Vol. 7, No. 4, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 4, 541–649
Issue 4, 541–572
Issue 3, 303–540
Issue 2, 157–302
Issue 1, 1–156

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 8 issues

Volume 7, 10 issues

Volume 6, 9 issues

Volume 5, 6 issues

Volume 4, 10 issues

Volume 3, 10 issues

Volume 2, 10 issues

Volume 1, 8 issues

The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
ISSN (electronic): 1559-3959
ISSN (print): 1559-3959
Author index
To appear
Other MSP journals
Thereotical solutions of adhesive stresses in bonded composite butt joints

Gang Li

Vol. 7 (2012), No. 4, 323–346

In this paper, closed-form solutions for the adhesive stresses in bonded composite single-strap butt joints have been obtained. Two strategies were used for deriving the adhesive peel stress. The solutions are applicable to a butt joint made from different adherend and doubler laminates, as well as the unbalanced single-lap joints. In addition, three-dimensional finite element models of the unit-width composite joints were created for analyzing the adhesive stresses under a plane strain condition. A total of six joint conditions, three joint configurations and each with two layup sequences, were studied. Consistency in the peel stress predictions was obtained from the two theoretical strategies. Good agreement has been achieved between the theoretical and finite element results. The effects of the doubler thickness and laminate layup sequence on the adhesive stress variation can be displayed. The theoretical solution would provide a solid foundation for supporting the practical composite joint assessment.

adhesive stresses, closed-form solutions, composite single-strap butt joint, finite element analysis
Mathematical Subject Classification 2010
Primary: 00A05
Received: 1 September 2011
Revised: 24 November 2011
Accepted: 13 January 2012
Published: 26 July 2012
Gang Li
Structures Group, Aerospace Portfolio
National Reseach Council Canada
M-3, 1200 Montreal Road
Ottawa ON K1A 0R6