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BUCKLING INSTABILITIES OF ELASTICALLY CONNECTED TIMOSHENKO
BEAMS ON AN ELASTIC LAYER SUBJECTED TO AXIAL FORCES

VLADIMIR STOJANOVIĆ, PREDRAG KOZIĆ AND GORAN JANEVSKI

We study the buckling instability of a system of three simply supported elastic Timoshenko beams, joined
together by Winkler elastic layers, and each subjected to the same compressive axial load. The model
of the Timoshenko beam includes the effects of axial loading, shear deformation, and rotary inertia.
Explicit analytical expressions are derived for the critical buckling load of single, double, and triple-
beam systems. It can be observed from these expressions that the critical buckling load depends on
the Winkler elastic layer stiffness modulus K , and that the instability of the system increases with an
increase in the numbers of beams and elastic layers. These results are of considerable practical interest
and have wide application in engineering practice.

1. Introduction

Vibration and buckling problems of beams and beam-columns on elastic layers occupy an important place
in many fields of structural and layer engineering, occurring often in mechanical and civil engineering
applications. Their solution demands modeling of the mechanical behavior of the beam, the mechanical
behavior of the soil, and the form of the interaction between the beam and the soil.

As far as the beam is concerned, most engineering analyses are based on classical Bernoulli–Euler
beam theory, in which straight lines or planes normal to the neutral beam axis remain straight and normal
after deformation. This theory thus neglects the effect of transverse shear deformations, a condition that
holds only in the case of slender beams. To confront this problem, the well-known Timoshenko beam
model, in which the effect of transverse shear deflections is considered, can be used.

Matsunaga [1996] studied the buckling instabilities of a simply supported thick elastic beam subjected
to axial stresses. Taking into account the effects of shear deformations and thickness changes, the buck-
ling loads and buckling displacement modes of thick beams were obtained. Based on the power series
expansion of displacement components, a set of fundamental equations of a one-dimensional higher-
order beam theory was derived through the principle of virtual displacement. Several sets of truncated
approximate theories were applied to solve the eigenvalue problems for a thick beam. The convergence
properties of the buckling loads of a simply supported thick beam were examined in detail and comparison
of the results with previously published ones was made.

On the basis of the Bernoulli–Euler beam theory, the properties of free transverse vibration and buck-
ling of a double-beam system under compressive axial loading were investigated in [Zhang et al. 2008].
Explicit expressions were derived for the natural frequencies and the associated amplitude ratios of the
two beams, and analytical solutions for the critical buckling load were obtained. The influence of the
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compressive axial loading on the response of the double-beam system was discussed. It was shown that
the critical buckling load of the system was related to the axial compression ratio of the two beams
and the Winkler elastic layer, and that the properties of free transverse vibration of the system greatly
depended on the axial compressions.

Kelly and Srinivas [2009] investigated the problem concerning free vibration of a set of n axially loaded
stretched Bernoulli–Euler beams connected by elastic layers and connected to a Winkler type layer. A
normal-mode solution was applied to the governing partial differential equations to derive a set of coupled
ordinary differential equations which were used to determine the natural frequencies and mode shapes. It
was shown that the set of differential equations could be written in self-adjoint form with an appropriate
inner product. An exact solution for the general case was obtained, but numerical procedures had to be
used to determine the natural frequencies and mode shapes. The numerical procedure was difficult to
apply, especially in determining higher frequencies. For the special case of identical beams, an exact
expression for the natural frequencies was obtained in terms of the natural frequencies of a corresponding
set of unstretched beams and the eigenvalues of the coupling matrix.

Stojanović et al. [2011] studied the influence of rotary inertia and shear on the free vibration and
buckling of a double-beam system under axial loading. It was assumed that the system under consider-
ation was composed of two parallel and homogeneous simply supported beams continuously joined by
a Winkler elastic layer. Both beams had the same length. It was also supposed that the buckling could
only occur in the plane where the double-beam system lay. Explicit expressions were derived for the
natural frequencies and the associated amplitude ratio of the two beams, and the analytical solution of
the critical buckling was obtained. The influence of the characteristics of the Winkler elastic layer on
the natural frequencies and the critical buckling force was determined.

Li et al. [2008] analyzed an exact dynamic stiffness matrix which was established for an elastically
connected three-beam system, composed of three parallel beams of uniform properties with uniformly
distributed springs connecting them. The formulation included the effects of shear deformation and
rotary inertia of the beams. The dynamic stiffness matrix was derived by rigorous use of the analytical
solutions of the governing differential equations of motion of the three-beam system in free vibration.
The use of the dynamic stiffness matrix to study the three vibration characteristics of the three-beam
system was demonstrated by applying the Muller root-search algorithm.

De Rosa [1995] studied the free vibration frequencies of Timoshenko beams on a two-parameter elastic
layer. Two variants of the equation of motion were deduced, in which the second-layer parameter was a
function of the total rotation of the beam or a function of the rotation due to bending only.

Lazopoulos and Lazopoulos [2011], considering the influence of the microstructure, revisited the Tim-
oshenko beam model, invoking Mindlin’s strain gradient strain energy density function. The equations
of motion were derived and the bending equilibrium equations were discussed. The solution of the static
problem, for a simply supported beam loaded by a force at the middle of the beam, was defined and the
first (least) eigenfrequency was found.

Miranda and Taghavi [2005] presented an approximate procedure to estimate floor acceleration de-
mands in multistory buildings with the use of only a small number of parameters. Floor acceleration
demands were computed using approximations of the first three modes of vibration of the building based
on those of a continuum model consisting of a cantilever flexural beam connected laterally to a cantilever
shear beam. The models had uniform stiffness along the height.
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In this paper, the buckling instability of simply supported elastic Timoshenko beams, continuously
joined by Winkler elastic layers, subjected to the same compressive axial load is studied. The beams
have the same length l, and it is also supposed that the buckling can only occur in the plane where
the system beams lie. The model of the Timoshenko beams includes the effects of axial loading, shear
deformation, and rotary inertia. Explicit analytical expressions are determined for the critical buckling
load of single, double, and triple-beam models. The critical buckling load for the triple-beam model
is also determined using the trigonometric method. It can be observed from these expressions that the
critical buckling load depends on the Winkler elastic layer stiffness modulus K , and that the instability
of the system increases with an increase in the numbers of beams and elastic layers.

2. Formulation of the differential equations of the dynamic equilibrium and structural model

It can be seen that the literature on the dynamic analysis of elastically parallel-beam systems is concen-
trated primarily on the case of a double-beam system of two parallel simply supported beams continuously
joined by a Winkler elastic layer. Very few research papers can be found that deal with the problem related
to the elastically connected three-beam system. Those studies of this region are limited to the particular
cases of identical beams with some prescribed boundary conditions. In most of these references, the
simple Bernoulli–Euler beam theory has been used in deriving the necessary equation. Here, the basic
differential equations of motion for the analysis will be deduced by considering a Timoshenko beam of
length l (Figure 1a) subjected to an axial compressive force F , and to distributed lateral loads of intensity
q1 and q2 which vary with the distance z along the beam. This will be applied on the basis of several
assumptions:

• The behavior of the beam material is linear elastic.

• The cross-section is rigid and constant throughout the length of the beam and has one plane of
symmetry.
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Figure 1. The physical model Timoshenko beam subjected to an axial compressive force
F and to distributed lateral loads of intensity q1 and q2.
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• Shear deformations of the cross-section of the beam are taken into account while elastic axial de-
formations are ignored.

• The equations are derived bearing in mind the geometric axial deformations.

• The axial forces F acting on the ends of the beam are not changed with time.

Consider the element of length dz between two cross-sections normal to the deflected axis of the beam
(Figure 1b). Since the slope of the beam is small, the normal forces acting on the sides of the element
can be taken as equal to the axial compressive force F . The shearing force FT is related to the following
relationship:

FT = kG A
(
∂w

∂z
−ψ

)
, (1)

where w = w(z, t) is the displacement of a cross-section in the y-direction, ∂w/∂z is the global rotation
of the cross-section, ψ is the bending rotation, G is the shear modulus, A is the area of the beam cross-
section, and k is the shear factor. Analogously the relationship between bending moments M and bending
angles ψ = ψ(z, t) is given by

M =−E Ix
∂ψ

∂z
, (2)

where E is the Young’s modulus and Ix is the second moment of the area of the cross-section. Finally,
the forces and moments of inertia are given by

f I =−ρA
∂2w

∂t2 , JI =−ρ Ix
∂2ψ

∂t2 , (3)

respectively, where ρ is the mass density.
The forces acting on a differential layered-beam element are shown in Figure 1b. The dynamic-force

equilibrium conditions of these forces are given by the following equations:

ρA
∂2w

∂t2 − kG A
(
∂2w

∂z2 −
∂ψ

∂z

)
+ F

∂2w

∂z2 − q1(z)+ q2(z)= 0, (4a)

ρ Ix
∂2ψ

∂t2 − E Ix
∂2ψ

∂z2 − kG A
(
∂w

∂z
−ψ

)
= 0. (4b)

The development and solution of the differential equations of motion governing the free flexural vi-
brations of a system of three identical elastically connected beams, considering the effects of shear
deformation and rotary inertia (Figure 2).

Each beam is made of material with a Young’s modulus E and mass density ρ, and has a uniform
cross-section of area A and moment of inertia I = Ix . Each beam is subjected to the same compressive
axial loading. The first beam is connected to a Winkler layer of stiffness modulus K , and the second and
third beams are also connected by a continuous linear elastic layer of Winkler type of the same stiffness
modulus K . The transverse displacement of the beams is wi = wi (z, t), i = 1, 2, 3, and ψi = ψi (z, t),
i = 1, 2, 3, are the bending rotations. If we apply the abovementioned procedure to a differential element



BUCKLING INSTABILITIES OF ELASTICALLY. . . 367

K

l

BA

z

x

y

3
Fw (z,t)

K

HG
3F

1

Fw (z,t)
1

2

F

Fw (z,t)

K
DC

2F

Figure 2. Three identical Timoshenko beams supported on a Winkler elastic layer.

of each beam, the following set of coupled differential equations will be obtained:

ρA
∂2w1

∂t2 − kG A
(
∂2w1

∂z2 −
∂ψ1

∂z

)
+ F

∂2w1

∂z2 + 2Kw1− Kw2 = 0,

ρ I
∂2ψ1

∂t2 − E I
∂2ψ1

∂z2 − kG A
(
∂w1

∂z
−ψ1

)
= 0,

(5)

ρA
∂2w2

∂t2 − kG A
(
∂2w2

∂z2 −
∂ψ2

∂z

)
+ F

∂2w2

∂z2 − Kw1+ 2Kw2− Kw3 = 0,

ρ I
∂2ψ2

∂t2 − E I
∂2ψ2

∂z2 − kG A
(
∂w2

∂z
−ψ2

)
= 0,

(6)

ρA
∂2w3

∂t2 − kG A
(
∂2w3

∂z2 −
∂ψ3

∂z

)
+ F

∂2w3

∂z2 − Kw2+ Kw3 = 0,

ρ I
∂2ψ3

∂t2 − E I
∂2ψ3

∂z2 − kG A
(
∂w3

∂z
−ψ3

)
= 0.

(7)

3. The axial buckling load of the elastically connected identical three Timoshenko beams

The stability behavior of simply supported Timoshenko-beam systems on a Winkler elastic layer is of
great interest to both practicing engineers and researchers. The usual approach to formulating this prob-
lem is to include the layer reaction in the corresponding differential equation of the beam. The buckling
of an elastically connected simply supported Timoshenko beam under some static compressive axial
load is investigated. The analytical solution for the critical buckling load of the system is derived. The
second-order partial differential equations (5), (6), and (7) can be further reduced, by eliminating ψ1, ψ2,
and ψ3, respectively, to the following system of fourth-order partial differential equations:

E I
(

1− F
k AG

)∂4w1

∂z4 +

(
ρA+ 2 Kρ I

k AG

)∂2w1

∂t2 −
Kρ I
k AG

∂2w2

∂t2 +

(
F − 2 K E I

k AG

)∂2w1

∂z2

+
K E I
k AG

∂2w2

∂z2 −

(
ρ I + ρE I

kG
−

Fρ I
k AG

) ∂4w1

∂z2∂t2 +
ρ2 I
kG

∂4w1

∂t4 + 2Kw1− Kw2 = 0, (8a)
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E I
(
1− F

k AG

)∂4w2

∂z4 −
Kρ I
k AG

∂2w1

∂t2 +

(
ρA+2 Kρ I

k AG

)∂2w2

∂t2 −
Kρ I
k AG

∂2w3

∂t2 +
KE I
k AG

∂2w1

∂z2 +

(
F−KE I

k AG

)∂2w2

∂z2

+
K E I
k AG

∂2w3

∂z2 −

(
ρ I + ρE I

kG
−

Fρ I
k AG

) ∂4w2

∂z2∂t2 +
ρ2 I
kG

∂4w2

∂t4 − Kw1+ 2Kw2− Kw3 = 0, (8b)

E I
(

1− F
k AG

)∂4w3

∂z4 −
Kρ I
k AG

∂2w2

∂t2 +

(
ρA+ Kρ I

k AG

)∂2w3

∂t2 +
K E I
k AG

∂2w2

∂z2 +

(
F − K E I

k AG

)∂2w3

∂z2

−

(
ρ I + ρE I

kG
−

Fρ I
k AG

) ∂4w3

∂z2∂t2 +
ρ2 I
kG

∂4w3

∂t4 − Kw2+ Kw3 = 0. (8c)

The initial conditions in general form and the boundary conditions for simply supported beams of the
same length l are assumed as follows:

wi (z, 0)= wi0(z), ẇi (z, 0)= vi0(z), ψi (z, 0)= ψi0(z), ψ̇i (z, 0)= ωi0(z), (9)

wi (z, 0)= w′′i (0, t)= wi (l, 0)= w′′i (l, t)= 0, i = 1, 2, 3. (10)

Assuming time-harmonic motion and using the separation of variables and the solutions of (8), the
governing boundary conditions (10) can be written in the form

wi (z, t)=
∞∑

n=1

Xn(z)Tin(t), i = 1, 2, 3, (11)

where Tin(t), i = 1, 2, 3, is the unknown time function and Xn(z) is the known mode shape function for
a simply supported single beam, which is defined as

Xn(x)= sin(knz), kn = nπ/ l, n = 1, 2, 3, . . . . (12)

Introducing the general solutions (11) into (8) one gets the system of ordinary differential equations

∞∑
n=1

{
1

C2
s

d4T1n

dt4 +

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
d2T1n

dt2

−
H
C2

s

d2T2n

dt2 +

[
C2

bk4
n + (2H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]
T1n − H

(
1+

C2
b

C2
s C2

r
k2

n

)
T2n

}
= 0, (13a)

∞∑
n=1

{
1

C2
s

d4T2n

dt4 −
H
C2

s

d2T1n

dt2 +

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
d2T2n

dt2 −
H
C2

s

d2T3n

dt2

−H
(

1+
C2

b

C2
s C2

r
k2

n

)
T1n+

[
C2

bk4
n+(2H−Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]
T2n−H

(
1+

C2
b

C2
s C2

r
k2

n

)
T3n

}
= 0, (13b)

∞∑
n=1

{
1

C2
s

d4T3n

dt4 −
H
C2

s

d2T2n

dt2 +

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(H − Fη)

]
d2T3n

dt2

− H
(

1+
C2

b

C2
s C2

r
k2

n

)
T2n +

[
C2

bk4
n + (H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]
T3n

}
= 0, (13c)
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where

H = K
ρA

, η =
k2

n

ρA
.

The coefficients

Cb =

√
E I
ρA

, Cs =

√
G Ak
ρ I

, Cr =

√
I
A
,

related to the bending stiffness, shear stiffness, and rotational effects, respectively, are now introduced.
The shear beam model, the Rayleigh beam model, and the simple Euler beam model can be obtained
from the Timoshenko beam model by setting Cr to zero (that is, ignoring the rotational effect), Cs to
infinity (ignoring the shear effect), and setting both Cr to zero and Cs to infinity, respectively.

The solutions of (13a), (13b), and (13c) can be assumed to have the following forms:

T1n = A1ne jωn t , T2n = A2ne jωn t , T3n = A3ne jωn t , j =
√
−1, (14)

where ωn denotes the natural frequency of the system. Substituting (14) into (13) results in the following
system of homogeneous algebraic equations for the unknown constants A1n , A2n , and A3n:{
ω4

n

C2
s
−

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
ω2

n +

[
C2

bk4
n + (2H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]}
A1n

+ H
[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A2n = 0, (15a)

H
[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A1n +

{
ω4

n

C2
s
−

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(2H − Fη)

]
ω2

n

+

[
C2

bk4
n + (2H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]}
A2n + H

[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A3n = 0, (15b)

H
[
ω2

n

C2
s
−

(
1+

C2
b

C2
s C2

r
k2

n

)]
A2n +

{
ω4

n

C2
s
−

[
1+C2

r k2
n

(
1+

C2
b

C2
s C4

r

)
+

1
C2

s
(H − Fη)

]
ω2

n

+

[
C2

bk4
n + (H − Fη)

(
1+

C2
b

C2
s C2

r
k2

n

)]}
A3n = 0. (15c)

Equations (15) have nontrivial solutions when the determinant of the system matrix coefficients of A1n ,
A2n , and A3n is zero. This yields the following frequency (characteristic) equation, which is a twelfth-
order polynomial in ωn . When the natural frequency of the system vanishes under the axial loading, the
system begins to buckle. By introducing ωn = 0 into (15) expressed in matrix form one getsx + 2RH −H R 0

−H R x + 2RH −H R
0 −H R x + RH


A1n

A2n

A3n

= 0, (16)

where

R = 1+
C2

b

C2
s C2

r
k2

n, x = C2
bk4

n − RFη. (17)
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The existence of nontrivial solutions for A1n , A2n , and A3n requires that the determinant of the coefficient
matrix vanish. This gives the cubic characteristic equation x3

+ 5RH x2
+ 6(RH)2x + (RH)3 = 0, or( x

RH

)3
+ 5

( x
RH

)2
+ 6

( x
RH

)
+ 1= 0. (18)

Solution of the characteristic equation. We solve (18) using a standard method. Denote the coefficients
by a0 = 1, a1 = 5, a2 = 6, and a3 = 1, and set

p =
a2

a0
−

a2
1

3a2
0

and q =
a3

a0
−

a1a2

3a2
0
+

2a3
1

27a3
0

. (19)

The discriminant D = 1
4q2
+

1
27 p3 is negative, so there are three roots for x/(RH), given by

−
a1

3a0
+ 2

√
−

p
3

cos θ+2kπ
3

, with θ = cos−1
[
−

q
2

(
−

p
3

)− 3
2
]

and k = 0, 1, 2.

Thus the roots are
x1

RH
=−0.19806,

x2

RH
=−1.55496,

x3

RH
=−3.24698. (20)

Substituting into (17), we obtain the buckling loads for different vibration modes n:

F I
b =

0.198062H
η

+
C2

bk4
n

Rη
, F II

b =
1.554962H

η
+

C2
bk4

n

Rη
, F III

b =
3.24698H

η
+

C2
bk4

n

Rη
. (21)

As can be seen, the values of the buckling loads F I
b, F II

b , and F III
b are positive and F I

b < F II
b < F III

b . Thus
F I

b is the critical buckling load:

Fcr
b =

0.198062Kl2

π2n2 +
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

). (22)

For K = 0 from (22) we obtain

Pn =
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

),
which is the critical buckling load corresponding to the number n of the Timoshenko beams as shown in
[Timoshenko and Gere 1964, p. 134]. Setting n = 1 in the preceding equation we obtain

P =
E Iπ2

l2

(
1+ E I

G Ak
π2

l2

).
This is the smallest load at which the beam ceases to be in stable equilibrium.

Remark. An alternative, but equivalent, method of solution is given in [Rašković 1965, pp. 157–166].



BUCKLING INSTABILITIES OF ELASTICALLY. . . 371

Fw (z,t)

K

l

BA

z1

x

2

F

y

Fw (z,t)

K

DC
2F

1

Fw (z,t)

K

l

BA

z1

x

1

F

y

Figure 3. Left: system with two identical Timoshenko beams supported on a Winkler
elastic layer. Right: analogous system with a single Timoshenko beam.

Critical buckling load for system with fewer Timoshenko beams. The preceding analysis was also ap-
plied to a system with two beams instead of three (Figure 3, left) and a system with a single beam
resting on a Winkler elastic layer (Figure 3, right). The computation is easier in these cases, in that the
characteristic equation is quadratic or linear, respectively. For the case of two beams we get

F I
b =

0.382H
η
+

C2
bk4

n

Rη
, F II

b =
2.618H
η
+

C2
bk4

n

Rη
;

thus F I
b is the critical buckling load corresponding to vibration mode n for this system:

Fcr
b =

0.382Kl2

π2n2 +
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

). (23)

For the case of a single beam we have

Fcr
b =

Kl2

π2n2 +
E Iπ2n2

l2

(
1+ E I

G Ak
π2n2

l2

). (23a)

4. Numerical results

We ran numerical calculations for the system with parameters

E = 1× 1010 Nm−2, G = 0.417× 1010 Nm−2, k = 5/6, K0 = 2× 105 Nm−2,

ρ = 2× 103 kgm−3, l = 10 m, A = 5× 10−2 m2, I = 4× 10−4 m4,
(24)

as in [Zhang et al. 2008]. If we introduce a nondimensional value ξ = h/ l, the ratio of the cross-sectional
height h to the beam length l, we can write the surface and moment of inertia of the cross-section of the
beam as a function of the nondimensional value ξ as

A = h2
= (ξ l)2, I = h4

12
=
(ξ l)4

12
. (25)

The change in the critical buckling load in the function of the nondimensional value ξ is given in Figures 4
and 5. These diagrams represent the variation of the critical buckling load for systems with triple, double,
and single Timoshenko beams obtained by analytical expressions (22), (23), and (23a) for the different
parameters of the system (24). Figure 4 shows the diagrams obtained for different values of the stiffness
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Figure 4. Effect of the nondimensional value ξ on the critical buckling load Fcr
b for

different values of K and n = 1.

modulus K = 0.5K0, K0, and 1.5K0 and for vibration mode n = 1. It can be seen that the critical
buckling load increases with an increase in the stiffness modulus K . Figure 5 shows diagrams of the
critical buckling load for different values of the vibration mode n = 1, 2, 3, and for stiffness modulus
K = K0. It can be seen that the critical buckling load decreases with an increase in the vibration mode n.

In Figure 6, the static stability regions for the first vibration mode n = 1 are represented for systems
with triple, double, and single Timoshenko beams supported on a Winkler elastic layer. It can be seen
that the static stability region is largest in the case of a single beam. For the system with two beams, the
static stability region is reduced, and even more so for three beams.
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Using equation (22)

Using equation (23a)
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Figure 5. Effect of the nondimensional value ξ on the critical buckling load Fcr
b for

different values of n and K = K0.
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Figure 6. Influence of the stiffness modulus K on the static stability region for n = 1.

Conclusions

In the present paper, the equations of dynamic equilibrium and the equations of natural vibration of
a triple Timoshenko beam elastically connected to a Winkler elastic layer are formulated. In order to
derive these equations, the influence of constant axial forces at the ends of the same beams (second-
order theory), as well as the influence of the elastic layer on the beams, are taken into account. Using the
classical Bernoulli–Fourier method, the solutions of the differential equations of motion for the system
are formulated. The explicit expressions for the critical buckling loads of the systems with triple, double,
and single Timoshenko beams are obtained. The critical buckling load for the triple-beam model is also
determined using the trigonometric method. The thus determined values for the critical buckling load are
only slightly different from the values determined by the numerical solution of the characteristic equation.
It is observed from the numerical results that the static stability region is influenced by the Winkler layer
of stiffness modulus K and the number of Timoshenko beams. The static stability region of the triple
and double-Timoshenko-beam systems is always smaller than that of the single-beam system. It can be
concluded that an increase in the number of elastically connected Timoshenko beams leads to a reduction
of the static stability region for the same system parameters.
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