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The static characteristics of an exponentially inhomogeneous plate under a transverse uniform loading
and exposed to hygrothermal conditions are studied. The elastic coefficients, thermal coefficient and
moisture expansion coefficient of the plate are assumed to be exponentially graded in the thickness direc-
tion. The trigonometric shear deformation theory solution is presented. In this solution, the initial terms
of a power series through the plate thickness are used for the displacements in addition to other trigono-
metric terms. The effect due to transverse shear deformations is included. A number of examples will be
solved to illustrate the numerical results concerning bending response of homogeneous and exponentially
graded rectangular plates subjected to hygrothermomechanical effects. The influences of temperature,
moisture concentration, transverse shear deformation, plate aspect ratio, and the exponentially graded
parameter on the bending response are investigated.

1. Introduction

The analysis of the rectangular plates subjected to moisture and temperature effects has been the subject
of research interest of many investigators. Moisture and temperature may be distributed through the
volume of the structure and may induce residual stresses and extensional strains. These residual stresses
and extensional strains may also affect the gross performance of the structure. In particular, the bending
characteristics, buckling loads and vibration frequencies can be modified by the presence of moisture,
temperature or both. Therefore, to utilize the full potential of advanced structures, it will be necessary
to analyze the effects of moisture and temperature in composite structural components.

The vibration characteristics of thick isotropic rectangular plates under an arbitrary state of initial stress
were investigated in [Herrmann and Armenakas 1962; Brunelle and Robertson 1974; 1976]. Adams and
Miller [1977], Ishikawa et al. [1978] and Strife and Prewo [1979] have studied the effect of environment
on the material properties of composite materials and observed that it has significant effect on strength
and stiffness of the composites. Therefore, there is a need to understand the behavior of composite
structures subjected to hygrothermal conditions. Whitney and Ashton [1971] have used the classical
laminate plate theory to study the hygrothermal effects on bending, buckling and vibration of composite
laminated plates using the Ritz method and neglecting the transverse shear deformation. Pipes et al.
[1976] have presented the distribution of in-plane stresses through the thickness of symmetric laminates
subjected to moisture absorption and desorption. Yang and Shieh [1987] have considered the free vibra-
tion of antisymmetric cross-ply laminates in presence of a non-uniform initial stress, where the effects
of transverse shear and rotary inertia were also included. Sai Ram and Sinha [1991; 1992] have studied
the hygrothermal effects on the bending and free vibration behavior of laminated composite plates using
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the first-order shear deformation theory and employing finite element method. The effects of moisture
and temperature on the deflections and stress resultants are presented for simply supported and clamped
antisymmetric cross-ply and angle-ply laminates using reduced lamina properties at elevated moisture
concentration and temperature. Lee et al. [1992] have studied the influence of hygrothermal effects on
the cylindrical bending of symmetric angle-ply laminated plates subjected to uniform transverse load
for different boundary conditions via classical laminated plate theory and von Karman’s large deflection
theory. The material properties of the composite are assumed to be independent of temperature and
moisture variation. It has been observed that the classical laminated plate theory may not be adequate
for the analysis of composite laminates even in the small deflection range.

Many studies, based on classical plate theory, of thin rectangular plates subjected to mechanical or
thermal loading or their combinations as well as the hygrothermal effects are available in the literature
[Whitney and Ashton 1971; Sai Ram and Sinha 1992]. However, studies of temperature and moisture
effects on the bending of rectangular plates based on the shear deformation theories are limited in number,
and all these studies assumed perfectly initial configurations [Pipes et al. 1976; Yang and Shieh 1987; Sai
Ram and Sinha 1991; 1992]. The classical laminated plate theory and the first-order shear deformation
plate theory are typical deformation theories for the analysis of laminated composite plates. The classical
theory neglects the shear stresses while the first order theory assumes a constant transverse shear strain
across the thickness direction, and a shear correction factor is generally applied to adjust the transverse
shear stiffness for the static and stability analyses. However, some investigations showed that the bending
and postbuckling responses of rectangular plates are sensitive to the choice of the shear correction factor.

To avoid the use of shear correction factor, various higher-order theories have been proposed to predict
the bending response of rectangular plates. Shen [2001] has investigated the influence of hygrothermal
environment on postbuckling behaviors of laminated plates based on Reddy’s [1997] higher-order plate
theory, considering the effects of temperature and moisture on the material properties. Patel et al. [2002]
have studied the static and dynamic response of the thick laminated composite plates under hygrothermal
environment based on a higher order theory. Rao and Sinha [2004] have studied the effects of moisture
and temperature on the bending characteristics of thick multidirectional fibrous composite plates. The
finite element analysis accounts for the hygrothermal strains and reduced elastic properties of multidirec-
tional composites at an elevated moisture concentration and temperature. Deflections and stresses have
been evaluated for thick multidirectional composite plates under uniform and linearly varying through-
the-thickness moisture concentration and temperature. Results reveal the effects of fiber directionality
on deflection and stresses. Wang et al. [2005] have studied the response of dynamic interlaminar stresses
in laminated composite plates with piezoelectric layers using an analytical approach. Benkhedda et al.
[2008] have proposed an analytical approach to calculate the hygrothermal stresses in laminated compos-
ite plates, and took into account the change of mechanical characteristics due to moisture and temperature.
In their study, the distribution of the transient in-plane stresses through the thickness of laminates is
presented, whereas the transverse stresses were not taken into account. Lo et al. [2010] have developed
a global-local higher order theory to study the response of laminated plates exposed to hygrothermal
environment. Recently, Zenkour [2010] has presented a hygrothermal bending analysis for a functionally
graded material (FGM) plate resting on elastic foundation.

From the literature reviewed, it can be found that research on local hygrothermal stresses of exponen-
tially graded material (EGM) plates subjected to temperature and moisture effects seems to be lacking,
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which is the problem to be addressed in this paper. It is to be noted that, moisture and temperature have
an adverse effect on the performance of composites. Stiffness and strength are reduced with the increase
in moisture concentration and temperature. However, the discussion on the change of global and local
response with respect to material variation due to elevated temperatures and moisture concentrations
has been less reported in the published literature. In this article, a trigonometric shear deformation plate
theory is developed to study the response of exponentially graded rectangular plates exposed to hygrother-
mal conditions. The present theory satisfies the continuity conditions of transverse shear stresses through
the plate thickness. The analysis takes into account the change of material properties and a change in
moisture concentrations through the plate thickness. Relationships between displacements/stresses and
temperature or moisture concentrations have been studied under different hygrothermal conditions

The objective of this investigation is to present a general hygrothermal formulation for EGM plates
using the sinusoidal shear deformation theory [Zenkour 2004a; 2004b; 2006; 2009]. The model has been
developed within the phenomenological approach, where the effect of temperature and moisture has been
taken into account at constitutive level. The governing partial differential equations are reduced to a set
of coupled ordinary differential equations in the thickness direction. Numerical results for displacements
and stresses are presented for homogeneous and EGM plates subjected to hygrothermomechanical effects.
To make the study reasonably, displacements and stresses are given for different environment parameters
and homogenization schemes as well as exponents in the power-law that describes through-the-thickness
variation of the plate.

2. Mathematical model

Consider a rectangular plate of length a, width b and thickness h made of an exponentially graded
material (EGM). The plate is subjected to a distributed transverse static mechanical load q(x, y) and a
temperature field T (x, y, z) as well as a moisture concentration C(x, y, z). The sinusoidal plate theory
is presented for the small displacement and the corresponding small strains. The material properties
P of the EGM plate, such as Young’s modulus and the thermal and moisture expansion coefficients are
assumed to be functions of the thickness of the plate. The present plate is supported at four edges defined
in the (x, y, z) coordinate system with x- and y-axes located in the middle plane (z = 0) and its origin
placed at the corner of the plate as shown in Figure 1. An exponential relationship between the material
property P̄ and z for the EG plate is assumed as in [Zenkour 2005]:

P̄ = P̄(z)= P̄0e−η(z/h)k , (1)
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Figure 1. Geometry and coordinate system of the EGM plate under uniform load.
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where P̄0 is the corresponding property of the homogeneous plate, and η and k are geometric parameters.
The value of η equals to zero represents a fully homogeneous plate. The above exponential law assump-
tion reflects a simple rule of mixtures applies only to the thickness direction. The power law exponents,
η and k, may be varied to obtain different distributions of the components materials through the thickness
of the plate.

The total potential energy of the present EGM rectangular plate may be expressed as

5=Ustr−Wext−Wint, (2)

where Ustr is the strain energy of the EGM plate, Wext is the work of external forces, and Wint is the work
of internal forces. They are given by

Ustr =

∫
V0

σi jεi j dV, (3a)

Wext =

∫
S0

pi ui d S, (3b)

Wint =

∫
V0

X i ui dV, (3c)

where σi j is the Cauchy stress tensor, εi j is the small strain tensor, pi are the external applied loads, ui are
the displacements in the spatial frame, and X i are the body forces per unit initial volume. The general
governing equations of equilibrium are obtained by employing the principle of virtual displacements.
The stresses and applied loads are assumed to be constants.

The displacements of a material point located at (x, y, z) in the EGM plate may be written as follows
[Zenkour 2004a; 2004b; 2006; 2009]:

u1(x, y, z)= u− z ∂w/∂x +9(z)φ1,

u2(x, y, z)= v− z ∂w/∂y+9(z)φ2,

u3(x, y, z)= w,

 (4)

where u, v, and w are the displacements of the middle surface along the axes x , y and z, respectively,
and φ1 and φ2 are the rotations about the y and x axes and account for the effect of transverse shear.
The coefficient of φ1 and φ2 which is given by 9(z) should be odd function of z. All of the generalized
displacements (u, v, w, φ1, φ2) are functions of the (x, y). The displacements of the classical thin plate
theory (CPT) is obtained easily by setting 9(z)= 0. The displacements of the first-order shear deforma-
tion plate theory (FPT) is obtained by setting 9(z)= z. In addition, the higher-order shear deformation
plate theory (HPT) [Reddy 2000] is obtained by setting

9(z)= z
[
1− 4

3

( z
h

)2]
. (5)

Also, the sinusoidal shear deformation plate theory (SPT) is obtained by setting (see [Zenkour 2004a;
2004b; 2006; 2009])

9(z)= h
π

sin π z
h
. (6)
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Note that the present SPT, as well as HPT, is simplified by enforcing traction-free boundary conditions
at the plate faces. The SPT accounts according to a cosine-law distribution of the transverse shear
deformation through the thickness of the EGM plate. The SPT, HPT and FPT contain the same number
of dependent unknowns. No transversal shear correction factors are needed for both SPT and HPT
because a correct representation of the transversal shearing strain is given.

The six strain components εi j compatible with the displacement field in (4) are
ε11

ε22

ε12

=

ε0

11
ε0

22
ε0

12

+ z


κ11

κ22

κ12

+9(z)

θ11

θ22

θ12

 , ε33 = 0,
{
ε23

ε13

}
=9(z),3

{
ε0

23
ε0

13

}
, (7)

where

ε0
11 = u,1, ε0

22 = v,2, ε0
23 = φ2, ε0

13 = φ1, ε0
12 = v,1+ u,2, (8)

κ11 =−w,11, κ22 =−w,22, κ12 =−2w,12, θ11 = φ1,1, θ22 = φ2,2, θ12 = φ2,1+φ1,2. (9)

The stress-strain relations for a linear isotropic elastic plate are given by{
σ11

σ22

}
=

E(z)
1− ν2

[
1 ν

ν 1

]{
ε11−α1T −β1C
ε22−α1T −β1C

}
, {σ23, σ13, σ12} =

E(z)
2(1+ ν)

{ε23, ε13, ε12}, (10)

where E is Young’s modulus, ν is Poisson’s ratio, α and β are the thermal and moisture expansion
coefficients, 1T = T − T0 in which T is the applied temperature and T0 is the reference temperature, and
1C = C −C0 in which C is the moisture concentration and C0 is the reference moisture concentration.

The applied temperature distribution T (x, y, z) and the moisture concentration C(x, y, z) through the
thickness are assumed, respectively, to be

T (x, y, z)= T1(x, y)+
z
h

T2(x, y)+
9(z)

h
T3(x, y),

C(x, y, z)= C1(x, y)+
z
h

C2(x, y)+
9(z)

h
C3(x, y).

(11)

3. Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual displacements.
The equilibrium equations associated with the present sinusoidal shear deformation theory are

N1,1+ N12,2 = 0, (12a)

N12,1+ N2,2 = 0, (12b)

M1,11+ 2M12,12+M2,22+ q = 0, (12c)

S1,1+ S12,2− Q13 = 0, (12d)

S12,1+ S2,2− Q23 = 0, (12e)

where the stress and moment resultants (N1, N2, N12,M1,M2,M12, S1, S2, S12, Q13, Q23) of the FGM
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plate can be obtained by integrating (10) over the thickness, and are written as
Ni

Mi

Si

= 1
1−ν2

A1
11 A1

12 A1
13

A1
12 A1

22 A1
23

A1
13 A1

23 A1
33


ε̄0

i
κ̄i

θ̄i

+ 1
ν−1

Aα11 Aα12 Aα13
Aα12 Aα22 Aα23
Aα13 Aα23 Aα33


T ∗1
T ∗2
T ∗3

+ 1
ν−1

Aβ11 Aβ12 Aβ13
Aβ12 Aβ22 Aβ23
Aβ13 Aβ23 Aβ33




C∗1
C∗2
C∗3

,
(13a)

N12

M12

S12

= 1
2(1+ ν)

A1
11 A1

12 A1
13

A1
12 A1

22 A1
23

A1
13 A1

23 A1
33


ε0

12
κ12

η12

, (13b)

and {
Q13

Q23

}
=

B
2(1+ ν)

{
ε0

13
ε0

23

}
, (13c)

where i = 1, 2 and
ε̄0

1 = ε
0
11+ νε

0
22, ε̄0

2 = ε
0
22+ νε

0
11,

κ̄1 = κ11+ νκ22, κ̄2 = κ22+ νκ11,

θ̄1 = θ11+ νθ22, θ̄2 = θ22+ νθ11,

T ∗1 = T1− T0, C∗1 = C1−C0,

T ∗j = T j/h, C∗j = C j/h, j = 2, 3.

(14)

In (13a)–(13c), N1, N2, and N12 and M1, M2, and M12 are the basic components of stress resultants and
stress couples; S1, S2, and S12 are additional stress couples associated with the transversal shear effects;
and Q13 and Q23 are transversal shear stress resultants. The coefficients Aγrs(γ = 1, α, β; r, s = 1, 2, 3)
are defined by

{Aγ11, Aγ12, Aγ22} =

∫
+h/2

−h/2
γ E{1, z, z2

} dz, {Aγ13, Aγ23, Aγ33} =

∫
+h/2

−h/2
γ9E{1, z, 9} dz,

B = K̄
∫
+h/2

−h/2
E(9,3)2 dz,

(15)

where K̄ is the shear correction factor for FPT, taken to be 5
6 .

4. Exact solutions for EGM plates

The determination of transverse deflections and stresses are of fundamental importance in the design of
many structural components. An exact closed-form solution to (12a)–(12e) can be constructed when the
plate is of a rectangular geometry (Figure 1) with the following edge conditions, loading and displace-
ments.

4.1. Boundary conditions. The following set of simply supported boundary conditions along the edges
of the plate is considered:

v = w = φ2 = N1 = M1 = S1 = 0 at x = 0, a,

u = w = φ1 = N2 = M2 = S2 = 0 at y = 0, b,
(16)
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4.2. Loading and displacements. Rectangular plates are generally classified in accordance with the type
support used in the absence of the body forces and lateral loads except the external force q(x, y). We
are here concerned with the exact solutions of (12a)–(12e) for simply supported FGM plate. To solve
this problem, Navier presented the uniform external force and the transverse uniform temperature and
moisture concentration loads in the form of a double trigonometric series

q
Ti

Ci

=
∞∑

m,n=1,3,5,...


q0

ti
ci

 16
mnπ2 sin(λx) sin(µy), (i = 1, 2, 3), (17)

where λ= mπ/a, µ= nπ/b, m and n are mode numbers, q0 represents the intensity of the load at the
plate center, ti and ci are constants.

Following the Navier solution procedure, we assume the following solution form for (u, v, w, φ1, φ2)

that satisfies the simply supported boundary conditions,
u
v

w

φ1

φ2

=
∞∑

m,n=1,3,5,...


Umn cos(λx) sin(µy)
Vmn sin(λx) cos(µy)
Wmn sin(λx) sin(µy)
Xmn cos(λx) sin(µy)
Ymn sin(λx) cos(µy)

 , (18)

where Umn , Vmn , Wmn , Xmn , and Ymn are arbitrary parameters to be determined subjected to the condition
that the solution in (18) satisfies the differential equations, (12a)–(12e). Substituting (18) into (12a)–
(12e), one obtains

[P]{1} = {F}, (19)

where {1} and {F} denote the columns given by

{1}T = {Umn, Vmn,Wmn, Xmn, Ymn}, {F}T = {F1, F2, F3, F4, F5}. (20)

The elements Pi j of the coefficient matrix [P] and the elements Fi of the load vector {F} are given in
the Appendix.

Moreover, substituting (7) into (10) with the help of (18), one can obtain the stress components σi j in
terms of Young’s modulus and the arbitrary parameters Umn , Vmn , Wmn , Xmn , and Ymn as follows:

σ11 =−E(z)
∞∑

m,n=1,3,5,...

{
1

1−ν2

(
λUmn + νµVmn − z(λ2

+ νµ2)Wmn +9(z)(λXmn + νµYmn)
)

+
α(z)

(1−ν)h
(
h(t1−T0)+zt2+9(z)t3

)
+

β(z)
(1−ν)h

(
h(c1−C0)+zc2+9(z)c3

)}
sin(λx) sin(µy),

(21a)

σ22 =−E(z)
∞∑

m,n=1,3,5,...

{
1

1−ν2

(
νλUmn +µVmn − z(νλ2

+µ2)Wmn +9(z)(νλXmn +µYmn)
)

+
α(z)

(1−ν)h
(
h(t1−T0)+zt2+9(z)t3

)
+

β(z)
(1−ν)h

(
h(c1−C0)+zc2+9(z)c3

)}
sin(λx) sin(µy),

(21b)
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σ23 =
E(z)

2(1+ν)

∞∑
m,n=1,3,5,...

9(z),3Ymn sin(λx) cos(µy), (21c)

σ13 =
E(z)

2(1+ν)

∞∑
m,n=1,3,5,...

9(z),3 Xmn cos(λx) sin(µy), (21d)

σ12 =
E(z)

2(1+ν)

∞∑
m,n=1,3,5,...

(
µUmn + λVmn − 2zλµWmn +9(z)(µXmn + λYmn)

)
cos(λx) cos(µy). (21e)

5. Numerical results

The flexural response of EGM plates subjected to uniform transverse pressure in hygrothermal environ-
ment is studied and the results are depicted in graphical form in Figures 2–5. The material properties
of the composite material are considered to be dependent on temperature and moisture. The material
properties are taken in the analysis at the reference temperature T0 = 21◦C (room temperature) and

η Theory k = 1 k = 2
w∗ σ1 σ5 w∗ σ1 σ5

0.0 CPT 1.37568 1.13905 — 1.37568 1.13905 —
FPT 1.41072 1.13905 0.83759 1.41072 1.13905 0.83759
HPT 1.41071 1.16220 1.03274 1.41071 1.16220 1.03274
SPT 1.41065 1.16329 1.06316 1.41065 1.16329 1.06316

0.5 CPT 1.39072 1.10461 — 1.42831 1.09636 —
FPT 1.42540 1.10461 0.82893 1.46481 1.09636 0.87263
HPT 1.42556 1.12654 1.06057 1.46418 1.11202 1.01562
SPT 1.42552 1.12785 1.09444 1.46410 1.11235 1.04159

1.0 CPT 1.43690 1.06625 — 1.48857 1.04696 —
FPT 1.47052 1.06625 0.80368 1.52655 1.04696 0.90790
HPT 1.47118 1.09251 1.14760 1.52531 1.05738 1.00654
SPT 1.47116 1.09458 1.19207 1.52519 1.05720 1.02878

1.5 CPT 1.51752 1.03519 — 1.55630 0.99370 —
FPT 1.54948 1.03519 0.76393 1.59576 0.99370 0.94335
HPT 1.55089 1.06756 1.30451 1.59391 1.00052 1.00418
SPT 1.55092 1.07050 1.36763 1.59378 0.99999 1.02332

2.0 CPT 1.63862 1.01769 — 1.63137 0.93864 —
FPT 1.66843 1.01769 0.71272 1.67232 0.93864 0.97893
HPT 1.67080 1.05580 1.54971 1.66988 0.94305 1.00744
SPT 1.67089 1.05943 1.64112 1.66972 0.94231 1.02400

Table 1. Effects of the exponents k and η on the deflection w∗ and stresses σ1 and σ5

for EGM rectangular plate using various theories (t2 = 10, c2 = 1, t3 = c3 = 0).
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moisture concentration C0 = 0% as follows:

E = 3.45 GPa, ν = 0.35, α = 72.0× 10−6/◦C, β = 0.33.

Many examples have been solved numerically using the following fixed data: (unless otherwise stated)
q0 = 100, a = 10h, b = 2a, k = 2, t1 = t2 = 0, c1 = c2 = 0. The plate is assumed to be simply supported
on all four edges. Numerical results are presented in terms of nondimensional stresses and deflection.
The various nondimensional parameters used are

w∗ =
102 D
a4q0

w
(a

2
,

b
2

)
, σ1 =

1
102q0

σ11

(a
2
,

b
2
,

z
h

)
, σ5 =−

1
10q0

σ13

(
0, b

2
,

z
h

)
,

σ6 =
1

102q0
σ12

(
0, 0, z

h

)
, D =

h3 E0

12(1− ν2)
.

The longitudinal stress σ1, the transverse shear stress σ5 and the in-plane shear stress σ6 are computed at
z = h/2, z = 0 and z =−h/2, respectively. For the sake of completeness, Table 1 on the previous page
shows results of the present sinusoidal plate theory (SPT) are compared with those obtained using HPT,

 

 

 

 

* a

K  

   

Figure 2. Dimensionless center deflection w∗ versus the aspect ratio b/a of an EGM
plate for various values of the power-law exponent η: (a) t3 = c3 = 0; (b) t3 = 10, c3 = 1;
(c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.
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FPT, and CPT for the deflection w∗, the in-plane longitudinal stress σ1 and the transverse shear stress
σ5 in bending of EGM plates under uniformly distributed loading. The deflection w∗ increases with an
increase in the exponent k or in η. The stresses σ1 and σ5 increase as k increases, but decrease as η
increases. It is to be noted that the CPT gives the same in-plane longitudinal stress σ1 as that of the FPT.

The effects of temperature, moisture concentration and their combination on the nondimensional
bending response of the EGM plate are shown in Figures 2–5. The effect of the EG parameter η on the
center deflection and stresses for different values of the thermal and moisture concentration parameters is
investigated. The variation of the center deflection versus the aspect ratio b/a for homogeneous (η = 0)
and EGM plates is presented in Figure 2. It is observed that central deflection increases with increase in
moisture concentration, temperature and increase in both simultaneously. The increase is highest when
hygrothermal condition is taken and it is least when only effect of temperature is considered. It is also
noted that the deflection increases with the increase of b/a and η.

The distribution of the in-plane longitudinal stress σ1 through-the-thickness of the homogeneous
(η = 0) and EGM plates is displayed in Figure 3. The longitudinal stress is no longer linear through-
the-thickness of the EGM plates in the absence of the hygrothermal parameters in which the stresses
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Figure 3. Dimensionless in-plane normal stress σ1 through-the-thickness of a rectangu-
lar plate (b/a = 2) for various values of the power-law exponent η: (a) t3 = c3 = 0; (b)
t3 = 10, c3 = 1; (c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.
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still tensile through the plate thickness. The longitudinal stress becomes compressive near the bottom
base of the plate, especially for η 6= 0. The behavior of stress is very sensitive to the variation of η. The
homogeneous plate yields the maximum longitudinal stress through-the-thickness of the plate and this
irrespective of the values of the hygrothermal parameters.

The distribution of the transverse shear stress σ5 through-the-thickness of the homogeneous (η = 0)
and EGM plates is displayed in Figure 4. The minimum shear stress occurs at the mid-plane of the
homogeneous and EGM plates and the stress still symmetric through the plate thickness. In the absence of
the hygrothermal parameters the shear stress is maximum for homogeneous plate in the interval −0.21≤
z/h ≤ 0.21. This interval is decreased to be −0.13 ≤ z/h ≤ 0.13 when t3 = 10 and c3 = 1. For other
cases (t3 = 15, c3 = 2 and t3 = 20, c3 = 3), the shear stress of the homogeneous plate is the smallest one.

Figure 5 show that the in-plane shear stress σ6 is linearly distributed through-the-thickness of the
homogeneous plate irrespective of the thermal or moisture concentration parameters. Otherwise, σ6 is
very sensitive to the variation of η, t3 and c3. This stress is tensile near the bottom surface of the plate
while it is compressive near the top surface of the plate. It is symmetric through-the-thickness of the

 

 

 
 

V

)2 K

    

Figure 4. Dimensionless transverse shear stress σ5 through-the-thickness of a rectangu-
lar plate (b/a = 2) for various values of the power-law exponent η: (a) t3 = c3 = 0; (b)
t3 = 10, c3 = 1; (c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.



698 ASHRAF M. ZENKOUR

 

 

 
 

V

)2 K  

   

Figure 5. Dimensionless in-plane shear stress σ6 through-the-thickness of a rectangular
plate (b/a = 2) for various values of the power-law exponent η: (a) t3 = c3 = 0; (b)
t3 = 10, c3 = 1; (c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.

plate and vanished at its mid-plane. It is observed that this stress increases with increase in moisture
concentration, temperature and increase in both simultaneously.

6. Conclusion

The hygrothermal effects of homogeneous and EGM plates under uniformly distributed load are pre-
sented based on the sinusoidal shear deformation theory. The present analysis includes the effects of
temperature and moisture concentration on the material properties. Numerical results show that due to
the change in material properties caused by a rise of temperature and a change of moisture concentration,
the relationship between the hygrothermal response of homogeneous and EGM plates and the rise of
temperature and/or moisture concentrations is no longer linear. The results presented herein show that
the deflection and stresses will degrade with increasing moisture concentrations and temperatures. They
also confirm that the characteristics of stresses and deflection are significantly influenced by temperature
rise, the degree of moisture concentration, plate aspect ratio, as well as the EGM coefficient.
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Appendix

The elements Pi j = Pj i of the coefficient matrix [P] in (19) are given by

P11 = A1
11[2λ

2
+ (1− ν)µ2

], P12 = λµA1
11(1+ ν),

P13 =−2λA1
12(λ

2
+µ2), P14 = A1

13[2λ
2
+ (1− ν)µ2

],

P15 = P24 = λµA1
13(1+ ν), P22 = A1

11[(1− ν)λ
2
+ 2µ2

],

P23 =−2µA1
12(λ

2
+µ2), P25 = A1

13[(1− ν)λ
2
+ 2µ2

],

P33 = 2A1
22(λ

2
+µ2)2, P34 =−2λA1

23(λ
2
+µ2),

P35 =−2µA1
23(λ

2
+µ2), P44 = A1

33[2λ
2
+ (1− ν)µ2

] + B(1− ν),

P45 = λµA1
33(1+ ν), P55 = A1

33[(1− ν)λ
2
+ 2µ2

] + B(1− ν).

The elements Fi of the load vector {F} in (19) are given by

F1 =−2λ(1+ ν)
(

Aα11t1+ Aβ11c1+
1
h
(Aα12t2+ Aα13t3+ Aβ12c2+ Aβ13c3)

)
,

F2 =−2µ(1+ ν)
(

Aα11t1+ Aβ11c1+
1
h
(Aα12t2+ Aα13t3+ Aβ12c2+ Aβ13c3)

)
,

F3 = 2(1+ ν)
{(

Aα12t1+ Aβ12t1+
1
h
(Aα22t2+ Aα23t3+ Aβ22c2+ Aβ23c3)

)
(λ2
+µ2)+ qmn(1− ν)

}
,

F4 =−2λ(1+ ν)
(

Aα13t1+ Aβ13c1+
1
h
(Aα23t2+ Aα33t3+ Aβ23c2+ Aβ33t3)

)
,

F5 =−2µ(1+ ν)
(

Aα13t1+ Aβ13c1+
1
h
(Aα23t2+ Aα33t3+ Aβ23c2+ Aβ33c3)

)
.
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