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THE INVERSE DETERMINATION OF THE VOLUME FRACTION
OF FIBERS IN A UNIDIRECTIONALLY REINFORCED COMPOSITE

FOR A GIVEN EFFECTIVE THERMAL CONDUCTIVITY

MAGDALENA MIERZWICZAK AND JAN ADAM KOŁODZIEJ

We consider the problem of determining the volume fraction of fibers in a unidirectionally reinforced
composite in order to provide the appropriate effective thermal conductivity. The problem is formulated
in such a way as to be treated as an inverse heat transfer problem. The thermal conductivities of the
constituents (fibers and matrix) and fiber arrangement are known. The calculations are carried out for a
perfect thermal contact between the fibers and matrix.

1. Introduction

In the literature the following problems are considered to be classical inverse heat conduction problems:

• determination of heat sources [Yan et al. 2008],

• determination of the heat transfer coefficient [Hon and Wei 2004],

• the Cauchy problem [Marin 2005], and

• determination of the temperature dependent thermal conductivity [Chantasiriwan 2002].

These problems usually apply to homogeneous media. In the case of composite materials (nonhomoge-
neous media) other practically important issues might have to be considered. One of them is the inverse
problem of determination of the volume fraction of constituents in order to obtain the appropriate effec-
tive thermal conductivity. Let’s consider a unidirectional fibrous composite with regular arrangement of
fibers (Figure 1, left). If the thermal conductivity coefficients of constituents and their volume fractions
are known then the composite can be treated as a homogeneous region for which effective thermal
conductivity can be determined as a function of known parameters. Currently there are many papers
in which the effective thermal conductivity coefficient is determined for a regular arrangement of fibers
for given thermal conductivity of constituents and volume fraction of fibers (the direct problem). The
method of determination is usually based on the solution of the heat transfer equation at a microstructure
level in repeated elements of an array [Han and Cosner 1981]. But to our knowledge no paper has
considered the inverse problem of determination of the volume fraction of fibers for a given effective
thermal conductivity. Here we propose an analytic-numerical algorithm for determination of the volume
fraction of fibers in order to obtain a given value of the transverse effective thermal conductivity λz (the
inverse problem).

Keywords: effective thermal conductivity, inverse heat transfer problem, boundary collocation method, Newton’s method.
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Figure 1. A unidirectional reinforced fibrous composite with fibers arranged in a square
array. Left: general view, with marked repeated element. Right: formulation of the
boundary value problem in the repeated element for nondimensional variables.

2. Direct problem: determination of the effective thermal conductivity coefficient of the
composite material

Consider a unidirectional composite with fibers arranged in a matrix in a regular, square array with
imperfect thermal contact between the fiber and matrix (Figure 1, left), where a is radius of the fibers,
2b is the distance between neighboring fibers, E = a/b, and ϕ = πE2/4 is the volume fraction of
the fibers. The ratio of the thermal conductivity of fibers λ f to matrix λm is denoted as F = λ f /λm ,
R = r/b is the dimensionless radius, X = x/b and Y = y/b are the dimensionless Cartesian coordinates,
T = (T̂ − T̂R)/(T̂R − T̂L) is the dimensionless temperature field, and T̂R and T̂L are the temperatures
on the left and right boundaries of the repeated element, respectively. In order to solve the boundary
value problem in the repeated element of the composite (Figure 1) the boundary collocation method is
used [Kołodziej and Zieliński 2009]. The general solution of the Laplace equation in a polar coordinate
system has the form

T = A0+ A1θ + A2θ ln R+ A3 ln R+
∞∑

k=1

(Bk Rk
+Ck R−k) cos(kθ)+ (Dk Rk

+ Ek R−k) sin(kθ), (2-1)

where A0, A1, . . . , Ek are integral constants.
Given the repetitive element of the square array �=�m +� f in the region of the fiber � f and the

matrix �m , a solution is predicted with the form of (2-1). Some of the constants must be determined
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strictly by the conditions at the bottom and on the left side of the repeated element:

∂T f

∂θ
=
∂Tm

∂θ
= 0 for θ = 0, T f = Tm = 1 for θ =

π

2
, (2-2)

and the contact conditions of the fiber-matrix:

F
∂T f

∂R
=
∂Tm

∂R
for R = E, T f = Tm for R = E . (2-3)

After determining the constants from the boundary conditions (2-2) and from the contact conditions
(2-3) of fiber-matrix, marking the remaining constants as wk , and cutting off an infinite number of test
functions to N expressions, we obtain a solution for the temperature field of the fiber and matrix:

T f = 1+
N∑

k=1

wk R(2k−1) cos
(
(2k− 1)θ

)
, (2-4)

Tm = 1+
N∑

k=1

wk

2

[
(1+ F)R(2k−1)

+ (1− F)
E2(2k−1)

R(2k−1)

]
cos
(
(2k− 1)θ

)
. (2-5)

The constants wk are determined by fulfillment of the condition on the collocation points on the upper
02 and on the right 01 edges of the concerned region (Figure 2):

Tm = 0 for X = 1, (2-6)

∂Tm

∂Y
= 0 for Y = 1. (2-7)
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Figure 2. The collocation points at the upper and right boundaries of the matrix in a
repeated element in which the boundary conditions are collocated.
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The condition (2-7) can be written for polar coordinates:

∂Tm

∂Y
=
∂Tm

∂R
sin(θ)+ 1

R
∂Tm

∂θ
cos(θ). (2-8)

Choosing N1 points on the right boundary 01 and N2 points on the upper boundary 02 and collocating the
conditions (2-6) and (2-8) we obtain the system of N1+N2 linear equations with N unknown coefficients
wk , k = 1, . . . , N :

Aw = b, (2-9)

N∑
k=1

wk

[
(1+ F)R(2k−1)

j + (1− F)
E2(2k−1)

R(2k−1)
j

]
cos
(
(2k− 1)θ j

)
=−2, (R j , θ j ) ∈ 01, j = 1, . . . , N1,

N∑
k=1

wk(2k− 1)
[
(1+ F)R(2k−1)

j sin
(
(2k− 1)θ j

)
+ (1− F)E2(2k−1)

R2k
j

cos(2kθ j )

]
= 0,

(R j , θ j ) ∈ 02, j = N1+ 1, . . . , N1+ N2.

The constants wk obtained by the Gaussian elimination method provide estimates of the value of the
global heat flux through the unit region of the considered element:

q = 1
b

[
−λ f

∫ a

0

∂ T̂ f

∂x

∣∣∣
x=0

dy+ λm

∫ b

a

∂ T̂m

∂x

∣∣∣
x=0

dy
]
. (2-10)

The transverse effective thermal conductivity is defined by the formula

λz =
qb

1T̂
, (2-11)

where b is the distance between the isothermal boundaries and 1T̂ = T̂L − T̂R is the difference of the
temperatures at the isothermal edges. After taking into consideration in formula (2-11) the definition
of the nondimensional temperature and coordinates, the value of the effective thermal conductivity in
relation to the thermal conductivity of the matrix can be calculated from the relationship:

λz

λm
=−F

∫ E

0

1
R
∂T f

∂θ

∣∣∣∣
θ=

π
2

d R+
∫ 1

E

1
R
∂Tm

∂θ

∣∣∣∣
θ=

π
2

d R, (2-12)

or
λz

λm
=

N∑
k=1

wk

2
(−1)k

[
(F + 1)+ (F − 1)E2(2k−1)]. (2-13)

3. The results of the numerical experiment

The results of the calculations of the effective thermal conductivity of the fibrous composite are shown
in Figure 3. The value of the effective thermal conductivity in relation to the thermal conductivity of
the matrix λz/λm = (λz/λm)(ϕ)

∣∣
F is presented as a function of the volume fraction of fibers ϕ for the

desired value of thermal conductivity ratio F of the fiber λ f to the matrix λm , with F ∈ {0.5, 2, 10, 20}.
In order to compare the results, for a flat layer composite consisting of two components with different
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Figure 3. The effective thermal conductivity as a function of the volume fraction of the
fibers in the matrix for different values of the ratio of thermal conductivity of the fibers
to the matrix.

coefficients of thermal conductivity we calculate the effective thermal conductivity coefficient in relation
to the thermal conductivity of the matrix for an ideal contact of the components from the formula

λz

λm
=

(
(1−ϕ)+

ϕ

F

)−1
.

The comparative results for a flat layer of composite are shown in Figure 3 by the dotted line. The value
of the effective thermal conductivity λz depends not only on the constants characterizing the composite,
F and E , but also on the coefficients wk involved in fulfilling the boundary conditions at the N1+ N2

collocation points. Table 1 shows the influence of the number of collocation points on the maximum error
fulfilling the collocation boundary conditions calculated at the control points (between the collocation
points). The analysis of the results shows that increase in the number of collocation points doesn’t lead
to an increase in the accuracy of the calculations. Increasing the number of collocation points entails a
rise in the dimension of the matrix system of equations. In all four examples presented in Table 1, the
smallest maximum error satisfying the boundary conditions was obtained for 7 collocation points on the
right edge and for 6 points on the upper edge of the region considered.

4. Inverse problem: determination of the volume fraction of fibers in a composite for a given
effective thermal conductivity

At times, when designing composites with specific properties of the fibers and matrix we must estimate
the fraction of the volume of fibers to obtain effective thermal conductivity values. Assuming that E =
a/b is unknown, we use the known value of the effective thermal conductivity in relation to the thermal
conductivity of the matrix λz/λm . From the collocation of the boundary conditions in the N1+ N2 points
on the right and upper edges of the considered region and from condition (2-11) we obtain a system of
N1+ N2+ 1 nonlinear equations with the N + 1 unknowns wk and E :
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E = 0.5, F = 10 E = 0.9, F = 10
N1 N2 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 1.3829 1.13× 10−4 1.33× 10−3 3.3401 0.004232 0.004027
6 5 1.3829 2.42× 10−5 3.83× 10−4 3.3408 2.61× 10−3 1.12× 10−2

7 6 1.3829 6.20× 10−7 8.38× 10−5 3.3405 5.48× 10−4 1.63× 10−2

8 7 1.3829 9.35× 10−6 3.85× 10−4 3.3413 1.55× 10−3 8.48× 10−2

9 8 1.3829 1.97× 10−5 8.77× 10−4 3.3396 4.25× 10−3 2.02× 10−1

10 9 1.3829 4.96× 10−5 2.47× 10−3 3.3431 1.14× 10−2 0.578786
11 10 1.3829 7.29× 10−5 3.98× 10−3 3.3372 1.72× 10−2 0.943426
12 11 1.3829 2.26× 10−4 0.013628 3.3502 0.053729 3.235684
13 12 1.3829 1.87× 10−4 0.012135 3.3328 4.46× 10−2 2.895936
14 13 1.3831 1.98× 10−3 0.139725 3.4128 0.463741 32.72905
15 14 1.3829 4.42× 10−4 0.033299 3.3242 1.06× 10−1 7.967415

E = 0.5, F = 0.5 E = 0.9, F = 0.5
N1 N2 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 λz/λm δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 0.87713 3.73× 10−5 0.000484 0.64835 4.10× 10−4 0.010038
6 5 0.87714 8.21× 10−6 1.46× 10−4 0.64849 2.28× 10−4 6.92× 10−3

7 6 0.87714 1.14× 10−7 2.17× 10−5 0.64844 6.26× 10−5 2.18× 10−3

8 7 0.87714 2.96× 10−6 1.21× 10−4 0.64845 4.66× 10−6 2.22× 10−4

9 8 0.87714 6.31× 10−6 2.81× 10−4 0.64846 9.55× 10−5 4.29× 10−3

10 9 0.87713 1.59× 10−5 0.000792 0.64842 2.96× 10−4 0.014795
11 10 0.87714 2.34× 10−5 0.001275 0.64849 4.58× 10−4 0.025030
12 11 0.87713 7.26× 10−5 0.00437 0.64834 1.44× 10−3 0.086817
13 12 0.87714 6.00× 10−5 0.003891 0.64855 1.20× 10−3 0.077723
14 13 0.87708 6.35× 10−4 0.044798 0.64758 0.012614 0.890239
15 14 0.87715 1.42× 10−4 0.010678 0.64865 2.84× 10−3 0.213776

Table 1. The impact of the number of collocation points on the value of the effective
thermal conductivity of the composite and the maximum error of fulfilling the boundary
conditions at control points.

f j = 1+
N∑

k=1

wk

2

[
(1+ F)R(2k−1)

j + (1− F)
E2(2k−1)

R(2k−1)
j

+

]
cos
(
(2k− 1)θ j

)
= 0,

(R j , θ j ) ∈ 01 j = 1, . . . , N1,

f j =

N∑
k=1

wk(2k− 1)
[
(1+ F)R(2k−1)

j sin
(
(2k− 1)θ j

)
+ (1− F)

E2(2k−1)

R(2k−1)
j

cos(2kθ j )

]
= 0,

(R j , θ j ) ∈ 02 j = N1+ 1, . . . , N1+ N2,

fN1+N2+1 =

N∑
k=1

wk

2
(−1)k

[
(1+ F)+ (F − 1)E2(2k−1)]

−
λz

λm
= 0. (4-1)
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The nonlinear system of N1+N2+1 equations f with N+1 unknowns W = [w1, . . . , wN , E]T is solved
by using Newton’s iterative method:


w1
...

wN

E


(i+1)

=


w1
...

wN

E


(i)

−


f (i)1
...

f (i)N1+N2

f (i)N1+N2+1




J (i)1,1 · · · J (i)1,N+1
...

. . .
...

J (i)N1+N2,1 · · ·
...

J (i)N1+N2+1,1 · · · J (i)N1+N2+1,N+1


−1

,

W (i+1)
=W (i)

− f
(
W (i))J

(
W (i))−1

→ W (i+1)
=W (i)

−Y
(
W (i)),

Y
(
W (i))

= f
(
W (i))J

(
W (i))−1

→ J
(
W (i))−1Y

(
W (i))

= f
(
W (i)).

(4-2)

The functions fi are described by (4-1), while the Jacobi elements have the following form:

J j,k =
∂ f j

∂wk
=

1
2

[
(1+ F)R(2k−1)

j + (1− F)
E2(2k−1)

R(2k−1)
j

+

]
cos
(
(2k− 1)θ j

)
,

j = 1, . . . , N1, k = 1, . . . , N ,

J j,N+1 =
∂ f j

∂E
=

N∑
k=1

wk(2k− 1)(1− F)
E (4k−3)

R(2k−1)
j

cos
(
(2k− 1)θ j

)
, j = 1, . . . , N1,

J j,k =
∂ f j

∂wk
=
(2k− 1)

2

[
(1+ F)R2(k−1)

j sin
(
2(k− 1)θ j

)
+ (1− F)

E2(2k−1)

R(2k)
j

sin(2kθ j )

]
,

j = N1+ 1, . . . , N1+ N2, k = 1, . . . , N ,

J j,N+1 =
∂ f j

∂E
=

N∑
k=1

wk(2k− 1)2
[
(1− F)

E (4k−3)

R(2k)
j

sin(2kθ j )

]
, j = N1+ 1, . . . , N1+ N2,

J j,k =
∂ f j

∂wk
=
(−1)k

2

[
(1+ F)+ (F − 1)E2(2k−1)], j = N1+ N2+ 1, k = 1, . . . , N ,

J j,N+1 =
∂ f j

∂E
=

N∑
k=1

wk(2k− 1)(−1)k(F − 1)E (4k−3), j = N1+ N2+ 1.

(4-3)

To start the Newton’s iteration we need to know W (0)
=
[
w(0)1 , . . . , w(0)N , E (0)

]T as an initial condition. As
an initial value of the constants w(0)k , k = 1, . . . , n, the solution of the linear problem for E = 0.1 has been
adopted. The condition for the end of the iteration was adopted at δNewton = ‖W (i+1)

−W (i)
‖max ≤ 10−7,

where ‖ ‖max means the maximum norm.

5. The results of the numerical experiment

The results of the iterative calculation of the volume fraction of fibers for a composite are shown in
Figure 4. The value of the volume fraction of fibers in a composite φ is presented as a function ϕ =
ϕ(λz/λm)

∣∣
F of the effective thermal conductivity in relation to the thermal conductivity of the matrix
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Figure 4. The volume fraction of fibers in the matrix as a function of the effective ther-
mal conductivity of the composite for different relative values of thermal conductivity
of the fiber and matrix.

λz/λm for the assumed value of the thermal conductivity ratio of the fiber to the matrix, F = λ f /λm ∈

{0.5, 2, 10, 20}. In order to compare the results for a flat composite layer consisting of two components
with different thermal conductivities, the volume fraction of the fibers for a known value of the effective
thermal conductivity for an ideal contact with the components can be calculated from

ϕ =

(( λz

λm

)−1
− 1

)
F

1− F
.

λz/λm = 1.4, F = 10 λz/λm = 3.35, F = 10
N1 N2 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 0.1904 0.4924 5.82·10−5 0.100879 0.5013 0.7989 1.74·10−3 2.688120
6 5 0.2036 0.5092 4.99·10−5 0.000256 0.6362 0.9 2.05·10−2 0.059686
7 6 0.2036 0.5092 6.72·10−7 8.91·10−5 0.6372 0.9007 5.68·10−4 0.016511
8 7 − − − − − − − −

λz/λm = 0.88, F = 0.5 λz/λm = 0, 65, F = 0.5
N1 N2 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0 ϕ E δmax

∣∣
Tm=0 δmax

∣∣
∂Tm/∂Y=0

5 4 0.1790 0.4774 1.49·10−5 0.026341 0.7876 1.0014 0.00025 0.32083
6 5 0.1915 0.4937 1.18·10−5 7.26·10−5 0.6327 0.8976 0.00025 0.0005
7 6 0.1915 0.4938 1.13·10−7 2.13·10−5 0.6328 0.8976 5.84·10−5 0.00204
8 7 − − − − − − − −

Table 2. The impact of the number of collocation points on the value of the volumetric
fraction of the fibers in the composite and the maximal error fulfillment of the boundary
conditions at checkpoints.
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F = 10
λz/λm λz/λm = 1.4 λz/λm = 3.35
Iter. δNewton E δNewton E

1 0.456063 0.5439 0.265565 0.7344
2 0.032858 0.5111 0.179407 0.9138
3 1.89× 10−3 0.5092 0.013073 0.9008
4 3.41× 10−6 0.5092 4.17× 10−5 0.9007
5 1.13× 10−11 0.5092 2.71× 10−9 0.9007

F = 0.5
λz/λm λz/λm = 0.88 λz/λm = 0.65
Iter. δNewton E δNewton E

1 0.357932 0.6421 0.217974 0.9164
2 1.31× 10−1 0.5113 0.018393 0.8980
3 1.72× 10−2 0.4941 0.000336 0.8976
4 2.99× 10−4 0.4938 3.61× 10−8 0.8976
5 9.05× 10−8 0.4938 − −

Table 3. Convergence of Newton’s method for the test examples, with N1 = 7 and N2 = 8.

The results for a flat composite layer are presented by the dotted lines in Figure 4. As with the problem
of identification of λz/λm , so also for the iterative identification of the volume fraction of fibers ϕ in a
composite; the number of collocation points N1+ N2 where the boundary condition is approximately
fulfilled affects the accuracy of the calculations. Table 2 shows the impact of the number of collocation
points on the value of the volumetric fraction of fibers ϕ in the composite and the maximum error of
fulfillment of boundary conditions at the checkpoints (between collocation points). As in the case of
the direct problem, we obtain the best results for 7 collocation points at the right edge 01 of a large
finite element and 6 points at the upper edge 02. In the case of the inverse problem for a large number
of collocation points (greater than 7) the convergence of the algorithm is lost. Table 3 presents the
convergence of the used Newton’s iterative method for four test examples. The method proves to be
convergent very quickly, and just after five iterations we get the correct result of the iteration with an
error of less than 10−7.

6. Conclusions

The presented method of determining the volume fraction of fibers of a composite or the effective thermal
conductivity except in the cases of maximal fiber density is easy to implement and efficient. It can be
easily applied to other configurations of regular arrangement of fibers in the matrix, for example to a
triangular or hexagonal mesh. This study compared the influence of the ratio of the thermal conductivity
of fibers to the thermal conductivity of matrix F on the value of the volumetric fraction of the fibers and
the value of the effective thermal conductivity of the composite. It was also shown that increasing the
number of collocation points doesn’t reduce the error of the approximation of the boundary conditions;
it leads to the ill-conditioning of the system of equations.
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