary SH waves in a heterostructure with MEE materials
with imperfect bonding on the interface is studied. In particular, the case of permeable and absorbent
interfaces is discussed in detail. The governing system of partial differential equations is solved using
the geometric symmetry of the heterostructure and considering the superficial acoustic wave. Solutions
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can be separated into symmetric and antisymmetric parts. The dispersion curves and the influence of the
imperfection at the interface are shown for some cases.

The work is organized as follows: in Section 2 the governing equations of SH waves propagating in
a MEE homogeneous medium with 6 mm hexagonal symmetry are presented. Section 3 is devoted to
the formulation of the mean problem of an A/B/A heterostructure considering two types of imperfect
interfacial conditions, and to the derivation of the symmetric and antisymmetric solutions of a related
auxiliary problem. In Section 4, the dispersion relations are obtained, and different limit cases are
described and shown to be in agreement with others reported in the literature. In Section 5 numerical
examples are presented and discussed. Finally, some concluding remarks are given in Section 6.

2. Wave equation for the SH mode

Consider a MEE material with 6 mm hexagonal symmetry exhibiting magnetization and polarization in
the z-axis direction of an xyz Cartesian coordinate system. The xy-plane is the isotropy plane. In this
type of material, the SH wave is described by a system of three coupled partial differential equations
with three unknowns: the z-component of the elastic displacement uz , the in-plane electric potential ϕ,
and the in-plane magnetic potential ψ (see, for instance, [Melkumyan 2007; Wang et al. 2007; Calas
et al. 2008; Huang and Li 2010]), that is,

c∇2u+ e∇2ϕ+ f∇2ψ = ρ
∂2u
∂t2 , (2-1)

e∇2u− ε∇2ϕ− g∇2ψ = 0, (2-2)

f∇2u− g∇2ϕ−µ∇2ψ = 0, (2-3)

with ∇2
≡ ∂2/∂x2

+ ∂2/∂y2, u ≡ uz , and where c ≡ c44, e ≡ e15, f ≡ f15, ε ≡ ε11, µ ≡ µ11, and
g ≡ g11 are the elastic, piezoelectric, piezomagnetic, dielectric permittivity, magnetic permeability, and
magnetoelectric coefficients, respectively. In this study, the in-plane elastic displacements are ux = u y = 0.
Equations (2-1)–(2-3) describe the motion of a SH wave in a homogeneous material and, therefore,
depend only on (x, y, t).

The stress component T ≡ Tzy , the electric displacement D ≡ Dy , and the magnetic induction B ≡ By

are related to u, ϕ, and ψ by

T = c∂u
∂y
+ e∂ϕ

∂y
+ f ∂ψ

∂y
, D = e∂u

∂y
− ε

∂ϕ

∂y
− g ∂ψ

∂y
, B = f ∂u

∂y
− g ∂ϕ

∂y
−µ

∂ψ

∂y
. (2-4)

Due to the linearity of the Laplacian operator ∇2, it is possible to write (2-2) and (2-3) in the form

∇
2ϕ̃ = 0, ∇2ψ̃ = 0, (2-5)

where ϕ̃ and ψ̃ are auxiliary potential functions defined by

ϕ̃ = ϕ−
e
ε

u+ g
ε
ψ, ψ̃ = ψ −

f
µ

u+ g
µ
ϕ. (2-6)

Solving (2-6) for the functions ϕ and ψ , we find

ϕ = χϕ̃+
ē
ε

u− ḡ
ε
ψ̃, ψ = χψ̃ +

f̄
µ

u− ḡ
µ
ϕ̃, (2-7)
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where
χ =

εµ

εµ− g2 , ḡ = gχ, ē = eχ − f
µ

ḡ, f̄ = f χ − e
ε

ḡ. (2-8)

Replacing the expressions given by (2-7) into (2-1), the typical wave motion equation for the mechan-
ical displacement u is given by (

∇
2
−

1
v̄2

∂2

∂t2

)
u = 0, (2-9)

where
v̄ =

√
c̄/ρ (2-10)

is the bulk shear wave speed of the MEE homogeneous medium and

c̄ = c+ eē/ε+ f f̄ /µ (2-11)

is the magnetoelectroelastically stiffened elastic constant.
In the next section, a heterogeneous medium will be studied (see Figure 1), and (2-5) and (2-9) must

be solved in three different homogeneous zones of the xy-plane. In order to determine u, ϕ̃, and ψ̃ ,
suitable conditions should be employed. Moreover, it is convenient to express the constitutive relations
(2-4) in the form

T = c̄
∂u
∂y
+ ē

∂ϕ̃

∂y
+ f̄

∂ψ̃

∂y
, D =−ε

∂ϕ̃

∂y
, B =−µ

∂ψ̃

∂y
. (2-12)

3. SH waves in MEE heterostructure

In the xy-plane, we consider an infinite heterostructure A/B/A formed by two half-spaces (y ≤−d/2
and y ≥ d/2) and an intermediate layer (|y| ≤ d/2), as illustrated in Figure 1. Two different homogeneous
transversely isotropic MEE materials, with 6 mm symmetry, occupy regions A and B. The magnetization

d/20-d/2

x

y

ABA

Figure 1. Scheme of a heterostructure A/B/A made of two magnetoelectroelastic materials.
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and polarization directions are supposed perpendicular to the xy-plane. Consequently, the equations
presented in Section 2 must be satisfied in each one of the phases. We investigate the dispersion relations
of SH-wave solutions u, ϕ, and ψ of (2-1)–(2-3) for two types of imperfect conditions on y = ±d/2
following a procedure presented in [Calas et al. 2008]. We also investigate classical radiation conditions
at infinity through the study of an auxiliary problem involving (2-5) and (2-9).

3A. Statement of the main problem. We want to find u, ϕ, and ψ describing an SH wave propagating
in the positive x direction that satisfy (2-1)–(2-3) in each phase of the heterogeneous structure A/B/A.
Since we are interested in the study of confined modes, the functions u, ϕ, and ψ in media A vanish
when y→±∞ (evanescent waves in the y direction). In [Calas et al. 2008] the dispersion relation for
the case of perfect contact conditions at the interfaces was studied. Here, two types of imperfect contact
conditions will be considered:

(a) Case of electromagnetically permeable bonding at y =±d/2, for which

TA = TB = K (u A− u B), ϕA = ϕB, DA = DB, ψA = ψB, BA = BB . (3-1)

(b) Case of electromagnetically absorbent bonding at y =±d/2, for which

TA = TB = K (u A− u B), ϕA = 0, ϕB = 0, ψA = 0, ψB = 0. (3-2)

The variables u, ϕ, and ψ were introduced before (2-1)–(2-3) and T , D, and B were introduced before
(2-4). Also, the subscripts A and B identify the MEE media A and B, respectively. The first conditions
in (3-1) and (3-2) describe an elastic interface with spring constant material parameter K > 0, which
has dimensions of stress divided by length; in particular, [K ] =GPa/m. We shall call this constant the
interface parameter. With this model, the interface is allowed to deform and the displacement at the
interface can be discontinuous. The case K →∞ corresponds to a perfectly bonded interface and the
case K → 0 corresponds to a mechanically free interface.

3B. The auxiliary problem. We now consider harmonic SH waves propagating in the positive x direc-
tion and want to find solutions u, ϕ̃, and ψ̃ of (2-5) and (2-9) in regions A and B that satisfy the radiation
conditions in regions A, that is, functions u, ϕ̃, and ψ̃ vanish for y =±∞. Using the symmetry properties
of the heterostructure, as in [Calas et al. 2008], the MEE fields can be decoupled into symmetric and
antisymmetric modes in y. Indeed, the linear equations (2-5) and (2-9) are invariant under reflections
with respect to the x-axis in both regions A and B. Consequently, the symmetric and antisymmetric
parts with respect to y of the solutions are also solutions of (2-5) and (2-9). In addition, it follows from
the linear relations (2-7) and (2-12) that the fields ϕ, ψ , T , D, and B are sums of the symmetric and
antisymmetric parts of u, ϕ̃, and ψ̃ . Consequently, conditions (3-1) and (3-2) at y =±d/2 are valid for
the symmetric and antisymmetric parts of the solutions.

From (2-5) and (2-9), and taking into account the above considerations, the following solutions are
obtained:

u = ei(ξ x−ωt)


UAeηA y, y ≤−d/2,
UB cos(ηB y), |y| ≤ d/2,
UAe−ηA y, y ≥ d/2,

(3-3)
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ϕ̃ = ei(ξ x−ωt)


8Aeξ y, y ≤−d/2,
8B cosh(ξ y), |y| ≤ d/2,
8Ae−ξ y, y ≥ d/2,

(3-4)

ψ̃ = ei(ξ x−ωt)


9Aeξ y, y ≤−d/2,
9B cosh(ξ y), |y| ≤ d/2,
9Ae−ξ y, y ≥ d/2,

(3-5)

for the symmetric modes in y, and

u = ei(ξ x−ωt)


U ′AeηA y, y ≤−d/2,
U ′B sin(ηB y), |y| ≤ d/2,
−U ′Ae−ηA y, y ≥ d/2,

(3-6)

ϕ̃ = ei(ξ x−ωt)


8′Aeξ y, y ≤−d/2,
8′B sinh(ξ y), |y| ≤ d/2,
−8′Ae−ξ y, y ≥ d/2,

(3-7)

ψ̃ = ei(ξ x−ωt)


9 ′Aeξ y, y ≤−d/2,
9 ′B sinh(ξ y), |y| ≤ d/2,
−9 ′Ae−ξ y, y ≥ d/2,

(3-8)

for the antisymmetric modes in y. Here, ω, ξ , and η are, respectively, the frequency, the x-component
of the wave vector, and the y-component of the wave vector, whereas UA, UB , 8A, 8B , 9A, and 9B are
the amplitudes of the fields in the medium A and B. The parameters ηA > 0, ηB , ξ > 0, and ω appearing
in (3-3)–(3-8) are related to each other through the expressions

(ηA)
2
= (ξ)2− (ω/v̄A)

2
= ξ 2(1− v2/v̄2

A) > 0, |y| ≥ d/2,

(ηB)
2
= (ω/v̄B)

2
− (ξ)2 = ξ 2(v2/v̄2

B − 1), |y| ≤ d/2,
(3-9)

where v = ω/ξ is the phase velocity.
Substituting (3-3)–(3-5) into (2-7), the symmetric parts of the electric and magnetic potentials are

given by, respectively,

ϕ = ei(ξ x−ωt)



ēA
εA

UAeηA y
+χA8Aeξ y

−
ḡA
εA
9Aeξ y, y ≤−d/2,

ēB
εB

UB cos(ηB y)+χB8B cosh(ξ y)− ḡB
εB
9B cosh(ξ y), |y| ≤ d/2,

ēA
εA

UAe−ηA y
+χA8Ae−ξ y

−
ḡA
εA
9Ae−ξ y, y ≥ d/2,

(3-10)

ψ = ei(ξ x−ωt)



f̄ A
µA

UAeηA y
−

ḡA
µA
8Aeξ y

+χA9Aeξ y, y ≤−d/2,

f̄B
µB

UB cos(ηB y)− ḡB
µB
8B cosh(ξ y)+χB9B cosh(ξ y), |y| ≤ d/2,

f̄ A
µA

UAe−ηA y
−

ḡA
µA
8Ae−ξ y

+χA9Ae−ξ y, y ≥ d/2.

(3-11)
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Substituting (3-3)–(3-5) into (2-12), we obtain the following expressions for the symmetric parts of
the mechanical stress, electric displacement, and magnetic flux:

T = ei(ξ x−ωt)


UAc̄AηAeηA y

+ (ēA8A+ f̄ A9A)ξeξ y, y ≤−d/2,

−UB c̄BηB sin(ηB y)+ (ēB8B + f̄B9B)ξ sinh(ξ y), |y| ≤ d/2,

−UAc̄AηAe−ηA y
− (ēA8A+ f̄ A9A)ξe−ξ y, y ≥ d/2,

(3-12)

D = ei(ξ x−ωt)


−εAξ8Aeξ y, y ≤−d/2,

−εBξ8B sinh(ξ y), |y| ≤ d/2,

εAξ8Ae−ξ y, y ≥ d/2,

(3-13)

B = ei(ξ x−ωt)


−µAξ9Aeξ y, y ≤−d/2,

−µBξ9B sinh(ξ y), |y| ≤ d/2,

µAξ9Ae−ξ y, y ≥ d/2.

(3-14)

Analogously, substituting (3-6)–(3-8) into (2-7) and (2-12), the antisymmetric parts of the electric and
magnetic potentials, mechanical stress, electric displacement, and magnetic flux are given by

ϕ = ei(ξ x−ωt)



ēA

εA
U ′AeηA y

+χA8
′

Aeξ y
−

ḡA

εA
9 ′Aeξ y, y ≤−d/2,

ēB

εB
U ′B sin(ηB y)+χB8

′

B sinh(ξ y)−
ḡB

εB
9 ′B sinh(ξ y), |y| ≤ d/2,

−
ēA

εA
U ′Ae−ηA y

−χA8
′

Ae−ξ y
+

ḡA

εA
9 ′Ae−ξ y, y ≥ d/2,

(3-15)

ψ = ei(ξ x−ωt)



f̄ A

µA
U ′AeηA y

−
ḡA

µA
8′Aeξ y

+χA9
′

Aeξ y, y ≤−d/2,

f̄B

µB
U ′B sin(ηB y)−

ḡB

µB
8′B sinh(ξ y)+χB9

′

B sinh(ξ y), |y| ≤ d/2,

−
f̄ A

µA
U ′Ae−ηA y

+
ḡA

µA
8′Ae−ξ y

−χA9
′

Ae−ξ y, y ≥ d/2,

(3-16)

T = ei(ξ x−ωt)


U ′Ac̄AηAeηA y

+ (ēA8
′

A+ f̄ A9
′

A)ξeξ y, y ≤−d/2,

U ′B c̄BηB cos(ηB y)+ (ēB8
′

B + f̄B9
′

B)ξ cosh(ξ y), |y| ≤ d/2,

U ′Ac̄AηAe−ηA y
+ (ēA8

′

A+ f̄ A9
′

A)ξe−ξ y, y ≥ d/2,

(3-17)

D = ei(ξ x−ωt)


−εAξ8

′

Aeξ y, y ≤−d/2,

−εBξ8
′

B cosh(ξ y), |y| ≤ d/2,

−εAξ8
′

Ae−ξ y, y ≥ d/2,

(3-18)

B = ei(ξ x−ωt)


−µAξ9

′

Aeξ y, y ≤−d/2,

−µBξ9
′

B cosh(ξ y), |y| ≤ d/2,

−µAξ9
′

Ae−ξ y, y ≥ d/2.

(3-19)
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4. Dispersion relations for imperfect contacts

Now, we refer to the conditions at the interface between the layers, which is located at y =±d/2, and
the semiinfinite media. Due to the symmetry of the problem, such conditions are restricted to only one
interface, and we study the dispersion relation for the imperfect bonding effects defined by (3-1) and
(3-2) for the symmetric and antisymmetric solutions.

4A. Dispersion relation for electromagnetically permeable bonding.

Symmetric modes. Substituting (3-3) and (3-10)–(3-14) into the interface conditions given by (3-1) for
y =−d/2, an homogeneous system of linear algebraic equations for UA, UB , 8A, 8B , 9A, and 9B is
obtained. For nontrivial solutions, the determinant of the principal matrix has to be zero, which leads to
the following dispersion relation for the symmetric modes:

PA PB − Q2
+ K (PA+ PB + 2Q)= 0, (4-1)

where

PA =−c̄A
(
ηA− ξ̄

2
AAξ sinh(ξd/2)

)
, (4-2)

PB = c̄B
(
ηB tan(ηBd/2)+ ξ̄ 2

B Bξ sinh(ξd/2)
)
, (4-3)

Q =−
√

c̄Ac̄B ξ̄
2
ABξ sinh(ξd/2), (4-4)

ξ̄ 2
αβ =

1√
c̄α c̄β

ēα ēβ
εαεβ

ϒ
(1)
AB +

f̄α f̄β
µαµβ

ϒ
(2)
AB +

( ēα f̄β
εαµβ

+
ēβ f̄α
εβµα

)
ϒ
(3)
AB

ϒ
(1)
ABϒ

(2)
AB −

(
ϒ
(3)
AB

)2 , (4-5)

ϒ
(1)
AB =

χA
µA

sinh(ξd/2)+ χB
µB

cosh(ξd/2), ϒ
(2)
AB =

χA
εA

sinh(ξd/2)+ χB
εB

cosh(ξd/2), (4-6)

ϒ
(3)
AB =

ḡA

εAµA
sinh(ξd/2)+

ḡB

εBµB
cosh(ξd/2). (4-7)

Here, ξ̄αβ , with αβ = AA, B B, AB, is a coupling constant, which depends on the MEE properties of the
phases and the thickness d of the layer.

Let us consider the following limit cases:

(i) Materials A and B are piezoelectric. Expressions (4-2)–(4-4) reduce to

PA =−c̄e
A

(
ηA−

e2
Aξ ε̄

c̄e
AεA

(
ε̄+ coth(ξd/2)

)), (4-8)

PB = c̄e
B

(
ηB tan(ηBd/2)+

e2
Bξ

c̄e
BεB

(
ε̄+ coth(ξd/2)

)), (4-9)

Q =−
eAeBξ

εA
(
ε̄+ coth(ξd/2)

) , (4-10)

where c̄e
α = cα + e2

α/εα is the piezoelectrically stiffened elastic constant and ε̄ = εB/εA.
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(ii) Materials A and B are piezomagnetic. Expressions (4-2)–(4-4) reduce to

PA =−c̄ f
A

(
ηA−

f 2
Aξµ̄

c̄ f
AµA

(
µ̄+ coth(ξd/2)

)), (4-11)

PB = c̄ f
B

(
ηB tan(ηBd/2)+

f 2
Bξ

c̄ f
BµB

(
µ̄+ coth(ξd/2)

)), (4-12)

Q =−
f A fBξ

µA
(
µ̄+ coth(ξd/2)

) , (4-13)

where c̄ f
α = cα + f 2

α /µα is the piezomagnetically stiffened elastic constant and µ̄= µB/µA.

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-2)–(4-4) reduce to (4-8),
(4-12), and Q = 0, respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-2)–(4-4) reduce to
(4-11), (4-9), and Q = 0, respectively.

(v) The interface is perfectly bonded. Expression (4-1) reduces to

PA+ PB + 2Q = 0. (4-14)

Substituting (4-2)–(4-7) into (4-14), we obtain the dispersion relation [Calas et al. 2008, Equation
(59)].

(vi) The interface has no mechanical interaction, K = 0, and the media can interact magnetoelectrically.
In this case, (4-1) can be written as

PA PB − Q2
= 0. (4-15)

Substituting (4-2)–(4-7) into (4-15), we obtain(
ηA− ξ̄

2
AAξ sinh(ξd/2)

)(
ηB tan(ηBd/2)+ ξ̄ 2

B Bξ sinh(ξd/2)
)
=−

(
ξ̄ 2

ABξ sinh(ξd/2)
)2
, (4-16)

which, together with both (3-9) and v = ω/ξ , yields

−

(
ξ̄2

AB sinh
(1
v

ωd
2

))2

=

((
1− v

2

v̄2
A

)1
2
− ξ̄ 2

AA sinh
(1
v

ωd
2

))
×

((
v2

v̄2
B
− 1

)1
2

tan
((
v2

v̄2
B
− 1

)1
2 1
v

ωd
2

)
+ ξ̄ 2

B B sinh
(1
v

ωd
2

))
. (4-17)

Note from (4-17) that if ωd = 0, then v is given by

v = v̄A, (4-18)

which is the bulk shear wave of medium A.
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Antisymmetric modes. Following a procedure similar to the one used for symmetric modes, we substitute
(3-6) and (3-15)–(3-19) into the interface conditions of Case (a) (page (3-1)) at y =−d/2, and obtain
the wave speed equation for the antisymmetric modes in the form of Equation (4-1), where

PA =−c̄A
(
ηA− ξ̄

2
AAξ cosh(ξd/2)

)
, (4-19)

PB =−c̄B
(
ηB cot(ηBd/2)− ξ̄ 2

B Bξ cosh(ξd/2)
)
, (4-20)

Q =−
√

c̄Ac̄B ξ̄
2
ABξ cosh(ξd/2), (4-21)

and ξ̄αβ can be calculated using (4-5), but with ϒ (i)
AB (i = 1, 2, 3) given by

ϒ
(1)
AB =

χA
µA

cosh(ξd/2)+ χB
µB

sinh(ξd/2), ϒ
(2)
AB =

χA
εA

cosh(ξd/2)+ χB
εB

sinh(ξd/2), (4-22)

ϒ
(3)
AB =

ḡA
εAµA

cosh(ξd/2)+ ḡB
εBµB

sinh(ξd/2). (4-23)

Let us consider the following limit cases:

(i) Materials A and B are piezoelectric. Expressions (4-19)–(4-21) reduce to

PA =−c̄e
A

(
ηA−

e2
Aξ ε̄

c̄e
AεA

(
ε̄+ tanh(ξd/2)

)), (4-24)

PB =−c̄e
B

(
ηB cot(ηBd/2)−

e2
Bξ

c̄e
BεB

(
ε̄+ tanh(ξd/2)

)), (4-25)

Q =−
eAeBξ

εA
(
ε̄+ tanh(ξd/2)

) . (4-26)

(ii) Materials A and B are piezomagnetic. Expressions (4-19)–(4-21) reduce to

PA =−c̄ f
A

(
ηA−

f 2
Aξµ̄

c̄ f
AµA

(
µ̄+ tanh(ξd/2)

)), (4-27)

PB =−c̄ f
B

(
ηB cot(ηBd/2)−

f 2
Bξ

c̄ f
BµB

(
µ̄+ tanh(ξd/2)

)), (4-28)

Q =−
f A fBξ

µA
(
µ̄+ tanh(ξd/2)

) . (4-29)

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-19)–(4-21) reduce to
(4-24), (4-28), and Q = 0, respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-19)–(4-21) reduce to
(4-27), (4-25), and Q = 0, respectively.

(v) The interface is perfectly bonded. Expression (4-1) reduces to (4-14).

(vi) The interface has no mechanical interaction, K = 0, and the media can interact magnetoelectrically.
Equation (4-1) can be written as (4-15). Substituting (4-19)–(4-23) into (4-15), we obtain(
ηA− ξ̄

2
AAξ cosh(ξd/2)

)(
ηB cot(ηBd/2)− ξ̄ 2

B Bξ cosh(ξd/2)
)
=
(
ξ̄ 2

ABξ cosh(ξd/2)
)2
, (4-30)
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which, together with both (3-9) and v = ω/ξ , yields(
ξ̄ 2

AB cosh
(1
v

ωd
2

))2

=

((
1− v

2

v2
A

)1
2
− ξ̄ 2

AA cosh
(1
v

ωd
2

))
×

((
v2

v2
B
− 1

)1
2

cot
((
v2

v2
B
− 1

)1
2 1
v

ωd
2

)
− ξ̄ 2

B B cosh
(1
v

ωd
2

))
. (4-31)

Equation (4-31) governs the magnetoelectrical interaction between the three phases. Note from (4-31)
that if ωd = 0, (4-31) yields the following velocity on the half-spaces (|y|> d/2):

v2
= v̄2

A(1− ξ̄
4
A), (4-32)

where
ξ̄ 2

A = 1−
cA

c̄A
(4-33)

is the limit of ξ̄AA when ωd → 0. The magnitude v defined by (4-32) is the speed of the Bleustein–
Gulyaev wave for medium A (see, [Bleustein 1968; Gulyaev 1969]). These results are in agreement with
other similar studies, for instance, [Fan et al. 2006a, (15) and (16)] or [Melkumyan and Mai 2008, (27)].

4B. Dispersion relation for electromagnetically absorbent bonding.

Symmetric modes. Substituting (3-3) and (3-10)–(3-12) into the interface conditions given by (3-2) for
y =−d/2, we obtain the dispersion relation for the symmetric modes, which is given by

PA PB + K (PA+ PB)= 0, (4-34)

where
PA =−c̄A(ηA− ξ̄

2
Aξ), (4-35)

PB = c̄B
(
ηB tan(ηBd/2)+ ξ̄ 2

Bξ tanh(ξd/2)
)
, (4-36)

ξ̄ 2
α = 1−

cα
c̄α
, (4-37)

with ξ̄α , for α = A, B, being a coupling constant of the MEE homogeneous medium α. From (4-37) and
using (2-11) on each phase, one can obtain [Huang and Li 2010, (18)].

Let us consider the following special cases:

(i) Materials A and B are piezoelectric. Expressions (4-35) and (4-36) reduce to

PA =−c̄e
A

(
ηA−

e2
Aξ

c̄e
AεA

)
, (4-38)

PB = c̄e
B

(
ηB tan(ηBd/2)+

e2
Bξ

c̄e
BεB

tanh(ξd/2)
)
. (4-39)

(ii) Materials A and B are piezomagnetic. Expressions (4-35) and (4-36) reduce to

PA =−c̄ f
A

(
ηA−

f 2
Aξ

c̄ f
AµA

)
, (4-40)

PB = c̄ f
B

(
ηB tan(ηBd/2)+

f 2
Bξ

c̄ f
BµB

tanh(ξd/2)
)
. (4-41)



980 OTERO, CALAS, RODRÍGUEZ, BRAVO, AGUIAR AND MONSIVAIS

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-35) and (4-36) reduce
to (4-38) and (4-41), respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-35) and (4-36) reduce
to (4-40) and (4-39), respectively.

(v) The interface is perfectly bonded. Expression (4-34) reduces to

−c̄A(ηA− ξ̄
2
Aξ)+ c̄B

(
ηB tan(ηBd/2)+ ξ̄ 2

Bξ tanh(ξd/2)
)
= 0. (4-42)

Equation (4-42) can be written as a function of the normalized velocity Vα = v/v̄α, α = A, B, and
the dimensionless frequency �= ωd/(πv̄B) as

c̄B

(
(V 2

B − 1)1/2 tan
(
π

2
�

VB
(V 2

B − 1)1/2
)
+ ξ̄ 2

B tanh
(
π

2
�

VB

))
− c̄A

(
(1− V 2

A)
1/2
− ξ̄ 2

A
)
= 0. (4-43)

Setting �→ 0, (4-43) reduces to the velocity of the Bleustein–Gulyaev wave given by (4-32) in
the two half-spaces y > d/2 and y <−d/2. These results are in agreement with [Fan et al. 2006b,
Equations (10) and (11)] and also [Huang et al. 2009, Equations (19) and (20)].

(vi) The interface has no mechanical-magnetoelectrical interaction. Equation (4-34) can be written as

PA PB = 0. (4-44)

For PA = 0, the phase velocity is identical to (4-32), the velocity of the Bleustein–Gulyaev wave.
On the other hand, if PB = 0, the velocity in the layer |y|< d/2 satisfies the equation

ηB tan(ηBd/2)+ ξ̄ 2
Bξ tanh(ξd/2)= 0. (4-45)

The roots of (4-45) determine the dispersion curves for a plate with grounded electrodes. It can be written,
in a way similar to [Bleustein 1969, Equation (27)], as

tan
( 1

2 π(�
2
− Z2)1/2

)
tanh

( 1
2 π Z

) =−
ξ̄ 2

B Z
(�2− Z2)1/2

, (4-46)

where the dimensionless wave number (Z ) in the x direction is defined by

Z = ξd
π
. (4-47)

In the limit when Z→ 0, (4-46) reduces to

tan
(
π

2
�
)
= 0, ωd = nπv̄B, n = 0, 2, 4, 6, . . . , (4-48)

which is the frequency equation for the symmetric modes of a MEE plate. Equation (4-45) can also be
written as a function of the normalized velocity VB and the dimensionless wave number Z as

tan
( 1

2 π Z(V 2
B − 1)1/2

)
tanh

( 1
2 π Z

) =−
ξ̄ 2

B

(V 2
B − 1)1/2

. (4-49)

Taking Z→ 0, (4-49) reduces to

V 2
B = (1− ξ̄

2
B), or v2

= v̄2
B(1− ξ̄

2
B). (4-50)
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Equation (4-45) can also be written as a function of the normalized velocity VB and the dimensionless
frequency � as

tan
(1

2 π(�/VB)(V 2
B − 1)1/2

)
tanh

(1
2 π(�/VB)

) =−
ξ̄ 2

B

(V 2
B − 1)1/2

. (4-51)

Note that (4-51) reduces to (4-50) for �→ 0.

Antisymmetric modes. Substituting (3-6) and (3-15)–(3-17) into the conditions given by (3-2) for y =
−d/2, the dispersion relation for the antisymmetric modes can be written as (4-34), with

PB =−c̄B
(
ηB cot(ηBd/2)− ξ̄ 2

Bξ coth(ξd/2)
)
, (4-52)

where PA and ξ̄ 2
α are given by (4-35) and (4-37), respectively.

Let us consider the following limit cases:

(i) Materials A and B are piezoelectric. Expression (4-35) becomes (4-38) and (4-52) takes the form

PB =−c̄e
B

(
ηB cot(ηBd/2)−

e2
Bξ

c̄e
BεB

coth(ξd/2)
)
. (4-53)

(ii) Materials A and B are piezomagnetic. Expression (4-35) reduces to (4-40) and (4-52) becomes

PB =−c̄ f
B

(
ηB cot(ηBd/2)−

f 2
Bξ

c̄ f
BµB

coth(ξd/2)
)
. (4-54)

(iii) Material A is piezoelectric and material B is piezomagnetic. Expressions (4-35) and (4-52) reduce
to (4-38) and (4-54), respectively.

(iv) Material A is piezomagnetic and material B is piezoelectric. Expressions (4-35) and (4-52) reduce
to (4-40) and (4-53), respectively.

(v) The interface is perfectly bonded. Expression (4-34) reduces to

−c̄A
(
(1− V 2

A)
1/2
− ξ̄ 2

A
)
= c̄B ξ̄

2
B coth

(
π

2
�

VB

)
+ c̄B

(
(V 2

B − 1)1/2 cot
(
π

2
�

VB
(V 2

B − 1)1/2
))
. (4-55)

Setting �→ 0, (4-55) does not have a solution. In fact, dividing by coth
(1

2 π(�/VB)
)

and taking
the limit for �→ 0 results in ξ̄ 2

B = 1, which is not possible.

(vi) The interface has no mechanical-magnetoelectrical interaction. From (4-34), the expression PA PB =

0 is obtained. If PA = 0, the phase velocity is identical to (4-32), and if PB = 0, the phase velocity for
the layer is given by an expression that is similar to [Bleustein 1969, Equation (23)] and is obtained
from the dispersion equation

tan
( 1

2 π(�
2
− Z2)1/2

)
tanh

( 1
2 π Z

) =
(�2
− Z2)1/2

ξ̄ 2
B Z

. (4-56)

In the limit, as Z→ 0, (4-56) reduces to

tan
(
π

2
�
)
=
π�

2ξ̄ 2
B
, (4-57)
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which is the frequency equation for the antisymmetric modes of a MEE plate. Equation (4-56) can
be written as a function of the normalized velocity VB and the dimensionless frequency � as

tan
( 1

2 π(�/VB)(V 2
B − 1)1/2

)
tanh

( 1
2 π(�/VB)

) =
(V 2

B − 1)1/2

ξ̄ 2
B

. (4-58)

When �→ 0, (4-58) reduces to v = v̄B .

5. Numerical examples

We now show dispersion curves for different heterostructures of type A/B/A with MEE properties and
discuss quantitative and qualitative aspects of bonding on the dynamic properties of MEE heterostructures.
An important aspect is that the behavior of the dispersion curves is strongly dependent on the spring
constant material parameter K .

To perform numerical calculations, we use the piezomagnetic material CoFe2O4, the piezoelectric
materials BaTiO3 and PZT4, and the composite BaTiO3/CoFe2O4 with 30 percent BaTiO3 [Bravo-
Castillero et al. 2008]. This composite material exhibits MEE properties. We then analyze the disper-
sion of waves considering the first mode of vibration in the heterostructures BaTiO3/CoFe2O4/BaTiO3,
CoFe2O4/PZT4/CoFe2O4, and Composite/CoFe2O4/Composite with the bonding conditions (3-1), mod-
eling a permeable interface, and (3-2), modeling an absorbent interface. The MEE properties used in the
calculations are given in Table 1. The dimensions of the interface parameter K , which we recall from
Section 3A are GPa/m, are omitted in Figures 2–8.

In Figure 2 we show dispersion curves for the symmetric parts of SH waves propagating in the het-
erostructure of BaTiO3/CoFe2O4/BaTiO3 with either a permeable (Figure 2a) or absorbent (Figure 2b)
interface for increasing values of the spring constant K . Observe from Figure 2a that these curves are
nonintersecting, nonmonotonic for small values of K , and both strictly decreasing and convex for large
values of K . These last features can also be observed in [Calas et al. 2008, Figure 2]. In particular, all
wave velocities tend to the wave velocity in phase B, v̄CoFe2O4 , as ωd →∞. We conclude from this
observation, which is also valid for Figure 2b, that the presence of imperfections at the interfaces does

Properties BaTiO3 CoFe2O4 PZT4 Composite

c (GPa) 43 45.3 26 44.58
e (C/m2) 11.6 0 10.5 3.61
f (N/Am) 0 550 0 378.92
g (10−9Ns/Vm) 0 0 0 −30.67
ε (10−9C2/Nm2) 11.2 0.08 7.124 4.06
µ (10−6Ns2/C2) 5 590 5 415.95
ρ (103Kg/m3) 5.8 5.3 7.5 5.45
v̄ (103m/s) 3.07981 2.94005 2.35162 2.97348
v̄B−G (103m/s) 3.00547 2.93987 2.18178 2.96514

Table 1. Material properties.
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Figure 2. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 3. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 4. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a CoFe2O4/PZT4/CoFe2O4 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 5. Influence of imperfect bonding on the dispersion curves for the symmetric
modes in a Composite/CoFe2O4/Composite heterostructure: (a) permeable and (b) ab-
sorbent bonding.
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Figure 6. Influence of imperfect bonding on the dispersion curves for the antisymmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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Figure 7. Influence of imperfect bonding on the dispersion curves for the antisymmetric
modes in a BaTiO3/CoFe2O4/BaTiO3 heterostructure: (a) permeable and (b) absorbent
bonding.
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not affect the wave propagation at high frequency for a given width d . Observe also from Figure 2a that
the velocity v tends to the velocity in phase A, v̄BaTiO3 , as K tends to zero for ωd less than 62.016 KHz m.

To analyze Figure 2b, observe from conditions (3-2)b–(3-2)e that there are neither electrical nor mag-
netic interactions between phases A, BaTiO3, and B, CoFe2O4, across an interface. If K = 0, recall
from (3-2)a that these phases are not bonded at an interface and, therefore, there is no mechanical
interaction between them either. In this case, the dispersion relation (4-34) reduces to (4-44), that
is, PA PB = 0. The solution PA = 0 corresponds to the constant phase velocity of the piezoelectric
Bleustein–Gulyaev wave for phase A, BaTiO3, which is obtained from (4-32), (4-33), and (2-10), and
is given by vB−G = v̄A

√

1− e4
A/(εAc̄e

A)
2. The dashed straight line in Figure 2b corresponds to this case.

On the other hand, the solution PB = 0 corresponds to a dispersive wave for the CoFe2O4 medium with
velocity determined from (4-45). The dashed line at the bottom of Figure 2b corresponds to this case.
Observe from this figure that all other dispersion curves are in between the curve for the Bleustein–
Gulyaev wave velocity of the BaTiO3 medium and the curve for the wave velocity of phase B, that is,
v̄B−G−BaTiO3 < v < v̄CoFe2O4 .

We now consider that ωd belongs to the interval (0, 50) in Figure 2 and show dispersion curves in
Figure 3 for small values of K belonging to the set {0, 0.001, 0.005, 0.05, 3, 5}. In the permeable case
(Figure 3a) the wave velocity v tends to the velocity in phase A, v̄BaTiO3 , as ωd tends to zero, which
is an expected result from (4-18). Note from the graph in the lower right-hand corner, for which ωd
belongs to the interval (0, 10), that the wave velocity for K = 0 is both an upper bound and a limit point
to which the wave velocity v tends to as K tends to zero. In the absorbent case (Figure 3b) v tends to the
Bleustein–Gulyaev velocity of medium A, v̄B−G−BaTiO3 , which is obtained from the condition PA = 0 in
(4-44) and is given by (4-32) together with (4-33). Note from both graphs in Figure 3 that v̄B−G−BaTiO3

is also an upper bound and a limit point for v as K tends to zero.
We now show in Figure 4 dispersion curves for the symmetric modes of SH waves propagating in the

heterostructure CoFe2O4/PZT4/CoFe2O4 with either a permeable (Figure 4a) or absorbent (Figure 4b)
interface for increasing values of K . These curves are qualitatively similar to the curves shown in Figure 2.
Thus, all wave velocities tend to the wave velocity in phase B, v̄PZT4, as ωd→∞. As ωd tends to zero,
these velocities tend to the wave velocity in phase A, v̄CoFe2O4 , in Figure 4a and tend to the Bleustein–
Gulyaev velocity of medium A, v̄B−G−CoFe2O4 , which is given by v̄A

√

1− f 4
A/(µAc̄ f

A)
2. In Figure 4 all

the dispersion curves are in a region bounded by curves corresponding to the cases (K = 0, PA = 0),
(K = 0, PB = 0), and v̄PZT4.

Next, we show in Figure 5 dispersion curves for the symmetric modes of SH waves propagating in
the heterostructure Composite/CoFe2O4/Composite with either a permeable (Figure 5a) or absorbent
(Figure 5b) interface for increasing values of K . We recall from the beginning of this section that com-
posite stands for the composite BaTiO3/CoFe2O4 with 30 percent BaTiO3. These curves are qualitatively
similar to the corresponding curves in both Figure 2 and Figure 3.

Results for the antisymmetric parts of SH waves propagating in the heterostructures BaTiO3/CoFe2O4/

BaTiO3 and CoFe2O4/PZT4/CoFe2O4 are shown in Figures 6 and 8, respectively, for both types of
interface: (a) permeable and (b) absorbent. Observe from Figure 6a that, for the whole range of values
of ωd shown in the figure and for v̄B ≤ v ≤ v̄A, the curve corresponding to both K = 0 and PB = 0
is below the curve corresponding to K =∞, there are no other dispersion curves between these two
curves, all the curves corresponding to K ≥ 100 are above the curve corresponding to K = ∞, and
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all the curves corresponding to K ≤ 50 are below the curve corresponding to both K = 0 and PB = 0.
Similar observations can also be drawn from Figure 8a.

Next, observe from Figure 6b that the curves corresponding to, respectively, (K = 0, PB = 0) and
K =∞ intersect each other at (v̄B−G−BaTiO3,W d) = (3.00547, 43.02). To the left of ωd = 43.02 and
for K ≥ 50, the dispersion curves are in between the two curves above. To the right of ωd = 43.02
and for K ≥ 50, these curves are above the curve corresponding to K =∞. In both cases, the curves
corresponding to K ≤ 35 are below all the other curves mentioned above.

In Figure 8b observe that all curves intersect at (v̄B−G−CoFe2 O3, ωd)= (2.93987, 8.32). For ωd > 8.32,
observe also that, contrary to the previous figures, the curve corresponding to K =∞ is below the curve
corresponding to (K = 0, PB = 0), and that all the other dispersion curves lie in a region bounded by
these two curves.

The behavior of the dispersion curves for small values of K in the set {0, 0.001, 0.005, 0.05, 3, 5} and
for 0≤ ωd ≤ 50 is shown in Figure 7 for the heterostructure BaTiO3/CoFe2O4/BaTiO3. Observe from
this figure that the curve corresponding to K = 0 is above all the other curves and that the wave velocity
for K = 0 tends to the velocity of the Bleustein–Gulyaev wave in phase A as ωd→ 0.

6. Conclusions

The effect of imperfect bonding at the interface of a heterostructure A/B/A with magnetoelectroelastic
properties on stationary shear (SH) waves has been investigated. Analytical dispersion relations for
absorbent and permeable interfaces are obtained. Several numerical examples for the first branches of
the dispersion curves are shown in the range of v̄B < v < v̄A. Different limit cases are considered and
show a good agreement with corresponding cases reported in recent studies.

Based on numerical examples, the dispersion curves for different values of the material parameter K
are shown. The decreasing of the imperfect bonding parameter K decreases the propagation velocity.
The dispersion curves for the symmetric modes are bounded between the limit cases K = 0 and K =∞
for both types of interfaces, permeable and absorbent interfaces. The dispersion curves are confined
and not intersecting between the velocity of the outer (A) and the inner (B) media. The symmetric and
antisymmetric modes for the limit case ωd →∞ approach asymptotically to v̄B for all values of K .
These results were obtained numerically for different combinations of materials.
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