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LINEAR BUCKLING ANALYSIS OF CRACKED PLATES BY SFEM AND XFEM

PEDRO M. BAIZ, SUNDARARAJAN NATARAJAN,
STÉPHANE P. A. BORDAS, PIERRE KERFRIDEN AND TIMON RABCZUK

In this paper, the linear buckling problem for isotropic plates is studied using a quadrilateral element with
smoothed curvatures and the extended finite element method. First, the curvature at each point is obtained
by a nonlocal approximation via a smoothing function. This element is later coupled with partition of
unity enrichment to simplify the simulation of cracks. The proposed formulation suppresses locking and
yields elements which behave very well, even in the thin plate limit. The buckling coefficient and mode
shapes of square and rectangular plates are computed as functions of crack length, crack location, and
plate thickness. The effects of different boundary conditions are also studied.

1. Introduction

Plate-like structures (thin-walled structures) are one of the most widely used structural elements in ad-
vanced engineering design, particularly in the aerospace industry. In order to efficiently study such
structures, different plate theories have been proposed during the years. In classical plate theory (also
known as Kirchhoff) the shear deformation through the plate thickness is neglected because of the assump-
tion that the normal to the middle surface remains normal after deformation. Although for most practical
applications this theory is sufficient, it has been proved (see references [5] and [6] in [Reissner 1947]) that
the Kirchhoff theory of thin plates is not in accordance with experimental results for problems with stress
concentration — stresses at an edge of a hole when the hole diameter is of the same order of magnitude
as the plate thickness — or in the case of composite plates, where the ratio of the Young’s modulus to
the shear modulus can be very large (low transverse shear modulus compared to isotropic materials). In
shear deformable plate theory (also referred to as Mindlin or Reissner), it is assumed that the normal-
to-the-middle surface will not necessarily remain perpendicular after deformation, adding rotations of
the normal as extra unknowns into the partial differential equations, and therefore overcoming problems
associated with the application of the classical theory.

A plate structure may lose its ability to withstand external loading when the stored compressive mem-
brane strain energy reaches a critical level. This phenomenon, known as buckling, is characterised by
sudden and disproportionate large displacements that could lead to structural failure. In the presence of
flaws such as through-the-thickness cracks, critical buckling loads will decrease as a result of the local
flexibility provided by the crack, severely affecting the performance of the plate structure. Buckling
analysis of isotropic cracked panels has been conducted by researchers analytically and numerically. In
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[Stahl and Keer 1972] homogeneous Fredholm integral equations of the second kind were used to solve
the eigenvalue problem for cracked plates under compressive loading. Buckling of cracked elastic plates
subjected to uniaxial tensile loads was presented in [Markström and Storȧkers 1980]. More recently, in
[Brighenti 2009] the effects of crack length and orientation on the buckling loads of rectangular elastic
thin plates under different boundary conditions were shown, and similarly in [Alinia et al. 2007] for
analysis of panels containing central or edge cracks under shear loading, both using the finite element
method (FEM). Numerical approaches not based on FEM that address the eigenvalue problem of cracked
plates under compressive loading include those of [Liu 2001] using the differential quadrature element
method and [Purbolaksono and Aliabadi 2005] using the dual boundary element method. Other works
dealing with buckling of cracked plates are [Sih and Lee 1986; Riks et al. 1992; Vafai et al. 2002].

Nowadays, it is well accepted that engineers need to resort to numerical approaches to solve a wider
range of practical problems. FEM is the most widely used numerical technique in industry to solve
structural problems and a wide range of commercially packages are currently available. Despite its
robustness and versatility, FEM efficiency in modelling cracks, discontinuities, and areas of high stress
concentration has always been considered an area for improvement since a very refined discretisation
is typically necessary in order to obtain accurate solutions. If the discontinuity is moving or is located
within a complex geometry, the task of obtaining an acceptable mesh could become very cumbersome
and extremely time-consuming.

Extended FEM (XFEM) [Belytschko and Black 1999], which is based on a standard Galerkin proce-
dure and employs the concept of partition of unity proposed in [Babuška et al. 1994], can accommodate
the internal boundaries of a crack without regenerating the mesh around the discontinuity. The basic
concept behind the method is the incorporation of special local enrichment functions into a standard
FEM approximation. Recent areas of XFEM application cover a wide range of scientific and engineer-
ing problems, including fracture, dislocations, inclusions, grain boundaries, phase interfaces, multiscale,
among others (see [Belytschko et al. 2009] for a recent review). In the particular case of plate bending,
the first work on fracture of plates with XFEM was [Dolbow et al. 2000] while in [Areias and Belytschko
2005] a general nonlinear XFEM formulation for analysis of shells was presented. Wyart et al. [2007]
presented a mixed-dimensional approach (shell/3D XFEM) for accurate analysis of cracks in thin-walled
structures and Bordas et al. [2009] presented applications of strain smoothing in finite element problems
with discontinuities and singularities for 2D, 3D, and plate/shell formulations (smoothed extended finite
element method (SmXFEM)). In terms of eigenvalue problems, [Bachene et al. 2009; Natarajan et al.
2009b] presented an application of XFEM for the study of the linear vibration of cracked isotropic plates.
Other recent works dealing with cracks in thin-walled structures are [Rabczuk and Areias 2006; Rabczuk
et al. 2007; 2010].

The strain smoothing concept within FEM (SFEM) was recently proposed in [Liu et al. 2007a], and
since then a series of publications addressing the properties and applications of the method in a variety
of structural mechanics problems have been presented. Some of the recent papers on the area include:
its mathematical foundations [Liu et al. 2007b; Nguyen-Xuan et al. 2008a; Bordas and Natarajan 2010],
plate [Nguyen-Xuan et al. 2008b] and shell [Nguyen-Thanh et al. 2008] analyses, limit analysis [Le et al.
2010], and polygonal meshes [Dai et al. 2007]. The main idea behind SFEM is to split a finite element
into subcells over which the gradients (strains) are smoothed. If a constant smoothing function is used
over each subcell, the area integration can be recast into a line integration along its edges. This allows
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for field gradients to be computed directly by only using the shape functions (no derivatives of shape
functions are needed), which accordingly reduces the requirement on the smoothness of shape functions.
Some of the major advantages of SFEM that have been shown in the literature include: insensitivity to
mesh distortion, lower computational cost than FEM for the same accuracy level, flexibility (by offering
elements ranging from the standard FEM to quasiequilibrium FEM), insensitivity to locking for low
numbers of subcells, and the possibility of constructing arbitrary polygonal elements. This field of
research has led to the development of related approaches such as node-based SFEM [Liu et al. 2009b]
and edge-based smoothed FEM for 2D problems [Liu et al. 2009a] (called face-based smoothed FEM for
3D problems). Following all these new developments, very recently in [Liu 2010a; 2010b] a theoretical
framework was presented to unify the formulation of element-based and mesh-free methods; it attempts
to improve the accuracy and efficiency of numerical solutions by using incompatible formulations based
on a weakened weak form.

All the above mentioned developments illustrate the great potential of XFEM, particularly when
combined with strain smoothing techniques [Bordas et al. 2009]. Some of the areas of improvement
that strain smoothing could provide for XFEM are simplifying integration of discontinuous functions
by replacing domain integration by boundary integration (see also [Natarajan et al. 2009a; 2010] for
techniques suppressing the need for subcells for the integration of discontinuous approximations) and
increasing stress and stress intensity factor accuracy.

The present paper is inspired by recent developments that show how curvature smoothing coupled
with partition of unity enrichment can produce a plate element capable of cracking which is significantly
more accurate than formerly proposed elements [Bordas et al. 2009]. This work attempts specifically
to investigate the possibilities of smoothed XFEM for linear plate buckling and the effect of using the
smoothing operator for the higher-order terms in the plate buckling equation. First a recently developed
curvature strain smoothing plate bending element [Nguyen-Xuan et al. 2008b] is used to study the linear
plate buckling phenomena (eigenvalue problem). Then, XFEM is used to obtain critical buckling loads
of cracked isotropic shear deformable plates. Finally, the SmXFEM [Bordas et al. 2009] approach is
applied to the linear buckling problem of cracked Mindlin–Reissner plates. Some of these approaches
have been previously introduced by the authors in the context of free vibration analysis of cracked plates
[Natarajan et al. 2009b], but until now the application of SFEM, XFEM, and SmXFEM has not been
attempted in the area of linear plate buckling.

2. Mindlin–Reissner plate buckling

2.1. Basic problem formulation. Let � be the domain of a flat isotropic homogeneous thick plate, 0
the boundary, and h the thickness. The midplane of the plate is taken as the reference plane, see Figure 1.

The basic assumption for displacements is
u(x, y, z)
v(x, y, z)
w(x, y, z)

=


zβx(x, y)
zβy(x, y)
w(x, y)

 , (1)

where u(x, y, z), v(x, y, z), and w(x, y, z) are the components of displacement at a general point in
� on the x , y, and z axes, respectively; w(x, y) represents the transverse deflection and βx(x, y) and
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Figure 1. Quadrilateral shear deformable plate element.

βy(x, y) are the rotations in the x and y directions of the middle surface, respectively. The bending and
shear strains for Mindlin–Reissner plate theory are given by

κ =

 βx,x

βy,y

βx,y+βy,x

 , γ =

[
βx+w,x

βy+w,y

]
. (2)

The total potential energy for a shear deformable plate subjected to in-plane prebuckling stresses (σ̂0),
in the absence of other external forces and neglecting terms with third and higher powers, can be written
as

5=
1
2

∫∫∫
V
κT Qbκ dx dydz+ 1

2

∫∫∫
V
γ T Qsγ dx dydz+

∫∫∫
V
σ 0

xxε
N L
xx dx dydz

+

∫∫∫
V
σ 0

yyε
N L
yy dx dydz+

∫∫∫
V
σ 0

xyε
N L
xy dx dydz, (3)

where 
εN L

xx

εN L
yy

εN L
xy

=


1
2

(
(u,x)2+(v,x)2+(w,x)2

)
1
2

(
(u,y)2+(v,y)2+(w,y)2

)
(u,x u,y+v,xv,y+w,xw,y)

 . (4)

Combining (1)–(4) and integrating over the thickness (3), the total potential energy can be rewritten

5=
1
2

∫∫
�

κT Dbκ dx dy+ 1
2

∫∫
�

γ T Dsγ dx dy+ 1
2

∫∫
�

[
w,x w,y

]
σ̂0

{
w,x

w,y

}
h dx dy

+
1
2

∫∫
�

[
βx,x βx,y

]
σ̂0

{
βx,x

βx,y

}
h3

12
dx dy+ 1

2

∫∫
�

[
βy,x βy,y

]
σ̂0

{
βy,x

βy,y

}
h3

12
dx dy. (5)
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The coefficient matrices in (3) are defined as

Db =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1

2(1−ν)

 , Ds =
ks Eh

2(1+ ν)

[
1 0
0 1

]
, (6)

σ̂0 =

[
σ 0

xx σ 0
xy

σ 0
yx σ 0

yy

]
, (7)

where Db is the bending stiffness matrix, Ds the shear stiffness matrix, E the Young’s modulus, ν the
Poisson ratio, and ks the transverse shear correction factor (taken as 5

6 in this work).

2.2. Finite element implementation (Q4). The problem domain � will be discretised into a finite num-
ber of quadrilateral isoparametric elements Ne:

�≈�h
=

Ne⋃
e=1

�e.

Using the shape functions of the quadrilateral element shown in Figure 1, lateral displacement and rota-
tions can be expressed as

w =

4∑
i=1

Niwi , βx =

4∑
i=1

Niβxi , βy =

4∑
i=1

Niβyi , (8)

where wi , βxi , and βyi denote nodal displacements and rotations and Ni the vector of bilinear shape
functions. Using the approximation in (8) the following expansions can be written:

κ = Bbq, γ = Bs q, (9){
w,x

w,y

}
= Gbq,

{
βx,x

βx,y

}
= Gs1q,

{
βy,x

βy,y

}
= Gs2q, (10)

where

Bbi =

0 Ni,x 0
0 0 Ni,y

0 Ni,y Ni,x

 , Bsi =

[
Ni,x Ni 0
Ni,y 0 Ni

]
, qi =

wi

βxi

βyi

 , (11)

Gbi =

[
Ni,x 0 0
Ni,y 0 0

]
, Gs1i =

[
0 Ni,x 0
0 Ni,y 0

]
, Gs2i =

[
0 0 Ni,x

0 0 Ni,y

]
. (12)

Using (8)–(12), the stationary form of the total potential energy expression (3) can be expressed as

(K − λKG)qm
= 0, m = 1, 2, . . . degrees of freedom,, (13)

where K is the global stiffness matrix, KG is the geometrical stiffness matrix, λ is a scalar by which the
chosen in-plane loads must be multiplied in order to cause buckling, and vector qm is the m-th buckling
mode. The stiffness matrices in (13) can be explicitly written as

K = Kb+ Ks,
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that is,

K =
∫
�e

BT
b Db Bb d�e

+

∫
�e

BT
s Ds Bs d�e (14)

and KG KGb+ KGs , with

KGb = h
∫
�e

GT
b σ̂0Gb d�e, (15)

KGs =
h3

12

∫
�e

GT
s1σ̂0Gs1 d�e

+
h3

12

∫
�e

GT
s2σ̂0Gs2 d�e. (16)

The shear contribution for the geometric stiffness matrix (KGs) is negligible for thin plates, but its
effect becomes more significant as the plate thickness increases. Most of the available literature dealing
with buckling of cracked plates does not consider the effect of (16); therefore, in order to establish
meaningful comparisons with the reported literature [Stahl and Keer 1972; Liu 2001; Purbolaksono and
Aliabadi 2005] this term could be included or neglected in the numerical solution (in the present work,
all examples considered neglect this term).

2.3. Shear locking. It is well known that the bilinear element described above exhibits shear locking as
the plate thickness approaches the Kirchhoff limit. This is due to the fact that when using the bilinear
interpolation for displacements and rotations the transverse shear strains cannot vanish at all points in the
element when subjected to a constant bending moment. To overcome this deficiency, various remedies
such as reduced integration have been proposed. In the present work, classical reduced integration and
MITC (mixed interpolation of tensorial components) [Bathe and Dvorkin 1985] approaches will be used
to eliminate shear locking.

In the classical approach, the shear part of the stiffness matrix, Ks in (14), will be integrated using a
1× 1 Gauss quadrature to avoid shear locking; this element will be referred to as Q4R.

In the approach proposed by [Bathe and Dvorkin 1985] displacement and rotations are interpolated as
usual, but for the transverse shear strains, the covariant components measured in the natural coordinate
system are interpolated. Following [Bathe and Dvorkin 1985] for the approximation of the shear strains,
the second equation in (2) can be expressed as

γ =

[
γx

γy

]
= J−1

[
γξ

γη

]
, (17)

with
γξ =

1
2 [(1− η)γ

B
ξ + (1+ η)γ

D
ξ ], (18)

γη =
1
2 [(1− ξ)γ

A
η + (1+ ξ)γ

C
η ], (19)

where J is the Jacobian matrix and γ A
η , γ B

ξ , γ C
η , and γ D

ξ are the (physical) shear strains at the midside
points A, B, C , and D, shown in Figure 1 together with the global (x, y, z) and local (ξ, η, ζ ) coordinate
systems. Using (17) and (19) and following the description in [Gruttmann and Wagner 2004], the shear
part of the stiffness matrix, Ks in (14), can be rewritten as

B̄si = J−1

[
Ni,ξ b11

i Ni,ξ b12
i Ni,ξ

Ni,η b21
i Ni,η b22

i Ni,η

]
, (20)
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where

b11
i = ξi x M

,ξ , b12
i = ξi yM

,ξ , b21
i = ηi x L

,η, b22
i = ηi yL

,η. (21)

The coordinates of the unit square are ξi ∈ {−1, 1, 1,−1}, ηi ∈ {−1,−1, 1, 1} and the allocation of the
midside nodes to the corner nodes is given by (i,M, L) ∈ {(1, B, A); (2, B,C); (3, D,C); (4, D, A)},
see Figure 1. Using (20), now the shear part of the stiffness matrix (Ks) can be computed using full
integration (2× 2 Gauss quadrature); this element will be referred to as MITC.

3. Curvature strain smoothing

Strain smoothing has appeared in the finite element literature [Liu et al. 2007a; Nguyen-Xuan et al.
2008b] as an attractive option to obtain increased accuracy at a lower computational cost, deal with
mesh distortion, and avoid locking, among other advantages. The idea behind the method is to express
the strain field as a spatial average of the compatible strains and use this “smoothed strain” to obtain the
element stiffness matrix.

Curvature strain smoothing for plate bending was first proposed in [Wang and Chen 2004] in meshfree
methods and in [Nguyen-Xuan et al. 2008b] in a finite element framework. Following the derivation in
[Nguyen-Xuan et al. 2008b], the smoothed bending strains for Mindlin–Reissner plates are given as

κ̃ = B̃C
b q, (22)

and the corresponding smoothed element bending stiffness matrix is

K̃b =

∫
�e
(B̃C

b )
T Db B̃C

b d�e
=

nc∑
C=1

(
B̃C

b (xC)
)T Db B̃C

b (xC)AC , (23)

where nc is the number of smoothing cells in the element. As described in [Nguyen-Xuan et al. 2008b],
the integrands are constant over each smoothing cell domain (�e

C ) and the nonlocal curvature displace-
ment matrix is given by

B̃C
bi (xC)=

1
AC

∫
0C

0 Ni nx 0
0 0 Ni ny

0 Ni ny Ni nx

 d0C . (24)

This equation is evaluated using one Gauss point over each boundary cell segment 0m
C :

B̃C
bi (xC)=

1
AC

mt∑
m=1

0 Ni (xG
m )nx(xG

m ) 0
0 0 Ni (xG

m )ny(xG
m )

0 Ni (xG
m )ny(xG

m ) Ni (xG
m )nx(xG

m )

 lC
m , (25)

where xG
m is the Gauss point (midpoint of segment m), lC

m is the length of segment m, and mt is the total
number of segments. The expression in (25) already includes the product of the Jacobian of transfor-
mation for a 1D 2-node element (lC

m/2) and the Gauss quadrature weight (2). Combining the curvature
strain smoothing and the mixed interpolation of tensorial components gives the following expression for
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the stiffness matrix of a Mindlin–Reissner plate:

K̃ = K̃b+ K̄s, (26)

K̃ =
nc∑

C=1

(
B̃C

b (xC)
)T Db B̃C

b (xC)AC +

∫
�e

B̄T
s Ds B̄s d�e. (27)

As mentioned in [Nguyen-Xuan et al. 2008b], this element will be referred to as MISCk (mixed
interpolation and smoothed curvatures) with k ∈ {1, 2, 3, 4} representing the number of smoothing cells
(nc). These elements were shown to pass the patch test and to be slightly more accurate than the MITC
for regular meshes. The most promising feature was their improved performance for irregular meshes
and coarse meshes and their lower computational cost.

3.1. Smoothing of bending geometric stiffness matrix. Following a similar approach as the one pre-
sented by [Wang and Chen 2004; Nguyen-Xuan et al. 2008b] and shown above, the bending part of the
geometric stiffness matrix given in (15) can be written as

K̃Gb = h
∫
�e
(G̃C

b )
T σ̂0G̃C

b d�e
= h

nc∑
C=1

(
G̃C

b (xC)
)T
σ̂0G̃C

b (xC)AC , (28)

where

G̃C
bi (xC)=

1
AC

∫
0C

(
Ni nx 0 0
Ni ny 0 0

)
d0C . (29)

Following the same numerical implementation used for (24), (29) will be evaluated using one Gauss
point over each boundary cell segment 0m

C :

G̃C
bi (xC)=

1
AC

mt∑
m=1

(
Ni (xG

m )nx(xG
m ) 0 0

Ni (xG
m )ny(xG

m ) 0 0

)
lC
m . (30)

Using this expression in (28) corresponds to smoothing the higher-order bending terms given in (4).
This case will be considered in the present work, in order to study the effect of smoothing higher-order
terms within a shear deformable plate formulation. This element will be defined as MISCk_b (mixed
interpolation and smoothed curvatures of global stiffness and geometric stiffness matrix). Similarly to
MISCk, the number k in MISCk_b represents the number of smoothing cells in the element.

4. Extended finite element method for shear deformable plates

Following a similar enriched approximation for plate bending as presented in [Dolbow et al. 2000],
deflection and rotations can be approximated as

wh(x)=
∑

i∈N fem

Ni (x)wi +
∑

j∈N crack

N j (x)H j (x)bwj +
∑

k∈N tip

Nk(x)
( 4∑

l=1

Glk(r, θ)cwkl

)
, (31)

βh(x)=
∑

i∈N fem

Ni (x)βi +
∑

j∈N crack

N j (x)H j (x)b
β

j +
∑

k∈N tip

Nk(x)
( 4∑

l=1

F lk(r, θ)c
β

kl

)
, (32)
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Figure 2. Crack on an uniform mesh of bilinear quadrilateral elements. Circle nodes
are enriched by jump functions and square nodes by the asymptotic crack tip field.

where N (x) denotes the standard bilinear shape functions, wi and βi the nodal unknowns associated with
the continuous solution, b j the nodal enriched degrees of freedom associated with the Heaviside function
H j (x), and ckl the nodal enriched degrees of freedom associated with the elastic asymptotic crack tip
functions Glk(r, θ) and F lk(r, θ). In (31) and (32) N fem is the set of all nodes in the mesh, N crack is the
set of nodes whose shape function support is cut by the crack interior (circular nodes in Figure 2), and
N tip is the set of nodes whose shape function support is cut by the crack tip (square nodes in Figure 2).

4.1. Enrichment functions. The shifted enrichment functions in (31) and (32) are given by

H i (x)=
(
H(x)− H(xi )

)
, (33)

Gli (x)=
(
Gl(x)−Gl(xi )

)
, F li (x)=

(
Fl(x)− Fl(xi )

)
. (34)

Shifting the enrichment functions is particularly useful because the influence of the enrichment on the
displacement must vanish at the nodes for ease of applying boundary conditions.

The Heaviside enrichment function H(x) in (33) is defined by

H(x)=
{
+1 if the point is above the crack face,
−1 if the point is below the crack face.

(35)

Equation (35) is responsible for the description of the interior of the crack (jump in displacements).
The elastic crack tip enrichment functions in (34) are defined as (see [Dolbow et al. 2000; Bordas et al.

2009])

{Gl(r, θ)} ≡
{

r3/2 sin
(
θ

2

)
, r3/2 cos

(
θ

2

)
, r3/2 sin

(3θ
2

)
, r3/2 cos

(3θ
2

)}
, (36)

{Fl(r, θ)} ≡
{√

r sin
(
θ

2

)
,
√

r cos
(
θ

2

)
,
√

r sin
(
θ

2

)
sin(θ),

√
r cos

(
θ

2

)
sin(θ)

}
. (37)

Here (r, θ) are polar coordinates with origin at the crack tip. These functions are not only responsible for
closing the crack at the tip but they also introduce analytical information in the numerical approximation.
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5. Smoothed extended finite element method

In [Bordas et al. 2009] it was shown how strain smoothing could be incorporated into XFEM formula-
tions (including plate bending). In SmXFEM, smoothing must now be performed on discontinuous and
nonpolynomial approximations. In the present case, curvature smoothing coupled with partition of unity
enrichment can produce a plate element capable of cracking which is significantly more accurate than
formerly proposed elements [Bordas et al. 2009].

5.1. Summary of plate formulations. As outlined in previous sections, four plate elements (enriched or
standard) are considered in the present work:

• Q4R: This plate element uses the basic FE formulation for Mindlin–Reissner plate theory. It uses the
standard gradient operators (plain shape function derivatives) for both bending and shear parts, and
in order to avoid shear locking the shear part of the stiffness matrix, Ks in (14), will be integrated
using a 1× 1 Gauss quadrature.

• MITC: This element interpolates the out-of-plane shear stresses using collocation points at the
element boundaries. It uses the standard gradient operators for the bending part (Kb), and the
mixed interpolation of tensorial components [Bathe and Dvorkin 1985] for the shear part (Ks) of
the stiffness matrix, (20).

• MISCk: This element, first introduced in [Nguyen-Xuan et al. 2008b], uses the curvature strain
smoothing operator for the bending part given by (25), and the mixed interpolation of tensorial
components [Bathe and Dvorkin 1985] for the shear part of the stiffness matrix given by (20),
leading to the expression in (27).

• MISCk_b: This element is similar to MISCk but instead of using the standard operator for the
bending part of the geometric matrix given by (15), it uses a smoothing operator for the higher-order
terms given in (4). In other words, it uses the expression in (27) for the stiffness matrix (K ) and the
expression in (30) for the bending part of the geometric stiffness matrix (KGb).

5.2. Strain smoothing in XFEM plate bending. In this subsection, detailed description of the SmXFEM
implementation for the buckling analysis of cracked Mindlin–Reissner plates is provided. For the sake of
simplicity, only the expressions for the enriched MISCk element will be shown here. Enriched smoothed
bending strain and enriched shear strain can be written as

κ̃h
=

∑
i∈N fem

B̃C
bfemi qi +

∑
j∈N crack

B̃C
bcrack j b j +

∑
k∈N tip

B̃C
btipk ck, (38)

γ h
=

∑
i∈N fem

B̄sfemi qi +
∑

j∈N crack

B̄scrack j b j +
∑

k∈N tip

B̄stipk ck . (39)

The enriched gradient operators in (38) and (39) can be explicitly written as

B̃C
bcrack j (xC)=

1
AC

mt∑
m=1

0 N j (xG
m )H j (xG

m )nx(xG
m ) 0

0 0 N j (xG
m )H j (xG

m )ny(xG
m )

0 N j (xG
m )H j (xG

m )ny(xG
m ) N j (xG

m )H j (xG
m )nx(xG

m )

 lC
m , (40)
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B̃C
btip k(xC)

∣∣
l=1,2,3,4 =

1
AC

mt∑
m=1

0 Nk(xG
m )F lk(xG

m )nx(xG
m ) 0

0 0 Nk(xG
m )F lk(xG

m )ny(xG
m )

0 Nk(xG
m )F lk(xG

m )ny(xG
m ) Nk(xG

m )F lk(xG
m )nx(xG

m )

 lC
m (41)

and

B̄scrack j = J−1

[
[N j (x)H j (x)],ξ b11

j [N j (x)H j (x)],ξ b12
j [N j (x)H j (x)],ξ

[N j (x)H j (x)],η b21
j [N j (x)H j (x)],η b22

j [N j (x)H j (x)],η

]
, (42)

B̄stip k
∣∣
l=1,2,3,4 = J−1

[
[Nk(x)Glk(x)],ξ b11

i [Nk(x)F lk(x)],ξ b12
i [Nk(x)F lk(x)],ξ

[Nk(x)Glk(x)],η b21
i [Nk(x)F lk(x)],η b22

i [Nk(x)F lk(x)],η

]
. (43)

Similarly, for the bending and shear part of the geometric stiffness, the enriched gradient operators
can be expressed as

Gbcrack j =

[
[N j (x)H j (x)],x 0 0
[N j (x)H j (x)],y 0 0

]
, Gbtipk

∣∣
l=1,2,3,4 =

[
[Nk(x)Glk(x)],x 0 0
[Nk(x)Glk(x)],y 0 0

]
, (44)

Gs1crack j =

[
0 [N j (x)H j (x)],x 0
0 [N j (x)H j (x)],y 0

]
, Gs1tipk

∣∣
l=1,2,3,4 =

[
0 [Nk(x)F lk(x)],x 0
0 [Nk(x)F lk(x)],y 0

]
, (45)

Gs2crack j =

[
0 0 [N j (x)H j (x)],x
0 0 [N j (x)H j (x)],y

]
, Gs2tipk

∣∣
l=1,2,3,4 =

[
0 0 [Nk(x)F lk(x)],x
0 0 [Nk(x)F lk(x)],y

]
. (46)

5.3. Integration. As mentioned, the integrations of the discretised terms presented in the previous sec-
tions are done using Gauss quadrature. In the present work boundary and domain integrals are evaluated
for the MISCk and MISCk_b elements (the smoothed terms are evaluated using surface integrals, whereas
the nonsmooth are obtained using domain integration) and only domain integrals for the classical Q4R
and MITC elements.

The standard (nonenriched) domain integration uses 2× 2 Gauss quadrature as it evaluates the bilinear
shape functions sufficiently. The only exception to the standard (nonenriched) domain integration is with
the shear part of the stiffness matrix, Ks in (14), which uses 1× 1 Gauss quadrature.

For standard surface integration, terms in (25) and (30), two subcells with one Gauss point per bound-
ary are used, as recommended in [Nguyen-Xuan et al. 2008b]; in this way computational efficiency and
numerical stability are guaranteed. This implies that MISC2 and MISC2_b are the specific smoothed
elements used in the present work.

For elements that are enriched the integration has to be adapted, so that the weak form on both sides of
the crack contributes the correct enriched terms. The most common approach, which is also implemented
here, is to subtriangulate the element (for example, Delaunay triangulation) in a way that the triangle
edges conform with the discontinuity.

In the case of enriched elements using domain integration the following integration rules are used:
• Tip-blending elements: 16 Gauss points for the total element.
• Split-blending elements: 2 Gauss points for the total element.
• Split-tip-blending elements: 4 Gauss points for each triangular subelement.
• Split elements: 3 Gauss points for each triangular subelement.
• Tip elements: 13 Gauss points for each triangular subelement.
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In the case of enriched elements using surface integration (smoothed enriched elements) the following
integration rules are used:

• Tip-blending elements: 8 subcells with 1 Gauss points per edge.
• Split-blending elements: 2 subcells with 1 Gauss points per edge.
• Split-tip-blending elements: 4 subelements, each with 4 subcells with 1 Gauss points per edge.
• Split elements: 4 subelements, each with 2 subcells with 1 Gauss points per edge.
• Tip elements: 4 subelements, each with 8 subcells with 1 Gauss points per edge.

As in standard XFEM, there are 6 different types of elements:

• Tip elements are elements that contain the crack tip. All nodes belonging to a tip element are
enriched with the near-tip fields (Gl(x) and F l(x)).

• Split elements are elements completely cut by the crack. Their nodes are enriched with the discon-
tinuous function H(x).

• Tip-blending elements are elements neighbouring tip elements. They are such that some of their
nodes are enriched with the near-tip fields (Gl(x) and F l(x)) and others are not enriched at all.

• Split-blending elements are elements neighbouring split elements. They are such that some of their
nodes are enriched with the discontinuous function, H(x), and others are not enriched at all.

• Split-tip-blending elements are elements completely cut by the crack and neighbouring tip elements.
They are such that all of their nodes are enriched with the discontinuous function, H(x), and some
of their nodes are enriched with the near-tip fields (Gl(x) and F l(x)).

• Standard elements are elements that are in neither of the above categories. None of their nodes are
enriched.

6. Numerical examples

In this section the formulation presented in the previous paragraphs is now applied to determine the
normalised buckling coefficients for rectangular plates with different thicknesses (h/a), crack sizes (c/a),
and boundary conditions. The plates have Young’s modulus E , Poisson’s ratio ν = 0.3, length a (sides),
and width b (ends). The compressive stress is applied in the longitudinal direction; see Figure 3. The
results are compared with available analytical and numerical solutions when available. Due to the crack
orientation considered in all examples (Figure 3) traction free boundary conditions (no contact between
crack faces) can be assumed in all cases.

Normalised results are obtained using the classical plate buckling coefficient (K ):

K = b2

π2 D
σcr =

12(1− ν2)b2

π2 Eh3 λσ. (47)

Plate boundary conditions are defined as follows:

Simply supported: w= 0, βt = 0,

Clamped: w= 0, βn= 0, βt= 0,

where n denotes normal and t tangential directions to the plate boundary.
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Figure 3. Centre crack plate geometry.

6.1. Buckling of simply supported plate (convergence). The first problem to be considered involves
simply supported thin and thick square plates with no crack (c/a = 0). This example will illustrate the
convergence performance of the recently developed MISC2 [Nguyen-Xuan et al. 2008b] and MISC2_b
elements within the linear buckling problem (eigenvalue problem).

Six different uniform element distributions are considered in the convergence study (as shown in Tables
1 and 2). An analytical solution for linear buckling of Mindlin–Reissner plates was recently introduced

Mesh density Q4R MITC MISC2 MISC2_b

11× 11 4.0715 (1.79%) 4.0437 (1.09%) 4.0320 (0.80%) 4.0389 (0.97%)
15× 15 4.0371 (0.93%) 4.0223 (0.56%) 4.0161 (0.40%) 4.0198 (0.49%)
19× 19 4.0222 (0.55%) 4.013 (0.32%) 4.0092 (0.23%) 4.0115 (0.29%)
23× 23 4.0144 (0.36%) 4.0082 (0.21%) 4.0055 (0.14%) 4.0071 (0.18%)
27× 27 4.0098 (0.25%) 4.0053 (0.13%) 4.0034 (0.09%) 4.0045 (0.11%)
31× 31 4.0069 (0.17%) 4.0035 (0.09%) 4.0020 (0.05%) 4.0029 (0.07%)

Table 1. Convergence of simply supported square plate with thickness ratio h/a = 0.01
(thin plate analytical solution K = 4.000).

Mesh density Q4R MITC MISC2 MISC2_b

11× 11 3.3127 (1.50%) 3.2943 (0.94%) 3.2865 (0.70%) 3.2922 (0.87%)
15× 15 3.2899 (0.80%) 3.2801 (0.50%) 3.2760 (0.38%) 3.2790 (0.47%)
19× 19 3.2800 (0.50%) 3.2739 (0.31%) 3.2713 (0.23%) 3.2732 (0.29%)
23× 23 3.2748 (0.34%) 3.2707 (0.21%) 3.2689 (0.16%) 3.2702 (0.20%)
27× 27 3.2718 (0.25%) 3.2688 (0.16%) 3.2675 (0.12%) 3.2684 (0.14%)
31× 31 3.2698 (0.19%) 3.2676 (0.12%) 3.2666 (0.09%) 3.2673 (0.11%)

Table 2. Convergence of simply supported square plate with thickness ratio h/a = 0.2
(thick plate analytical solution K = 3.2922 [Hosseini-Hashemi et al. 2008]).
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Figure 4. Convergence of normalised buckling coefficient for simply supported square
(a/b = 1) plates (c/a = 0).

in [Hosseini-Hashemi et al. 2008] for a wide range of plate thicknesses that covers both thin and thick
plates. Figure 4 presents an error comparison for each plate thickness (h/a = 0.01, 0.05, 0.1, 0.2) of all
the elements considered in the present work. Additionally, Tables 1 and 2 present detailed results for
only thin (h/a = 0.01) and very thick plates (h/a = 0.2), respectively.

As mentioned, the shear contribution for the geometric stiffness matrix (KGs) is neglected in all
cases in order to establish meaningful comparisons with the available analytical results [Stahl and Keer
1972; Liu 2001; Purbolaksono and Aliabadi 2005; Hosseini-Hashemi et al. 2008]. As can be seen from
Figure 4, all results agree well with the analytical solution, with less than 2% difference for even the
less refined mesh. The largest errors are obtained using the classical Q4R element while the smallest
errors are obtained with the MISC2 element (always less than 1% error for even the less refined case).
The MITC results are better than for the classical Q4R element but less accurate than the MISC2 and
MISC2_b. Finally, it is possible to see from Figure 4 that the smoothed buckling element (MISC2_b)
gives improved results over the MITC element but not better than the MISC2 element, implying that
smoothing the higher powers of deformation given in (4) does not improve the element performance for
regular meshes (not distorted).

Figure 5 shows the buckling modes for the coarsest mesh (11× 11) used in the present example. The
classical 1, 2, and 3 half ways expected for modes 1, 2, and 3 are clear in Figure 5.

6.2. Sensitivity to mesh distortion of uncracked plates. This second example will consider the effect of
mesh distortion on the recently developed MISC2 [Nguyen-Xuan et al. 2008b] and MISC2_b elements
within the linear buckling problem (eigenvalue problem). To study the effect of mesh distortion on
the results, interior nodes are moved by an irregularity factor s. The coordinates of interior nodes are
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Figure 5. Buckling modes for simply supported square (a/b = 1) plate (c/a = 0).

obtained by the expressions [Liu et al. 2007a]

x ′ = x + src1x, y′ = y+ src1y,

where rc is a randomly generated number between −1.0 and 1.0, s ∈ [0, 0.4] is used to control the
degree of element distortion, and 1x and 1y are initial regular element sizes in the x and y directions,
respectively.

Thin (h/a = 0.01) and thick (h/a = 0.1) simply supported square plates (a/b = 1) with no crack
(c/a = 0) will be considered. The less refined mesh of the previous example (11× 11 elements) will be
used in all cases (see Figure 6).

Tables 3 and 4 provide the buckling coefficients for thin (h/a = 0.01) and thick plates (h/a = 0.1),
respectively, and Figure 7 plots the normalised values for both cases. In the case of thin plates, the
classical Q4R shows the largest errors while the newly presented MISC2_b (with smoothed bending part
of the geometric stiffness matrix) provides the best results. A similar behaviour occurs for thick plates
but with much less detrimental effects for the classical Q4R. This dependency of mesh distortion on plate
thickness has been shown in previous works [Nguyen-Xuan et al. 2008b].

Figure 6. Effect of mesh distortion parameter in square plate with 11× 11 elements.
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Figure 7. Influence of mesh distortion for buckling coefficient of simply supported
square thin and thick plates.

From results in Tables 3 and 4 it is clear that although results for the smoothed buckling element
(MISC2_b) give results that are not as accurate as the MISC2 element for regular meshes (no distortion),
smoothing the higher powers of deformation given in (4) does improve the element performance for
irregular meshes.

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 4.0715 (1.79%) 4.0437 (1.09%) 4.0320 (0.80%) 4.0389 (0.97%)
0.1 4.1853 (4.63%) 4.0453 (1.13%) 4.0353 (0.88%) 4.0333 (0.83%)
0.2 4.5838 (14.6%) 4.0478 (1.19%) 4.0467 (1.17%) 4.0170 (0.43%)
0.3 4.9639 (24.1%) 4.0594 (1.48%) 4.0708 (1.77%) 3.9854 (0.37%)
0.4 5.5411 (38.5%) 4.0666 (1.66%) 4.0825 (2.06%) 3.9428 (1.43%)

Table 3. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a = 0.01 (thin plate analytical solution K = 4.000).

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 3.8526 (1.75%) 3.8276 (1.09%) 3.8172 (0.81%) 3.8237 (0.99%)
0.1 3.8585 (1.90%) 3.8291 (1.13%) 3.8203 (0.89%) 3.8183 (0.84%)
0.2 3.8665 (2.12%) 3.8342 (1.26%) 3.8259 (1.04%) 3.7663 (0.53%)
0.3 3.8911 (2.76%) 3.8382 (1.37%) 3.8359 (1.31%) 3.7616 (0.65%)
0.4 3.9291 (3.77%) – – 3.7029 (2.20%)

Table 4. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a = 0.1 (thick plate analytical solution K = 3.7864 [Hosseini-Hashemi et al. 2008]).
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6.3. Sensitivity to mesh distortion of plates with a longitudinal centre crack. This example extends on
the previous example by including a longitudinal centre crack in the distorted mesh. Again, the same
mesh density of the previous example will be used to obtain buckling coefficients of thin (h/a= 0.01) and
thick (h/a = 0.1) simply supported square plates (a/b = 1) with a longitudinal centre crack (c/a = 0.2).

Tables 5 and 6 provide the buckling coefficients for thin (h/a = 0.01) and thick plates (h/a = 0.1),
respectively; Figure 8 plots the normalised values for both cases. Table 5 shows why the classical Q4R is
not used in XFEM plate formulations as it exhibits locking when modelling thin cracked plates (at least
50% error for regular meshes). The relatively large errors exhibited by other elements (∼6%) is due to
the coarse mesh size (11× 11 elements) as will be shown in next examples.

6.4. Rectangular plate with a longitudinal centre crack. This example considers simply supported
square and rectangular plates of different thickness (h/a = 0.01, 0.1, 0.2) with longitudinal centre cracks,
as shown in Figure 3. All results were obtained with uniform meshes of 31× 31 and 19× 38 elements
for the square and rectangular plates, respectively.

Figure 9 shows results for the square (a/b= 1) plates with Q4R-MITC and MISC2-MISC2_b elements,
respectively. The classical Q4R element exhibits locking when modelling thin cracked plates (h/a =
0.01), and therefore are not shown in Figure 9. This is because when enriched elements are present
in the model, a higher quadrature than 1× 1 must be used (as mentioned in Section 5.3), leading to
inaccurate results in the thin plate limit. All other elements exhibit an excellent performance for both
thin and thick plates.

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 5.8248 (52.2%) 4.0229 (5.15%) 4.0325 (5.40%) 4.0394 (5.58%)
0.1 6.1392 (60.5%) 4.0274 (5.27%) 4.0381 (5.55%) 4.0356 (5.48%)
0.2 6.5515 (71.2%) 4.0286 (5.30%) 4.0477 (5.80%) 3.9894 (4.27%)
0.3 7.2942 (90.7%) 4.0310 (5.36%) 4.0889 (6.87%) 3.9872 (4.21%)
0.4 – – – 3.9568 (3.42%)

Table 5. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a= 0.01 and longitudinal centre crack c/a= 0.2 (thin plate exact solution K = 3.8259
[Stahl and Keer 1972]).

Mesh distortion Q4R MITC MISC2 MISC2_b

0.0 3.8235 (8.05%) 3.6606 (3.44%) 3.8170 (7.86%) 3.8236 (8.05%)
0.1 3.8158 (7.83%) 3.6569 (3.34%) 3.8185 (7.90%) 3.8142 (7.78%)
0.2 3.7931 (7.19%) 3.6497 (3.14%) 3.8256 (8.11%) 3.8003 (7.39%)
0.3 3.8800 (9.64%) 3.6931 (4.36%) 3.8474 (8.72%) 3.7538 (6.08%)
0.4 3.9557 (11.8%) 3.7160 (5.08%) 3.8553 (8.94%) 3.6420 (2.92%)

Table 6. Effect of mesh distortion for simply supported square plate with thickness ratio
h/a = 0.1 and longitudinal centre crack c/a = 0.2 (thick plate solution K = 3.53879
[Liu 2001]).
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Figure 10. Buckling coefficients for rectangular (a/b = 2) centre cracked plates. Top:
Q4R and MITC. Bottom: MISC2 and MISC2_b.

Figure 10 shows results for rectangular (a/b = 2) plates with Q4R-MITC and MISC2-MISC2_b
elements, respectively. Again, results with the classical Q4R element are excluded for thin cracked
plates (h/a = 0.01), due to locking.

As shown in Figures 9 and 10, an increase in crack length and thickness leads to a decrease on the
critical buckling load. The 3 plate thicknesses (h/a = 0.01, 0.1, 0.2) and 10 crack sizes considered
(c/a = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) give a clear picture of the behaviour of cracked thin
and thick plates. In all cases results converge to the noncracked solution of thin and thick plates presented
in the previous example.

In all cases good agreement is obtained with reported results (approximately 2% difference). The
largest discrepancy (∼3%) between reported solutions occurs for short-medium crack sizes (a/c =
0.2, 0.3, 0.4, 0.5) in rectangular plates (Figure 10). In this area the present results agree more with
the results in [Purbolaksono and Aliabadi 2005] than with [Liu 2001], particularly for the MISC2 and
MISC2_b elements.
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Figure 11. Buckling modes for simply supported centre cracked (c/a = 0.9) square
plate (a/b = 1).

Figure 12. Buckling modes for simply supported centre cracked (c/a = 0.9) rectangular
plate (a/b = 2).

Buckling modes for square and rectangular thin plates (h/a = 0.01) with the largest crack size
(a/c = 0.9) are given in Figures 11 and 12, respectively. It is clear, by comparing Figures 5 and 11 that
buckling modes change with the presence of the crack, in this case by adding a new mode (mode 2 in
Figure 11) that replaces the classical second mode of 2 half waves (now mode 3 in Figure 11). Similarly,
in the case of rectangular plates, instead of the classical 2 half waves for mode 1, now the presence of
the crack leads to only 1 half waves mode (mode 1 in Figure 12).

6.5. Rectangular plate with a longitudinal edge crack. In this example, simply supported rectangular
(a/b= 2) thin and thick plates with a transverse edge crack as shown in Figure 13 are analysed. Buckling
coefficients for Q4R (except for the thin plate case h/a = 0.01) and MITC elements are given with
respect to the normalised crack size in the top part of Figure 14. Similarly, the bottom part of the same
figure shows buckling coefficients for MISC2 and MISC2_b elements. All results were obtained with an
uniform mesh of 19× 38 elements.
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Figure 13. Edge crack plate geometry.
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Figure 14. Buckling coefficients for rectangular (a/b = 2) edge cracked plates. Top:
Q4R and MITC. Bottom: MISC2 and MISC2_b.
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Figure 15. Buckling modes for simply supported edge cracked (c/a = 0.5) rectangular
plate (a/b = 2).

Figure 14 also presents the analytical solution for thin cracked plates [Stahl and Keer 1972] and
numerical solutions [Liu 2001]. In the majority of cases, very good agreement (∼1%) was obtained
with the reported results. The largest difference (∼3%) with the reported data occurs for short-medium
crack sizes (a/c = 0.2, 0.3, 0.4, 0.5), particularly for the MISC2 and MISC2_b elements. The first 3
buckling modes for a thin (h/a = 0.01) edge cracked (c/a = 0.5) rectangular plate (a/b = 2) are shown
in Figure 15.
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Figure 16. Buckling coefficients for rectangular (a/b = 2) centre cracked plates with
different boundary conditions.
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6.6. Rectangular plate with a longitudinal centre crack under different boundary conditions. This last
example considers different boundary conditions in a rectangular centre cracked thin plate. The boundary
conditions for each case are given as follows:

CCCC : Sides and ends clamped,

SCSC : Sides clamped and ends simply supported,

CSCS : Sides simply supported and ends clamped.

The aspect ratio of the plate is a/b = 2 and the plate thickness is h/a = 0.01, therefore only buck-
ling coefficients for elements MITC, MISC2, and MISC2_b versus crack lengths (c/a) are presented in
Figure 16 (as shown in the previous examples, element Q4R will exhibit locking under this condition).
As expected each case of boundary conditions converges to the noncracked thin plate solutions (c/a = 0).

Figure 16 shows that as the crack size increases, buckling coefficients decrease for all the different
boundary conditions. All the present results were obtained with an uniform mesh of 19× 38 elements.
In order to establish a comparison with standard FEM, symmetric ABAQUS models [ABAQUS 2009]

Figure 17. Buckling modes of clamped centre cracked (c/a = 0.9) rectangular plates
(a/b = 2). Left: ABAQUS-seam model. Centre: XFEM model. Right: ABAQUS-
symmetric model.
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with an average of 4500 linear elements (S4R) are also plotted in Figure 16. Totally clamped cracked
plates exhibit the highest buckling coefficient. SCSC, as expected, gives higher buckling coefficients
than CSCS, as the simply supported condition along the sides (see Figure 3) in the CSCS case provides
a weaker constraint than in the SCSC case.

Buckling modes for the largest crack size (c/a = 0.9) and totally clamped boundary conditions are
presented in Figure 17. In this case, an additional ABAQUS model with a seam crack (ABAQUS-seam)
is performed in order to compare buckling modes of full and symmetric models. It is clear from this
figure the similarity in the first buckling mode for all cases. The second and third modes differ in
the full and symmetric models as the antisymmetric opening mode (mode 2 in Figure 17) given by
XFEM and ABAQUS-seam is not obtained in the symmetric ABAQUS model. Notice that the second
mode in the ABAQUS symmetric solution corresponds to the third mode in the full models (XFEM and
ABAQUS-seam).

7. Conclusions

In this paper, the smoothed extended finite element method was used to model the linear buckling re-
sponse of uncracked and cracked isotropic shear deformable plates. Three different enriched elements
were proposed: a stabilised MITC, a curvature smoothed MISC2, and a bending geometric stiffness
matrix smoothed MISC2_b element. Each case corresponds to an extension of the previous. MISC2_b
is an element only valid for linear plate buckling problems, and shows the influence of smoothing higher-
order (nonlinear) terms. All enriched elements perform excellently (except for the Q4R element, which
exhibits locking in the thin plate limit), with the MISC2 and MISC2_b elements providing slightly better
results than the MITC element.

The effect of mesh distortion for uncracked and cracked plates was also considered, including the
dependency on plate thickness. For distorted meshes, the classical Q4R element exhibits the worst
performance, particularly for thin plates, while the newly proposed MISC2_b is shown to provide the
most acceptable results for all cases (thin-thick and cracked-uncracked plates).

Two types of crack configurations have been considered in this study: a plate with a crack emanating
from one edge, and a plate with a centrally located internal crack. Different plate thicknesses were
considered, giving an overview of applications to thin and thick cracked plate buckling problems. It
is seen that with increasing crack length and thickness, the buckling load decreases. Finally, different
sets of boundary conditions were studied. It is worth noting that the present method greatly simplifies
modelling of plate buckling with cracks, allowing us in some cases to provide antisymmetric crack
opening modes that are not provided in classical symmetric FEM simulations, as shown with the totally
clamped example.
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