SPECTRAL ELEMENT MODEL FOR THE VIBRATION OF A SPINNING TIMOSHENKO SHAFT

Usik Lee and Injoon Jang

Volume 7, No. 2 February 2012
SPECTRAL ELEMENT MODEL FOR THE VIBRATION OF A SPINNING TIMOSHENKO SHAFT

USIK LEE AND INJOON JANG

A spectral element model for a spinning uniform shaft is developed. The spinning shaft supported by bearings is represented by the uniform Timoshenko beam model and the bearing-supports are represented by equivalent springs. The variational approach is used to formulate the spectral element model by using the frequency-dependent shape functions derived from exact wave solutions on the frequency-domain governing differential equations. The conventional finite element model is also formulated for evaluating the accuracy of the present spectral element model through some example problems.

1. Introduction

Spinning shafts have been extensively used in diverse engineering applications such as motors, engines, turbines, and machine tools. In general, the rotating machines consist of multiple spinning shafts and disks (or blades) which are connected to each other to form rotor systems supported by multiple bearings. As it is very important to predict the dynamic characteristics of the rotor systems accurately in the early design phase, there have been extensive studies on the modeling and analysis of such rotor systems in past decades [Nelson 2003].

In previous studies, the dynamics of spinning shafts were represented by various models. When the diameter of a shaft is large relative to its length and when vibration occurs at high frequencies, deflections due to transverse shear and rotary inertia become important. Thus, many researchers have used the Timoshenko beam models for spinning shafts [Eshleman and Eubanks 1969; Nelson 1980; Ehrich 1992; Zu and Han 1992; Ghoneim and Lawrie 2007; Chen 2010]. In this study, we adopt the Timoshenko beam model used by [Ehrich 1992; Zu and Han 1992].

The early methods used to determine the critical speed of a rotor are Rayleigh’s method, Dunkerley’s formula, Holzer’s method, and the transfer matrix method [Lund 1974]. As the size of the transfer matrix generated to represent a rotor system is not large, the transfer matrix method is very efficient for the analysis of one-dimensional (1D) systems such as rotor systems. However, as the transfer matrix method provides dynamic responses only at the endpoints of a 1D system, postprocessing is necessary to compute the dynamic responses at the interim positions of the system. [Ruhl and Booker 1972] and [Nelson 1980] used FEM to investigate the stability and dynamics of rotor systems. In general, a large number of degrees of freedom (DOFs) are required for an FEM model of a large flexible rotor system, which may result in an increase in the computational cost as well as a widely spread frequency spectrum.
which may include many insignificant vibration modes. To cope with these problems, reduced-order modeling techniques have been introduced [Kane and Torby 1991]. Though reduced-order modeling techniques are useful for reducing the size of FEM models, they are known to degrade the accuracy of FEM solutions.

Thus, as an alternative analysis method, this paper adopts the spectral element method (SEM) for the dynamic analysis of the flexible spinning shafts of a rotor system. SEM may meet two requirements: high accuracy up to the frequency range of interest and the use of a minimum number of DOFs [Doyle 1997; Lee et al. 2000; Vinod et al. 2007; Lee 2009]. Thus, SEM has apparent advantages over the other solution methods such as the transfer matrix method and FEM, especially when it is applied to 1D structural dynamic problems such as rotor systems as well as to structural health monitoring problems. However, though SEM can be also used for nonlinear analysis by using an iterative approach [Lee 2009], conventional FEM can be more efficiently used for nonlinear analysis.

Thus, the purposes of this paper are:

• to develop a spectral element model for the spinning Timoshenko shaft (T-shaft) and
• to apply the spectral element model to investigate the natural frequencies and critical speeds of example spinning shafts.

The results obtained by using the spectral element model are then compared with the results obtained by using the conventional finite element model and the analytical theories available in the literature to verify the accuracy of the spectral element model.

2. Governing equations

Consider a spinning flexible uniform shaft subjected to transverse vibrations and represent it as a spinning uniform T-shaft. The equations of motion and relevant boundary conditions for the spinning uniform T-shaft can be derived by using Hamilton’s principle [Meirovitch 1980]:

$$\int_{t_1}^{t_2} (\delta T - \delta U + \delta W) \, dt = 0,$$

where T is the kinetic energy, U is the potential energy, and δW is the virtual work done by external forces and moments. As shown in Figure 1, the uniform T-shaft of circular cross-section is spinning about the central axis x at a constant speed of Ω radians/s and it has length L, bending rigidity EI, transverse shear rigidity κGA, mass per length ρA, mass moment of inertia about the y or z-axes ρI, and polar mass moment of inertia about the x-axis ρJ. In Figure 1a, $v(x,t)$ is the transverse displacement in the y-direction, $w(x,t)$ is the transverse displacement in the z-direction, $\phi(x,t)$ is the rotation angle about the y-axis, and $\psi(x,t)$ is the rotation angle about the z-axis.

Assuming that the uniform T-shaft takes small amplitude transverse vibrations in the y and z-directions, the kinetic and potential energies can be obtained as [Nelson 1980; Ehrich 1992]

$$T = \frac{1}{2} \int_0^L \rho A (\dot{v}^2 + \dot{w}^2) \, dx + \frac{1}{2} \int_0^L \rho I (\dot{\phi}^2 + \dot{\psi}^2) \, dx + \frac{1}{2} \int_0^L \rho J (\Omega - \phi \dot{\psi})^2 \, dx,$$

$$U = \frac{1}{2} \int_0^L EI (\phi^2 + \psi^2) \, dx + \frac{1}{2} \int_0^L \kappa GA [(v' - \psi)^2 + (w' + \phi)^2] \, dx + \sum_{i=1}^2 \frac{1}{2} v_i^T K_{\text{support}(i)} v_i,$$

where v_i, w_i, ϕ_i, and ψ_i are the nodal displacements, $K_{\text{support}(i)}$ is the stiffness matrix of the ith support, and v_i is the ith nodal displacement vector.
Figure 1. A spinning uniform shaft: (a) displacement fields and the boundary forces and moments and (b) bearing-supports.

where

\[
\mathbf{v}_i = \begin{bmatrix} v_i \\ w_i \end{bmatrix}, \quad \mathbf{K}_{\text{support}(i)} = \begin{bmatrix} K_{yyi} & K_{yzi} \\ K_{zyi} & K_{zzi} \end{bmatrix} \quad (i = 1, 2).
\]

The matrices \(\mathbf{K}_{\text{support}(1)} \) and \(\mathbf{K}_{\text{support}(2)} \) represent the stiffnesses of bearing-supports 1 and 2, as shown in Figure 1b, and the vectors \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) represent the transverse displacements at bearing-supports 1 and 2. The dot (‘’) and prime (‘’) denote the derivatives with respect to the time \(t \) and axial coordinate \(x \), respectively. In (2), the first integral represents the translational kinetic energy and the other two integrals the rotational kinetic energies. In (3), the first integral represents the strain energy for the transverse bending deformations, the second integral for the transverse shear deformations, and the last term for the bearing-support deformations. The virtual work \(\delta W \) is given by

\[
\delta W = \int_0^L \left(p_y \delta v + p_z \delta w + \tau_y \delta \phi + \tau_z \delta \psi \right) dx + Q_{yi} \delta v_1 + Q_{zi} \delta v_2 + Q_{yi} \delta w_1 + Q_{zi} \delta w_2 + \dot{f}_{v_i} \delta v_1 - \dot{f}_{w_i} \delta w_1 - \dot{f}_{v_i} \delta v_2 - \dot{f}_{w_i} \delta w_2, \quad (i = 1, 2)
\]

where \(Q_{yi}, Q_{zi}, M_{yi}, \) and \(M_{zi} \) \((i = 1, 2)\) are the transverse shear forces and bending moments applied at the two ends of the T-shaft as shown in Figure 1a. The forces and bending moments distributed along the \(x \)-axis are \(p_y, p_z, \tau_y, \) and \(\tau_z \). The viscous damping forces generated by bearing-supports 1 and 2 are \(\dot{f}_{v_i} \) and \(\dot{f}_{w_i} \) \((i = 1, 2)\), and they can be computed from

\[
\dot{f}_{v_i} = \frac{\partial R}{\partial \dot{v}_i}, \quad \dot{f}_{w_i} = \frac{\partial R}{\partial \dot{w}_i} \quad (i = 1, 2).
\]
The Rayleigh’s dissipation function R is given by

$$R = \sum_{i=1}^{2} \frac{1}{2} \dot{\psi}^T C_{\text{support}(i)} \dot{\psi},$$

where

$$C_{\text{support}(i)} = \begin{bmatrix} C_{yyi} & C_{yzi} \\ C_{zyi} & C_{zzi} \end{bmatrix} \quad (i = 1, 2),$$

where $C_{abi}(a, b = y, z)$ are viscous damping coefficients of the bearing-supports as shown in Figure 1b.

Substituting (2), (3), and (6) into (1) and then applying the integral by parts, we can obtain the differential equations of motion as

$$\rho A \ddot{u} - \kappa G A (v'' - \psi') = p_y, \quad \rho I \ddot{\psi} - \rho J \Omega \dot{\phi} - EI \psi'' - \kappa G A (v' - \psi) + \rho J (2\phi' \dot{\psi} + \phi^2 \ddot{\psi}) = \tau_z,$$

$$\rho A \ddot{w} - \kappa G A (w'' + \phi') = p_z, \quad \rho I \ddot{\phi} + \rho J \Omega \dot{\psi} - EI \phi'' + \kappa G A (w' + \phi) - \rho J \phi' \psi^2 = \tau_y,$$

and the natural boundary conditions as

$$Q_y(0, t) = K_{yy1} v_1 + \frac{1}{2} (K_{yz1} + K_{zy1}) w_1 + C_{yy1} \dot{v}_1 + \frac{1}{2} (C_{yz1} + C_{zy1}) \dot{w}_1 - Q_{y1},$$

$$Q_y(L, t) = -K_{yy2} v_2 - \frac{1}{2} (K_{yz2} + K_{zy2}) w_2 - C_{yy2} \dot{v}_2 - \frac{1}{2} (C_{yz2} + C_{zy2}) \dot{w}_2 + Q_{y2},$$

$$Q_z(0, t) = K_{zz1} w_1 + \frac{1}{2} (K_{yz1} + K_{zy1}) v_1 + C_{zz1} \dot{w}_1 + \frac{1}{2} (C_{yz1} + C_{zy1}) \dot{v}_1 - Q_{z1},$$

$$Q_z(L, t) = -K_{zz2} w_2 - \frac{1}{2} (K_{yz2} + K_{zy2}) v_2 - C_{zz2} \dot{w}_2 - \frac{1}{2} (C_{yz2} + C_{zy2}) \dot{v}_2 + Q_{z2},$$

$$M_y(0, t) = -M_{y1}, \quad M_y(L, t) = M_{y2},$$

$$M_z(0, t) = -M_{z1}, \quad M_z(L, t) = M_{z2}.$$ \hspace{1cm} (10)

The force-displacement relations are defined by

$$Q_y(x, t) = \kappa G A (v' - \psi), \quad M_y(x, t) = EI \phi',$$

$$Q_z(x, t) = \kappa G A (w' + \phi), \quad M_z(x, t) = EI \psi'.$$

By neglecting small nonlinear terms from (9), we can obtain

$$\rho A \ddot{u} - \kappa G A (v'' - \psi') = p_y, \quad \rho I \ddot{\psi} - \rho J \Omega \dot{\phi} - EI \psi'' - \kappa G A (v' - \psi) = \tau_z,$$

$$\rho A \ddot{w} - \kappa G A (w'' + \phi') = p_z, \quad \rho I \ddot{\phi} + \rho J \Omega \dot{\psi} - EI \phi'' + \kappa G A (w' + \phi) = \tau_y.$$ \hspace{1cm} (12)

Equations (12) are identical to the governing equations introduced in [Ehrich 1992; Zu and Han 1992]. Equations (12) will be used herein for developing a spectral element model for spinning T-shafts.

3. Spectral element modeling

The spectral element model for the spinning uniform T-shaft is derived from the differential equations of motion given by (12). To formulate the spectral element, we represent the solutions of (12), the external forces, and the resultant forces and moments in spectral forms as [Lee 2009]

$$\{v(x, t) \ w(x, t) \ \psi(x, t) \ \phi(x, t)\} = \frac{1}{N} \sum_{n=0}^{N-1} \{V_n(x; \omega_n) \ W_n(x; \omega_n) \ \psi_n(x; \omega_n) \ \phi_n(x; \omega_n)\} e^{i\omega_n t},$$ \hspace{1cm} (13)
\[
\begin{align*}
&\{p_y(x,t) \ p_z(x,t) \ \tau_y(x,t) \ \tau_z(x,t)\} = \frac{1}{N} \sum_{n=0}^{N-1} \{P_{yn}(x; \omega_n) \ P_{zn}(x; \omega_n) \ T_{yn}(x; \omega_n) \ T_{zn}(x; \omega_n)\} e^{i\omega_n t}, \\
&\{Q_y(x,t) \ Q_z(x,t) \ M_y(x,t) \ M_z(x,t)\} \\
&\quad = \frac{1}{N} \sum_{n=0}^{N-1} \{Q_{yn}(x; \omega_n) \ Q_{zn}(x; \omega_n) \ M_{yn}(x; \omega_n) \ M_{zn}(x; \omega_n)\} e^{i\omega_n t}. (14)
\end{align*}
\]

Substituting (13) and (14) into (12) gives
\[
\begin{align*}
&\kappa GA(V'' - \psi') + \rho A\omega^2 V + P_y = 0, \quad EI \psi'' + i\omega\rho J \Phi + \kappa GA(V' - \psi) + \rho I \omega^2 \psi + T_z = 0, \\
&\kappa GA(W'' + \Phi') + \rho A\omega^2 W + P_z = 0, \quad EI \Phi'' - i\omega\rho J \psi - \kappa GA(W' + \Phi) + \rho I \omega^2 \Phi + T_y = 0,
\end{align*}
\]
where the subscripts \(n\) are omitted for brevity. Similarly, substituting (13) and (15) into (11) gives
\[
\begin{align*}
&Q_y(x) = \kappa GA(V' - \psi), \quad M_y(x) = EI \Phi', \\
&Q_z(x) = \kappa GA(W' + \Phi), \quad M_z(x) = EI \psi'. (17)
\end{align*}
\]

Consider the homogeneous equations reduced from (16) as
\[
\begin{align*}
&\kappa GA(V'' - \psi') + \rho A\omega^2 V = 0, \quad EI \psi'' + i\omega\rho J \Phi + \kappa GA(V' - \psi) + \rho I \omega^2 \psi = 0, \\
&\kappa GA(W'' + \Phi') + \rho A\omega^2 W = 0, \quad EI \Phi'' - i\omega\rho J \psi - \kappa GA(W' + \Phi) + \rho I \omega^2 \Phi = 0.
\end{align*}
\]
Assume the homogeneous solutions of (18) as
\[
\begin{align*}
V(x) &= ae^{-ikx}, \quad W(x) = tae^{-ikx}, \quad \psi(x) = ra e^{-ikx}, \quad \Phi(x) = t\hat{r} a e^{-ikx}. (19)
\end{align*}
\]

Substitution of (19) into (18) yields an eigenvalue problem as
\[
\begin{align*}
\begin{bmatrix}
\sigma_1 - \sigma_2 & 0 & 0 \\
\sigma_3 & \sigma_2 & 0 & -4 \\
0 & 0 & \sigma_1 & \sigma_3 \\
0 & \sigma_4 & -3 & \sigma_2
\end{bmatrix}
\begin{bmatrix}
1 \\
r \\
t \\
t\hat{r}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix},
\end{align*}
\]
where
\[
\sigma_1 = k^2\kappa GA - \omega^2\rho A, \quad \sigma_2 = k^2EI + \kappa GA - \omega^2\rho I, \quad \sigma_3 = ik\kappa GA, \quad \sigma_4 = i\omega\rho J. (21)
\]

From (20), we can get a dispersion equation as
\[
\begin{align*}
k^8 &- 2(\eta_1k_F^4 + k_G^4)k^6 + (\eta_1^2k_F^8 + 4\eta_1k_F^4k_G^4 + k_G^8 - 2k_F^4 - \eta_2^{-2}\eta_3^2\Omega^2\omega^2)k^4 \\
&+ (-2\eta_1^2k_G^4k_F^8 - 2\eta_1k_G^8k_F^4 + 2\eta_1k_G^8k_F^4 + 2k_F^4k_G^4 + 2k_F^4\eta_2^{-1}\eta_3^2\Omega^2\omega^2)k^2 \\
&+ \eta_1^2k_G^8k_F^8 - 2\eta_1k_G^4k_F^8 + (1 - \eta_3^2\Omega^2\omega^2)k_F^8 = 0,
\end{align*}
\]
where
\[
k_F = \sqrt{\omega\left(\frac{\rho A}{EI}\right)^{1/4}}, \quad k_G = \sqrt{\omega\left(\frac{\rho A}{\kappa GA}\right)^{1/4}}, \quad \eta_1 = \frac{\rho I}{\rho A}, \quad \eta_2 = \frac{EI}{\kappa GA}, \quad \eta_3 = \frac{\rho J}{\kappa GA}. (23)
\]
Eight wavenumbers \(k_i \) \((i = 1, 2, \ldots, 8)\) can be computed from (22). By substituting each wavenumber into (20), we can obtain
\[
\begin{align*}
 r_j &= ik_j^{-1}(k_G^4 - k_j^2), \quad \hat{r}_j = -r_j, \\
 t_j &= -(i \eta_3 \Omega \omega)^{-1}r_j^{-1}[ik_j + (\eta_2 k_j^2 - \eta_1 k_G^4)r_j] \\
\end{align*}
\]
with the use of the following definitions:
\[
 \begin{align*}
 \text{nodal DOFs vector for the transverse bending vibrations of the spinning shaft.}
\end{align*}
\]
By using the eight wavenumbers computed from (22), the homogeneous solutions of (18) can be obtained as
\[
 V(x) = N_v(x; \omega) d, \quad W(x) = N_w(x; \omega) d, \quad \psi(x) = N_\psi(x; \omega) d, \quad \Phi(x) = N_\Phi(x; \omega) d.
\]
where
\[
 d = \{ V_1 \psi_1 W_1 \Phi_1 V_2 \psi_2 W_2 \Phi_2 \}^T = \{ V(0) \psi(0) W(0) \Phi(0) V(L) \psi(L) W(L) \Phi(L) \}^T
\]
and
\[
 N_v(x; \omega) = e_v(x) H_B^{-1}, \quad N_w(x; \omega) = e_w(x) H_B^{-1}, \quad N_\psi(x; \omega) = e_\psi(x) H_B^{-1}, \quad N_\Phi(x; \omega) = e_\Phi(x) H_B^{-1},
\]
with the use of the following definitions:
\[
 e_v(x) = \begin{bmatrix} e^{-ik_1 x} & e^{ik_1 x} & e^{-ik_2 x} & e^{ik_2 x} & e^{-ik_3 x} & e^{ik_3 x} & e^{-ik_4 x} & e^{ik_4 x} \end{bmatrix},
\]
\[
 e_\psi(x) = e_v(x) R, \quad e_w(x) = e_v(x) T, \quad e_\Phi(x) = -e_v(x) T R,
\]
\[
 H_B = \begin{bmatrix} e_v^T(0) & e_\psi^T(0) & e_w^T(0) & e_\Phi^T(0) & e_v^T(L) & e_\psi^T(L) & e_w^T(L) & e_\Phi^T(L) \end{bmatrix}^T,
\]
where
\[
 R = \text{diag}[r_j], \quad T = \text{diag}[t_j] \quad (j = 1, 2, \ldots, 8).
\]
\(N_v, N_\psi, N_w,\) and \(N_\Phi\) are the frequency-dependent dynamic shape function matrices and \(d\) is the spectral nodal DOFs vector for the transverse bending vibrations of the spinning shaft.

To formulate the spectral element equation, the weak form of (16) are obtained in the form
\[
\begin{align*}
 \int_0^L & [EI(\Phi' \delta \Phi' + \psi' \delta \psi') + \kappa G A(V' \delta V' + W' \delta W') - \kappa G A(\psi \delta V' + V' \delta \psi) \\
 & + \kappa G A(\Phi \delta W' + W' \delta \Phi) + \kappa G A(\Phi \delta \Phi + \psi \delta \psi)] dx \\
 & + \int_0^L i \omega \Omega \rho J (\psi \delta \Phi - \Phi \delta \psi) dx - \int_0^L \omega^2 [\rho A(\delta \delta V + W \delta W) + \rho I (\Phi \delta \Phi + \psi \delta \psi)] dx \\
 & = \int_0^L (P_\gamma \delta V + T_\gamma \delta \psi + P_\beta \delta W + T_\beta \delta \Phi) dx + Q_\gamma \delta V \bigg|_0^L + M_\gamma \delta \psi \bigg|_0^L + Q_\beta \delta W \bigg|_0^L + M_\beta \delta \Phi \bigg|_0^L.
\end{align*}
\]
Substituting (25) into (30) and applying the associated boundary conditions, we can get
\[
 S(\omega) d = f_c + f_d,
\]
where \(S(\omega)\) is the spectral element matrix given by
\[
 S(\omega) = H^{-T} D H^{-1} + K_{\text{support}} + i \omega C_{\text{support}},\]
(32)
where

\[
D(\omega) = -EI(RTKEKTR + RKEKR) - \kappa GA(KEK + TKEKT) + i\kappa GA(KER + REK) \\
+ i\kappa GA(TKETR + RTEKT) + \kappa GA(RTETR + RER) - \omega^2 \rho A (E + TET) \\
- \omega^2 \rho I (RTETR + RER) - i\omega \Omega \rho J (RTER - RETR),
\]

\[
K_{\text{support}} = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix}, \quad C_{\text{support}} = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix},
\]

with the use of following definitions:

\[
E(\omega) = \int_0^L e^T_v e_v dx \equiv [E_{lm}] = \begin{cases} \frac{i}{k_l + k_m} \left[e^{-i(k_l+k_m)L} - 1 \right] & \text{if } k_l + k_m \neq 0, \\ \frac{L}{k_l + k_m} & \text{if } k_l + k_m = 0, \end{cases}
\]

\[
K = \text{diag}[k_j] \quad (j = 1, 2, \ldots, 8),
\]

\[
K_i = \begin{bmatrix} K_{yi} & 0 & \frac{1}{2} (K_{zi} + K_{yi}) & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} (K_{zi} + K_{yi}) & 0 & K_{zi} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (i = 1, 2),
\]

\[
C_i = \begin{bmatrix} C_{yi} & 0 & \frac{1}{2} (C_{zi} + C_{yi}) & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} (C_{zi} + C_{yi}) & 0 & C_{zi} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (i = 1, 2).
\]

In (31), \(f_c \) represents the spectral nodal forces and moments due to the concentrated forces and moments, while \(f_d \) represents the ones due to the distributed forces and moments. They are defined by

\[
f_c = \begin{bmatrix} Q_{y1} & M_{z1} & Q_{z1} & M_{y1} & Q_{y2} & M_{z2} & Q_{z2} & M_{y2} \end{bmatrix}^T,
\]

\[
f_d = \int_0^L \begin{bmatrix} P_y(x)N_v^T(x) + T_z(x)N_{\psi}^T(x) + P_y(x)N_w^T(x) + T_z(x)N_{\phi}^T(x) \end{bmatrix} dx
\]

\[
= \begin{bmatrix} F_v1 & F_{\psi}1 & F_w1 & F_{\phi}1 & F_v2 & F_{\psi}2 & F_w2 & F_{\phi}2 \end{bmatrix}^T.
\]

The last term of (33) is skew symmetric and represents the gyroscopic effect.

4. Spectral element analysis

The spectral element (31) can be assembled in an analogous way as in conventional FEM. After imposing the relevant boundary conditions, a global dynamic stiffness matrix equation can be obtained in the form

\[
S_g(\omega)d_g = f_{cg} + f_{dg} = f_g,
\]
where the subscripts g denote the quantities for the assembled global spinning shaft system. As the spectral element matrix $S(\omega)$ is formulated by using exact wave solutions to the frequency-domain governing differential equations, only one element will suffice for modeling a regular shaft of any length in the absence of any discontinuity or irregularity in the geometrical and material properties.

The natural frequencies ω_{NAT} of a global system can be computed from the condition that the determinant of the global dynamic stiffness matrix vanishes at ω_{NAT}. That is

$$\det S_g(\omega_{NAT}) = 0. \quad (41)$$

To compute the roots (that is, natural frequencies ω_{NAT}) of (41), we can use a proper root-searching algorithm in conjunction with the Wittrick–William algorithm [Wittrick and Williams 1971] not to miss any roots within a frequency range specified during the root search. The spectral nodal DOFs can be exactly computed from (40) as

$$d_g = S_g(\omega)^{-1}, \quad f_g = T_g(\omega)f_g, \quad (42)$$

where $T_g(\omega) = S_g(\omega)^{-1}$ is the system transfer matrix (or frequency response function). Thus, (42) implies that the spectral nodal DOFs can be computed by convolving the system transfer matrix with the spectral nodal forces and moments. Once the spectral nodal DOFs are computed from (42), one can readily use the inverse FFT to compute the time history of the dynamic responses.

5. Numerical examples

5.1. Simply supported uniform shaft. Consider a simply supported uniform shaft as shown in Figure 2. The geometric and material properties of the uniform shaft are given as follows: length $2L = 2\text{ m}$, radius $r = 0.02\text{ m}$, mass density $\rho = 7700\text{ kg/m}^3$, Young’s modulus $E = 207\text{ GPa}$, shear modulus 77.6 GPa, and shear correction factor for the circular cross-section $\kappa = 0.9$.

To verify the accuracy of the present spectral element model, the natural frequencies of the stationary (nonspinning) uniform shaft obtained by using the present spectral element model are compared in Table 1 with those obtained by using the finite element model (see the Appendix) as well as with those obtained by using the analytical formula given by [Blevins 1979] as

$$f_n = \bar{f}_n\alpha_n\sqrt{\beta_n - \eta_1^{-1}\eta_2^{-1}} \text{ Hz}, \quad (43)$$

where \bar{f}_n are the natural frequencies of the simply supported, stationary uniform Bernoulli–Euler beam and

$$\alpha_n = \frac{L}{n\pi}, \quad \beta_n = \frac{1}{2}[\eta_1^{-1} + (1 + \alpha_n^2\eta_1^{-1})\eta_2^{-1}]. \quad (44)$$

Figure 2. A simply supported uniform shaft, where Ω is the spinning speed.
For the spectral element analysis, the whole uniform shaft is represented by using a single element, that is, a one-element model. On the other hand, for the finite element analysis, the total number of finite elements used in the analysis is increased step by step until the FEM results converge to the exact analytical results. Table 1 shows that the SEM results are indeed identical to those obtained by the analytical formula (43), while the FEM results converge to the SEM results (or the exact results) as the total number of finite elements used in the finite element analysis is increased. For instance, Table 1 shows, for the present example problem, that more than 100 finite elements must be used for the finite element analysis to satisfy an accuracy of five significant figures for the fifth and higher natural frequencies while the one-element model suffices for the spectral element analysis. The maximum number of natural frequencies which can be obtained by finite element analysis is certainly limited by the total number of finite elements used in the analysis (for example, four natural frequencies when two finite elements are used, as shown in Table 1), while the present spectral element analysis provides an infinite number of natural frequencies.

The natural frequencies of the spinning uniform shaft are compared in Table 2. It is assumed that the uniform shaft is spinning at a constant speed of 3600 rpm. The SEM results are compared with those obtained by using the finite element model as well as with those obtained from the analytical formula given by [Zu and Han 1992] as

\[
\sin \left(\frac{L}{\sqrt{2}} \left[\sqrt{\chi_1 \eta_5 + \sqrt{\chi_1^2 \eta_5^2 - 4 \chi_2}} \right] \right) = 0, \tag{45}
\]

where

\[
\chi_1 = -\eta_6 \Omega \omega + (\eta_1 + \eta_2) \omega^2, \quad \eta_4 = \frac{\rho I}{\kappa GA}, \quad \eta_5 = \frac{\rho A}{EI}, \quad \eta_6 = \frac{\rho J}{\rho A}. \tag{46}
\]

Table 2 also shows that the natural frequencies for both forward and backward whirling modes obtained by using the spectral element model (the one-element model) are very close to the results obtained by using the analytical formula (45), while those obtained by using the finite element model converge to the SEM results as the total number of finite elements used in the finite element analysis is increased. Figure 3 shows the spinning speed \(\Omega \)-dependence of the first and second natural frequencies, all computed...
by using the present spectral element model. Figure 3 shows that both forward and backward whirling modes appear when the uniform shaft starts spinning.

Table 2. Natural frequencies (in Hz) of the simply supported spinning uniform shaft ($\Omega = 3600$ rpm), with n the total number of finite elements used in the analysis, and where Z&H indicates data from [Zu and Han 1992].

<table>
<thead>
<tr>
<th>Mode</th>
<th>$n = 2$</th>
<th>$n = 10$</th>
<th>$n = 30$</th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>SEM (1)</th>
<th>Z&H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>backward</td>
<td>20.42</td>
<td>20.34</td>
<td>20.34</td>
<td>20.34</td>
<td>20.34</td>
<td>20.34</td>
</tr>
<tr>
<td>2nd</td>
<td>forward</td>
<td>90.41</td>
<td>81.36</td>
<td>81.34</td>
<td>81.34</td>
<td>81.34</td>
<td>81.34</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>90.29</td>
<td>81.24</td>
<td>81.23</td>
<td>81.23</td>
<td>81.23</td>
<td>81.23</td>
</tr>
<tr>
<td>3rd</td>
<td>forward</td>
<td>227.1</td>
<td>182.7</td>
<td>182.6</td>
<td>182.6</td>
<td>182.6</td>
<td>182.6</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>226.8</td>
<td>182.5</td>
<td>182.3</td>
<td>182.3</td>
<td>182.3</td>
<td>182.3</td>
</tr>
<tr>
<td>4th</td>
<td>forward</td>
<td>414.4</td>
<td>324.3</td>
<td>323.5</td>
<td>323.5</td>
<td>323.5</td>
<td>323.5</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>413.9</td>
<td>323.8</td>
<td>323.1</td>
<td>323.0</td>
<td>323.0</td>
<td>323.0</td>
</tr>
<tr>
<td>5th</td>
<td>forward</td>
<td>-</td>
<td>506.1</td>
<td>503.4</td>
<td>503.3</td>
<td>503.3</td>
<td>503.3</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>-</td>
<td>505.4</td>
<td>502.7</td>
<td>502.6</td>
<td>502.6</td>
<td>502.6</td>
</tr>
<tr>
<td>10th</td>
<td>forward</td>
<td>-</td>
<td>2234</td>
<td>1953</td>
<td>1948</td>
<td>1947</td>
<td>1946</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>-</td>
<td>2231</td>
<td>1951</td>
<td>1946</td>
<td>1944</td>
<td>1943</td>
</tr>
<tr>
<td>15th</td>
<td>forward</td>
<td>-</td>
<td>5524</td>
<td>4231</td>
<td>4185</td>
<td>4168</td>
<td>4163</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>-</td>
<td>5518</td>
<td>4225</td>
<td>4180</td>
<td>4163</td>
<td>4158</td>
</tr>
<tr>
<td>20th</td>
<td>forward</td>
<td>-</td>
<td>10267</td>
<td>7264</td>
<td>7061</td>
<td>6985</td>
<td>6961</td>
</tr>
<tr>
<td></td>
<td>backward</td>
<td>-</td>
<td>10255</td>
<td>7257</td>
<td>7054</td>
<td>6978</td>
<td>6954</td>
</tr>
</tbody>
</table>

Figure 3. Natural frequencies versus spinning speed Ω of the simply supported uniform shaft.
Table 3. Critical speeds (in Hz) of the simply supported spinning uniform shaft, with n the total number of finite elements used in the analysis, and where E&E indicates data from [Eshleman and Eubanks 1969].

<table>
<thead>
<tr>
<th>Mode</th>
<th>FEM (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 2$</td>
</tr>
<tr>
<td>1st forward</td>
<td>20.44</td>
</tr>
<tr>
<td>1st backward</td>
<td>20.43</td>
</tr>
<tr>
<td>2nd forward</td>
<td>90.44</td>
</tr>
<tr>
<td>2nd backward</td>
<td>90.26</td>
</tr>
<tr>
<td>3rd forward</td>
<td>227.5</td>
</tr>
<tr>
<td>3rd backward</td>
<td>226.4</td>
</tr>
<tr>
<td>4th forward</td>
<td>415.9</td>
</tr>
<tr>
<td>4th backward</td>
<td>412.4</td>
</tr>
<tr>
<td>5th forward</td>
<td>-508.8</td>
</tr>
<tr>
<td>5th backward</td>
<td>-502.8</td>
</tr>
<tr>
<td>10th backward</td>
<td>-2180</td>
</tr>
<tr>
<td>15th forward</td>
<td>-5835</td>
</tr>
<tr>
<td>15th backward</td>
<td>-5252</td>
</tr>
<tr>
<td>20th forward</td>
<td>-11449</td>
</tr>
<tr>
<td>20th backward</td>
<td>-10971</td>
</tr>
</tbody>
</table>

The critical speeds of the uniform shaft are compared in Table 3. The critical speeds of a spinning shaft are defined by the spinning speeds which are identical to the natural frequencies of the shaft. As the gyroscopic effect will change the effective compliance of the shaft to raise or lower the natural frequencies, one critical speed is raised (forward whirling mode) while one is lowered (backward whirling mode). The critical speeds obtained by using the present spectral element model are compared with the results obtained by using the finite element model and the analytical formula given by [Eshleman and Eubanks 1969] as

$$
\Omega_n = \begin{cases}
\tilde{f}_n \sqrt{\frac{\alpha_n^2}{\alpha_n^2 + \eta_2 - \eta_1}} \text{ (Hz)} & \text{forward whirling),} \\
\tilde{f}_n \sqrt{\frac{\alpha_n^2}{\alpha_n^2 + \eta_2 + 3\eta_1}} \text{ (Hz)} & \text{backward whirling).}
\end{cases}
$$

(47)

It is also obvious from Table 3 that the critical speeds of the present spectral element model (the one-element model) are very close to the results of the analytical formula (47), while the FEM results certainly converge to the SEM results as the total number of finite elements used in the finite element analysis is increased.
In summary, the results displayed in Tables 1, 2, and 3 confirm the accuracy of the present spectral element model when compared with the conventional finite element model which is provided in the Appendix.

Lastly, Figure 4 compares the dispersion curves when the shaft is stationary and rotating at a constant speed of 3600 rpm. In the last graph, the group velocities are nondimensionalized with respect to $c_0 = \sqrt{EI/\rho A}$. Figure 4 shows that the group velocity of the bending (flexural) wave mode decreases as the shaft rotates. For the shear wave mode, the cutoff frequency shifts to a lower frequency as the shaft rotates and its group velocity also decreases at higher frequencies than the cutoff frequency.

5.2. Bearing-supported uniform shaft. To investigate the effect of the stiffness and damping of the bearing-supports on the natural and critical speeds of a spinning shaft, we consider a bearing-supported uniform shaft as shown in Figure 5 as the second example problem. The geometric and material properties for the bearing-supported uniform shaft are exactly same as those for the previous simply supported

Figure 4. Dispersion curves of the simply supported uniform shaft.

Figure 5. A bearing-supported uniform shaft, where Ω is the spinning speed.
uniform shaft. It is assumed that the stiffness and damping properties of the left bearing-support are identical to those of the right. For the stiffness and damping properties of the bearing-supports, we consider three cases:

- Case A: $K_{yy} = K_{zz} = 1.0 \times 10^{6} \text{N/m}$, $K_{yz} = K_{zy} = 0 \text{N/m}$, $C_{yy} = C_{zz} = 400 \text{Ns/m}$, and $C_{yz} = C_{zy} = 0 \text{Ns/m}$;
- Case B: $K_{yy} = K_{zz} = 1.0 \times 10^{8} \text{N/m}$, $K_{yz} = K_{zy} = 0 \text{N/m}$, $C_{yy} = C_{zz} = 400 \text{Ns/m}$, and $C_{yz} = C_{zy} = 0 \text{Ns/m}$;
- Case C: $K_{yy} = K_{zz} = 1.0 \times 10^{6} \text{N/m}$, $K_{yz} = K_{zy} = 0 \text{N/m}$, $C_{yy} = C_{zz} = 800 \text{Ns/m}$, and $C_{yz} = C_{zy} = 0 \text{Ns/m}$.

Compared to Case A, Case B has higher stiffness, while Case C has lower damping.

For these three cases of bearing-supported uniform shaft problems, exact solutions are not available from the literature. Thus, as shown in Tables 4, 5, and 6, the FEM results are also provided as reference solutions to evaluate the present SEM results. The one-element model suffices for accurate SEM results. On the other hand, a sufficient number of finite elements (100 finite elements) are used to obtain sufficiently converged accurate FEM results.

Table 4 shows the lowest three natural frequencies for uniform shafts which are not spinning, while Table 5 shows the forward and backward natural frequencies of the lowest three modes for uniform shafts which are spinning at $\Omega = 3600 \text{rpm}$. Lastly Table 6 shows the forward and backward critical speeds of

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case A SEM (1)</th>
<th>Case B SEM (1)</th>
<th>Case C SEM (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
</tr>
<tr>
<td>1st</td>
<td>19.13</td>
<td>20.34</td>
<td>19.14</td>
</tr>
<tr>
<td></td>
<td>19.13</td>
<td>20.34</td>
<td>19.14</td>
</tr>
<tr>
<td>2nd</td>
<td>63.61</td>
<td>81.08</td>
<td>64.19</td>
</tr>
<tr>
<td></td>
<td>63.61</td>
<td>81.08</td>
<td>64.19</td>
</tr>
<tr>
<td>3rd</td>
<td>110.6</td>
<td>181.4</td>
<td>111.5</td>
</tr>
<tr>
<td></td>
<td>110.6</td>
<td>181.4</td>
<td>111.5</td>
</tr>
</tbody>
</table>

Table 4. Natural frequencies (in Hz) of the simply supported stationary stepped shafts ($\Omega = 0 \text{rpm}$), with the number in parentheses being the total number of finite elements used in the analysis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case A SEM (1)</th>
<th>Case B SEM (1)</th>
<th>Case C SEM (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
</tr>
<tr>
<td>1st forward</td>
<td>19.14</td>
<td>20.35</td>
<td>19.15</td>
</tr>
<tr>
<td>backward</td>
<td>19.12</td>
<td>20.32</td>
<td>19.13</td>
</tr>
<tr>
<td>2nd forward</td>
<td>63.64</td>
<td>81.14</td>
<td>64.22</td>
</tr>
<tr>
<td>backward</td>
<td>63.59</td>
<td>81.02</td>
<td>64.17</td>
</tr>
<tr>
<td>3rd forward</td>
<td>110.7</td>
<td>181.5</td>
<td>111.6</td>
</tr>
<tr>
<td>backward</td>
<td>110.6</td>
<td>181.3</td>
<td>111.5</td>
</tr>
</tbody>
</table>

Table 5. Natural frequencies (in Hz) of the simply supported spinning stepped shafts ($\Omega = 3600 \text{rpm}$), with the number in parentheses being the total number of finite elements used in the analysis.
the lowest three modes. The effects of the stiffness and damping of the bearing-supports on the natural frequencies and critical speeds can be observed in Tables 4, 5, and 6. When compared with Case A, both Cases B, with bearing-supports of higher stiffness, and C, with bearing-supports of higher damping, have higher natural frequencies and critical speeds.

5.3. Bearing-supported stepped shaft. As the third example problem, consider a bearing-supported stepped shaft which consists of two uniform shafts of equal length $L = 1$ m as shown in Figure 6. The material properties for the two uniform shafts are identical to those used the previous two example problems. The spring constants and viscous damping coefficients for the left and right bearing-supports are identical, and they are assumed to be identical to those for Case A of the previous bearing-supported uniform shaft problem. For the radii of the two equal-length uniform shafts, we consider three cases:

- Case I: $r_1 = r_2 = 0.02$ m;
- Case II: $r_1 = 0.02$ m, $r_2 = 0.01$ m;
- Case III: $r_1 = 0.02$ m, $r_2 = 0.03$ m.

Exact solutions are not available from the literature for these three cases of bearing-supported stepped shaft problems. Thus, as shown in Tables 7, 8, and 9, the FEM results are also provided as the reference solutions to evaluate the present SEM results. A sufficient number of finite elements (100 finite elements) is used to obtain sufficiently converged accurate FEM results. For the SEM results, a one-element model is used for Case I, while two-element models are used for Cases II and III due to the existence of a single geometric discontinuity at the middle of the stepped shafts.

Table 7 displays the lowest three natural frequencies when the stepped shafts are not spinning, while Table 8 displays the forward and backward natural frequencies of the lowest three modes when the stepped shafts are spinning at $\Omega = 3600$ rpm. Lastly Table 9 displays the forward and backward critical speeds.

Table 6. Critical speeds (in Hz) of the simply supported spinning stepped shafts, with the number in parentheses being the total number of finite elements used in the analysis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case A</th>
<th></th>
<th>Case B</th>
<th></th>
<th>Case C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEM (1)</td>
<td>FEM (100)</td>
<td>SEM (1)</td>
<td>FEM (100)</td>
<td>SEM (1)</td>
</tr>
<tr>
<td>2nd forward</td>
<td>63.64</td>
<td>63.64</td>
<td>81.16</td>
<td>81.16</td>
<td>64.22</td>
</tr>
<tr>
<td>2nd backward</td>
<td>63.59</td>
<td>63.59</td>
<td>81.00</td>
<td>81.00</td>
<td>64.17</td>
</tr>
<tr>
<td>3rd forward</td>
<td>110.7</td>
<td>110.7</td>
<td>181.8</td>
<td>181.8</td>
<td>111.6</td>
</tr>
<tr>
<td>3rd backward</td>
<td>110.5</td>
<td>110.5</td>
<td>181.0</td>
<td>181.0</td>
<td>111.4</td>
</tr>
</tbody>
</table>

Figure 6. A bearing-supported stepped shaft, where Ω is the spinning speed.
speeds of the lowest three modes. The natural frequencies and critical speeds for Case III are shown to be higher than for Cases I and II for the first mode. However, for the second and third modes, the values for Case I are higher than for Cases II and III. In addition, the natural frequencies and critical speeds given in Tables 7, 8, and 9 for the bearing-supported uniform shaft (Case I) are shown to be lower than the values given in Tables 1, 2, and 3 for the simply supported uniform shaft.

Figure 7 shows the first three normalized modes of the transverse displacement $v(x, t)$ when the stepped shafts are spinning at $\Omega = 0$ rpm and $\Omega = 3600$ rpm. The mode shapes for the stepped shafts

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM (1)</td>
<td>SEM (2)</td>
<td>SEM (2)</td>
<td>SEM (2)</td>
</tr>
<tr>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
</tr>
<tr>
<td>1st</td>
<td>19.13</td>
<td>9.563</td>
<td>19.28</td>
</tr>
<tr>
<td>2nd</td>
<td>63.61</td>
<td>56.32</td>
<td>58.46</td>
</tr>
<tr>
<td>3rd</td>
<td>110.6</td>
<td>93.15</td>
<td>103.2</td>
</tr>
</tbody>
</table>

Table 7. Natural frequencies (in Hz) of the bearing-supported stationary stepped shafts ($\Omega = 0$ rpm), with the number in parentheses being the total number of finite elements used in the analysis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM (1)</td>
<td>SEM (2)</td>
<td>SEM (2)</td>
<td>SEM (2)</td>
</tr>
<tr>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
</tr>
<tr>
<td>1st forward</td>
<td>19.14</td>
<td>9.578</td>
<td>19.29</td>
</tr>
<tr>
<td>1st backward</td>
<td>19.12</td>
<td>9.551</td>
<td>19.26</td>
</tr>
<tr>
<td>2nd forward</td>
<td>63.64</td>
<td>56.34</td>
<td>58.51</td>
</tr>
<tr>
<td>2nd backward</td>
<td>63.59</td>
<td>56.30</td>
<td>58.42</td>
</tr>
<tr>
<td>3rd forward</td>
<td>110.7</td>
<td>93.20</td>
<td>103.3</td>
</tr>
<tr>
<td>3rd backward</td>
<td>110.6</td>
<td>93.10</td>
<td>103.1</td>
</tr>
</tbody>
</table>

Table 8. Natural frequencies (in Hz) of the bearing-supported spinning stepped shafts ($\Omega = 3600$ rpm), with the number in parentheses being the total number of finite elements used in the analysis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM (1)</td>
<td>SEM (2)</td>
<td>SEM (2)</td>
<td>SEM (2)</td>
</tr>
<tr>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
<td>FEM (100)</td>
</tr>
<tr>
<td>1st forward</td>
<td>19.14</td>
<td>9.565</td>
<td>19.28</td>
</tr>
<tr>
<td>1st backward</td>
<td>19.13</td>
<td>9.561</td>
<td>19.27</td>
</tr>
<tr>
<td>2nd forward</td>
<td>63.64</td>
<td>56.34</td>
<td>58.51</td>
</tr>
<tr>
<td>2nd backward</td>
<td>63.59</td>
<td>56.30</td>
<td>58.42</td>
</tr>
<tr>
<td>3rd forward</td>
<td>110.7</td>
<td>93.23</td>
<td>103.4</td>
</tr>
<tr>
<td>3rd backward</td>
<td>110.5</td>
<td>93.07</td>
<td>103.1</td>
</tr>
</tbody>
</table>

Table 9. Critical speeds (in Hz) of the bearing-supported spinning stepped shafts, with the number in parentheses being the total number of finite elements used in the analysis.
Figure 7. The first three normalized modes of the bearing-supported stepped shafts.

(Cases II and III) are shown to deviate significantly from those for the uniform shaft (Case I) at both $\Omega = 0 \text{ rpm}$ and $\Omega = 3600 \text{ rpm}$. Though the mode shapes are dependent on the spinning speed, Figure 7 shows that the change of mode shapes at $\Omega = 3600 \text{ rpm}$ is not so significant for the example shafts considered herein.

6. Conclusions

This paper develops a spectral element model for a spinning uniform shaft. The spinning uniform shaft is represented by a spinning uniform Timoshenko beam model and its bearing-supports are represented
by two translational springs and two rotational springs. The spectral element model is then used to investigate the natural frequencies and critical speeds of the simply supported and bearing-supported spinning uniform shafts and the results are compared with the results obtained by using the conventional finite element model and the analytical theories available in existing references. It is numerically shown that the present spectral element model provides extremely accurate results by using only a small number of finite elements when compared with the conventional finite element model. In addition, some numerical investigation is also conducted for the bearing-supported stepped shafts.

Appendix: Finite element model

The equations of motion for the transverse bending vibration are given by (10) and the corresponding weak form can be derived in the form

\[
\int_0^L \left[EI (\phi'\delta\phi' + \psi'\delta\psi') + \kappa GA (v'\delta v' + w'\delta w') - \kappa GA (\psi\delta v' + v'\delta\psi) + \kappa GA (\phi\delta w' + w'\delta\phi) + \kappa GA (\phi\delta\phi + \psi\delta\psi) \right] dx + \int_0^L \Omega \rho J (\hat{\psi}\delta\phi - \hat{\phi}\delta\psi) dx + \int_0^L [\rho A (\ddot{\psi}v + \ddot{\omega}\delta w) + \rho I (\hat{\phi}\delta\phi + \hat{\psi}\delta\psi)] dx
\]

\[
= \int_0^L (p_\gamma \delta v + r_\gamma \delta\psi) dx + Q_\gamma \delta v|_0^L + M_\gamma \delta\psi|_0^L + Q_\gamma \delta w|_0^L + M_\gamma \delta\phi|_0^L. \tag{A.1}
\]

The displacement fields \(v(x, t), w(x, t), \phi(x, t),\) and \(\psi(x, t)\) are represented by

\[
v = N_v(x)d(t), \quad w = N_w(x)d(t), \quad \phi = N_\phi(x)d(t), \quad \psi = N_\psi(x)d(t), \tag{A.2}
\]

where

\[
d(t) = \{d_1(t) \quad d_2(t)\}^T, \quad d_j(t) = \{v_j(t) \quad \psi_j(t) \quad w_j(t) \quad \phi_j(t)\}^T \quad (j = 1, 2), \tag{A.3}
\]

and

\[
N_v(x) = \begin{bmatrix}
(1 - \xi)(2 - \xi - \xi^2 + 6r)(R/4) & L(1 - \xi^2)(1 - \xi + 3r)(R/8) & 0 & 0 \\
(1 + \xi)(2 + \xi - \xi^2 + 6r)(R/4) & -L(1 - \xi^2)(1 + \xi + 3r)(R/8) & 0 & 0
\end{bmatrix},
\]

\[
N_w(x) = \begin{bmatrix}
0 & 0 & (1 - \xi)(2 - \xi - \xi^2 + 6r)(R/4) & -L(1 - \xi^2)(1 - \xi + 3r)(R/8) \\
0 & 0 & (1 + \xi)(2 + \xi - \xi^2 + 6r)(R/4) & L(1 - \xi^2)(1 + \xi + 3r)(R/8)
\end{bmatrix},
\]

\[
N_\phi(x) = \begin{bmatrix}
0 & 0 & 3(1 - \xi^2)(R/2L) & -(1 - \xi)(1 + 3\xi - 6r)(R/4) \\
0 & 0 & -3(1 - \xi^2)(R/2L) & -(1 + \xi)(1 - 3\xi - 6r)(R/4)
\end{bmatrix},
\]

\[
N_\psi(x) = \begin{bmatrix}
-3(1 - \xi^2)(R/2L) & -(1 - \xi)(1 + 3\xi - 6r)(R/4) & 0 & 0 \\
3(1 - \xi^2)(R/2L) & -(1 + \xi)(1 - 3\xi - 6r)(R/4) & 0 & 0
\end{bmatrix}, \tag{A.4}
\]

with

\[
\xi = 2\left(\frac{x}{L}\right) - 1 \quad (0 \leq x \leq L), \quad r = \frac{4EI}{\kappa GAL^2}, \quad R = \frac{1}{1+3r}. \tag{A.5}
\]
Substitution of (A.2) into (A.1) gives the finite element equation in the form

\[M \ddot{d}(t) + G \dot{d}(t) + K d(t) = f(t), \quad (A.6) \]

where

\[M = [m_{ij}] = \int_0^L \left[\rho A (N_v^T N_v + N_w^T N_w) + \rho I (N_\Phi^T N_\Phi + N_\Psi^T N_\Psi) \right] dx, \]

\[G = [g_{ij}] = \int_0^L \Omega \rho J (N_\Phi^T N_\Psi - N_\Psi^T N_\Phi) dx, \quad (A.7) \]

\[K = [k_{ij}] = \int_0^L \left[EI (N_\Phi^T N_\Phi' + N_\Psi^T N_\Psi') + \kappa G A (N_v^T N_v' + N_w^T N_w' + N_\Phi^T N_\Phi \right. \]

\[\left. + N_\Psi^T N_\Psi + N_w^T N_\Phi + N_\Phi^T N_w' - N_v^T N_\Psi - N_\Psi^T N_v') \right] dx, \]

and

\[f(t) = f_c(t) + f_d(t) = \left\{ f_1(t) \quad f_2(t) \right\}^T, \]

\[f_c(t) = \left\{ Q_{11}(t) \quad M_{21}(t) \quad Q_{21}(t) \quad M_{22}(t) \quad Q_{22}(t) \quad M_{23}(t) \quad M_{32}(t) \right\}^T, \quad (A.8) \]

\[f_d(t) = \int_0^L \left(N_v^T p_y + N_w^T p_z + N_\Phi^T \tau_y + N_\Psi^T \tau_z \right) dx, \]

\[f_i(t) = \left\{ f_{vi}(t) \quad f_{\psi i}(t) \quad f_{wi}(t) \quad f_{\phi i}(t) \right\}^T \quad (i = 1, 2). \]

\(M \) and \(K \) are the 8 \(\times \) 8 symmetric matrices and \(G \) is the 8 \(\times \) 8 skew symmetric matrix. Their components are given by

\[m_{11} = m_{33} = m_{55} = m_{77} = 12 \alpha_1 (26 + 147 r + 210 r^2) + 36 \alpha_2, \]

\[m_{12} = -m_{34} = -m_{56} = m_{78} = \alpha_1 L (44 + 231 r + 315 r^2) + 3 \alpha_2 L (1 - 15 r), \]

\[m_{15} = m_{37} = 36 \alpha_1 (3 + 21 r + 35 r^2) - 36 \alpha_2, \]

\[m_{16} = -m_{25} = -m_{38} = m_{47} = -\alpha_1 L (26 + 189 r + 315 r^2) + 3 \alpha_2 L (1 - 15 r), \quad (A.9) \]

\[m_{22} = m_{44} = m_{66} = m_{88} = \alpha_1 L^2 (8 + 42 r + 63 r^2) + \alpha_2 L^2 (4 + 15 r + 90 r^2), \]

\[m_{26} = m_{48} = -3 \alpha_1 L^2 (2 + 14 r + 21 r^2) - \alpha_2 L^2 (1 + 15 r - 45 r^2), \]

and other \(m_{ij} = 0, \)

\[g_{13} = -g_{17} = g_{35} = g_{57} = 36 \eta, \]

\[g_{14} = g_{18} = -g_{23} = g_{27} = g_{36} = g_{45} = -g_{58} = g_{67} = -3 \eta L (1 - 15 r), \]

\[g_{24} = g_{68} = -\eta L^2 (4 + 15 r + 90 r^2), \quad (A.10) \]

\[g_{28} = -g_{46} = \eta L^2 (1 + 15 r - 45 r^2), \]
and other $g_{ij} = 0$, and

\begin{align}
 k_{11} &= -k_{15} = k_{33} = -k_{37} = k_{55} = k_{77} = 12\beta_1 + 540\beta_2 r^2, \\
 k_{12} &= -k_{25} = -k_{34} = k_{47} = 6\beta_1 L + 270\beta_2 L r^2, \\
 k_{16} &= -k_{38} = -k_{56} = k_{78} = 6\beta_1 L + 90\beta_2 L r (1 + 3r), \\
 k_{22} &= k_{44} = \beta_1 L^2 (4 + 6r + 9r^2) + 135\beta_2 L^2 r^2, \\
 k_{26} &= k_{48} = \beta_1 L^2 (2 - 6r - 9r^2) + 45\beta_2 L^2 r (1 + 3r), \\
 k_{66} &= k_{88} = \beta_1 L^2 (4 + 6r + 9r^2) + \beta_2 L^2 (47 + 210r + 315r^2),
\end{align}

and other $k_{ij} = 0$, where

\begin{align}
 \alpha_1 &= \frac{R^2}{840}\rho A L, \\
 \beta_1 &= \frac{R^2}{L^3} E I, \\
 \eta &= \frac{R^2}{30L}\rho J \Omega, \\
 \alpha_2 &= \frac{R^2}{30L}\rho I, \\
 \beta_2 &= \frac{R^2}{60L}\kappa GA.
\end{align}

References

USIK LEE: ulee@inha.ac.kr
Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751, South Korea

INJOON JANG: injoonjang@inha.edu
Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751, South Korea
Micromechanical analysis of unidirectional composites using a least-squares-based differential quadrature element method
Mohammad Bayat and Mohammad Mohammadi Aghdam 119

Size-dependent free vibration analysis of infinite nanotubes using elasticity theory
Jafari Eskandari Jam, Yaser Mirzaei, Behnam Gheshtlaghi
and Reza Avazmohammadi 137

Spectral element model for the vibration of a spinning Timoshenko shaft
Usik Lee and Injoon Jang 145

On indenter boundary effects at elastic contact
Denis Jelagin and Per-Lennart Larsson 165

Reflection of P and SV waves from the free surface of a two-temperature thermoelastic solid half-space
Baljeet Singh and Kiran Bala 183

A nonlinear Timoshenko beam formulation based on strain gradient theory
Reza Ansari, Raheb Gholami and Mohammad Ali Darabi 195

Finite element analysis of bending-stiff composite conical shells with multiple delamination
Sudip Dey and Amit Karmakar 213