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ELECTROMAGNETOELASTIC WAVES IN A VORTEX LAYER
OF A SUPERCONDUCTOR

BOGDAN T. MARUSZEWSKI, ANDRZEJ DRZEWIECKI AND ROMAN STAROSTA

Magnetic field enters the type-II superconducting body along a discrete arrangement of magnetic vortex
lines. The paper aims at investigating the dispersion and amplitude distributions of magnetoelastic waves
propagating solely in the vortex field of the superconducting layer. Our attention has been focused on
the dispersion features and amplitudes for various wave velocities. The vortex field consists only of soft
vortices (the superconducting crystal is free of lattice defects).

1. Introduction

Magnetic flux can penetrate the type-II superconductor in the form of Abrikosov vortices (also called
flux lines, flux tubes or fluxons), each carrying a quantum of magnetic flux. Since the vortices are
formed by the applied magnetic field, the supercurrent flows around of each of them. There exist also
Lorentz force interactions among them, which give rise to an additional thermomechanical (stress) field
in type-II superconductors. Near the lower critical magnetic intensity limit Hc1, this field has elastic
character. However, if the density of the supercurrent is above its critical value and/or the temperature
is sufficiently high, there occurs a flow (creep or diffusion) of vortex lines in the superconducting body.
The fluidity of the vortex array has been also observed when the applied magnetic field approaches
its upper critical limit Hc2 [Blatter et al. 1994; Brandt 1995; Cyrot and Pavuna 1992]. Following a
magnetothermomechanical model of interactions in such II-type superconductors both for the lattice-like
and fluid-like states of the vortex field, where the specific definition of the vortex field stress tensor has
been introduced [Maruszewski 1998; 2007], this paper aims at determining the dispersion and amplitude
distributions of magnetoelastic waves propagating along soft vortices in the superconducting layer.

If the crystal lattice of the layer is free of lattice defects, there is a parallel arrangement of soft vortex
cores (Figure 1, left). However, in real crystals, imperfections such as vacancies, dislocations, disclina-
tions, grain boundaries, and interstitial atoms cause that the vortex lines can be curved or even tangled
because of pinning (Figure 1, right). We have confined in the paper only to the lattice-like state. The
choice of the geometry of the vortex field (layer) was motivated by a need to check if those magnetoelastic
waves and electromagnetoelastic waves in such peculiar environment are possible to be guided.

The natural conditions where devices may use such a technological solution exist in space where
temperature is about 4K and majority of elements and materials behave as superconductors. In the paper
the particular analysis of the SH magnetoelastic and compressional and flexural electromagnetoelastic
modes has been presented.
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Figure 1. Vortices in a perfect crystal (left) and in a real one (right), where pinning can occur.

2. General wave equations

Let us now consider a problem which deals with the dynamics of the previously defined vortex field. Fol-
lowing the thermodynamical model of the electromagnetomechanical interactions in continuous media,
i.e., the momentum balance with Hooke’s law and the Maxwell equations in the moving frames with
the first London equation we are able to formulate proper equations describing dynamics of the vortex
field in the elastic superconductor. For the sake of simplicity thermal influences have been omitted. The
governing equations of the electromagnetoelastic vortex waves read as follows [Maruszewski et al. 2007]:

µui, j j + ηu̇i, j j + (λ+µ)u j,i j +
1
3ηu̇ j,i j −µ0(hr,i − hi,r )H 0

r − ρüi = 0,

λ2
0hi,kk − hi + ui,k H 0

k − uk,k H 0
i = 0,

λ2
0ei, j j − ei +µ0ei jk u̇ j H 0

k = 0,

(1)

where uk is the displacement vector of the vortex field point, H 0
r is the applied magnetic field normal to

the limiting surfaces of the layer (Figure 1), hr is the small contribution to the total magnetic field in the
layer comparing to H 0

r and describes its perturbations, because the linear form of equations (1) results
from

Hk = H 0
k + hk, |hk | � |H 0

k |. (2)

Here ek is the electric field intensity understood in the sense of (2), λ and µ are Lamé’s constants, µ0 is
the permeability of vacuum, η is the viscosity coefficient (inside each vortex core flows a normal current,
so the Ohmic resistivity occurs there [Cyrot and Pavuna 1992]), ρ is the vortex density [Maruszewski
2007; Maruszewski et al. 2007], and λ0 is the London penetration depth. Any thermal influences on the
considered waves have been omitted. The solutions of equations (1) are looked for in the form

f (x1, x3, t)= f̃ (x1) exp[i(ωt − kx3)], (3)

where f̃ (x1) are the amplitudes of signals u1, u2, u3, h1, h2, h3, e1, e2, e3 propagating in x1 direction
with the velocity v:

f̃ (x1)= {u1, u2, u3, h1, h2, h3, e1, e2, e3} (4)

if the geometry of the problem is as shown in Figure 2.
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Figure 2. Geometry of the problem.

To facilitate the analysis of the waves, all the relations will be presented in the dimensionless form,
with the help of the following substitutions, where c̃ is the speed of light:

x1 = hx, x2 = hy, x3 = hz, t = T τ, T = h
vT
, vT =

√
µ

ρ
, �= ωT,

c =
kvT

ω
=
vT

v
, λ̃0 =

λ0

h
, µ̃=

K
µ
,

K = λ+ 2
3µ, λ̃=

λ

µ
, ρ̃ =

ρv2
T

µ
= 1, H 0

= Hc1 H0, E = c̃µ0 Hc1,

c1 =
vT

c̃
, u1 = hux , u2 = hu y, u3 = huz,

η̃ = η
h
vT
, e1 = Eex , e2 = Eey, e3 = Eez, µ̄=

µ0 H 2
c1

µ
,

h1 = Hc1hx , h2 = Hc1h y, h3 = Hc1hz.

(5)

3. SH magnetoelastic waves

Let us consider at the beginning the SH magnetoelastic wave propagating along the vortex layer shown
in Figure 2. The general equations (1) in this case reduce to

µui, j j + ηu̇i, j j + (λ+µ)u j,i j +
1
3ηu̇ j,i j −µ0(hr,i − hi,r )H 0

r − ρüi = 0, (6)

λ2
0hi,kk − hi + ui,k H 0

k − uk,k H 0
i = 0, (7)

since the SH wave amplitudes in the layer are now looked for in the form (3) with

f̃ (x1)= {u2, h2}, (8)

because
u = [0, u2, 0], h = [0, h2, 0]. (9)

Taking (5) into account, the SH wave equations (6) and (7) become in dimensionless form

(µ̃+ i�η̃)
d2u y

dx2 +
�2

c2 (v
2ρ̃− µ̃− i�η̃)u y + µ̄H0

dh y

dx
= 0,

λ̃2
0

d2h y

dx2 − (λ̃
2
0
�2

c2 + 1)h y + H0
du y

dx
= 0.

(10)
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On using relations (5) in (8), the solutions of (10) determine the following amplitudes of the SH magne-
toelastic waves:

u y = S1ep1x
+ S2e−p1x

+ S3ep2x
+ S4e−p2x ,

h y =−M(p1, �, c)S1ep1x
+M(p1, �, c)S2e−p1x

−M(p2, �, c)S3ep2x
+M(p2, �, c)S4e−p2x ,

(11)

where
M(pk, �, c)=

pk

µ̄H0
+
�2(1− 1/c2)

µ̄H0 pk
, k = 1, 2.

The parameters p1 and p2 were determined from the characteristic equation

λ̃2
0 A(�)p4

+
[
λ̃2

0 B(�, c)− F(�, c)A(�)−µ0 H 2
0
]

p2
− F(�, c)B(�, c)= 0 (12)

where
A(�)= 1+ i�η̃, B(�, c)=

�2

c2 (c
2
− 1− i�η̃), F(�, c)= λ̃2

0
�2

c2 + 1.

A detailed analysis of the characteristic equation shows that wave propagation is possible only if

B(�, c) > 0. (13)

From (13) we get that if SH magnetoelastic wave amplitude is a function of x , then

c =
v

vr
< 1 (14)

We neglect, from now on, viscous features of the vortex field, in view of their very weak influence on
the propagation process; see [Cyrot and Pavuna 1992; Maruszewski et al. 2008].

Since the waves propagate along the layer, we should now take into account the proper boundary
conditions for solving the set of equations (10). They follow from Figure 2, and read

h y = 0 and
du y

dx
= 0 for x =−1 and x = 0. (15)

The first of these conditions expresses the continuity of the tangent component of the magnetic field
intensity, while the second follows from the equality σyz = 0 (the surfaces are free of loadings).

Substituting (11) into (15) we obtain the set of algebraic equations

−M(p1, �, c)S1e−p1 +M(p1, �, c)S2ep1 −M(p2, �, c)S3e−p2 +M(p2, �, c)S4ep2 = 0,

S1 p1e−p1 − S2 p1ep1 + S3 p2e−p2 + S4 p2ep2 = 0,

−M(p1, �, c)S1+M(p1, �, c)S2−M(p2, �, c)S3+M(p2, �, c)S4 = 0,

S1 p1− S2 p1+ S3 p2+ S4 p2 = 0,

(16)

or
W · S= 0, (17)

where
S= {S1, S2, S3, S4}

T . (18)

Hence we arrive at the dispersion relation for SH magnetoelastic wave in the form

det W = 0. (19)
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A unique solution for (19) exists if
c = 1. (20)

Thus the SH wave is nondispersive and its amplitude is independent of x . (See [Oliner 1978, Chapter
5].) So, the supposition (14) is no longer valid. But the final conclusion is such that we are dealing only
with the plane SH wave mode in the vortex layer, which propagates with constant velocity — (20).

4. Compressional (C) and flexural (F) electromagnetoelastic waves

Let us now focus on electromagnetoelastic waves propagating along the magnetic vortex field layer. Our
aim is to answer the question of whether they can be guided by such a layer. It is well known that,
besides the SH magnetoelastc waves considered in the previous section, compressional (symmetric) and
flexural (antisymmetric) waves may also propagate along waveguides in the form of a rod, plate or ribbon
[Achenbach 1976, Chapter 8; Oliner 1978, Chapter 5; Eringen and Şuhubi 1975, Chapter 7] (Figure 3).

The solutions of the C and F wave equations (1) are looked this time for in the form (3) where f̃ (x1)

now stands for
f̃ (x1)= {u1, u3, h1, h3, e2} (21)

since (see Figure 4)
u = [u1, 0, u3], h = [h1, 0, h3], e= [0, e2, 0]. (22)

On using now (21) and (5) in (1) the dimensionless F and C wave equations read( 4
3 +

1
3 G̃
)
ux,xx +�

2(1− c2)ux −
1
3 i�c(G̃+ 1)uz,x = 0,

uz,xx +�
2[1− c2( 4

3 +
1
3 G̃
)]

uz −
1
3 i�c(G̃+ 1)ux,x + iµ̃H0�chx + µ̃H0hz,x = 0,

λ̃2
0hx,xx − (1+ λ̃2

0�
2c2)hx + i�cH0uz = 0,

λ̃2
0hz,zz − (1+ λ̃2

0�
2c2)hz + H0uz,x = 0,

λ̃2
0ey,xx − (1+ λ̃2

0�
2c2)ey − i�c1 H0uz = 0.

(23)

Figure 3. Symmetry of the vortex field displacements [Eringen and Şuhubi 1975]:
symmetric-compressional wave (left pair) and antisymmetric-flexural wave (right pair).

H
x

Figure 4. Geometry of the problem for the C and F waves in the vortex layer, following (5).
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These equations should be completed by the electromagnetic field equations in vacuum:

h p
x,xx −�

2(c2
− c2

1)h
p
x = 0, h p

z,xx −�
2(c2
− c2

1)h
p
z= 0, ep

y,xx −�
2(c2
− c2

1)e
p
y = 0, (24)

where superscript p denotes fields in a vacuum.
The jump and boundary conditions for (23) and (24) at the upper and lower planes of the layer read

(see Figure 4)

σxx |x=−1 = 0=⇒
dux

dx
|x=−1 = 0; σzx |x=−1 = 0=⇒

duz

dx
|x=−1 = 0;

(hx = h p
x )|x=0 or (ey = ep

y )|x=0; (hz = h p
z )|x=0;

σxx |x=1 = 0=⇒
dux

dx
|x=1 = 0; σzx |x=1 = 0=⇒

duz

dx
|x=1 = 0;

(hx = h p
x )|x=1 or (ey = ep

y )|x=1; (hz = h p
z )|x=1.

(25)

The desired C and F wave amplitudes are (using sh and ch to denote the hyperbolic sine and cosine)

ux = P(ξ2)S4 ch(ξ2x)+ P(ξ2)S3 sh(ξ2x)+ P(ξ3)S6 ch(ξ3x)+ P(ξ3)S5 sh(ξ3x)+ P(ξ4)S8 ch(ξ4x)

+ P(ξ4)S7 exp(ξ4x),

uz = Q(ξ2)S3 ch(ξ2x)+ Q(ξ2)S4 sh(ξ2x)+ Q(ξ3)S5 ch(ξ3x)+ Q(ξ3)S6 sh(ξ3x)+ Q(ξ4)S7 ch(ξ4x)

+ Q(ξ4)S8 sh(ξ4x),

hx = S3 ch(ξ2x)+ S4 sh(ξ2x)+ S5 ch(ξ3x)+ S6 sh(ξ3x)+ S7 ch(ξ4x)+ S8 sh(ξ4x),

hz =−
i
�c
[ξ2S4 ch(ξ2x)+ ξ2S3 sh(ξ2x)+ ξ3S6 ch(ξ3x)+ ξ3S5 sh(ξ3x)+ ξ4S8 ch(ξ4x)+ ξ4S7 sh(ξ4x)],

ey =−
c1

c
[S3 ch(ξ2x)+ S4 sh(ξ2x)+ S5 ch(ξ3x)+ S6 sh(ξ3x)+ S7 ch(ξ4x)+ S8 sh(ξ4x)],

(26)

where

P(ξ)=−
ξ(G̃+ 1)(λ̃2

0ξ
2
− 1− λ̃2

0�
2c2)

H0[(4+ G̃)ξ 2+ 3�2(1− c2)]
, Q(ξ)= i

λ̃2
0ξ

2
− 1− λ̃2

0�
2c2

�cH0
.

The parameters ξm are the solutions of the characteristic equation

(Aξ 6
+ Bξ 4

+Cξ 2
+ D)(�2c2λ̃2

0− λ̃
2
0ξ

2
+ 1)= 0, (27)

whose coefficients A, B,C and D are given in the Appendix.
The amplitudes of the electromagnetic waves outside the layer read as follows:

– above the upper plane:

h p
x = S1[ch(ξ̃1x)+ sh(ξ̃1x)], h p

z =−
i ξ̃1

�c
S1[ch(ξ̃1x)+ sh(ξ̃1x)], ep

y =−
c1

c
S1[ch(ξ̃1x)+ sh(ξ̃1x)],

(28)
– below the lower plane:

h p
x = S2[ch(ξ̃1x)−sh(ξ̃1x)], h p

z =
i ξ̃1

�c
S2[ch(ξ̃1x)−sh(ξ̃1x)], ep

y =−
c1

c
S2[ch(ξ̃1x)+sh(ξ̃1x)]. (29)
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Now using solutions (26), (28) and (29) in the boundary and jump conditions (25) we get a set of eight
algebraic equations for S1 through S8. They are given in the Appendix. After laborious calculations this
set of eight equation splits into two uncoupled sets:

WC · SC = 0, (30)

WF · SF = 0, (31)

where
SC =

{1
2(S1− S2), S4, S6, S8

}T
, SC =

{1
2(S1+ S2), S3, S5, S7

}T
.

Hence the dispersion relations for the considered waves are

– for compressional modes: det WC = 0, (32)

– for flexural modes: det WF = 0. (33)

5. Numerical results

In this section we limit ourselves to the numerical analysis of the compressional and flexural electromag-
netic wave propagation conditions since the SH magnetic wave is nondispersive propagating with the
constant velocity and is amplitude independent of the thickness of the layer. All the calculations have
been made for YBa2Cu3O6+x , or YBCO, ceramics. We have restricted ourselves to the lattice-like state
of the vortex field, so the external magnetic H0 is taken slightly higher than the limiting lower magnetic
field value Hc1.

Firstly, let us take care of the existence of the C and F waves in the layer. The conditions dealing
with their existence result from characteristic equation (27). That situation is illustrated in Figure 5.

Before we start analysis of the amplitude distribution of the C and F waves in the layer we should
consider their dispersion. Figure 6 shows the dispersion of the C waves calculated from (32), and the F
waves, from (33).

Remark that both in the C and F wave cases only one single modes propagate. That feature is
anomalous and differs from that for the classical elastic body where infinite number of modes propagate
[Eringen and Şuhubi 1975, Chapter 7]. From Figure 6 it is also visible that waves C and F characterize
anomalous dispersion: they propagate with acoustic velocity having optical frequencies (C wave has

Figure 5. Area of existence of C and F waves.
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Figure 6. Dispersion of C waves (left) and of F waves (right) for h = 10−7 m. Black:
H0 = 1; red: H0 = 10.

higher frequency comparable to the frequency spectrum of the visible light then F wave has lower
frequency comparable to the frequency spectrum of the infrared rays). Moreover, for both cases the
dispersion decreases if the external magnetic field H0 increases. Now let us take care of the amplitudes.

Compressional waves. The compressional (C) wave amplitudes for hx , hz, ey, ux , uz, σxx and σxz are
presented in Figure 7. Shaded areas indicate the layer region.

Figure 7. Compressional wave amplitudes for H0 = 1 and h = 10−7 m. Top row: hx ,
hz , ey . Middle row: ux , uz . Bottom row: σxx , σxz . Green: �= 0.2. Blue: �= 0.6. Red:
�= 0.9.
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The simple look at the drawings in Figure 7 shows that in the case of the electromagnetic part of
the C waves (top row) their amplitudes reach extremal values at the lateral planes of the layer and are
continuous across them. But the mechanical part of the C waves behave differently (middle and bottom
rows). They naturally exist only between the lateral planes of the layer. Then the longitudinal ux and
shear σxz modes are symmetric with respect to the middle surface of the layer. But the general conclusion
for all modes is such that all their amplitudes decreases if the frequency � increases.

Flexural waves. The flexural (F) wave amplitudes for hx , hz, ey, ux , uz, σxx and σxz are presented in
Figure 8.

The properties of the F wave amplitudes differ from their C counterpart. For example, hx and ez

amplitudes are extremal at the middle surface of the layer and do not “feel” its lateral planes disappearing
smoothly in infinity. Then antisymmetric hz is extremal at the above planes. The mechanical mode
amplitudes behave as follows:

– ux mode is linear and antisymmetric vanishing at the middle surface; it exist solely inside the layer.

– uz is symmetric with respect to the middle surface reaching there extremum.

Figure 8. Flexural wave amplitudes for H0 = 1 and h = 10−7 m. Green: �= 0.2. Blue:
�= 0.6. Red: �= 0.9. Top row: hx , hz , ey . Middle row: ux , uz . Bottom row: σxx , σxz .
The last panel, (h), shows the same graphs as (g) but at different scales.
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– σxx (the trace part of the stress associated with the wave propagation direction) behaves like uz;
however, it vanish at the lateral planes.

– σxz is antisymmetric with respect to the middle plane vanishing at the lateral surfaces. However
it behaves anomalously; from the last two panels in the bottom row of Figure 8 we see that there
exists a frequency �cr for which σxz values are equal to zero across the layer, so the σxz stress
values change sign if they are observed for �<�cr or for �>�cr .

According to the dependence of � the electromagnetic mode amplitudes decrease if the frequency �
increases contrary to the mechanical modes behavior (Figure 8).

6. Conclusions

The considerations made in the paper show that two general types of waves can propagate in the vortex
array existing solely in the superconducting layer. The first one deals with the SH magnetoelastic modes
and the second type concerns electromagnetoelastic compressional and flexural modes. It is known that
layers can be used in some situations as waveguides. Investigations made in the paper confirmed that
guided signal transmission along the magnetic vortex field is possible. Natural conditions for such an
application exist in free space, so such a technology, which is not energy consuming, might be used in
space ships or other similar equipment.

Except for classical properties, electromagnetoelastic C and F waves involve the same anomalous
features, as seen in Figure 8(c), (g), (h). The ux mode is linearly distributed across the layer, which differs
from the classical (mechanical non-vortex) situation. But a much more interesting result is presented in
Figure 8 (g), (h). We see that there exists a definite critical frequency �cr for which the amplitude of the
F σxz mode vanishes across the entire layer. That means that for such critical frequency �crσxz mode
does not propagate.

Appendix: The coefficients of (27) and the algebraic equations encoded in (30)–(31)

The coefficients of (27) are given by

A = λ̃2
0(4+ G̃),

B =−4(3�2c2λ̃2
0+ 1)− G̃(3�2c2λ̃2

0+ 1)− 4H 2
0 µ̃+ 7�2λ̃2

0+ G̃(�2λ̃2
0− H 2

0 µ̃),

C = 4�2c2(3�2c2λ̃2
0+ 2)+�2

[G̃c2(3�2c2λ̃2
0+ 2)+ 7(H 2

0 c2µ̃− 2�2c2λ̃2
0− 1)]

+�2
[G̃(H 2

0 c2µ̃− 2�2c2λ̃2
0− 1)− 3(H 2

0 µ̃−�λ̃
2
0)],

D =−4�2c4(�2c2λ̃2
0+ 1)−�4c2

[G̃c2(�2c2λ̃2
0+ 1)+ 3H 2

0 c2µ̃− 7(�2c2λ̃2
0+ 1)]

+�4
[G̃c2(�2c2λ̃2

0+ 1)+ 3(H 2
0 c2µ̃−�2c2λ̃2

0− 1)].

We next give the algebraic equations satisfied for S1, S2, . . . , S8. Let

Y (ξ)= 1
3(4+ G̃)P(ξ)ξ − 1

3 i�c(G̃− 2)Q(ξ) and Z(ξ)= [−Q(ξ)ξ + i�cP(ξ)],
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where sh and ch denote the hyperbolic sine and cosine. Then

Y (ξ2) ch ξ2 S3− Y (ξ2) sh ξ2 S4+ Y (ξ3) ch ξ3 S5− Y (ξ3) sh ξ3 S6+ Y (ξ4) ch ξ4 S7− Y (ξ4) sh ξ4 S8 = 0,

Z(ξ2) ch ξ2 S3− Z(ξ2) sh ξ2 S4+ Z(ξ3) ch ξ3 S5− Z(ξ3) sh ξ3 S6+ Z(ξ4) ch ξ4 S7− Z(ξ4) sh ξ4 S8 = 0,

ξ̃1(ch ξ̃1− sh ξ̃1)S1+ ξ2 sh ξ2 S3− ξ2 ch ξ2 S4− ξ3 sh ξ3 S5− ξ3 ch ξ3 S6+ ξ4 sh ξ4 S7− ξ4 ch ξ4 S8 = 0,

(ch ξ̃1− sh ξ̃1)S1− ch ξ2 S3+ sh ξ2 S4− ch ξ3 S5+ sh ξ3 S6− ch ξ4 S7+ sh ξ4 S8 = 0,

Y (ξ2) ch ξ2 S3+ Y (ξ2) sh ξ2 S4+ Y (ξ3) ch ξ3 S5+ Y (ξ3) sh ξ3 S6+ Y (ξ4) ch ξ4 S7+ Y (ξ4) sh ξ4 S8 = 0,

Z(ξ2) ch ξ2 S3+ Z(ξ2) sh ξ2 S4+ Z(ξ3) ch ξ3 S5+ Z(ξ3) sh ξ3 S6+ Z(ξ4) ch ξ4 S7+ Z(ξ4) sh ξ4 S8 = 0,

ξ̃1(ch ξ̃1− sh ξ̃1)S2+ ξ2 sh ξ2 S3+ ξ2 ch ξ2 S4+ ξ3 sh ξ3 S5+ ξ3 ch ξ3 S6+ ξ4 sh ξ4 S7+ ξ4 ch ξ4 S8 = 0,

(ch ξ̃1− sh ξ̃1)S2− ch ξ2 S3− sh ξ2 S4− ch ξ3 S5− sh ξ3 S6− ch ξ4 S7− sh ξ4 S8 = 0.
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