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INDENTATION AND RESIDUAL STRESS IN THE AXIALLY SYMMETRIC
ELASTOPLASTIC CONTACT PROBLEM

TIAN-HU HAO

Most theoretical studies of mechanical indention, going back to Boussinesq, Hertz, and later Sneddon,
address the relations between indenter pressure, indention size, and stress components. However, the
relationship between indention and residual stress is also interesting. Here we use the Dorris and Nemat-
Nasser method to derive a relation between the indention and the residual stress components for an
axisymmetric load.

1. Introduction

The elastic contact problem plays a key role in interpreting experimental results of indention. This study
was first considered by Boussinesq and Hertz in the late nineteenth century, and later Sneddon made
major contributions. These authors derived general relationships among the load, the displacement, and
the contact area for an axisymmetric indenter.

Also of interest is the relationship between the indention and the residual stress. This has been ad-
dressed for example in [Suresh and Giannakopoulos 1998], where it is stated that the residual stress
cannot be determined using the loading theory of elasticity. In [Hao 2006] we made some progress
in the study of the problem in the framework of the theory of finite elasticity. The paper continues
that investigation, by considering the important unloading case. As in the previous paper, we derive the
elastoplastic deformation is derived using the DNN method [Dorris and Nemat-Nasser 1980]. The elastic
deformation is eliminated from the total deformation, leading to the residual plastic deformation. Thus
we determine the relation between the residual stress and the residual plastic deformation.

2. Analysis of the axially symmetrical finite elastic-plastic case

Following Dorris and Nemat-Nasser we write, for the axially symmetrical case,

Dab = 0.5(va,b+ vb,a), Dθθ = v2/x2 (1)

where x1 and x2 denote z and r , va is the increment displacement, va,b = ∂va/∂xb and Dab; Dθθ are the
components of the rate tensor. Note that in [Dorris and Nemat-Nasser 1980] va is the velocity, but in this
paper, it is the incremental displacement, whose dimension is length. Since we are dealing with small
deformations superposed on initial stress body, the increment displacement va of the small deformation
is a small part of the whole displacement.

The author thanks Prof. Ziyuan Shen for valuable help in writing the paper in English.
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Still following Dorris and Nemat-Nasser, we use the current configuration as the reference one. We
deal with the first Piola–Kirchhoff stress increment δσab, where the index a denotes the direction of the
stress and the index b denotes the normal to the surface subjected to δσab in the reference configuration
(note that δσab 6= δσba). Only the incompressible case is considered; the compressible case can be derived
from the results of the incompressible case and it will be studied in another paper.

We turn to the constitutive equations, still following [Dorris and Nemat-Nasser 1980]. Similarly to
what is done in Appendix A — compare A — we can write

δσab =8abce Dce+ Pδab− DacTcb− DbcTca + va,cTcb, (2)

where 8abce will be discussed later, P is an unknown scalar function (hydrostatic pressure), and Tca is
the Cauchy stress. For the flow theory, the constitutive equation is

8abce = (2µδacδbe− 6Aµ2ST ′abT ′ce/T
2
), (3)

where µ is the elastic constant, S equals (2h/3+ 2µ)−1, T ′ab and D′ab are the deviatoric parts of the
Cauchy stress Tab and rate Dab, the scalar A is defined as 1 if T ′ab D′ab ≥ 0 and as 0 if T ′ab D′ab < 0, and

T
2
= 1.5T ′abT ′ab.

The value of h is given by

h =
(

1
Et
−

1
E

)−1

,

where E is the initial Young’s modulus and Et is the instantaneous tangent modulus. Et equals dσ/dε =
En(σ/σy)

1−1/n for 0≤ n ≤ 1, σ is the true stress, σy is the yield stress and ε is the logarithmic strain (σ
and ε are of simple tension or compression).

From total deformation theory, one has

8abce = 2µ(γ /γ0)
n−1δacδbe−

3h(1− n)
n

T ′abT ′ce/T
2

(4)

for some n satisfying 0≤ n ≤ 1; here γ is the effective increment strain and γ0 is a reference increment
strain.

Because (3) and (4) are in similar form, from now on, only the flow theory case is discussed. When
A = 0, i.e., T ′ab D′ab < 0 or σ < σy , we are in the unloading case or the elastic case, and we can deal
with this problem as in [Hao 2006]. The case A = 1, i.e., T ′ab D′ab ≥ 0 and σ > σy , is the loading case,
to be considered in this paper. As the cone indention causes compressive stresses, in order to satisfy the
requirement of the loading case A = 1, the residual stress must also be compressive.

Following [Dorris and Nemat-Nasser 1980], in view of the constitutive equations, one obtains

δσ22 = 2µv2,2+ 2µ2Sv1,1+ P, (5)

δσ11 = (2µ− 4µ2S− T )v1,1+ P, (6)

δσ21 = (2µ− T )(v1,2+ v2,1)/2+ T v2,1, (7)

δσ12 = (2µ− T )(v1,2+ v2,1)/2, (8)

δσθθ = 2µv2/r + 2µ2Sv1,1+ P, (9)
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where T is the residual stress.
The homogeneous residual stress σR is equal to T . When the xy-plane is parallel to the surface, the

residual stresses σx and σy are also equal to T . The first equilibrium equation is

δσ22,2+ (δσ22− δσθθ )/x2+ δσ21,1 = 0. (10)

From the calculations in Appendix B, one obtains

2µv2,221+2µ2Sv1,121+P,21+(1/x2)2µ(v2,21−v2,1/x2)+(2µ−T )(v2,111+v1,121)/2+T v2,111=0 (11)

The other equilibrium equation is

δσ11,1+ δσ12,2+ δσ12/x2 = 0. (12)

Also in view of Appendix B, one has

(2µ− 8µ2S− T )v1,112/2+ P,12+ (2µ− T )(v1,222+ v1,22/x2− v1,2/x2
2)/2= 0, (13)

Considering (11) and (13) and eliminating P,12, one has

2µv2,221+ 2µ2Sv1,121+ (1/x2)2µ(v2,21− v2,1/x2)+ (2µ− T )(v2,111+ v1,211)/2+ T v2,111

− (2µ− 8µ2S− T )v1,112/2− (2µ− T )(v1,222+ v1,22/x2− v1,2/x2
2)/2= 0. (14)

Let L(v2)= v2,22+v2,2/x2−v2/x2
2 and L(v1,2)= v1,222+v1,22/x2−v1,2/x2

2 . Substituting into (14), one
obtains

2µL(v2),1+ 6µ2Sv1,112+ (2µ+ T )v2,111/2− (2µ− T )L(v1,2)/2= 0. (15)

Let v2 be F11, where F11 is ∂2 F/∂x2
1 . In view of Appendix C, one has

(4µ− 12µ2S)L(F)11+ (2µ+ T )L0 F1111+ (2µ− T )L2(F)= 0. (16)

Let G(s, x1) be
∫
∞

0 x2 F(x1, x2)J1(sx2) dx2 which is the Hankel transform of F(x1, x2) with order 1
[Sneddon 1951]. Therefore, one has

4µ(1− 3µS)
∫
∞

0
x2L(F)11 J1(sx2) dx2

+ (2µ+ T )
∫
∞

0
x2(F)1111 J1(sx2) dx2+ (2µ− T )

∫
∞

0
x2L2(F)J1(sx2) dx2 = 0. (17)

If x2→ 0 and∞, x2 F→ 0, we have∫
∞

0
x2 L(F)J1(sx2) dx2 =−s2G(s, x1),∫

∞

0
x2L2(F)J1(sx2) dx2 =−s2

∫
∞

0
x2L(F)J1(sx2) dx2 = s4G(s, x1).

(18)

Substituting (18) into (17), one obtains

−4µs2(1− 3µS)G(s, x1),11+ (2µ+ T )G(s, x1),1111+ s4(2µ− T )G(s, x1)= 0 (19)
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Let G(s, x1)= N (s) exp(mx1), where m is a function of s. We obtain G(s, x1)11 = N (s) exp(mx1)m2,
G(s, x1),1111 = N (s) exp(mx1)m4 and

s4(1− Q)− 2s2(1− 3µS)m2
+ (1+ Q)m4

= 0,

m2
= r2s2

= s2
{(1− 3µS)± [Q2

− 6µS− 9µ2S2
]
1/2
}/(1+ Q),

(20)

where r2
= {(1− 3µS)± [Q2

− 6µS− 9µ2S2
]
1/2
}/(1+ Q) and Q = T/2µ. One can deal only with the

case where there are two different real positive roots r2
1 and r2

2 . It can be proved that the same results
will be obtained in the case with two conjugate complex roots.

Letting x1→∞, v2→ 0, F1→ 0, r1, r2 > 0, similar to [Hao 2006], one obtains

G(s, x1)=

∫
∞

0
x2 F(x1, x2)J1(sx2) dx2 = N1(s) exp(m1x1)+ N2(s) exp(m2x1)

= N1(s) exp(−r1sx1)+ N2(s) exp(−r2sx1). (21)

Considering x1 = 0, δσ21 = 0, in view of Appendix C, one has

G(s, x1)= N1(s)e−r1sx1 + N2(s)e−r2sx1 = N1(s)(e−r1sx1 −Ue−r2sx1) (22)

where

U =
r3

1 + r1(2µ− T )/(2µ+ T )

r3
2 + r2(2µ− T )/(2µ+ T )

.

Now, the stress component δσ11 and v1 are discussed. According to Appendix C, one has

δσ11 = (2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]
∫
∞

0
s J 0(sx2)s3 N1(s) ds/2, (23)

v1 = (r1−Ur2)

∫
∞

0
s J 0(sx2)s2 N1(s) ds. (24)

The boundary conditions are

(r1−Ur2)a4
∫
∞

0
s3 J0(sx2)N1(s) ds = a4

[v1(x2)]x1=0 for x1 = 0, a ≥ x2 ≥ 0,∫
∞

0
s4 J0(sx2)N1(s) ds = 0 for x1 = 0, x2 > a, (25)

where a is the radius of contact area, which will be discussed in detail later. Finally,

p3 N1(s)= p3 N1(p/a)= f (p), s = p/a. (26)

3. The circular cone and the residual stress

We now turn to a circular cone on a half-space and consider the residual stress. Let α be the angle of the
circular cone (the angle between the axis of symmetry and the generatrix). Then

[v1(x2)]x1=0 = b+ a cotα(1− x2/a) for a ≥ x2 ≥ 0 (27)
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and

a4
[v1(x2)]x1=0 = a4

[b+ a cotα(1− x2/a)] = (r1−Ur2)(A0+ A1x2/a) for a ≥ x2 ≥ 0 (28)

On the foundation of that the stress component δσ11 is finite at the edge of the punch, the relation between
b and a can be obtained. Similar to [Hao 2006], we obtain

f (P)=
1
√
π

{
A0

(
cos p+ p

∫ 1

0
u sin(pu) du

)
0(1)
0(3/2)

+ A1

(
cos p+ p

∫ 1

0
u2 sin(pu) du

)
0(3/2)
0(2)

}
. (29)

According to [Hao 2006] and Appendix D, for the compressive force R on the cone, one obtains

R = π(2µ− T )a2 cotα
r2r1(r1r2−β)+ (r2

2 + r1r2+ r2
1 )+β

2r2r1(r2
2 + 2r1r2+ r2

1 )
1/2

, (30)

where β =
2µ− T
2µ+ T

and r1, r2 can be calculated from the equalities r2
2r2

1 = β, r2
2 + r2

1 =
2µ− 6µ2S

2µ+ T
.

The contact radius a is

a =
(

R[r2r1(r2
2 + 2r1r2+ r2

1 )
1/2
]

π(2µ− T )[r2r1(r1r2−β)+ (r2
2 + r1r2+ r2

1 )+β] cotα

)1/2

, (31)

from which the contact area πa2 is easily calculated. The penetration depth is

v1(x1, x2)x1=0,x2=0 =
1
2πa cotα = 1

2

(
πR cotα[r2r1(r2

2 + 2r1r2+ r2
1 )

1/2
]

(2µ− T )[r2r1(r1r2−β)+ (r2
2 + r1r2+ r2

1 )+β]

)1/2

. (32)

4. The unloading of the indenter

Lastly, as the residual stress is determined by the indention, the unloading of the indenter is now discussed.
For the unloading case, let A be 0 in (3), i.e., S = 0 in (20). One obtains two roots r1, r2. Then, all other
related values (penetration depth, contact area) of the purely elastic case are obtained.

For an example, the penetration depth in the unloading case is studied.

h = 0.5{πR cotα[r2r1(r2+ r1)]/(2µ− T )[r2r1(r1r2− r2
2r2

1 )+ (r
2
2 + r1r2+ r2

1 )+ r2
2r2

1 ]}
1/2 (33)

where h is the penetration depth of the purely elastic case and the values of r1, r2 can be obtained where
S = 0 in (20). Subtracting it from the elastoplastic case, one obtains the penetration depth for the residual
plastic deformation case.

5. Results and explanation

As an illustration, we take the specific example considered in [Hao 2006]. The parameters are µ= 10–
100 GPa, σy = yield stress = 200 MPa, R = 0.46 kg and α = π/12. The results are in Figures 1–3.

In the figure, N is a function of the elastic shear modulus µ and the plastic constant k = Et/E (recall
that E is the initial Young’s modulus and Et is the instantaneous modulus). This parameter N equals
{(µ1/2/3µ0)

kk(1−k)
}, where µ0 = 7 Gpa. When Et = 0 i.e. k = 0 or N = 0, the material is soft. When

k = 1 or N = (µ1/2/3µ0), the material is tough. Therefore, the parameter N is a coefficient to determine
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Figure 1. Elastoplastic case: contact radius (left) and penetration depth (right) versus
residual stress.
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Figure 2. Purely elastic case: contact radius (left) and penetration depth (right) versus
residual stress.
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the softness or toughness of materials. Figure 1 shows that in the elastoplastic case, the contact radius
and the penetration depth vary with the residual stress. However, in the purely elastic case (k = 1),
when N is constant, we see in Figure 2 that the contact radius and penetration depth are nearly constant.
These figures show that the shear modulus is almost an identified factor to determine the contact area,
the contact radius and the penetration depth. These figures also show that the effect of Jaumann rate is
not notable for this case. Therefore, in the purely elastic case, when the Jaumann rate is even considered,
we hardly determine the residual stress according to the indention. This means that in order to determine
the residual stress the plastic deformation must be considered. Figure 3 shows that when N is a constant,
the larger the residual stress is, the smaller the ratio of elastic part deformation to whole deformation
becomes. Naturally, the larger the residual stress becomes, the larger the plastic part deformation also
becomes.

6. Conclusions

In this paper, the axially symmetrical elastoplastic contact problem and its application are studied. The
relation among the penetration depth, the contact radius and the residual stress has been determined.
Besides, the unloading case is considered. The essence of this method is to deviate from the linear
theory to consider Jaumann rate. When deviating from the linear theory a little, this difficult problem
can be studied easily. For an example, when studying the effects of air inside crack in the piezoelectric
materials, we must deal with the opening crack after deformation because before deformation, the crack
is closed and no air can be in it. Therefore, in this case, the replacement of the boundary after deformation
by that before deformation leads to great deviation. In order to avoid it, we use the approximate boundary
after deformation. The approximate boundary after deformation is the boundary before deformation plus
the displacement. Naturally, the displacement is found for the body before deformation as in the theory
of elasticity. On the basis of this consideration, the semipermeable boundary condition was suggested in
[Hao and Shen 1994].

Appendix A. Jaumann rate increment, reference and current configurations

According to [Dorris and Nemat-Nasser 1980], for an incompressible body, the Jaumann rate is

σ̇ab = DTab/Dt + (ua,c− D′ac)Tcb− Tac D′cb, D′ab = 0.5(ua,b+ ub,a)

where ua is the velocity component, σab is the Piola stress component and Tab is the Cauchy stress
component. For convenience, only the hypo-elastic solid is dealt with

σ̇ba = (2µD′ab+ Ṗδab)+ (ua,c− D′ac)Tcb− Tac D′cb

Using the variables δσba and Dab from (1) to replace σ̇ba and D′ab from A, we obtain

δσba = (2µDab+ Pδab)+ (va,c− Dac)Tcb− Tac Dcb

where Dab = 0.5(va,b + vb,a), va is the increment displacement component and Dθθ = v2/x2. There
are two configurations in our work. The configuration of the body after deformation is the current
configuration. That before deformation can be the reference configuration.
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Appendix B. Derivation of (11) and (13)

δσ22,2+ (δσ22− δσθθ )/x2+ δσ21,1 = 0

2µv2,22+ 2µ2Sv1,12+ P,2+ (1/x2)2µ(v2,2− v2/x2)+ (2µ− T )(v2,11+ v1,12)/2+ T v2,11 = 0

2µv2,221+ 2µ2Sv1,121+ P,21+ (1/x2)2µ(v2,21− v2,1/x2)+ (2µ− T )(v2,111+ v1,121)/2+ T v2,111 = 0

δσ11,1+ δσ12,2+ δσ12/x2 = 0

(2µ− 4µ2S− T )v1,11+ P,1+ (2µ− T )(v2,12+ v1,22)/2+ (2µ− T )(v2,1+ v1,2)/2x2 = 0

In order to consider the incompressible equation v1,1+v2,2+v2/x2= 0, which can become v1,11+v2,12+

v2,1/x2 = 0, we have

(2µ− 8µ2S− T )v1,11/2+ P,1+ (2µ− T )[(v2,12+ v1,11+ v1,22)/2+ (v2,1+ v1,2)/2x2] = 0 (34)

(2µ− 8µ2S− T )v1,11/2+ P,1+ (2µ− T )(v1,22+ v1,2/x2)/2= 0 (35)

(2µ− 8µ2S− T )v1,112/2+ P,12+ (2µ− T )(v1,222+ v1,22/x2− v1,2/x2
2)/2= 0 (36)

Appendix C. Derivation of (16), δσ11 and v1

Letting v2 = F11, from the incompressible equation v1,1+ v2,2+ v2/x2 = 0, we have

v1,1 = (−v2,2− v2/x2)= (−F2−F/x2),11, v1 =−(F2+ F/x2),1

v1,2 = (−F2− F/x2),12 =−(F22+ F2/x2− F/x2
2),1 =−L(F),1, v1,12 =−L(F),11,

v1,112 =−L(v2)1 =−L(F)111

(37)

We have

2µL(F),111− 6µ2SL(F)111+ (2µ+ T )F,11111/2+ (2µ− T )L2(F),1/2= 0

(4µ− 12µ2S)L(F)11+ (2µ+ T )F1111+ (2µ− T )L2(F)= 0

δσ21 = (2µ− T )(v1,2+ v2,1)/2+ T v2,1 = (2µ− T )[−(F,12+ F,1/x2),2+ F,111]/2+ T F ,111

= (2µ− T )[F,111− L(F)1]/2+ T F ,111 = [(2µ+ T )F,111− (2µ− T )L(F)1]/2

Considering G(s, x1) = N1(s)e−r1sx1 + N2(s)e−r2sx1 and
∫
∞

0 x2L(F)J1(sx2) dx2 = −s2G(s, x1), one
obtains ∫

∞

0
x2δσ21 J1(sx2) dx2 = (2µ+ T )G(s, x1),111/2+ (2µ− T )s2G(s, x1),1/2

δσ21 = [(2µ+ T )/2]
∫
∞

0
s{G(s, x1)111+ [(2µ− T )/(2µ+ T )]s2G(s, x1)1}J1(sx2) ds

Considering G(s, x1) = N1(s)e−r1sx1 + N2(s)e−r2sx1 , G(s, x1)1= − [N1(s)r1se−r1sx1 + N2(s)r2se−r2sx1],
G(s, x1)11= N1(s)r2

1 s2e−r1sx1+N2(s)r2
2 s2e−r2sx1 , G(s, x1)111=−[N1(s)r3

1 s3e−r1S x1+N2(s)r3
2 s3e−r2S x1],

one has
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δσ21 =−[(2µ+ T )/2]
∫
∞

0
s{N1(s)r3

1 s3e−r1S x1 + N2(s)r3
2 s3e−r2sx1 + [(2µ− T )/(2µ+ T )]

s2
[N1(s)r1se−r1sx1 + N2(s)r2se−r2sx1]}J1(sx2) ds (38)

If x1 = 0, we get from (38)

δσ=21− [(2µ+ T )/2]

×

∫
∞

0
s{N1(s)r3

1 s3
+ N2(s)r3

2 s3
+ [(2µ− T )/(2µ+ T )]s2

[N1(s)r1s+ N2(s)r2s]}J1(sx2) ds

Considering x1 = 0, δσ21 = 0, one has

N1(s)r3
1 + N2(s)r3

2 + [(2µ− T )/(2µ+ T )][N1(s)r1+ N2(s)r2]} = 0

N1(s)r3
1 + [(2µ− T )/(2µ+ T )]N1(s)r1+ N2(s)r3

2 + [(2µ− T )/(2µ+ T )]N2(s)r2 = 0

N1(s)[r3
1 + (2µ− T )/(2µ+ T )r1] + N2(s)[r3

2 + (2µ− T )/(2µ+ T )r2] = 0

N2(s)=−N1(s)[r3
1 + (2µ− T )/(2µ+ T )r1]/[r3

2 + (2µ− T )/(2µ+ T )r2]

G(s, x1)= N1(s){e−r1sx1 − e−r2sx1[r3
1 + (2µ− T )/(2µ+ T )r1]/[r3

2 + (2µ− T )/(2µ+ T )r2]}

G(s, x1)= N1(s)(e−r1sx1 −Ue−r2sx1)

where

U =
r3

1 + (2µ− T )/(2µ+ T )r1

r3
2 + (2µ− T )/(2µ+ T )r2

= (r1/r2)
r2

1 + (2µ− T )/(2µ+ T )

r2
2 + (2µ− T )/(2µ+ T )

= (r1/r2)
r2

1 +β

r2
2 +β

(39)

and β = (2µ− T )/(2µ+ T )= r2
2r2

1 .
In view of (35), one has (2µ−8µ2S−T )v1,11/2+ P,1+ (2µ−T )(v1,22+v1,2/r)/2= 0. Considering

v1= − (F,2+ F/x2),1, one obtains

−(2µ− 8µ2S− T )(F,2+ F/x2),111/2+ P,1− (2µ− T )[(F,2+ F/x2),221+ (F,2+ F/x2),21/x2]/2= 0

P = (2µ− 8µ2S− T )(F,2+ F/x2),11/2+ (2µ− T )[(F,2+ F/x2),22+ (F,2+ F/x2),2/x2]/2

P = (2µ− 8µ2S− T )(F,2+ F/x2),11/2+ (2µ− T )[L(F),2+ L(F)/x2]/2

In view of the (6), one has

δσ11 = (2µ− 4µ2S− T )v1,1 + P

=−(2µ− 4µ2S− T )(F,2+ F/x2),11+ (2µ− 8µ2S− T )(F,2+ F/x2),11/2

+ (2µ− T )[L(F),2+ L(F)/r ]/2

=−(2µ− T )(F,2+ F/x2),11/2+ (2µ− T )[L(F),2+ L(F)/r ]/2

= (2µ− T )[−(F,2+ F/x2),11+ L(F),2+ L(F)/x2]/2

δσ11,2 = (2µ− T )[−(F,2+ F/x2),211+ L(F),22+ L(F),2/x2− L(F)/x2
2 ]/2

= (2µ− T )[−L(F),11/2+ L2(F)]/2
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Now, we discuss the order-one Hankel transform of the preceding quantity.∫
∞

0
x2 J1(sx2)δσ11,2 dx2

= (2µ− T )
∫
∞

0
x2 J1(sx2)[−L(F),11/2+ L2(F)]/2 dx2

= (2µ− T ) 1
2

[
−

∫
∞

0
x2 J1(sx2)L(F),11 dx2+

∫
∞

0
x2 J1(sx2)L2(F) dx2

]
= (2µ− T )[s2G11+ s4G]/2= (2µ− T )s4 N1(s)[(r2

1 + 1)e−r1sx1 −U (r2
2 + 1)e−r2sx1]

Its Hankel retransform is

δσ11,2 = (2µ− T )
∫
∞

0
s J 1(sx2)s4 N1(s)[(r2

1 + 1)e−r1sx1 −U (r2
2 + 1)e−r2sx1] ds/2 (40)

For x1 = 0, from (40), one has

δσ11,2 = (2µ− T )[(r2
1 + 1)−U (r2

2 + 1)]
∫
∞

0
s J 1(sx2)s4 N1(s) ds/2

δσ11 = (2µ− T )[(r2
1 + 1)−U (r2

2 + 1)]
∫
∞

0
s
∫

J1(sx2) dx2s4 N1(s) ds/2

Considering d J 0(u)/du =−J1(u), one has

δσ11 = (2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]
∫
∞

0
s J 0(sx2)s3 N1(s) ds/2

According to (37), one has

v1,2 =−(F,2+ F/x2),12 =−L(F),1 (41)∫
∞

0
x2 J1(ξ x2)v1,2 dx2 =−

∫
∞

0
x2 J1(ξ x2)L(F),1 dx2 = s2[ ∫ ∞

0
x2 J1(ξ x2)F dx2

]
,1 = s2G,1 (42)

v1,2 =−

∫
∞

0
s J1(sx2)s3 N1(s)(r1e−r1sx1 −Ur2e−r2sx1) ds (43)

v1,2 =−

∫
∞

0
s J1(sx2)s3 N1(s)(r1−Ur2) ds v1 =−

∫
∞

0
s
∫

J1(sx2) dx2s3 N1(s)(r1−Ur2) ds (44)

v1 = (r1−Ur2)

∫
∞

0
s J0(sx2)s2 N1(s) ds (45)

Appendix D. The circular cone

Letting a4
[v1(x2)]x1=0 = a4

[b+ a cotα(1− ρ)] = (r1−Ur2)g(ρ)= (r1−Ur2)(A0+ A1ρ), one has

A0 = (b+ a cotα)a4/(r1−Ur2), A1 =−a5 cotα/(r1−Ur2) ρ = x2/a

where α is the angle of the circular cone (the angle between the axis of symmetry and the generatrix).
Considering (29), one obtains from [Gradshteyn and Ryzhik 1965]

f (p)= 2(A0/π + A1/2) sin p/p+ A1(cos p− 1)/p2
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As p3 N1 = f (p) and (sa)= p, one has

p3 N1 = 2(A0/π + A1/2) sin p/p+ A1(cos p− 1)/p2 (46)

δσ11 = (2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]
∫
∞

0
s J0(sx2)s3 N1(s) ds/2 (47)

δσ11 = (2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]
∫
∞

0
s J 0(sx2)

[
(2A0/π + A1)

sin(sa)
sa

+ A1
cos(sa)− 1
(sa)2

]
ds/2

(48)

As the integral
∫
∞

0 J0(p) sin p dp is divergence, for the finiteness of stress component δσ11 at the edge
of the punch, we have (2A0/π + A1)= 0, that is, b = a cotα(π/2− 1). Hence

v(x2)x1=x2=0 = b+ a cotα = 0.5πa cotα

Because
∫
∞

0 J0(pp)(cos p− 1)/p dp =− cosh−1(1/ρ), one has

δσ11 = (2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]A1a−5
∫
∞

0
sa J0(sax2/a)[(cos(sa)− 1)/(sa)2] dsa/2 (49)

δσ11 =−(2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]a−5 A1 cosh−1(a/x2)/2 (50)

As
∫ a

0 [cosh−1(a/x2)x2] dx2 = 0.5a2 and A1 = −a5 cotα/(r1−Ur2), one obtains for the compressive
force R on the cone

R =−2π
∫ a

0
[δσ11]x1=ox2 dx2 = 2π(2µ− T )[U (r2

2 + 1)− (r2
1 + 1)]a−5 A1

∫ a

0
[cosh−1(a/x2)x2] dx2/2

= π(2µ− T )[U (r2
2 + 1)− (r2

1 + 1)]a−3 A1/2= π(2µ− T )[(r2
1 + 1)−U (r2

2 + 1)] a2 cotα
2r1− 2Ur2

From (39), we know that U = (r1/r2)
r2

1 +β

r2
2 +β

, where β = (2µ− T )/(2µ+ T )= r2
2r2

1 . Then, one has

(r1−Ur2)= r1{1− [r2
1 + r2

2r2
1 ]/[r

2
2 + r2

2r2
1 ]} = r1{r2

2 − r2
1 }/[r

2
2 + r2

2r2
1 ] (51)

and

(r2
1 + 1−Ur2

2 −U )= {r2
1 + 1− (r1r2)[r2

1 + r2
2r2

1 ]/[r
2
2 + r2

2r2
1 ] − (r1/r2)[r2

1 + r2
2r2

1 ]/[r
2
2 + r2

2r2
1 ]}

=
(r2

1 + 1)[r2
2 + r2

2r2
1 ] − (r1r2)[r2

1 + r2
2r2

1 ] − (r1/r2)[r2
1 + r2

2r2
1 ]

r2
2 + r2

2r2
1

=
r2

1r2
2 + r2

2r2
1 − (r1r2)[r2

1 + r2
2r2

1 ]

r2
2 + r2

2r2
1

+
[r2

2 + r2
2r2

1 ] − (r1/r2)[r2
1 + r2

2r2
1 ]

r2
2 + r2

2r2
1

=
r1[r1r2(r2− r1)+ (r1− r2)r2

2r2
1 ] + [r

2
2 − (r1/r2)r2

1 ] + r2
2r2

1 − (r1/r2)r2
2r2

1

r2
2 + r2

2r2
1

= (r2− r1){r1[r1r2− r2
2r2

1 ] + [r
2
2 + r1r2+ r2

1 ]/r2+ r2
2r2

1/r2}/[r2
2 + r2

2r2
1 ]

= (r2− r1)r2r1r1r2− r2
2r2

1 + [r
2
2 + r1r2+ r2

1 ] + r2
2r2

1 }/[(r
2
2 + r2

2r2
1 )r2] (52)
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Considering the equations (51) and (52), one knows

(r2
1 + 1)−U (r2

2 + 1)
r1−Ur2

=
(r2− r1)[r2r1(r1r2− r2

2r2
1 )+ (r

2
2 + r1r2+ r2

1 )+ r2
2r2

1 ]/[(r
2
2 + r2

2r2
1 )r2]

r1{r2
2 − r2

1 }/(r
2
2 + r2

2r2
1 )

= {−r3
2r3

1 + (r
2
2 + r1r2+ r2

1 )+ 2r2
2r2

1 }/r2r1(r2+ r1)

= {−r3
2r3

1 + [r
2
2 + r1r2+ r2

1 ] + 2r2
2r2

1 }/[r2r1(r2
2 + 2r1r2+ r2

1 )
1/2
]

Considering r1 and r2 are the two positive roots of the equation p1+ p2m2/s2
+ p3m4/s4

= 0, where
p3 = (1+ Q), p2 =−(2− 6µS), p1 = (1− Q) and Q = T/2µ, one has

r2r1 = (p1/p3)
1/2
= (1− Q)1/2/(1+ Q)1/2 = (2µ− T )1/2/(2µ+ T )1/2,

r2
2 + r2

1 =−p2/p3 = (2− 6µS)/(1+ Q)= (2µ− 6µ2S)/(2µ+ T )

where S can be found from (3). Then, one obtains (30). The contact radius a is then given by (31) and
the penetration depth by (32). Finally, from the expression for a and the values (r2

2 + r2
1 ) = −p2/p3,

r1r2 = (p1/p3)
1/2, β = (p1/p3) and T/2µ= Q, one obtains

πa2
= (R/2µ){(p1/p3)

1/2
[2(p1/p3)

1/2
− p2/p3]

1/2
}

/{(1− Q)[(p1/p3− p3/2
1 /p3/2

3 )+ (p1/p3)
1/2
− p2/p3+ p1/p3] cotα} (53)

Substituting−p2/p3=+2(1−3µS)/(1+Q), (p1/p3)= (1−Q)/(1+Q), (p1/p3)
1/2
= (1−Q)1/2/(1+

Q)1/2 into (53), one has

πa2
= (R/2µ)tgα{[1/(1− Q2)1/2][2(1− Q)1/2/(1+ Q)1/2+ 2(1− 3µS)/(1+ Q)]1/2}

/{(1− Q)1/2/(1+ Q)1/2[(1− Q)1/2/(1+ Q)1/2− (1− Q)/(1+ Q)]

+ [(1− Q)1/2/(1+ Q)1/2+ 2(1− 3µS)/(1+ Q)] + (1− Q)/(1+ Q)} (54)
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