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MOLECULAR DYNAMICS-BASED CONTINUUM MODELS FOR THE LINEAR
ELASTICITY OF NANOFILMS AND NANOWIRES WITH ANISOTROPIC

SURFACE EFFECTS

WONBAE KIM, SEUNG YUN RHEE AND MAENGHYO CHO

A continuum-based sequential multiscale model is presented for application to nanofilms and nanowires
with anisotropic surfaces. The surface effect is accounted for via the inclusion of surface energy due to
surface stress and surface strain in the internal energy. For anisotropic surfaces such as a <110> surface,
a linear surface elasticity model is used instead of the isotropic surface elasticity model proposed by
Gurtin and Murdoch. A molecular dynamics simulation is performed in order to calculate initial surface
stress and surface elastic tensor. Equilibrium strain and size-dependent elasticity are estimated by the
proposed continuum model.

1. Introduction

As more and more nanoscaled structures such as nanofilms and nanowires are fabricated, it is becoming
more important to understand the mechanical characteristics of nanostructures. It is well known that the
mechanical properties of a nanosized structure significantly differ from those of bulk materials because of
the surface effect. Therefore, although the surface effect is negligible in macroscale studies, it is crucial
for a nanosized structure analysis to account for the influence of the surface effect [Miller and Shenoy
2000; Zhou and Huang 2004; Diao et al. 2004; Liang et al. 2005; Guo and Zhao 2005; Sun and Zhang
2005; Dingreville et al. 2005; Wang et al. 2008; He and Lilley 2008; Zhang et al. 2008; Dingreville et al.
2008; Park 2009; Kim and Cho 2010].

An atom on a free surface of a crystal structure has a different coordination number (i.e. the number
of nearest neighbors) from an atom in the bulk material. For this reason, solid crystal surfaces contain
excess surface energy and residual surface stress. The surface stress significantly affects the equilibrium
state and elastic properties of a nanostructure [Wolf 1991; Cammarata and Sieradzki 1989; Streitz et al.
1994]. Streitz et al. [1994] introduced a surface stress model and calculated the equilibrium biaxial
strain and biaxial modulus for an axis-symmetric thin film. Miller and Shenoy [2000] estimated the
effective stiffnesses of nanosized structures using atomistic calculations. Recently, Dingreville et al.
[2008] proposed a semi-analytical method for quantifying the size-dependent elasticity of nanostructures,
and Kim and Cho [2010] computed equilibrium strain and size-dependent elasticity using a surface
relaxation model and a new surface stress model.

As one of the continuum approaches, Gurtin and Murdoch [1975; 1978] introduced a surface elasticity
model for isotropic surfaces using initial surface stress and surface Lamé constants. A plate theory
based on Kirchhoff and Mindlin plate theories, which included the surface effect by using Gurtin and

Keywords: surface effects, sequential multiscale model, finite element method, nanofilm, nanowire, size-dependent elasticity,
molecular dynamics simulation.
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Murdoch’s surface model, was proposed by Lim and He [2004] and Lu et al. [2006]. Recently, Cho et al.
[2009] proposed a continuum-based bridging model for a nanofilm using the surface elasticity model
by Gurtin and Murdoch [1975; 1978]. Cho et al. [2009] suggested a sequential multiscale method in
order to determine initial surface stress and surface Lamé constants using a matching method based on a
molecular dynamics (MD) simulation. As an extension of this multiscale model, a finite element analysis
including thermomechanical properties was carried out by Choi et al. [2010a].

With the exception of {111} surfaces, FCC crystal surfaces are not isotropic; for example, a {100}
surface and a {110} surface of an FCC single crystal are orthotropic. Therefore, the surface elasticity
model developed by Gurtin and Murdoch cannot be universally applied to single crystal surfaces. Choi
et al. [2010b] modified Gurtin and Murdoch’s model, adding an additional parameter to two surface
Lamé constants for the analysis of a nanofilm resonator with a {100} surface. However, this modified
surface elasticity is not applicable to a {110} surface. Although there is need for a multiscale continuum
model that can be applied to general nanostructures, no single model can handle all anisotropic surfaces.

This paper presents a new continuum-based sequential multiscale model for nanofilms and nanowires
with anisotropic surfaces. This model utilizes a linear surface elastic model, which is represented in
terms of initial surface stress and surface elastic tensor, instead of relying on Gurtin and Murdoch’s
surface model. The surface parameters, initial surface stress and surface elastic tensor, are determined
by applying a matching technique to the results from an MD simulation.

2. Multiscale continuum model including surface effect

2.1. Multiscale continuum model for a nanofilm. Mindlin plate theory is adopted for the proposed
model. For a nanofilm with top (�+) and bottom (�−) surfaces, as shown in Figure 1, the displacement
field based on Mindlin plate theory is defined as

uα = u0
α + x3ψα,

u3 = u0
3 = w,

(1)

where u0
α and u0

3 denote in-plane and out-of-plane displacements defined in the mid-plane of the thin film,
respectively, ψα is the rotational degree of freedom, and the subscript α represents in-plane directions 1

+
Ω

−
Ω

1
x
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x

1
L

2
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h

Figure 1. Schematic diagram of a nanofilm with top and bottom surfaces.
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and 2. Using this displacement field, the strain-displacement relationship, εi j = (ui, j + u j,i )/2, yields

εαβ =
1
2 [u

0
α,β + u0

β,α + x3(ψα,β +ψβ,α)],

ε3α =
1
2 [w,α +ψα],

(2)

where u0
α,3 = 0 because u0

α = u0
α(x1, x2). The in-plane components of the strain tensor are

ε11 = u0
1,1+ x3ψ1,1,

ε22 = u0
2,2+ x3ψ2,2,

2ε12 = (u0
1,2+ u0

2,1)+ x3(ψ1,2+ψ2,1),

(3)

and the transverse shear components of the strain tensor are

2ε31 = w,1+ψ1,

2ε32 = w,2+ψ2.
(4)

The displacements on the upper and lower surfaces are described as

us±
α = u0

α ±
h
2ψα,

us±
3 = w,

(5)

where s+ and s− denote the upper and lower surfaces, respectively, and h is the film thickness. The
strain field on a surface can be written as

εs±
11 = u0

1,1±
h
2ψ1,1,

εs±
22 = u0

2,2±
h
2ψ2,2,

2εs±
12 = (u

0
1,2+ u0

2,1)±
h
2 (ψ1,2+ψ2,1).

(6)

The virtual work principle states that the internal virtual work is equal to the external virtual work, i.e.
δU = δWE . The external virtual work δWE can be written as

δWE =

∫
�

pαδu0
α + p3δw d A, (7)

where pα and p3 are the in-plane and out-of-plane force per unit area, respectively. The internal virtual
work consists of bulk energy and surface energy (δU = δUbulk+ δUsurf). The bulk energy can be written
in terms of displacements and resultant forces, as follows:

δUbulk =

∫
v

σαβδεαβ dv+
∫
v

σ3αδγ3α dv

=

∫
�

Nαβδu0
α,β +Mαβδψα,β d A+

∫
�

Qα(δw,α + δψα) d A, (8)

where σαβ and εαβ are in-plane stress and strain components, respectively; σ3α and γ3α are transverse
shear stress and strain components, respectively; and Nαβ , Mαβ , and Qα are force stress resultants,
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moment resultants, and shear stress resultants, respectively. These last three variables are defined by

Nαβ =
∫ h/2

−h/2
σαβ dx3, Mαβ =

∫ h/2

−h/2
σαβx3 dx3, Qα =

∫ h/2

−h/2
σ3α dx3. (9)

The surface energy due to surface stress is composed of both top and bottom surface energies:

δUsurf =

∫
�±
τ±αβδε

s±
αβ d A =

∫
�±
τ±αβδ(u

0
α,β ±

h
2ψα,β) d A, (10)

where �+ and �− represent the top and bottom surfaces, respectively; τ s±
αβ is a surface stress component;

and εs±
αβ is a surface strain component. Using (8) and (10), the internal virtual work yields

δU = δUbulk+ δUsurf

=

∫
�

(Nαβ + τ+αβ + τ
−

αβ)δu
0
α,β d A+

∫
�

(
Mαβ +

h
2 (τ
+

αβ − τ
−

αβ)
)
δψα,β d A+

∫
�

Qα(δw,α + δψα) d A.

(11)

The linear elastic constitutive equation, σi j = Ci jklεkl , is utilized for the bulk material, and the follow-
ing relationship is used to determine the surface constitutive relationship:

τ±αβ = τ
0
αβ + Tαβκλεs±

κλ , (12)

where τ 0
αβ is the initial surface stress component at zero strain and Tαβκλ is the surface elastic tensor

component. This linear surface constitutive equation can be used for any anisotropic surface, whereas
Gurtin and Murdoch’s surface elasticity can be applied only to isotropic surfaces.

Finite element implementation for a nanofilm. When implementing a finite element analysis for a nanofilm,
an isoparametric 4-node element is used. The nodal displacement is defined as

d =
[
(u1, u2, w,ψ1, ψ2)1, . . . , (u1, u2, w,ψ1, ψ2)n

]T
,

and the displacement field is interpolated within nodal values.

u0
α =

n∑
i=1

Ni (uα)i , w =

n∑
i=1

Niwi , ψα =

n∑
i=1

Ni (ψα)i , (13)

where Ni is the i-th interpolation function and n is the number of nodes per element. Using these nodal
displacements, the strain field can be rewritten as

ε11

ε22

2ε12

=


u0
1,1

u0
2,2

u0
1,2+ u0

2,1

+ x3


ψ1,1

ψ2,2

ψ1,2+ψ2,1

= Bm d+ x3 Bbd, (14)

{
2ε31

2ε32

}
=

{
w,1+ψ1

w,2+ψ2

}
= Bs d, (15)
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where matrices Bm , Bb, and Bs represent the relationships between nodal displacement and membrane,
bending, and transverse shear strains, as follows:

Bm d = [B(1)
m , B(2)

m , . . . , B(n)
m ]d =


u0

1,1
u0

2,2
u0

1,2+ u0
2,1

 ,
Bbd = [B(1)

b , B(2)
b , . . . , B(n)

b ]d =


ψ1,1

ψ2,2

ψ1,2+ψ2,1

 ,
Bs d = [B(1)

s , B(2)
s , . . . , B(n)

s ]d =
{
w,1+ψ1

w,2+ψ2

}
,

(16)

and

B(i)
m =

Ni,x 0 0 0 0
0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0

 , B(i)
b =

0 0 0 Ni,x 0
0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

 , B(i)
s =

[
0 0 Ni,x Ni 0
0 0 Ni,y 0 Ni

]
. (17)

The constitutive equations of in-plane and transverse shear parts are
σ11

σ22

σ12

= [Q]

ε11

ε22

2ε12

 , (18)

{
σ31

σ32

}
= [CG]

{
2ε31

2ε32

}
, (19)

where [Q] is the 3× 3 matrix representing the plane-stress constitutive relationship. [Q] is defined in
terms of the submatrices of [C], namely

Caa =

C11 C12 C16

C12 C22 C26

C16 C26 C66

 , Cab =

C13 C14 C15

C23 C24 C25

C63 C64 C65

 , Cbb =

C33 C34 C35

C43 C44 C45

C35 C45 C55

 , (20)

via the formula

[Q] = Caa −CabC−1
bb CT

ab.

The components Ci j of the matrix [C] are the elastic constants written in Voigt form. Further, in (19),
we have set

[CG] =

[
C55 C45

C45 C44

]
, (21)
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The internal virtual work due to force stress resultants is

δU Nαβ
bulk =

∫
�

Nαβδu0
α,β d A

= δdT
[ ∫

�

BT
m

(∫ h/2

−h/2
[Q](Bm + x3 Bb) dx3

)
d A
]

d

= δdT
[ ∫

�

BT
m [A]Bm + BT

m [B]Bb d A
]

d,

(22)

where

[A] =
∫ h/2

−h/2
[Q] dx3, [B] =

∫ h/2

−h/2
[Q]x3 dx3. (23)

Similarly, the internal virtual work terms due to moment resultants and shear stress resultants are

δU Mαβ

bulk =

∫
�

Mαβδψα,β d A

= δdT
[ ∫

�

(∫ h/2

−h/2
x3 BT

b [Q](Bm + x3 Bb) dx3

)
d A
]

d

= δdT
[ ∫

�

BT
b [B]Bm + BT

b [D]Bb d A
]

d, (24)

δU Qα

bulk =

∫
�

Qα(δw,α + δψα) d A

= δdT
[ ∫

�

k BT
s

(∫ h/2

−h/2
[CG]Bs dx3

)
d A
]

d

= δdT
[ ∫

�

k BT
s [G]Bs d A

]
d, (25)

where

[D] =
∫ h/2

−h/2
[Q]x2

3 dx3, [G] =
∫ h/2

−h/2
[CG] dx3 (26)

and k is the shear correction factor. Using (22), (24), and (25), the bulk internal energy can be written in
the matrix form as

δUbulk = δU
Nαβ
bulk + δU

Mαβ

bulk + δU
Qα

bulk

= δdT
[ ∫

�

BT
m [A]Bm + BT

b [D]Bb d A
]

d+ δdT
[ ∫

�

k BT
s [G]Bs d A

]
d

+ δdT
[ ∫

�

BT
m [B]Bb+ BT

b [B]Bm d A
]

d. (27)

Both top and bottom surface energies are considered when determining the internal virtual work due
to surface energy. The surface stress term is divided into two components. The first component is
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determined by the initial surface stress at zero strain, and the second component by the surface elastic
tensor. Thus,

δUsurf =

∫
�±
τ 0
αβδ
(
u0
α,β ±

h
2ψα,β

)
d A+

∫
�±

Tαβκλ
(
u0
κ,λ±

h
2ψκ,λ

)
δ
(
u0
α,β ±

h
2ψα,β

)
d A. (28)

In terms of nodal displacement, the surface strain field is defined as
εs±

11
εs±

22
2εs±

12

= Bτ±d =
[
B(1)
τ±, B(2)

τ±, . . . , B(n)
τ±

]
d, (29)

with

B(i)
τ± =

Ni,x 0 0
(
±

h
2

)
Ni,x 0

0 Ni,y 0 0
(
±

h
2

)
Ni,y

Ni,y Ni,x 0
(
±

h
2

)
Ni,y

(
±

h
2

)
Ni,x

 ; (30)

Bτ± is the matrix that represents the relationship between surface strain and nodal displacement. The
internal virtual work due to the surface energy can be written in the following discrete form:

δUsurf = δdT
∫
�+

BT
τ+{τ

0
} d A+ δdT

∫
�−

BT
τ−{τ

0
} d A

+ δdT
[ ∫

�+
BT
τ+[T ]Bτ+ d A

]
d+ δdT

[ ∫
�−

BT
τ−[T ]Bτ− d A

]
d, (31)

where {τ 0
}, the initial surface stress vector, and [T ], the surface elastic tensor, are defined by

{τ 0
} =


τ 0

11
τ 0

22
τ 0

12

 , [T ] =
T1111 T1122 T1112

T2211 T2222 T2212

T1211 T1222 T1212

 . (32)

If the material and surface orientations of both the top (�+) and bottom (�−) surfaces are the same,
(31) can be rewritten in terms of Bm and Bb from (17), as follows:

δUsurf = δdT
[ ∫

�

2BT
m {τ

0
} d A

]
+ δdT

[ ∫
�

2BT
m [T ]Bm d A

]
d+ δdT

[ ∫
�

h2

2 BT
b [T ]Bb d A

]
d. (33)

Combining (27) and (33) yields the following equation for internal virtual work, assuming the same
surface type on both top and bottom surfaces:

δU = δdT
[ ∫

�

BT
m [A

′
]Bm + BT

b [D
′
]Bb d A

]
d+ δdT

[ ∫
�

k BT
s [G]Bs d A

]
d

+δdT
[ ∫

�

BT
m [B]Bb+ BT

b [B]Bm d A
]

d+ δdT
[ ∫

�

2BT
m {τ

0
} d A

]
, (34)

where

[A′] = [A] + 2[T ] = h[Q] + 2[T ] and [D′] = [D] + 1
2 h2
[T ] = 1

12 h3
[Q] + 1

2 h2
[T ] (35)

are respectively the effective membrane and effective bending rigidities.



620 WONBAE KIM, SEUNG YUN RHEE AND MAENGHYO CHO

z+
Ω

x

y

z

L

b

h y−
Ω

y+
Ω

z−
Ω

Figure 2. Schematic diagram of a rectangular nanowire with four surfaces.

2.2. Multiscale continuum model for a nanowire. To develop a model for a nanowire, a simple beam
model with a rectangular cross-section is considered. This model accounts for both bending and shear
deformations, but not for torsional effect. In Figure 2, x is the axial direction, and y and z represent two
perpendicular directions of the rectangular cross-section. Under the assumptions set forth by Timoshenko
beam theory, the following displacement field is used:

ux = u0
x + yψy + zψz,

u y = u0
y = v,

uz = u0
z = w,

(36)

The strain field is defined as
εxx = u0

x,x + yψy,x + zψz,x ,

γxy = v,x +ψy,

γxz = w,x +ψz.

(37)

The displacements on the y-surface are given as

u y±
x = u0

x ±
b
2ψy + zψz,

u y±
y = v,

u y±
z = w,

(38)

where y+ and y− represent the top and bottom surfaces normal to the y-direction, and b is the beam
width along the y-direction. Similarly, the displacement on the z-surface can be written as follows:

uz±
x = u0

x + yψy ±
h
2ψz,

uz±
y = v,

uz±
z = w,

(39)

where z+ and z− represent the top and bottom surfaces normal to the z-direction, and h is the beam
thickness along the z-direction.
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According to the virtual work principle, the internal virtual work is equal to the external virtual work.
The external virtual work is defined as

δWE =

∫
L

pxδu0
x + pyδv+ pzδw dx, (40)

where px , py , and pz are external forces in the x , y, and z directions, respectively. The internal virtual
work includes both bulk and surface energy components. The internal virtual work of the bulk component
can be written as

δUbulk =

∫
V
σi jδεi j dV

=

∫
V
σxxδεxx dV +

∫
V
σxyδγxy dV +

∫
V
σxzδγxz dV

=

∫
L

Ex Au0
x,xδu

0
x,x + Ex Iyyψy,xδψy,x + Ex Izzψz,xδψz,x dx

+

∫
L

kG66 A(ψy + v,x)δ(ψy + v,x) dx +
∫

L
kG55 A(ψz +w,x)δ(ψz +w,x) dx, (41)

where Ex is the Young’s modulus, k is the shear correction factor, A is the cross-sectional area, and Iyy

and Izz comprise the second moment of area, defined as

Iyy =

∫
A

y2 d A, Izz =

∫
A

z2 d A. (42)

In the multiscale continuum model for a nanofilm, there are only two surfaces, top and bottom, whereas
a nanowire with a rectangular cross-section has four surfaces: two in the y-direction (�y+ and �y−) and
two in the z-direction (�z+ and �z−). The internal virtual work of these four surfaces is calculated as

δUsurf =

∫
�y±
(τ y±

xx δε
y±
xx + τ

y±
xz δγ

y±
xz ) d�y±

+

∫
�z±
(τ z±

xx δε
z±
xx + τ

z±
xy δγ

z±
xy ) d�z±

=

∫
�y±

τ y±
xx δ(u

0
x,x ±

b
2ψy,x + zψz.x)+ τ

y±
xz δ(ψz +w,x) d�y±

+

∫
�z±
τ z±

xx δ(u
0
x,x + yψy,x ±

h
2ψz,x)+ τ

z±
xy δ(ψy + v,x) d�z±, (43)

where � is the surface domain, ταβ is the surface stress, and superscript y± and z± represent the y-
surface and z-surface, respectively. Using linear surface elasticity, defined as

τ s
αβ = τ

s0
αβ + T s

αβκλε
s±
κλ ,

the surface internal virtual work can be divided into two parts: the initial surface stress δU (τ )
surf and the

surface elastic tensor δU (T )
surf :

δUsurf = δU
(τ )
surf+ δU

(T )
surf . (44)
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Their values are

δU (τ )
surf =

∫
�y±
τ y0

xx δ
(
u0

x,x ±
b
2ψy,x + zψz,x

)
+ τ y0

xz δ(ψz +w,x) d�y±

+

∫
�z±
τ z0

xxδ
(
u0

x,x + yψy,x ±
h
2ψz,x

)
+ τ z0

xyδ(ψy + v,x) d�z± (45)

and

δU (T )
surf =

∫
�y±

T y
1111

(
u0

x,x ±
b
2ψy,x + zψz,x

)
δ
(
u0

x,x ±
b
2ψy,x + zψz,x

)
d�y±

+

∫
�y±

T y
1212(ψz +w,x)δ(ψz +w,x) d�y±

+

∫
�z±

T z
1111

(
u0

x,x + yψy,x ±
h
2ψz,x

)
δ
(
u0

x,x + yψy,x ±
h
2ψz,x

)
d�z±

+

∫
�z±

T z
1212(ψy + v,x)δ(ψy + v,x) d�z±. (46)

Assuming that both the top and bottom surfaces in the y-direction are of the same type (�y+
=

�y−) and that both surfaces in the z-direction are also the same (�z+
=�z−), the initial surface stress

component of the internal virtual work in (45) yields

δU (τ )
surf =

∫
�y

2τ y0
xx δ(u

0
x,x + zψz,x)+ 2τ y0

xz δ(ψz +w,x) d�y

+

∫
�z

2τ z0
xxδ(u

0
x,x + yψy,x)+ 2τ z0

xyδ(ψy + v,x) d�z, (47)

and hence

δU (τ )
surf =

∫
L

2hτ y0
xx δu

0
x,x + 2hτ y0

xz δ(ψz +w,x) dx +
∫

L
2bτ z0

xxδu
0
x,x + 2bτ z0

xyδ(ψy + v,x) dx . (48)

The surface elastic tensor portion of the internal virtual work in (46) can be rewritten as

δU (T )
surf =

∫
�y

2T y
1111(u

0
x,x + zψz,x)δ(u0

x,x + zψz,x)+ 2T y
1111

( b
2ψy,x

)
δ
( b

2ψy,x
)

d�y

+

∫
�y

2T y
1212(ψz +w,x)δ(ψz +w,x) d�y

+

∫
�z

2T z
1111(u

0
x,x + yψy,x)δ(u0

x,x + yψy,x)+ 2T z
1111

( h
2ψz,x

)
δ
( h

2ψz,x
)

d�z

+

∫
�z

2T z
1212(ψy + v,x)δ(ψy + v,x) d�z, (49)

and hence
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δU (T )
surf =

∫
L

2hT y
1111(u

0
x,x)δ(u

0
x,x) dx

+

∫
L

1
6 h3T y

1111(ψz,x)δ(ψz,x)+
1
2 hb2T y

1111(ψy,x)δ(ψy,x) dx

+

∫
L

2hT y
1212(ψz +w,x)δ(ψz +w,x) dx

+

∫
L

2bT z
1111(u

0
x,x)δ(u

0
x,x) dx

+

∫
L

1
6 b3T z

1111(ψy,x)δ(ψy,x)+
1
2 bh2T z

1111(ψz,x)δ(ψz,x) dx

+

∫
L

2bT z
1212(ψy + v,x)δ(ψy + v,x) dx . (50)

Finite element implementation for a nanowire. The displacement field of a nanowire can be interpolated
using an interpolation function Ni and the nodal displacement

d =
[
(u0

x , v, w,ψy, ψz)1, . . . , (u0
x , v, w,ψy, ψz)n

]T
,

so that

u0
x =

n∑
i=1

Ni u0
xi , v =

n∑
i=1

Nivi , w =

n∑
i=1

Niwi , ψy =

n∑
i=1

Niψyi , ψz =

n∑
i=1

Niψzi , (51)

where n is the number of nodes per element. Using these nodal displacements, the membrane aspect of
the bulk internal virtual work can be rewritten as

δU mem
bulk =

∫
L

Ex Au0
x,xδu

0
x,x dx = δdT

[ ∫
L

BT
m [A]Bm dx

]
d, (52)

where

[A] = [Ex A], (53)

{u0
x,x} = Bm d = [B(1)

m , B(2)
m , . . . , B(n)

m ]d, (54)

B(i)
m =

[
Ni,x 0 0 0 0

]
. (55)

The bending component of the internal virtual work is defined as

δU bend
bulk =

∫
L

Ex Iyyψy,xδψy,x + Ex Izzψz,xδψz,x dx

= δdT
[ ∫

L
BT

b [D]Bb dx
]

d, (56)
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where

[D] =
[

Ex Iyy 0
0 Ex Izz

]
, (57){

ψy,x

ψz,x

}
= Bbd = [B(1)

b , B(2)
b , . . . , B(n)

b ]d, (58)

B(i)
b =

[
0 0 0 Ni,x 0
0 0 0 0 Ni,x

]
. (59)

The transverse shear component of the virtual work is

δU shear
bulk =

∫
L

kG66 A(ψy + v,x)δ(ψy + v,x) dx +
∫

L
kG55 A(ψz +w,x)δ(ψz +w,x) dx

= δdT
[ ∫

L
k BT

s [G]Bs dx
]

d, (60)

where

[G] =
[

G66 0
0 G55

]
, (61){

v,x +ψy

w,x +ψz

}
= Bs d = [B(1)

s , B(2)
s , . . . , B(n)

s ]d, (62)

B(i)
s =

[
0 Ni,x 0 Ni 0
0 0 Ni,x 0 Ni

]
. (63)

The internal virtual work of the bulk component can be obtained with a summation of Equations (52),
(56), and (60):

δUbulk = δdT
[ ∫

L
BT

m [A]Bm + BT
b [D]Bb+ k BT

s [G]Bs dx
]

d. (64)

As for surface internal virtual work, the initial surface stress component of the internal virtual work
in (48) can be written in the following discrete form:

δU (τ )
surf =

∫
L


u0

x,x
ψy + v,x

ψz +w,x


T


2hτ y0
xx + 2bτ z0

xx
2bτ z0

xy

2hτ y0
xz

 dx = δdT
[ ∫

L
BT
τ {τ

0
} dx

]
, (65)

where

{τ 0
} =


2hτ y0

xx + 2bτ z0
xx

2bτ z0
xy

2hτ y0
xz

 , (66)


u0

x,x
ψy + v,x

ψz +w,x

= Bτ d = [B(1)
τ , B(2)

τ , . . . , B(n)
τ ]d, (67)



MOLECULAR DYNAMICS MODELS FOR THE LINEAR ELASTICITY OF NANOFILMS AND NANOWIRES 625

and

B(i)
τ =

Ni,x 0 0 0 0
0 Ni,x 0 Ni 0
0 0 Ni,x 0 Ni

 . (68)

The surface elastic tensor component of the internal virtual work in (50) can be expressed in the
following discrete form, under the assumption that �y+

=�y− and �z+
=�z−:

δU (T )
surf =

∫
L
(2hT y

1111+ 2bT z
1111)(u

0
x,x)δ(u

0
x,x) dx

+

∫
L

( 1
6 h3T y

1111+
1
2 bh2T z

1111

)
(ψz,x)δ(ψz,x) dx

+

∫
L

( 1
6 b3T z

1111+
1
2 hb2T z

1111

)
(ψy,x)δ(ψy,x) dx

+

∫
L

2hT y
1212(ψz +w,x)δ(ψz +w,x) dx

+

∫
L

2bT z
1212(ψy + v,x)δ(ψy + v,x) dx

= δdT
[ ∫

L
BT

m [Tm]Bm + BT
b [Tb]Bb+ BT

s [Ts]Bs dx
]

d,

(69)

where
[Tm] = [2hT y

1111+ 2bT z
1111],

[Tb] =

[
1
2 b2hT y

1111+
1
6 b3T z

1111 0

0 1
6 h3T y

1111+
1
2 bh2T z

1111

]
,

[Ts] =

[
2bT z

1212 0

0 2hT y
1212

]
,

(70)

and
{u0

x,x} = Bm d=[B(1)
m , B(2)

m , . . . , B(n)
m ]d,{

ψy,x

ψz,x

}
= Bbd =[B(1)

b , B(2)
b , . . . , B(n)

b ]d,{
v,x +ψy

w,x +ψz

}
= Bs d =[B(1)

s , B(2)
s , . . . , B(n)

s ]d,

(71)

with
B(i)

m =
[
Ni,x 0 0 0 0

]
,

B(i)
b =

[
0 0 0 Ni,x 0
0 0 0 0 Ni,x

]
,

B(i)
s =

[
0 Ni,x 0 Ni 0
0 0 Ni,x 0 Ni

]
.

(72)
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From (65) and (69), the matrix form of the surface internal virtual work can be written as

δUsurf = δdT
[ ∫

L
BT

m [Tm]Bm + BT
b [Tb]Bb+ BT

s [Ts]Bs dx
]

d+ δdT
[ ∫

L
BT
τ {τ

0
} dx

]
. (73)

Consequently, the following matrix form of the internal virtual work is obtained for a nanowire with
a rectangular cross-section:

δU = δdT
[ ∫

L
BT

m [A
′
]Bm + BT

b [D
′
]Bb+ k BT

s [G
′
]Bs dx

]
d+ δdT

[ ∫
L

BT
τ {τ

0
} dx

]
, (74)

where

[A′] =
[

A
(

E1+
2
b

T y
1111+

2
h

T z
1111

)]
, (75)

[D′] =

Iyy

(
E1+

6
b

T y
1111+

2
h

T z
1111

)
0

0 Izz

(
E1+

2
b

T y
1111+

6
h

T z
1111

)
 , (76)

[G′] =

A
(

G66+
2
h

T z
1212

)
0

0 A
(

G55+
2
b

T y
1212

)
 . (77)

3. Elastic modulus and surface elastic tensor

In this study, an MD simulation is performed to calculate the elastic properties of bulk material. FCC
single crystal copper is used as a test material. The LAMMPS software (http://lammps.sandia.gov)
[Plimpton 1995] and the embedded atom method (EAM) [Daw and Baskes 1984; Foiles et al. 1986]
are utilized for the MD simulation. Four nanofilms and three nanowires of different crystallographic
orientations are investigated: {100}/<100>, {100}/<110>, {111}/<110>, and {110}/<100> nanofilms,
and <100>/{100}, <100>/{110}, and <110>/{100} nanowires.

3.1. Elastic modulus of the bulk material. In order to calculate the elastic constants of single-crystal
copper, a 4× 4× 4 unit cell with periodic boundary conditions (PBCs) [Rapaport 2004] is utilized. When
a periodic boundary condition is applied, a particle that moves to the right will reappear on the left, as
shown in Figure 3(c). PBCs are applied to all directions in the bulk simulation. For initial relaxation, the
MD simulations are performed under an isothermal-isobaric ensemble (where NPT represents a constant
number of atoms, constant pressure, and a constant temperature) at 0.1 K for 200 picoseconds. After that,
the simulation box is deformed slowly, via a 0.01% applied strain in the 1-direction, under the canonical
ensemble (where NVT denotes a constant number of atoms, constant volume, and constant tempera-
ture) over a span of 50 picoseconds, as shown in Figure 3(a). Next, a 50-picosecond MD simulation is
performed to get the average values of the virial stresses, which are defined as

σ vi j =
1
V0

∑
α

[
−mαvαi v

β

i +
1
2

N∑
β=1

(Rβi − Rαi )F
αβ

j

]
, (78)
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11
ε

12
ε

(a)

(b)
(c) Periodic Boundary Condition

Figure 3. Molecular dynamics simulation for the calculation of elastic constants: (a) de-
piction of normal strain; (b) depiction of shear strain; (c) schematic of periodic boundary
condition.

where σ vi j is a component of virial stress, V0 is the volume of the simulation box, mα is the mass, vαi
is the i-directional velocity component, Rαi is the i-directional position of atom α, and Fαβj is the j-
directional interatomic force between atoms α and β [Subramaniyan and Sun 2008]. The same procedure
is performed under shear deformation for a shear component (see Figure 3(b)). As a result of these sim-
ulations, the material constants C11, C12, and C44 are calculated using the linear constitutive relationship
σ vi = Ci jε j :

σ v1 = C11ε̂1,

σ v2 = C12ε̂1,

σ v4 = C44ε̂4,

(79)

where σ vi , Ci j , and ε̂i are virial stress, elastic constant, and applied strain in Voigt notation, respectively.
The elastic constants of the bulk material are listed in Voigt form in Table 1. The elastic constants of
the {100}/<100> direction are obtained from the MD simulation, and those of the other directions are
calculated via coordinate transformations based on the C11, C12, and C44 values of the {100}/<100>
direction.

The {100}/<100> nanofilm features {100} surfaces on the top and bottom. The two in-plane axes of
the surface exist in the <100> direction. In this case, the film’s material properties have cubic symmetry.
The Young’s modulus value of the {100}/<100> nanofilm is 61.5 GPa, and its Poisson’s ratio is 0.43.

The surface type of the {100}/<110> nanofilm is also {100}, but its two in-plane axes are oriented in
the <110> direction. The values of Young’s moduli in the in-plane direction (E1 and E2) are 126.0 GPa,
and the Poisson’s ratios are ν12 =−0.18 and ν13 = 0.87.

Being isotropic, the {111} surface has uniform material properties in all in-plane directions. However,
the {111} nanofilm has nonzero values for C14, C24, and C56 (C14 = −C24 = 25.9 GPa and C56 =
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{100}/<100> {100}/<110> {111}/<110> {110}/<100>

C11 167.3 222.1 222.1 167.3
C22 167.3 222.1 222.1 222.1
C33 167.3 167.3 240.4 222.1
C12 124.2 69.3 105.9 124.2
C13 124.2 124.2 87.6 124.2
C23 124.2 124.2 87.6 69.3
C44 76.4 76.4 39.9 21.6
C55 76.4 76.4 39.9 76.4
C66 76.4 21.6 58.1 76.4

Table 1. Elastic constants of bulk copper film (in GPa).

25.9 GPa). These variables equal zero for all other orthotropic surfaces. The Young’s modulus of the
in-plane direction (E1) is 126.0 GPa, and its Poisson’s ratio is ν12 = 0.52.

Unlike {100} and {111} surfaces, the {110} surface is not axis-symmetric. The {110}/<100> surface
has two different in-plane axis orientations: <100> for the 1-direction and <110> for the 2-direction. The
Young’s moduli of these two orientations are E1 = 61.5 GPa and E2 = E3 = 126.0 GPa, respectively, and
their Poisson’s ratios are ν12 = 0.43 and ν21 = 0.87.

As for copper nanowires, the Young’s moduli of both <100>/{100} and <100>/{110} nanowires are
61.5 GPa, and the Young’s modulus of a <110>/{100} nanowire is 126.0 GPa.

3.2. Size-dependent elasticity and surface elastic tensor of copper nanofilms. For a nanoscaled thin
film, mechanical properties such as Young’s modulus and Poisson’s ratio vary depending on the film
thickness. An MD simulation is performed to evaluate the size-dependent elastic properties of copper
nanofilms. Four types of MD model are used for the calculation of effective moduli, simulating nanofilms
with {100}/<100>, {100}/<110>, {111}/<110>, and {110}/<100> surfaces.

For the MD nanofilm simulations, periodic boundary conditions (PBCs) are applied in both the 1-
and 2-directions. A free boundary condition is applied in the direction of the nanofilm thickness. As in
the bulk case, relaxation and deformation processes are performed, and a two-dimensional constitutive
equation is used. The initial lattice spacing of nanofilms is set by the lattice constant of the bulk material.
The NPT ensemble is utilized in the first step of the MD simulation to get an equilibrium configuration.
The equilibrium strain of a nanofilm is then obtained from this equilibrium configuration. After that, the
virial stress under a given applied strain is calculated using the NVT ensemble.

The effective membrane stiffness tensor, [A′], in (35) can be obtained from the relationship between
the applied strain and the virial stress, which is calculated using the results of the MD simulation.

1
Nlayer

Nlayer∑
k=1


σ v11
σ v22
σ v12


(k)

=
1
h [A

′
]


ε̂11

ε̂22

2ε̂12

 , (80)

where σ v
(k)

αβ is the virial stress of atoms in the k-th layer, ε̂αβ is the applied strain, Nlayer is the number of
layers, and h is the film thickness.



MOLECULAR DYNAMICS MODELS FOR THE LINEAR ELASTICITY OF NANOFILMS AND NANOWIRES 629

{100}/<100> {100}/<110> {111}/<110> {110}/<100>

T1111 9.8084 13.7315 9.4804 −15.0566
T2222 9.8084 13.7315 9.4804 −2.2873
T1122 25.5585 5.3080 4.1747 −5.1194
T1212 10.9082 −5.4126 2.6531 −1.0701

Table 2. Calculated surface elastic tensor of nanofilms using the one-point matching
method (in N/m).

Considering the symmetry, the total number of unknowns in the 3× 3 matrix [A′] is six. However, the
number of unknowns of a {100}/<100> film reduces to four, i.e. A′11, A′12, A′13, and A′33, because of the
film’s in-plane axis symmetry. Three of these components, A′11, A′12, and A′13, can be determined using
stress-strain equations obtained from the MD simulation with an applied strain of ε̂αβ = b0.01%, 0, 0cT .
The component A′33 is determined from the MD simulation with an applied strain of ε̂αβ =b0, 0, 0.01%cT .

The [A′] matrices for {100}/<110> and {111}/<110> films are determined in the same way. Three
MD simulations are performed for the {110}/<100> film, in order to collect sufficient data to calculate the
components of matrix [A′]. An additional applied strain, ε̂αβ = b0, 0.01%, 0cT , is utilized to determine
the A′12, A′22, and A′32 values of the {110}/<100> nanofilm.

The surface elastic tensor Tαβκλ, a component of [T ], can be calculated from (35) by applying a one-
point matching technique to the results from the MD simulation. In this calculation, the matrix [Q] in
(35), which represents the two-dimensional constitutive relationship under the plane-stress condition, is
determined from the bulk elastic constants given in (20).

The surface elastic tensor matrix [T ] is a symmetric matrix with the components listed in Table 2. The
missing components in Table 2 are zeros (T1112 = T2212 = 0). According to the matching method, the
MD simulations use 3.1 nm-thick {100}/<100> and {100}/<110> nanofilms and 5.2 nm and 4.2 nm-thick
{111}/<110> and {110}/<100> nanofilms, respectively.

Figures 4 and 5 show size-dependent Young’s moduli normalized by bulk material data. The results
for {100}/<100>, {100}/<110>, and {111}/<110> nanofilms are shown in Figure 4. The in-plane axes
of the {110}/<100> nanofilm have two different orientations: <100> and <110>. The relative moduli are
denoted as E1 and E2, as shown in Figure 5. Size-dependent shear moduli normalized by bulk material
data are shown in Figure 6. The lines are the results of the proposed continuum model and the marks
represent the results of an MD simulation.

3.3. Size-dependent elasticity and surface elastic tensor of copper nanowires. When studying the size-
dependent elasticity of a nanowire, three types of copper nanowires were considered: <100>/{100},
<100>/{110}, and <110>/{100}. Every nanowire has a rectangular cross-section and four surfaces. The
<100>/{100} nanowire has four {100} surfaces, two in the y-direction and two in the z-direction, and
the <100>/{110} nanowire has four {110} surfaces. The <110>/{100} nanowire has two {100} surfaces
in the y-direction and two {110} surfaces in the z-direction.

The elastic modulus of a nanowire is influenced by the surface elastic tensor of the y- and z-surfaces,
as described by (75). The surface elastic tensor of a nanowire is determined by applying the matching
technique to the results of the MD simulation. In the cases involving <100>/{100} and <100>/{110}



630 WONBAE KIM, SEUNG YUN RHEE AND MAENGHYO CHO

0 5 10 15 20 25 30 35 40 45

0.7

0.8

0.9

1

1.1

1.2

1.3

thickness (nm)

E
/E

b
u
lk

Young’s moduli of copper nanofilm

 

 

{100}/<100> E1

{100}/<110> E1

{111}/<110> E1

{100}/<100> E1 (MD)

{100}/<110> E1 (MD)

{111}/<110> E1 (MD)

Figure 4. Size-dependent Young’s moduli of {100}/<100>, {100}/<110>, {111}/<110>
copper nanofilms.
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Figure 5. Size-dependent Young’s moduli of a {110}/<100> copper nanofilm.

nanowires, only one MD simulation is needed for one-point matching because the surfaces in the y- and
z-directions are identical. However, the <110>/{100} nanowire needs two MD simulations, one for the
surface in the y-direction and one for the surface in the z-direction.
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Figure 6. Size-dependent shear moduli of {100}/<100>, {100}/<110>, {111}/<110>,
and {110}/<100> nanofilms.

<100>/{100} <100>/{110} <110>/{100}

T y
1111 −10.7613 −11.3434 27.3160

T z
1111 −10.7613 −11.3434 −9.9535

Table 3. Surface elastic tensor of nanowires calculated by the matching method (in N/m).

In the matching method, the dimension b = h = 4.5 nm is used for the <100>/{100} nanowire, and
b = h = 6.3 nm is set for the <100>/{110} nanowire. For the <110>/{100} nanowire, the width is set to
b = 4.5 nm in the first simulation and b = 8.9 nm in the second simulation, and the thickness for both
simulations is fixed at h = 6.3 nm.

The calculated surface elastic tensors for copper nanowires are listed in Table 3. As shown in Figure 7,
the Young’s moduli evaluated by the proposed continuum-based model (see the lines in the figure) have
good agreement with the results of the MD simulation (see the marks in the figure). The “thickness”
in Figure 7 represents the width, b, of a nanowire. In the z-direction, h = b for <100>/{100} and
<100>/{110} nanowires, and h =

√
2(b− a/4) for the <110>/{100} nanowire, where a is the lattice

constant of FCC single crystal copper.

3.4. Numerical examples of beam vibration. As an example of a surface effect on a nanofilm, the
natural frequencies of clamped beams are investigated using the finite element method. The mesh con-
figuration and vibration modes of the clamped beam are shown in Figure 8. The length and width of
the beams are fixed at 300 nm and 30 nm, respectively, and the thickness varies from 3 nm to 12 nm.
Isoparametric 4-noded plate elements are used in the finite element analysis, and a selective reduced
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Figure 7. Size-dependent Young’s moduli of <100>/{100}, <100>/{110}, <110>/{100}
copper nanowires.
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Figure 8. Mesh configuration and vibration modes of a clamped beam: (a) first mode,
(b) second mode, (c) third mode, (d) fourth mode, (e) fifth mode without surface effect,
(f) fifth mode with surface effect.

integration scheme is applied in order to avoid numerical transverse shear locking. Four-point Gaussian
integration is used for the membrane and bending component, and two-point Gaussian integration is used
for the transverse shear component: 2× 1 for γ12 and 1× 2 for γ13. The shear correction factor k in (34)
is set to 5

6 in the finite element analysis. The natural frequencies of clamped beams, obtained through
finite element analysis, are listed in Table 4.

The natural frequencies with surface effect are smaller than those without surface effect in all test
cases. The surface effect increases as the thickness decreases. When the thickness is 3 nm, the natural
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Thickness Natural frequency (MHz)
(nm) w/o surf. w/ surf. (%)

3 14.4 10.0 69.4%
4.5 21.6 18.4 84.9%
6 28.8 26.0 90.1%

12 57.4 55.0 95.9%

Table 4. Natural frequencies of clamped beams without and with surface effect. The
length and the width of the beams are 300 nm and 30 nm, respectively.

Thickness Length Natural frequency (GHz)
(nm) (nm) w/o surf. w/ surf. MD sim.

1.6 11.7 4.95 (4.99) 1.85 (1.86) 2.55
3.1 23.3 2.37 (2.39) 1.75 (1.77) 1.77
4.5 34.9 1.55 (1.57) 1.29 (1.31) 1.26
6.0 46.5 1.15 (1.17) 1.00 (1.02) 1.01

11.7 92.7 0.56 (0.59) 0.52 (0.54) 0.50

Table 5. Natural frequencies of a {100}/<100> nanowire with one clamped edge. The
width is equal to the thickness, and the length is about eight times the thickness. Numbers
in parentheses indicate the analytic solution calculated using (81).

frequency with surface effect is 69% of the natural frequency without surface effect. Figure 8 shows
the vibration modes of a clamped beam with 3 nm thickness. From first to fourth vibration modes, test
cases without and with surface effects yield the same results, as shown in Figure 8(a) to 8(d). However,
the fifth vibration mode with surface effect (see Figure 8(f)) is different from the fifth vibration mode
without surface effect (see Figure 8(e)).

Another example of beam vibration is solved using beam finite element analysis. Two-node beam
elements are used, and a selective reduced integral scheme is applied to avoid shear locking. Two-point
Gaussian integration is used for the bending component and one-point Gaussian integration for transverse
shear component. The shear correction factor k in (74) is set to 5

6 in the finite element analysis. The
natural frequencies of <100>/{100} nanowires with different thicknesses are obtained via FEM and MD
simulation and listed in Table 5. The width of each nanowire is fixed to be equal to the thickness, and
the length is eight times the thickness.

The natural frequencies of the clamped beams can be calculated analytically by the following equation
[Weaver et al. 1990]:

f = 1
2π

(1.875
L

)2
√

E I
ρA

, (81)

where L is the length, A is the cross-sectional area, ρ is the density, E is the Young’s modulus, and
I is the second moment of area. In order to consider surface effect, the effective bending rigidity of a
nanowire in (76) is used in the analysis.



634 WONBAE KIM, SEUNG YUN RHEE AND MAENGHYO CHO

The FEM results and analytical solutions show good agreement in all cases, both with and without
surface effect. The results with surface effect also agree very well with MD results, except when the
thickness is 1.6 nm. The main cause of this exception is that the estimated effective bending rigidity
drops rapidly when the thickness of a nanowire reaches 1.6 nm.

4. Equilibrium strain and surface stress

The lattice spacing of a relaxed nanofilm is different from that of bulk material, due to the surface stress
on the top and bottom surfaces. A similar phenomenon can occur with nanowires. The equilibrium strain
in the relaxed state can be calculated using initial surface stress and surface elastic tensor. In addition, if
the equilibrium strain of a nanofilm is known, the surface stress can be calculated from the equilibrium
strain through a matching technique. In this section, surface stress is calculated using equilibrium strain
as measured by the MD simulation.

4.1. Surface stress of copper nanofilms. Assume that the surface types of top and bottom surfaces are
the same and that there is no external force on the film. The relationship between equilibrium strain ε∗

and surface stress can be derived from (34), as follows:

δU = δdT BT
m ([A

′
]Bm d+ 2{τ 0

})= 0, (82)

[A′]


ε∗11
ε∗22
2ε∗12

+ 2


τ 0

11
τ 0

22
τ 0

12

= 0, (83)

where [A′] = h[Q] + 2[T ].
To obtain the equilibrium strain of a nanofilm, an MD simulation was performed using an NPT en-

semble at a temperature of 0.1 K. The thickness of the MD model was set to 3.1 nm for the {100}/<100>
and {100}/<110> nanofilms and 5.2 nm for the {111}/<110> nanofilm. The {110}/<100> nanofilm was
4.2 nm thick. The initial surface stress in Table 6 was calculated by applying the one-point matching
method to the equilibrium strain obtained via an MD simulation. The shear component, τ 0

12, which is
not shown in Table 6, is zero for all the tested surfaces.

The equilibrium strain of a copper nanofilm as a function of thickness is shown in Figure 9 and 10. The
lines represent the results of the proposed continuum-based model, and the marks show the results of an
MD simulation. The results for {100}/<100>, {100}/<110>, and {111}/<110> nanofilms are illustrated
in Figure 9. Lines e1 and e2, denoted in Figure 10, are the equilibrium strains in the <100> and <110>
directions, respectively, of the {110}/<100> nanofilm.

{100}/<100> {100}/<110> {111}/<110> {110}/<100>

τ 0
11 1.5034 1.3806 0.8717 1.1149
τ 0

22 1.5034 1.3806 0.8717 0.9993

Table 6. Initial surface stress of nanofilms, calculated by the one-point matching method
(in N/m).
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Figure 9. Equilibrium strain of {100}/<100>, {100}/<110>, and {111}/<110> copper nanofilms.
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Figure 10. Equilibrium strain of a {110}/<100> copper nanofilm.

4.2. Surface stress of copper nanowires. The initial surface stress of a nanowire can be calculated using
equilibrium strain in a manner analogous to the case of a nanofilm. The relationship between equilibrium
strain and surface stress is given as follows:
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<100>/{100} <100>/{110} <110>/{100}

τ
y0
xx 0.6984 0.7047 1.5670
τ z0

xx 0.6984 0.7047 −0.0178

Table 7. Initial surface stress of nanowires calculated by a matching method (in N/m).
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Figure 11. Equilibrium strain of <100>/{100}, <100>/{110}, and <110>/{100} copper nanowires.

[bh(E1+
2
b T y

1111+
2
h T z

1111)]{ε
∗

x }+ {2hτ y0
xx + 2bτ z0

xx} = 0, (84)

where ε∗x is the equilibrium strain of a nanowire, τ y0
xx and τ z0

xx are initial surface stress components of the
y- and z-surfaces, and b and h are the width and thickness of a nanowire, respectively.

The equilibrium strains present in <100>/{100}, <100>/{110}, and <110>/{100} nanowires were
obtained by an MD simulation. The cross-sectional dimensions of the MD models are b = h = 4.5 nm
for the <100>/{100} nanowire and b = h = 6.3 nm for the <100>/{110} nanowire. For the <110>/{100}
nanowire, an MD simulation was carried out twice with two different widths, b = 4.5 nm and b = 8.9 nm,
and a constant thickness of h = 6.3 nm. The initial surface stress, calculated from the equilibrium strain,
is listed in Table 7.

The equilibrium strain of a nanowire can be calculated from the initial surface stress using (84). These
results are shown in Figure 11. The calculated equilibrium strains represented by lines in the figure have
good agreement with the mark data obtained by MD simulation.

5. Conclusion

Multiscale continuum models and corresponding finite elements were developed for both nanofilms and
nanowires subject to an anisotropic surface effect. In order to consider the anisotropic surface effect,
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linear surface elasticity was used instead of the isotropic surface elasticity proposed by Gurtin and Mur-
doch. This linear surface elasticity was represented by initial surface stress and surface elastic tensor.

The surface elastic tensor of a nanofilm was calculated via the one-point matching method and an
MD simulation. The initial surface stress was estimated using the equilibrium strain, which in turn was
computed via MD simulation. Four different orthotropic nanofilms were considered as numerical exam-
ples, with {100}/<100>, {100}/<110>, {111}/<110>, and {110}/<100> surfaces. The size-dependent
elastic modulus and equilibrium strain values calculated by the proposed continuum model were in good
agreement with the results of the MD simulation. However, there were slight discrepancies between
these surface parameters (initial surface stress and surface elastic tensor) as calculated by the matching
technique and their corresponding reference values [Shenoy 2005; Dingreville and Qu 2007]. This is
because the presented surface parameters include the hyperelastic effect of the bulk material as well as
the surface effect itself.

For a nanowire, surface parameters were estimated using either the one-point or two-point matching
method. <100>/{100}, <100>/{110}, and <110>/{100} nanowires with rectangular cross-sections were
considered as numerical examples. In the calculation of surface parameters, only one MD simulation was
used for the <100>/{100} and <100>/{110} nanowires, whereas two MD simulations were performed
for the <110>/{100} nanowire because it had different surfaces in the y- and z-directions. The results
from the continuum-based model and the MD simulation correlated very well.

In this paper, only rectangular cross-sectional nanowires were considered. If the shape of a cross-
section is not rectangular, the surface component of the internal virtual work will change. Since a
nanowire with a circular cross-section presents a special case, it might not always be feasible to apply the
approach described in this paper. However, in most cases, this approach will work because a crystalline
nanowire tends to have a multifaceted cross-section rather than a circular shape. Moreover, a nanowire
could undergo surface reconstruction and could have various surfaces which are not low-index surfaces.
If a nanowire has a surface different from those mentioned in this paper, initial surface stress and surface
stress tensor will change. However, initial surface stress and surface stress tensor can still be evaluated
using the MD-based matching method proposed in this paper. Therefore, the proposed model can be
applied to nanowires with various kinds of surfaces.

The proposed multiscale continuum model could prove useful in the development of a finite element
method including surface effect, and it is expected to be a good design tool for nanoscale structures in
which the surface effect is dominant.
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CHARACTERIZATION OF HUMAN SKIN THROUGH SKIN EXPANSION

DJENANE C. PAMPLONA AND CLAUDIO R. CARVALHO

This study characterized human skin of the lower leg and scalp during the surgical process of skin expan-
sion. To our knowledge, this is the first study in this field, which has provided results that considerably
improve our understanding of human skin. A detailed in vivo analysis was carried out involving four
different patients that allowed for observation during the relaxation process. A comparison between
the in vivo and numerical finite elements model of the expansion was used to identify the material
elastic parameters of the skin. After a comprehensive search of constitutive equations for describing
skin, Delfino’s constitutive equation was chosen to model the in vivo results. We considered skin as
an isotropic, homogeneous, hyperelastic, and incompressible membrane. The parameters of Delfino’s
exponential function obtained for the first skin stretch process were a = 40.0 KPa and b = 20.2. As
skin is extended, such as with expanders or in other procedures that tighten the skin, the collagen fibers
are also extended and cause stiffening in the skin, which results in it being more and more resistant to
expansion or further stretching. We observed this phenomenon as an increase in parameters a and b
as subsequent expansions continued. The results of this study allow for the quantification of stiffening
of the skin after several stretches, when the skin becomes more and more inelastic. These results are
very encouraging and provide insight into our understanding of the behavior of stretched skin and maybe
other biological tissues, as swollen artery and veins.

A list of symbols can be found on page 653.

1. Introduction

Skin expansion is a physiological process that is defined as the ability of human skin to increase its
surface area in response to stress or deformation. Skin expanders are silicone bags of different shapes
and sizes that are implanted under the skin. Since the skin presents creep or relaxation, the resulting stress
decreases after an imposed deformation over a specific period of time. The physiology of skin expansion
not only considers stretching of the skin, but also the relaxation process used to obtain an extra flap of
skin that possesses the needed characteristics. For example, skin expansion is used to reconstruct burned
areas and breasts after mastectomy and to hide scars. Expansion is usually conducted near the location
where the skin is required in order to provide skin of the same color, texture, sensation, and structure as
the one to be removed.

Starting in 1982, several studies have improved the expansion process using self-inflation, continuous
tissue, or controlled expansion [Austad and Rose 1982; Schmidt et al. 1991; Duffy and Shuter 1994].
Other studies have explored concepts and complications of the surgical process, and numerous analyses
have been conducted on skin expansion from a medical point-of-view. In contrast, few studies have

Keywords: characterization of human skin, finite elements, skin expansion, biomembranes, constitutive equation.
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explored the bioengineering process of expansion. In order to model reconstructive plastic surgeries
numerically and achieve a better understanding of the process, it is critical to determine the mechanical
properties of skin in vivo, and several recent studies have been performed with this goal in mind. The
most frequently used techniques are indentation and suction of the skin, and some studies have used
Young’s modulus to establish the stiffness of the skin [Diridollou et al. 2000; Zahouani et al. 2009;
Pailler-Mattei et al. 2009]. In addition, more recent studies have characterized the nonlinear mechanical
behavior of human skin under indentation and suction processes [Hendriks et al. 2003; Delalleau et al.
2006; 2008; Geerligs et al. 2011; Lim et al. 2008].

To date, only one study has used a numerical model for skin under expansion [Socci et al. 2007], which
assessed the stresses and strains of skin from inflation of an expander. This study only considered an
axially symmetric configuration, in which a flat circular flap of a thin membrane (the skin) is expanded
by a spherical balloon. In that study, a phenomenological approach was used to represent the growth of
the skin after expansion.

The analysis of membranes under large deformation is usually based on the pioneering work of Green
and Adkins in nonlinear elasticity [Green and Adkins 1970]. Several theoretical and numerical studies
have been published in this field, but the total number of studies that have used this approach is rather
low compared to theoretical and numerical approaches [Alexander 1971; Pamplona et al. 2006; 2001;
Pamplona and Bevilacqua 1992; Gonçalves et al. 2009; 2008].

In this study, the skin was considered a hyperelastic membrane, and in order to execute the numerical
analysis, finite membrane elements were used, since membrane structures are load adaptive and change
their geometry to accommodate external loads with minimum variation in stress levels, and as the skin
wrinkles in-plane compression. Our aim was to develop a method for characterizing the nonlinear
mechanical behavior of skin under expansion using a numerical and in vivo technique. A consistent
constitutive equation for the skin may allow for preoperative planning and optimal filling parameters in
terms of both the volume of fluid expansion and duration between fills. Currently pain and observed
tightness are the main guides to filling.

The study presented here aimed to model the human skin over successive skin expansions in or-
der to obtain different parameters for the characterization of stretched skin over time. To accomplish
this goal, a detailed in vivo analysis was carried out and at least four expansions were monitored for
each patient, obtaining similar data for the same methodology done in animals [Beauchene et al. 1989].
During each expansion, at least five measurements were taken related to the volume inserted and the
pressure inside the skin expander. These data provided enough information to characterize the skin at
each stage of the stretching process, and the entire process provided more than 100 in vivo calculations
of volume×pressure. To obtain a constitutive equation that could describe the measured skin, several
well-known constitutive relationships were analyzed using several previously described methods [Ogden
2003; Holzapfel et al. 2000; Delfino et al. 1997]. Since the pressure inside the skin expander dropped
to zero between expansions, the skin was also considered viscoelastic. Skin growth was not considered
although an overview on the mechanobiology underlying skin growth sustains that tensile stress applied
to skin appears to stimulate skin growth [Silver et al. 2003]. Researchers recently are looking for a
model to describe the growth of the skin under tensile stress, establishing computational models for
stretch-induced skin growth under expansion [Buganza Tepole et al. 2011] and also patient-specific finite
element simulation of skin growth in situ [Zöllner et al. 2012].
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2. Methodology

The first step for expanding skin during surgery was to implant a skin expander directly underneath
the skin and subcutaneous tissue. The surgeon outlined the shape and size of the skin expander on the
skin and then made an incision on one side of the outline. The pocket that will contain the expander is
then made by separating the subcutaneous tissue by obeying the contour of the drawing, and therefore
delimiting the flap of skin to be expanded. Through this incision, the surgeon inserted the skin expander
under the skin together with a valve that is connected to the expander. After the incision is closed, a
saline solution, which should be approximately 10% of the nominal volume of the skin expander, Vexp,
was injected into the skin expander by inserting a needle into the implanted valve. At this stage the
pressure inside the expander was not measured, and this step was designated as A. Fifteen days after the
surgery, the expansion was initiated, which guarantees cicatrization. Each week, a specified volume of
saline solution was inserted inside the expander, which was dependent on the size of the expander. As
the solution was inserted, the skin expands due to the increased pressure inside the expander and results
in some pain for the patient; however, due to viscoelastic properties, the skin relaxes over time, which
diminishes the pressure inside the expander and consequently the pain of the patient. After one week, no
measurable pressure exists inside the expander. The major disadvantage of this process is the need for
two surgeries, where one is used to implant the expander and the other is used to remove the expander
and repair the skin defect. This research was done on patients that needed, for medical reasons, skin
expansion, thus the selection of patients for this analysis did not consider the age of the patient or region
of the body to be expanded, though these can prove to be important factors, specially the relation with
the original skin laxity of the anatomic region.

In addition, expansion over elastic foundations, such as the abdomen or fatty tissue, was not considered
since these locations would compromise the results of the numerical model.

3. In vivo analysis

This study was conducted on four patients, and all patients signed an informed consent. Of those, two
patients had skin expansions performed in the scalp and the other two in the lower leg. In order to identify
the behavior of the skin from successive skin expansions, it was necessary to measure the pressure inside
the skin expander before, during, and after injection of saline solution for each expansion. For this
purpose, an apparatus was developed that provided a pressure sensor coupled to the syringe used to
perform the injection of liquid (see figure). The apparatus was coupled to a plastic Y tube, where one
upper region of the Y tube (b) was attached to the syringe with the saline solution to be injected, and
the other upper region of the tube (c) was coupled to the apparatus
developed to measure the pressure. In addition, the lower side of
the Y tube (a) was attached to the needle used to inject the saline
solution into the valve of the skin expander. The initial thickness
of the skin, H , of each patient and region was determined by the
surgeon after performing the surgery.

 

 

 

 

 

 

 

 

( c) 

(a) 

(b) 

(a) needle; (b) syringe; (c) apparatus.

During each skin expansion, the surgeon paused after each 5 or
10 ml of liquid was injected to measure the pressure inside of the
expander, which provided both volume and pressure data points.
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The measurements were continued in this manner until the final volume of the expansion was reached.
The curves relating volume to the pressure of each skin expansion allowed for characterization of the
skin for that expansion. During the week following each expansion, the viscoelastic properties of the
skin allowed for relaxation to occur and for the pressure inside the expander to reach zero.

Only the final pressure and volume reached in each expansion are shown in the following tables,
although to achieve the final pressure each expansion was carefully measured. For these analyses, Vi−1

represented the initial volume andVi represented the final volume of the i-th expansion. The letter A
designated the initial insertion of fluid during the surgery, and the letter B indicated that the pressure for
that particular expansion could not be measured for various reasons (e.g., the patient arriving late or at
times when the measurements could not be performed).

Since the skin expanders for the patients have different shapes, dimensions, and nominal volumes,Vexp,
the variable V ∗i was used to relate to the final pressure of that expansion, Pi . The ratio between Vexp and
the final volume Vi inside the expander at the end of each expansion, i , is denoted by

V ∗i =
Vi

Vexp
(3-1)

It is important to note that although the volume injected into the expander could be the same in each
step, this volume is a smaller percentage of the total volume already injected into the expander, which is

V ∗∗i =
Vi − Vi−1

Vi−1
(3-2)

3.1. Results of skin expansion in the scalp. Two patients were analyzed for expansion of the skin in
the scalp, both with initial skin thickness H = 0.5 cm. Patient 1 was a 33-year-old female who had light
brown skin, weighed 53 kg, and was 1.60 m in height. A rectangular skin expander (Vexp = 400 ml) was
used on this patient. Patient 2 was a 12-year-old female with white skin, weighed 35 kg, and was 1.50 m
in height. A lunar crescent-shaped expander (Vexp = 300 ml) was used on this patient.

Since the pressure inside the expander was measured after every 5 or 10 ml of liquid was injected, at
least 4 parameters of the inside pressure related to the injected volume were determined for each skin
expansion (i) obtained. Tables 1 and 2 show only the final results of the maximum pressure reached at
the end of each weekly expansion (i).

(i) Vi−1 (ml) Vi (ml) Vi − Vi−1 (ml) V ∗i V ∗∗i Pi (kPa)

A 0 80 x x x x
1 0 110 30 0.28 0.38 29.50
2 110 140 30 0.35 0.27 28.20

B 140 380 x x x x
3 380 425 45 1.06 0.12 26.10
4 425 465 40 1.16 0.09 26.80
5 465 500 35 1.25 0.08 26.00
6 500 538 38 1.35 0.08 25.20

Table 1. Patient 1 with a rectangular expander (Vexp = 400 ml) inserted under the scalp.
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(i) Vi−1 (ml) Vi (ml) Vi − Vi−1 (ml) V ∗i V ∗∗i Pi (kPa)

A 0 214 x x x x
1 214 254 40 0.85 0.19 26.00
2 254 298 44 0.99 0.17 25.10
3 298 338 40 1.13 0.13 23.90
4 338 376 38 1.25 0.11 21.90

Table 2. Patient 2 with a crescent expander (Vexp = 300 ml) inserted under the scalp.

The data indicated that a maximum pressure achieved during each skin expansion was of the same
magnitude and ranged between 22–29 kPa. This maximum pressure was limited by the discomfort or
pain felt by the patient, important information to the doctor performing the procedure.

3.2. Results of skin expansion in the lower leg. Two patients were analyzed for expansion of skin on
the lower leg, both with initial skin thickness H = 0.8 cm. Patient 3 was a 10-year-old female with light
brown skin, weighed 45 kg, and had a height of 1.50 m. A rectangular expander (Vexp = 250 ml) was used
on this patient. Patient 4 was an 18-year-old female with white skin, weighed 70 kg, and had a height of
1.80 m. A rectangular expander (Vexp = 400 ml) was also used on this patient. Since the pressure inside
the expander was measured after every 5 or 10 ml of liquid was injected, at least 4 parameters of the
inside pressure related to the injected volume were determined for each skin expansion (i). Tables 3 and
4 show the final results of the maximum pressure obtained at the end of each weekly expansion (i).

As seen in Tables 3 and 4, the results showed that the maximum pressure achieved during each skin
expansion of the lower leg ranged from 9–19 kPa, which was lower than that obtained on the scalp. The

(i) Vi−1 (ml) Vi (ml) Vi − Vi−1 (ml) V ∗i V ∗∗i Pi (kPa)

A 0 157 x x x x
1 157 187 30 0.75 0.19 12.63
2 187 232 45 0.99 0.24 13.00
3 232 272 40 1.09 0.17 10.50
4 272 302 30 1.21 0.11 9.00

Table 3. Patient 3 with a rectangular expander (Vexp = 250 ml) inserted in the lower leg.

(i) Vi−1 (ml) Vi (ml) Vi − Vi−1 (ml) V ∗i V ∗∗i Pi (kPa)

A 0 120 x x x x
1 120 160 40 0.40 0.33 17.20
2 160 200 40 0.50 0.25 18.90
3 200 240 40 0.60 0.20 x
4 240 280 40 0.70 0.17 12.90
5 280 320 40 0.80 0.14 12.60

Table 4. Patient 4 with a rectangular expander (Vexp = 400 ml) inserted in the lower leg.
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maximum pressure was also limited by the discomfort or pain that the patient felt, since discomfort was
accentuated in the skin of the lower leg.

In addition, we also observed that the amount of pressure needed to fill the expander diminished as it
was filled for both the scalp and skin of the lower leg, despite the injected volume being the same at each
step. This could be related to Laplace’s law often cited by surgeons, mostly related to aneurismal growth.
In addition, this volume was a smaller percentage of the volume already present inside the expander, V ∗∗i .

4. Numerical analysis

To characterize the skin during expansion, it is necessary to model the procedure numerically, which
can be accomplished using the commercial finite element software ABAQUS (version 6.8) together with
the commercial program MATLAB. The goal was to identify an elastic constitutive equation that can
characterize the skin of the scalp and lower leg during each expansion. However, the parameters of the
constitutive equation for each region and expansion are not the same, since the collagen fibers of the
stretched skin offer more resistance to expansion over the course of the expansion, as observed in [Lim
et al. 2008].

To perform the numerical analysis, the finite element mesh used linear hybrid membrane quadrilateral
or triangular finite elements (M3D4 or M3D3), depending on the geometry, when the initial thickness,
H , was provided by the surgeon. The control of the volume inserted into the skin expander is essential
for modeling this medical procedure, and it can only be done in ABAQUS by using the combination of
membrane and fluid finite elements. In the fluid elements, the pressure is applied to one unique node,
which is called the reference of cavity node. This pressure simulates the injection of fluid into the skin
expander. The middle surface is the reference point for both the membrane and fluid elements. In the
numerical analysis, the final geometry of one expansion is used as the initial geometry for the next
expansion where the stress and pressure are equal to zero, since the pressure inside goes to zero within
a week due to the relaxation of the skin. Because the expansions are successive, the thickness of the
modeled skin changes at the end of each expansion, but not uniformly. Modeling a different thickness
for every membrane element is impossible, since finite elements of the membrane were used and require
a constant thickness continuum. Therefore, the mean thickness of all elements obtained in the previous
expansion was used for all subsequent expansions together with the previous geometry. The ABAQUS
code has a command to obtain the thickness of each finite element after it is deformed at the end of each
expansion. With a maximum stretch of the skin, it is possible to determine the amount of skin provided
by the skin expansion. The maximum principal stress reached at each expansion is an important data
point, since this is associated with the discomfort or pain of the patient during the expansion. The results
are presented in the following figures and tables. The boundary was considered simply connected and
free to rotate. This boundary condition was chosen after careful observation of the expanded skin to
ensure that the skin at the boundary did not exhibit peeling.

Skin is considered homogenous and hyperelastic, though it possesses properties that are much more
complex. For example, skin exhibits viscoelastic behavior, which was demonstrated by the decrease in
pressure of the expander to zero within one week after the expansion. The contact between the skin and
the expander was not considered in the numerical model. This type of material is characterized through
the Strain Energy Density, W , which is written as a function of the strain invariants I1, I2, and I3. There
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are several strain energy densities with those characteristics, including Mooney-Rivlin, Neo-Hookean,
Ogden, Polynomial, Fung’s, Delfino’s exponential function, and Ogden [2003]. After assessing these
equations as a description of the in vivo results numerically, Delfino’s exponential function was chosen,
since it provided the best fit for these data. This equation was initially proposed to describe a human
artery under several loads and is represented

W =
a
b

{
exp

[b
2
(I1− 3)

]
− 1

}
, (4-1)

where a and b are parameters of the material and I1 is the first strain invariant, defined in terms of the
principal stretches λi by

I1 = λ
2
1+ λ

2
2+ λ

2
3 (4-2)

For incompressible materials, such as biological tissues, the third invariant I3 = 1 is used, given that the
ratio between the initial thickness, H , and final thickness, t , of each expansion is equal to the product of
the principal stretches:

λ3 =
t
H
=

1
λ1λ2

(4-3)

To analyze the numerical results for parameters a and b, two variables are used: the ratio V ∗i , and the
ratio between the initial thickness, H , and final medium thickness, t .

4.1. Numerical results for the scalp.

Patient 1. A mesh of 126 quadrilateral finite membrane elements, M3D4, was used on the rectangular
skin expander of Patient 1, for which the dimensions were 13.6 cm×5.5 cm and Vexp = 400 ml.

For each expansion, a curve relating the inserted volume and the pressure inside the expander was
calculated, which identifies the parameters that best describe the skin at each specific expansion. The
Newton Raphson method was used to fit the numerical and in vivo results. Figure 1 shows the numerical
and in vivo curves for the sixth expansion of the first patient with the fitting parameters a = 1.79 MPa and
b = 120.5 of Delfino’s exponential function. The data indicate that the maximum difference between the
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Figure 1. The relationship between the measured pressure (kPa) and inserted volume
(ml) for the in vivo and numerical data of the sixth expansion of patient 1 using param-
eters a = 1.79 MPa and b = 120.5.
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(i) Vi−1 ml Vi ml V ∗i Pi kPa λmax added σmax kPa t cm H/t a MPa b

A 0 80 x x x x x x x
1 80 110 0.28 29.50 1.50 241.52 0.33 1.52 0.21 31.5
2 110 140 0.35 28.20 1.66 257.93 0.29 1.72 0.22 33.4

B 140 380 x x x x x x x x
3 380 425 1.06 26.10 3.15 501.88 0.16 3.16 0.99 51.3
4 425 465 1.16 26.80 3.34 604.67 0.15 3.33 1.30 75.2
5 465 500 1.25 26.00 3.51 642.14 0.14 3.57 1.46 134.5
6 500 538 1.35 25.20 3.65 679.23 0.13 3.85 1.79 120.5

Table 5. Results of expansion for Patient 1. For expansion (i): Vi−1 = initial volume;
Vi = final volume; V ∗i =Vi/Vexp; t = final thickness.

numerical and in vivo results was 1%. The calculation of a volume versus pressure curve was calculated
for each patient at every expansion point, which allows for the characterization of skin at each stage of
the stretch.

Using the numerical analysis described, it is possible to fit the results of the numerical and in vivo
analysis of the first expansion with the parameters a = 0.21 MPa and b = 31.5 of Delfino’s exponential
function. Figure 2 shows the principal stresses that occur during several stages of the expansion. Table 5
shows parameters a and b of Delfinos’s function obtained from all the expansions of this patient. Param-
eter a changed from 0.21 MPa to 1.79 MPa and parameter b changed from 31.5 to 120.5. In addition, the
initial thickness of 0.5 cm decreased to a final thickness of 0.13 cm, and the final thickness was expected
to be smaller than the initial thickness, since the mean value of the thickness was used as the expansions
progressed. Moreover, the maximum total stretch, λmax, reached 3.65 and the maximum principal stress,
σmax, reached 679.6 kPa in Patient 1.

Patient 2. A mesh of 161 triangular finite membrane elements, M3D3, was used on the crescent skin
expander for Patient 2, with dimensions of 10.1 cm×5.6 cm and Vexp = 300 ml. Using the numerical
analysis described, we fit the results of the numerical and in vivo analysis from expansion one using the
parameters a = 0.64 MPa and b = 42.6 of Delfino’s exponential function. We found that parameter a
changed from 0.64 MPa to 1.50 MPa and parameter b changed from 42.6 to 65.6 (Table 6). The initial
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Figure 2. Finite element results for the principal stresses for patient 1 (Vexp = 400 ml)
with, 126 quadrilateral finite membrane elements, M3D4: (a) 80–110 ml; (b) 380–
425 ml; (c) 500–538 ml; (d) 500–538 ml after 7 days.
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(i) Vi−1 ml Vi ml V ∗i Pi kPa λmax added σmax MPa t cm H/t a MPa b

A 0 214 x x x x x x x
1 214 254 0.85 26.00 3.92 1,17 0.10 5.00 0.64 42.6
2 254 298 0.99 25.10 4.24 1,25 0.09 5.56 0.49 48.2
3 298 338 1.13 23.90 4.49 1,08 0.08 6.25 1.01 49.8
4 338 376 1.25 21.90 4.72 1,06 0.07 7.14 1.50 65.6

Table 6. Results of the parameters assessed for Patient 2.

thickness of 0.5 cm decreased to a final thickness of 0.07 cm, since the final value should be even smaller
because we used the mean value for the thickness as the expansions progressed. The maximum stretch,
λmax, reached 4.72 and the maximum principal stress, σmax, reached 1.06 MPa in Patient 2.

The data indicated that a principal stress, σmax, achieved during each skin expansion ranged between
679.6–1,060 kPa. This maximum stress is related with the pressure inside the skin expander, limited by
the discomfort or pain felt by the patient.

4.2. Numerical results for the skin of the lower leg.

Patient 3. A mesh of 104 quadrilateral finite membrane elements, M3D4, was used on the rectangular
skin expander of Patient 3, Figure 3, for which the dimensions were 9.6 cm×5.9 cm and Vexp = 250 ml.
Using the numerical analysis described, we fit the results of the numerical and in vivo analysis and
found that parameter a changed from 0.04 MPa to 0.30 MPa and parameter b changed from 22.0 to 45.0
(Table 7). The initial thickness of 0.80 cm decreased to a final thickness of 0.18 cm after expansion.
The maximum stretch, λmax, reached 3.00 and the maximum principal stress, σmax, was 131.90 kPa in
Patient 3.

Patient 4. A mesh of 126 quadrilateral finite membrane elements (M3D4) was used on the rectangular
skin expander of Patient 4, for which the dimensions were 13.6 cm×5.5 cm and Vexp = 400 ml. Using
the numerical analysis described, it was possible to fit the results of the numerical and in vivo analyses
together. Table 8 shows parameters a and b for Delfino’s exponential function for this patient. Parameter

Figure 3. Final expansion of patient 3; as the skin is expanded, the thickness of both
dermis and epidermis decreases.
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(i) Vi−1 ml Vi ml V ∗i Pi kPa λmax added σmax kPa t cm H/t a MPa b

A 0 157 x x x x x x x x
1 157 187 0.75 2.63 2.38 27.70 0.27 2.96 0.04 22.00
2 187 232 0.93 13.00 2.64 143.80 0.23 3.48 0.08 32.80
3 232 272 1.09 10.50 2.86 136.10 0.20 4.00 0.16 32.90
4 272 302 1.21 9.00 3.00 131.90 0.18 4.44 0.30 45.00

Table 7. Results for parameters assessed in Patient 3.

(i) Vi−1 ml Vi ml V ∗i Pi kPa λmax added σmax kPa t cm H/t a MPa b

A 0 120 x x x x x x x x
1 120 160 0.40 17.20 1.86 94.30 0.47 1.70 0.10 12.90
2 160 200 0.50 18.90 2.09 128.40 0.41 1.95 0.09 27.20

B 200 240 x x x x x x x x
3 240 280 0.70 12.90 2.50 114.50 0.34 2.35 0.13 36.50
4 280 320 0.80 12.60 2.70 123.70 0.31 2.58 0.17 44.20

Table 8. Results for parameters assessed for Patient 4.

a changed from 0.10 MPa to 0.17 MPa, and parameter b changes from 12.9 to 44.2 from expansion 1 to
4, respectively. In addition, the initial thickness of 0.8 cm decreased to a final thickness of 0.31 cm. The
maximum stretch, λmax, reached 2.7 and the maximum principal stress, σmax, was 123.4 kPa.

As seen in Tables 7 and 8, the results showed that a principal stress, σmax, achieved during each skin
expansion of the lower leg was of the same magnitude and ranged between 144–128 kPa, which was
lower than that obtained on the scalp.

4.3. Comparison between the scalp and skin of the lower leg related to V ∗. We next assessed the
change in parameters a and b in relation to volume V ∗ as the skin was expanded. To obtain the change
in the elastic parameters a and b of Delfino’s exponential function for the scalp and the skin of the lower
leg, the following procedure was used. Figure 4 shows the relationship between V ∗i and parameters a
and b, obtained from Tables 5, 6, 7, and 8 for each skin expansion i .

The pressures measured in vivo at the beginning of each expansion were very small, so it was very
difficult to obtain accurate measurements. Therefore, the results obtained for the parameters a and b can
be considered as an important first step to understanding the behavior of the skin as it is expanded by
taking into account differences between the patients in this study in terms of skin site, age, and race. The
behavior of the parameters a and b during skin expansion of the scalp as a function of V ∗ is described
by

a = 0.088+ 0.006e.4.25V ∗, b = 27.66+ 0.06e5.46V ∗ . (4-4)

These equations can predict the changes of the parameters for the skin of the scalp as it is stretched.
The parameters for skin stretched for the first time V ∗ = 0 were a = 0.094 MPa and b = 27.72, and
increased exponentially as the expansion progressed.
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Figure 4. Continuous curves describing the change in parameters a (left) and b (right)
with the variable V ∗ for skin expansion of both the scalp and lower leg. For unstretched
skin, a was 0.094 MPa. For unstretched skin of the lower leg, b was 27.72.

4.4. Comparison of the thickness ratio between the scalp and skin of the lower leg. The results of this
study could potentially be useful for plastic surgeons in various cosmetic procedures if the parameters
a and b obtained could be connected to the ratio between the original thickness, H , and the thickness
after expansion, t [Pitanguy et al. 1998]. When we combined the results in this manner, it became clear
that the parameters of the first patient that received skin expansion of the scalp did not fit well with the
other three patients, as seen in Figure 5. Specifically, the left half of the figure shows the behavior of a
for patient 1 compared to the other 3 patients. When λ1λ2 = H/t = 1, there was no deformation, and
the value of a for the scalp of patient 1 was 0.12 MPa, as a particular case of the fit

a = 0.045e0.98λ1λ2, (4-5)
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Figure 5. Changes in parameters a (left) and b (right) with the product λ1λ2 for patient
1 (dashed lines) and the other three patients combined (dotted line).
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while for the other three patients combined the value was 0.04 MPa:

a = 0.030e0.56λ1λ2 − 0.01. (4-6)

Figure 5, right, shows the behavior of parameter b for patient 1 compared to the other three patients.
When λ1λ2 =

H
t = 1, the value of b for the scalp of patient 1 was 26.50, as a particular case of the fit

b = 22.97+ e1.26λ1λ2, (4-7)

while for the other three patients combined, it was 20.19:

b = 16.71e0.19λ1λ2 . (4-8)

Although the curves for patient 1 were quite different from the other three patients, the results for
parameter b (26.5 and 20.2 for patient 1 and the other 3 patients combined, respectively) were similar
when the skin was first stretched (i.e., λ1λ2 = 1). In contrast, parameter a was three times higher
for patient 1 when the skin was first stretched than the other three patients combined (0.12 MPa vs.
0.04 MPa, respectively). Patient 1 being older than the others, with consequent skin flaccidity, is a
possible explanation for the results observed. On the other hand, skin expanders used on the scalp are
inserted under the galea, which is a tight and inelastic tendon. This procedural difference may also
explain the difference in the two curves. The fact that patient 1 had darker skin was not considered as a
relevant factor.

5. Conclusions

The study described here has pioneered the approach for modeling human skin over successive skin
expansions. Based on these results, we have obtained different parameters for characterizing skin as the
expansions proceed and the skin is stretched. The characterization of skin located in the scalp and lower
leg was possible through the association of the numerical and in vivo analyses. The in vivo measurements
showed that the skin relaxed after each expansion, since all pressure measurements inside the expanders
were reduced to zero within one week after the procedure. Although there are recent proposals supporting
that the tensile stress or the control of the expander internal pressure stimulates the cellular growth, in
reality the external control parameter is the volume infiltrated. As a result of the viscoelastic property
of the skin, the pressure inside the expander, due to relaxation, drops dramatically in the first days and
even in the first hours after expansion. This is the principal reason why skin growth was not considered
here, relaxation due to viscoelastic properties and not due to structural or molecular changes is used to
model the change in the geometry of the skin.

Although the number of patients assessed for each region of the body was low, we measured between
four and six expansions for each patient and obtained at least five measurements for each expansion on
each patient. Therefore, the total data obtained from this study included more than 100 volume×pressure
in vivo measurements.

The results presented here are considered reliable, and the parameters of Delfino’s exponential function
for the skin of three of the patients were a = 40.0 kPa and b = 20.2. It was not possible to compare our
results with the work of other studies because the parameters used when characterizing skin are often
from the Elasticity Modulus E , Ogden, Fung’s, and other constitutive equations. Those equations and
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many others were considered for our study but did not fit our in vivo data, since the rapid stiffening that
occurs when large loads are applied is best described by a constitutive model based on an exponential
strain energy formulation. One study used Mooney’s equation for the characterization of the nonlinear
mechanical behavior of human dermis and found C10 to be 9.4± 3.6 kPa and C11 to be 82± 60 kPa
[Hendriks et al. 2003]. In another study, an equivalent equation to Delfino’s equation for the artery was
used, and the parameters were found to be a = 44.2 kPa and b = 16.7 [Dorfmann et al. 2010].

The results presented here used two different correlations, and parameters were analyzed in relation
to the ratios of V ∗ and H/t . The curves obtained for the ratio of V ∗ were well behaved and provided
considerable insight of human skin under expansion, which is still an unexplored area of study. However,
these data are only useful when analyzing expanded skin. On the other hand, the curves that related pa-
rameters a and b with the ratio between the initial and maximum deformed thickness provided important
and useful clues of the skin for scientists and surgeons. These analyses allow for the estimation of
parameters of skin that is already stretched. After reconstructive surgery, the skin is already stretched,
and the results presented here would allow the surgeon to predict the elasticity of the skin after two,
three, or even four plastic reconstructive surgeries. Stiffening of the skin after several stretches was seen
for both parameters. After the difference in the ratio between thicknesses increased to more than 4-fold,
pulling the skin more would not eliminate the wrinkling effect, since it becomes more and more inelastic,
which is well documented in the field of cosmetic surgery. As seen empirically, the skin showed an almost
rigid body translation, so that pulling the skin in the vicinity of important anatomical structures, such as
the eyelids or mouth, may indeed cause deformation of these structures. Importantly, this observation is
seen in repeated facial plastic surgeries and serial reconstructive procedures.

It is important to note that as skin is extended, such as with expanders or in other procedures that
tighten the skin, the collagen fibers are also extended and cause stiffening in the skin, which results in it
being more and more resistant to expansion or further stretching. We observed this phenomenon as an
increase in parameters a and b of Delfinos’s constitutive equation as subsequent expansions continued.

The results presented in this study are very promising in this field and extend our understanding of
the expansion of skin and other biological tissues. Additional research will provide the type, number,
and volume of skin expanders, as well as frequency of expansions on several anatomic sites, which are
factors necessary to obtain a specified amount of skin for the repair of particular medical problems.

List of symbols

Vexp nominal volume V ∗ ratio between Vi and Vexp

Vi−1 initial volume V ∗∗ ratio between infiltrated volume and Vexp

Vi final volume H initial thickness of the skin
t final skin thickness
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IN-PLANE DYNAMIC EXCITATION
OF AAC MASONRY WALLS PATCHED WITH FRP:

DYNAMIC TESTING AND ANALYSIS

DVIR ELMALICH AND ODED RABINOVITCH

The paper studies the dynamic behavior of autoclave aerated concrete (AAC) masonry walls externally
strengthened with composite materials and subjected to in-plane dynamic loads. The study combines
experimental, analytical and numerical methodologies, presents the results of two types of dynamic
tests, and uses them for comparison with a finite element approach that is based on specially tailored
high-order finite elements. The first dynamic test focuses on the natural frequencies and vibration modes
of the patched wall. The second set of tests focuses on the dynamic response of the wall to in-plane base
excitation. The analysis uses the specially tailored finite elements, combines them with conventional
elements, and compares the results with the experiments. The discussion supports the validation of
the model and throws light on a range of phenomena that characterize the dynamic behavior of the
strengthened wall. These phenomena range from the global in-plane to out-of-plane coupling to the
localized effects at the strengthened layer level.

1. Introduction

The structural upgrade of existing masonry walls is a challenge that is often faced by the structural
engineering community. The presence of masonry walls in the structural assembly can affect the dynamic
response of the entire structure, especially in cases where the dynamic excitation is in the wall’s plane.
In these cases, the strengthening of the existing walls can modify their own dynamic response and can
also modify the response of the entire structure. However, in order to use such walls as a part of the
lateral load resisting system, their strengthening is often required. The use of externally bonded fiber
reinforced plastic (FRP) has gained widespread acceptance as a modern way to address this need.

In order to use FRP bonding in dynamic upgrade applications, the dynamic behavior of the strength-
ened wall in general and particularly the dynamic interaction between the existing wall and the external
strengthening layers, have to be characterized. These aspects are relevant to the strengthening of the
wall to resist out-of-plane dynamic loads (e.g. [Hamed and Rabinovitch 2008; Rabinovitch and Madah
2012a; 2012b]) and they become even more important when the wall is strengthened to resist in-plane
dynamic loads and to contribute to the general dynamic upgrade of the structure. The strengthening task
requires a sound experimental basis and adequate analytical and numerical tools. The experimental basis
is essential for characterizing the structural response and for providing experimental benchmarks for the
assessment, examination, and validation of analytical and numerical tools. The analytical and numerical
tools are then essential for widening the characterization of the structure and for addressing aspects that
cannot be detected experimentally.

Keywords: dynamic analysis, dynamic tests, masonry walls, composite materials, finite element method, validation.
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The experimental studies that focus on the in-plane loading and response of the FRP strengthened
walls are divided into three main groups. The distinction between the groups is based on the type of
the loading (static, cyclic, dynamic) and on the scale of the tested sample. The first group aims to
assess the shear behavior of masonry panels and includes small scale panels or block triplets subjected
to quasistatic loading. For example, Ehsani et al. [1997] and Suriya Prakash and Alagusundaramoorthy
[2008] examined masonry triplets strengthened with FRP sheets and pointed at the effect of the orientation
of the fibers on the shear resistance. Hamid et al. [2005] examined small scale FRP strengthened masonry
panels made of hollow concrete blocks and subjected to different load directions. The results were used
for the derivation of strength parameters for simplified models but they also revealed the impact of the
direction of the load on the nature of the response. This response varies from splitting of the blocks when
the load is perpendicular to the masonry course to shearing of the bed joints when the load is parallel to
the masonry course. These observations raise questions regarding the response in the case of realistic,
sign reversing, and orientation changing dynamic loads.

The group of experimental works that focus on small scale specimens also reveals some of the local
phenomena that govern the FRP strengthened masonry wall. Among these, delamination and rupture
of the FRP layer [Valluzzi et al. 2002; Hamid et al. 2005; Ehsani et al. 1997] and delamination due to
buckling [Suriya Prakash and Alagusundaramoorthy 2008] are reported. In that sense, the experiments
that focused on small scale specimens provide insight into such physical phenomena. The small scale tests
also provide a measure of the structural properties of the strengthened panel. However, these experiments
do not address some of the critical aspects of the response of the wall and particularly those related to the
dynamic effects (cyclic loading, sign reversing loading, inertial effects, velocity-governed effect etc.).

The second group of experimental studies examines larger FRP strengthened panels that are subjected
to cyclic loading. This class of experiments focuses on the global behavior of the strengthened wall
to the in-plane load and mainly on the impact of the configuration of the strengthening system on the
global response. Within this group, a distinction is made between infill walls and load bearing walls.
Haroun and Ghoneam [1997] and Saatcioglu et al. [2005] studied infill walls combined with concrete
frames under cyclic loading. Almusallam and Al-Salloum [2007] studied the effect of strengthening with
strips made of FRP fabrics. The alignment of the fibers of the strengthening layers in the first and third of
these papers was along the bed joint, while in the second the fibers were oriented along the diagonal. The
comparison between the two indicates that the configuration of the composite materials directly affect the
response, which varies from a pseudoductile behavior with a modest contribution to the ultimate strength
in the case of horizontal and vertical fibers, to stiffer, stronger, and less ductile behavior in the case of the
diagonal fibers. This trend is also reflected by the experimental results reported in [Altin et al. 2008].

The general focus on the global response and on the impact of global parameters such as type, size,
and orientation of the strengthening system is also found in experimental studies on FRP strengthened
load bearing walls. Stratford et al. [2004] studied the behavior of such walls under a cyclic loading but
with loading, unloading, and reloading in one direction only. The role of the sign reversal of the loads
and its impact on the response of the wall were not examined. Foster et al. [2005] studied the behavior
of FRP strengthened load bearing walls with opening and examined configurations that combine vertical
and diagonal strengthened strips. These experiments confirm that the FRP system can postpone the
structural degradation observed in the unstrengthened walls. However, they do not directly reflect the
response to a fully dynamic load.
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The third group of experimental works includes direct dynamic tests of FRP strengthened walls. This
class of experiments is essential for providing insight into the dynamic response and for setting ex-
perimental benchmarks for analytical and numerical models. In this class, the inertial forces and the
damping effects dictate the response of the wall. The coupling effects that evolve due to the combination
of realistic boundary conditions, direct dynamic loading, and inevitable imperfections are also taken into
account. For example, Al-Chaar and Hasan [2002] examined the behavior of two parallel walls, one
was unstrengthened and the other one was strengthened with FRP sheets. The two dynamically tested
walls were made of concrete masonry units (CMU) and they supported a concrete slab. The walls were
dynamically excited using a shake table in three directions. The response of these walls reveals some
phenomena that characterize walls made of CMU and soft mortar. In particular, they reveal web splitting
and cracking along the joints. ElGawady et al. [2002; 2003; 2005] examined the dynamic behavior of
FRP strengthened walls made of clay bricks. Also here, the unstrengthened walls accumulated damage
mainly along mortar joints. The FRP strengthening improved the resistance to cracking and therefore
improved the dynamic lateral resistance of the walls. Turek et al. [2007] examined the dynamic response
of masonry walls made of high strength concrete blocks. The results of this experimental study further
strengthen the observation that the response is strongly affected by the strength ratio dictated by the
high strength masonry units and the low strength mortar joints. With the strength ratio examined, and
regardless of the configuration of the FRP, the cracking pattern tends to follow the weak mortar joints.

The above survey designates the direct dynamic testing as the most appropriate methodology for
studying the dynamic response of the FRP strengthened wall and for providing benchmark results for the
assessment and validation of analytical or numerical models. The direct dynamic tests surveyed above
contribute to this effort and gain insight into the dynamics of the strengthened wall. However, in order to
provide a sound basis for comparison with advanced analytical and numerical models, including ones that
take the interfacial interaction between the existing and the bonded layers into account (e.g. [Elmalich
and Rabinovitch 2012a]) a more refined class of experimental results is needed. Specifically, results that
can be used for comparing the natural frequencies, the mode shapes, the damping mechanisms, and the
elastic deformation fields in the dynamically loaded wall and results that can reflect on the interaction
between the dynamically loaded wall and the externally bonded FRP layers are needed.

Another aspect of the dynamic behavior of FRP strengthened masonry walls is associated with the
range of masonry materials involved. In historic masonry buildings, heavy solid masonry units and weak
mortars (if any) are usually found. In other cases, relatively heavy bricks, solid concrete blocks, or
hollow concrete blocks are used as the construction material. The experimental efforts discussed above
and particularly the direct dynamic tests have focused on such materials (see, for example, [Al-Chaar and
Hasan 2002; ElGawady et al. 2002; 2003; 2005; Turek et al. 2007]). In these cases, the combination of
relatively stiff and strong blocks with weak joints dictates a cracking pattern that is limited to the joints.

Opposed to the classical heavy block and soft joint masonry, many modern masonry infill walls and,
in some cases, even load bearing masonry walls are built using solid autoclave aerated concrete (AAC)
blocks. The AAC is lighter than standard masonry materials and the mortar/adhesive that is used for the
construction is often stronger and stiffer than the blocks themselves. As a result, the behavior of the wall
is less heterogeneous and less orthotropic and the cracking is not limited to the mortar joints. In addition,
the relatively low tensile and shear strengths of the AAC may negatively affect the bond of the externally
bonded system and the ability of the interfaces to transfer shear and peeling stresses.
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The above observations about the nature of the AAC-FRP system and the potential ability to convert
existing AAC walls into dynamic load resisting elements, draw the attention to the FRP strengthening
of AAC walls to resist in-plane dynamic loads. In spite of that potential, the dynamic strengthening of
AAC panels with FRP did not gain much attention in the literature. The number of works that addressed
this application mainly focus on the strengthening to resist out-of-plane loads [Hamed and Rabinovitch
2010], strengthening of AAC lintels [Memari et al. 2010], and synergic sandwich panels made of CFRP
and AAC and subjected to static [Uddin et al. 2006; 2007] and impact loads [Serrano-Perez et al. 2007].
Reports on the application of FRP patched AAC walls for the dynamic in-plane upgrade and reports on
the direct dynamic testing of FRP strengthened AAC masonry walls under dynamic in-plane loads were
not found.

The objective of this paper is to gain insight into the dynamic response of FRP strengthened AAC
masonry walls to dynamic in-plane loads. The paper also aims to present dynamic experimental results
that can be used for the assessment and validation of analytical and numerical models for the dynamic
behavior of the strengthened wall. Finally, it aims to use these results for the examination of a high
order specially tailored finite element modeling approach [Elmalich and Rabinovitch 2012a; 2012b;
2012c]. To achieve these goals, the paper combines experimental and analytical/numerical methodolo-
gies. The experimental program focuses on direct dynamic testing of FRP patched AAC wall panels.
The dynamic testing includes free vibration response to impulsive loads and forced dynamic response
to base excitations. The combination of the experimental results and the high order FE analysis and the
comparison between them are then used for studying additional aspects of the dynamic behavior of the
FRP strengthened wall.

2. Experimental program

2.1. Test specimens, geometry, and materials. The tested AAC masonry specimens are illustrated in
Figure 1. The tested panels are 750 mm wide, 900 mm high, and 100 mm deep. Each specimen is
constructed of 6 courses of 250/150/100 AAC blocks. The construction of the specimens uses standard
techniques, including the use of a special mortar/adhesive for joining the masonry blocks together. The
tested panels include an unstrengthened one and a strengthened one. Both sides of the strengthened panel
are patched with externally bonded GFRP sheets saturated with epoxy resin. The material properties of
the masonry units, the masonry mortar/adhesive, and the GFRP system are listed in Table 1. These
values are based on the materials’ manufacturers. Some of the elastic and mechanical properties of the

Material Elastic modulus Shear modulus Poisson ratio Dry density
[GPa] [GPa] [kg/m3]

AAC block 1.550–1.780 0.62–0712 0.25 540–560∗

AAC adhesive/mortar 10 3.84 0.25 1300
GFRP sheet 65 (x , y directions) 3.25 — 2600

Epoxy adhesive/resin 3 1.15 0.3 1100
∗ Measured value = 550 kg/m3

Table 1. Material properties (reported by the manufacturers).
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Figure 1. Experimental setup: (a) x-y view; (b) cross section; (c) top view; (d) zoom
on a cross section near the joint; (e) x-y view of the FRP patched wall.

assembled AAC panel are further validated through a quasistatic diagonal compression test. Because
this process is involved with data reduction through application of the FE model, it is reported later in
this section, right after the presentation of the FE model.

2.2. Test setup. The test setup is also illustrated in Figure 1. A picture of the test setup and the tested
specimens appears in Figure 2. For clarity of the discussion, a Cartesian coordinate system is “attached”
to the specimen. In this system, x designates the direction of the excitation (east-west), y is the vertical
coordinate, and z is perpendicular to the wall’s plane (north-south) see Figures 1 and 2. The panels
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are dynamically excited in the x direction using a shake table. The masonry panels are built on top of
a steel beam, which is rigidly mounted on the shake table. In order to apply vertical prestress to the
wall, and in order to add mass at the top of the wall, an additional steel beam is mounted on top of the
panel (see Figures 1 and 2). The mass of the top beam equals 60 kg. The top and bottom beams are
connected by two sets of cables. Each set includes two vertical cables and two diagonal cables. Each
cable is pre-tensioned to 1 kN. The tensile forces in all cable are continuously monitored during the
pre-tensioning stage and during the dynamic testing stage. The cable systems exert vertical compression
on the panel (prestress) and they restrain the out-of-plane displacements (in the z direction) of the top
beam by forming two stiffened y-z planes perpendicular to the wall’s plane. However, due to the elastic
deformability of the cables, the stiffened planes allow for some level of elastic movement of the upper
beam in the y and z directions. This allows for the evolution of mode shapes that involve such movement
of the top of the wall. The system of cables does not restrain the movement of the upper beam in the
direction of the excitation (x). As a result, the dynamic in-plane load is solely carried by the tested
wall. In order to simulate the effect of added mass, which represents the contribution of an upper slab,
in some of the experiments, the upper steel beam is connected to a trolley. The point where the trolley
is connected to the upper beam is shown in Figure 1e. The trolley, which is shown in Figure 2a, is free
to move in the x direction on leveled rails. The friction associated with its movement is not significant.
The mass of the trolley equals 190 kg and it can carry added mass up to about 800 kg. The added mass
takes the form of concrete weights that are mounted on the chassis of the trolley (see Figure 2a). The
trolley apparatus introduces the lateral effect of the added mass but it does not increase the vertical dead
load on the shake-table.

2.3. Sensing and monitoring. The monitoring of the dynamic response uses 4 linear transducers (LVDT),
4 uni-axial (single-component) accelerometers, 1 position transducer, and 8 load cells. The location of
the sensing devises is illustrated in Figure 1. The in-plane accelerations in the x direction are measured
at the level of the bottom beam by the accelerometer designated ACC100 and at the level of top beam
by the accelerometer designated ACC99. The out-of-plane accelerations in the z direction are measured
using two additional accelerometers (ACC211 and ACC212). These sensors are mounted on the top
beam at points that are located above the two upper corners of the wall. ACC211 is located above the
east corner and ACC212 is located above the west one. The in-plane diagonal extension/contraction of
the specimen is monitored using a position transducer (POS61). One end of this device is connected to
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the bottom beam at the lower east corner and the other end is connected to the top beam at the upper west
corner. LVDT1 and LVDT2 are used for monitoring relative displacements in the x direction. LVDT1
measures the relative displacement between a point located 80 mm below the upper steel beam and the
upper beam itself. LVDT2 measures the relative displacement between a point located 80 mm above the
bottom steel beam and the bottom beam itself. LVDT 3 monitors the movement of the shake table in
the x direction and LVDT4 monitors the movement of the trolley. Finally, all 8 cables are equipped with
load cells (LC1-LC8) that dynamically monitor the level of the tensile forces in each cable.

The FRP strengthening system is monitored using two sets of strain gauges (SG) that are located on
both faces of the wall near its center. The strain gages are marked with 3 letters. The first letter refers to
the face of the wall (N for north or S for south). The second letter refers to the length of the strain gage
(S for 6 mm long strain gauges or L for 30 mm long strain gauges). The third letter refers to the direction
of the strain gage (V for vertical, H for horizontal, D for 45◦).

The sampling rate of each sensor equals 1200 samples per second. In some tests, this value is reduced
to 1000 samples per second. The specific sampling rate in each test is determined depending on the
duration of the excitation and on the expected dominant frequencies.

2.4. Testing protocol. The panels are dynamically tested in two steps. First, the dynamic characteristics
of the panels are examined under impulse induced free vibrations. Two methods have been used for the
excitation of free vibration of the wall. The first method is based on moving the shake table at constant
velocity and then a sudden breaking. The second method is based on hammering the top steel beam in
the x direction. Both scenarios yield an impulsive load in the x direction.

The second step of the dynamic testing examines the response of the wall to a cyclic base excitation.
In this step, the panels are subjected to a series of cyclic base movement signals. In the present paper, the
focus is on excitation signals that are characterized by frequencies of 6 Hz and 4 Hz and on the response
of the patched wall.

3. High order FE modeling and analysis

3.1. High order finite element. The numerical analysis of the FRP patched wall uses the specially tai-
lored FE approach developed in [Elmalich and Rabinovitch 2012a; 2012b]. For completeness and clarity,
the main modeling approach and the main modeling assumptions that are used in the derivation of the
specially tailored FE are briefly outlined next. Then, the numerical model that implements the specially
tailored element in the FE analysis of the entire test setup is outlined. Finally, the assessment of the
mechanical properties to be used in the numerical model is discussed.

The specially tailored multilayered FE is presented in Figure 3. The element combines five layers that
include the two FRP layers, the two adhesive layers, and the wall. The latter is assumed linear elastic,
orthotropic, and geometrically linear. The wall layer is modeled using the first order shear deformation
plate theory. Due to the small thickness of the mortar joints used in the AAC masonry assembly and due
to the relatively high strength and high modulus of the AAC mortar/adhesive (compared with the AAC
blocks), the mechanical properties of the masonry units and the joints are homogenized and the panel is
modeled using the equivalent properties.

The FRP layers are assumed geometrically and physically linear, elastic, and symmetrically stacked.
These layers are independently modeled using the lamination theory and the first order shear deformation
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plate theory. The adhesive layers are modeled as 3D elastic media. They are assumed physically and
geometrically linear. The in-plane normal and in-plane shear rigidities of the adhesive layer are neglected
compared with the rigidities of the adjacent components. For all components, the kinematic assumptions
used for the dynamic analysis follow the ones used for the static case (see [Elmalich and Rabinovitch
2012a; 2012b] for more details). The various layers are joined together by imposing the conditions
of compatible in-plane and out-of-plane displacement at the interfaces. Therefore, it is assumed that
all interfaces of the adhesive layers are fully bonded and that they can transfer shear and out-of-plane
normal stresses. Finally, the effect of damping is introduced by means of a mass (external) and stiffness
(viscous) proportional Rayleigh damping model.

The specially tailored finite element includes 4 nodes and 17 degrees of freedom (DOFs) per node
[Elmalich and Rabinovitch 2012a]. The elemental nodes, the DOFs, and the corresponding displacements
and rotations are shown in Figure 3. The first 5 DOFs correspond to the nodal displacements of the wall
layer (u0wall, v0wall, wwall) in the x , y, and z directions, respectively, and to the rotations (ψwall

x , ψwall
y ) of

the wall’s cross sections about the x and y axes, respectively. The following 10 nodal DOFs correspond
to the displacements and rotations of the first FRP layer: u0FRP1(x, y, t), v0FRP1(x, y, t), wFRP1(x, y, t),
ψFRP1

x (x, y, t), ψFRP1
y (x, y, t) and to those of the second FRP layer: u0FRP2(x, y, t), v0FRP2(x, y, t),
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wFRP2(x, y, t), ψFRP2
x (x, y, t), ψFRP2

y (x, y, t). The last two nodal DOFs correspond to the out-of-plane
displacement at the middle of the adhesive layers: wadh1

0 (x, y, t), wadh2
0 (x, y, t).

The displacements fields in the layered element take the following form [Elmalich and Rabinovitch
2012a]:


ui (x, y, z, t)
vi (x, y, z, t)
wi (x, y, z, t)

=

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0
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where zi is measured from the mid-surface of each layer, hadh1 and hadh2 are the thicknesses of the
adhesive layers (Figure 3a). The unknown functions of x , y, and t , which appear on the right hand side of
Equations (1)-(7), are approximated by the finite element shape functions N (x, y) and the time dependent
nodal displacement d(t). More details on the derivation of the displacement fields, and particularly the
displacement fields of the adhesive layers, are found in [Elmalich and Rabinovitch 2012a].

The finite element formulation takes a standard form that reads:

Md̈+Cḋ+ K d− F(t)= 0 (8)

where M is the mass matrix, K is the stiffness matrix, C is the damping matrix, and F(t) is the vector of
external forces. The matrices M and K and the vector F(t) are assembled using the elemental matrices
and the standard assembly procedure. The damping matrix C is synthesized following the Rayleigh
damping approach:

C = a0 M + a1 K (9)

where the constants a0 and a1 are determined based on prescribed damping ratios that correspond to two
of the vibration modes (see, for example, [Chopra 2001]).

3.2. FE model of the strengthened AAC wall. A schematic illustration of the FE model of the tested
wall, its geometry, and the boundary conditions are shown in Figure 4. The thick lines at the top of the
wall represent the upper steel beam. This beam is modeled using standard first order shear deformable
3D beam elements. The thin lines in Figure 4 represent the system of cables. Each cable is modeled as a
longitudinal bar element with equivalent elastic and mass properties. Since the cables are pre-tensioned,
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Figure 4. Schematic description of the FE model of the test setup.
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the ability of the bar elements to resist compression is attributed to a reduction of the level of pre-tension in
the cable and not expected to affect the comparison with the experiments. The diameter of the equivalent
cross section is taken as 2.5 mm. This value is estimated based on the measured out-of-plane natural
frequencies of the unstrengthened wall and the cables themselves and it reduces the nominal 3.2 mm
diameter cross section due to the mass and the softening effects introduced by the tensioning devices,
the load cells, and the connectors along the cable.

The dark gray area in Figure 4 represents the FRP strengthened region and the light gray area repre-
sents a 35 mm wide unstrengthened region at the perimeter of the patch. The FRP strengthened region
is modeled using the specially tailored elements developed in [Elmalich and Rabinovitch 2012a] and
briefly discussed above. The 35 mm wide unstrengthened regions at the perimeter are modeled using
first order shear deformable shell elements with four nodes. The entire combination of elements (3D
beam elements, 3D bar elements, shear deformable shell elements, and specially tailored elements) is
assembled together to a unified FE model. In order to reduce the computational load, a substructuring
procedure with superelements is adopted (see, for example, [Zienkiewitch 1977]). The application of the
superelement substructuring approach to the specially tailored FE formulation of the FRP strengthened
wall is discussed in [Elmalich and Rabinovitch 2012c]. In the present work, the substructuring procedure
uses the classical Guyan reduction algorithm [Guyan 1965]. The superelement approach is applied to
the 2D wall elements and the most refined mesh used here includes 26 by 28 superelements in the x
and y directions, respectively. Each superelement is composed of 9 by 9 basic elements of the type
derived in [Elmalich and Rabinovitch 2012a]. In the substructure level, each superelement includes 36
boundary nodes that replace a mesh of “regular” elements with 100 nodes. In the global scale, a mesh
of superelements with 12,863 nodes replaces a mesh of “regular” basic elements with 59,455 nodes.

The dynamic analysis includes the assessment of natural frequencies and vibration modes as well as
time history analysis. The first type of analysis uses the eigenvalue procedure implemented in MATLAB
and the second one uses Newmark’s method. The time step used in Newmark’s method is determined
based on the natural frequencies of the unstrengthened wall. If necessary, it is further refined after
assessing the stability and the convergence characteristics of the numerical solution (A discussion of the
stability and convergence of the high order finite element analysis appears in [Elmalich and Rabinovitch
2012a; 2012b; 2012c]). The time history analysis uses a Rayleigh damping with 10% damping ratio
for the first and the third modes evaluated by the eigenvalue analysis of the unstrengthened panel. The
relatively high damping ratio reflects the damping of the wall specimen but also the damping involved
with the test setup.

3.3. Material properties. The material properties reported by the manufacturers of the materials are
summarized in Table 1. The GFRP layer is assumed orthotropic with a design thickness of 0.065 mm.
The thickness of the adhesive layers is estimated as 2 mm. This value also includes the thin resin saturated
layer that forms in the outer shell of the AAC blocks.

The homogenized elastic and mechanical properties of the AAC panel play a critical role in the analysis
of the dynamic response. Therefore, the elastic properties of the masonry assembly are experimentally
evaluated. This is achieved using a diagonal compression test of the AAC unstrengthened panel. The
schematic layout of this test is illustrated in Figure 5. The specimen that was used in the dynamic shake
table experiments is tested to failure. The corners of the panel are trimmed in order to form a loading
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Figure 5. Test setup for the diagonal compression test of the unstrengthened panel.

plane perpendicular to the diagonal of the wall. The specimen is compressed using a hydraulic jack and
the response is monitored using LVDTs and a load cell as shown in Figure 5.

A plot of the compressive force versus the averaged vertical strain (the shortening measured by LVDT
divided by its length) is shown in Figure 6. The force-strain curve reveals a linear phase up to a strain
level of about 0.01%. At this point, a jump in the level of the force is observed. The jump is followed
by another linear and much longer phase up to failure. The slope of the second linear phase is almost
identical to the slope of the first phase. The slope of this linear phase and the results of numerical
simulation of the static compression test are used for the assessment of the homogenized elastic modulus
of the masonry assembly. Due to the geometry of the specimen, the testing along the diagonal, and
the impact of this layout on the direct conversion of the measured load versus measured shortening (or
averaged strain) into a stress-strain curve, the homogenized elastic modulus is calibrated using the FE
model. This is achieved by matching the numerically predicted slope of the load-versus average strain
curve with the experimental one. Based on this procedure, the homogenized elastic modulus equals
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1500 MPa. This value is close to the lower value reported by the manufacturer for the AAC block (see
Table 1). The calibrated value is also within the range of elastic moduli reported in the literature for AAC
blocks of similar dry densities (see, for example, [Narayanan and Ramamurthy 2000]). The failure of the
tested panel was controlled by splitting of the AAC blocks in the walls plane. Failure of the mortar joints
was not detected. This observation, which differs from the classical mode of failure of masonry walls
built of heavy natural stone or concrete masonry blocks and mortar joints, supports the consideration
of the AAC masonry specimen as a homogenized isotropic and elastic medium and the corresponding
assumptions used in the formulation.

4. Free vibration response and model validation

In this section, the natural frequencies and vibration modes are experimentally detected and compared
with the ones determined by the FE model. The numerical natural frequencies and mode shapes are
determined by solving the eigenvalue problem associated with the homogeneous undamped form of (9).
In order to verify the convergence of the numerical solution, four meshes are examined. The numerically
detected frequencies are listed in Table 2 and the vibration modes are shown in Figure 7. In order to
allow a quantitative comparison between the modes, they are normalized to yield the same level of peak
potential energy. For clarity of the figure, the displacements in Figure 7 are scaled up by a factor of 100.

The experimental natural frequencies are estimated using a Fast Fourier Transforms (FFT) of the time
dependent signals measured by the various sensors in response to the two types of impulse loadings. The
FFT plots present the complex result of the transformation multiplied by its complex conjugate. For
clarity, the values are normalized with respect to the peak value detected in the figure’s frequency range.

The identification of the experimental mode shapes is a more challenging task. The experimental
detection of the mode shapes is based on the readings of various sensors and mainly of the readings of
the accelerometers mounted on the top beam, the strain gauges mounted on the FRP layer, and the eight
load cells mounted on the cables. In some cases, linear combinations of the directly measured signals
are also examined. For example, averaging the readings of the z component of accelerations measured
above the top east and top west corners of the wall (ACC211 and ACC212) yields a time domain signal
that corresponds to the out-of-plane (z direction) movement of the upper beam. This signal is used for
identifying mode shapes that are governed by out-of-plane flexure of the wall. The difference between
the readings of the same two accelerometers divided by the distance between them defines an angular
acceleration of the upper beam. This signal is used for identifying mode shapes that are governed by

Mode Experiment Analysis [Hz]
[Hz] Mesh A: Mesh B: Mesh C: Mesh D:

7,956 DOFs 10,846 DOFs 14,178 DOFs 218,671 DOFs

1 20.8 22.415 22.402 22.394 22.366
2 27.2 30.176 30.171 30.168 30.158
3 68.0–69.0 67.089 67.079 67.073 67.046

Table 2. Experimental and numerical results for the first three natural frequencies.
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Figure 7. Vibration modes of the strengthened panel detected by the FE analysis and
normalized for equal potential energy (the deformed shapes are scaled up by a factor
of 100): (a) axonometric view, first mode; (b) axonometric view, second mode; (c)
axonometric view, third mode; (d) x-y view, first mode; (e) x-y view, second mode; (f)
x-y view, third mode.

twist of the wall and rotation of the top beam about the y axis. More experimental data is extracted by
looking into linear combinations of the signals recorded by the load cells mounted on the cables.

The 20.8 Hz frequency detected in the experiment and listed in the first line of Table 2 is attributed to
the out-of-plane flexural mode. To support this hypothesis, the average of the out-of-plane accelerations
(z direction) at the top corners of the panel (ACC211, ACC212) is examined in Figure 8. The signal is
defined by

ACCz(t)= (ACC211(t)+ACC212(t))/2, (10)

where ACCz(t) is the averaged signal and ACC211(t),ACC212(t) are the readings of the accelerometers.
The time domain responses of ACCz(t) appear in Figure 8a and reveal a cyclic structural response

with a slight low frequency beating. The time domain response shows that the differences between
one experiment and another and between the two types of impulsive loading (sudden breaking of the
shake table and hammering on the top beam) are very small. This indicates good repeatability. The
frequency domain results of the averaged accelerations signal ACCz(t) appear in Figure 8b and reveal
a significant peak at a frequency of 20.8 Hz. The presence of this peak in the averaged signal attributes



IN-PLANE DYNAMIC EXCITATION OF AAC MASONRY WALLS PATCHED WITH FRP 671

 8Figure  
  

 
 
 
 
 

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time [sec]

Ac
ce

le
ra

tio
n 

[m
/s

ec
2 ]

    
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Hz
 

(a) (b) 

Figure 8. Response of the FRP strengthened masonry wall to in-plane impulse load: (a)
time domain response of the averaged out-of-plane acceleration ACCz(t); (b) normalized
frequency domain response of ACCz(t). Legend: — impulse load introduced through
the shake table; - - - impulse load introduced through top beam. Each color refers to a
different test.

this frequency to an out-of-plane flexure mode. Another observation that supports the hypothesis that
the 20.8 Hz frequency corresponds to the out-of-plane flexure mode is found in the average of the lateral
components of the variations in the tensile forces in the diagonal cables at the two stiffening planes. This
signal is defined by

1FzDIAG(t)= (1LC3(t)+1LC4(t)+1LC7(t)+1LC8(t)) · cos(α)/4, (11)

where 1LCi(t) = LCi(t)− LCi(0) is the time domain signal of the variation of the force in the i-th
load cell, LCi(t) (i = 1 . . . 8) is the signal measured by the i-th load cell, LCi(0) is the reading of the
i-th load cell at t = 0, and α = 0.866 rad is the inclination angle of the diagonal cables. The frequency
domain response of 1FzDIAG(t) is shown in Figure 9. This measure, which corresponds to out-of-plane
movement of the top of the wall, also reveals one major peak at a frequency of 20.8 Hz. The correlation
between the two FFT analyses attributes the 20.8 Hz frequency to the out-of-plane flexure mode.

The first natural frequency predicted by the numerical model equals 22.37 Hz and the corresponding
mode, which appears in Figures 7a and 7d, is governed by out-of-plane flexure and out-of-plane move-
ment of the upper beam. The numerically evaluated frequency is in good agreement with the experimental
one and the model well captures the first out-of-plane mode (including the slight bending-twist coupling
due to the asymmetric mass distribution of the upper beam; see Figures 1 and 7). The numerical values
also point at convergence of the numerical solution with refinement of the mesh. This convergence and
the agreement with the experiments support the validity of the FE model.

In physical terms, the experimental characterization of the first mode highlights the coupling of the
in-plane and out-of-plane responses. The triggering of out-of-plane vibrations due to the in-plane impul-
sive excitation demonstrates this inevitable coupling. This observation implies that in many cases, the
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Figure 9. Response of the FRP strengthened masonry wall to in-plane impulse load:
normalized frequency domain response of the averaged out-of-plane component in the
diagonal cables 1FzDIAG(t). Legend: — impulse load introduced through the shake
table; - - - impulse load introduced through top beam. Each color refers to a different test.

decoupling of the dynamic handling of the wall to a pure in-plane case and a pure out-of-plane case may
be involved with loss of important physical information.

The 27.2 Hz frequency reported in the second line of Table 2 is attributed to the twisting mode of the
wall. This mode, which is illustrated based on the analysis in Figure 7b, is governed by rotation of the
top beam about the y axis. In the experiment, this mode is reflected by the angular acceleration of the
top beam. This signal is defined by

ACCθy(t)= (ACC211(t)−ACC212(t))/LACC, (12)

where LACC=750 mm is the distance between the two accelerometers (see Figure 1). The time history
signal of ACCθy(t) appears in Figure 10a and reveals a high level of repeatability and minor differences
between one test and another and between one testing method and another. The frequency domain
transform of the signal appear in Figure 10b and reveals one major peak at a frequency of 27.2 Hz. The
presence of this peak implies that this experimentally detected frequency corresponds to the second,
twist governed, mode shown in Figures 7b,e. In order to further support this observation, the difference
between the lateral components of the forces in the diagonal cables is examined. This signal, which is
studied in Figure 11, is defined as by

11FzDIAG(t)= (1LC3(t)+1LC4(t)−1LC7(t)−1LC8(t)) · cos(α) (13)

Figure 11 indicates that the normalized FFT of the response to the impulse load at the top beam
includes a clear peak at a frequency that is close to the one observed in the frequency analysis of the
angular acceleration (Figure 10b). The FFT analysis of the response to impulsive base motion and the
larger amount of energy input it introduces include this peak. However, it also includes additional and
more significant ones at higher frequencies.

The comparison between the FE result (30.17 Hz) and the experimental results (27.2 Hz) reveals a
reasonable agreement. The differences, and mainly the fact that the experimental natural frequencies are
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Figure 10. Response of the FRP strengthened masonry wall to in-plane impulse load:
(a) time domain response of the angular acceleration ACCθy(t); (b) normalized frequency
domain response of ACCθy(t). Legend: — impulse load introduced through the shake
table; - - - impulse load introduced through top beam. Each color refers to a different test.
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Figure 11. Response of the FRP strengthened masonry wall to in-plane impulse load:
normalized frequency domain response of 11FzDIAG(t). Legend: — impulse load in-
troduced through the shake table; - - - impulse load introduced through top beam. Each
color refers to a different test.

lower than the analytical ones, are attributed to the range of inevitable imperfections that are part of the
experiment but not accounted for in the “sterile” numerical model. Nevertheless, the agreement between
the FE analysis and the experimental results, both in terms of the natural frequency and in terms of the
vibration mode, support the validity of the FE model.

The in-plane response of the tested specimen is studied in Figure 12. The time domain and the
frequency domain distributions of the in-plane acceleration (x direction) at the top beam (ACC99) are
shown in Figures 12a,b, respectively. The major peaks are observed at a frequency of 17 Hz and at a band
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that ranges from 35 to 37 Hz. The first value is attributed to interaction with the shake table itself. In
order to gain more insight into the source of the second peak (35–37 Hz) and its relation to the in-plane
behavior of the panel, the differential forces in the vertical cables are examined. This combination of
signals is defined by

11FyVERT(t)=1LC1(t)+1LC2(t)−1LC5(t)−1LC6(t) (14)

This combination aims to examine the rocking behavior of the upper beam, which is part of the in-
plane response mode, see Figure 7c and Figure 7f. The time domain response of this combination appears
in Figure 12c and reveals a good repeatability. The frequency domain response appears in Figure 12d
and reveals peaks at a range of frequencies between 35 to 37 Hz.
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Figure 12. Response of the FRP strengthened masonry wall to in-plane impulse load:
(a) time domain response of the in-plane acceleration; (b) normalized frequency domain
response of the in-plane acceleration; (c) time domain response of 11FyVERT(t); (d)
normalized frequency domain response of 11FyVERT(t). Legend: — impulse load in-
troduced through the shake table; - - - impulse load introduced through top beam. Each
color refers to a different test.
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Figure 13. Response of the FRP strengthened masonry wall to in-plane impulse load:
normalized frequency domain response of the short strain gages on the north face: (a) full
range; (b) zoom on 60–80 Hz. Legend: diagonal strain gage, shake table movement
results; vertical strain gage, shake table movement results; diagonal strain gage, top beam
loading results; vertical strain gage, top beam loading results. Each color refers to a
different test.

Figure 12 points at a clear range of frequencies. This range is, however, way below the results of
the FE analysis, or any other estimation of the expected frequency. In order to examine and settle down
this contradiction, additional experimental results are looked at. First, the readings of the strain gages
that are mounted on the FRP layer are examined. The frequency domain analysis of the readings of the
short strain gages is shown in Figure 13a and a zoom plot on the relevant frequencies band appears in
Figure 13b. These experimental results reveal clear peaks at 68–69 Hz.

The experimental result of the in-plane natural frequency detected based on the readings of the strain
gages is in good agreement with the third eigenfrequency obtained by the FE analysis (see Table 2).
That this frequency is not clearly observed in the FFT analysis of the in-plane acceleration and is not
observed in the FFT analysis of the forces in the cables suggests that another, much more dominant, local
frequency is involved. It is hypothesized that the 35–37 Hz band of frequencies is attributed to the natural
frequencies of the cables themselves. This hypothesis is examined and possibly supported by looking
into two additional experimental observations. First, a free vibration test of the tensioned vertical and
diagonal cables is carried out. In this test, each cable is removed from the setup and tensioned between
two rigid supports. Then, it is subjected to an impulse load that yields free vibrations. The time domain
response is monitored using two accelerometers (tuned to measure the out-of-plane accelerations of the
cable) and a load cell. Then the various signals are transformed to the frequency domain. The results of
the free vibration tests of the diagonal cables, for different level of pre-tensioning, appear in Figure 14a.
They clarify that for the level of tensile force used in the experiment, the natural frequencies of the cable
are in the range of 33–35 Hz.

The second experimental observation takes a closer look at the acceleration signal. With the 33–35 Hz
band attributed to the natural frequencies of the cables, the reading of the longitudinal (x direction)
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Figure 14. Effect of the localized vibration of the cables: (a) free vibration test of di-
agonal cable: natural frequency versus tensile force; (b) normalized frequency response
of the in-plane acceleration after attenuating the effect the cables — impulse triggered
by the shake table; (c) normalized frequency response of the in-plane acceleration after
attenuating the effect the cables — impulse triggered through the top beam.

accelerometer ACC99(t) are examined again but in this case, the effect of the cables on the frequency
domain is attenuated. For the experiments conducted by moving the shake table at a constant velocity and
then breaking, this is achieved by dividing the FFT representation of the accelerometer signal ACC99(t)
by the FFT representation of the sum of the vertical components of the tensile forces in the cables of the
east stiffening plane (the stiffening plane that is closer to the location of the accelerometer). This signal
is defined by

1FyEAST:ALL =1LC1(t)+1LC2(t)+1LC3(t) · sin(α)+1LC4(t) · sin(α) (15)

The result of this signal appears in Figure 14b. In the experiments conducted by hammering the upper
beam in the x direction, the energy input is much smaller than in the case of breaking the shake table and
the response detected by the diagonal cables is not sufficiently prominent to yield a meaningful signal.
Therefore, for these cases, the last two terms in (15) are omitted and the frequency domain signal of the
accelerometer is divided by the frequency domain signal of the vertical cables:

1FyEAST:VERT =1LC1(t)+1LC2(t) (16)

The FFT representation of the reading of the accelerometer after attenuating the effect of the cables using
the signal given by (16) is studied in Figure 14c. This signal, as well as the one shown in Figure 14b,
includes peaks in the range of 30–37 Hz, but they also reveal clear peaks in the range of 65–70 Hz.
(The relevant peaks are circled in the figures). The 65–70 Hz frequencies are attributed to the in-plane
vibration mode of the FRP strengthened wall. The presence of these peaks indicates that the global
in-plane mode is detected by the accelerometer, but it is strongly affected by the localized vibration of
the cables. This sensitivity is also affected by the proximity of the accelerometer to the points where the
cables connect to the top beam. The strain gages, which are directly mounted on the FRP system, are
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not significantly affected by the localized vibration of the cables. Therefore, the natural frequencies of
the cables (33–37 Hz) are less prominent in the signal of the strain gauges.

The experimental and numerical results discussed above support the identification of the experimen-
tally detected vibration modes and the validity of the FE model. This allows gaining more insight into
the effect of each mode on the response of the strengthened wall. It also allows looking into aspects that
cannot be directly detected in the experiment. One of these aspects, which directly reflects the interaction
between the wall and the FRP, is the evolution of stresses at the interfaces of the adhesive layers. The
distributions of the interfacial out-of-plane normal stresses that correspond to the first three modes are
shown in Figure 15. Figures 15a,c,e show the stresses at the adhesive-AAC interface and Figures 15b,d,f
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Figure 15. Modal out-of-plane normal stresses at the interfaces of the adhesive layer:
(a) first mode, adhesive-wall interface; (b) first mode, adhesive-FRP interface; (c) second
mode, adhesive-wall interface; (d) second mode, adhesive-FRP interface; (e) third mode,
adhesive-wall interface; (f) third mode, adhesive-FRP interface.
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show the stresses at the adhesive-FRP interface. In all cases, the modes are normalized to have the same
level of strain energy.

Figure 7 indicates that for the same level of energy input, the largest displacements are observed in the
out-of-plane (1st) and in the twisting (2nd) modes. In both cases, these displacements are “out-of-plane”
by nature and they are about 4 orders of magnitude larger than the in-plane displacements attributed to
the in-plane mode (Figures 7c,f). On the other hand, Figure 15 reveals that the largest peeling stresses
are observed in the in-plane (3rd) mode (Figure 15e). This means that although the in-plane modal
displacements are significantly smaller than the ones associated with the out-of-plane modes (per the
same energy input), the in-plane vibration is associated with significant interfacial stresses. These stresses
may trigger accumulation of interfacial damage or even debonding failures. Figure 15 also reveals that
in all three modes, the adhesive-wall interface (Figures 15a,c,e) is subjected to a level of stresses that
is much higher than the ones observed in the adhesive-FRP interface (Figures 15b,d,f). The negligible
levels of peeling stresses detected at the adhesive-FRP interfaces are due to the small thickness of the
FRP layer and its negligible bending rigidity. The thin FRP layer cannot resist significant out-of-plane
normal tractions and it forces their decay through the depth the adhesive layer. On the other hand, the
variation of the shear stresses along the strengthened region (and mainly near its edges) yields prominent
out-of-plane normal stresses that evolve at the vulnerable adhesive-AAC interface.

5. Response to base excitation

The second phase of the study examines the response of the strengthened panel to base excitation. This
phase aims to gain insight into the response of the strengthened wall to a direct dynamic load and to
examine the FE model on a more local level and under a more demanding dynamic scenario. The
dynamic load is introduced to the structure through a cyclic base excitation. Two cyclic displacement
input signals with frequencies of 4 Hz and 6 Hz are examined. These frequencies fall below the natural
frequencies of the studied strengthened panel, however, due to setup limitations, higher frequencies
and especially frequencies that are close to the natural ones are not examined. The time history of the
base displacement and acceleration records measured in the experiment are shown in Figure 16. The
acceleration signals are also used as input for the FE analysis.

The results of the FE analysis are compared with the experimental ones on two scales. On the global
scale, the accelerations detected by the analysis at the top of the wall are compared with the ones mea-
sured in the experiment. On the more local scale, the numerical and experimental relative displacements
between the top beam (x = 375 mm, y = 900 mm) and a point located at x = 325 mm, y = 820 mm on
the face of the wall (see Figure 1) are compared. In addition, the experimentally and the numerically
detected principal strains at x = 430 mm and y = 515 mm are also compared. This measure is also
attributed to the elastic response of the wall to the dynamic load.

The experimental and numerical accelerations of the top beam due to the two input excitations are
plotted in Figure 17. Figures 17a,c refer to the 4 Hz signal and Figures 17b,d refer to the 6 Hz signal.
The solid lines in Figure 17 stand for the FE results and the dotted lines stand for the experimental
values. The comparison between the x component of the accelerations (Figures 17a,b) shows that the
numerical results are in reasonable agreement with the experimental ones. Some of the discrepancies
that are still observed stem from the effect of the vibrating cables on the accelerometers, an aspect that
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Figure 16. Time history signal of the base excitations: (a) 4 Hz base motion; (b) 6 Hz
base motion; (c) 4 Hz base acceleration; (d) 6 Hz base acceleration.

is not taken into account in the analysis. It is also observed that the high frequency components of the
acceleration signals (Figures 17a,b) are more significant in the experimental results (dotted lines) than
in the numerical ones (solid lines). This discrepancy is attributed to the way damping is considered
in the numerical mode. The Rayleigh damping model (9) and the estimated damping ratios tend to
overestimate the impact of damping on the high frequency components. This observation designates the
effect of damping as an aspect that requires further research into the dynamics of the FRP strengthened
wall and further development of the model.

Figures 17c,d, which refer to the out-of-plane accelerations, reveal that the imperfections in the test
setup trigger out-of-plane accelerations in response to the in-plane excitation. These effects are not ob-
served in the “sterile” numerical analysis. The out-of-plane accelerations also trigger out-of-plane inertial
forces and therefore a general 3D type of response. For example, in the tested cases, the out-of-plane
acceleration goes up to 15% of the accelerations in the direction of the main excitation. This observation
shades on the ability to decompose the analysis of the strengthened wall into a distinct in-plane and out-
of-plane ones. On the contrary, it indicates that the two cases are coupled. The evolution of out-of-plane
accelerations under the in-plane excitation also highlights the role that the strengthening system should
take in improving the out-of-plane behavior of the masonry wall and in avoiding its collapse due to
out-of-plane dynamic loads (see, for example, [Hamed and Rabinovitch 2008; Rabinovitch and Madah
2012a; 2012b] for dynamic out-of-plane strengthening, testing, and analysis).

The relative in-plane displacement between the top steel beam and the wall, and the relative in-plane
displacements between the connection points processed by the FE model are plotted in Figure 18. The
experimental curves are marked with dots and the FE results are marked with solid lines. The comparison
between the two reveals a good agreement. The agreement is both in terms of the time history pattern
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Figure 17. Accelerations of the top beam: (a) in-plane acceleration, 4 Hz signal; (b)
in-plane acceleration, 6 Hz signal; (c) out-of-plane acceleration, 4 Hz signal; (d) out-of-
plane acceleration 6 Hz signal. Legend: ——— FEA; · · · · · · experimental.

and in terms of amplitude and it is observed under both excitations. Opposed to the aspects studied in the
previous sections, which are all linked to the global behavior of the tested wall, this relative displacement
directly reflects the elastic response of the FRP patched wall to the dynamic load. The agreement between
the numerical and the experimental results points at the ability of the FE model to capture and quantify
the time dependent elastic response of the strengthened wall.

Another aspect of the localized elastic response of the dynamic load is the evolution of strains in
the bonded layers. The strains on the north FRP patch are compared with the dynamic FE results in
Figure 19. This comparison is limited to the 6 Hz signal. For clarity, the measured and the calculated
strains are converted into principal ones. The experimental and numerical results reveal that although
the excitation with frequencies notably lower than the relevant natural frequency yields a significant
rigid body component, it is also involved with an elastic component. The comparison of this dynamic
strain signal, which is sufficiently high to be detected by the sensors, with the numerical results reveals
good agreement of patterns and magnitudes. The correlation between the numerically determined strains
and the experimentally detected ones and the correlation in terms of elastic displacements (Figure 18)
demonstrates the ability of the model to detect the dynamic elastic deformation fields.

The magnitude of the deformation component in the dynamic displacement field is amplified when it
is tested with the trolley and its added mass. The input acceleration signal and the in-plane acceleration
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Figure 18. Relative displacement between top steel beam and the FRP patched panel
measured by LVDT1: (a) 4 Hz signal; (b) 6 Hz signal load. Legend: ——— FEA; · · · · · ·
experimental.
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Figure 19. Measured and calculated principal strains at x = 430 mm, y = 515 mm versus
time: (a) experimental results; (b) numerical results.

measured at the top of the wall when tested with added lateral mass of 580 kg appear in Figure 20a.
Due to the supplemental lateral mass, the input acceleration signal is amplified and the accelerations at
the top of the wall are about twice as large as the input signal at its base. The elastic deformation field
reflected by the diagonal strains measured at x = 430 mm, y = 515 mm and presented in Figure 20b is
also more prominent. The levels of strain measured under this dynamic loading condition are about 5
times larger than the ones measured without the added mass. Yet, from a quantitative point of view, the
measured strains are still within the capacity limits of the strengthening system and damage to the wall,
to the strengthening system, or to the interfaces between them was not observed.

The validation of the FE model and the evolution of an elastodynamic deformation field allow to
explore more aspects of the dynamic response of FRP patched wall and to examine ones that cannot
be directly detected in the experiment. From a practical point of view, it is interesting to examine the
dynamic response of the FRP system and the bond layer. For brevity, this examination focuses on the
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Figure 20. Response to a 6 Hz base excitation with added mass of 580 kg: (a) accelera-
tions; (b) diagonal strains on the FRP layer. Legend: —— Base acceleration; - - - in-plane
acceleration at the top of the wall; —— diagonal strain at x = 430 mm, y = 515 mm on
the north face; - - - diagonal strain at x = 430 mm, y = 515 mm on the south face.
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Figure 21. Stress resultants in the south FRP layer due to 6 Hz excitation versus time.

6 Hz cyclic excitation without the added mass. The time history response of the axial and shear resultants
in the south FRP layer at x = 125 mm and y = 125 mm is studied in Figure 21. The curves indicate that
the stress resultant Nyy is dominant and it attains values that are much higher than the stress resultants
in the x direction and shear resultants. It is also observed that at the examined point, the dominant Nyy

values are negative and reflect compression. Although the magnitudes are rather small (compared, for
example, with the tensile strength of the FRP), the cyclic compression of the thin FRP layer may lead
to a geometrical instability (buckling) of the patch. Such potential buckling is an inherent aspect of the
response of the FRP strengthened wall to dynamic in-plane loads and it should be taken into account in
the design of such systems.
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Figure 22. Shear stresses in the south bond layer due to 6 Hz excitation versus time.

The variation of the interfacial shear stresses at x = 125 mm and y = 125 mm in time appears in
Figure 22 and reveals that the shear stresses in the y direction τyz are higher than τxz . In addition, they
are more affected by the higher frequencies. The pattern of the shear stresses τyz corresponds to the one
of the axial stress resultants in the y direction and the higher frequency component corresponds to the
67 Hz of the in-plane mode. This observation indicates that this unique mode is not solely governed by
in-plane shear but also by a rocking response driven by the axial stresses in the y direction (Figure 22)
and the accompanying shear stresses in the adhesive layer (Figure 21).

The out-of-plane normal stresses at the interfaces of the adhesive layer at t = 0.259 sec are studied in
Figure 23. As discussed in the previous section, the interfacial stresses at the adhesive-AAC interface in
Figure 23a are much higher than those in the adhesive-FRP interface (Figure 23b). As a result, the brittle
adhesive-AAC interface is more susceptible to debonding. The interfacial out-of-plane stresses points
at localized effects near the fixed edge of the AAC panel. At this point in time, the distribution of the
stresses changes from positive (peeling) stresses to negative stresses along the x axis. Quantitatively, it is
observed that the examined excitation, which involve accelerations that go up to about 0.6 g but central
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frequencies that are below the natural frequencies of the wall and relatively small elastic deformations,
yields relatively low levels of interfacial stresses. Correspondingly, and in spite of the low tensile strength
of the AAC interface, delaminations of the FRP system were not observed in the experiment.

6. Summary and conclusions

Dynamic strengthening of masonry structures using externally bonded fiber reinforced plastics is an at-
tractive structural application with a significant potential in the field of dynamic upgrade of structures. In
this paper, the 3D dynamic behavior of FRP strengthened AAC masonry panels has been experimentally
and numerically studied. The FRP strengthened AAC panel has been dynamically tested under impulsive
load that yields a free vibration response and under dynamic base excitations. The natural frequencies of
the strengthened panel have been studied and compared with numerical results obtained using a specially
tailored FE model. This model combines high-order multilayered 2D elements that are specially tailored
for the patched wall with conventional bar, beam and shell elements that model all other components of
the test setup. The correlation between the numerical model and the experimental natural frequencies
and vibration modes has supported the validity of the FE model. It has also allowed to expand the free
vibration analysis and to look into more localized effects such as the modal distribution of interfacial
stresses. Strain energy based normalization has allowed quantitatively comparing between the in-plane
and the out-of-plane modes, characterizing their impact on the interfacial stresses, and revealing the
significant role that the in-plane dynamic response plays in the evolution of such interfacial stresses.
In the second phase of the study, the FRP strengthened AAC panel has been subjected to cyclic base
excitations. Also here, the dynamic experimental results have been compared with numerical ones and
the numerical model has been used for a more localized analysis of the strengthened AAC panel. In this
case, the dynamic analysis has focused on the response of the strengthening system.

From the analytical point of view, the comparison between the experimental results and the numerical
ones in term of natural frequencies, vibration modes, and dynamic response to base excitation supports
the validity of the FE model. The correlation in terms of the free vibration response demonstrates the
ability of the model to quantify the global dynamic behavior of the FRP patched AAC masonry wall.
The agreement between the numerical and experimental responses to base excitation, and mainly the
local aspects that have been examined, demonstrate its ability to quantify some of the localized aspects
of the behavior of the wall. The numerical and comparative studies also highlight the strength of the FE
model in terms of integrating the specially tailored FE for the FRP patched wall into a broader and more
general FE based analysis framework.

From the practical point of view, the experimental and numerical study has highlighted and quantified a
range of physical phenomena that characterize the FRP strengthened panel. Among them, the coupling of
the in-plane and the out-of-plane responses to the dynamic excitation, the coupling of shear and rocking
effects in the in-plane response, and the modes in which the dynamic structural response effectively
activates the strengthening system are listed. It has also been observed that all modes and all aspects
of the response to base excitation trigger interfacial effects and particularly out-of-plane normal stresses
at the adhesive-wall interface. Due to the low bending stiffness of the FRP sheet, these stresses tend
to concentrate at the vulnerable adhesive-AAC interface and to decay through the depth of the adhesive
layer.
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The experimental observations, the numerical study, and the validation of the numerical model through
comparison with experimental benchmarks, throw some light on the dynamic behavior of the FRP
strengthened AAC masonry wall. The characterization of some of the local scale results also gains
some insight into the dynamic response of the wall. These contributions take another step towards the
application of this method for the dynamic strengthening of masonry walls.
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HYGROTHERMAL ANALYSIS OF EXPONENTIALLY GRADED
RECTANGULAR PLATES

ASHRAF M. ZENKOUR

The static characteristics of an exponentially inhomogeneous plate under a transverse uniform loading
and exposed to hygrothermal conditions are studied. The elastic coefficients, thermal coefficient and
moisture expansion coefficient of the plate are assumed to be exponentially graded in the thickness direc-
tion. The trigonometric shear deformation theory solution is presented. In this solution, the initial terms
of a power series through the plate thickness are used for the displacements in addition to other trigono-
metric terms. The effect due to transverse shear deformations is included. A number of examples will be
solved to illustrate the numerical results concerning bending response of homogeneous and exponentially
graded rectangular plates subjected to hygrothermomechanical effects. The influences of temperature,
moisture concentration, transverse shear deformation, plate aspect ratio, and the exponentially graded
parameter on the bending response are investigated.

1. Introduction

The analysis of the rectangular plates subjected to moisture and temperature effects has been the subject
of research interest of many investigators. Moisture and temperature may be distributed through the
volume of the structure and may induce residual stresses and extensional strains. These residual stresses
and extensional strains may also affect the gross performance of the structure. In particular, the bending
characteristics, buckling loads and vibration frequencies can be modified by the presence of moisture,
temperature or both. Therefore, to utilize the full potential of advanced structures, it will be necessary
to analyze the effects of moisture and temperature in composite structural components.

The vibration characteristics of thick isotropic rectangular plates under an arbitrary state of initial stress
were investigated in [Herrmann and Armenakas 1962; Brunelle and Robertson 1974; 1976]. Adams and
Miller [1977], Ishikawa et al. [1978] and Strife and Prewo [1979] have studied the effect of environment
on the material properties of composite materials and observed that it has significant effect on strength
and stiffness of the composites. Therefore, there is a need to understand the behavior of composite
structures subjected to hygrothermal conditions. Whitney and Ashton [1971] have used the classical
laminate plate theory to study the hygrothermal effects on bending, buckling and vibration of composite
laminated plates using the Ritz method and neglecting the transverse shear deformation. Pipes et al.
[1976] have presented the distribution of in-plane stresses through the thickness of symmetric laminates
subjected to moisture absorption and desorption. Yang and Shieh [1987] have considered the free vibra-
tion of antisymmetric cross-ply laminates in presence of a non-uniform initial stress, where the effects
of transverse shear and rotary inertia were also included. Sai Ram and Sinha [1991; 1992] have studied
the hygrothermal effects on the bending and free vibration behavior of laminated composite plates using

Keywords: hygrothermal conditions, rectangular plate, exponentially graded.
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the first-order shear deformation theory and employing finite element method. The effects of moisture
and temperature on the deflections and stress resultants are presented for simply supported and clamped
antisymmetric cross-ply and angle-ply laminates using reduced lamina properties at elevated moisture
concentration and temperature. Lee et al. [1992] have studied the influence of hygrothermal effects on
the cylindrical bending of symmetric angle-ply laminated plates subjected to uniform transverse load
for different boundary conditions via classical laminated plate theory and von Karman’s large deflection
theory. The material properties of the composite are assumed to be independent of temperature and
moisture variation. It has been observed that the classical laminated plate theory may not be adequate
for the analysis of composite laminates even in the small deflection range.

Many studies, based on classical plate theory, of thin rectangular plates subjected to mechanical or
thermal loading or their combinations as well as the hygrothermal effects are available in the literature
[Whitney and Ashton 1971; Sai Ram and Sinha 1992]. However, studies of temperature and moisture
effects on the bending of rectangular plates based on the shear deformation theories are limited in number,
and all these studies assumed perfectly initial configurations [Pipes et al. 1976; Yang and Shieh 1987; Sai
Ram and Sinha 1991; 1992]. The classical laminated plate theory and the first-order shear deformation
plate theory are typical deformation theories for the analysis of laminated composite plates. The classical
theory neglects the shear stresses while the first order theory assumes a constant transverse shear strain
across the thickness direction, and a shear correction factor is generally applied to adjust the transverse
shear stiffness for the static and stability analyses. However, some investigations showed that the bending
and postbuckling responses of rectangular plates are sensitive to the choice of the shear correction factor.

To avoid the use of shear correction factor, various higher-order theories have been proposed to predict
the bending response of rectangular plates. Shen [2001] has investigated the influence of hygrothermal
environment on postbuckling behaviors of laminated plates based on Reddy’s [1997] higher-order plate
theory, considering the effects of temperature and moisture on the material properties. Patel et al. [2002]
have studied the static and dynamic response of the thick laminated composite plates under hygrothermal
environment based on a higher order theory. Rao and Sinha [2004] have studied the effects of moisture
and temperature on the bending characteristics of thick multidirectional fibrous composite plates. The
finite element analysis accounts for the hygrothermal strains and reduced elastic properties of multidirec-
tional composites at an elevated moisture concentration and temperature. Deflections and stresses have
been evaluated for thick multidirectional composite plates under uniform and linearly varying through-
the-thickness moisture concentration and temperature. Results reveal the effects of fiber directionality
on deflection and stresses. Wang et al. [2005] have studied the response of dynamic interlaminar stresses
in laminated composite plates with piezoelectric layers using an analytical approach. Benkhedda et al.
[2008] have proposed an analytical approach to calculate the hygrothermal stresses in laminated compos-
ite plates, and took into account the change of mechanical characteristics due to moisture and temperature.
In their study, the distribution of the transient in-plane stresses through the thickness of laminates is
presented, whereas the transverse stresses were not taken into account. Lo et al. [2010] have developed
a global-local higher order theory to study the response of laminated plates exposed to hygrothermal
environment. Recently, Zenkour [2010] has presented a hygrothermal bending analysis for a functionally
graded material (FGM) plate resting on elastic foundation.

From the literature reviewed, it can be found that research on local hygrothermal stresses of exponen-
tially graded material (EGM) plates subjected to temperature and moisture effects seems to be lacking,
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which is the problem to be addressed in this paper. It is to be noted that, moisture and temperature have
an adverse effect on the performance of composites. Stiffness and strength are reduced with the increase
in moisture concentration and temperature. However, the discussion on the change of global and local
response with respect to material variation due to elevated temperatures and moisture concentrations
has been less reported in the published literature. In this article, a trigonometric shear deformation plate
theory is developed to study the response of exponentially graded rectangular plates exposed to hygrother-
mal conditions. The present theory satisfies the continuity conditions of transverse shear stresses through
the plate thickness. The analysis takes into account the change of material properties and a change in
moisture concentrations through the plate thickness. Relationships between displacements/stresses and
temperature or moisture concentrations have been studied under different hygrothermal conditions

The objective of this investigation is to present a general hygrothermal formulation for EGM plates
using the sinusoidal shear deformation theory [Zenkour 2004a; 2004b; 2006; 2009]. The model has been
developed within the phenomenological approach, where the effect of temperature and moisture has been
taken into account at constitutive level. The governing partial differential equations are reduced to a set
of coupled ordinary differential equations in the thickness direction. Numerical results for displacements
and stresses are presented for homogeneous and EGM plates subjected to hygrothermomechanical effects.
To make the study reasonably, displacements and stresses are given for different environment parameters
and homogenization schemes as well as exponents in the power-law that describes through-the-thickness
variation of the plate.

2. Mathematical model

Consider a rectangular plate of length a, width b and thickness h made of an exponentially graded
material (EGM). The plate is subjected to a distributed transverse static mechanical load q(x, y) and a
temperature field T (x, y, z) as well as a moisture concentration C(x, y, z). The sinusoidal plate theory
is presented for the small displacement and the corresponding small strains. The material properties
P of the EGM plate, such as Young’s modulus and the thermal and moisture expansion coefficients are
assumed to be functions of the thickness of the plate. The present plate is supported at four edges defined
in the (x, y, z) coordinate system with x- and y-axes located in the middle plane (z = 0) and its origin
placed at the corner of the plate as shown in Figure 1. An exponential relationship between the material
property P̄ and z for the EG plate is assumed as in [Zenkour 2005]:

P̄ = P̄(z)= P̄0e−η(z/h)k , (1)
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Figure 1. Geometry and coordinate system of the EGM plate under uniform load.
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where P̄0 is the corresponding property of the homogeneous plate, and η and k are geometric parameters.
The value of η equals to zero represents a fully homogeneous plate. The above exponential law assump-
tion reflects a simple rule of mixtures applies only to the thickness direction. The power law exponents,
η and k, may be varied to obtain different distributions of the components materials through the thickness
of the plate.

The total potential energy of the present EGM rectangular plate may be expressed as

5=Ustr−Wext−Wint, (2)

where Ustr is the strain energy of the EGM plate, Wext is the work of external forces, and Wint is the work
of internal forces. They are given by

Ustr =

∫
V0

σi jεi j dV, (3a)

Wext =

∫
S0

pi ui d S, (3b)

Wint =

∫
V0

X i ui dV, (3c)

where σi j is the Cauchy stress tensor, εi j is the small strain tensor, pi are the external applied loads, ui are
the displacements in the spatial frame, and X i are the body forces per unit initial volume. The general
governing equations of equilibrium are obtained by employing the principle of virtual displacements.
The stresses and applied loads are assumed to be constants.

The displacements of a material point located at (x, y, z) in the EGM plate may be written as follows
[Zenkour 2004a; 2004b; 2006; 2009]:

u1(x, y, z)= u− z ∂w/∂x +9(z)φ1,

u2(x, y, z)= v− z ∂w/∂y+9(z)φ2,

u3(x, y, z)= w,

 (4)

where u, v, and w are the displacements of the middle surface along the axes x , y and z, respectively,
and φ1 and φ2 are the rotations about the y and x axes and account for the effect of transverse shear.
The coefficient of φ1 and φ2 which is given by 9(z) should be odd function of z. All of the generalized
displacements (u, v, w, φ1, φ2) are functions of the (x, y). The displacements of the classical thin plate
theory (CPT) is obtained easily by setting 9(z)= 0. The displacements of the first-order shear deforma-
tion plate theory (FPT) is obtained by setting 9(z)= z. In addition, the higher-order shear deformation
plate theory (HPT) [Reddy 2000] is obtained by setting

9(z)= z
[
1− 4

3

( z
h

)2]
. (5)

Also, the sinusoidal shear deformation plate theory (SPT) is obtained by setting (see [Zenkour 2004a;
2004b; 2006; 2009])

9(z)= h
π

sin π z
h
. (6)
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Note that the present SPT, as well as HPT, is simplified by enforcing traction-free boundary conditions
at the plate faces. The SPT accounts according to a cosine-law distribution of the transverse shear
deformation through the thickness of the EGM plate. The SPT, HPT and FPT contain the same number
of dependent unknowns. No transversal shear correction factors are needed for both SPT and HPT
because a correct representation of the transversal shearing strain is given.

The six strain components εi j compatible with the displacement field in (4) are
ε11

ε22

ε12

=

ε0

11
ε0

22
ε0

12

+ z


κ11

κ22

κ12

+9(z)

θ11

θ22

θ12

 , ε33 = 0,
{
ε23

ε13

}
=9(z),3

{
ε0

23
ε0

13

}
, (7)

where

ε0
11 = u,1, ε0

22 = v,2, ε0
23 = φ2, ε0

13 = φ1, ε0
12 = v,1+ u,2, (8)

κ11 =−w,11, κ22 =−w,22, κ12 =−2w,12, θ11 = φ1,1, θ22 = φ2,2, θ12 = φ2,1+φ1,2. (9)

The stress-strain relations for a linear isotropic elastic plate are given by{
σ11

σ22

}
=

E(z)
1− ν2

[
1 ν

ν 1

]{
ε11−α1T −β1C
ε22−α1T −β1C

}
, {σ23, σ13, σ12} =

E(z)
2(1+ ν)

{ε23, ε13, ε12}, (10)

where E is Young’s modulus, ν is Poisson’s ratio, α and β are the thermal and moisture expansion
coefficients, 1T = T − T0 in which T is the applied temperature and T0 is the reference temperature, and
1C = C −C0 in which C is the moisture concentration and C0 is the reference moisture concentration.

The applied temperature distribution T (x, y, z) and the moisture concentration C(x, y, z) through the
thickness are assumed, respectively, to be

T (x, y, z)= T1(x, y)+
z
h

T2(x, y)+
9(z)

h
T3(x, y),

C(x, y, z)= C1(x, y)+
z
h

C2(x, y)+
9(z)

h
C3(x, y).

(11)

3. Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual displacements.
The equilibrium equations associated with the present sinusoidal shear deformation theory are

N1,1+ N12,2 = 0, (12a)

N12,1+ N2,2 = 0, (12b)

M1,11+ 2M12,12+M2,22+ q = 0, (12c)

S1,1+ S12,2− Q13 = 0, (12d)

S12,1+ S2,2− Q23 = 0, (12e)

where the stress and moment resultants (N1, N2, N12,M1,M2,M12, S1, S2, S12, Q13, Q23) of the FGM
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plate can be obtained by integrating (10) over the thickness, and are written as
Ni

Mi

Si

= 1
1−ν2

A1
11 A1

12 A1
13

A1
12 A1

22 A1
23

A1
13 A1

23 A1
33


ε̄0

i
κ̄i

θ̄i

+ 1
ν−1

Aα11 Aα12 Aα13
Aα12 Aα22 Aα23
Aα13 Aα23 Aα33


T ∗1
T ∗2
T ∗3

+ 1
ν−1

Aβ11 Aβ12 Aβ13
Aβ12 Aβ22 Aβ23
Aβ13 Aβ23 Aβ33




C∗1
C∗2
C∗3

,
(13a)

N12

M12

S12

= 1
2(1+ ν)

A1
11 A1

12 A1
13

A1
12 A1

22 A1
23

A1
13 A1

23 A1
33


ε0

12
κ12

η12

, (13b)

and {
Q13

Q23

}
=

B
2(1+ ν)

{
ε0

13
ε0

23

}
, (13c)

where i = 1, 2 and
ε̄0

1 = ε
0
11+ νε

0
22, ε̄0

2 = ε
0
22+ νε

0
11,

κ̄1 = κ11+ νκ22, κ̄2 = κ22+ νκ11,

θ̄1 = θ11+ νθ22, θ̄2 = θ22+ νθ11,

T ∗1 = T1− T0, C∗1 = C1−C0,

T ∗j = T j/h, C∗j = C j/h, j = 2, 3.

(14)

In (13a)–(13c), N1, N2, and N12 and M1, M2, and M12 are the basic components of stress resultants and
stress couples; S1, S2, and S12 are additional stress couples associated with the transversal shear effects;
and Q13 and Q23 are transversal shear stress resultants. The coefficients Aγrs(γ = 1, α, β; r, s = 1, 2, 3)
are defined by

{Aγ11, Aγ12, Aγ22} =

∫
+h/2

−h/2
γ E{1, z, z2

} dz, {Aγ13, Aγ23, Aγ33} =

∫
+h/2

−h/2
γ9E{1, z, 9} dz,

B = K̄
∫
+h/2

−h/2
E(9,3)2 dz,

(15)

where K̄ is the shear correction factor for FPT, taken to be 5
6 .

4. Exact solutions for EGM plates

The determination of transverse deflections and stresses are of fundamental importance in the design of
many structural components. An exact closed-form solution to (12a)–(12e) can be constructed when the
plate is of a rectangular geometry (Figure 1) with the following edge conditions, loading and displace-
ments.

4.1. Boundary conditions. The following set of simply supported boundary conditions along the edges
of the plate is considered:

v = w = φ2 = N1 = M1 = S1 = 0 at x = 0, a,

u = w = φ1 = N2 = M2 = S2 = 0 at y = 0, b,
(16)
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4.2. Loading and displacements. Rectangular plates are generally classified in accordance with the type
support used in the absence of the body forces and lateral loads except the external force q(x, y). We
are here concerned with the exact solutions of (12a)–(12e) for simply supported FGM plate. To solve
this problem, Navier presented the uniform external force and the transverse uniform temperature and
moisture concentration loads in the form of a double trigonometric series

q
Ti

Ci

=
∞∑

m,n=1,3,5,...


q0

ti
ci

 16
mnπ2 sin(λx) sin(µy), (i = 1, 2, 3), (17)

where λ= mπ/a, µ= nπ/b, m and n are mode numbers, q0 represents the intensity of the load at the
plate center, ti and ci are constants.

Following the Navier solution procedure, we assume the following solution form for (u, v, w, φ1, φ2)

that satisfies the simply supported boundary conditions,
u
v

w

φ1

φ2

=
∞∑

m,n=1,3,5,...


Umn cos(λx) sin(µy)
Vmn sin(λx) cos(µy)
Wmn sin(λx) sin(µy)
Xmn cos(λx) sin(µy)
Ymn sin(λx) cos(µy)

 , (18)

where Umn , Vmn , Wmn , Xmn , and Ymn are arbitrary parameters to be determined subjected to the condition
that the solution in (18) satisfies the differential equations, (12a)–(12e). Substituting (18) into (12a)–
(12e), one obtains

[P]{1} = {F}, (19)

where {1} and {F} denote the columns given by

{1}T = {Umn, Vmn,Wmn, Xmn, Ymn}, {F}T = {F1, F2, F3, F4, F5}. (20)

The elements Pi j of the coefficient matrix [P] and the elements Fi of the load vector {F} are given in
the Appendix.

Moreover, substituting (7) into (10) with the help of (18), one can obtain the stress components σi j in
terms of Young’s modulus and the arbitrary parameters Umn , Vmn , Wmn , Xmn , and Ymn as follows:

σ11 =−E(z)
∞∑

m,n=1,3,5,...

{
1

1−ν2

(
λUmn + νµVmn − z(λ2

+ νµ2)Wmn +9(z)(λXmn + νµYmn)
)

+
α(z)

(1−ν)h
(
h(t1−T0)+zt2+9(z)t3

)
+

β(z)
(1−ν)h

(
h(c1−C0)+zc2+9(z)c3

)}
sin(λx) sin(µy),

(21a)

σ22 =−E(z)
∞∑

m,n=1,3,5,...

{
1

1−ν2

(
νλUmn +µVmn − z(νλ2

+µ2)Wmn +9(z)(νλXmn +µYmn)
)

+
α(z)

(1−ν)h
(
h(t1−T0)+zt2+9(z)t3

)
+

β(z)
(1−ν)h

(
h(c1−C0)+zc2+9(z)c3

)}
sin(λx) sin(µy),

(21b)



694 ASHRAF M. ZENKOUR

σ23 =
E(z)

2(1+ν)

∞∑
m,n=1,3,5,...

9(z),3Ymn sin(λx) cos(µy), (21c)

σ13 =
E(z)

2(1+ν)

∞∑
m,n=1,3,5,...

9(z),3 Xmn cos(λx) sin(µy), (21d)

σ12 =
E(z)

2(1+ν)

∞∑
m,n=1,3,5,...

(
µUmn + λVmn − 2zλµWmn +9(z)(µXmn + λYmn)

)
cos(λx) cos(µy). (21e)

5. Numerical results

The flexural response of EGM plates subjected to uniform transverse pressure in hygrothermal environ-
ment is studied and the results are depicted in graphical form in Figures 2–5. The material properties
of the composite material are considered to be dependent on temperature and moisture. The material
properties are taken in the analysis at the reference temperature T0 = 21◦C (room temperature) and

η Theory k = 1 k = 2
w∗ σ1 σ5 w∗ σ1 σ5

0.0 CPT 1.37568 1.13905 — 1.37568 1.13905 —
FPT 1.41072 1.13905 0.83759 1.41072 1.13905 0.83759
HPT 1.41071 1.16220 1.03274 1.41071 1.16220 1.03274
SPT 1.41065 1.16329 1.06316 1.41065 1.16329 1.06316

0.5 CPT 1.39072 1.10461 — 1.42831 1.09636 —
FPT 1.42540 1.10461 0.82893 1.46481 1.09636 0.87263
HPT 1.42556 1.12654 1.06057 1.46418 1.11202 1.01562
SPT 1.42552 1.12785 1.09444 1.46410 1.11235 1.04159

1.0 CPT 1.43690 1.06625 — 1.48857 1.04696 —
FPT 1.47052 1.06625 0.80368 1.52655 1.04696 0.90790
HPT 1.47118 1.09251 1.14760 1.52531 1.05738 1.00654
SPT 1.47116 1.09458 1.19207 1.52519 1.05720 1.02878

1.5 CPT 1.51752 1.03519 — 1.55630 0.99370 —
FPT 1.54948 1.03519 0.76393 1.59576 0.99370 0.94335
HPT 1.55089 1.06756 1.30451 1.59391 1.00052 1.00418
SPT 1.55092 1.07050 1.36763 1.59378 0.99999 1.02332

2.0 CPT 1.63862 1.01769 — 1.63137 0.93864 —
FPT 1.66843 1.01769 0.71272 1.67232 0.93864 0.97893
HPT 1.67080 1.05580 1.54971 1.66988 0.94305 1.00744
SPT 1.67089 1.05943 1.64112 1.66972 0.94231 1.02400

Table 1. Effects of the exponents k and η on the deflection w∗ and stresses σ1 and σ5

for EGM rectangular plate using various theories (t2 = 10, c2 = 1, t3 = c3 = 0).
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moisture concentration C0 = 0% as follows:

E = 3.45 GPa, ν = 0.35, α = 72.0× 10−6/◦C, β = 0.33.

Many examples have been solved numerically using the following fixed data: (unless otherwise stated)
q0 = 100, a = 10h, b = 2a, k = 2, t1 = t2 = 0, c1 = c2 = 0. The plate is assumed to be simply supported
on all four edges. Numerical results are presented in terms of nondimensional stresses and deflection.
The various nondimensional parameters used are

w∗ =
102 D
a4q0

w
(a

2
,

b
2

)
, σ1 =

1
102q0

σ11

(a
2
,

b
2
,

z
h

)
, σ5 =−

1
10q0

σ13

(
0, b

2
,

z
h

)
,

σ6 =
1

102q0
σ12

(
0, 0, z

h

)
, D =

h3 E0

12(1− ν2)
.

The longitudinal stress σ1, the transverse shear stress σ5 and the in-plane shear stress σ6 are computed at
z = h/2, z = 0 and z =−h/2, respectively. For the sake of completeness, Table 1 on the previous page
shows results of the present sinusoidal plate theory (SPT) are compared with those obtained using HPT,
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Figure 2. Dimensionless center deflection w∗ versus the aspect ratio b/a of an EGM
plate for various values of the power-law exponent η: (a) t3 = c3 = 0; (b) t3 = 10, c3 = 1;
(c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.
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FPT, and CPT for the deflection w∗, the in-plane longitudinal stress σ1 and the transverse shear stress
σ5 in bending of EGM plates under uniformly distributed loading. The deflection w∗ increases with an
increase in the exponent k or in η. The stresses σ1 and σ5 increase as k increases, but decrease as η
increases. It is to be noted that the CPT gives the same in-plane longitudinal stress σ1 as that of the FPT.

The effects of temperature, moisture concentration and their combination on the nondimensional
bending response of the EGM plate are shown in Figures 2–5. The effect of the EG parameter η on the
center deflection and stresses for different values of the thermal and moisture concentration parameters is
investigated. The variation of the center deflection versus the aspect ratio b/a for homogeneous (η = 0)
and EGM plates is presented in Figure 2. It is observed that central deflection increases with increase in
moisture concentration, temperature and increase in both simultaneously. The increase is highest when
hygrothermal condition is taken and it is least when only effect of temperature is considered. It is also
noted that the deflection increases with the increase of b/a and η.

The distribution of the in-plane longitudinal stress σ1 through-the-thickness of the homogeneous
(η = 0) and EGM plates is displayed in Figure 3. The longitudinal stress is no longer linear through-
the-thickness of the EGM plates in the absence of the hygrothermal parameters in which the stresses
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Figure 3. Dimensionless in-plane normal stress σ1 through-the-thickness of a rectangu-
lar plate (b/a = 2) for various values of the power-law exponent η: (a) t3 = c3 = 0; (b)
t3 = 10, c3 = 1; (c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.
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still tensile through the plate thickness. The longitudinal stress becomes compressive near the bottom
base of the plate, especially for η 6= 0. The behavior of stress is very sensitive to the variation of η. The
homogeneous plate yields the maximum longitudinal stress through-the-thickness of the plate and this
irrespective of the values of the hygrothermal parameters.

The distribution of the transverse shear stress σ5 through-the-thickness of the homogeneous (η = 0)
and EGM plates is displayed in Figure 4. The minimum shear stress occurs at the mid-plane of the
homogeneous and EGM plates and the stress still symmetric through the plate thickness. In the absence of
the hygrothermal parameters the shear stress is maximum for homogeneous plate in the interval −0.21≤
z/h ≤ 0.21. This interval is decreased to be −0.13 ≤ z/h ≤ 0.13 when t3 = 10 and c3 = 1. For other
cases (t3 = 15, c3 = 2 and t3 = 20, c3 = 3), the shear stress of the homogeneous plate is the smallest one.

Figure 5 show that the in-plane shear stress σ6 is linearly distributed through-the-thickness of the
homogeneous plate irrespective of the thermal or moisture concentration parameters. Otherwise, σ6 is
very sensitive to the variation of η, t3 and c3. This stress is tensile near the bottom surface of the plate
while it is compressive near the top surface of the plate. It is symmetric through-the-thickness of the
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Figure 4. Dimensionless transverse shear stress σ5 through-the-thickness of a rectangu-
lar plate (b/a = 2) for various values of the power-law exponent η: (a) t3 = c3 = 0; (b)
t3 = 10, c3 = 1; (c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.
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Figure 5. Dimensionless in-plane shear stress σ6 through-the-thickness of a rectangular
plate (b/a = 2) for various values of the power-law exponent η: (a) t3 = c3 = 0; (b)
t3 = 10, c3 = 1; (c) t3 = 15, c3 = 2; (d) t3 = 20, c3 = 3.

plate and vanished at its mid-plane. It is observed that this stress increases with increase in moisture
concentration, temperature and increase in both simultaneously.

6. Conclusion

The hygrothermal effects of homogeneous and EGM plates under uniformly distributed load are pre-
sented based on the sinusoidal shear deformation theory. The present analysis includes the effects of
temperature and moisture concentration on the material properties. Numerical results show that due to
the change in material properties caused by a rise of temperature and a change of moisture concentration,
the relationship between the hygrothermal response of homogeneous and EGM plates and the rise of
temperature and/or moisture concentrations is no longer linear. The results presented herein show that
the deflection and stresses will degrade with increasing moisture concentrations and temperatures. They
also confirm that the characteristics of stresses and deflection are significantly influenced by temperature
rise, the degree of moisture concentration, plate aspect ratio, as well as the EGM coefficient.
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Appendix

The elements Pi j = Pj i of the coefficient matrix [P] in (19) are given by

P11 = A1
11[2λ

2
+ (1− ν)µ2

], P12 = λµA1
11(1+ ν),

P13 =−2λA1
12(λ

2
+µ2), P14 = A1

13[2λ
2
+ (1− ν)µ2

],

P15 = P24 = λµA1
13(1+ ν), P22 = A1

11[(1− ν)λ
2
+ 2µ2

],

P23 =−2µA1
12(λ

2
+µ2), P25 = A1

13[(1− ν)λ
2
+ 2µ2

],

P33 = 2A1
22(λ

2
+µ2)2, P34 =−2λA1

23(λ
2
+µ2),

P35 =−2µA1
23(λ

2
+µ2), P44 = A1

33[2λ
2
+ (1− ν)µ2

] + B(1− ν),

P45 = λµA1
33(1+ ν), P55 = A1

33[(1− ν)λ
2
+ 2µ2

] + B(1− ν).

The elements Fi of the load vector {F} in (19) are given by

F1 =−2λ(1+ ν)
(

Aα11t1+ Aβ11c1+
1
h
(Aα12t2+ Aα13t3+ Aβ12c2+ Aβ13c3)

)
,

F2 =−2µ(1+ ν)
(

Aα11t1+ Aβ11c1+
1
h
(Aα12t2+ Aα13t3+ Aβ12c2+ Aβ13c3)

)
,

F3 = 2(1+ ν)
{(

Aα12t1+ Aβ12t1+
1
h
(Aα22t2+ Aα23t3+ Aβ22c2+ Aβ23c3)

)
(λ2
+µ2)+ qmn(1− ν)

}
,

F4 =−2λ(1+ ν)
(

Aα13t1+ Aβ13c1+
1
h
(Aα23t2+ Aα33t3+ Aβ23c2+ Aβ33t3)

)
,

F5 =−2µ(1+ ν)
(

Aα13t1+ Aβ13c1+
1
h
(Aα23t2+ Aα33t3+ Aβ23c2+ Aβ33c3)

)
.
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GREEN’S FUNCTION FOR SYMMETRIC LOADING OF
AN ELASTIC SPHERE WITH APPLICATION TO CONTACT PROBLEMS

ALEXEY S. TITOVICH AND ANDREW N. NORRIS

A compact form for the static Green’s function for symmetric loading of an elastic sphere is derived. The
expression captures the singularity in closed form using standard functions and quickly convergent series.
Applications to problems involving contact between elastic spheres are discussed. An exact solution for
a point load on a sphere is presented and subsequently generalized for distributed loads. Examples
for constant and Hertzian-type distributed loads are provided, where the latter is also compared to the
Hertz contact theory for identical spheres. The results show that the form of the loading assumed in
Hertz contact theory is valid for contact angles up to about ten degrees. For larger angles, the actual
displacement is smaller and the contact surface is no longer flat.

1. Introduction

Contact between spheres has intrigued researchers for more than a century, and still no simple closed-
form analytical solution exists. One of the first and most important developments in the field, due to
Heinrich Hertz [1881], is an approximate solution for the normal, frictionless contact of linear elastic
spheres. The major assumption in Hertz’s model was that the contact area is small compared to the radii
of curvature, which has served as a useful engineering approximation in many applications. Ever since
then many have tried to relax this assumption while maintaining a compact, workable solution. The
Green’s function for symmetric loading on a sphere provides the means to find the exact response for
arbitrary loading, a first step towards improving on Hertz’s classic solution. Existing forms of the Green’s
function are however not suitable for fast and ready computation, either due to slow convergence of series
or analytically cumbersome expressions. The goal of the present paper is to provide an alternative form
of the Green’s function suitable for fast computation of solutions under arbitrary loading.

Sternberg and Rosenthal [1952] present an in-depth study of the nature of the singularities on an
elastic sphere loaded by two opposing concentrated point forces. As expected, the dominant inverse
square singularity in the stress components can be removed by subtraction of an appropriate multiple of
Boussinesq’s solution for a point load at the surface of a half space. Sternberg and Rosenthal showed
that the quickly convergent residual field retains a weaker singularity of logarithmic form, a result that is
also evident in the solution developed here. The singular solutions obtained by Sternberg and Rosenthal
were extended to arbitrarily oriented point forces in [Guerrero and Turteltaub 1972]. Our interest here
is in developing an analogous separation of the Green’s function (circular ring loading). In this regard,
a relatively compact form of the Green’s function for the sphere was derived by Bondareva [1969] who
used it to solve the problem of the weighted sphere. In [Bondareva 1971], she formulates an example
with a sphere contacting a rigid surface. This has been used to solve for the rebound of a sphere from a

Keywords: Green’s function, sphere, contact.
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surface [Villaggio 1996]. Bondareva’s solution starts with the known series expansion [Lur’e 1955] for
the solution of the elasticity problem of a sphere, and replaces it with finite integrals of known functions.

In this paper we introduce an alternative form for the Green’s function for a sphere, comprised of
analytical functions and a quickly convergent series. No direct integration is required. The methodology
for determining the analytical functions is motivated by the simple example of a point load on a sphere,
for which we derive a solution similar in spirit to that of [Sternberg and Rosenthal 1952], but using
a fundamentally different approach: partial summation of infinite series as compared with a functional
ansatz. The present methods allows us to readily generalize the point-load solution to arbitrary symmetric
normal loading. A typical contact problem involves solving a complicated integral equation for the
contact stress once a displacement is specified. Instead, we will use the derived Green’s function in the
direct sense, solving for the displacements for a given load. This is used to check the validity of Hertz
contact theory through the assumed form of the stress distribution.

The outline of the paper is as follows. The known series solution for symmetric loading on a sphere is
reviewed in Section 2. The proposed method for simplification is first illustrated in Section 3 by deriving
a quickly convergent form of the solution for a point force. The Green’s function for symmetric loading
is then developed in Section 4, and is illustrated by application to different loadings. Conclusions are
given in Section 5.

2. Series solution

Consider a solid sphere of radius R, with surface r = R, 0 ≤ θ ≤ π , in spherical polar coordinates
(r, θ, φ). The sphere is linear elastic with shear modulus G and Poisson’s ratio ν. The surface is subject
to tractions

σrθ = 0, σrφ = 0, σrr = σ(θ) for r = R, 0≤ θ ≤ π, 0≤ φ < 2π. (1)

Using the known properties of Legendre functions, see (45), allows us to express the normal stress as

σ(θ)=
1
2

∞∑
n=0

(2n+ 1)σn Pn(cos θ), (2)

where the Legendre series coefficients are

σn =

∫ π

0
σ(φ)Pn(cosφ) sinφdφ. (3)

The displacements and tractions for the sphere can also be represented in series form [Zhupanska
2011, Equation (5)]:

2Gur =

∞∑
n=0

[(n− 2+ 4ν)Anr + Bnr−1
]rn Pn(cos θ),

2Guθ =
∞∑

n=1

[n(n+ 5− 4ν)Anr + (n+ 1)Bnr−1
]rn P1

n (cos θ)
n(n+ 1)

,
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σrr =

∞∑
n=0

[
[n(n− 1)− 2(1+ ν)]An + (n− 1)Bnr−2]rn Pn(cos θ),

σrθ =

∞∑
n=1

[
n[(n− 1)(n+ 3)+ 2(1+ ν)]An + (n2

− 1)Bnr−2]rn P1
n (cos θ)

n(n+ 1)
,

(4)

with B0 ≡ 0, and where B1 corresponds to a rigid body translation via 2Gu(0, · ) = B1ez . It follows
from (1) that

A0 =
−σ0

2(1+ ν)
, A1 = 0,

An =−
σn

4Rn

(n+ 1)(2n+ 1)
[n(n− 1)+ (2n+ 1)(1+ ν)]

, n ≥ 2,

Bn =
−n

n2− 1
[(n− 1)(n+ 3)+ 2(1+ ν)]R2 An, n ≥ 2.

(5)

Thus, noting that P1
n (cos θ)= d

dθ
Pn(cos θ), we have

ur (R, θ)=
R

4G

(
2(1− 2ν)

1+ ν
σ0+

∞∑
n=2

σn

(2n+1
n−1

)(2(1− ν)n2
+ νn− 1+ 2ν

n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ)

)
,

uθ (R, θ)=
R

4G
d

dθ

∞∑
n=2

σn

(2n+1
n−1

)( (−1+ 2ν)n+ 2− ν
n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ).

(6)

Bondareva [1969], using a different representation, replaced the infinite summation of Legendre func-
tions by a combination of closed form expressions and an integral, each dependent on ν. The integral
term contains a logarithmic singularity which, together with the complex-valued nature of its coefficients,
makes its evaluation indirect. Here we propose an alternative form for the Green’s function in a combi-
nation of closed-form expressions and a standard summation of Legendre functions that is, by design,
quickly convergent.

3. Point force

3.1. Exact solution. In order to illustrate the method, we first consider the simpler problem of the point
force of magnitude F applied at θ = 0 defined by

σ(θ)=
−F

2πR2 lim
ψ↓0

δ(θ −ψ)

sinψ
⇐⇒ σn =

−F
2πR2 , (7)

where we have used the property Pn(1)= 1. The difficulty with the infinite summations (6) is twofold:
first, this is not a suitable form to reproduce the singular nature of the Green’s function; secondly, they
do not converge quickly as a function of the truncated value for n. The idea here is to replace the
summation by closed form expressions plus a summation that is both regular and quickly convergent.
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The fundamental idea behind the present method is to write ur and uθ of (6) in the form

ur (R, θ)=
−F

8πG R

(
4(1− ν)S(θ)+

M∑
j=0

a j (ν)S j (θ)+ f (θ)
)
, (8a)

uθ (R, θ)=
−F

8πG R
d

dθ

( M∑
j=0

b j (ν)S j (θ)+ g(θ)
)
, (8b)

where the functions S(θ) and S j (θ) ( j = 1, . . .M), are closed-form expressions, in this case:

S(θ)=
∞∑

n=0

Pn(cos θ)= 1
2

csc θ
2
, (9a)

S j (θ)=

∞∑
n=0

Pn+ j (cos θ)
n+ 1

, j = 0, 1, . . . , (9b)

and f (θ), g(θ) are regular functions of θ defined by quickly convergent series in n,

f (θ)=
∞∑

n=0

Cn Pn(cos θ), g(θ)=
∞∑

n=0

Dn Pn(cos θ). (10)

The coefficients a0, a1, . . . , aM are defined so that Cn = O
(
n−(M+2)

)
as n→∞. This criterion uniquely

provides the constants a0, a1, . . . , aM as solutions of a system of linear equations. Similarly, b0, b1, . . . ,

bM are uniquely defined by Dn = O
(
n−(M+2)

)
as n→∞.

Here we consider the specific case of M = 2. Other values of M could be treated in the same manner;
however, we will show that M = 2 is adequate for the purpose of improving convergence. In this case
(8) becomes

ur (R, θ)=
−F

8πG R
[4(1− ν)S(θ)+ a0S0(θ)+ a1S1(θ)+ a2S2(θ)+ f (θ)]

=
−F

8πG R

[ ∞∑
n=2

(
4(1− ν)+ a0

n+1
+

a1
n
+

a2
n−1

+Cn

)
Pn(θ)+C0 P0(θ)+C1 P1(θ)

+ 4(1− ν)
(
P0(θ)+ P1(θ)

)
+ a0

(
P0(θ)+

1
2 P1(θ)

)
+ a1 P1(θ)

]
, (11a)

uθ (R, θ)=
−F

8πG R
d

dθ

[
b0S0(θ)+ b1S1(θ)+ b2S2(θ)+ g(θ)

]
=
−F

8πG R
d

dθ

[ ∞∑
n=2

( b0
n+1

+
b1
n
+

b2
n−1

+ Dn

)
Pn(θ)

+ b0
(
P0(θ)+

1
2 P1(θ)

)
+ b1 P1(θ)+ D0 P0(θ)+ D1 P1(θ)

]
, (11b)

where the associated functions S j (θ), j = 0, 1, 2, are (see Appendix B)
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S0(θ)= log
(

1+ csc θ
2

)
, (12a)

S1(θ)=−S0(θ)− 2 log sin θ
2
, (12b)

S2(θ)= S1(θ) cos θ − 2 sin θ
2

(
1− sin θ

2

)
. (12c)

Equations (8), (9a), and (12) indicate the expected Boussinesq-like θ−1 singularity as well as the
weaker log θ singularity first described in [Sternberg and Rosenthal 1952]. The logarithmic singularities
in S j (θ), j = 0, 1, 2, can be compared to the potential functions [D1], [D2], and [D3] in Equation (17)
of that reference, which provide a logarithmic singularity. In the present notation these are, respectively
(using capital 8 so as not to be confused with the angle φ, and making the substitution θ→ π − θ ),

81(θ)= 2 log sin θ
2
, 82(θ)=−R

(
1+ 2 cos θ log sin θ

2

)
,

83(θ)= R2
(

2(1− 3 cos2 θ) log sin θ
2
+ cos2 θ − 3 cos θ − 1

)
.

(13)

These clearly display the same form of the singularity as in equations (12), but are otherwise different.
Define the first two coefficients of f (θ) and g(θ) from (10) as

C0 =
2(1− 2ν)

1+ ν
− 4(1− ν)− a0, C1 =−4(1− ν)− 1

2 a0− a1, (14a)

D0 =−b0, D1 =−
1
2 b0− b1. (14b)

The coefficients an and bn are then found by comparing expression (11) to the series solution in (6),
expanding both expressions for large n, and equating the coefficients of the same order terms. Thus, the
original assumed form of the solution (8) implies

∞∑
n=2

Pn(θ)

n2+ (1+ 2ν)n+ 1+ ν

(2n+1
n−1

)
×

{(
2(1− ν)n2

+ νn− 1+ 2ν
)(

(−1+ 2ν)n+ 2− ν
)

=

∞∑
n=2

Pn(θ)×


(

4(1− ν)+ a0
n+1

+
a1
n
+

a2
n−1

+Cn

)
,( b0

n+1
+

b1
n
+

b2
n−1

+ Dn

)
,

(15)

where
a0 =

1
2 (1+ ν)(1− 2ν)(−16ν2

+ 8ν+ 5),

a1 =−32ν4
+ 16ν3

+ 30ν2
− 16ν− 1,

a2 = 16ν4
− 16ν3

− 5ν2
+

13
2 ν+

1
2 ,

b0 =
1
2 (1+ ν)(16ν2

− 12ν− 1),

b1 =−16ν3
+ 4ν2

+ 13ν− 4,

b2 = 8ν3
− 6ν2

−
5
2 ν+

5
2 .

(16)
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The remaining coefficients Cn and Dn are then determined directly from (15):

Cn =
(1+ ν)

Ln

(
(6− a1− 6a2)n+ a1

)
=−

(1+ ν)
Ln

(
(64ν4

− 80ν3
+ 23ν− 4)n+ (32ν4

− 16ν3
− 30ν2

+ 16ν+ 1)
)
, (17a)

Dn =
(1+ ν)

Ln

(
(6− b1− 6b2)n+ b1

)
=−

(1+ ν)
Ln

(
(32ν3

− 32ν2
− 2ν+ 5)n+ (16ν3

− 4ν2
− 13ν+ 4)

)
, (17b)

where

Ln ≡ n(n2
− 1)

(
n2
+ (1+ 2ν)n+ 1+ ν

)
. (18)

In summary, the new form of the point force solution is given by the displacements in (11) where the
functions and coefficients are given in (12)–(14) and (16)–(18).

3.2. Numerical examples. In the following examples we introduce the integer N as the truncation value
of the series in (10). The Poisson’s ratio was taken to be 0.4. Displacements have been normalized by
the constant coefficient of the series as Ui =−8πG RF−1ui , where i = r, θ . Figure 1 shows the rate of
convergence of the displacements given by (11), whereas Figures 2 and 3 compare the displacements in
(6) with (11).
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Figure 1. Convergence of the proposed expression for Ur (left) and Uθ (right), which
equal (−8πG R/F) times the functions ur and uθ in (11). The inset on the left shows
the Ur graphs around θ = π/2 magnified 11250 times: the difference in the value of Ur

from N = 4 to N = 10 is 4.5259 ·10−4, and from N = 10 to N = 100 it is −1.7059 ·10−5.
The inset on the right shows the Uθ graphs around θ = π/2 magnified 1200 times: the
difference in the value of Uθ from N = 4 to N = 10 is 2.4097 · 10−3, and from N = 10
to N = 100 it is −1.5040 · 10−4.
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Figure 2. Comparison of the convergence of Ur = (−8πG R/F)ur with the truncation
value N for the existing expression ((6), shown in blue) and the expression proposed
herein ((11), shown in red). From left to right: N = 4, 10, 100.
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Figure 3. Comparison of the convergence of Uθ = (−8πG R/F)uθ with the truncation
value N for the existing expression ((6), shown in blue) and the expression proposed
herein ((11), shown in red). From left to right: N = 4, 10, 100.

By design, the proposed expression, (11), converges much faster than the existing expression, (6), as
seen in Figures 2 and 3. Looking at the convergence of the proposed expressions with the truncation
value N , Figure 1, we can suggest that the analytic portion of the expression alone gives close results.
However, it should be noted that one cannot get rid of the first two terms in the series for f (θ) and g(θ)
because of their large magnitudes. As far as the general behavior of the normalized displacements with
θ , we see that they increase asymptotically approaching θ = 0, change sign between 36.7◦ and 108.7◦

for Ur (7.27◦ and 80.83◦ for Uθ ), and have a minimum at 65.5◦ for Ur (24.6◦ for Uθ ). This is difficult
to see in the figures, but due to the symmetry of the loading, the displacement Uθ must have a value of
0 at θ = 0.
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4. Green’s function

4.1. A fast convergent form for the Green’s function. The surface displacements for arbitrary loading
may be written, by analogy with the ansatz (8) for the point force, and generalizing the latter,

ur (R, θ)=
R

4G

∫ π

0

(
4(1− ν)S(θ, φ)+

M∑
j=0

a j (ν)S j (θ, φ)+ f (θ, φ)
)
σ(φ) sinφdφ, (19a)

uθ (R, θ)=
R

4G
d

dθ

∫ π

0

( M∑
j=0

b j (ν)S j (θ, φ)+ g(θ, φ)
)
σ(φ) sinφdφ, (19b)

where S(θ, φ) and S j (θ, φ) ( j = 1, . . .M) are

S(θ, φ)=
∞∑

n=0

Pn(cos θ)Pn(cosφ), (20a)

S j (θ, φ)=

∞∑
n=0

1
n+1

Pn+ j (cos θ)Pn+ j (cosφ), j = 0, 1, . . . , (20b)

and f (θ, φ) and g(θ, φ) are regular functions of θ defined by quickly convergent series in n:

f (θ, φ)=
∞∑

n=0

Cn Pn(cos θ)Pn(cosφ), g(θ, φ)=
∞∑

n=0

Dn Pn(cos θ)Pn(cosφ). (21)

The coefficients a0, a1, . . . , aM are the same as before. The main complication is to find the functions
(20). Thus, S(θ, φ) follows from (52) as

S(θ, φ)=


1
π

csc θ
2

sec φ
2

K
((

cot θ
2

tan φ
2

)2
)
, θ > φ,

1
π

sec θ
2

csc φ
2

K
((

tan θ
2

cot φ
2

)2
)
, θ < φ,

(22)

where K (m) is the complete elliptic integral of the first kind [Abramowitz and Stegun 1964, 17.3.1],
while (50a) implies

S01(θ, φ)≡ S0(θ, φ)+ S1(θ, φ)=


−2 log sin θ

2
cos φ

2
, θ > φ,

−2 log cos θ
2

sin φ
2
, θ < φ.

(23)

The functions S j (θ, φ) can be determined, but their form is overly complicated, and defeats our objective
of simplifying the Green’s function. We therefore restrict the solution to the use of the above two series:
S(θ, φ) and S01(θ, φ).
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We therefore consider the following form of the ansatz (19) using the series S and S01 of (22) and
(23), respectively. Substituting them into (19) yields the identities

ur (R, θ)=
R

4G

∫ π

0

(
4(1− ν)S(θ, φ)+ a01(ν)S01(θ, φ)+ f (θ, φ)

)
σ(φ) sinφdφ

=
R

4G

∫ π

0

[ ∞∑
n=2

(
4(1− ν)+ a01

( 2n+1
n(n+1)

)
+Cn

)
Pn(cos θ)Pn(cosφ)

+4(1− ν)
(
P0(cos θ)P0(cosφ)+ P1(cos θ)P1(cosφ)

)
+ a01

(
P0(cos θ)P0(cosφ)

+
3
2 P1(cos θ)P1(cosφ)

)
+C0 P0(cos θ)P0(cosφ)+C1 P1(cos θ)P1(cosφ)

]
σ(φ) sinφdφ, (24a)

uθ (R, θ)=
R

4G
d

dθ

∫ π

0

(
b01(ν)S01(θ, φ)+ g(θ, φ)

)
σ(φ) sinφdφ

=
R

4G
d

dθ

∫ π

0

[ ∞∑
n=2

(
b01

( 2n+1
n(n+1)

)
+ Dn

)
Pn(cos θ)Pn(cosφ)

+b01
(
P0(cos θ)P0(cosφ)+ 3

2 P1(cos θ)P1(cosφ)
)

+D0 P0(cos θ)P0(cosφ)+ D1 P1(cos θ)P1(cosφ)
]
σ(φ) sinφdφ. (24b)

Once again we define the first two coefficients of f (θ, φ) and g(θ, φ) as

C0 =
2(1− 2ν)

1+ ν
− 4(1− ν)− a01, C1 =−4(1− ν)− 3

2 a01, (25a)

D0 =−b01, D1 =−
3
2 b01, (25b)

which allows us to solve the following expressions for the coefficients a01 and b01:
∞∑

n=2

(2n+1
n−1

)(2(1− ν)n2
+ νn− 1+ 2ν

n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ)Pn(cosφ)

=

∞∑
n=2

(
4(1− ν)+

(2n+ 1)
n(n+ 1)

a01+Cn

)
Pn(cos θ)Pn(cosφ), (26a)

∞∑
n=2

(2n+1
n−1

)( (−1+ 2ν)n+ 2− ν
n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ)Pn(cosφ)

=

∞∑
n=2

(
(2n+ 1)
n(n+ 1)

b01+ Dn

)
Pn(cos θ)Pn(cosφ). (26b)

This is done by expanding (26) for large n and equating same order terms yielding

a01 = (2ν− 1)2, b01 = 2ν− 1. (27)

Using (27), Cn and Dn are found directly from (26) (see also (18)):

Cn =−
1

Ln
[(ν− 1)(4ν− 1)(4ν+ 1)n3

+ (8ν2
− 11ν− 1)n2

+(−12ν3
+ 8ν2

+ 3ν− 5)n− (ν+ 1)(2ν− 1)2], (28a)
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Dn =−
(2n+1)

Ln
[(ν− 1)(4ν+ 1)n2

+ 2(−ν2
+ ν− 1)n− (ν+ 1)(2ν− 1)]. (28b)

In summary,

ui (R, θ)=
R

4G

∫ π

0
Hi (θ, φ)σ (φ) sinφdφ, i = r, θ, (29a)

Hr (θ, φ)= 4(1− ν)S(θ, φ)+ (1− 2ν)2S01(θ, φ)+

∞∑
n=0

Cn Pn(cos θ)Pn(cosφ), (29b)

Hθ (θ, φ)=
d

dθ

(
(2ν− 1)S01(θ, φ)+

∞∑
n=0

Dn Pn(cos θ)Pn(cosφ)
)
, (29c)

where the coefficients Cn and Dn are given in (28). Note that Cn, Dn = O(n−2) as n→∞, ensuring
rapidly convergent series. The Green’s functions of (29) are generally valid for θ ∈ [0, π]. The integrands
Hi (θ, φ) are smooth and bounded functions of φ for φ 6= θ , which is always the case if the displacements
are evaluated at points outside the region of the loading σ(φ). However, for points under the load, the
integration of Hr (θ, φ) involves a logarithmic singularity at φ = θ . A simple means of dealing with this
is described next.

4.1.1. Removing the singularity under the load. The function S(θ, φ) exhibits a logarithmic singularity
by virtue of the asymptotic behavior:

K (m)= log
4

√
1−m

+O(1−m), m ↑ 1. (30)

The integral in (24a) is evaluated by rewriting (24a) in the equivalent form

ur (R, θ)=
R

4G

{∫ φ0

0

[(
a01(ν)S01(θ, φ)+ f (θ, φ)

)
σ(φ)+4(1−ν)

(
S(θ, φ)σ (φ)− Ŝ(θ, φ)σ (θ)

)]
sinφdφ

+ 4(1− ν)σ (θ)
∫ φ0

0
Ŝ(θ, φ) sinφdφ

}
, 0≤ θ ≤ φ0, (31)

where the angle φ0 defines the domain of the loading, which is normally for contact problems, much less
that π . The function Ŝ(θ, φ) has the same singularity as S(θ, φ) and has a relatively simple integral. We
choose

Ŝ(θ, φ)=


−

1
2π

csc θ
2

sec φ
2

log
(

cos2 φ

2
− cos2 θ

2

)
, θ > φ,

−
1

2π
sec θ

2
csc φ

2
log
(

sin2 φ

2
− sin2 θ

2

)
, θ < φ.

(32)

The integrand of the first integral in (31) is now a smoothly varying function with no singularity, and the
second integral is, explicitly,
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0
Ŝ(θ, φ) sinφdφ =−

2
π sin(θ/2)

∫ 1

cos(θ/2)
log
(

x2
− cos2 θ

2

)
dx

−
2

π cos(θ/2)

∫ sin(φ0/2)

sin(θ/2)
log
(

x2
− sin2 θ

2

)
dx

=
G(cos(θ/2), 1)

sin(θ/2)
+

G(sin(θ/2), sin(φ0/2))
cos(θ/2)

, 0≤ θ ≤ φ0,

(33)

where

G(x, y)=− 2
π

(
(y− x) log(y− x)+ (y+ x) log(y+ x)− 2(y− x + x log 2x)

)
. (34)

In summary, the solution for ur with the singularity removed has the following form (see also (29a) for
Hr (θ, φ) and (33) for G(x, y))

ur (R, θ)=
R

4G

{∫ φ0

0
[Hr (θ, φ)σ (φ)− Ĥr (θ, φ)σ (θ)] sinφdφ+ h(θ)

}
,

Ĥr (θ, φ)= 4(1− ν)Ŝ(θ, φ),

h(θ)= 4(1− ν)
[

G(cos(θ/2), 1)
sin(θ/2)

+
G(sin(θ/2), sin(φ0/2))

cos(θ/2)

]
σ(θ).

(35)

4.2. Examples of distributed loads. To check the convergence of the expressions in (24) we will consider
a symmetric constant distributed load σ(φ) of the form

σ(φ)=
−F
πR2

1

sin2 φ0
, 0≤ φ ≤ φ0, (36)

and a symmetric Hertzian-type load of the form

σ(φ)=
−3F
2πR2

√
sin2 φ0− sin2 φ

sin3 φ0
, 0≤ φ ≤ φ0. (37)

Both loads have been normalized such that their resultant forces are −F for all ranges of the angle φ0,
which is equivalent to the point force given by (7). The solution on the interval 0≤ θ ≤ φ0 is obtained
using (35) and for φ0 < θ ≤ π we apply (29) directly.

Firstly, the convergence of the proposed solution, (35), is compared to the series solution for a Hertzian-
type load in Figures 4 and 5. These curves indicate that the convergence of the radial displacement
Ur in the proposed solution is substantially superior to the series solution. Figures 6 and 7 show the
convergence of the displacements with the truncation limit N under both types of loading. Subsequently,
Figures 8 and 9 demonstrate that in the limit as φ0→ 0 the displacements due to the distributed loads
approach those obtained for the point load. Moreover, the normalized radial displacement, Ur , is almost
indistinguishable from the point load for a φ0 as large as ten degrees. A Poisson’s ratio of ν = 0.4 has
been used throughout.

We would also like to investigate how the displacement due to a Hertzian-type load compares with that
from Hertzian contact theory. The dimensionless vertical displacement that we obtain by the methods



712 ALEXEY S. TITOVICH AND ANDREW N. NORRIS

0 30 60 90 120 150 180
−2

−1

0

1

2

3

4

5

θ

U
r

0 30 60 90 120 150 180
−2

−1

0

1

2

3

4

5

θ

0 30 60 90 120 150 180
−2

−1

0

1

2

3

4

5

θ

Figure 4. Comparison of the proposed solution ((35), shown in red) and existing series
solutions ((6), shown in blue) for Ur = (−8πG R/F)ur under a Hertzian-type load
distributed up to φ = 10◦. From left to right: N = 4, 10, 100.
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Figure 5. Comparison of the proposed solution ((35), shown in red) and existing series
solutions ((6), shown in blue) for Uθ = (−8πG R/F)uθ under a Hertzian-type load
distributed up to φ = 10◦. From left to right: N = 4, 10, 100.

outlined in this paper has the form

Uz =Ur cos θ −Uθ sin θ = (8πG R)
uz

F
, (38)

where uz is the physical vertical displacement.
Hertz contact theory [Johnson 1985] is formulated in terms of the radius of the contact area a, the

displacements directly under the load δ, and the magnitude of the applied load F . We need to reformulate
these quantities in terms of the contact angle φ0. The radius of the contact area is simply

a = R sinφ0. (39)
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Figure 6. Convergence of the expressions for Ur = (−8πG R/F)ur and Uθ =

(−8πG R/F)uθ given in (24) with N for a constant distributed load given by (36). The
load was distributed up to φ0 = 10◦.
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Figure 7. Convergence of the expressions for Ur = (−8πG R/F)ur and Uθ =

(−8πG R/F)uθ given in (24) with N for a Hertzian-type distributed load given by (37).
The load was distributed up to φ0 = 10◦.

The maximum vertical displacement is related to a in the following manner:

δ =
a2

R
= R sin2 φ0 = 2uz(0), (40)

where (39) was used and the last equality arises from the fact that the Hertzian solution presented here is
for the contact of two spheres hence we need to halve the total displacement. Furthermore, Hertz contact
theory tells us that the resultant force F is proportional to a3, or, more accurately,

F = 4
3

( G
1−ν

)a3

R
=

4
3

( G
1−ν

)
R2 sin3 φ0. (41)
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truncated at N = 300. The loads were distributed over φ0 = 10◦ (red), 30◦ (green), and
50◦ (blue).

0 30 60 90 120 150 180
−2

−1

0

1

2

3

4

5

θ

U
r

0 30 60 90 120 150 180
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ

U
θ

φ
0

φ
0

φ
0

Figure 9. Convergence of the displacement due to a Hertzian-type distributed load to
the displacement due to a point force of the same magnitude (black). The solution was
truncated at N = 300. The loads were distributed over φ0 = 10◦ (red), 30◦ (green), and
50◦ (blue).

This allows us to rewrite (38) for the dimensionless vertical displacement via Hertz contact theory, de-
noted as U H

z (0). Substituting (40) and (41) into (38) yields

U H
z (0)= (8πG R)

(R/2) sin2 φ0

(4/3)(G/(1− ν))R2 sin3 φ0
=

3π(1− ν)
sinφ0

. (42)

Equation (42) gives us a way to compare the presented solution for the Hertzian-type load to the
solution from Hertz contact theory. The numerical results are presented in Figure 10, which compares
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the vertical displacements ((38) with (42)) as a function of the contact angle φ0. Note that along with
Uz(0) and U H

z (0) we also plot 2Uz(φ0), which according to Hertz theory should be equal to Uz(0). The
normalized difference between the displacements is shown in Figure 11. As expected, the solutions
are close for small contact areas and diverge as this area increases. The same can be said about the
relationship between the displacements Uz(0) and 2Uz(φ0).

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

φ
0

D
is

p
la

c
e
m

e
n
t 
ra

ti
o

 

 

U
z

H
(0) / U

z
(0) − 1

1 − 2U
z
(φ

0
) / U

z
(0)

Figure 11. Normalized difference between the displacements in Figure 10 as a function
of the contact angle φ0.



716 ALEXEY S. TITOVICH AND ANDREW N. NORRIS

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

s

θ/φ
0

φ
0

φ
0
=40

Figure 12. The flatness of the area under the load as defined in (44) as a function of
the normalized angle θ/φ0. Each curve corresponds to a different contact angle ranging
from φ0 = 5◦ to 40◦ in 5◦ increments.

Comparing the maximum displacements Uz(0) with U H
z (0) does not tell us anything about the shape

of the contact area for a sphere loaded by a Hertzian-type load. Hertz contact theory states that the contact
area between two identical spheres is flat, and thus we can describe it using R(cos θ − cosφ0). Therefore
we define a function s(θ) to determine how close is our calculated displacement to the Hertzian solution as

s(θ)= kUz(θ)− (cos θ − cosφ0), (43)

where k is a constant determined by enforcing s(0)= s(φ0), which results in

s(θ)=
Uz(θ)

Uz(0)−Uz(φ0)
(1− cosφ0)− (cos θ − cosφ0). (44)

The function s(θ) is plotted in Figure 12 for several angles φ0. These results show that the contact area is
flat for small contact angles, but gains curvature for larger angles. According to Hertz theory, for small
contact angles φ0, the function s(θ) behaves as a constant s(θ)≈ φ2

0/2. The angles shown in Figure 12
are too large to see this behavior, however, at φ0 = 5◦ the values are close with s(θ) = 0.00334 and
φ2

0/2= 0.00381.

5. Conclusions

A compact Green’s function for a sphere is presented which uses the fundamental idea of expressing a
slowly convergent series with analytical functions and a quickly convergent series. The increased speed
of convergence is demonstrated for the point force solution, which is also shown to be consistent with
the more general distributed loading in the limit as the contact angle approaches zero. Since the general
Green’s function contains elliptical integrals, an easy method for dealing with the singularity in the
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integrand is presented. Comparing the exact displacement due to a Hertzian-type distributed load to the
displacement given by Hertz contact theory we conclude that Hertz contact theory gives accurate results
for contact angles up to about ten degrees, with a steadily increasing error. For larger contact angles,
Hertz theory overestimates the displacements and cannot account for the shape of the contact area. This
is to say that the stress distribution assumed in Hertz theory results in a curved contact surface for larger
contact angles.

Appendix A: Legendre polynomial formulas

The orthogonality and completeness relations for the Legendre functions are

1
2
(2n+ 1)

∫ π

0
Pm(cos θ)Pn(cos θ) sin θ dθ = δmn, (45a)

∞∑
n=0

1
2
(2n+ 1)Pn(cos θ)Pn(cosφ)=

δ(θ −φ)

sinφ
, (45b)

Starting with the definition for Pn(x),

Pn(cos θ)= 1
π

∫ π

0
(cos θ + i sin θ cosα)n dα, (46)

and using
∞∑

n=0

zn
=

1
1−z

, |z|< 1, the well-known generating function follows:

∞∑
n=0

tn Pn(cos θ)=
1

√
1+ t2− 2t cos θ

, |t | ≤ 1. (47)

Integrating the identity (47) with respect to t implies

∞∑
n=0

tn+1 Pn(cos θ)
n+ 1

= sinh−1(cot θ)+ sinh−1
( t−cos θ

sin θ

)
= log

(
1+ csc θ

2

)
− sinh−1

(
tan θ

2

)
+ sinh−1

( t−cos θ
sin θ

)
, |t | ≤ 1, 0≤ θ ≤π.

(48)

Taking the limit as t → 1 yields (12a). S1(θ) of (12b) follows from a similar result [Prudnikov et al.
1986, Equation 5.10.1.4], while S2(θ) of (12c) follows from the recurrence relation

(n+ 1)Pn+1(x)− (2n+ 1)x Pn(x)+ n Pn−1(x)= 0, (49)

after dividing by n and summing from n = 1 to ∞ (S2 agrees with [Prudnikov et al. 1986, Equa-
tion 5.10.1.6]). The recurrence relation can be used to then find S j (θ) for j = 3, 4, . . . .
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A series of products of Legendre functions is given by Equations 6.11.3.1 and 6.11.3.2 of [Brychkov
2008]:

∞∑
n=1

2n+ 1
n(n+ 1)

Pn(x)Pn(y)=−1− log
(1− x)(1+ y)

4
, (50a)

∞∑
n=1

2n+ 1
n2(n+ 1)2

Pn(x)Pn(y)= 1− log 1+y
2

log
(1− x)(1+ y)

4
+ Li2

(1+x
2

)
− Li2

(1+y
2

)
, (50b)

for −1≤ x < y ≤ 1. Equation (50a) can be derived by operating on both sides by the Legendre differential
operator

L x =
d

dx
(1− x2)

d
dx
,

and using the eigenvalue property L x Pn(x)=−n(n+ 1)Pn(x) to arrive at (8b) (for x < y). At the same
time, the constants in the right member of (50a) follow by considering the formula for x = 0, y = 1, in
which case the sum on the left can be found. Equation (50a) gives S0(θ, φ)+ S1(θ, φ) by noting that

1
n
+

1
n+1

=
2n+ 1

n(n+ 1)
.

The following is a simple consequence of Legendre’s addition formula [Martin 2006, Equation 3.19]:

Pn(cos θ)Pn(cosφ)= 1
π

∫ π

0
Pn(cos θ cosφ− sin θ sinφ cosα)dα. (51)

Multiplying both sides of (51) by tn and summing implies, using (47), the identity [Prudnikov et al. 1986,
Equation 5.10.2.1], for |t |< 1,

∞∑
n=0

tn Pn(cos θ)Pn(cosφ)=
4

π(u++ u−)
K
(

u+− u−
u++ u−

)
, u± =

√
1− 2t cos(θ ±φ)+ t2. (52)

Appendix B: Analytical functions and their derivatives

We require the derivatives with respect to θ of the functions defined in (12). They are

d S0(θ)

dθ
=

sin(θ/2)− 1
sin θ

,

d S1(θ)

dθ
=−

d S0(θ)

dθ
− cot θ

2
,

d S2(θ)

dθ
=

d S1(θ)

dθ
cos θ − S1(θ) sin θ + cos θ

2

(
2 sin θ

2
− 1

)
.

(53)

Similarly, the analytical function used to find uθ , (29), in Section 4 is

S01(θ, φ)= S0(θ, φ)+ S1(θ, φ)=


−2 log sin θ

2
cos φ

2
, θ > φ,

−2 log cos θ
2

sin φ
2
, θ < φ.

(54)
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The derivative of S01(θ, φ) is

∂S01(θ, φ)

∂θ
=

{
− cot θ/2, θ > φ,

tan θ/2, θ < φ.
(55)
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MULTI-HIT ARMOUR CHARACTERISATION OF METAL-COMPOSITE
BI-LAYERS

KANDAN KARTHIKEYAN, BENJAMIN P. RUSSELL,
VIKRAM S. DESHPANDE AND NORMAN A. FLECK

The ballistic performance of equi-mass plates made from (i) stainless steel (SS); (ii) carbon fibre/epoxy
(CF) laminate and (iii) a hybrid plate of both materials has been characterised for a spherical steel pro-
jectile. The hybrid plate was orientated with steel on the impact face (SSCF) and on the distal face
(CFSS). The penetration velocity (V50) was highest for the SS plate and lowest for the CF plate. A series
of double impact tests were performed, with an initial velocity VI and a subsequent velocity VII at the
same impact site. An interaction diagram in (VI , VII) space was constructed to delineate penetration
from survival under both impacts. The degree of interaction between the two impact events was greater
for the CFSS plate than for the SSCF plate, implying that the distal face has the major effect upon the
degree of interaction.

1. Introduction

Composite materials are increasingly used in transportation and protection systems as they can give
significant weight savings over their metallic counterparts. In a number of these applications there is a
need for high impact resistance. For example, military vehicles are required to resist projectile impacts
while in civilian aerospace applications the gas turbine (and airframe) needs to resist impacts from birds
and other foreign objects. In most cases, the structure needs to be able to maintain its integrity under
multiple impacts. The primary aim of this paper is to characterise the multi-impact ballistic performance
of composite and metal/composite hybrid plates and to compare their performance with the reference
case of a metallic plate of equal areal mass.

1.1. Ballistic damage characterisation. The residual strength of continuous fibre reinforced compos-
ite panels has been extensively investigated in the literature. A plethora of characterisation techniques
assessing composite damage have been developed. All can be classified as either visual techniques or
residual performance tests. Visual techniques include laser shearography [Hung 1982], X-ray tomogra-
phy, thermography, digital image strain mapping, ultra-sound and both visual and electron microscopy.
They are used to identify damage with a view to informing and validating computational modelling
techniques. Residual performance tests are designed to ascertain the ability of a component to maintain
function without necessarily developing an understanding of the mechanisms at play. Examples include
post-impact compression tests (PICS) and tension after impact (TAI). Cantwell and Morton [1991], and
Richardson and Wisheart [1996] have written reviews and detail these techniques for damage assessment.
For example, Kazemahvazi et al. [2010] assessed the residual strength of composite panels with the TAI

Keywords: composite, damage, ballistic loading, multi-impact, bi-layers.
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technique. While most studies focus on damage characterisation after a single impact, Appleby-Thomas
et al. [2011] have recently investigated the damage mechanisms in carbon fibre composites subject to
multiple impacts using both PICS and CT-scan techniques.

1.2. Hybridisation of materials. Polymer-matrix composites are increasingly used in light-weight trans-
port due to their high specific strength and stiffness. However, their impact resistance is often inferior
to their metallic counterparts. Recently, hybrid material systems, combining composite and metal, have
been developed in order to combine high specific stiffness, strength and impact resistance. For example,
Fibre Metal Laminates (FMLs) such as GLARE (Glass Laminate Aluminium Reinforced Epoxy) are
finding application in the latest generation of commercial aircraft due to their superior performance
under service and blast/impact loads [Vlot 1993; Young et al. 1994; Lambert 1995], when compared
with equivalent mass metallic structures. The multi-impact performance of such hybrid panels has not
been reported to-date.

1.3. Objectives of study. The objectives of this study are two-fold. First, this paper proposes a method-
ology to assess ballistic performance of plates under multi-hit. The focus here is restricted to two con-
secutive impacts at the same location although the scheme developed can be extended to more complex
situations. Secondly, we use this methodology to assess the performance of metallic, composite and
hybrid plates subject to projectile loadings.

2. Experimental protocol

Three types of clamped circular plates were impacted normally (zero obliquity) and centrally with spheri-
cal steel balls. The three plate types were (i) monolithic 304 stainless steel; (ii) 0–90◦ carbon fibre/epoxy
laminate and (iii) a hybrid plate comprising a steel plate bonded to a carbon fibre/epoxy laminate. All had
an areal mass of approximately 5.7 kg m−2. The aims of the experimental investigation were as follows.

(1) To develop a methodology to characterise ballistic performance of plates subjected to two impacts
at the same location.

(2) To compare the ballistic performance of the three plate types for both a single impact as well as two
impacts at the same location.

(3) To determine the sensitivity of the ballistic performance of the hybrid plates to the orientation of
the plate; i.e., whether the impacted face is the steel or composite face of the plate.

2.1. Materials and manufacture. Square plates measuring 150 mm × 150 mm were manufactured to
the following specification:

(1) Monolithic steel plates: Cold-rolled 304 stainless steel plates of thickness 0.70 mm were water jet
cut from as-received stainless steel sheets of the same thickness.

(2) Monolithic composite plates: The composite plates comprised 0–90◦ laminates with IM7-12k car-
bon fibres embedded within a HexPly® 8552 resin. Alternating 0◦ and 90◦ plies (each of thickness
0.25 mm) were stacked to construct a plate with lay-up [(0◦/90◦)7/0◦], overall thickness 3.75 mm
and density 1570 kg m−3. Large composite plates were manufactured via a standard lay-up and
autoclaving procedure, and cut to the requisite size with a diamond saw.
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22 kPa 5 h 5 d

Redux 810 Adhesive

304 Stainless Steel

[(0/90)
2
]

S
 CF / epoxy

Acetone de-greasing

Inital cure condition Full strength achieved

(a) (b) (c) (d)

Figure 1. Manufacturing route for the hybrid bi-layer plates: (a) metal plates are cut to
the required size by water jet and the composite plates cut by a diamond saw; (b) acetone
is used to clean the metal surfaces before Redux 810 adhesive is applied to both the metal
and composite surfaces; (c) over the initial 5 hours of the cure cycle, the specimen is
held under pressure after which (d) the adhesive is allowed a further 5 days to harden to
full strength.

(3) Hybrid plates: The hybrid plates comprised a 0.3 mm cold-rolled stainless steel plate bonded to a
2 mm thick composite plate with lay-up [0◦/90◦]4, i.e., 60% by mass composite. The hybrid plates
were manufactured as follows. The cold-rolled steel and cured composites plates (manufactured
from the same materials and using the same procedure as for the monolithic composite plates) were
bonded together with a chemical cure epoxy resin system, Redux 8101 as shown schematically
in Figure 1. First the bonding surfaces were cleaned thoroughly and then the epoxy applied to
both surfaces. Both these surfaces were then bonded under a pressure of 22 kPa for a period of
5 hours. This procedure ensured a thin bond thickness and eliminated air gaps. The plates were
allowed to cure for a further 120 hours to achieve full strength before testing. Note that the use of a
room temperature chemically curing adhesive ensured that we minimised the build up of interfacial
stresses due to the differences in thermal expansion coefficients between the two materials.

Table 1 presents the geometric details of all the plates used in this study along with the designations
by which each of these plates will be referred to subsequently. Note that the hybrid plates are used in
two configurations: (i) SSCF where the stainless steel (SS) surface is the impacted face while the carbon
fibre (CF) plate is the rear surface and (ii) CFSS where the CF plate is the impacted face.

2.2. Material properties. The quasi-static uniaxial compressive and tensile responses of the carbon fibre
laminates with lay-up [(0◦/90◦)7/0◦], was measured at an applied nominal strain rate 10−3 s−1 using
the procedure detailed in [Russell et al. 2008]. In brief, dogbone-shaped specimens were cut from the
composite sheets. The tensile responses in the 0–90◦ and ±45◦ orientation (where the angles refer
to the angles between the fibre direction and the loading axis) were measured by friction gripping of

1Manufactured by Hexcel Composites.
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Designation Thickness, t (mm) Impact Face Distal Face Areal mass (kg m−2)
SS 0.71 304 Stainless steel 5.55
CF 3.75 CF/epoxy [(0◦/90◦)7/0◦] 5.85

SSCF 0.3 / 2 304 Stainless steel CF/epoxy [0◦/90◦]4 5.65∗

CFSS 2 / 0.3 CF/epoxy [0◦/90◦]4 304 Stainless steel 5.65∗

∗Inclusive of adhesive layer (0.19 kg m−2)

Table 1. Materials and geometry of the four plate configurations investigated here.

these specimens and then conducting tensile tests in a screw-driven test machine. The applied load was
measured via the load cell of the test machine and was used to define the applied stress while a 0/90◦

strain gauge rosette was used to measure the axial and transverse strain components. In order to perform
compression tests that do not lead to premature failure by Euler buckling of the specimens, a sandwich
column comprising an aluminium hexagonal honeycomb core and the face sheets made from the test
composite material were constructed. The compression tests were also performed in the screw driven
test machine with the loads and strain measured in a similar manner to that described for the tensile tests.
Tensile tests on the 0.3 mm thick 304 stainless steel sheets were also conducted on dogbone-shaped
specimens in a manner similar to the composite specimens. One key difference in the experimental
methodology is that due to the larger strains in the stainless steel, a laser extensometer rather than strain
gauges was used to measure strain in the tensile tests on the stainless steel.

The measured tensile responses of the 0–90◦ and ±45◦ CFRP laminates is plotted in Figure 2, left.
While the 0–90◦ is elastic-brittle with a tensile strength of about 1 GPa, the±45◦ has a non-linear response
that can be approximated as elastic perfectly plastic with a yield strength of about 80 MPa and a tensile
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Figure 2. Left: the measured tensile and compressive stress versus strain responses of
the materials used in the plate construction. Right: the full tensile stress versus strain
response of the stainless steel beyond the onset of necking.
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ductility of 5%. This difference is due to the fact that while the 0–90◦ laminate response of governed by
the tensile response of the 0◦ carbon fibres the response of the ±45◦ laminate is governed by the shear
response of the matrix. The compressive strength of the laminate is approximately 630 MPa and set by
the micro-buckling strength of the 0◦ plies. The 304 stainless steel has an elastic-plastic response with
approximately linear work hardening after initial yield. It has a significantly higher ductility compared
to the CFRP with a true necking strain of about 60% (Figure 2, right).

2.3. Ballistic measurement set-up and test methodology. A schematic of the experimental set-up is
shown in Figure 3. A gas-gun with a barrel length of 4.5 m and a bore of diameter 13 mm was used
to accelerate steel spheres of diameter 12.7 mm and mass M = 8.3× 10−3 kg at velocities V0 ranging
25 ms−1 to 210 ms−1. These projectiles impacted the test plates normally and centrally. A set of laser
gates situated at the end of the barrel were used to measure the velocity of the projectile as it exits
the barrel and prior to impact. The test plates were clamped between two annular steel plates of inner
diameter 100 mm. Twelve equi-spaced holes of 6 mm diameter were drilled through the test plates on a
pitch radius 62.5 mm, such that the specimens could be sandwiched been the clamping rings to ensure a
clamped boundary condition. High speed photography was used to observe the impacted face of the plates
during the experiments. A grid pattern was marked onto the face to clarify the deformation resultant from

Barrel

Phantom v12
High speed camera

Specimen

V
0

Section XY
X

Y

Laser gates

Ball Projectile 
Ø = 12.7 mm
M = 8.3 g

Clamping ring

Back plate support

25

M6 bolt

150

100

Figure 3. Left: plan view of the plate test fixture showing the plate geometry and the
clamping arrangement. Right: a side view of the test set-up showing the showing end
of the barrel of the gas gun and the clamped plate. All dimensions are in mm.
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the impact. A Phantom V12 Camera2 was used to visualise the dynamic deformation with an inter-frame
time of 15µs and an exposure time of 1µs. In some cases the camera was used to view the impacted
surface so as to be able to measure the rebound velocity of the projectile while in other cases the camera
viewed the distal surface in order to visualise the dynamic deformation of the rear of the plate and the
penetration of the projectile.

For each plate configuration, there exists a limiting projectile velocity VL at which the plate is on the
cusp of failure, i.e., a fractional increase in the impact velocity V0 will result in the penetration of the
plate. This limiting velocity was determined to an accuracy of 1–5 ms−1 by performing a series of tests at
impact velocities V0 in the vicinity of VL . In the case of the stainless steel plates, the failure/penetration
of the plates was clearly seen after the test. However, in the case of the composite specimens, there was
a large degree of spring-back resulting in closure of the hole created by the penetrated projected. This
could result in an erroneous conclusion that the plate had survived the impact event, if the judgement was
made by inspection of the plate after the test. Further, the high degree of spallation from the back of the
composite plates also made it difficult to judge via high speed photography whether the projectile had
penetrated the composite plates. Thus, a corrugated cardboard “witness” plate was placed 20 cm behind
the composite plate: penetration of this witness plate by the projectile is clearly seen after the impact
event and was used to confirm the penetration of the composite plates.

2.4. Ballistic characterisation technique. The ballistic performance of the targets is characterised via
two metrics in this study:

(1) The ballistic limit VL . It denotes the critical velocity at which a given projectile just penetrates the
target, and is often referred to as V50 in the literature.

(2) A limit surface in velocity space, to delineate penetration from survival due to an initial velocity VI

and a subsequent velocity VII . Both impacts on the plate occur normally and centrally. A series of
double impact tests, with an initial velocity VI and a subsequent velocity VII at the same impact site
allow for the construction of an interaction diagram in (VI , VII) space.

The limit surface in VI -VII space is depicted in Figure 4, left. The interpretation of this limit surface
is as follows. For any combination of VI and VII that lies inside this limit surface, the projectile does
not penetrate the target after the second impact while the target is penetrated if the combination of these
velocities lies on or outside this limit surface. By definition, when VI = VL , VII = 0 and conversely
VII = VL when VI = 0. The form of the limit surface at intermediate values of VI and VII depends
strongly upon the material properties of the target. For example, we anticipate that an elastic-brittle
target will undergo negligible damage for impacts at a velocity less than VL resulting in no interaction
between VI and VII . Thus, the limit surface for an elastic-brittle target is expected to be square such
that max(VI , VII) = VL as depicted in Figure 4, right: this square surface represents an ‘upper bound’
for the limit surface. On the other hand, a more ductile target that undergoes progressive damage will
have significant interaction between VI and VII resulting in a limit surface that lies inside the square limit
surface of the elastic-brittle target; see Figure 4, right. In this study we shall determine the forms of these
limit surfaces of the 4 plate configurations detailed in Section 3.

2Vision Research, 100 Dey Rd. Wayne, NJ 07470, USA
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Figure 4. Left: sketch illustrating the measurement of the ballistic limit surface in VI -
VII space. For a given VI < VL tests are done for increasing values of VII to locate the
limiting penetration velocity as indicated by the circles and crosses. The definition of
the equivelocity penetration limit V2L is also included. Rigth: sketch of the upper bound
ballistic limit surface defined by max(VI , VII) = VL for an elastic-brittle material. An
illustrative limit surface for a more ductile material is also included.

In addition to the ballistic limit surfaces in VI -VII space we will also report the performance of the
plates in terms of two additional metrics:

(1) The rebound velocity VR: The rebound velocity of the steel ball for first impacts at a velocity VI < VL

was measured via high speed photography. We report this rebound velocity in terms of a co-efficient
of restitution e ≡−VR/VI , where e is a positive number as VR and VI have opposite signs.

(2) The equivelocity ballistic limit V2L : The limit surfaces in VI -VII space provide a detailed view of
the double impact ballistic performance of the plates. It is useful to define a simple scalar measure
that quantifies this double hit ballistic performance. The equivelocity ballistic limit V2L is the
penetration velocity along the trajectory VI = VII; see Figure 4, left. We report it in the normalised
form V̄2L ≡ V2L/VL in order to quantify the reduction in the penetration velocity over the single hit
ballistic limit VL .

3. Ballistic performance of plates

The measured ballistic limit surfaces of the four types of plates investigated here are plotted in Figure 5
with the first impact velocity VI plotted in the x-axis and the second impact velocity VII plotted on the y-
axis. Data points corresponding to no penetration (marked by circles) and penetration (marked by crosses)
are plotted in Figure 5 while the ballistic limit boundary in VI -VII is space sketched by interpolating
between the circles and the crosses. Figure 6 shows these same limit surfaces plotted together. We shall
first describe the key measurements and then proceed to discuss the observed penetration mechanisms.
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Figure 5. The measured ballistic limit surfaces in VI -VII space for monolithic stainless
steel (SS), monolithic carbon fibre/epoxy (CF), steel fronted hybrid (SSCF), and compos-
ite fronted hybrid (CFSS). The crosses mark experiments corresponding to penetration
while the circles are experiments where the plates survived. The “upper-bound” limit
surface is sketched in via a dashed line in each case.

Single hit performance: For the given areal mass and projectile the ballistic limit VL or V50 increases
in the following order: (i) carbon fibre plates (CF); (ii) hybrid plate with steel front (SSCF); (iii) hybrid
plate with carbon fibre front (CFSS) and (iv) monolithic steel plate (SS); see Figure 7.

The ballistic limit surfaces: The measured limit surfaces in Figure 6, left, show the comparative
performance of all plates. The CF plate and both hybrid plates lie nested within the no penetration
region of the SS plate. The hybrid plates display an interesting regime where the multi-hit performance
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Figure 7. Bar chart plotting the measured ballistic limit (VL or V50) and the normalised
equivelocity ballistic limit (V̄2L ) for the four plate configurations investigated here.

of the SSCF give superior performance where VI ≈ VII , and the CFSS plate superior at the extremes
where VI � VII and VII � VI . The normalised limit surfaces in Figure 6, right, indicate that the ballistic
limits of the monolithic steel (SS) and carbon fronted hybrid plate (CFSS) degrades due to a first impact
at a velocity V I < 1 with the measured limit surface lying well within the “upper bound limit surface”
described by max(V I , V II)= 1 and sketched by the dashed lines in Figure 6, right. On the other hand,
the ballistic limit the carbon fibre plates (CF) and the steel front hybrid plates (SSCF) indicate that there
is little interaction between the two impacts for these plates with the measured limit surfaces are close
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to the “upper bound”. A lower limit — the linear interaction dashed line — is the maximum interaction
of the two impacts assuming that the ballistic limit surface is convex.

The equivelocity ballistic limit: The normalised equivelocity ballistic limit V̄2L for the four plates in-
vestigated here are included in the bar chart in Figure 7. Both the SS and CFSS plates have approximately
a 40% reduction in their penetration velocities due to the first impact with V̄2L = 0.62. The reductions in
the penetration velocities of the SSCF and CF plates is much less with V̄2L = 0.92 and 0.8, respectively.

3.1. Discussion on the penetration mechanisms. Photographs of the front and back surfaces of the
penetrated plates are included in Figure 8 for the SS and CF plates and in Figure 9 for the CFSS and SSCF
plates. These failed specimens were penetrated after two impacts such that VI = VII = V2L . Penetration
of the monolithic steel plate occurs by ductile tearing around periphery of a circle whose diameter is
approximately equal to the diameter of the projectile as seen in Figures 8a and 8b. By contrast, the
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Figure 8. Post-test images of the steel (SS) and carbon fibre/epoxy (CF) plates impacted
at velocities VI = VII = V2L . The front and rear faces of the SS plate are shown in (a)
and (b), while (c) and (d) show images of the front and rear of the CF plate.
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carbon fibre plate fails by fibre breakage of both the 0◦ and 90◦ fibres resulting in the square holes seen
in Figure 8c. Also, a strip of a single ply delaminates and is removed by the exiting projectile on the rear
surface of the CF plate; see Figure 8d. Clearly, the failure mechanism of the steel plate is ductile while
the carbon fibre plate fails in a quasi-brittle mode.

In order to quantify the degree of inelasticity involved in the impact of the steel projectile against
these plates we plot in Figure 10 the effective co-efficient of restitution e as a function of the normalised
impact velocity V̄I ≡ VI /VL . The rebound of the projectile off the composite plate is shown via a series
of high speed photographs, for an impact velocity V̄I = 0.77. Time t = 0 in these images corresponds
to the instant of impact and hence we have shown images with both negative t (i.e., before impact with
the projectile approaching the plate) and positive t corresponding to the time when the projectile has
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Figure 9. Post-test images of the steel fronted hybrid (SSCF) and carbon fibre/epoxy
front hybrid (CFSS) plates impacted at velocities VI = VII = V2L . The front and rear
faces of the SSCF plate are shown in (a) and (b), while (c) and (d) show images of the
front and rear of the CFSS plate.
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Figure 10. Left: high-speed photographs showing the rebound of the projectile impact-
ing the carbon fibre/epoxy (CF) plate at V̄I = 0.77. In these images time t = 0 corre-
sponds to the instant of impact. Right: measured effective co-efficient of restitution e
of the projectile as a function of the normalised impact velocity V̄I for the four plate
configurations investigated here.

rebounded off the plate. The measured co-efficient of restitution plotted in Figure 10, right, decreases
from approximately 0.25 to less than 0.1 for the steel plate as the impact velocity increases from about
V̄I = 0.1 to the ballistic limit, i.e., the impacts can be viewed as significantly inelastic. By contrast, e≈ 0.5
at low values of V̄I for the carbon fibre plates but decreases as VI approaches the ballistic limit when we
anticipate significant inelastic processes to occur in the impacted carbon fibre plate. We note in passing
that the hardened steel projectiles (which are ball bearings) undergo negligible plastic deformation in
any of the impacts investigated here. Thus, e can be directly related to the energy absorbed 1E by the
target plate via the relation

1E = 1
2 MV 2

I (1− e2), (1)

where M is the mass the projectile.
Photographs of the failed SSCF and CFSS hybrid plates are shown in Figure 9. There is clear ductile

deformation of the rear steel plate with brittle failure of the front carbon plate for the CFSS plate as seen
in Figures 9c and 9d, respectively. However, in the case of the SSCF plate the stiff rear carbon plate
prevents ductile deformation of the front steel plate. This results in a plugging type failure of the front
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steel plate followed by the usual brittle failure of the carbon rear plate. We thus anticipate that overall
deformation/failure processes in the SSCF plates involve significantly less inelastic processes compared
to the CFSS plates. This is borne out further by two observations:

(1) The co-efficient of restitution plotted in Figure 10 is higher for the SSCF plates compared to the
CFSS plates.

(2) The ballistic limit surface of the SSCF plate (Figure 5) shows that there is little interaction between
VI and VII resulting in a failure surface that is well approximated by “upper bound” max(VI , VII)=

VL . By contrast, in the CFSS plates, the initial impact results in a significant reduction in the
ballistic limit for the second impact and the ballistic failure surface lies well inside the upper bound;
see Figure 5, bottom right.

4. Concluding remarks

The ballistic performance of three types of plates, all with the same areal mass was investigated for both
single and two impacts at the same location by a steel ball bearing of diameter 12.7 mm. The three types
of plates were (i) monolithic stainless steel; (ii) monolithic carbon fibre/epoxy (CFRP) laminates with
equal number of 0◦ and 90◦ plies and (iii) a hybrid laminate plate comprising a stainless steel plate glued
on to a 0◦/90◦ carbon fibre plate. This hybrid plate had 60% by mass CFRP. The hybrid plates were
tested in two orientations: the steel facing on the impact side and vice versa.

The single impact ballistic resistance was characterised in terms of the usual metric: the V50, defined as
the limiting projectile velocity at which the plate is just penetrated. In terms of the V50, the ballistic limit
is the highest for the stainless steel plate, followed by the hybrid plate with the CFRP on the impacted
side. The ballistic limit of the same hybrid plate is slightly lower when the stainless steel is on the
impacted side. Monolithic CFRP has the lowest ballistic limit. The double impact ballistic performance
was characterised by measuring the ballistic limit surfaces that give the limiting velocity VII required to
penetrate the plate after an initial impact at a velocity VI < V50. While the steel plate has the highest
ballistic limit, it undergoes significant damage after an initial impact which means that the second hit
ballistic limit VII decreases significantly with increasing VI . The same is true for the hybrid plate with the
steel on the rear face as the steel delaminates from the CFRP and responds independently. By contrast,
the ballistic performance of the monolithic CFRP plate and the hybrid plate with steel on the impacted
face is not significantly affected by the initial impact as the CFRP responds in an elastic-brittle manner;
i.e., it either breaks and allows the projectile to penetrate or responds elastically which results in the
projectile rebounding off the plate.

This study has demonstrated that while the ballistic performance of CFRP plates is lower than that
of a steel plate on an equal mass basis, CFRP and CFRP hybrid plates might be considered for ballistic
applications especially if the application requires the plate to withstand multiple impacts. The study has
also demonstrated the sensitivity of the ballistic performance to the orientation of the hybrid plates, viz.
while the ballistic limit surface of the hybrid plate with CFRP facing the impact is qualitatively similar
to the steel plate, the hybrid plate with steel on the impacted surface behaves more like the monolithic
CFRP plate.
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