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UNIQUENESS THEOREMS IN THE EQUILIBRIUM THEORY OF
THERMOELASTICITY WITH MICROTEMPERATURES FOR MICROSTRETCH

SOLIDS

ANTONIO SCALIA AND MERAB SVANADZE

In this paper the linear equilibrium theory of thermoelasticity with microtemperatures for isotropic mi-
crostretch solids is considered and some basic results of the classical theories of elasticity and thermoe-
lasticity are generalized. Green’s formulas in the theory are obtained. A wide class of internal and
external boundary value problems are formulated, and uniqueness theorems are proved.

1. Introduction

In the last years the theory of thermoelasticity for bodies with microstructure has been intensively studied.
A thermodynamic theory for elastic materials with inner structure whose particles, in addition to mi-
crodeformations, possess microtemperatures was proposed in [Grot 1969]. Riha [1975; 1976] developed
a theory of micromorphic fluids with microtemperatures.

The linear theory of thermoelasticity with microtemperatures for materials with inner structure whose
particles, in addition to the classical displacement and temperature fields, possess microtemperatures was
presented in [Ieşan and Quintanilla 2000], where an existence theorem was proved and the continuous
dependence of solutions of the initial data and body loads was established. The exponential stability of
solutions of equations in this theory was established in [Casas and Quintanilla 2005]. The fundamental
solutions of equations in the theory of thermoelasticity with microtemperatures were constructed in
[Svanadze 2004b]. Representations of Galerkin type and general solutions of equations of dynamic and
steady vibrations in this theory were obtained in [Scalia and Svanadze 2006]. In [Scalia and Svanadze
2009b; Svanadze 2003], the basic boundary value problems (BVPs) of steady vibrations were investigated
using the potential method and the theory of singular integral equations. In [Scalia and Svanadze 2009a;
Scalia et al. 2010; Ieşan and Scalia 2010], basic theorems in the equilibrium and steady vibrations theories
of thermoelasticity with microtemperatures were proved.

The theory of micromorphic elastic solids with microtemperatures, in which microelements possess
microtemperatures and can stretch and contract independently of their translations, was presented in
[Ieşan 2001]. The fundamental solutions of equations in this theory were constructed in [Svanadze 2004a].
Uniqueness theorems in the dynamical theory thermoelasticity of porous media with microtemperatures
were proved in [Quintanilla 2009]. The existence and uniqueness of solutions in the linear theory of heat
conduction in micromorphic continua were established in [Ieşan 2002]. Recently, the representations of
solutions in the theory of thermoelasticity with microtemperatures for microstretch solids were obtained
in [Svanadze and Tracinà 2011].

The authors would like to thank two referees for their helpful suggestions concerning this work.
Keywords: thermoelasticity with microtemperatures, equilibrium theory, uniqueness theorems.
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The theory of micropolar thermoelasticity with microtemperatures was presented in [Ieşan 2007].
The existence and asymptotic behavior of the solutions in this theory were proved in [Aouadi 2008].
A linear theory of thermoelastic bodies with microstructure and microtemperatures which permits the
transmission of heat as thermal waves at finite speed was constructed in [Ieşan and Quintanilla 2009],
and existence and uniqueness results in the context of the dynamic theory were established. An extensive
review and the basic results in the microcontinuum field theories are given in [Eringen 1999; Ieşan 2004].

In this paper the linear equilibrium theory of thermoelasticity with microtemperatures for isotropic
microstretch solids [Ieşan 2001] is considered and some basic results of the classical theories of elasticity
and thermoelasticity (see [Kupradze et al. 1979; Knops and Payne 1971]) are generalized. Green’s
formulae are obtained for the theory. A wide class of internal and external BVPs are formulated, and
uniqueness theorems are proved.

2. Basic equations

We consider an isotropic elastic material with microstructure that occupies a region � of Euclidean
three-dimensional space E3. Let x = (x1, x2, x3) be a point of E3 and set Dx = (∂/∂x1, ∂/∂x2, ∂/∂x3).

The fundamental system of field equations in the linear equilibrium theory of thermoelasticity with
microtemperatures for isotropic microstretch solids consists of the equations of equilibrium [Ieşan 2001]

t jl, j + ρF (1)l = 0, (2-1)

the first moment of energy
q jl, j + ql − Ql + ρF (2)l = 0, (2-2)

the balance of energy
ql,l + ρs1 = 0, (2-3)

the balance of first stress moment
hl,l − s+ ρ s2 = 0, (2-4)

the constitutive equations
t jl = (λ err −β θ + b ϕ )δ jl + 2µe jl,

ql = k θ,l + k1wl,

q jl =−k4wr,rδ jl − k5w j,l − k6wl, j ,

Ql = (k1− k2)wl + (k− k3) θ,l,

hl = γ ϕ,l − d wl,

s = b err −m θ + ξ ϕ,

(2-5)

and the geometric equations
el j =

1
2(ul, j + u j,l), (2-6)

where u = (u1, u2, u3) is the displacement vector, w = (w1, w2, w3) is the microtemperature vector, θ is
the temperature measured from the constant absolute temperature T0 (T0 > 0), ϕ is the microdilatation
function, t jl are the components of stress tensor, ρ is the reference mass density (ρ > 0), hl is the
microstretch, F(1)

= (F (1)1 , F (1)2 , F (1)3 ) is the body force, q = (q1, q2, q3) is the heat flux vector, s is the
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intrinsic body load, s1 is the heat supply, s2 is the general external body load, q jl are the components of
first heat flux moment tensor, Q = (Q1, Q2, Q3) is the mean heat flux vector, F(2)

= (F (2)1 , F (2)2 , F (2)3 )

is first heat source moment vector, λ,µ, β, γ, ξ, b, d,m, k, k1, k2, . . . , k6 are constitutive coefficients,
δl j is the Kronecker delta, el j are the components of strain tensor, the subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian coordinate, j, l = 1, 2, 3, and
repeated indices are summed over the range {1, 2, 3}.

By virtue of (2-5) and (2-6), the system (2-1)–(2-4) can be expressed in terms of the displacement
vector u, the microtemperature vector w, the temperature θ and the microdilatation function ϕ. We obtain
a system of eight partial differential equations of the linear equilibrium theory of thermoelasticity with
microtemperatures for isotropic and homogeneous microstretch solids [Ieşan 2001]:

µ1u+ (λ+µ) grad div u−β grad θ + b gradϕ =−ρ F(1),

k61w+ (k4+ k5) grad divw− k3 grad θ − k2w = ρ F(2),

k1θ + k1 divw =−ρ s1,

γ1ϕ− b div u− d divw+m θ − ξ ϕ =−ρ s2.

(2-7)

We introduce the matrix differential operator

A(Dx)=
(

Apq(Dx)
)

8×8 ,

where, for j, l = 1, 2, 3, we have

Al j (Dx)= µ1δl j + (λ+µ)
∂2

∂xl∂x j
, Al7(Dx)=−β

∂

∂xl
, Al8(Dx)= b

∂

∂xl
,

Al; j+3(Dx)= Al+3; j (Dx)= Al+3;8(Dx)= A7l(Dx)= A78(Dx)= 0,

Al+3; j+3(Dx)= (k61− k2)δl j + (k4+ k5)
∂2

∂xl∂x j
, Al+3;7(Dx)=−k3

∂

∂xl
,

A7;l+3(Dx)= k1
∂

∂xl
, A77(Dx)= k1, A8l(Dx)=−b

∂

∂xl
,

A8;l+3(Dx)=−d
∂

∂xl
, A87(Dx)= m, A88(Dx)= γ1− ξ,

(2-8)

Obviously, the system (2-7) can be written as

A(Dx)U(x)= F(x), (2-9)

where U = (u,w, θ, ϕ), F = (−ρF(1), ρF(2),−ρs1,−ρ s2), and x ∈�.

3. Boundary value problems

In this section a wide class of BVPs of the linear equilibrium theory of thermoelasticity with microtem-
peratures for isotropic and homogeneous microstretch solids is formulated.

Let S be the closed surface surrounding the finite domain �+ in E3, S ∈ C2,α1, 0 < α1 ≤ 1, �̄+ =
�+ ∪ S, �− = E3

\�̄+, �̄− =�− ∪ S.
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Definition 3.1. A vector function U = (u,w, θ, ϕ)= (U1,U2, . . . ,U8) is called regular in�− (or�+) if

Ul ∈ C2(�−)∩C1(�̄−) (or Ul ∈ C2(�+)∩C1(�̄+))

and

Ul(x)= O(|x|−1),
∂

∂x j
Ul(x)= o(|x|−1) for |x| � 1, (3-1)

where j = 1, 2, 3 and l = 1, 2, . . . , 8.

We will use the matrix differential operators

P (m)(Dx, n)= (P (m)l j (Dx, n))3×3 and P(Dx, n)= (Pl j (Dx, n))8×8,

where

P (1)l j (Dx, n)= µδl j
∂

∂n
+µn j

∂

∂xl
+ λnl

∂

∂x j
= µδl j

∂

∂n
+ (λ+µ)nl

∂

∂x j
+µMl j ,

P (2)l j (Dx, n)= k6δl j
∂

∂n
+ k5n j

∂

∂xl
+ k4nl

∂

∂x j
= k6δl j

∂

∂n
+ (k4+ k5)nl

∂

∂x j
+ k5 Ml j

(3-2)

and, for m = 1, 2 and j, l = 1, 2, 3,

Pl j (Dx, n)= P (1)l j (Dx, n), Pl7(Dx, n)=−βnl,

Pl+3; j+3(Dx, n)= P (2)l j (Dx, n), Pl8(Dx, n)= b nl,

P7;l+3(Dx, n)= k1 nl, P77(Dx, n)= k
∂

∂n
,

P8;l+3(Dx, n)=−d nl, P88(Dx, n)= γ
∂

∂n
,

Pl; j+3 = Pl+3; j = Pl+3;7 = Pl+3;8 = P7l = P78 = P8l = P87 = 0,

(3-3)

where n= (n1, n2, n3), n(z) is the external unit normal vector to S at z, ∂/∂n is the derivative along the
vector n, and

Ml j = n j
∂

∂xl
− nl

∂

∂x j
. (3-4)

P(Dx, n) and P(Dx, n)U(x) are the stress operator and stress vector, respectively, in the linear theory
of thermoelasticity with microtemperatures for microstretch solids; see [Ieşan 2001].

The internal BVPs of the linear equilibrium theory of thermoelasticity with microtemperatures for
isotropic and homogeneous microstretch solids are formulated as follows:

Problem (I)+F, f . Find a regular (classical) solution to system (2-9) for x ∈�+ satisfying the boundary
conditions

lim
x→z∈S

u(x)≡ {u(z)}+ = f (1)(z), (3-5)

{w(z)}+ = f (2)(z), (3-6)

{θ(z)}+ = f7(z), (3-7)

{ϕ(z)}+ = f8(z) (3-8)
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with f (1) = ( f1, f2, f3), f (2) = ( f4, f5, f6); here f1, f2, . . . , f8 are known functions and F is a known
eight-component vector function. Obviously, we can rewrite the boundary condition (3-5)–(3-8) in the
form

{U(z)}+ = f (z),
where f = ( f1, f2, . . . , f8).

Problem (II)+F, f . Find a regular solution to system (2-9) for x ∈�+ satisfying the boundary conditions{
P (1)(Dz, n(z))u(z)−β θ(z) n(z)+ b ϕ(z) n(z)

}+
= f (1)(z), (3-9){

P (2)(Dz, n(z))w(z)
}+
= f (2)(z), (3-10){

k
∂θ(z)
∂n(z)

+ k1w(z)n(z)
}+
= f7(z), (3-11){

γ
∂ϕ(z)
∂n(z)

− dw(z)n(z)
}+
= f8(z). (3-12)

Obviously, by virtue of (3-3) we can rewrite the boundary conditions (3-9)–(3-12) in the form

{P(Dz, n(z))U(z)}+ = f (z).

Problem (III)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-10), (3-7), (3-8).

Problem (IV)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-6), (3-7), (3-12).

Problem (V)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-10), (3-7), (3-12).

Problem (VI)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-6), (3-7), (3-8).

Problem (VII)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-10), (3-7), (3-8).

Problem (VIII)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-6), (3-7), (3-12).

Problem (IX)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-10), (3-7), (3-12).

Problem (X)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-9), (3-6), (3-11), (3-12).

Problem (XI)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-6), (3-11), (3-12).

Problem (XII)+F, f . Find a regular solution to (2-9) for x ∈�+ satisfying (3-5), (3-10), (3-11), (3-12).

We now turn to the external BVPs, spelling out only the first two (the external BVPs (III)−F, f through
(XII)−F, f are formulated similarly).

Problem (I)−F, f . Find a regular solution to system (2-9) for x ∈�− satisfying the boundary condition

lim
x→z∈S

U(x)≡ {U(z)}− = f (z),

where F and f are known eight-component vector functions, and supp F is a finite domain in �−.

Problem (II)−F, f . Find a regular solution to system (2-9) for x ∈�− satisfying the boundary condition

{P(Dz, n(z))U(z)}− = f (z).
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4. Green’s formulae

In this section the Green’s formulae in the linear equilibrium theory of thermoelasticity with microtem-
peratures for isotropic and homogeneous microstretch solids are obtained.

We introduce the notation

W (U,U ′)=W (1)(u, u′)+W (2)(w,w′)+ (b ϕ−β θ) div u′+ (k2w+ k3 grad θ)w′

+ (k1w+ k grad θ) grad θ ′+ (γ gradϕ− d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′, (4-1)

where u′ = (u′1, u′2, u′3) and w′ = (w′1, w
′

2, w
′

3) are three-component vector functions, θ ′ and ϕ′ are scalar
functions, U ′ = (u′,w′, θ ′, ϕ′) and

W (1)(u, u′)= 1
3(3λ+ 2µ) div u div u′

+µ

[
1
2

3∑
l, j=1
l 6= j

(
∂u j

∂xl
+
∂ul

∂x j

)(
∂u′j
∂xl
+
∂u′l
∂x j

)
+

1
3

3∑
l, j=1

(
∂ul

∂xl
−
∂u j

∂x j

)(
∂u′l
∂xl
−
∂u′j
∂x j

)]
,

W (2)(w,w′)= 1
3(3k4+ k5+ k6) divw divw′+ 1

2(k6− k5) curlw curlw′

+
k6+ k5

2

[
1
2

3∑
l, j=1
l 6= j

(
∂w j

∂xl
+
∂wl

∂x j

)(
∂w′j

∂xl
+
∂w′l

∂x j

)
+

1
3

3∑
l, j=1

(
∂wl

∂xl
−
∂w j

∂x j

)(
∂w′l

∂xl
−
∂w′j

∂x j

)]
. (4-2)

We are now in a position to prove Green’s theorem in the linear equilibrium theory of thermoelasticity
with microtemperatures for the domains �+ and �−.

Theorem 4.1. If U = (u,w, θ) is a regular vector field in �+ and U ′ = (u′,w′, θ ′) ∈ C1(�+), then∫
�+

[
A(Dx)U(x)U ′(x)+W (U,U ′)

]
dx =

∫
S

P(Dz, n(z))U(z)U ′(z) dz S, (4-3)

where A(Dx) and P(Dz, n(z)) are the operators defined by (2-8) and (3-3), respectively.

Proof. We introduce the matrix differential operators

A(1)(Dx)=
(

A(1)l j (Dx)
)

3×3, A(1)l j (Dx)= Al j (Dx),

A(2)(Dx)=
(

A(2)l j (Dx)
)

3×3, A(2)l j (Dx)= Al+3; j+3(Dx).

From Green’s formula in the classical theory of elasticity, expressed as∫
�+

[
A(1)(Dx) u u′+W (1)(u, u′)

]
dx =

∫
S

P (1)(Dz(n, z)) u(z) u′(z) dz S

(see [Kupradze et al. 1979]), we have∫
�+

[
(A(1) u−β grad θ + b gradϕ)u′+W (1)(u, u′)+ (β grad θ − b gradϕ) u′

]
dx

=

∫
S

P (1)(Dz, n(z)) u(z) u′(z) dz S. (4-4)
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On account of the identity
∫
�+
(grad θ u′+ θ div u′) dx =

∫
S
θ n u′ dz S (see [Kupradze et al. 1979]),

it follows from (4-4) that∫
�+

[
(A(1) u−β grad θ + b gradϕ)u′+W (1)(u, u′)+ (b ϕ−β θ) div u′

]
dx

=

∫
S

R(Dz, n(z))v(z)u′(z) dz S, (4-5)

where v = (u, θ, ϕ) is a five-component vector and

R(Dx, n)= (Rl j (Dx, n))3×5, Rl j (Dx, n)= Pl j (Dx, n), Rl4(Dx, n)=−β nl, Rl5(Dx, n)= b nl,

for l, j = 1, 2, 3. It may be shown similarly that Green’s formula [Kupradze et al. 1979]∫
�+

[
A(2)(Dx)ww

′
+W (2)(w,w′)

]
dx =

∫
S

P (2)(Dz(n, z))w(z)w′(z) dz S

may be rewritten as∫
�+

[
(A(2)(Dx)w− k2w− k3 grad θ)w′+W (2)(w,w′)+ (k2w+ k3 grad θ)w′

]
dx

=

∫
S

P (2)(Dz(n, z))w(z)w′(z) dz S. (4-6)

By virtue of the identities [Kupradze et al. 1979]∫
�+

(
1θ θ ′+ grad θ grad θ ′

)
dx =

∫
S

∂θ(z)
∂n(z)

θ ′(z) dz S,∫
�+

(
divw θ ′ +w grad θ ′

)
dx =

∫
S
w n θ ′dz S,

we have∫
�+

[
(k1θ + k1 divw)θ ′+ (k grad θ + k1w) grad θ ′

]
dx =

∫
S

(
k ∂θ
∂n + k1w n

)
θ ′dz S. (4-7)

It may be shown similarly that∫
�+

[
(γ1ϕ−b div u−d divw+m θ − ξ ϕ) ϕ′+ (γ gradϕ−d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′

]
dx

=

∫
S

(
γ
∂ϕ

∂n
− d w n

)
ϕ′dz S. (4-8)

Keeping (4-1) in mind, (4-5)–(4-8) yield (4-3), and the theorem is proved. �

The following theorem holds for an infinite domain �−.

Theorem 4.2. Let U = (u,w, θ, ϕ) be a regular vector field in �−. Let U ′ = (u′,w′, θ ′, ϕ′) ∈ C1(�−)

satisfy

U ′(x)= O(|x|−1) and
∂

∂x j
U ′(x)= o(|x|−1) for |x| � 1, j = 1, 2, 3. (4-9)

Then ∫
�−

[
A(Dx)U(x)U ′(x)+W (U,U ′)

]
dx =−

∫
S

P(Dz, n(z))U(z)U ′(z) dz S. (4-10)
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Proof. Let �r be a sphere of sufficiently large radius r so that �̄+ ⊂�r , Sr is the boundary of the sphere
�r . The theorem is proved by applying Green’s formula (4-3) to the finite domain �−r =�

−
∩�r . The

positive normal to the boundary �−r is the inward one. Hence, we obtain∫
�−r

[
A(Dx)U(x)U ′(x)+W (U,U ′)

]
dx

=−

∫
S

P(Dz, n(z))U(z)U ′(z)dz S−
∫

Sr

P(Dz, n(z))U(z)U ′(z) dz S. (4-11)

In view of (3-1) and (4-9), the integral over Sr tends to zero when r →∞. Therefore, the limit of the
right-hand side and hence the limit of the left-hand side of (4-11) exist and are equal. From (4-4) we
obtain (4-10) and the theorem is proved. �

In the classical theory of elasticity one considers the generalized stress operator [Kupradze et al. 1979,
Chapter I]. We denote this operator by P (1)(τ1)

(Dx, n) and we have (ibid.)

P (1)(τ1)
(Dx, n)=

(
P (1)(τ1) l j (Dx, n)

)
3×3,

P (1)(τ1) l j (Dx, n)= µδl j
∂

∂n
+ (λ+µ)nl

∂

∂x j
+ τ1 Ml j ,

(4-12)

where τ1 is an arbitrary number and Ml j is defined by (3-4). Obviously, the operator P (1) is obtained
from the operator P (1)(τ1)

if we set τ1 = µ, i.e., P (1)(µ) = P (1).
In the sequel we use the matrix differential operator [Scalia et al. 2010]

P (2)(τ2)
(Dx, n)=

(
P (2)(τ2) l j (Dx, n)

)
3×3,

P (2)(τ2) l j (Dx, n)= k6δl j
∂

∂n
+ (k4+ k5)nl

∂

∂x j
+ τ2 Ml j ,

(4-13)

where τ2 is an arbitrary number. Obviously, the operator P (2) is obtained from operator P (2)(τ2)
if we set

τ2 = k5, i.e., P (2)(k5)
= P (2).

We introduce the notation

W(τ )(U,U ′)=W (1)
(τ1)
(u, u′)+W (2)

(τ2)
(w,w′)+ (b ϕ−β θ) div u′+ (k2w+ k3 grad θ)w′

+(k1w+ k grad θ) grad θ ′+ (γ gradϕ− d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′, (4-14)

where τ = (τ1, τ2) and

W (1)
(τ1)
(u, u′)= 1

3(3λ+ 4µ− 2τ1) div u div u′+ 1
2(µ− τ1) curl u curl u′

+
1
2
(µ+ τ1)

[
1
2

3∑
l, j=1; l 6= j

(
∂u j

∂xl
+
∂ul

∂x j

)(
∂u′j
∂xl
+
∂u′l
∂x j

)
+

1
3

3∑
l, j=1

(
∂ul

∂xl
−
∂u j

∂x j

)(
∂u′l
∂xl
−
∂u′j
∂x j

)]
,

W (2)
(τ2)
(w,w′)= 1

3(3k4+ 3k5+ k6− 2τ2) divw divw′+ 1
2(k6− τ2) curlw curlw′

+
1
2
(k6+τ2)

[
1
2

3∑
l, j=1; l 6= j

(
∂w j

∂xl
+
∂wl

∂x j

)(
∂w′j

∂xl
+
∂w′l

∂x j

)
+

1
3

3∑
l, j=1

(
∂wl

∂xl
−
∂w j

∂x j

)(
∂w′l

∂xl
−
∂w′j

∂x j

)]
. (4-15)

It is easy to see that W (1)
(µ) =W (1) and W (2)

(k5)
=W (2).
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Equations (4-5), (4-6), (4-12)–(4-15) and Theorems 4.1 and 4.2 have the following consequences.

Theorem 4.3. Let U = (u,w, θ, ϕ) be a regular vector field in�+ and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�+).
Suppose τ = (τ1, τ2) is an arbitrary vector and set, for l, j = 1, 2, 3,

R(τ1)(Dx, n)=
(
R(τ1) l j (Dx, n)

)
3×5, R(τ1) l4(Dx, n)=−β nl,

R(τ1) l j (Dx, n)= P (1)(τ1) l j (Dx, n), R(τ1) l5(Dx, n)= b nl .

Then∫
�+

[
(A(1) u−β grad θ + b gradϕ )u′+W (1)

(τ1)
(u, u′)+ (b ϕ−β θ) div u′

]
dx

=

∫
S

R(τ1)(Dz(n, z)) v(z) u′(z) dz S,∫
�+

[
(A(2)(Dx)w− k2w− k3 grad θ)w′+W (2)

(τ2)
(w,w′)+ (k2w+ k3 grad θ)w′

]
dx

=

∫
S

P (2)(τ2)
(Dz, n(z))w(z)w′(z) dz S. (4-16)

Theorem 4.4. Let U = (u,w, θ, ϕ) be a regular vector field in�− and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�−)

satisfy (4-9). Then, for τ = (τ1, τ2) is an arbitrary vector, we have∫
�−

[
(A(1) u−β grad θ + b gradϕ )u′+W (1)

(τ1)
(u, u′)+ (b ϕ−β θ) div u′

]
dx

=−

∫
S

R(τ1)(Dz(n, z)) v(z) u′(z) dz S,∫
�−

[
(A(2)(Dx)w− k2w− k3 grad θ)w′+W (2)

(τ2)
(w,w′)+ (k2w+ k3 grad θ)w′

]
dx

=−

∫
S

P (2)(τ2)
(Dz(n, z))w(z)w′(z) dz S,∫

�−

[
(k1θ + k1divw)θ ′+ (k grad θ + k1w) grad θ ′

]
dx =−

∫
S

(
k
∂θ

∂n
+ k1w n

)
θ ′dz S,∫

�−

[
(γ1ϕ−b div u−d divw+m θ − ξ ϕ) ϕ′+ (γ gradϕ−d w) gradϕ′+ (b div u−m θ + ξ ϕ) ϕ′

]
dx

=−

∫
S

(
γ
∂ϕ

∂n
− d w n

)
ϕ′dz S, (4-17)

Theorem 4.5. Let U = (u,w, θ, ϕ) be a regular vector field in�+ and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�+).
Let τ = (τ1, τ2) be an arbitrary vector and set, for l, j = 1, 2, 3,

P(τ )(Dx, n)=
(
P(τ ) l j (Dx, n)

)
8×8 , P(τ ) l j (Dx, n)= P (1)(τ1) l j (Dx, n),

P(τ ) l+3; j+3(Dx, n)= P (2)(τ2) l j (Dx, n), P(τ ) l7(Dx, n)=−βnl, P(τ ) l8(Dx, n)= b nl,

P(τ ) 7;l+3(Dx, n)=k1 nl, P(τ ) 77(Dx, n)=k ∂
∂n , P(τ ) 88(Dx, n)=γ ∂

∂n , P(τ ) 8;l+3(Dx, n)=−d nl,

P(τ ) l; j+3 = P(τ ) l+3; j = P(τ ) l+3;7 = P(τ ) l+3;8 = P(τ ) 7l = P(τ ) 78 = P(τ ) 8l = P(τ ) 87 = 0. (4-18)
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Then ∫
�+

[
A(Dx)U(x)U ′(x)+W(τ )(U,U ′)

]
dx =

∫
S

P(τ )(Dz, n(z))U(z)U ′(z) dz S.

Theorem 4.6. Let U = (u,w, θ, ϕ) be a regular vector field in�− and let U ′= (u′,w′, θ ′, ϕ′)∈C1(�−)

and U ′ satisfy (4-9). Then∫
�−

[
A(Dx)U(x)U ′(x)+W(τ )(U,U ′)

]
dx =−

∫
S

P(τ )(Dz, n(z))U(z)U ′(z)dz S,

where τ = (τ1, τ2) is an arbitrary vector.

In the sequel we use the following two values τ (1) and τ (2) of the vector τ :

τ (1) = (µ, k5), τ (2) = (−µ, −k6). (4-19)

By virtue of (3-2), (3-3), (4-1), (4-2), it follows from (4-14) and (4-18) that P(τ (1)) = P and W(τ (1)) =W .
The operator P(τ )(Dz, n) will be called the generalized stress operator in the linear theory of ther-

moelasticity with microtemperatures for microstretch solids.

5. Uniqueness theorems

In this section we prove the uniqueness theorems for the internal and external BVPs (K )+F, f and (K )−F, f ,
where K = I, II, . . . ,XII.

Theorem 5.1. If the conditions

µ > 0, 3λ+ 2µ > 0, γ > 0, (3λ+ 2µ) ξ > 3b2, (5-1)

k > 0, k6+ k5 > 0 k6− k5 > 0, 3k4+ k5+ k6 > 0, (k1+ T0 k3)
2 < 4T0 k k2 (5-2)

are satisfied, the internal BVP (K )+F, f admits at most one regular solution, where K = I, III, IV, V .

Proof. Suppose that there are two regular solutions of the internal BVP (K )+F, f . Then their difference
U corresponds to zero data (F = f = 0), i.e., U is a regular solution of problem (K )+0,0, where K =
I, III, IV, V . If U = U ′, we obtain from (4-5)–(4-8)∫

�+

[
W (1)(u, u)+ (b ϕ−β θ) div u

]
dx = 0, (5-3)∫

�+

[
W (2)(w,w)+ (k2w+ k3 grad θ) w

]
dx = 0, (5-4)∫

�+
(k grad θ + k1w) grad θ dx = 0, (5-5)∫

�+

[
(γ gradϕ− d w) gradϕ+ (b div u−m θ + ξ ϕ) ϕ

]
dx = 0. (5-6)

Equations (5-4) and (5-5) imply∫
�+

[
T0 W (2)(w,w)+

(
T0 k2|w|

2
+ (k1+ T0 k3)w grad θ + k |grad θ |2

)]
dx = 0. (5-7)
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Keeping (5-2) in mind, (4-2) yields

W (2)(w,w)≥ 0, T0 k2|w|
2
+ (k1+ T0 k3)w grad θ + k |grad θ |2 ≥ 0. (5-8)

On the basis of (5-8) we obtain from (5-7) w(x) = 0 and θ(x) = const, for x ∈ �+. In view of
homogeneous boundary condition {θ(z)}+ = 0 it follows that

w(x)= 0 and θ(x)= 0 for x ∈�+. (5-9)

By virtue of (5-9) from (5-3) and (5-6) we obtain∫
�+

[
W (1)(u, u)+ 2b ϕ div u+ ξ |ϕ|2+ γ |gradϕ|2

]
dx = 0, (5-10)

Keeping (4-2) and (5-1) in mind, (5-10) gives

ϕ(x)= 0, (5-11)

W (1)(u, u)= 0 for x ∈�+. (5-12)

Equations (5-1) and (5-12) show that u is the rigid displacement vector [Ieşan 2004], having the form

u(x)= a′+ [a′′× x], (5-13)

where a′ and a′′ are arbitrary real constant three-component vectors and [a′′× x] is the vector product
of a′′ and x. Keeping in mind the homogeneous boundary condition {u(z)}+ = 0 from (5-13) we have
u(x)= 0 for x ∈�+. In view of (5-9) and (5-11) we get U(x)= 0 for x ∈�+. Hence, the uniqueness
of the solution of BVP (K )+F, f is proved, where K = I, III, IV, V . �

Theorem 5.1 leads to:

Theorem 5.2. If the conditions (5-1) and (5-2) are satisfied, then any two regular solutions of the BVP
(K )+F, f , K = VI,VII,VIII, IX, differ only by an additive vector U = (u,w, θ, ϕ), where

u(x)= a′+ [a′′× x], w(x)= 0, θ(x)= ϕ(x)= 0 for x ∈�+,

a′ and a′′ being arbitrary real constant three-component vectors.

Theorem 5.3. If the conditions (5-1) and (5-2) are satisfied, then any two regular solutions of the BVP
(K )+F, f , K = II, X , differ only by an additive vector U = (u,w, θ, ϕ), where

u(x)= a′+ [a′′× x] + d1x, w(x)= 0, θ(x)= c1, ϕ(x)= d2 for x ∈�+, (5-14)

a′ and a′′ being arbitrary real constant three-component vectors, c1 an arbitrary real constant,

d1 =
β ξ − b m

(3λ+ 2µ)ξ − 3b2 c1, and d2 =
(3λ+ 2µ)m− 3bβ
(3λ+ 2µ)ξ − 3b2 c1.

Proof. The difference U between two regular solutions of the BVP (K )+F, f is a regular solution of the
homogeneous BVP (K )+0,0, where K = II, X . It may be shown similarly that

w(x)= 0, θ(x)= c1, for x ∈�+, (5-15)
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where c1 is an arbitrary real constant. On the basis of (5-16) the vector (u, ϕ) is a regular solution in
�+ of the nonhomogeneous system

µ1u+ (λ+µ) grad div u+ b gradϕ = 0,

(γ1− ξ) ϕ− b div u =−m c1,
(5-16)

satisfying the nonhomogeneous boundary condition{
P (1)(Dz, n)u(z)+ bϕ n

}+
= c1β n(z),

{
∂ϕ(z)
∂n(z)

}+
= 0 for z ∈ S. (5-17)

We introduce the notation

ũ(x)= u(x)− d1 x, ϕ̃(x)= ϕ(x)− d2. (5-18)

Thanks to (5-17), (5-18), and the equalities 3b d1+ ξ d2 = mc1, (3λ+ 2µ) d1+ b d2 = β c1, the vector
(ũ, ϕ̃) is the regular solution of the homogeneous BVP

µ1ũ(x)+ (λ+µ) grad div ũ(x)+ b grad ϕ̃(x)= 0,

(γ1− ξ) ϕ̃(x)− b div ũ(x)= 0,{
P (1)(Dz, n)ũ(z)+ b ϕ̃ n

}+
= 0,

{
∂ϕ̃(z)
∂n(z)

}+
= 0

(5-19)

for x ∈�+ and z ∈ S. It is easily to see that the Green’s formulae for ũ and ϕ̃ have the form∫
�+

[
(A(1) ũ+ b grad ϕ̃)ũ+W (1)(ũ, ũ)+ b ϕ̃ div ũ

]
dx =

∫
S

[
P (1)(Dz, n)+ bϕ̃ n

]
ũ dz S,∫

�+

[(
(γ1− ξ) ϕ̃− b div ũ

)
ϕ̃+

(
γ |grad ϕ̃|2+ ξ |ϕ̃|2+ b ϕ̃ div ũ

)]
dx = γ

∫
S

∂ϕ̃

∂n
ϕ̃ dz S.

(5-20)

Keeping in mind (5-19) from (5-20) we obtain∫
�+

[
W (1)(ũ, ũ)+ 2 b ϕ̃ div ũ+ ξ |ϕ̃|2+ γ |grad ϕ̃|2

]
dx = 0. (5-21)

On account of (5-1) from (5-21) it follows that

ũ(x)= a′+ [a′′× x] and ϕ̃(x)= 0 for x ∈�+, (5-22)

where a′ and a′′ are arbitrary real constant three-component vectors. Using (5-15), (5-18) and (5-22) we
get (5-14). Hence, the theorem is proved. �

Theorem 5.3 leads to:

Theorem 5.4. If the conditions (5-1) and (5-2) are satisfied, any two regular solutions of the BVP
(K )+F, f , K = XI,XII, differ only by additive vector U = (u,w, θ, ϕ), where

u(x)= w(x)= 0, θ(x)= c1, ϕ(x)= d3 for x ∈�+, (5-23)

c1 is an arbitrary real constant, and d3 = m c1/ξ .

Now let us establish the uniqueness of regular solutions of the external BVPs.
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Theorem 5.5. If conditions (5-1) and (5-2) are satisfied, then the external BVP (K )−F, f admits at most
one regular solution, where K = I, II, . . . ,XII.

Proof. Suppose that there are two regular solutions of the external BVP (K )−F, f , where K = I, II, . . . ,XII.
Then their difference U corresponds to zero data (F = f = 0), i.e., U is a regular solution of problem
(K )−0,0.

In a similar way as in the proof of Theorem 4.4 we obtain∫
�−

[
W (1)(u, u)+ (b ϕ−β θ) div u

]
dx = 0, (5-24)∫

�−

[
W (2)(w,w)+ (k2w+ k3 grad θ) w

]
dx = 0, (5-25)∫

�−
(k grad θ + k1w) grad θ dx = 0, (5-26)∫

�−

[
(γ gradϕ− d w) gradϕ+ (b div u−m θ + ξ ϕ) ϕ

]
dx = 0. (5-27)

Equations (5-25) and (5-26) imply w(x)= 0 and θ(x)= const, for x ∈�−. In view of condition (3-1)
we get θ(x)= 0 for x ∈�−; hence,

w(x)= 0 and θ(x)= 0 for x ∈�−. (5-28)

Taking (5-28) into account, (5-24) and (5-27) yield∫
�−

[
W (1)(u, u)+ 2b ϕ div u+ ξ |ϕ|2+ γ |gradϕ|2

]
dx = 0. (5-29)

Keeping in mind (3-1) and (5-1) from Eq. (5-29) we have

u(x)= 0 and ϕ(x)= 0 for x ∈�−, (5-30)

and in view of (5-28) we get U(x)= 0 for x ∈�−, as desired. �

6. Uniqueness theorems under weak conditions

In this section we use Theorems 4.3 and 4.4 to prove the uniqueness of regular solutions of the problems
(I )+F, f and (I )−F, f under weaker conditions that (5-1) and (5-2).

Theorem 6.1. If the conditions

µ > 0, λ+ 2µ > 0, γ > 0, (λ+ 2µ) ξ > b2, (6-1)

k > 0, k6 > 0, k7 > 0, (k1+ T0 k3)
2 < 4T0 k k2 (6-2)

are satisfied, the internal BVP (K )+F, f admits at most one regular solution, where k7 = k4+ k5+ k6 and
K = I, IV.

Proof. Suppose that there are two regular solutions of problem (K )+F, f . Their difference U is a regular
solution of problem (K )+0,0, where K = I, IV . If U = U ′ and τ = τ (2) (see (4-19)), it follows from (4-7),
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(4-8), (4-15), and (4-16) that ∫
�+

[
W (1)
(−µ)(u, u)+ (b ϕ−β θ) div u

]
dx = 0, (6-3)∫

�+

[
W (2)
(−k6)

(w,w)+ (k2w+ k3grad θ) w
]

dx = 0, (6-4)∫
�+

[
k |grad θ |2+ k1w grad θ

]
dx = 0, (6-5)∫

�+

[
γ |gradϕ|2− d wgradϕ+ b ϕ div u−m θ ϕ+ ξ |ϕ|2

]
dx = 0, (6-6)

where

W (1)
(−µ)(u, u)= (λ+ 2µ) |div u|2+µ |curl u|2, W (2)

(−k6)
(w,w)= k7 |divw|2+ k6 |curlw|2.

From (6-4) and (6-5) it follows that∫
�+

[
T0 W (2)

(−k6)
(w,w)+

(
T0 k2|w|

2
+ (k1+ T0 k3)w grad θ + k |grad θ |2

)]
dx = 0. (6-7)

Keeping in mind (6-2), we have from (6-7)

w(x)= 0, θ(x)= const for x ∈�+.

By the homogeneous boundary condition we get θ(x)= 0 for x ∈�+, and from (6-3) and (6-6) we get∫
�+

[
µ |curl u|2+ (λ+ 2µ) |div u|2+ 2b ϕ div u+ ξ |ϕ|2+ γ |gradϕ|2

]
dx = 0. (6-8)

By (6-1) from (6-8) we obtain ϕ(x)= 0, div u(x)= 0, curl u(x)= 0 for x ∈�+. Hence, u is a regular
solution of the BVP

1 u(x)= 0, {u(z)}+ = 0 for x ∈�+, z ∈ S. (6-9)

This implies u(x)= 0 for x ∈�+, as needed. �

Theorem 6.2. If the conditions (6-1) and (6-2) are satisfied, any two regular solutions of the BVP
(X I )+F, f may differ only by an additive vector U = (u,w, θ, ϕ), where U is given by (5-23), c1 is
an arbitrary real constant and d3 is defined in Theorem 5.4.

Proof. The difference U between two regular solutions of the BVP (X I )+F, f is a regular solution of the
homogeneous BVP (X I )+0,0. Using Green’s formula (4-16) and (6-2), we can show as above that

w(x)= 0 and θ(x)= c1 for x ∈�+,

and the vector function u and function ϕ from a regular solution in �+ of the nonhomogeneous system

µ1u+ (λ+µ) grad div u+ b gradϕ = 0,

(γ1− ξ) ϕ− b div u =−m c1,

satisfying the homogeneous boundary condition

{u(z)}+ = 0,
{
∂ ϕ(z)
∂n(z)

}+
= 0 for z ∈ S,
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where c1 is an arbitrary real constant. If we introduce

ϕ̃(x)= ϕ(x)− d3, (6-10)

the vector (u, ϕ̃) is then a regular solution of the homogeneous BVP

µ1u(x)+ (λ+µ) grad div u(x)+ b grad ϕ̃(x)= 0,

(γ1− ξ) ϕ̃(x)− b div u(x)= 0, {u(z)}+ = 0,
{
∂ϕ̃(z)
∂n(z)

}+
= 0

(6-11)

for x ∈�+ and z ∈ S. It is easily to see that by virtue of (6-11) the Green’s formulas (4-8) and (4-16)
for u and ϕ̃ take on the form∫

�+

[
W (1)
(−µ)(u, u)+ b ϕ̃ div u

]
dx = 0,

∫
�+

[(
γ |grad ϕ̃|2+ ξ |ϕ̃|2+ b ϕ̃ div u

)]
dx = 0, (6-12)

and on the basis of (6-7) we obtain from (6-12)∫
�+

[
(λ+ 2µ) |div u|2+ 2 b ϕ̃ div u+ ξ |ϕ̃|2+µ |curl u|2+ γ |grad ϕ̃|2

]
dx = 0. (6-13)

Taking (6-1) into account, (6-13) implies that

u(x)= a′+ [a′′× x] and ϕ̃(x)= 0 for x ∈�+, (6-14)

where a′ and a′′ are arbitrary real constant three-component vectors. Using the homogeneous boundary
condition (6-11), we obtain from (6-14) that u(x)= 0 for x ∈�+, and using (6-14) we get from (6-10)
that ϕ(x)= d3 for x ∈�+, as needed. �

Theorem 6.3. If conditions (6-1) and (6-2) are satisfied, the external BVP (K )−F, f admit at most one
regular solution, where K = I, II,XI.

Proof. Suppose that there are two regular solutions of problem (K )−F, f . Their difference U is a regular
solution of problem (K )−0,0, where K = I, II,XI. If U =U ′ and τ = τ (2), we have from (4-17) and (4-19)∫

�−

[
W (1)
(−µ)(u, u)+ (b ϕ−β θ) div u

]
dx = 0,∫

�−

[
T0 W (2)

(−k6)
(w,w)+

(
T0 k2|w|

2
+ (k1+ T0 k3)w grad θ + k |grad θ |2

) ]
dx = 0,∫

�−

[
γ |gradϕ|2− d wgradϕ+ b ϕ div u−m θ ϕ+ ξ |ϕ|2

]
dx = 0.

(6-15)

Similarly, taking (3-1), (6-1), and (6-2) into account, we obtain from (6-15) that w(x) = 0, θ(x) =
ϕ(x)= 0, div u(x)= 0, and curl u(x)= 0 for x ∈�−. Hence, u is regular solution of the BVP

1 u(x)= 0, {u(z)}− = 0 for x ∈�−, z ∈ S. (6-16)

Therefore (6-16) shows that u(x)= 0 for x ∈�−. �

Remark 6.4. From (5-1) and (5-2) we have (6-1) and (6-2), respectively. Indeed, (5-1) and (5-2) imply

λ+2µ= 1
3

(
(3λ+2µ)+4µ

)
>0, k6=

1
2

(
(k6+k5)+(k6−k5)

)
>0, k7=

1
3

(
(3k4+k5+k6)+2(k6+k5)

)
>0.
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7. Concluding remarks

(1) In [Knops and Payne 1971], the uniqueness theorems of the first BVP (on the boundary given the
displacement vector) and the second BVP (on the boundary given the stress vector) in the classical theory
of elasticity are proved under the conditions µ > 0, λ+ 2µ > 0 and µ > 0, 3λ+ 2µ > 0, respectively.

(2) Using the uniqueness Theorems 5.1–5.4 and 6.1–6.3 it is possible to prove the existence theorems in
the equilibrium theory of thermoelasticity with microtemperatures for microstretch solids by means of
the potential method and the theory of singular integral equations.

(3) The conditions (5-1), (5-2) and (6-1), (6-2) are sufficient for the uniqueness of solutions of BVPs
in the theory of equilibrium thermoelasticity with microtemperatures for microstretch solids occupying
arbitrary 3D domains with a smooth surface. Establishing necessary conditions for the uniqueness of
solutions is an open problem in the classical theory of thermoelasticity [Kupradze et al. 1979], the theory
of thermoelasticity with microtemperatures [Ieşan and Quintanilla 2000], the micropolar theory of ther-
moelasticity, theories of micromorphic elasticity and thermomicrostretch elastic solid [Eringen 1999],
and in the theory of thermoelasticity with microtemperatures for microstretch solids [Ieşan 2001]. The
necessary condition for uniqueness of solutions have been established only in the classical theory of
elasticity (see [Knops and Payne 1971; Fosdick et al. 2007], for details).
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[Ieşan and Scalia 2010] D. Ieşan and A. Scalia, “Plane deformation of elastic bodies with microtemperatures”, Mech. Res.
Commun. 37:7 (2010), 617–621.
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