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THREE-DIMENSIONAL BEM ANALYSIS TO ASSESS DELAMINATION CRACKS
BETWEEN TWO TRANSVERSELY ISOTROPIC MATERIALS

NICOLÁS O. LARROSA, JHONNY E. ORTIZ AND ADRIÁN P. CISILINO

Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the bound-
ary element method (BEM) for dealing with fracture mechanic problems is its accuracy in solving strong
geometrical discontinuities. Within this context, a three-dimensional implementation of the energy do-
main integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials is presented
in this paper. The EDI allows extending the two-dimensional J -integral to three dimensions by means of
a domain representation naturally compatible with the BEM, in which the required stresses, strains, and
derivatives of displacements are evaluated using their appropriate boundary integral equations. To this
end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely
isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of
the implementation for solving straight and curved crack-front problems.

1. Introduction

High-performance composite materials possess excellent mechanical properties such as strength, tough-
ness, and fatigue resistance. Composite materials are ideal for components which require high strength
per weight and stiffness per weight ratios. By choosing an appropriate combination of reinforcement and
matrix material, manufacturers can produce materials with mechanical properties that fit the requirements
for a particular purpose. Commonly, high strength and stiffness are required in various directions within
a plane. A solution is to stack and weld together a number of plies, each having with the fibers oriented
in a different direction. Such a stack is termed a laminate. The individual plies present a macroscopic
transversely isotropic behavior with the symmetry axis in the direction of the fibers [Gibson 2007].

However, the application of composite materials in critical components has lagged due to the lack of
sufficient knowledge about composite damage tolerance properties. Delamination, for example, is one
of the areas that still demand a lot of work. Delamination consists in the nucleation of interface cracks
between the plies of the laminate as a consequence of thermomechanical fatigue, impact, or material
degradation [Gibson 2007]. Progress in the mechanics of interface fracture has been generally focused
on the two-dimensional idealization of an interface crack, and not until recently has major effort been
conducted on the three-dimensional aspect of interface fracture. That is in part due to the complexity of
such problems and the very large computational effort required for their numerical analysis. However,
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given the material mismatch at the interface boundary, it is expected that the three-dimensional effects
play a more significant role in laminate structures than in homogeneous structures.

The numerical analysis of interface cracks in transversally isotropic materials has been traditionally
addressed using finite element analysis; see, for example, [Boniface and Banks-Sills 2002; Freed and
Banks-Sills 2005]. There is also the alternative of using the boundary element method (BEM). The
attraction of the BEM can be largely attributed to the reduction in the dimensionality of the problem;
this means that, compared to finite-element domain-type analysis, BEM analysis results in a substantial
reduction in data preparation. At the same time, due to the inherent characteristics of its formulation,
BEM provides very accurate results for problems containing strong geometrical discontinuities. Fracture
mechanical analysis of three-dimensional transversely isotropic materials using BEM has been reported
in [Sáez et al. 1997; Ariza and Dominguez 2004a; 2004b], which modeled static and dynamic crack
problems, [Zhao et al. 2007], which derived the displacement discontinuity boundary integral equation,
and more recently in [Chen et al. 2009], which studied the stress intensity factors of a central square crack
in a transversely isotropic cuboid with arbitrary material orientations. To our knowledge, there is no
published material about three-dimensional BEM modeling of interface cracks in dissimilar transversely
isotropic bimaterials.

A number of techniques have been proposed for the evaluation of fracture parameters of interface
cracks using FEM and BEM. They are, among others, the virtual crack extension approach [So et al.
2004], contour and domain path-independent integrals [Chow and Atluri 1998; Freed and Banks-Sills
2005; Ortiz and Cisilino 2005; Shah et al. 2006], displacement extrapolation techniques [Tan and Gao
1990; Mao and Sun 1995; Freed and Banks-Sills 2005], and special crack-tip elements [He et al. 1994].
In particular, path-independent integral techniques are derived from the J -integral proposed in [Rice
1968]. Being an energy approach, path-independent integrals eliminate the need to solve local crack tip
fields accurately. If the integration domain is defined over a relatively large portion of the mesh, accurate
modeling of the crack tip is unnecessary because the crack tip field contribution to the overall energy
is not significant. At the same time, the J -integral approach developed in [Rice 1968] characterizes
the crack driving force for two-dimensional problems. Therefore, for general three-dimensional cases
involving cracks of arbitrary shape an alternative form for the J -integral is needed.

Three basic schemes have evolved for the numerical computation of the J -integral in three dimensions:
virtual crack extension methods, generalization of Rice’s contour integral, and domain integral methods
[Anderson 2005]. Domain integrals are equivalent to the virtual crack extension technique and are better
suited for numerical analysis than contour integral methods. Among the available domain integral meth-
ods (see for example, [Nikishkov and Atluri 1987; Feijoó et al. 2000]), the energy domain integral (EDI)
of [Moran and Shih 1987] was chosen for this work.

The EDI can be formulated by applying the divergence theorem to Rice’s J -integral. It produces
a domain-independent integral defined over finite volumes enclosing some portion of the crack front
[Moran and Shih 1987]. Previous works by the authors of this paper have demonstrated the versatility
and efficiency of the BEM implementation of the EDI for assessing three-dimensional cracks in elastic
[Cisilino et al. 1998], elastoplastic [Cisilino and Aliabadi 1999], and thermoelastic bodies [Balderrama
et al. 2006; 2008] and for interface cracks in dissimilar isotropic bimaterials [Ortiz and Cisilino 2005].

This work introduces the BEM implementation of the EDI for the computation of the J -integral in
three-dimensional interface cracks in transversely isotropic bimaterials. The BEM implementation uses
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the fundamental solutions recently introduced in [Távara et al. 2008]. The BEM solution strategy for
the fracture problem and the EDI implementation is an extension of that proposed in [Ortiz and Cisilino
2005] for interface cracks in dissimilar isotropic bimaterials. Several examples are solved and the results
compared to those available in the literature.

2. Transversely isotropic materials

The basic constitutive expressions governing the elastic behavior of transversely isotropic materials are
reviewed, following [Ting 1996]. The general constitutive law of the anisotropic material is

σi j (x)= Ci jkl(x)εkl(x)= Ci jkl(x)uk,l(x), (1)

where, relative to a fixed rectangular Cartesian coordinate system, σi j (x) are the components of the
stress tensor, εi j (x) are the components of the infinitesimal strain tensor, and uk(x) are the components
of the displacement vector. Partial derivatives are indicated using comma notation. The Ci jkl(x) are
the components of the fourth-order constitutive tensor C , defined in terms of 21 independent elasticity
constants.

Transversely isotropic materials are those with an axis of symmetry such that all directions perpendic-
ular to that axis are on a plane of isotropy. In such a case the constitutive tensor can be defined in terms of
only 5 independent elasticity constants. Using the Voigt reduced notation, the fourth-order constitutive
tensor Ci j (i, j = 1, . . . , 6) for a transversely isotropic material with the axis of symmetry coincident
with the Cartesian axis x3 can be expressed in terms of the following five elastic constants:

C1111 = C11, C3333 = C33, C1122 = C12, C1133 = C13, C2323 = C44. (2)

Due to symmetry with respect to x3, C66 = (C11−C12)/2.
The coefficients of the constitutive tensor Ci j can be written in terms of the elastic engineering con-

stants as follows:

C11 =
E(n− ν ′2)
λ(1+ ν)

, C12 =
E(n+ ν ′2)
λ(1+ ν)

, C13 =
Eν ′

λ
, C33 =

E(1+ ν)
λ

, C44 = µ
′, (3)

where
λ= n(1− ν)− 2ν ′2, n = E/E ′, (4)

and

• E and E ′ are the Young’s moduli in the plane of isotropy and in the direction normal to it, respec-
tively,

• ν is the Poisson’s ratio that represents the strain response in the plane of isotropy due to an action
parallel to it and ν ′ is the lateral strain response for the planes normal to the plane of isotropy, and

• µ′ is the shear modulus for the planes normal to the planes of transverse isotropy.

3. The energy domain integral

Consider a three-dimensional crack front with a continuously turning tangent as depicted in Figure 1a
with a local coordinate system x∗ at position η, given by x∗1 normal to the crack front, x∗2 normal to
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(a) (b)

Figure 1. (a) Definition of the local orthogonal Cartesian coordinates at point η on the
crack front and integration volume, and (b) virtual crack front advance.

the crack plane, and x∗3 tangent to the crack front. In addition, a tubular domain V surrounds the crack
segment Lc which contains the position η.

Following [Nahta and Moran 1993], the J -integral at the position η can be computed using the EDI:

J (η)=
Ḡ(η)∫

Lc
1a(η) dl

, (5)

where Ḡ(η) gives the total energy released when the finite segment Lc undergoes the virtual displacement,
1a(η), in the plane of the crack (see Figure 1b).

The expression of the energy release rate is

Ḡ(η)=
∫

V
(σ ∗i j u

∗

j,k −w · δki )qk,i dV, (6)

where w is the strain energy density, σ ∗i j and u∗j,k are Cartesian components of stress and displacement
derivatives expressed in the system x∗, the integration domain V is the volume of the tubular domain
that surrounds the crack segment Lc, and q is an auxiliary vector function used to represent the virtual
crack advance as follows (see Figure 1b):

qk =

{
1a(η) · ξk(η) on Lc,

0 on S.
(7)

The function q must be smooth in V , possess a maximum at the position η, and vanishes on the surfaces
of V . The symbol ξk(η) in (7) stands for the k-th component of the unit outward normal to the crack
front in the crack plane x∗1 -x∗3 .

Analogously to the path-independence of its classical two-dimensional counterpart, the EDI formula-
tion of the J -integral is independent of the integration volume V [Nahta and Moran 1993].
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4. Boundary element formulation and implementation

In order to account for the nonhomogeneous material properties, a multidomain BEM formulation is used
for the problem solution. The modeling strategy is illustrated in the schematic representation in Figure 2
for a model consisting of two subdomains, �I(x) and �II(x), with external boundaries 0I(x) and 0II(x),
respectively. Both subdomains share a common interface 0I-II(x), a portion of which is debonded, and
thus an interface crack is introduced. The subdomains possess linear transversely isotropic material
behaviors as described in Section 2. The orientation of the material is specified using a local Cartesian
system (x0

1 , x0
2 , x0

3) for each subdomain. In every case the direction of the symmetry axis of the material
is chosen coincident with the direction x0

3 (see Figure 2). In this way, it is possible to model interface
cracks lying between laminates with arbitrary relative orientations.

The standard BEM uses the displacement boundary integral equation to relate the displacement and
traction fields, u(x) and t (x), over the model boundary in the global coordinate system (see [Aliabadi
2002]):

cik(x ′)ui (x ′)+
∫
0

Tik(x, x ′)ui (x) d0(x)=
∫
0

Uik(x, x ′)ti (x) d0(x), (8)

where Uik(x, x ′) and Tik(x, x ′) are the displacement and traction fundamental solutions for transversely
isotropic materials, respectively. The fundamental solutions account for the solution of the i-th compo-
nent of the displacement and traction fields, ui (x) and ti (x), at the field point, x , due to the action of a
unit load acting in the direction j at the source point, x ′ (see the next section for the details about the
fundamental solutions used in this work). The symbol cik is the so-called jump term which depends on
the local geometry at the source point, x ′, only.

BEM models are discretized using 9-node quadrilateral elements. Continuous elements are used ev-
erywhere in the model, except at the intersections of the interface and the crack faces with the model
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Figure 2. Schematic two-dimensional representation of the multidomain BEM model
with an interface crack.
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Figure 3. Model discretization strategy using continuous and one and two-side discon-
tinuous elements.

outer surface. In such cases one and two-side discontinuous elements are used in order to avoid common
nodes at the intersections (see Figure 3). It is worth noting that, although discontinuous elements are not
strictly necessary to solve most of the practical bimaterial crack problems, they have been implemented
in this work in order to develop a versatile and robust discretization strategy capable of dealing with
general multiple subdomain problems (including the case of more than two subdomains sharing a single
edge). At the same time, the implementation remains open to introduce further extensions to account for
crack propagation which could require automatic model remeshing.

The regular BEM integrals over continuous and discontinuous elements are evaluated using standard
Gaussian quadrature. In the case of nearly singular integrals an adaptive element subdivision technique is
also employed. On the other hand, the Cauchy principal-value integrals and the free terms are evaluated
using the rigid-body motion approach (see [Aliabadi 2002]). Singular integrals are computed using the
variable transformation technique of [Lachat and Watson 1976].

The equilibrium and continuity conditions are enforced at the nodes lying on the interface 0I-II shared
by the two regions. In the case that no external forces are applied on the interface, the equilibrium
condition is tI =−tII. The continuity condition is uI = uII. For further details on the multidomain BEM
formulation and implementation the reader is referred to [Aliabadi 2002].

Comninou [1977] showed that the solution of the stress fields for a crack between dissimilar materials
always predicts a contact zone between the crack surfaces at the crack tip. However, according to [Rice
1988] elastic fracture mechanics procedures are still valid when the inevitable nonlinear contact-zone size
is small compared with the crack size. It is assumed in this work that this condition is always satisfied,
and so the BEM implementation does not account for contact between the crack surfaces.

The computation of the J -integral is included in the BEM code as a postprocessing procedure, and so
it could be applied to the results from a particular model at a later stage. The required stresses, strains,
and derivatives of displacements at internal points are directly obtained from their boundary integral
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representations [Aliabadi 2002]:

ui,m(X ′)=
∫
0

Ui j,m(x, X ′)t j (x) d0(x)−
∫
0

Ti j,m(x, X ′)u j (x) d0(x), (9)

where X ′ is the coordinate of the internal point, and Ui j,m(x, X ′) and Ti j,m(x, X ′) are the derivatives of
the fundamental displacement and traction fundamental solutions. The boundary 0 corresponds to the
boundary of the subdomain which the internal point X ′ lies on. Strains and stresses at internal points can
then be easily computed using the definition of the infinitesimal strain tensor εi j = (ui, j + u j,i )/2 and
the constitutive relations in (1).

On the other hand, the derivatives of the displacements, strains, and displacements for boundary points
are evaluated from the boundary displacements and tractions by means of a procedure similar to that
usually used for finite elements. For further details the reader is referred to [Ortiz and Cisilino 2005].

Finally, in order to proceed with the J -integral computation, the resultant displacement derivatives,
strains, and stresses for both internal and boundary points are transformed to the local crack-front coordi-
nate system (x∗1 , x∗2 , x∗3 ) introduced in Section 3 using the standard transformation rule for second-order
tensors; see [Ting 1996].

5. The fundamental solutions for transversely isotropic materials

There are several expressions for the fundamental solutions for transversely isotropic materials; see, for
example, [Pan and Chou 1976; Loloi 2000]. However, these solutions could be cumbersome to implement
in a BEM code because of the multiple cases to consider due to all the possible material orientations and
the relative positions of the source and field points.

Távara et al. [2008] have recently derived completely general and unique expressions valid for all
possible configurations given in terms of real functions only. These fundamental solutions are presented
in what follows.

The Green’s function for a linearly elastic anisotropic medium using the Barnett–Lothe tensor is
[Lifshitz and Rozentsveig 1947]

U 0(x)= 1
4πr

H(x), (10)

where x is the position vector and the matrix H(x) defined by

H(x)= 1
π

∫
+∞

−∞

0−1(p) dp. (11)

The integrand 0(p) is the 3× 3 matrix

0(p)= Q+ p(R+ RT )+ p2T, (12)

where superscript T means transpose, and the matrices Q, R, and T are defined by

Qi j = Ci jksn j ns, Rik = Ci jksn j ms, Tik = Ci jksm j ms, (13)

for n and m orthogonal unit vectors in the plane normal to the position vector x . The matrices Q and
T are symmetric and positive definite if the deformation energy of the material is positive. Considering
(12) and (13), the matrix H(x) is also symmetric and depends on the direction of the position vector x ,
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but not on its magnitude. Using residues theory, H(x) in (11) can be expressed in the same form as (10)
and (12):

H(x)= 2i
3∑
v=1

0̂(pv)
|0(p)|′

, (14)

where 0̂(pv) is the adjunct of the matrix of 0(p) defined in (12) and |0(p)| is its determinant. The
values pv are the so-called Stroh eigenvalues of the sextic equation:

|0(p)| = 0. (15)

The eigenvalues of (15) can be represented as pv = αv + iβv where both αv and βv are real with βv > 0
(v = 1, 2, 3). Although there are explicit solutions for (14) in terms of the eigenvalues, pv, and for the
Green’s function in (10), they are not of practical use here because they are not general and they do not
hold for the degenerate cases p1 = p2 and p1 = p2 = p3. Alternatively, a simplified solution for (14) can
be obtained when (15) is a cubic equation in p2 of the form

|0(p)| = |T |(p2
− p2

1)(p
2
− p2

2)(p
2
− p2

3). (16)

In this case, (15) can be expressed as

[p4
+ (g2

− 2h)p2
+ h2)][p2

+β2
3 ] = 0, (17)

where g, h, and β3 are defined in the Appendix.
A new expression for H(x) is obtained for any anisotropic linear elastic material

H(x)= 1
|T |

4∑
n=0

pn0̂(n). (18)

Using (16) and (18) with (14), the following expression results:

H(x)= 1
|T |ξ

{ ζ

hβ3
0̂(0)+ 0̂(2)+ δ0̂(4)

}
, (19)

where

ζ =−i(p1+ p2+ p3)= g+β3, (20)

δ =−(p1 p2+ p2 p3+ p3 p1)= h+ gβ3, (21)

ξ = i(p1+ p2)(p2+ p3)(p1+ p3)= g(h+ gβ3+β
2
3 ). (22)

The terms ζ , δ, and ξ depend only on p1+ p2, p1 p2, and p3; therefore, it is not necessary to calculate
all the eigenvalues. The solution to (19) is valid for degenerate and nondegenerate cases. The terms β3,
h, and g can be computed using (17).

A relatively simple and general expression for H(x) for transversely isotropic materials can be ob-
tained using the auxiliary vector x̂= (r12, 0, x2

3), where r12=[(x0
1)

2
+(x0

2)
2
]
1/2, (x0

1 , x0
2 , x0

3) is the local co-
ordinate system, and the triad [n,m, x̂/r ], with n= (c, 0,−s) and m = (0, 1, 0), where c= cosφ = x0

3/r ,
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Figure 4. Points x and x̂ associated with a transversely isotropic material.

s= sinφ= r12/r , and 0≤φ≤π , is illustrated in Figure 4. For such a coordinate system, the only nonzero
coefficients are given by

H11 =
1

C66β3
+

C44c2
+C33s2

C11C44gh
−

f
ξ
, H22 =

1
C11g

+
f
ξ
,

H33 =
1

gh

{h+c2

C44
+

s2

C11

}
, H13 =

(C13+C44)sc
C11C44gh

.

(23)

The additional terms in (23) are given in the Appendix. The general expression of the tensor H(x) for
any x can be obtained by transformation of the components:

Hi j (x)=�ik� js Hks(x̂), (24)

where the rotation matrix �i j is

�i j =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 . (25)

The derivatives of the fundamental solution for the displacement can be expressed using the modulation
function Ûi j,k(x):

U 0
i j,k(x)=

Ûi j,k(x)
4πr2 . (26)

Ûi j,k(x) is an odd function, which depends on the direction of x but not on its magnitude, that is,
Ûi j,k(x) = −Ûi j,k(−x/r). Using the transformation in (24), the derivatives of the displacement fun-
damental solution are:

Ûi j,k(x)=�ia� jb�kcÛab,c(x̂). (27)

The closed-form expressions of Ûi j,k(x̂) can be found in [Távara et al. 2008].
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The fundamental solution for the stresses, 6i j,k(x), can be obtained by applying Hooke’s law for
transversely isotropic material, yielding

60
i jk(x)=

6̂i jk(x)
4πr2 , (28)

where 6̂i j,k(x) is an odd symmetric function. So, the stress fundamental solution can be expressed in a
similar form to (27):

6̂i jk(x)=�ia� jb�kc6̂abc(x̂). (29)

The closed-form expressions of 6̂i jk(x̂) can be found in [Távara et al. 2008]. The traction fundamental
solution associated with the normal vector n j (x) can be obtained directly using

T o
ik(x)=6

0
i jk(x)n j (x). (30)

Finally, the fundamental solutions Uik(x) and Tik(x) have to be transformed from the local coordinate
system, (x0

1 , x0
2 , x0

3), to the global in order to assemble the boundary integral (8). The fundamental
solutions are transformed from the local coordinate system to the global via the standard transformations
for second order tensors (see [Ting 1996]):

Ui j (x)= aika jlU o
kl(x), Ti j (x)= aika jl T o

kl(x), (31)

where aik are the coefficients of the transformation matrix.

6. J-integral computation

The computation of the EDI was included in the BEM code as a postprocessing procedure, and so it
could be applied to the results from a particular model at a later stage. As stated in Section 3, (5) allows
the computation of the J -integral at any position η on the crack front. In each case, this requires the
evaluation of a volume integral over a domain that encloses a segment of the crack front, Lc. A natural
choice here is to make η coincident with the element nodes on the crack front, while Lc is taken as
the element or element sides where the point η lies. As depicted in Figure 5, three different cases are
considered depending on whether the node M at the location of the crack front position η is a midside
node, is shared by two elements, or is located coincident with the external surface (a surface node). If the

corner node 
mid-side 

surface node 

Virtual crack extension q 

M M-2 

LC 

crack front 

M+2 

 

M-1 M 
M+1 

M-2 
M 

 

LC 

LC 

Figure 5. Schematic of the crack front region illustrating the q-function assimilated to
the virtual crack extensions for a corner node, a midnode, and a surface node.
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(a) (b) (c)

Figure 6. (a) Problem geometry, (b) boundary element discretization, and (c) integration
domains. Note in (c) the detail illustrating the 27-node isoparametric (brick) cells. The
dotted region indicates the volume cells defining the integration volumes used for the
computation of the J -integral for the crack-front node on the specimen surface (see
surface node in Figure 5).

node M is a midside node or surface node, Lc (the width of the integration domain) spans one element,
connecting nodes M − 1, M , and M + 1 and nodes M − 2, M − 1, and M , respectively. On the other
hand, if node M is shared by two elements, Lc spans both elements, connecting nodes from M − 2 to
M + 2.

The boundary mesh is designed to have a web pattern around the crack front in order to build the
integration domains for the evaluation of the EDI in the shape of cylinders. The integration volumes
are discretized using 27-node isoparametric (brick) cells. This is illustrated in Figure 6, where a portion
of the model surface has been removed to show the discretizations of the crack and of the integration
domains.

Stresses, strains, and derivatives of displacements at cell nodes are computed using the procedures
introduced in Section 4, and then transformed to the local crack-front coordinate system, (x∗1 , x∗2 , x∗3 ),
using the standard transformation rule for second-order tensors. The stresses, strains, and displacements
derivatives are approximated within cell domains by products of the cell interpolation functions, ψi , and
the nodal values of σ ∗i j , ε

∗

i j , and u∗i,m .
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A central point in the implementation of the EDI is the specification of the values for the function
q. Following the definition introduced in (7), the value of qk is specified equal to one for the cell node
coincident with the position η on the crack front where the EDI is evaluated, and equal to zero for all the
cell nodes located on the surface of the integration volume. For the implementation used in this work, the
function q is chosen to vary quadratically in the directions tangential and normal to the crack front: this
is schematically illustrated in Figure 5 for the tangential direction on the x∗1 x∗3 -plane. This biquadratic
definition of q has been employed with excellent results in the computation of EDI for a variety of
problems in previous works [Cisilino et al. 1998; Cisilino and Aliabadi 1999; Ortiz and Cisilino 2005;
Balderrama et al. 2006; 2008]. Thus, considering that the evaluation point η is at the middle of the crack
front segment, Lc, and that r0 is the radius of the integration domain, the function q is written as

q(x∗)=
∣∣∣∣1−( x∗3

Lc/2

)2∣∣∣∣ · [1− ( r
r0

)2]
, (32)

where r is the distance from the crack front in the x∗1 x∗3 -plane (see Figure 1).
Equation (32) is used to specify the value of q for all the cell nodes within the integration domain.

Then, consistent with the isoparametric formulation, the q-values are interpolated within each volume
cell using

q =
27∑

i=1

ψi Qi , (33)

where the ψi are the shape functions and Qi is the q-value for the i-th node. Following standard manip-
ulations, the derivatives of q are

qk, j =

27∑
i=1

3∑
l=1

∂ψi

∂ζl

∂ζl

∂x∗j
Qi , (34)

where ζk are the coordinates in the cell isoparametric space and ∂ζk/∂x∗j is the Jacobian matrix of the
transformation.

Finally, if Gaussian integration is used, the discretized form of (6) is

Ḡ(η)=
∑

cells in V

m∑
p=1

{
(σ ∗i j u

∗

j,k − σ
∗

i jε
∗

i jδki )qk, j det
(
∂x j

∂ζk

)}
p
wp, (35)

where m is the number of Gaussian points per cell and the wp are their weighting factors.

7. Application examples

7.1. Thick bimaterial plate in tension with a center interface crack. A thick bimaterial plate containing
a through crack on the interface is considered in the first example. A schematic representation of the
problem geometry, dimensions, and boundary conditions is depicted in Figure 7. The model discretiza-
tion is similar to that depicted in Figure 6. It consists of 658 elements and 2855 nodes. Eighteen elements
are placed along the crack front and a total of 126 elements are used in the crack discretization. Five
rings of cells with normalized radii r/a = 0.1, 0.2, 0.3, 0.44, and 0.64 are used around the crack front
for J computations. For this purpose 648 cells and 6438 nodes are employed.
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a) 

(a) (b)

Figure 7. (a) Schematic representation of a thick tension plate with a center interface
crack and (b) model dimensions.

In order to validate the code, the problem was solved first for homogeneous cases, that is, the material
elastic constants and orientations were set the same for both subdomains. Thus, the direction of the axis
of symmetry, x0

3 , was chosen to be parallel to the crack plane, that is, coincident with the global directions
x and z. The material elastic constants were chosen to be the same as those used for the laminated case
in [Ariza and Dominguez 2004b]. The five independent values of the elastic constants Ci j in (3) are

C11 = 5.37 GPa, C12 = 1.34 GPa, C13 = 3.35 GPa, C33 = 251.168 GPa, C44 = 5 GPa. (36)

The associated elastic properties are: E = 5 GPa, E ′ = 247.83 GPa, ν = 0.245, ν ′ = 0.01, and
µ′ = 2.5. The material orientation is specified for each subdomain by means of the angles which define
the orientation of the material axis of symmetry, x0

3 , with respect to the global coordinate system (x, y, z).
In this way, for the material axis of symmetry oriented in the global direction x , the orientation angles
are 0◦/90◦/90◦, while for the material axis of symmetry oriented in the global direction z, the angles are
90◦/90◦/0◦.

The computed results along the crack front are presented in Figure 8. In order to compare with other
results, the data in Figure 8 is presented in terms of normalized stress intensity factors (SIF), K I /K0,
where K0 = σ

√
πa. To compute the SIF from the J results the expressions of [Chu and Hong 1990] are

used:
J1 = a11K 2

I + a12KIKII+ a22K 2
II,

J2 = b11K 2
I + b12KIKII+ b22K 2

II,
(37)

where the coefficients ai j and bi j depend on the elastic material properties and the material orientation.
The coefficients a12 and a22 and the three coefficients bi j are zero when one of the principal axes of the
material is parallel to the crack plane. Thus, for the cases considered in this work,

J1 = a11K 2
I . (38)
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These are the values of the coefficient a11 and the ratio Ex/Ey between Young’s moduli:

Material symmetry in x-direction: a11 = 0.112× 10−9 Ex/Ey = 49.57

Material symmetry in z-direction: a11 = 0.2× 10−9 Ex/Ey = 1

It can be seen in Figure 8 that, excepting only the regions next to the lateral faces of the specimen (say,
|z/t |> 0.45) where the boundary layer effect takes place, the SIF value is nearly constant along the crack
front. Two sets of results obtained from a two-dimensional high-resolution finite element model are also
shown in Figure 8. The finite element model was solved using ABAQUS [2009], and was discretized
using a fine regular mesh consisting of 9,600 8-node biquadratic, plane stress elements (CPS8R). The
SIF were computed using the ABAQUS built-in J -integral procedure. The resultant normalized SIF are
K I /K0 = 1.124 and K I /K0 = 1.184 for the material axis of symmetry oriented in the global directions
x and z, respectively. The maximum difference between the BEM and FEM results along the crack front
in the interior of the specimen (that is, excluding the regions next to the lateral faces) is less than 2%.

The final case consists of a heterogeneous plate with the axis of symmetry of the material oriented in
the global directions z and y for subdomains I and II, respectively; that is, 90◦/90◦/0◦ for subdomain I
and 90◦/0◦/90◦ for subdomain II. The material elastic properties are the same as in the previous cases.
Computed results are presented in Table 1. The results are normalized with respect to J0 = σ

2πa/E ′.
It can be seen that the J value is nearly constant along the complete crack front. Besides, the path
independence is found to be excellent, with a standard deviation of around 5% for the results computed
using the domains with radii r/a ≥ 0.20. The only exceptions are the positions next to the lateral face of

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.95

1.00

1.05

1.10

1.15

1.20

 Material axis of symmetry in x-direction - BEM

 Material axis of symmetry in z-direction - BEM

 Material axis of symmetry in x-direction - 2D FEM

 Material axis of symmetry in z-direction - 2D FEM

K
/K

0

z/t

Figure 8. Normalized SIF results along the crack front for homogeneous transversely
isotropic center crack specimen.
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r/a =
z/t 0.10 0.20 0.30 0.44 0.64 Average

Std.
dev.

0.000 25.6382 30.4503 30.7658 30.7658 30.6081 30.5613 0.49
0.042 25.6382 30.4503 30.7658 30.7658 30.6081 30.5566 0.49
0.083 25.6382 30.4503 30.7658 30.7658 30.6081 30.5512 0.49
0.125 25.6382 30.4503 30.7658 30.7658 30.6081 30.5452 0.49
0.167 25.6382 30.4503 30.7658 30.7658 30.6081 30.5384 0.49
0.192 25.6382 30.4503 30.6869 30.7658 30.6081 30.5306 0.44
0.217 25.6382 30.4503 30.6869 30.7658 30.6081 30.5231 0.44
0.242 25.6382 30.4503 30.6869 30.7658 30.6081 30.5144 0.44
0.267 25.6382 30.4503 30.6869 30.7658 30.6081 30.5041 0.44
0.292 25.6382 30.4503 30.6869 30.7658 30.6081 30.4917 0.44
0.317 25.6382 30.3714 30.6869 30.6869 30.5292 30.4766 0.50
0.342 25.6382 30.3714 30.6081 30.6869 30.4503 30.4651 0.47
0.367 25.6382 30.3714 30.6081 30.6081 30.4503 30.4559 0.39
0.400 25.5593 30.3714 30.6081 30.6081 30.4503 30.4470 0.39
0.433 25.5593 30.2925 30.6081 30.6081 30.4503 30.4345 0.50
0.450 25.5593 30.2925 30.5292 30.6081 30.4503 30.4207 0.44
0.467 25.4804 30.2925 30.6869 30.7658 30.6869 30.4043 0.70
0.483 25.0071 29.9770 30.7658 31.1603 31.2391 30.3024 1.91
0.500 23.5871 28.5570 29.7403 30.3714 30.6081 29.8192 3.08

Table 1. Normalized J -integral results for the heterogeneous plate as a function of the
integration domain size. The results for the smallest integration domains, r/a = 0.1
(shaded column in the table) are excluded for the computation of the average value and
the standard deviation.

the specimen, where the boundary layer effect takes place and the applicability of the J -integral is not
strictly valid. The smallest integration domains with r/a = 0.10 do not provide accurate results. This is
attributed to the fact that these domains are discretized using a single cell in the radial direction. Similar
behaviors were found by the authors previously [Cisilino et al. 1998; Ortiz and Cisilino 2005].

7.2. Bimaterial laminate with an edge interface crack. In this example the analysis of an edge crack in
a bimaterial laminate is considered. The model geometry and discretization are shown in Figure 9. The
model dimensions are: crack length a = 10 mm, specimen width b = 4a, height h = a, and thickness
2t = 1.5a. The material properties are the same ones used in the previous example. The discretization
consists of 596 elements. Five rings of cells with normalized radii r/a = 0.05, 0.1, 0.15, 0.22, and 0.32
are used around the crack front for the J computations. 504 cells are used in the construction of the
integration domains.

The model was solved for a number of relative orientations of the axis of symmetry of the material
in both subdomains. The computed results are reported in Figure 10. The J -results in Figure 10 are
normalized with respect to J0 = σ

2πa/E ′. It can be seen that when one of the principal axes of the
material is specified perpendicular to the crack front direction for both subdomains, the J -integral results
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x 

y 

z 

Figure 9. Bimaterial laminate with an edge crack (deformed geometry).

along the crack front are symmetric with respect to the specimen midplane (z/t = 0). This is the case
for the results labeled 90◦/90◦/0◦-90◦/90◦/0◦ and 0◦/90◦/90◦-90◦/90◦/0◦ in the figure. On the other hand,
when there is no principal axis of the material oriented perpendicular to the crack front in at least one
of the subdomains, the J -integral results are not symmetric with respect to the specimen midplane. The
extreme values for the J -integral are attained at the free surface.
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Figure 10. Normalized J -integral results along the crack front of the edge crack in the ply.
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Figure 11. External circumferential interface crack in a cylindrical bimaterial bar.
(a) Model geometry and dimensions and (b) model discretization (deformed mesh).

7.3. A circumferential interface crack in a cylindrical bimaterial bar. The last example consists of
a cylindrical bimaterial bar containing a circumferential crack subjected to remote axial tension σ , as
illustrated in Figure 11a. The radius of the bar is b= 5a and its height is h = 24a, with a being the crack
depth. A total of 684 elements are employed in the model discretization. Four rings of cells with radii
r/a = 0.25, 0.5, 0.75, and 1 are used around the crack front for the J computations. The integration
domains are constructed using 672 cells. The model discretization is illustrated in Figure 11b. The
material properties are the same reported for the previous examples.

The problem was solved considering different material orientations. The results are shown in Figure 12.
In every case the results are normalized with respect to J0= σ

2πa/E ′. The first solution is for an isotropic
homogeneous material and was used for validation purposes. The J result is constant along the complete
crack front. Also plotted in Figure 12 is the result of [Murakami and Okazaki 1976], which possesses
a reported accuracy of 3%. The difference between the computed result and that of the reference is 5%.
The second solution is for a homogeneous transversely isotropic case, with the material symmetry axis
specified coincident with the direction y for both subdomains (results labeled 90◦/0◦/90◦-90◦/0◦/90◦ in
Figure 12). Once again, and as was expected, the computed J values are constant along the complete
crack front. In the third case the orientation of the material axes of symmetry are different in each
subdomain: for subdomain I the material axis of symmetry is oriented in the z-direction, while for
subdomain II it is oriented in the y-direction (results labeled 90◦/90/0◦-90◦/0◦/90◦ in Figure 12). The
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Figure 12. Normalized J -integral results along the crack front of the circumferential
crack in the biomaterial bar.

J results exhibit a periodic variation along the crack front. The minimum values occur in the positions
coincident with the direction of the z-axis, while the maximum values are in the positions coincident with
the direction of the x-axis. In the last case, the orientation of the material axis of symmetry is specified
in the x-direction for both subdomains (results labeled 0◦/90/90◦-0◦/90◦/90◦ in Figure 12). As for the
previous case, the J results exhibit a periodic variation along the crack front. However, in this case
minimum values occur in the positions coincident with the direction of the x-axis, while the maximums
are in the positions coincident with the direction of the z-axis.

8. Conclusions

A boundary element implementation of the energy domain integral (EDI) for the computation of the
J -integral of three-dimensional interface cracks in transversely isotropic bimaterials has been presented
in this paper. The analysis is addressed using a multidomain boundary element method (BEM) formu-
lation in order to account for the different material properties at both sides of the crack. The J -integral
computation is implemented as a postprocessing technique, and so it can be applied to the results from
a particular model at a later stage. The BEM uses a versatile set of fundamental solutions given only in
terms of real functions which are valid for all possible material configurations. The implementation takes
advantage of the efficiency of the boundary integral equation to directly obtain the required displacement
derivatives, stress, and strain fields from their boundary integral representations.

The efficiency and accuracy of the proposed implementation has been addressed by analyzing a number
of examples with straight and curved crack fronts. The computed results compare very well with those
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reported in the literature for benchmark problems. In addition, the implemented algorithm allowed for
studying the effect of the relative orientations of the materials on both sides of the crack on the J integral
values.

Maximum errors and dependence of the computed results on the integration paths occur for surface
cracks at the intersection of the crack front with a free surface. This behavior is attributed to the boundary
layer effect taking place at the intersection of the crack front and a free surface. Under these circum-
stances, the EDI is not strictly applicable. This problem remains unsolved in this work. Following
previous work [Ortiz and Cisilino 2005], alternative approaches for the selection of the auxiliary function
q for the implementation of the EDI could be explored to improve the accuracy of the computations.

Appendix

Additional terms of the components of the tensor H(x̂):

β3 =

{
C44c2

+C33s2

C66

}1/2

, h =
{

c4
+
ηs2c2

C11C44
+

C33s4

C11

}1/2

, g =
{

2(h+ c2)+
ηs2

C11C44

}1/2
,

ξ = g(h+ gβ3+β
2
3 ), η = C11C33−C2

13− 2C13C44, f = h+c2

C66
+

gh
C66β3

+
C33s2

C11C44
,

where c = cosφ = x3/r , s = sinφ = r12/r , the angle φ being as in Figure 4.
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