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A MODEL FOR THE SHEAR DISPLACEMENT DISTRIBUTION
OF A FLOW LINE IN THE ADIABATIC SHEAR BAND

BASED ON GRADIENT-DEPENDENT PLASTICITY

XUE-BIN WANG AND BING MA

Based on second-order gradient-dependent plasticity (GDP), we establish the shear displacement distri-
bution of material points of a flow line beyond the occurrence of the adiabatic shear band (ASB) at a
position on a thin-walled tubular specimen in dynamic torsion. In the ASB, the shear displacements
of a material point include two parts caused by homogeneous and inhomogeneous strain components,
respectively. The former is assumed to be a linear function of the material point coordinate, while the
latter is found to be a sinusoidal function of the coordinate due to the microstructural effect. For the
Ti-6Al-4V alloy and two kinds of steels, the coefficients of the constant, linear, and nonlinear terms in
the expression for the shear displacement distribution are determined by least-squares fitting for different
widths and positions of the ASB. During the localized shear process, the coefficients of the linear and
nonlinear terms are found to have increasing tendencies, while the deformed ASB width (which is larger
than the width of the ASB central region) is slightly decreased. This investigation shows that second-
order GDP may be successfully applied in simulation of the shear displacement distribution of material
points at flow lines in the ASBs.

1. Introduction

Thin-walled tubular metal specimens, providing a homogeneous state of stress [Bai and Bodd 1992], are
usually subjected to adiabatic shear failures in dynamic torsional experiments. Dynamic experiments can
create a high enough strain rate in the tested materials that the condition for the occurrence of adiabatic
shear bands (ASBs) is satisfied, that is, thermal softening outweighs plastic hardening. To observe the
initiation and development of ASBs, many fine grid lines are deposited photographically on the outside
surface of a specimen before experiments [Giovanola 1988; Marchand and Duffy 1988; Duffy and Chi
1992; Cho et al. 1993; Liao and Duffy 1998]. Initially, these lines are oriented parallel to the axis of the
specimen; see Figure 1(a). During the deformation, high-speed photographs of grid lines are taken, in
which the slopes of lines provide a measure of the shear strain distribution along the gage length; see
Figure 1(b–d).

Marchand and Duffy [1988] conducted dynamic torsional experiments on steels, and concluded that
the plastic straining process might be divided into three consecutive stages; see Figure 1(b–d). In the
first stage, the grid lines incline but remain straight, which implies that shear deformation within the
specimen is homogeneous. In the second stage, the grid lines become slightly curved, as in Figure 1(c),
indicating inhomogeneous or localized deformation. Curved grid lines are usually called flow lines. In

Keywords: adiabatic shear band, shear displacement distribution, fitting least-squares method, gradient-dependent plasticity,
Ti-6Al-4V, steel.

735



736 XUE-BIN WANG AND BING MA
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Figure 1. A thin-walled tube specimen without deformation (a), the uniform shear de-
formation in the elastic and strain-softening stages (b), the nonuniform deformational
stage (c), and the discontinuous deformational stage (d). The dotted straight line is the
initial grid line parallel to the axis of the specimen. The thick straight and curved lines
are the curved flow lines, and τ is the shear stress acting on the sectional area of the
specimen.

this stage, shear strain begins to concentrate first in a broad deformed ASB, and then, as deformation
continues, becomes more localized until a narrow ASB is formed, marking the beginning of the third
stage. In the third stage, flow lines appear discontinuous, as in Figure 1(d), indicating the formation of
macroscopic fractures. ASBs are found to begin in the second stage, especially its later stage. Accord-
ingly, the measured shear stress-nominal shear strain curve shows three distinct stages: a sharp rise in
stress, followed by a long plateau, and then a steep drop in stress. In general, many kinds of steels and
titanium alloys follow this process of deformation [Giovanola 1988; Marchand and Duffy 1988; Duffy
and Chi 1992; Cho et al. 1993; Liao and Duffy 1998].

The nonlinear shear displacement distribution of material points at a flow line suggests that different
points have different shear strains. Approximately, different material points may possess the same shear
stress due to the use of a thin-walled tubular metal specimen. The phenomenon of the same shear stress
corresponding to different shear strains cannot be uniquely described by classical continuum models
where no internal length parameter is included, so that the nonuniform strain distribution and nonlinear
displacement distribution in the localized zone, as well as the zone size, cannot be accurately obtained.
Among the enriched continuum models, nonlocal and gradient continua have been widely used to avoid
pathological localization in numerical simulation [De Borst and Mühlhaus 1992; Pamin and De Borst
1995; Askes et al. 2000; Menzel and Steinmann 2000; Peerlings et al. 2001; Simone et al. 2004; Voyiadjis
and Abu Al-Rub 2005; Peerlings 2007; Poh et al. 2011], as have the Cosserat continuum and viscoplastic
theories [Bažant and Pijaudier-Cabot 1988; Shawki and Clifton 1989]. In gradient continua, second-order
gradient-dependent plasticity (GDP) is usually adopted, and a few analytical solutions of the strain and
strain rate distribution in the localized band have been derived in the one-dimensional tensile and shear
cases [De Borst and Mühlhaus 1992; Pamin and De Borst 1995; Menzel and Steinmann 2000]. However,
a bilinear (linearly elastic and strain-softening) constitutive relation is used, and no plastic strain occurs
within the specimen before strain localization. These assumptions are possibly even applicable for brittle
materials, such as rocks, concretes, and ceramics, not just for metal materials, such as titanium alloys
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and steels. For these metal materials in dynamic torsion, the measured shear stress-nominal shear strain
curve enters a wide plateau stage prior to the localized shear deformation due to shear yield [Giovanola
1988; Marchand and Duffy 1988; Duffy and Chi 1992; Cho et al. 1993; Liao and Duffy 1998].

Assuming that the plastic shear strain corresponding to the ASB onset (also called critical plastic shear
strain) is not zero, an expression for the local plastic shear strain in the ASB was derived for arbitrary
strain-softening materials based on second-order GDP [Wang 2006a; 2006b]. This expression is an even
more general formulation than expressions in [De Borst and Mühlhaus 1992; Pamin and De Borst 1995;
Menzel and Steinmann 2000], applicable for metal materials. Introducing Johnson–Cook and Zerilli–
Armstrong models in the expression, the shear strain, shear displacement, and temperature distribution
in the ASB were studied for some metals and alloys in [Wang 2006a; 2006b; 2006c; 2007]. If the
local temperature in the deformed ASB exceeds the transformation temperature, then a transformed
ASB can appear at the central part of the deformed ASB. The transformed ASB thickness, local plastic
shear strain, and shear displacement at interfaces between the deformed and transformed ASBs were
investigated [Wang 2008]. The usually reported ASB width is the size of the ASB central region, rather
than the total thickness of the deformed ASB. The ASB thickness at the central region was defined as
the width of the region surrounding the ASB center over which the temperature differed from its peak
value by less than 5% [Wang 2009], and effects of all parameters on the ASB thickness at the central
region were studied. The peak and average temperatures in the ASB were calculated from the shear
stress-average plastic shear strain curve of the ASB, which was back-calculated from the measured shear
stress-nominal shear strain curve of the specimen [Wang 2010].

Based on second-order GDP, the aim of the present study is to discuss the applicability of an expression
for the shear displacement distribution of material points at a flow line in dynamic torsion. Based on
an expression for the local plastic shear strain in the ASB based on second-order GDP [Wang 2006a;
2006b; 2010], we proposed an expression for the local shear displacement around the ASB considering
the following two assumptions: first, the plastic shear strain outside the ASB is treated as uniform, and
does not change during the localized shear deformation; second, certain elastic shear strains are stored
within the ASB and outside. After establishing the expression, for different widths and positions of the
ASB, the experimental data about the shear displacement distribution and evolution with loading time or
straining for three kinds of metal materials are fitted using least-squares methods. Among the candidate
widths and positions of the ASB, the values minimizing the squared errors are believed to be true. The
coefficients of the constant, linear, and sinusoidal terms in the expression are presented, together with
their evolution with loading time or straining, and the deformed ASB widths.

2. Shear displacement distribution of a flow line

Before an ASB is initiated, the shear strain within a specimen in torsion can be seen as uniform. After the
occurrence of the ASB, the shear strain within the specimen becomes nonuniform. At the ASB position,
the local shear strain is higher and increases with straining, while outside the ASB, the local shear strain
is relatively lower and approximately remains constant. Figure 2 shows an ideal model for the shear
displacement distribution within the gage length after an ASB appears. The model includes three parts:
one middle ASB, shown in part (b) of the figure, and two surrounding regions with uniform deformations,
shown in parts (a) and (c).
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Figure 2. An ideal model for the shear displacement distribution of a flow line within
the gage length: (a) the uniformly deformational region at the left side of the ASB,
(b) the central deformed ASB, (c) the uniformly deformational region at the right side
of the ASB, and (d) the continuous shear displacement distribution of material points at
a flow line.

Based on second-order GDP, for a one-dimensional shear problem, an expression for the local plastic
shear strain γp(y) in the ASB was derived [Wang 2006a; 2006b; 2010]:

γp(y2)= γc+ (γ̄p − γc)

(
1+ cos

y2

l

)
, (1)

where y2 is the coordinate whose origin O2 is set at the ASB center (Figure 2(b)); γ̄p (also called the
nonlocal plastic shear strain [Menzel and Steinmann 2000]) is the average plastic shear strain of the ASB,
which is a variable dependent on the level of shear stress acting on the ASB during the localized shear
process; γc is the critical plastic shear strain; and l is the internal length parameter in GDP, describing the
effect of microstructures of heterogeneous metal materials. The critical plastic shear strain is referred to
as the average plastic shear strain corresponding to the onset of the ASB. Prior to the occurrence of the
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ASB, certain plastic shear strains have accumulated within metal materials. When the accumulated strain
reaches the critical strain, then an ASB takes place. After the occurrence of the ASB, the accumulated
strain is increased continuously. In GDP, the spatial gradient terms of plastic strain and their coefficients
enter the yield function in order to describe interactions and interplay among microstructures [Askes
et al. 2000; Peerlings et al. 2001]. The internal length parameter is believed to be related to the average
grain diameter [Peerlings et al. 2001], defining the size of the localized band in numerical and analytical
results. Otherwise, pathological numerical results will occur once standard continuum models are used
in numerical models. For metal materials, such as Ti-6Al-4V alloy, grains ranged from 2–10µm in
diameter [Liao and Duffy 1998]. During shear deformation, grains can be rotated and elongated along
the shear direction, and intense slip lines within grains are well-aligned with the shear direction, as
found through transmission electron micrographs [Liao and Duffy 1998]. These observations suggest
that interactions and interplay are more intense during the process of localized deformation, and must be
taken into account.

Equation (1) is applicable for linear and nonlinear strain-softening cases at postpeak. Moreover, when
strain localization is just initiated, the nonzero plastic shear strain accumulated within metal materials
due to shear yield is permitted, that is, γc > 0. It is usually assumed that shear stress τ reaches its
maximum τmax when the ASB just appears via instability analysis. In fact, (1) is also applicable for the
case that the ASB appears beyond the peak stress. Rittel et al. [2006] argued that energy factors are the
main criterion for the onset of ASB failure, while the strain or stress criterion applies in more restricted
conditions.

For a one-dimensional shear problem, an expression for the local shear strain in the localized shear
band was derived in [Menzel and Steinmann 2000]. It is only applicable for linear strain-softening
materials at postpeak. Equation (1) can be seen as a generalization from this expression. Neglecting
the plastic shear strain accumulated within the materials before the localized shear deformation, that is,
γc = 0, (1) is simplified as

γp(y2)= γ̄p

(
1+ cos

y2

l

)
. (2)

This means that the localized shear is initiated just at the end of the linear elastic stage. For the linear
strain-softening case at postpeak, γ̄p is related to the shear stress difference τc − τ and the softening
modulus c (positive for strain-softening materials):

γ̄p =
τc− τ

c
. (3)

In fact, (2) and (3) are identical to the expression in [Pamin and De Borst 1995]. Differentiating (2)
on both sides with respect to time leads to

γ̇p(y2)=−
τ̇

c

(
1+ cos

y2

l

)
. (4)

Equation (4) is identical to the result in [Pamin and De Borst 1995]. The derivation of (1) is similar
to [De Borst and Mühlhaus 1992; Pamin and De Borst 1995; Menzel and Steinmann 2000]. In these
studies, the shear band width w is

w = 2πl. (5)
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It is found from (1) that at the ASB’s two boundaries (y2 = ±w/2), γp(±w/2) = γc, while at its
center (y2 = 0), γp(0) = γc + 2(γ̄p − γc). At this position, the local plastic shear strain reaches its
maximum. Therefore, the plastic shear strain distribution in the ASB is nonuniform. The value of γc

may be specific for a material if the strain rate and ambient temperature are known. During the localized
deformational process, γ̄p (γ̄p ≥ γc) is increased with straining. Thus, the profile of the local plastic
shear strain becomes steeper until a final fracture occurs.

Herein, differentiating (1) one time with respect to the coordinate y2 results in

dγp(y2)

dy2
=−

γ̄p − γc

l
sin

y2

l
. (6)

Differentiating (6) leads to
d2γp(y2)

dy2
2
=−

γ̄p − γc

l2 cos
y2

l
. (7)

Thus, using (1) and (7), we have

γp(y2)+ l2 d2γp(y2)

dy2
2
= γ̄p. (8)

In fact, (8) is a special case of (explicit) GDP [Peerlings et al. 2001], that is, one-dimensional GDP
in simple shear. Equation (8) establishes a relation between the local γp(y2) and nonlocal γ̄p variables.
The nonlocal variable is related to the shear stress, which is the plastic shear strain in the context of
classical elastoplastic theories. When the nonlocal variable γ̄p and the critical plastic shear strain γc are
specific, different material points will have different local plastic shear strains, and a unique solution
can be ensured. Averaging these local plastic shear strains over the entire ASB will lead to the nonlocal
plastic shear strain, as can be easily confirmed through integrating (1) with respect to the coordinate
y2 (

∫ w/2
−w/2 γp(y2)dy2), and then divided by the ASB width. For two and three-dimensional cases, the

Laplacian will appear in GDP [Askes et al. 2000; Peerlings et al. 2001; Simone et al. 2004; Voyiadjis
and Abu Al-Rub 2005; Peerlings 2007; Poh et al. 2011]. GDP can be derived from the nonlocal theory
[Askes et al. 2000; Peerlings et al. 2001] by expanding the plastic strain into a Taylor series, and by
neglecting gradient terms of order four and higher.

Integrating (1) with respect to the coordinate y2, the local plastic shear displacement sp(y2) in the
ASB can be obtained:

sp(y2)=

∫ y2

0
γp(y2)dy2 = γ̄p y2+ l(γ̄p − γc) sin

y2

l
. (9)

Equation (9) describes the relative shear displacements of different material points in the y2 direction
with respect to the origin O2. Evolution of shear displacements of different material points on the outside
surface of a specimen can be measured through high-speed photography of a grid pattern previously
printed on the specimen’s outer surface [Giovanola 1988; Marchand and Duffy 1988; Duffy and Chi
1992; Cho et al. 1993; Liao and Duffy 1998]. Initially, fine lines are oriented parallel to the axis of
the specimen; then, during the deformation, the slopes of lines will change, providing a measure of
the local shear strain distribution along the axis of the specimen. Curved flow lines describe the local
deformational characteristics within the entire gage section, not only within the ASB; see Figure 2(d).
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During the deformational process, certain recoverable elastic shear strains γ e will be stored within the
specimen. These parts of the strains can be seen as uniform. Thus, the total shear displacement s2(y2)

in the ASB can be expressed as

s2(y2)= sp(y2)+ se
= (γ̄p + γ

e)y2+ l(γ̄p − γc) sin
y2

l
, (10)

where se is the elastic shear displacement caused by γ e.
For the sake of simplicity, the plastic shear strain outside the ASB can be also treated as uniform,

equal to γc. This suggests that it no longer increases during the localized shear process. Thus, the relative
shear displacements with respect to origins O1 and O3 in two uniformly deformational regions — see
Figure 2(a, c) — can be given by

s1(y1)= (γc+ γ
e)y1, (11)

s3(y3)= (γc+ γ
e)y3, (12)

where y1 ∈ [0, L l
], y3 ∈ [0, Lr

], and L l and Lr are the sizes of the uniformly deformational regions on
the left and right sides of the ASB, respectively. A coordinate transformation is introduced to replace y2

and y3 with y1. Let y1 = y whose origin O is also set at O1. Thus, we have

y2 = y− w
2
− L l, y3 = y−w− L l . (13)

For y ∈ [0, L l
], the local shear displacement s(y) relative to the origin O according to (11) is

s(y)= (γc+ γ
e)y. (14)

When y ∈ [L l, L l
+w], s(y)= s(L l)+ s2(y2)+ (γ̄p + γ

e)w/2. Thus, s(y) can be written as

s(y)= (γc+ γ
e)L l
+ (γ̄p + γ

e)(y− L l)+ l(γ̄p − γc) sin y−w/2−L l

l
. (15)

Apparently, when y = L l , s(L l)= (γc+γ
e)L l ; when y = L l

+w, s(L l
+w)= (γc+γ

e)L l
+ (γ̄p+γ

e)w.
When y ∈ [L l

+w, L l
+ Lr
+w], we have

s(y)= (γc+ γ
e)L l
+ (γ̄p + γ

e)w+ (γc+ γ
e)(y− L l

−w). (16)

It can be found from (14)–(16) that at the outside of the ASB, the local shear displacement is a linear
function of the coordinate y, and that at the position of the ASB, it is a nonlinear function. The coefficients
of the constant, linear, and nonlinear terms are not easy to determine mainly due to the geometrically
inhomogeneous deformation defects and inertial effect. Therefore, these coefficients require a fitting.

3. Fitting least-squares method

Four flow lines (#1–#4) in Table 1 are selected for fitting. All tests are conducted under dynamic torsional
conditions by use of a torsional split Hopkinson bar [Giovanola 1988; Marchand and Duffy 1988; Cho
et al. 1993; Liao and Duffy 1998]. Only high-speed photographs of the grid pattern taken during the
formation of the ASB are presented in [Marchand and Duffy 1988; Cho et al. 1993; Liao and Duffy
1998]. However, a time sequence of the shear displacement profiles has been provided [Giovanola 1988].
These profiles are obtained by digitizing a flow line in high-speed photographs, and then smoothing the
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Flow Material Nominal Stress or strain state Flow line data origin
lines strain rate

#1 4340 steel 6000 s−1 After strain localization
from 45–52.5µs

[Giovanola 1988, Figure 4]

#2 Ti-6Al-4V 1100 s−1 Before rapid stress drop
for frames #1–#4

Frames #1–#5 in [Liao and
Duffy 1998, Figure 5]

#3 HY-100 steel 1200 s−1 Prior to the stress peak
for frame #4

Frames #4 and #5 in [Cho
et al. 1993, Figures 1 and 2]

#4 HY-100 steel 1600 s−1 After the stress peak Frames “camera #2” and
“camera #3” in [Marchand
and Duffy 1988, Figure 14]

Table 1. Selected four flow lines from dynamic torsional tests.

digitized records. In order to obtain the relative shear displacements of different material points at the
other three flow lines (#2–#4), we use a method similar to [Giovanola 1988]. The three flow lines in
high-speed photographs [Marchand and Duffy 1988; Cho et al. 1993; Liao and Duffy 1998] in the present
work are marked in Figure 3. In Figure 3(a), taken from [Liao and Duffy 1998], in Figure 3(b), taken
from [Cho et al. 1993], and in Figure 3(c), taken from [Marchand and Duffy 1988], there exist many
flow lines. In the present work, only the results for a typical flow line in each figure are presented since
selecting different flow lines from a figure results in the basically same results. For different frames in
the same figure, data points on the same flow line are considered.

For the sake of simplicity, only a portion of the material points with the same horizontal spacing at
each flow line is selected. Let the number of the selected material points be N0. The leftmost material
point is the first point. During the dynamic torsion, a short thin-walled tubular specimen is sandwiched
between two long elastic bars, called the input bar and output bar. Near the loading ends, the stress
and strain within the specimen is quite complex, possibly deviating from the simple pure shear state.
Therefore, the data from material points near the two ends must be omitted in fitting. The remaining
data will be fitted, and the total number of fitted data points is N = N0− N l

0− N r
0 , where N l

0 and N r
0

are the numbers of omitted data points near the left and right ends of the specimen, respectively. Those
data points, deviating from the slopes of the grid lines of the uniformly deformational regions outside
the ASB, are omitted. Thus, the values of N l

0 and N r
0 can be determined easily.

These fitted data can be divided into three groups. The number of data points in the groups is denoted
by N1, N2, and N3, respectively. The first group is from the (N l

0+1)-th to the (N l
0+N1)-th data point;

the second from the (N l
0+N1)-th to the (N l

0+N1+N2−1)-th; and the third from the (N l
0+N1+N2−1)-th

to the (N l
0+N1+N2+N3−2)-th. For the first and third groups, the line-fitting least-squares method is

used, while for the second the curve-fitting least-squares method is used.
The extracted position and corresponding relative shear displacement of a material point is expressed

as (yi , di ), i = N l
0 + 1, N l

0 + 2, . . . , N l
0 + N . For the first group data, no special requirement on the

theoretical expression (14) is enforced in fitting:

s(y, c11, c12)= c11+ c12 y. (17)
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Figure 3. Selected flow lines from which coordinates and corresponding shear displace-
ments are extracted: (a) the evolution of flow line #2 with straining for Ti-6Al-4V [Liao
and Duffy 1998], (b) the evolution of flow line #3 with straining for HY-100 steel [Cho
et al. 1993], and (c) flow line #4 in photographs taken at different positions using different
cameras for HY-100 steel [Marchand and Duffy 1988].

For the second group data, it is required that the point (yN l
0+N1

, dN l
0+N1

) is at the theoretical curve,
that is, (15), when y = L l :

s(y, c21, c22)= dN l
0+N1
+ c21(y− L l)+ c22 sin y−w/2−L l

l
. (18)

Similarly to the first group data, no special requirement is imposed on the theoretical expression, that
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is, (16), for the third group data in fitting:

s(y, c31, c32)= c31+ c32(y− L l
−w). (19)

For the known N1, N2, and N3 (or N1, N2, and N ), using the fitting least-squares method results in val-
ues of c11, c12, c21, c22, c31, and c32. These values minimize the sum of the squared errors (R2

1+ R2
2+ R2

3 ,
R2

1 , R2
2 , and R2

3 are the squared errors in the three groups of fitted data):

J0 =min(R2
1 + R2

2 + R2
3)=min

{ N l
0+N1∑

i=N l
0+1

[di − s(yi , c11, c12)]
2
+

N l
0+N1+N2−1∑
i=N l

0+N1

[di − s(yi , c21, c22)]
2

+

N l
0+N∑

i=N l
0+N1+N2−1

[di − s(yi , c31, c32)]
2
}
. (20)

For the given N , and different N1 and N2, the value of J0 will be different. It is assumed that the true
values of c11, c12, c21, c22, c31, and c32 minimize J0:

J =min J0. (21)

During the search process, the ranges of N1 and N2 need to be specified. Thus, J0 will be a spatially
curved surface whose height is dependent on the values of N1 and N2. Finding a global minimum J0 is
easy. After that, the corresponding values of N1 and N2 are known. Thus c11, c12, c21, c22, c31, and c32

will be specific, and the ASB width will also be obtained, which is only dependent on the data number
N2 in the second group, and the horizontal distance 1h of two adjacent data points. The ASB width w
is then expressed as

w = (N2− 1)1h. (22)

Using (5), the internal length parameter will be obtained:

l = (N2− 1)1h/2π. (23)

Table 2 shows the selected parameters (N , N0, N l
0, N r

0 , and 1h) and obtained results (N1, N2, c12,
c21, c22, c32, and w) corresponding to the minimum J0. It is found that c21 and c22 have an increasing
tendency with time (for flow line #1) and frame number (for flow lines of #2 and #3). The values of c11

(small enough) and c31 are not presented in Table 2 since the two parameters are independent of strain,
that is, the slope of the local shear displacement. During the shear localization, the ASB width is found
to become narrow or thin. Using the gradient plasticity theory with a variable length scale parameter,
Voyiadjis and Abu Al-Rub [2005] argued that the length scale parameter should not be seen as a constant,
and decreases with an increase of the plastic deformation. This finding is in agreement with the present
work. Physically, the occurrence of highly elongated and fine grains, parallel to the shear direction due to
the severe plastic shear deformation, is responsible for this phenomenon. Figures 4–7 show comparisons
between the measured results and the best theoretical results with the obtained parameters after fitting
listed in Table 2. Displacements of material points are relative to the first material point (the leftmost
material point among the selected material points). The omitted material points outside the uniformly
deformational regions and corresponding shear displacements are not depicted in Figures 4–7. The best
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Flow line #1
Loading time= 45µs 47.5µs 50µs 52.5µs

N0 76 76 76 76
N 43 43 43 43
N l

0 17 17 17 17
N r

0 17 17 17 17
1h/10−5 m 2.0 2.0 2.0 2.0
J/10−10 m2 0.1 0.2 1.2 7.6
N1 17 17 17 19
N2 10 9 9 4
c12 0.127 0.130 0.138 0.147
c21 0.241 0.457 0.830 2.565
c22/10−6 m 0.33 8.35 21.12 32.21
c32 0.175 0.180 0.192 0.237
w/10−4 m 2.0 1.8 1.8 0.8

Flow line #2 Flow line #3 Flow line #4
Frame #1 Fr. #2 Fr. #3 Fr. #4 Fr. #5 Fr. #4 Fr. #5 Camera #2 Cam. #3

N0 41 41 41 41 41 46 43 43 43
N 36 36 36 36 36 45 42 42 42
N l

0 4 4 4 4 4 1 1 1 1
N r

0 2 2 2 2 2 1 1 1 1
1h/10−5 m 4.9 4.9 4.9 4.9 4.9 6.2 6.7 4.3 4.3
J/10−10 m2 1.4 3.0 2.7 4.8 6.7 15.3 24.1 7.0 5.0
N1 6 8 6 9 4 14 14 9 8
N2 21 21 20 18 23 12 9 21 20
c12 0.167 0.167 0.157 0.190 0.167 0.274 0.274 0.211 0.191
c21 0.278 0.297 0.332 0.410 0.418 0.495 0.858 0.409 0.509
c22/10−6 m 5.59 4.60 8.37 8.01 33.05 12.67 57.28 22.23 19.18
c32 0.162 0.160 0.183 0.167 0.177 0.334 0.385 0.204 0.208
w/10−4 m 10 10 9.8 8.8 11 7.5 6.0 9.1 8.6

Table 2. Parameters used in fitting least-squares methods and fitted results for four flow lines.

theoretical results correspond to the minimum J0. It is found that the agreement between the two kinds
of results is good. This means that the second-order plastic strain gradient plays an important role in
the postlocalization deformational stage of metal materials. The displacement distribution of a flow line
in the deformed ASB can be described accurately by the linear and sinusoidal terms with respect to the
material point coordinate beside a constant term.

It is also found that shear strains (c12 and c32) in uniformly deformational bodies outside the ASB are
slightly different. The wall thickness of the specimen, showing small variations along the length of the
specimen [Liao and Duffy 1998], can be the reason for this phenomenon.

The calculated ASB width is usually larger than reported results [Giovanola 1988; Marchand and
Duffy 1988; Cho et al. 1993; Liao and Duffy 1998]. In fact, the calculated width is the width of the
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Figure 4. Comparisons of the measured shear displacements of material points at flow
line #1 with loading time for 4340 steel [Giovanola 1988], and the fitted theoretical
results based on second-order GDP with best parameters.

region with nonuniform strains, that is, the width of the deformed ASB. However, the reported width is
usually the width of the ASB at its central region, over which the shear strain remains constant [Giovanola
1988; Marchand and Duffy 1988; Cho et al. 1993; Liao and Duffy 1998].

As mentioned before, theoretically, the critical plastic shear strain γc may be a constant for a flow line
during the localized shear process. When the plastic shear strain within the specimen reaches γc, shear
localization is assumed to occur. From (15) and (18), we can obtain the following expression:

c21 = γ̄p + γ
e, c22 = l(γ̄p − γc), (24)

γc = c21−
c22
l
− γ e. (25)

If the static shear Hooke’s law (γ e
= τ/G, where G is the shear elastic modulus that is the slope of the

measured shear stress-nominal shear strain curve prior to the yield plateau) is used, then it is found that
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Figure 5. Comparisons of the measured shear displacements of material points at flow
line #2 with straining for Ti-6Al-4V [Liao and Duffy 1998], and the fitted theoretical
results based on second-order GDP with best parameters.



748 XUE-BIN WANG AND BING MA

0 1 2 3
0

5

10

15

0 1 2 3
0

5

10

15

y/10
-3

m 

(a) 

s
/1

0
-4

m
 

Experimental data for flow line #3 

in frame #4 in Figure 2(b) 

Theoretical curve 

y/10
-3

m 
(b) 

s
/1

0
-4

m
 Experimental data for flow line #3 in 

frame #5 in Figure 2(b) 

Theoretical curve 

Figure 6. Comparisons of the measured shear displacements of material points at flow
line #3 with straining for HY-100 steel [Cho et al. 1993], and the fitted theoretical results
based on second-order GDP with best parameters.
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Figure 7. Comparisons of the measured shear displacements of material points at flow
line #4 for HY-100 steel at the same time using different cameras [Marchand and Duffy
1988], and the fitted theoretical results based on second-order GDP with best parameters.

the calculated values of γc are variant using the obtained values of parameters (c21, c22, N2, and 1h), the
measured shear stress τ , and the shear elastic modulus G. The reason for this is still unclear. Seemingly,
the static shear Hooke’s law should not be used. An inertial effect must exist in dynamic torsional tests,
possibly leading to a nonuniform shear stress distribution within the specimen to some extent. On the
other hand, local perturbation (such as a microstructural inhomogeneity or machining marks) [Giovanola
1988] also possibly results in the nonuniform shear stress, even before shear localization. Even shear
localization is initiated at postpeak, not at the highest shear strain within the specimen [Giovanola 1988].
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Geometric defects have a key influence on the ASB initiation [Liao and Duffy 1998]. These factors are
difficult to take into account in analyses. Obtaining a constant γc will require further investigation.

Damage during the shear yield process and beyond, and local rapid temperature rise in the ASB and
the following heat conduct, possibly increase the plastic shear strain and displacement of material points.
Thus, the expressions for c21 and c22 can be different from those in (24). The present expression is
limited to the conditions without the damage and heat conduct. An analytical expression considering
these factors is quite necessary.

4. Conclusions

During shear localization, the thin-walled tubular specimen within the gage length in dynamic torsion
is simplified into three parts: two uniformly deformational regions surrounding the adiabatic shear band
(ASB) and a central localized deformational region. Deformations in these regions are treated as one-
dimensional shear problems. A linear distribution is assumed for the shear displacements of material
points outside the ASB at a flow line. For arbitrary strain-softening materials in which certain plastic shear
strains have accumulated before the ASB initiation, an expression for the shear displacement distribution
in the ASB is established based on second-order gradient-dependent plasticity (GDP) considering the
microstructural effect, including the linear and nonlinear (sinusoidal) terms with respect to the material
point coordinate as well as a constant term.

To obtain the coefficients of the constant, linear, and nonlinear terms, which are not easy to determine
due to the influence of geometric defects, line and curve-fitting least-squares methods are used for data in
the uniform and localized deformational regions, respectively. For three kinds of materials, results show
that the agreement between the measured shear displacements of flow lines using high-speed photography
and the theoretical results is good. Moreover, the coefficients of the linear and sinusoidal terms with
respect to the material point coordinate basically increase with loading time or straining during the shear
localization process, while the ASB width has a decreasing tendency. The agreement suggests that
second-order GDP is suitable for measuring the relative shear displacement distribution of flow lines in
the ASBs.

If various parameters are known, flow lines can be numerically calculated by use of finite-element
methods where enriched continuum models are necessarily included, avoiding pathological mesh sensitiv-
ity. However, these parameters are possibly difficult to specify. Using the proposed analytical expression
for the local shear displacement in the ASB and outside, under the condition of unknown parameters,
these parameters, such as the width of the ASB, and the critical plastic shear strain corresponding to the
onset of the localized deformation, can be determined together by fitting with experimental observations.
The fitted width of the ASB is apparently higher than the experimentally reported value. If the parameters
obtained through fitting are used in the gradient-enhanced finite-element methods, then more accurate
numerical results can be expected.
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A PULL-OUT MODEL FOR PERFECTLY BONDED CARBON NANOTUBE
IN POLYMER COMPOSITES

KHONDAKER SAKIL AHMED AND ANG KOK KENG

A pull-out model for carbon nanotube (CNT) reinforced composite is presented to obtain the interface
characteristic in which perfect bonding at the interface is considered. In the model, a partially embedded
CNT in a cylindrical polymer matrix is subjected to an axial load at the open end. By using representative
volume element (RVE) concept, analytical solutions are derived for axial and interfacial shear stresses in
the CNT. Parametric studies are also conducted to obtain the influence of aspect ratio, modulus ratio and
relative size of RVE on stress components. Variation of critical pull-out stress with embedded length and
CNT/polymer Young’s modulus ratio are also investigated.

1. Introduction

One of the major applications of carbon nanotube is its use as high strength reinforcements for high
performance composite materials [Ajayan et al. 2000; Frankland and Harik 2003; Haque and Ramasetty
2005; Qian et al. 2000; 2002; Thostenson et al. 2001; Tserpes et al. 2008; Wang et al. 2008]. Many
factors affecting the performance of CNT-reinforced composites include [Ailin et al. 2010] mechanical
properties of nanotubes as well as matrix, purity, interface characteristics such as interfacial bonding,
interactions with host and orientation of CNTs in the matrix. Similar to conventional composites, many
research studies also suggested that the performance of CNT-reinforced composites depends critically
on the interfacial characteristics between CNT and the matrix material [Kin and Sean 2001; Liao and Li
2001; Manoharan et al. 2009; Qian 2003; 2000; Salehikhojin and Jalili 2008; Wang et al. 2008].

One of the major challenges in the CNT-reinforced composites is load transfer efficiency across the
CNT/matrix interface. Research studies suggest that the main contributing factors for interfacial load
transfer between CNT and polymer are mechanical interlocking (friction), chemical bonding and nonco-
valent bonding like v dW interactions [Haque and Ramasetty 2005; Jiang et al. 2006; 2008].

In the literature, several researchers also found the presence of strong bonding at the interface when
nanotubes were dispersed in PHAE or polystyrene [Qian et al. 2000; 2002]. Chemical bonding or surface
treatment is difficult between CNT and polymer matrix but it certainly improves the interface strength
by a significant order. As an example, chemisorptions to as little as 5.0% of the nanotube carbon atoms
increases the shear stress of at the interface by about 1000% [Zheng et al. 2008]. It is also well known
that surface to volume ratio (SVR) and aspect ratio (AR) of nanotubes are higher in magnitudes than
those of traditional composites. Though there is a huge difference in strength between nanotube and
polymer matrix, high frictional forces may prevent slipping of the tube and ensure good load transfer
even in chemically nonbonded CNT/matrix interface. Therefore, all the aforementioned properties of
CNT ensure that weak CNT/matrix interface can also be assumed as perfectly bonded.

Keywords: perfectly bonded interface, representative volume element, stress transfer, aspect ratio, critical pull-out stress.
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In conventional fiber-reinforced composites [Cox 1952; Kim and Mai 1998; Li-Min et al. 1992], pull-
out tests are widely used to measure the interface characteristics, stress distributions, maximum pull-out
force or effective pull-out length. However, it is very difficult to conduct experimental pull-out tests on
CNT embedded in polymer matrix due to the challenges involved in griping, manipulation and stress,
strain measurements. The load transfer mechanism in conventional fiber-reinforced composites has been
studied by using the pull-out model for many years [Li-Min et al. 1992; Seshadri and Saigal 2007]. Some
researchers have conducted molecular dynamic (MD) simulations [Frankland and Harik 2003; Kin and
Sean 2001] on CNT pull-out models. Though MD simulation is generally accepted to be more accurate,
it is however highly time consuming and costly.

Recently, some researchers have proposed various pull-out models for CNT-reinforced composites
using continuum mechanics approach [Ahmed and Ang 2010; Kin-tak 2003; Natsuki et al. 2007; Tan
and Kin 2004]. A number of previous studies have considered the case of frictionally bonded interface
that are valid only for very weak CNT/matrix interface. In [Wagner 2002], the interfacial shear strength
in polymer composites reinforced by SWNT has been estimated using a modified Kelly–Tyson approach
which however assumes the interfacial shear and axial normal stresses to be uniform. A perfectly bonded
CNT/matrix interface using RVE concept was considered in [Gao and Li 2005]. This study, however,
was on a shear lag model which assumes the CNT to be fully embedded within the matrix and is aimed
at estimating the average stress components of the matrix and CNT. On the other hand, a pull-out test
model is designed to estimate the critical pull-out force, the mechanism of stress transfer from CNT to
matrix as well as the factors that influence the composite behavior. Surprisingly, no research study on
CNT pull-out model has been reported in the literature for perfectly bonded interface.

The main objective of the current work is to develop an analytical pull-out model of a perfectly bonded
CNT/matrix using linear elasticity theory. The proposed continuum-based model is capable of predicting
axial and interfacial shear stress distributions of the CNT as well as the critical pull-out force. Analytical
results obtained from the model are verified by comparing with those available in the literature. To
illustrate the application of the proposed model, parametric studies are conducted to examine the effects
of aspect ratio, radius ratio and modulus ratio on the average axial and interfacial shear stresses in CNT.
Therefore, this model aims to provide a more convenient solution that would help to provide a design
guideline for stress transferring of CNT in composites.

2. Proposed pull-out model

In this study, a 3D cylindrical representative volume element (RVE) is selected from a cracked section
of CNT-reinforced composite shown in Figure 1(a) to define the pull-out model, as shown in Figure 1(b).
The pull-out model comprises of a CNT of radius a partially embedded within a cylindrical matrix
of radius b. The z and r coordinates are assigned along the axial and radial directions of the CNT,
respectively. The embedded length of the CNT in the polymer matrix is denoted by L and F is the axial
normal force applied at the open end of the CNT.

To investigate the pull-out characteristics of the CNT, it is proposed that the CNT be replaced by an
effective solid fiber having the same length and outer diameter as shown in Figure 1(c). The modulus
of the effective fiber E f can be expressed in terms of the elastic modulus of the nanotube Et as follows
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Figure 1. Schematics of the CNT pull-out model: (a) cracked section of CNT-reinforced
composite; (b) partially embedded CNT in 3-D RVE; (c) conversion of typical hollow
CNT to equivalent effective fiber in polymer matrix.

(see [Ailin et al. 2010; Gao and Li 2005; Thostenson et al. 2001]):

E f =
At

Ae f f
Et =

2at − t2

a2 Et ; (1)

this is determined by setting the cross-sectional areas of the hollow CNT and solid fiber to be equal to
each other. Here, t denotes the thickness of the nanotube.

The governing equilibrium equations for the axisymmetric problem in terms of polar coordinates
(r, θ, z) may be written as

dσrr

dr
+

dτr z

dz
+
σrr−σθθ

r
= 0,

dσzz

dz
+

1
r

d(rτr z)

dr
= 0, (2)

where σzz , σrr , σθθ , τr z are the axial, radial, hoop and shear stress components, respectively, εrr , εzz ,
εθθ , γr z the corresponding strain components, respectively and w, u the axial and radial displacements,
respectively.

Assuming that the material obeys Hooke’s law, the constitutive equations may be written as

εzz =
1
E
{σzz − ν(σrr + σθθ )}, εrr =

1
E
{σrr − ν(σzz + σθθ )}, εθθ =

1
E
{σθθ − ν(σrr + σzz)}, (3a)

γr z =
τr z

G
, (3b)

where E , G and ν are the Young’s modulus, shear modulus and Poisson’s ratio, respectively.



756 KHONDAKER SAKIL AHMED AND ANG KOK KENG

The strain-displacement relationships may be written as

εrr =
du
dr
, εzz =

dw
dz
, εθθ =

u
r
, γr z =

du
dz
+

dw
dr
. (4)

Note that Equations (2)–(4) are valid for both the effective solid fiber and matrix.
The mechanical equilibrium equation at any section of the RVE can be written as

πa2σ =

∫ a

0
σ f

zz(2πr) dr +
∫ b

a
σm

zz (2πr) dr, (5)

where σ(= F/πa2) denotes the average stress applied in the effective fiber at z = 0. (Superscript f and
m refer to the effective fiber and matrix, respectively.) The average axial stresses of CNT and matrix can
be expressed as

σ f
zz =

2
a2

∫ a

0
σ f

zzr dr, σm
zz =

2
b2− a2

∫ b

a
σm

zzr dr. (6)

The boundary conditions of the pull-out model are

σ f
zz(0)= σ, σ f

zz(L)= σ
m
zz(L), τ f

r z(a)= τi , τm
rz(b)= 0,

σm
rr (b)= 0, ε f

z (a)= ε
m
z (a), w f

z (a)= w
m
z (a),

(7)

where τi is the interfacial shear stress.
Upon integrating (2)2 with respect to r from 0 to a and applying the boundary conditions given in (7)3

for the effective fiber, we obtain
dσ f

zz

dz
=−

2
a
τi . (8)

In view that the matrix shear stress (τm
rz) has to be compatible with interfacial shear stress (τi ) and the

fact that the outer surface of matrix cylinder is stress free, τm
rz at any radial distance r can be derived by

integrating (2)2 to give

τm
rz =

a
b2− a2

(b2
− r2)

r
τi . (9)

Since du
dz
�

dw
dr

, we can assume du
dz
+

dw
dr
≡

dw
dr

. Therefore, (4)4 may be rewritten as

γr z =
dw
dr
. (10)

In view of (10), Equation (3b) for both the fiber and matrix may then be rewritten as

τ f
r z =

E f

1+ ν f

dw f

dr
, τm

rz =
Em

1+ νm

dwm

dr
. (11)

By substituting (11)2 into (9), we obtain

Em

1+ νm

dwm

dr
=
γ

a
(b2
− r2)

r
τi , (12)
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where

γ =
a2

b2− a2 . (13)

By integrating (12) from a to b, we obtain

τi =
a
γ

Em(w
m
b −w

m
a )

(1+ νm)(b2 ln b
a − a2/2γ )

. (14)

Finally, by substituting (14) into (12) and integrating from a to b, we obtain

wm(r, z)= wm
a +

(b2 ln r
a − (r

2
− a2)/2)(wm

b −w
m
a )

b2 ln b
a − a2/2γ

. (15)

Since the axial stress is the predominant stress component, we assume that σrr+σθθ� σzz . Equation (3a)1

may therefore be rewritten as

σ f
zz = E f

dw f

dz
, σm

zz = Em
dwm

dz
. (16)

Equation (16)2 becomes, in view of (15),

σm
zz (r, z)= σm

zz (a, z)+
{b2 ln r

a − (r
2
− a2)/2}{σm

zz (b, z)− σm
zz (a, z)}

b2 ln b
a − a2/2γ

. (17)

Upon substituting (17) into (5) and after rearranging, we obtain

σm
zz (b, z)=

σ − γ (σ
f
zz − σ)

β
+

(
1− 1

β

)
σm

zz (a, z) (18)

where

β =
b2(1+ γ ) ln b

a − (3b2
− a2)/4

b2 ln b
a − a2/2γ

. (19)

Now, by substituting (14) into (8), we obtain

dσ f
zz

dz
=−

2
γ

Em(w
m
b −w

m
a )

(1+ νm)(b2 ln b
a − a2/2γ )

. (20)

By differentiating (20) with respect to z and making use of σm
zz (b, z) given in (18), we obtain the second

order differential equation

d2σ
f
zz

dz2 =−
2

γ (1+ νm)

σ − σ
f
zz

β
−
σm

zz (a, z)
γβ

b2 ln b
a − a2/2γ

. (21)

As it is assumed that there is perfect bonding at the interface, i.e., ε f
z (a) = εm

z (a), the stress-strain
relationship given in (3a)1 reduces to

σm
zz (a, z)= ασ f

zz, (22)
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where
α = Em/E f . (23)

Now, by substituting σm
zz (a, z) from (22) and β from (19) into (21) and after rearranging, we obtain

d2σ
f
zz

dz2 =−
2

a2γ 2(1+ νm)

γ σ − (α+ γ )σ
f
zz

( b
a )

4 ln b
a − (3b2− a2)/4a2γ

, (24)

which may be simplified and written as

d2σ
f
zz

dz2 σ f
zz −C1σ

f
zz +C1

γ

α+ γ
σ = 0, (25)

where

C1 =
2

a2γ 2(1+ νm)

α+ γ

( b
a )

4 ln b
a − (3b2− a2)/4a2γ

. (26)

By using the boundary conditions given in (7), the analytical solution for the average axial stress of CNT
may be expressed as

σ f
zz =

[
(R−αS) exp(pz)− (R−α/S) exp(−pz)

q
+ γ

]
σ

α+ γ
. (27)

The solution for the interfacial shear stress can be obtained by using (8) and (24) and written as

τi =
[
(R−αS) exp(pz)+ (R−α/S) exp(−pz)

] apσ
2q(α+ γ )

(28)

where
p = C1/2

1 , q = 2 sinh(pL), R = γ 2(α+ γ )− γ, S = exp(−pL). (29)

3. Analytical results

To examine the accuracy of the derived analytical formulas, results are presented and compared with
available results in the literature. Various values of key parameters, namely the aspect ratio (AR =
L/2a), radius ratio (b/a), and modulus ratio (α) are considered to examine the effect of these parameters
on the axial and interfacial stresses developed in the CNT. In addition, critical values of embedded
length (L) and modulus ratio (α) are estimated based on the maximum shear stress developed just before
debonding occurs at the interface. Available experimental data for various parameters that are used in
the computations of the analytical results are given in Table 1.

F 12.566 nN Em 20 Gpa
a 2 nm E f 560 GPa
b 12 nm ν f 0.28
L 50 nm νm 0.35

Table 1. Parameter values.
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Figure 2. (a) Average axial stress of CNT along the length for different aspect ratios
(AR). (b) Interfacial shear stress of CNT along the length for different aspect ratios.

Figure 2 shows the average axial and interfacial shear stress distributions along the length, for different
AR. Both the axial and interfacial shear stress distribution trends are quite similar to the recent friction-
based pull-out model proposed in [Tan and Kin 2004]. It can be seen from Figure 2a that the axial stress
decreases towards the end for all AR. The result also shows that larger stress saturation zone has been
found for higher AR. In contrast, the axial stress distributions are linear for smaller AR. This happens
because applied stress can be distributed over larger surface area as well as longer length for higher AR.
It can be seen from Figure 2b that the shear stress is maximum at z = 0. It gradually decreases and
reaches the lowest value near the middle of the length. It then gradually increases towards the end. As
the uniform stress is applied at z = 0, it is to be expected that the interfacial shear stress developed will
be maximum at the same location.

Since the tip of the embedded CNT is assumed to be perfectly bonded with the matrix, it is expected
that the interfacial shear stress will also show another peak at the tip, i.e., at z = L . Figure 2b also shows
that the interfacial shear stress tends to be smaller for higher AR. This happens because a higher AR
indicates a relatively longer length for a given diameter. Consequently, the shear stress can be distributed
over a longer embedded length, thereby resulting in smaller shear stress distribution. It is interesting to
note that all the curves in Figure 2b coincide at approximately z/L = 0.55. The minimum value of shear
stress for all distributions is also noted to occur at this value of z/L .

Figure 3 shows the axial and interfacial shear stress distributions along the length for different radius
ratios (b/a). Note that the radius ratio represents different RVE size as well as volume fraction of CNT
in the composite. Figure 3a shows that higher axial stress is found for smaller RVE size (smaller b/a).
This is to be expected since for a smaller RVE, a bigger proportion of the applied axial stress is to be
carried by the CNT. It is also found that the stress distribution is approximately the same for about 10%
of the length measured from the open end. The stress distributions deviate significantly from each other
in the vicinity of the middle of the embedded length for different (b/a) ratios. Figure 3b shows that
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Figure 3. (a) Average axial stress of CNT along the length for different RVE sizes (b/a).
(b) Interfacial shear stress of CNT along the length for different RVE sizes.

the interfacial shear stress is close to zero near the middle and rises to large values at the open end and
the extreme embedded end. It is also observed that the interfacial shear stress is generally smaller at the
extreme embedded end compared to the open end, except when the (b/a) ratio is small. This observation
is similar to the results of [Li-Min et al. 1992] for fiber-reinforced composite.

Figure 4 shows the average axial and interfacial shear stress distributions, for different Young’s modu-
lus ratios α = Em/E f — that is, for different relative matrix strengths. Figure 4a shows that axial stress
distribution for any value of α decreases sharply up to 20% of the embedded length from the tip before
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Figure 4. (a) Average axial stress of CNT along the length for different modulus ratios
(α). (b) Interfacial shear stress of CNT along the length for different modulus ratios.
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reaching a stress constant region and then finally meets a common point at the end. It can be seen from
the figure that as larger the value of α is, the axial stress of CNT for different modulus ratios is smaller.
For weaker matrix, i.e., smaller modulus ratios, the axial stress distribution is higher as compared to
stronger matrix, thereby indicating that the proportion of axial stress carried by CNT decreases as the
matrix gets stronger. In contrast, Figure 4b shows that the interfacial shear stress is noted to be virtually
zero over most part of the CNT except near the ends with the open end achieving a much larger value
than the other end. Interestingly, the interfacial shear stress is noted to be much larger for higher modulus
ratios at the open end but the opposite happens at the extreme embedded end.

The current study as well as several previous studies [Ahmed and Ang 2010; Li-Min et al. 1992;
Natsuki et al. 2007; Xiao and Liao 2004] show that the maximum interfacial shear stress for the pull-out
problem is found at the open end, i.e., at z = 0. Thus, it is expected that debonding between the CNT and
the matrix will occur at the open end. By rearranging (27), the critical pull-out stress (σcr) defined as the
maximum pull-out force per unit cross-sectional area of CNT at impending debonding can be determined
as a function of the allowable interfacial shear stress as follows

σcr =
2(α+ γ )

ap(2R−αS−α/S)
τmax (30)

The allowable interfacial shear stress is dependent on the nature of the CNT/matrix interface. Manoha-
ran et al. [2009] has measured this value for CNT-reinforced epoxy composite experimentally using a
scanning electron microscope to be nearly 200 MPa. Liao and Li [2001] have determined the maximum
interfacial shear stress to be about 160 MPa through molecular dynamic simulation on the pull-out prob-
lem of a nanotube/polymer system. Knowing the maximum interfacial shear stress (τmax) and other physi-
cal and mechanical properties of composite, the critical pull-out stress (σcr) can be determined using (30).

Based on (30), the critical pull-out stress (σcr) may be determined for any embedded length of CNT.
Figure 5 shows the variation of the critical pull-out stress with the embedded length for the case of an
epoxy matrix where the allowable interfacial shear stress is taken to be 200 MPa. It can be seen from
the curve shown in Figure 5 that σcr increases gradually with increasing embedded length up to 20 nm
and thereafter stays virtually constant. Hence, it is interesting to note that any increase in the embedded
length beyond a critical embedded length is unable to prevent debonding at the open end in view that
the shear stress induced has already reached the allowable interfacial stress value. Thus, for the case
examined here, the critical embedded length is estimated to be approximately 20 nm.

Figure 6 shows the variation of critical pull-out stress (σcr) with the CNT/matrix modulus ratio,
α(Em/E f ). It can be seen that the σcr decreases as the modulus ratio increases which agrees with
the friction based model for fiber-reinforced model proposed in [Chiang 2001]. This happens because
a higher α represents a stronger matrix. As explained previously, a stronger matrix would result in a
larger shear stress at the open end as well as a smaller axial stress induced in the CNT. Consequently,
the critical pull-out stress is expected to decrease. The figure also shows that σcr decreases sharply for
smaller values of α and remains nearly constant after α > 0.3. Similar to the explanation given with
regards to the critical embedded length, there is thus a critical value of the modulus ratio beyond which
there is no significant variation in the σcr. For the case discussed, the critical modulus ratio may be taken
to be 0.3.
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Figure 5. Variation of critical pull-out stress (σcr) with embedded length (L).
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Figure 6. Variation of critical pull-out stress (σcr) with modulus ratio, α (Em/E f ).

4. Conclusion

An analytical pull-out model has been proposed to investigate the stress transferring mechanism of CNT
in polymer matrix by using classical continuum mechanics. Closed-form solutions have been derived
for the axial and interfacial shear stress components. These formulas can be used to investigate the
pull-out problem conveniently without resorting to more expensive and complicated experimental study.
The present study revealed that the aspect ratio, modulus ratio and radius ratio (RVE size) are the key
controlling parameters in CNT-reinforced polymer composites. Critical values of embedded length and
modulus ratio for a sample case were also determined, which are the minimum embedded length of CNT
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and strongest matrix that can be used effectively with CNT, respectively that correspond to the largest
possible pull-out stress for perfectly bonded CNT/polymer interface.

It is to be noted that since we convert the hollow nanotube to be effective solid fiber, the proposed
pull-out model is not limited to the CNT-reinforced composite only. The derived solution may therefore
be used for other fiber-reinforced composite having similar physical properties, geometric shape and
interface.
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A PERFECTLY MATCHED LAYER
FOR PERIDYNAMICS IN TWO DIMENSIONS

RAYMOND A. WILDMAN AND GEORGE A. GAZONAS

A perfectly matched layer (PML) absorbing boundary is formulated for and numerically applied to peri-
dynamics in two dimensions. Peridynamics is a nonlocal method, derived to be insensitive to discontinu-
ities, more easily simulating fracture. A PML is an absorbing boundary layer, which decays impinging
waves exponentially without introducing reflections at the boundary between the computational region
and the absorbing layer. Here, we use state-based peridynamics as PMLs are essentially anisotropic
absorbing materials, therefore requiring arbitrary material parameters. State-based peridynamics is also
more convenient for auxiliary field formulations, facilitating the implementation of the PML. Results
show the efficacy of the approach.

1. Introduction

Originally introduced in [Silling 2000], peridynamics is a nonlocal formulation of elastodynamics, which
can more easily incorporate discontinuities such as cracks and damage. Derivatives of field variables
in the classical continuum model are replaced by integrals over a small neighborhood of microelastic
kernels that replace standard constitutive relations. In its discretized form, an elastic solid is treated as
a collection of particles or nodes, each connected to its neighbors by breakable bonds. Bond breakage
can be defined to occur when a bond is stretched past some predetermined limit. After a bond is broken,
any supported force transfers to the remaining bonds, increasing their supported load, and encouraging
more breakage. Eventually, this process autonomously leads to cracking and failure. The end result is
a method capable of predicting crack growth in brittle elastic materials [Gerstle et al. 2005; Silling and
Askari 2005; Emmrich and Weckner 2006; Demmie and Silling 2007; Kilic et al. 2009; Ha and Bobaru
2010].

Over the last decade, peridynamics has been extended past its original formulation. First, the nu-
merical method originally outlined in [Silling and Askari 2005] has been extended to include adaptive
refinement [Bobaru et al. 2009], replaced with different quadrature rules [Emmrich and Weckner 2007],
and implemented in a parallel, molecular dynamics code [Parks et al. 2008]. In addition, it has been
extended to different material types including viscoplastic [Foster et al. 2010], micropolar [Gerstle et al.
2011], and nanofiber networks [Bobaru 2007]. It has also been applied to different fields such as heat con-
duction [Bobaru and Duangpanya 2010] and electromigration [Gerstle et al. 2008]. Aside from practical
applications, the mathematics behind the approach have been studied: Weckner et al. [2009] derived a
Green’s function for the peridynamic equation and Weckner and Abeyaratne [2005] discussed dispersion
relations for various kernels. Most importantly for this work, state-based peridynamics was introduced,

Keywords: peridynamics, perfectly matched layer, absorbing boundary.
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allowing for more flexible constitutive relations [Silling et al. 2007]. As will become clear later, state-
based peridynamics allows for an auxiliary field formulation, which is necessary for the implementation
of a perfectly matched layer (PML).

While most peridynamics work has focused on simulating problems with free or fixed boundary
conditions, there are applications in which the simulation of an infinite medium may be useful, such
as wave or crack propagation in a half-space. Absorbing boundary conditions are a way of simulating
an infinite medium by absorbing any impinging waves at the computational boundaries so they do not
reflect back into the simulation. A PML is such an absorbing boundary, and was originally introduced
for electromagnetic simulations [Berenger 1994; Chew and Weedon 1994]. PMLs differ from traditional
absorbing boundary conditions in that they are an absorbing layer, placed between the computational
region of interest and the truncation of the grid or mesh. They can also be thought of as an anisotropic
absorbing material, which is why the flexibility of a state-based peridynamics is necessary.

PMLs have two important qualities: First, waves in a PML decay exponentially, and second, in their
analytic form, no waves reflect at the interface of a PML and the computational region. These properties
make them ideal for simulating wave propagation in infinite, unbounded regions. Since their introduction,
PMLs have been extended to many different types of media [Uno et al. 1997; Teixeira and Chew 1998;
Dong et al. 2004], different numerical methods [Pissoort and Olyslager 2003; Pissoort et al. 2005; Alles
and van Dongen 2009], and different fields [Chew and Liu 1996; Liu and Tao 1997; Festa and Nielsen
2003].

This paper implements a peridynamic formulation of elastodynamics in two dimensions and terminates
the boundary with a PML. As is discussed, the use of a PML is facilitated with an auxiliary field formu-
lation, derived from state-based peridynamics, and the peridynamic equation is broken into five coupled
equations. A PML was applied to one-dimensional peridynamics in [Wildman and Gazonas 2011], which
used the results of [Du et al. 2012] to formulate an auxiliary field equation. This approach required a
matrix representation of the auxiliary field, which may be memory prohibitive in higher dimensions.

The remainder of the paper is organized as follows: Section 2 discusses the formulation of peridynam-
ics, PMLs, and their numerical implementation; Section 3 gives some results; and Section 4 summarizes
the report and details future work.

2. Formulation

In this section, a PML is formulated for state-based two-dimensional peridynamics. First, in Section 2A,
a linear elastic, state-based peridynamics formulation will be reviewed. Next, Section 2B reviews the for-
mulation of a PML. Section 2C then applies the PML to state-based peridynamics, and finally Section 2D
discusses a discretization of the formulation using the standard node-based peridynamics method.

2A. Two-dimensional, state-based peridynamics. The continuum equation of motion in an elastic solid
can be stated as

ρ
∂2

∂t2 u =∇ · σ + b, (2-1)

where (in two dimensions) ρ(x) [kg/m2] is the density, u(x, t) [m] is the displacement, σ (x, t) [N/m] is
the stress tensor, and b(x) [N/m2] is a body force [Malvern 1969]. (Throughout, boldface type denotes
a vector and a boldface variable with an overbar denotes a tensor.) Equation (2-1) is a local formulation
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because the divergence of the stress (and gradient of the displacement implied in its definition) represents
a local operation on a variable. In other words, the action of ∇ · σ only depends on σ at a single spatial
point. In problems involving discontinuities, such as cracks, the divergence at such discontinuities is
not well defined, leading to numerical implementation problems. Peridynamics proposes replacing ∇ · σ
with a nonlocal operation that nonetheless also represents a force

ρ
∂2

∂t2 u =
∫

Hx

f (u′− u, x′− x)dVx′ + b, (2-2)

where f (x′ − x, u′ − u) [N/m4] represents a micromodulus force function (or kernel) that defines a
force between two points and Hx represents a horizon or maximum distance over which two points can
influence each other [Silling 2000]. The micromodulus function becomes the constitutive response in
the formulation, replacing Hooke’s law in the continuum case. In its original form, the micromodulus
function was developed as a simple elastic response following

f (η, ξ)= c
ξ+η

|ξ+η|

|ξ+η|−|η|

|η|
H(δ−|ξ |), (2-3)

where c is some constant, H( · ) is the Heaviside step function, and δ is the radius of the horizon region,
which defines Hx [Silling 2000]. Note that in contrast to [Silling 2000], for simplicity there is no history-
dependent failure term in (2-3). Equation (2-3) is isotropic, though not strictly linear in terms of u.
Linearizing (2-3) gives

f (η, ξ)= C(ξ)η, C(ξ)= C(ξ)
ξ ⊗ ξ

|ξ |3
, C(|ξ |)= cH(δ− |ξ |), (2-4)

where ⊗ denotes an outer product [Silling 2000]. The function C(|ξ |) is the kernel function, typically
taken to be a Heaviside function. Here, we will also use a Gaussian kernel function, which tends to give
smoother results with less apparent ringing in the solution. A Gaussian kernel is defined as

CGauss(|ξ |)= ce−(|ξ |/δ)
2
. (2-5)

For the Gaussian kernel, the horizon δ does not delineate a strict bond family as the Heaviside function,
but describes the decay of the kernel. To determine the bond family, Hx , a small, arbitrary value can be
chosen as a cutoff for the kernel. Note that the cutoff has a large impact on the efficiency of the method:
too small a cutoff and a large number of bonds must be included in each calculation. Throughout, we
set the cutoff to 10−6.

A PML application requires an auxiliary field formulation, as it is essentially an anisotropic absorbing
material, if a nonphysical one. Consequently, a state-based peridynamic formulation [Silling et al. 2007]
is necessary to implement the required constitutive relations in the absorber. State-based peridynamics
uses a family of bonds to determine a given force rather than a single bond independently. This more
general approach allows for inelastic behavior and more general elastic behavior, and is governed by

ρ
∂2

∂t2 u =
∫

Hx

(T [x, t]〈x′− x〉− T [x′, t]〈x− x′〉)dVx′ + b, (2-6)

where T [x, t]〈x′− x〉 is a peridynamic vector state, with the parameters in the square brackets indicating
variables that act as arguments to any functions referenced in the vector state and the variables in the
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angle brackets acting as arguments to the vector state itself. In the state-based formulation of [Foster
et al. 2010], the deformation gradient, given by

F = I + u∇, (2-7)

can be approximated as a vector state as

F[x, t] =
[∫

Hx

C(|ξ |)(Y [x, t]〈ξ〉⊗ ξ)dVx′

]
K−1, (2-8)

where ξ = x′− x, K is a shape tensor given by

K [x, t] =
∫

Hx

C(|ξ |)(ξ ⊗ ξ)dVx′, (2-9)

and Y is a deformation vector state given by

Y [x, t]〈ξ〉 = η+ ξ , (2-10)

with η = u[x′, t] − u[x, t] [Foster et al. 2010].
The deformation gradient can now be substituted into Hooke’s law and strain-displacement relations,

giving a stress term σ in terms of u in plane strain

ρ
∂2

∂t2 u =∇ · σ =∇ · (c̄ : ε), (2-11)

where

ε[x, t] = 1
2 (∇u+ u∇)= 1

2 (F[x, t] + F[x, t]T − 2I), (2-12)

c̄=
E

(1+ ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

=
λ+ 2µ λ 0

λ λ+ 2µ 0
0 0 2µ

 , (2-13)

E is the Young’s modulus, ν is the Poisson’s ratio, and λ and µ are the Lamé parameters. Ultimately,
the peridynamic vector state T for plane strain elasticity is given by

T [x, t]〈ξ〉 = C(|ξ |)σ [x, t]K−1ξ . (2-14)

2B. Perfectly matched layer. The first step in formulating a PML is to construct an analytic continuation
to the complex plane

x̂ = x + ig(x), (2-15)

where g(x) is a given function describing the deformation [Johnson 2010]. This mapping has the effect
of transforming traveling waves of the form eikx , where k = ω/c is the wave number, into evanescent
waves of the form eikx e−kg(x), thus attenuating such waves in the PML region.

Substituting x̂ into the above equations would yield a viable method, though one that requires complex
coordinates. A simpler solution is to change variables back to the real part x , which requires a relation
for the differential quantities, given as

∂ x̂ =
[
1+ i d

dx
g
]
∂x; (2-16)
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partial differential quantities are used, as this is used as a substitution for the above equations involving
functions of both x and t [Johnson 2010]. A convenient choice for g(x) is

d
dx

g(x)=
φ(x)
ω

, (2-17)

because the 1/ω factor creates a frequency-independent attenuation rate in dispersionless materials [John-
son 2010]. (Peridynamic formulations are not dispersionless, as discussed in [Weckner and Abeyaratne
2005], though this standard choice is used for simplicity.) Finally, the substitution that must be made for
any spatial derivative can be written

∂

∂x
→

1
1+ iφ(x)/ω

∂

∂x
. (2-18)

Before applying a PML directly to the peridynamic equation, (2-1) will be treated so that the PML ap-
plication to peridynamics will be clear. It is convenient to convert (2-1) to the Laplace domain, assuming
e−st time dependence, giving

ρs2ũ =∇ · σ̃ , (2-19)

where the Laplace transform of a variable is indicated by L{ f } = f̃ . Next, we express the wave equation
as two coupled first-order partial differential equations, the first in ũ and the second in s ˜ψ = σ̃ :

ρs ũ =∇ · ˜ψ, s ˜ψ = c̄ : ε̃. (2-20)

Expanding (2-20) into components gives five coupled equations:

ρsũx =
∂

∂x
ψ̃x+

∂

∂y
ψ̃τ , ρsũ y =

∂

∂x
ψ̃τ+

∂

∂y
ψ̃y,

sψ̃x = (λ+2µ) ∂
∂x

ũx+λ
∂

∂y
ũ y, sψ̃y = λ

∂

∂x
ũx+(λ+2µ) ∂

∂y
ũ y, sψ̃τ = µ

(
∂

∂y
ũx+

∂

∂x
ũ y

)
.

(2-21)

Here, we will make the substitution given in (2-18) for all spatial derivatives, written as

∂

∂x
→

s
s+φ(x)

∂

∂x
(2-22)

in the Laplace domain, and later define φx and φy in the desired absorbing boundary locations. Using
(2-21)1 as an example, we get

ρsũx =
s

s+φx

∂

∂x
ψ̃x +

s
s+φy

∂

∂y
ψ̃τ

=⇒ ρ(s+φx)(s+φy)ũx = (s+φy)
∂

∂x
ψ̃x + (s+φx)

∂

∂y
ψ̃τ . (2-23)

The remaining components of (2-21) can be expanded in a similar way.
Wherever φ > 0, u and σ will exponentially decay. Before discretization, any change in φ will not

result in any reflections, so the region of interest would have φ = 0, and the PML region could have a
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discontinuity in applying φ. In practice, however, numerical reflections can result from discontinuous
material parameters after discretization, so it is better to use a smooth transition for φ. Here, we divide
the PML region into two parts, one in which φ is a constant value, and the other in which φ ramps up
to that constant value following a Gaussian distribution. An example is shown in Figure 1, with the
constant region set to 0.1 m and the Gaussian region 0.2 m. The variance of the distribution is set so that
the minimum value in the Gaussian region is 10−6.

2C. Auxiliary field formulation and PML application. Peridynamics is not typically stated in terms of
Cartesian components as in (2-24), but we can expand the state-based formulation into components and
match terms to (2-24). Following this approach yields a viable method for performing PML substitutions.

First, the state-based peridynamic equations (2-6)–(2-14) can be written explicitly as

ρsũx [x, s]=
∫

Hx

C(|ξ |)
[
(ψ̃x [x, s]kinv

xx + ψ̃τ [x, s]kinv
yx )ξx + (ψ̃x [x′, s]k ′ inv

xx + ψ̃τ [x
′, s]k ′ inv

yx )ξx
]
dVx′

+

∫
Hx

C(|ξ |)
[
(ψ̃x [x, s]kinv

xy + ψ̃τ [x, s]kinv
yy )ξy + (ψ̃x [x′, s]k ′ inv

xy + ψ̃τ [x
′, s]k ′ inv

yy )ξy
]
dVx′,

ρsũ y[x, s] =
∫

Hx

C(|ξ |)
[
(ψ̃τ [x, s]kinv

xx + ψ̃y[x, s]kinv
yx )ξx + (ψ̃τ [x′, s]k ′ inv

xx + ψ̃y[x′, s]k ′ inv
yx )ξx

]
dVx′

+

∫
Hx

C(|ξ |)
[
(ψ̃τ [x, s]kinv

xy + ψ̃y[x, s]kinv
yy )ξy + (ψ̃τ [x′, s]k ′ inv

xy + ψ̃y[x′, s]k ′ inv
yy )ξy

]
dVx′,

sψ̃x [x, s] = (λ+ 2µ)
[∫

Hx

C(|ξ |)(Ỹx [x, s]ξx kinv
xx + Ỹx [x, s]ξykinv

yx )dVx′ − 1
]

+ λ

[∫
Hx

C(|ξ |)(Ỹy[x, s]ξx kinv
xy + Ỹy[x, s]ξykinv

yy )dVx′ − 1
]
,

sψ̃y[x, s] = λ
[∫

Hx

C(|ξ |)(Ỹx [x, s]ξx kinv
xx + Ỹx [x, s]ξykinv

yx )dVx′ − 1
]

+ (λ+ 2µ)
[∫

Hx

C(|ξ |)(Ỹy[x, s]ξx kinv
xy + Ỹy[x, s]ξykinv

yy )dVx′ − 1
]
,

sψ̃τ [x, s] = µ
∫

Hx

C(|ξ |)
(
Ỹx [x, s]ξx kinv

xy + Ỹx [x, s]ξykinv
yy
)
dVx′

+µ

∫
Hx

C(|ξ |)
(
Ỹy[x, s]ξx kinv

xx + Ỹy[x, s]ξykinv
yx
)
dVx′, (2-24)

where

K−1
=

[
kinv

xx kinv
xy

kinv
yx kinv

yy

]
. (2-25)

Though no derivatives appear in (2-24), the correspondence of each term to those in (2-21) is apparent —
with partial derivatives following the component of ξ — and the PML substitutions can be made. For
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Figure 1. An example of a PML across one dimension using a Gaussian ramp.

example, the first equation in (2-24) can be rewritten as

ρ(s+φx)(s+φy)ũx = (s+φy)

∫
Hx

C(|ξ |)
(
ψ̃x [x, s]kinv

xx + ψ̃xy[x, s]kinv
yx
)
ξx dVx′

+ (s+φy)

∫
Hx

C(|ξ |)
(
ψ̃x [x′, s]k ′ inv

xx + ψ̃xy[x′, s]k ′ inv
yx
)
ξx dVx′

+ (s+φx)

∫
Hx

C(|ξ |)
(
ψ̃x [x, s]kinv

xy + ψ̃τ [x, s]kinv
yy
)
ξy dVx′

+ (s+φx)

∫
Hx

C(|ξ |)
(
ψ̃x [x′, s]k ′ inv

xy + ψ̃τ [x
′, s]k ′ inv

yy
)
ξy dVx′, (2-26)

with the remaining equations following similarly.

2D. Discretization. For the temporal discretization, forward Euler will be used to simplify the presen-
tation and implementation. Higher-order temporal discretizations can be used, though they lead to more
terms in what follows. The Laplace domain was used throughout to facilitate the temporal discretization
of the final equations. Because differentiation in the Laplace domain is represented by s, approximations
to s can be directly substituted in terms of the z-transform. This technique is used in the design of digital
filters, where it is known as “filter design by approximation of derivatives” or “the bilinear transforma-
tion” [Proakis and Manolakis 1996], and in integral equation methods where it is known as “convolution
quadrature” [Lubich 1988a; 1988b], or “finite difference delay modeling” [Wang et al. 2008]. A forward
Euler approximation can be stated as the substitution

s→ z−1
1t

, (2-27)

where z is the z-transform1 variable representing a unit advance and 1t is the time step size. Substitution

1The z-transform is defined here as X (z)= Z{x[n]} =
∑
∞
n=0 x[n]z−n for causal signals.
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into (2-26) gives

ρ(z−1+1tφx)(z−1+1tφy)Ux = (z−1+1tφy)

∫
Hx

C(|ξ |)
(
9x [x, z]kinv

xx +9τ [x, z]k
inv
yx
)
ξx dVx′

+(z−1+1tφy)

∫
Hx

C(|ξ |)
(
9x [x′, z]k ′ inv

xx +9τ [x
′, z]k ′ inv

yx
)
ξx dVx′

+(z−1+1tφx)

∫
Hx

C(|ξ |)
(
9x [x, z]kinv

xy +9τ [x, z]k
inv
yy
)
ξy dVx′

+(z−1+1tφx)

∫
Hx

C(|ξ |)
(
9x [x′, z]k ′ inv

xy +9τ [x
′, z]k ′ inv

yy
)
ξy dVx′, (2-28)

where capital letters indicate the z-transform of a variable. Expanding the quadratic term on the left-hand
side gives

(z−1+1tφx)(z−1+1tφy)=1t2φxφy +1tφx z−1tφx +1tφyz+ z2
− z−1tφy − z+ 1

= z2
+ (1tφx+1tφy−2)z+1t2φxφy −1tφx −1tφy + 1. (2-29)

Multiplying by z−2 and rearranging gives an update equation in terms of z, which can be converted
to a time-stepping method via the inverse z-transform2 (assuming vanishing initial conditions and an
appropriate region of convergence) as

ux [x, l] = −(γx + γy)ux [x, l−1] − γxγyux [x, l−2]

+
1t
ρ

∫
Hx

C(|ξ |)
(
ψx [x, l−1]kinv

xx +ψτ [x, l−1]kinv
yx
)
ξx dVx′

+
1t
ρ

∫
Hx

C(|ξ |)
(
ψx [x′, l−1]k ′ inv

xx +ψτ [x
′, l−1]k ′ inv

yx
)
ξx dVx′

+
1t
ρ
γy

∫
Hx

C(|ξ |)
(
ψx [x, l−2]kinv

xx +ψτ [x, l−2]kinv
yx
)
ξx dVx′

+
1t
ρ
γy

∫
Hx

C(|ξ |)
(
ψx [x′, l−2]k ′ inv

xx +ψτ [x
′, l−2]k ′ inv

yx
)
ξx dVx′

+
1t
ρ

∫
Hx

C(|ξ |)
(
ψx [x, l−1]kinv

xy +ψτ [x, l−1]kinv
yy
)
ξy dVx′

+
1t
ρ

∫
Hx

C(|ξ |)
(
ψx [x′, l−1]k ′ inv

xy +ψτ [x
′, l−1]k ′ inv

yy
)
ξy dVx′

+
1t
ρ
γx

∫
Hx

C(|ξ |)
(
ψx [x, l−2]kinv

xy +ψτ [x, l−2]kinv
yy
)
ξy dVx′

+
1t
ρ
γx

∫
Hx

C(|ξ |)
(
ψx [x′, l−2]k ′ inv

xy +ψτ [x
′, l−2]k ′ inv

yy
)
ξy dVx′, (2-30)

2The only necessary property is the delay: x[n− k] ↔ z−k X (z)
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where l is the time step number, γx =1tφx −1, and γy =1tφy−1. A stress component update equation
becomes, for example,

ψx [x, l] = −(γx + γy)ψx [x, l−1] − γxγyψx [x, l−2]

+1t (λ+ 2µ)
[∫

Hx

C(|ξ |)(Yx [x, l−1]ξx kinv
xx + Yx [x, l−1]ξykinv

yx )dVx′ − 1
]

+1tγy(λ+ 2µ)
[∫

Hx

C(|ξ |)(Yx [x, l−2]ξx kinv
xx + Yx [x, l−2]ξykinv

yx )dVx′ − 1
]

+1tλ
[∫

Hx

C(|ξ |)(Yy[x, l−1]ξx kinv
xy + Yy[x, l−1]ξykinv

yy )dVx′ − 1
]

+1tλγx

[∫
Hx

C(|ξ |)(Yy[x, l−2]ξx kinv
xy + Yy[x, l−2]ξykinv

yy )dVx′ − 1
]
. (2-31)

Finally, (2-30) can be discretized spatially using a simple one-point integration and point match testing,
giving, for the x-component of displacement,

ux [xi , l] = −(γx + γy)ux [xi , l−1] − γxγyux [xi , l−2]

+
1t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−1]kinv
i,xx +ψτ [xi , l−1]kinv

i,yx)ξx V j

+
1t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−1]kinv
j,xx +ψτ [xj , l−1]kinv

j,yx)ξx V j

+
1t
ρ
γy

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−2]kinv
i,xx +ψτ [xi , l−2]kinv

i,yx)ξx V j

+
1t
ρ
γy

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−2]kinv
j,xx +ψτ [xj , l−2]kinv

j,yx)ξx V j

+
1t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−1]kinv
i,xy +ψτ [xi , l−1]kinv

i,yy)ξy V j

+
1t
ρ

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−1]kinv
j,xy +ψτ [xj , l−1]kinv

j,yy)ξy V j

+
1t
ρ
γx

Ni∑
j=1

C(|ξi j |)(ψx [xi , l−2]kinv
i,xy +ψτ [xi , l−2]kinv

i,yy)ξy V j

+
1t
ρ
γx

Ni∑
j=1

C(|ξi j |)(ψx [xj , l−2]kinv
j,xy +ψτ [xj , l−2]kinv

j,yy)ξy V j , (2-32)

where V j is the volume of node j , Ni is the number of nodes in the neighborhood of node i , and
ξi j = xj − xi .
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3. Results

The PML was tested on two types of problems, first a wave propagation problem, to demonstrate the
effectiveness of the PML, and second a crack propagation problem.

3A. Wave propagation. The PML was first tested on a wave propagation problem with PML boundary
layers and a Gaussian distribution as an initial condition. Specifically, the x-directed displacement was
set to

ux(x, t = 0)= e−200|x− pmid|
2
, (3-1)

where pmid is the midpoint of the region, which in this example was defined as 0≤ x, y≤ 1 and discretized
with 1x =1y = 0.01 m. The Young’s modulus for the region was set to 1 Pa, the Poisson’s ratio was
1
4 , and the density was 1 kg/m3. The PML region was defined as the 0.3 m border around the 1 m× 1 m
region and used a Gaussian ramp with a width of 0.2 m, finally reaching a maximum of 50 s−1 for the
remaining 0.1 m. For the Gaussian kernel, a horizon size of δ = 1.11x was used, and for the Heaviside
kernel, a horizon of δ = 3.11x was used. The kernel constant c in (2-4) and (2-5) is set to 1 throughout.

The simulation was run with both the Heaviside and Gaussian kernels, with the total strain energy
shown in Figure 2. The Gaussian kernel (the dotted line) shows the largest drop in energy, reaching a
minimum of 5.6× 10−7, and the Heaviside kernel (the dashed line) decreases to 1.× 10−4. A bounded
simulation is shown for reference (the solid line), which used a fixed displacement boundary condition
and the Gaussian kernel. Figure 3 shows a waterfall plot of the x-directed displacement along the y =
0.5 line for the Gaussian kernel with the PML function φx shown in gray on the far end of the plot
(corresponding to t = 1 s). Figure 4 shows the absolute value of the x-directed displacement at the edge
of the PML region, in simulations terminated by a PML and with a fixed boundary condition. The wave
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Figure 2. Total strain energy in a simulation terminated by a PML.
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Figure 3. The x-directed displacement at y = 0.5 m, terminated by a PML.
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Figure 4. The x-directed displacement at x = 0.3, y = 0.5 m. The solid line shows
results terminated by a PML, and the dashed line used a fixed boundary condition.

is absorbed at the boundary with minimal reflections: as can be seen, the plots align for a time, and where
they deviate (indicating a reflection from the hard boundary), the PML simulation remains in decay.

For verification, the method was compared with an exact analytical solution. Consider a cylindrically
symmetric wave propagating in an infinite elastic medium with the same constitutive parameters as the
above example, and with an initial condition given by

u0(r)= b
( r

a

)[
1+

( r
a

)2]−3/2
, (3-2)
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Figure 5. The x-directed displacement at x = 0.5, y = 0 m. The solid line shows the
exact solution and the dashed line results terminated by a PML.

where here we take b = 1 and a = 0.1. The exact solution is given by [Eringen and Suhubi 1975]

u(r, t)=
br
√

2a R6

√
R2+α(2α− R2), α = 1+

r2
− c2t2

a2 , R2
=

√
α2+

4c2t2

a2 , (3-3)

where c is the longitudinal wave speed. This problem was simulated in a two-dimensional region, 2 m×
2 m and 1x = 1y = 0.01 m, terminated by a PML with the same dimensions and magnitude as the
above problem. The Gaussian kernel was used with a horizon size of δ = 0.751x , with an actual cutoff
of 0.028 m. The results are shown in Figure 5, with the exact solution shown as the solid line and the
peridynamic solution shown as the dashed line. The peridynamic solution shows good agreement with
the exact solution and minimal reflections from the PML boundary.

3B. Crack propagation. Crack propagation in a half-space can be useful for modeling physical phenom-
ena such as indentation experiments. As an example, we model such a problem as a body force applied
to a finite region with small precracks in a region terminated on three sides with PMLs. One addition to
the algorithm for this problem was a drag term, used to reduce noise. For crack problems with a sudden
force application, noise and oscillations can cause hot spots and undesirable cracking. To remedy this, a
drag term can be added to smooth oscillations, by adjusting the nodal velocity as

v∗[xi , l] = (1− D)v[xi , l] +
D
Nb

Nb∑
j=1

v[xj , l], (3-4)

where D is the drag coefficient and Nb is the remaining number of bonds in the family of node n [Becker
and Lucas 2011].

An absorbing boundary ensures that no reflections from the boundaries interfere with the crack prop-
agation, possibly causing it to deviate. Figure 6 gives a schematic of the problem: the extent of the
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Figure 6. Schematic diagram of the problem for crack propagation in a half-space.

computation region is designated by the solid line, the PML ramp begins at the dashed line, and the PML
plateaus at the dotted line. The computational region was 70 mm wide and 35.25 mm high, the PML
region began at 15 mm from each edge (except the top) and peaked at 5 mm to a value of 5× 106 s−1.
The node spacing was 0.496 mm and the time step size was 1 ns. For material values, the density was
2235 kg/m3, the Young’s modulus was 65 GPa, the Poisson’s ratio was 0.2, and the fracture criteria used
a fracture energy of 204 J/m2. The failure criteria used in this simulation was bond-based, that is, a bond
failed if it was stretched past a given limit, determined by the fracture energy [Ha and Bobaru 2010].
The maximum relative bond stretch was then 2.971× 10−3. The load was applied across a 10 mm region,
centered at the top surface, with precracks on each edge with a length of two nodes or 0.993 mm. The
simulation was run for a total of 10µs, and the cracks were measured manually from the edge of the
precracks to the extent of the damaged area.

Figure 7 shows a result which had an applied load of 250 N, yielding a 2.11 mm crack. Figure 8 shows
a close-up of the damaged area from Figure 7. As can be seen, the crack extends three nodes down and

0 0.0175 0.035 0.0525 0.07

0

0.00881

0.0176

0.0264

0.0352

0 0.217 0.433

Damage (10000/10000) Y

XZ

Figure 7. Damage map resulting from a 250 N applied load after 10µs.
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Figure 8. Close-up of damage map from Figure 7.

three nodes across. Finally, the applied load was varied between 140 N and 500 N, with the distance
between the crack tips (the crack separation) versus the applied load shown as the dots in Figure 9.
A curve, shown as the solid line in Figure 9, was fit using the form

d = Aps
+ B, (3-5)
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Figure 9. Crack separation versus applied force for indentation into an elastic half-space.
Dots represent data points from the peridynamic simulation and the solid line is a curve
fit.
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where d is the crack tip separation distance, p is the applied load, and A= 8.49×10−3 mm/Ns , s = 1.16
and B = 8.15 mm were determined using least squares. The norm of the residual for the curve fit was
1.65× 10−6.

4. Conclusions

A perfectly matched layer (PML) was applied to peridynamics in two dimensions, allowing for the sim-
ulation of infinite regions. State-based peridynamics was used as more flexible constitutive relations are
necessary to implement a perfectly matched layer, essentially an artificial anisotropic absorbing material.
Standard discretization techniques were used: one-point integration and point-matching for the spatial
discretization and forward Euler for the temporal discretization. Results show that the PML absorbs
incoming waves and results in minimal reflections at the boundary between the absorbing layer and the
computational region. A Gaussian function was used as a ramp to avoid these numerical reflections.
Finally, a crack propagation problem was simulated in a half-space, modeling indentation problems.
A three-dimensional implementation of the method would be straightforward, following an identical
procedure for the peridynamics and PML formulation.
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DISPLACEMENT FIELD IN AN ELASTIC SOLID
WITH MODE-III CRACK AND FIRST-ORDER SURFACE EFFECTS

TAMRAN H. LENGYEL AND PETER SCHIAVONE

We analyze a nonstandard boundary-value problem for Laplace’s equation characterizing the displace-
ment field arising from the antiplane deformations of an infinite elastic solid containing a sharp finite
crack when first-order surface effects are included on the crack faces. The surface effects are incorporated
using the continuum-based surface/interface model of Gurtin and Murdoch. We establish a uniqueness
result for the displacement field and use complex variable methods to reduce the problem to a series of
integral equations which are solved numerically using an efficient, stable, yet convenient finite element
discretization method. Our results demonstrate the effect of the surface on the displacement field and its
implications for the corresponding stress distributions in the vicinity of the crack.

1. Introduction

The incorporation of surface mechanics into mathematical models describing deformation of various
elastic structures has drawn an increasing amount of attention in the literature recently (see, for example,
[Gibbs 1906; Orowan 1970; Gurtin and Murdoch 1975; 1978; Chan and Larché 1982; Benveniste and
Aboudi 1984; Thomson and Chuang 1986; Cammarata 1994; Steigmann and Ogden 1997a; 1997b; Wang
et al. 2007; 2010a; 2010b; Zhu 2008; Altenbach et al. 2009; 2010a; 2010b; 2011] and the references
contained therein). The concept is particularly significant when considering continuum models of defor-
mation at the nanoscale where the high surface-area-to-volume ratio means that the separate contributions
of the surface can no longer be ignored.

In the case of antiplane deformations of a linearly elastic and homogeneous isotropic solid containing
a sharp crack, Kim et al. [2010a; 2010b] have incorporated surface effects on the faces of the crack using
the Gurtin–Murdoch surface elasticity model [Gurtin and Murdoch 1975; 1978; Ru 2010]. The resulting
mathematical model gave rise to a nonstandard boundary-value problem for the (harmonic) antiplane
displacement. Using complex variable methods, Kim et al. presented various conclusions regarding the
stress distributions in the vicinity of the crack and how they are affected by the surface mechanics. A
rigorous analysis of the actual displacement boundary-value problem in terms of uniqueness and deter-
mination of the displacement solution was never conducted. The determination of the displacement field
is important in identifying the deformation of the body; in particular, the change of shape of the crack
faces in response to the presence of surface effects. To this end, it is extremely important to ensure
that the mathematical model being used to describe the displacement field is “correct” or well-posed in
the sense that any solution found by numerical methods is necessarily unique. In fact, as we discuss in
Section 4, the uniqueness result, in particular, has significant implications not only for the determination

Keywords: displacement field, mode-III crack, antiplane deformations, surface elasticity, integral equations.
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of the displacement field but also for the corresponding stress distributions in the vicinity of the crack
tips.

In this paper we undertake a rigorous formulation and analysis of the displacement boundary-value
problem first mentioned in [Kim et al. 2010a; 2010b]. We establish a uniqueness result for the displace-
ment field and use complex variable methods to reduce the problem to a series of integral equations
which are solved numerically using an efficient and stable, yet straightforward numerical method. Our
results demonstrate the contribution of the mechanics of the crack surfaces on the displacement field and
the implications for the corresponding stress distributions at the crack tips.

2. Formulation

We consider antiplane deformations of a linearly elastic and homogeneous isotropic solid occupying
a cylindrical region in R3 with generators parallel to the x3-axis of a rectangular Cartesian coordinate
system (x1, x2, x3). Suppose that the cylinder contains a single internal finite crack running the length of
the cylinder and occupying the region L = {−a ≤ x1 ≤ a, x2 = 0±} of a typical cross section S. The crack
length 2a is assumed to be much smaller than any characteristic length in S. The faces of the crack are
assumed to have separate elasticities which is described by an adaptation of the Gurtin–Murdoch surface
elasticity model [Ru 2010]. The theory of antiplane elasticity leads to a description of the deformation
of the solid characterized by the unknown antiplane displacement function w(x1, x2) defined in S.

In order to formulate the boundary-value problem for w, we first note that the nature of antiplane
deformations are such that [Milne-Thompson 1962]

w+ =−w− everywhere in S. (2.1)

Here w+ and w− represent the antiplane displacements in the upper and lower half-planes x2 > 0 and
x2 < 0, respectively. Consequently, since we assume that the material remains connected (no tearing),
w = 0 at the crack tips x1 =±a and x2 = 0. Finally, we assume that the crack faces are subjected to a
loading σ23 = P(x1), where P(x1) is a Hölder-continuous function, and that the remote boundaries of
the cross section are free of loading, that is, σ23 = 0 and R2

= x2
1 + x2

2 →∞.
We obtain the following two-dimensional discontinuous boundary-value problem for the Laplace op-

erator 1:

1w(x1, x2)= 0, (x1, x2) ∈ S \ L , (2.2)

∓β
∂2w

∂x2
1
(x1, 0±)+ P(x1)= µ

∂w

∂x2
(x1, 0±), − a < x1 < a. (2.3)

For R =
√

x2
1 + x2

2 →∞, as in the statement of the standard exterior Dirichlet problem for Laplace’s
equation [Kress 1999], it is required that

w(x1, x2)= w∞+ O
( 1

R

)
, (2.4)

uniformly for all directions. Here β is a parameter representing the elasticity of the surface layer and µ is
the shear modulus in the bulk material [Ru 2010]. We note that a variation of the boundary-value problem
(2.2)–(2.4) has been solved numerically in an infinite strip using Fourier transforms and reduction to a
Riemann–Hilbert problem [Antipov and Schiavone 2011].
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It is convenient to introduce the dimensionless transformations

x ≡
x1

a
, y ≡

x2

a
, P̃(x)≡

P(ax)
P0

, γ ≡
β

aµ
, u(x, y)≡ µ

a P0
w(ax, ay), (2.5)

where P0 is the root-mean-squared value of the input stress along the crack face defined by

P0 =

√
1

2a

∫ a

−a
[P(t)]2 dt,

γ is defined as the dimensionless surface parameter, and u is the normalized antiplane displacement field.
The boundary-value problem (2.2)–(2.4) then becomes

1u(x, y)= 0, (x, y) ∈ S \ L , (2.6)

∓γ
∂2u
∂x2 (x, 0±)+ P̃(x)= ∂u

∂y
(x, 0±), − 1< x < 1, (2.7)

u = u∞+ O
(
1/R̃

)
, R̃ =

√
x2
+ y2
→∞, (2.8)

where u∞ is a constant. Finally, the corresponding dimensionless shear stresses τx and τy are defined
using the above transformations as

σ13 = µ
∂w

∂x1
= P0

∂u
∂x
≡ P0τx , σ23 = µ

∂w

∂x2
= P0

∂u
∂y
≡ P0τy,

with the total normalized stress magnitude τ given by

τ 2
≡ (τx)

2
+ (τy)

2.

Note that (2.1) along with the assumption that the material remains connected (no tearing) at the crack
tips implies that

τ+x =−τ
−

x , τ+y = τ
−

y .

3. Uniqueness of solution

We shall prove that the boundary-value problem (2.6)–(2.8) can have at most one solution. Consider
the difference v(x, y) of any two solutions of the boundary-value problem (2.6)–(2.8). We prove that
v(x, y)≡ 0 in S \ L by adapting the methods used in [Knowles and Pucik 1973]. Clearly v satisfies the
corresponding homogeneous boundary-value problem. Referring to Figure 1, we surround the crack by
a smooth curve ∂� of “radius” ε, contained entirely within the area B ⊂ S. The region exterior to ∂� is
denoted by � and the outer boundary of B by ∂B. We decompose ∂� as

∂�=

4⋃
i=1

∂�i ,

where ∂�1 and ∂�2 are the upper (y =+ε) and lower (y =−ε) portions of the straight portion of ∂�,
respectively (∂�1,2 : x ∈ [−1, 1], y =±ε); and ∂�3 (π/2≤ ϕ ≤ 3π/2) and ∂�4 (−π/2≤ ϕ ≤ π/2) are
the left and right curved portions of ∂�, respectively (in cylindrical polar coordinates).
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Figure 1. Crack surrounded by a smooth curve ∂� of “radius” ε, contained entirely
within the area B ⊂ S.

We define the values of v on the boundary of ∂� to be

v±ε ≡ v(x,±ε) on ∂�1,2,

vr ≡ v(∓1+ ε cos(ϕ), ε sin(ϕ)) on ∂�3,4.

Green’s first identity in the bounded domain B yields∫
B
|∇v|2 d A =

∮
∂B
v
∂v

∂n ds−
∮
∂�

v
∂v

∂n ds. (3.1)

As R→∞ the region B→� and further as ε→ 0, the region �→ S \L . As R→∞, the asymptotic
behavior of (2.8) yields for (3.1)∫

�

|∇v|2 d A =−
∮
∂�

v
∂v

∂n ds =−
4∑

i=1

∫
∂�i

v
∂v

∂n ds

=−

∫ 1

−1
v+ε (∇v

+

ε · (−e2))(−dx)−
∫ 1

−1
v−ε (∇v

−

ε · e2)dx − 2ε
∫ π/2

−π/2
vr (∇vr · (−er ))dθ

=−

∫ 1

−1
v+ε
∂vε

∂y

+

dx −
∫ 1

−1
v−ε
∂vε

∂y

−

dx + 2ε
∫ π/2

−π/2
vr
∂vr

∂r
dθ =−I1− I2+ 2ε I3. (3.2)

The integrals I1 and I2 are determined using the boundary condition (2.7) and the smoothness of the
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solution v [Kress 1999]. Noting that v+ =−v− for antiplane displacement, we have, as ε→ 0,

lim
ε→0

I1 = lim
ε→0

∫ 1

−1
v+ε
∂vε

∂y

+

dx =
∫ 1

−1
v+
∂v

∂y

+

dx =−γ
∫ 1

−1
v+
∂2v

∂x2

+

dx ≡ ν,

lim
ε→0

I2 = lim
ε→0

∫ 1

−1
v−ε
∂vε

∂y

−

dx =
∫ 1

−1
v−
∂v

∂y

−

dx = γ
∫ 1

−1
v−
∂2v

∂x2

−

dx =−ν.

Also,

lim
ε→0
|I3| = lim

ε→0

∣∣∣∣∣
∫ π/2

−π/2
vr
∂vr

∂r
dθ

∣∣∣∣∣=
∣∣∣∣∣
∫ π/2

−π/2
v(±1, 0) ∂v

∂n (±1, 0)dθ

∣∣∣∣∣
≤

∫ π/2

−π/2
|v(±1, 0)∇v(±1, 0)|dθ =

∫ π/2

−π/2
V 2

0 dθ = πV 2
0 .

Taking the limit as ε→ 0 on the right-hand side of (3.2) then yields:∫
S\L
|∇v|2 d A = 0.

Note that in the case when ∂v/∂n has a logarithmic singularity at the crack tips, the integral I3 remains
uniformly bounded as ε→ 0+ since the integrand remains weakly singular [Kress 1999].

Hence, v = const. in S\L . However, given that v+ =−v−, −1≤ x ≤ 1, it follows that, at the crack
tips, v(−1, 0)= v(1, 0)= 0, from which it follows that v ≡ 0 (or, u2 = u1) in S \ L . Consequently, as a
result of the linearity of the problem there can be at most one solution of (2.6)–(2.8).

4. Integral equation

Define the complex antiplane displacement potential φ(z), z ≡ x + iy, as

φ(z)≡ u(x, y)+ iv(x, y).

Here u(x, y) is the displacement field from (2.6)–(2.8) with u∞ = 0 and v(x, y) is the conjugate function.
Define the function θ(x) by θ(x)≡ limy→0+ u(x, y). Then θ is the normalized antiplane displacement
on the upper crack face, where

u(x, 0±)=±θ(x), −1≤ x ≤ 1.

Then, the displacement jump across the crack is given by

2θ(t)= [φ(t)]+− [φ(t)]−

and φ(z) can be represented in the form of a Cauchy integral [Muskhelishvili 1963]:

φ(z)= 1
π i

∫
L

θ(t)
t − z

dt,

so that, as a consequence of (2.1),
θ(−1)= θ(1)= 0. (4.1)



788 TAMRAN H. LENGYEL AND PETER SCHIAVONE

Using the Plemelj formula [Muskhelishvili 1963], after some rearrangement, we obtain the following
integrodifferential equation for the displacement on the crack:

1
π

d
dx

[∫
L

θ(t)
t − x

dt
]
+ γ θ ′′(x)= P̃(x), −1≤ x ≤ 1.

Using integration by parts, we can write this equation as a Fredholm equation of the second kind:

γ θ(x)− 1
π

∫
L
θ(t) ln|t − x |dt = ζ2(x)−C1x −C2, (4.2)

where the function ζ2(x) is defined by

ζ2(x)=
∫ x

0

∫ t

0
P̃(s)dsdt

and C1 and C2 are constants of integration.
The normalized displacement field in the bulk material is then described by

u(x, y)= Reφ(z)= Im
{

1
π

∫
L

θ(t)
t − z

dt
}
.

The corresponding stresses on the crack are then given by

τx(x, 0±)=±θ ′(x) (≡±θx),

τy(x, 0±)= P̃(x)∓ γ θ ′′(x) (≡ θy), −1< x < 1,

where θ ′(x) is given by

γ θ ′(x)− 1
π

∫
L
θ ′(t) ln|t − x |dt = ζ1(x)−C3, (4.3)

C3 is an arbitrary constant, and

ζ1(x)=
∫ x

0
P̃(t)dt.

The constants C1,C2,C3 are determined using the crack-tip conditions (4.1) and the requirement that∫ 1

−1
θ ′(t)dt = 0

which follows from (4.1) as a result of the antiplane nature, (2.1), of the deformations considered here.
Note that (4.3) leads to

γ θ ′′(x)− 1
π

∫
L
θ ′′(t) ln|t − x |dt = P̃(x)−

[ 1
π
θ ′(t) ln|t − x |

]t=1

t=−1
. (4.4)

From (4.4), if the stresses τx (∝ θ ′(±1)) at the crack tips are finite and nonzero, then the stresses τy at
the crack tips (τy ∝ θ

′′(±1)) cannot be finite even for a finite externally applied stress function (P̃). This
result is in agreement with the recent papers [Kim et al. 2013; Walton 2012] where it was noted that by
imposing the further condition θ ′ ≡ 0 at the crack tips (to achieve finite stress [Kim et al. 2010a; 2010b])
we effectively overdetermine the problem so that, contrary to the results reported in these two references,
there can be no solutions of (2.2)–(2.4) with finite stress at the crack tips. In fact, this is clear from the
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uniqueness theorem proved above: once the unique displacement field is determined in the body one
cannot then arbitrarily assign values to the derivatives of the displacement field at the crack tips. This
fact is further reflected in the next section when we actually compute θ and its derivatives.

5. Numerical solution

The displacement and slope on the crack face can be found by solving (4.2) and (4.3), which are accom-
modated by the general form

γ f (x)− 1
π

∫
L

f (t) ln|t − x |dt = ζ(x) (5.1)

for corresponding functions f and ζ . Equation (5.1) is a Fredholm integral equation of the second kind,
which (provided γ is not an eigenvalue for the corresponding integral operator) is well-known to have
a unique continuous solution for each continuous ζ(x) on L . We have approximated the solution for
appropriate values of γ using a discretized (finite-element) residual formulation based on a total of N
linear elements leading to a system of N + 1 linear equations for N + 1 unknowns [Lengyel 2011].

The numerical method can accommodate different input load profiles (P̃(x)). However, if the crack
length is relatively small, it is sufficient to assume a constant input stress (∴ P̃ = ±1). In this way,
the solution to the classical antiplane crack problem with a constant mode-III input load (P̃ = −1 for
convenience) has been solved in [Muskhelishvili 1963; Sih 1965; Broberg 1998], where it is shown that
on the (+) crack face:

θ(x)= u(x, 0+)=
√

1− x2, −1≤ x ≤ 1, (5.2)

θx(x)= τx(x, 0+)=−
x

√
1− x2

, −1< x < 1, (5.3)

θy(x)= τy(x, 0+)=−1, −1< x < 1. (5.4)

Note the singularities in both normalized stress components at the crack tips (when x =±1). Plots of
(5.2) and (5.3) are compared with the numerical model used here (in the case γ = 0) in Figure 2. The
method shows fast and stable convergence to the exact solution in this case. In Figure 3 we plot the
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Figure 2. Plots of (5.2) and (5.3) compared with the numerical model.



790 TAMRAN H. LENGYEL AND PETER SCHIAVONE

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
−0.1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
x

θ(
x)

γ = 0.1
γ = 0.5
γ = 1.0

Figure 3. Effects of various surface parameters γ on the displacement of the (+) crack face.

effects of various surface parameters γ on the displacement of the (+) crack face. It is clear that the
displacement is reduced on the crack face with increasing surface effect. We note also from Figure 4,
left, that the stress θx is finite everywhere across the crack face, even at the crack tips. However, the unit
stress θy , plotted on the right in Figure 4, remains singular at the crack tips. This result contradicts that
presented in [Kim et al. 2010a; 2010b] but is not surprising. As mentioned above, the unique solution
of (2.6) and (2.7) determines a priori the values of θx which are clearly never zero at the crack tips for
any meaningful value of γ .

Figure 5 plots θ(0) (≡ θmax) with increasing N (the number of elements) using different values of the
surface parameter (γ ). These approximations demonstrate rapid convergence with less than 50 elements.
Refinement convergence of the slope at the endpoints (θx(−1) ≡ θ ′max) is shown in Figure 6. There is
convergence here, however, more elements are required as the surface parameter decreases in value. This
is not surprising since, as the surface parameter tends to zero (the classical model) the opposing stresses
(τx ∝ θx ) at the crack tips become singular. Figure 7 shows the (decreased) stress in the bulk material
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Figure 4. Stress θx (left) and unit stress θy (right) across the crack face.
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Figure 5. Plot of θ(0) (≡ θmax) with increasing number of elements, N , using different
values of the surface parameter γ .
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Figure 6. Refinement convergence of the slope at the endpoints (θx(−1)≡ θ ′max).

600

500

400

300

200

100

0
0 20 40 60 80 100

ξ

1/
   

τ

γ = 5

γ = 3

γ = 2

γ = 1

γ = 0

γ = 4

Figure 7. Stress in the bulk material outside the crack due to increasing surface param-
eter γ (ξ(x)≡ x − 1, x > 1).



792 TAMRAN H. LENGYEL AND PETER SCHIAVONE

outside the crack due to an increasing surface parameter γ (ξ(x) ≡ x − 1, x > 1). Full details can be
found in [Lengyel 2011].

5.1. Remark. Finally, we remark that the stability and rapid convergence of our numerical model allows
us to obtain an approximate expression quantifying the effect of γ on the displacement of the crack face
in the case of a constant stress input (relatively small crack length). In fact, using curve-fitting analysis,
our numerical results suggest the following convenient approximation for the displacement field across
the crack face in the case of a constant mode-III load input stress

w(x, 0±)'±a
( P0
µ

)(1− (x1/a)2)(27.67γ+1)/(27.67γ+2)

2γ + 1
, −a ≤ x ≤ a. (5.5)

We find that the expression (5.5) agrees with the corresponding numerical results obtained using the
complete finite element discretization method to an error of less than 5%.

6. Conclusions

The incorporation of surface effects allows for the assumption of energy dispersion on the boundary
which reduces the input shear stress (Figure 4, right). With the exception of the region in the vicinity
of the crack tips, the adjusted input stress magnitude shows a reduction when γ increases. From this
reduction of input shear stress, the displacement (u) and opposing stress (τx ) are reduced and remain finite
across the crack face (including at the crack tips). Figures 3 and 4, left, demonstrate this conclusively
for both displacement (θ ∝ u) and slope (θ ′ ∝ τx ). The displacements and stress magnitudes in the bulk
are also reduced accordingly.

Given the convergence demonstrated in Figures 5 and 6, it is apparent that the function θ(x) (∝ u)
along with it’s derivatives θx(x) (∝ τx ) and θ ′′(x) (∝ τy) are convergent across the crack face. The
function θ ′′(x) does not converge near the crack tips, however all three functions showed a reduction
and convergence across the crack tip when γ increased. Consequently, the incorporation of surface
effects leads to a more stable and convergent numerical model. This additional stability and convergence
is directly related to the effect of γ on the displacement profile. As the solution transitions from a
semicircle (when γ → 0) to a quadratic function (when γ →∞), the stability of the displacement (u)
and stress (τx and τy) increases.
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ON THE CHOICE OF FUNCTIONS SPACES IN THE LIMIT ANALYSIS FOR
MASONRY BODIES

MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

The kinematic and static problems of limit analysis of no-tension bodies are formulated. The kinematic
problem involves the infimum of kinematically admissible multipliers, and the static problem the supre-
mum of statically admissible multipliers. The central question of the paper is under which conditions
these two numbers coincide. This involves choices of function spaces for the competitor displacements
and competitor stresses. A whole ordered scale of these spaces is presented. These problems are
formulated as convex variational problems considered by Ekeland and Témam. The static problem is
unconditionally shown to be the dual problem (in the sense of the mentioned reference) of the kinematic
problem. A necessary and sufficient condition, the normality, guarantees that the kinematic and static
problems give the same result. The normality is not always satisfied, as examples show (one of which
is presented here). The qualification hypothesis of Ekeland and Témam, sufficient for the equality of the
static and kinematic problems, is never satisfied in the spaces of admissible displacements of bounded
deformation or of functions integrable together with the gradient in the power p, 1≤ p<∞. In the cases
of lipschitzian displacements and of smooth displacements, the qualification hypothesis is equivalent to
simple conditions that can be satisfied in the case of the pure traction problem. However, it is shown that
then the space of admissible stresses must be enlarged to contain stress fields represented by finitely or
countably additive tensor-valued measures.

1. Introduction

No-tension (masonry-like) materials [Anzellotti 1985; Giaquinta and Giusti 1985; Del Piero 1989; Di Pas-
quale 1992; Lucchesi et al. 2008a] cannot support all stresses: only negative semidefinite stresses are
possible. Therefore, bodies made of no-tension materials cannot support all loads, certain loads lead
to the collapse of the body. The goal of limit analysis is to determine the limit load, i.e., the largest
possible load prior to collapse. It is customary to assume that the loads depend affinely on a scalar
parameter λ, the loading multiplier, as described in Section 2A, and the problem reduces to determining
the collapse multiplier, i.e., the value of λ corresponding to the limit load. Limit analysis is tradition-
ally based on the static and kinematic theorems, which determine the limit load as the supremum of
statically admissible multipliers and the infimum of kinematically admissible multipliers, respectively.
The traditional definition identifies the collapse multiplier as one with the collapse mechanism (called
strong mechanism in Section 2C below). Under this assumption the supremum of statically admissible
multipliers and the infimum of kinematically admissible multipliers are the same and coincide with the

This research was supported by the Regione of Toscana (project “Tools for modeling and assessing the structural behavior
of ancient constructions: the NOSA-ITACA code”, PAR FAS 2007-2013). Šilhavý’s research was also supported by RVO:
67985840. Both forms of support are gratefully acknowledged.
Keywords: limit analysis, static and kinematic theorems, duality of displacements and forces.
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collapse multiplier. The reader is referred to [Del Piero 1998] for the proofs of the static and kinematic
theorems under this definition. There is no definition of the collapse multiplier in the present paper since
the strong mechanism need not exist (see Example 7.6), and the supremum and infimum can be different,
depending of the choice of the function spaces, as discussed in Example 7.12.

In this paper we call the definitions of the infimum and of the supremum mentioned above the kine-
matic and static problems of limit analysis of no-tension bodies. The kinematic problem involves the
choice of the function space for admissible displacements. The static problem involves the choice of the
function space for admissible stress fields. The central question of the paper is under which conditions
these two numbers coincide. Various choices of the spaces are discussed in detail: for the space of
displacements we consider the subspaces satisfying the null boundary condition on the fixed part of the
boundary of (a) functions of bounded deformation, (b) the Sobolev spaces W 1,p, 1 ≤ p <∞, (c) the
Sobolev space W 1,∞ of lipschitzian displacements, and (d) the space C1 of all smooth displacements on
the closure of the body. Corresponding to these choices we are led to stress spaces which consist, respec-
tively, of (a′) the space of continuous functions, (b′) the space Lq of stress fields that are integrable with
the power q where q is the Hölder conjugate exponent of p, (c′) the stress fields represented by finitely
additive measures on the body that are absolutely continuous with respect to the Lebesgue measure, and
(d′) the stress fields represented by countably additive Borel measures on the closure of the body.

The problems mentioned are formulated as convex variational problems considered in [Ekeland and
Témam 1999, Chapter III]. Following the similar application of the duality theory to the deformation
(Hencky) theory of plasticity in [Témam and Strang 1980] and [Témam 1983], the static problem of the
limit analysis is unconditionally shown to be the dual problem (in the sense of [Ekeland and Témam
1999]) of the kinematic problem. The theory provides a necessary and sufficient condition for the primal
and dual variational problems giving the same result, the normality. This is particularized to the static
and kinematic problems of no-tension bodies. The condition can be applied with any choice of function
spaces, and different choices lead to different results. Another condition, called qualification hypothesis
in [Ekeland and Témam 1999, Chapter III, Remark 2.4], provides a sufficient condition. However, normal-
ity is difficult to verify. The qualification hypothesis even cannot be satisfied, with some function spaces,
by the no-tension material, at variance with the deformation theory of plasticity. This failure occurs in
the spaces of admissible displacements as in (a) and (b), no matter how tame the loads. An example is
presented in which the static and kinematic problems give different results. The necessary and sufficient
condition and the qualification hypothesis can be satisfied with the choices (c) and (d). However, then
the space of admissible stresses must be enlarged to contain measures as mentioned above.

Another application of the duality theory, different from the one employed in [Témam 1983], is used
to derive a simple condition for the static admissibility of a given multiplier.

In the introductions to the subsequent sections we give brief outlines of the material presented. We
also refer to the summary in Section 8 for a more detailed discussion of the results of the paper.

Throughout, we use the conventions for vectors and second order tensors identical with those in [Gurtin
1981]. Thus Lin denotes the set of all second order tensors on Rn , i.e., linear transformations from Rn

into itself, Sym is the subspace of symmetric tensors, Sym+ the set of all positive semidefinite elements
of Sym; additionally Sym− is the set of all negative semidefinite elements of Sym. The scalar product
of A, B ∈ Lin is defined by A · B = tr(ABT) and | · | denotes the associated euclidean norm on Lin. If
A, B ∈ Sym, we write A≥ B to say that A− B ∈ Sym+. We denote by 1 the unit tensor in Sym.
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2. Abstract setting of the limit analysis for no-tension materials

We start this section with an informal introduction to the no-tension body and applied loads, i.e., surface
tractions and body forces. Section 2B formulates the problem abstractly, with the energy of the loads
as linear functionals on displacements and stresses as linear functionals on strains. Section 2C gives
definitions of kinematically and statically admissible multipliers, of the infima and suprema thereof,
of the collapse mechanism, and strong collapse mechanism. Section 2D reviews the duality theory
of Ekeland and Témam. It presents the normality condition, which is equivalent to the equality of
the results of the primal and dual problems, and a sufficient condition, the qualification hypothesis.
Section 2E particularizes Section 2D to the kinematic and static problems of limit analysis of no-tension
bodies. Proposition 2.5 gives a necessary condition for the equality of the results of the kinematic and
static problems (i.e., for the normality) and Proposition 2.6 a sufficient condition (i.e., the qualification
hypothesis). Finally Proposition 2.8 gives a necessary and sufficient condition for a multiplier to be
statically admissible.

2A. Loads and potential energy. Let � be a reference configuration of a continuous body made of a
no-tension material; it is assumed that � is a bounded connected open set in Rn (typically n = 2 or n = 3)
with Lipschitz boundary ∂� in the sense of [Ekeland and Témam 1999, Chapter X, Section 2.2], of outer
normal n. The body is fixed on an area measurable subset D of ∂� while on S := ∂� \D the body
is subjected to surface tractions depending on the loading multiplier as specified below. We consider
displacements v : �→ Rn from a Banach space of displacements V . Several choices of V are given
below, and in all these choices it is meaningful to speak about the values of v on the boundary ∂�, and
in particular it is meaningful to require that

v = 0 on D, (2-1)

either in the classical or in some generalized sense. We denote by W the set of all displacements from
V which satisfy (2-1).

We assume that the body is subjected to loads consisting of a surface traction on S and a body force in
�; both the surface traction and the body force depend affinely on a real parameter λ called the loading
multiplier. Thus if λ ∈ R, the surface tractions s(λ) : S→ Rn and the body force b(λ) : �→ Rn are
given by

s(λ)= s◦+ λs̄, b(λ)= b◦+ λb̄,

where s◦ and s̄ are vector-valued functions on S and b◦ and b̄ are vector-valued functions on �. The
functions s◦, s̄, b◦, b̄ have to belong to appropriate spaces to make the discussion that follows meaningful.
We call the pair (s(λ), b(λ)) the loads corresponding to λ, the pair (s◦, b◦) the permanent loads and the
pair (s̄, b̄) the variable loads. We define the potential energy 〈l(λ), v〉 of the loads corresponding to λ
on a displacement v by

〈l(λ), v〉 = 〈l◦, v〉+ λ〈l̄, v〉 (2-2)

where

〈l◦, v〉 =
∫
�

b◦ · v d Ln
+

∫
S

s◦ · v d Hn−1, (2-3)
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and

〈l̄, v〉 =
∫
�

b̄ · v d Ln
+

∫
S

s̄ · v d Hn−1, (2-4)

for v ∈W , with Ln and Hn−1 the volume and area measures, i.e., the Lebesgue measure and the (n−1)-
dimensional Hausdorff measure in Rn . Here the integrals are interpreted either classically or in an
appropriate generalized sense to be precisely specified below.

We further define the infinitesimal strain tensor Ê(v) of the displacement v ∈W by

Ê(v)= 1
2(∇v+∇vT), (2-5)

which will be either a function defined for almost all points of �, taking the values in the space Sym, or
a Sym-valued measure. Throughout, “almost all”, “almost every” and “almost everywhere” mean with
respect to the Lebesgue measure. It is then meaningful to consider the space W+ of all displacements
v ∈W for which Ê(v) is either a positive semidefinite tensor for almost every point of � or a measure
taking values in the set of positive semidefinite tensors. This is a convex cone in W , i.e., we have the
following implications:

v,w ∈W+ ⇒ v+w ∈W+,

v ∈W+ and t ∈ R, t ≥ 0 ⇒ tv ∈W+.

We assume that for the selected space W , the strain tensors Ê(v) : �→ Sym belong to some Banach
space Y , which will form either an appropriately chosen class of functions F : �→ Sym, possibly
defined only almost everywhere in �, or the space of Sym valued measures. We furthermore denote
by Y+ the convex cone of all F ∈ Y such that either F is positive semidefinite almost everywhere or a
measure with values in the space of positive semidefinite tensors. Thus if v ∈W+, then Ê(v) ∈ Y+.

Next, we consider the stress fields T . In the classical cases, this will be a function from � to Sym,
possibly defined only almost everywhere. We shall also consider stress fields T represented by a more
general object, viz., a finitely additive or countably additive measure to be specified in the subsequent
formal treatment. We denote by Y ∗ the linear space of all stress fields, which we assume to form a
closed subspace of the Banach space Y ′ of all continuous linear functionals on Y , i.e., the dual of Y . We
denote by (T , F) the pairing between elements T ∈ Y ∗ and elements F ∈ Y , i.e., the value of the linear
functional T on an element F. In the classical case we have

(T , F)=
∫
�

T · F d Ln
; (2-6)

the integral has to be interpreted in a generalized sense in the more general cases of Y and Y ∗. The stress
fields in the masonry bodies take negative semidefinite values. If T :�→ Sym is a negative semidefinite
classical function, we have

(T , F)≤ 0 for all F ∈ Y+. (2-7)

In the classical case we denote by Y ∗− the set of all stress fields on � which take negative semidefinite
values almost everywhere on �. When the stress field T ∈ Y ∗ is not represented by a function, we define
Y ∗− as the set of all elements of Y ∗ which satisfy (2-7). (In the classical case this leads to the requirement
posed previously.) We say that a stress field T is Y ∗ admissible if T ∈ Y ∗−.
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2B. Abstract setting of the problem. We summarize the essential features of the discussion in the pre-
ceding section. We consider general objects

W, l, l◦, Y, Y ∗, Ê, Y+, Y ∗− (2-8)

of the following nature:

(i) W is a Banach space;

(ii) l◦ and l̄ are elements in the dual W ∗ of W ;

(iii) Y is a Banach space and Y ∗ is a closed subspace of the dual Y ′ of Y ;

(iv) Ê is a continuous linear transformation from W to Y ;

(v) Y+ and Y ∗− are closed convex cones in Y and in the dual Y ∗ of Y , respectively, which are dual to
each other in the sense that

{F ∈ Y : (T , F)≤ 0 for every T ∈ Y ∗−} = Y+,

{T ∈ Y ∗ : (T , F)≤ 0 for every F ∈ Y+} = Y ∗−.

We interpret W as the set of displacement fields over � satisfying the kinematical constraint (2-1), and
l◦ and l̄ as the energy functionals of the permanent and variable loads. We then define l(λ) by (2-2) for
any λ ∈ R. We denote by 〈 · , · 〉 the dual pairing between W ∗ and W ; i.e., 〈m, v〉 ∈ R denotes the value
of the linear functional m ∈ W ∗ on an element v ∈ W . The transformation Ê( · ) associates with any
displacement v ∈W an element Ê(v) ∈ Y , which we interpret as the strain field of v. We define W+ by

W+ = {v ∈W : Ê(v) ∈ Y+}

and view W+ as the set of all displacements with positive semidefinite strain tensor over �. We denote
by ( · , · ) the dual pairing between Y ∗ and Y , i.e., (T , F) ∈ R denotes the value of the linear functional
T ∈ Y ∗ on the element F ∈ Y . The stress fields are interpreted as the elements of Y ∗, and Y ∗− is
interpreted as the set of all negative semidefinite stress fields. We say that T ∈ Y ∗ is an admissible stress
field if T ∈ Y ∗−; to emphasize the space of stresses, we sometimes say that T is Y ∗ admissible. We say
that a stress field T ∈ Y ∗ equilibrates the loads corresponding to λ if

(T , Ê(v))= 〈l(λ), v〉

for every v ∈W .
In Sections 2C and 2E, we will use the abstract setting described above. In subsequent sections we

make concrete choices for the objects introduced here.

2C. Kinematically and statically admissible multipliers. We say that a multiplier λ is kinematically
admissible if

there exists a v ∈W+ such that 〈l̄, v〉 = 1 and 〈l(λ), v〉 = 0. (2-9)

The last notion depends on the choice of the space W , and to emphasize this, we will sometimes say that
λ is W -kinematically admissible. We denote the set of all kinematically admissible multipliers by 3̄. If
λ is given, we call the element v as in (2-9) a mechanism corresponding to λ.
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We say that a multiplier λ ∈ R is statically admissible if there exists an admissible stress field T which
equilibrates the loads corresponding to λ. We shall sometimes say that λ is Y ∗-statically admissible. We
denote by 3 the set of all statically admissible multipliers.

The sets 3̄ and 3 are intervals, possibly empty, singletons, bounded, unbounded, open, or semiopen.
To see, e.g., that 3̄ is an interval, we note that if λ,µ∈ 3̄ and s≥ 0, t ≥ 0, s+t = 1, then also sλ+tµ∈ 3̄
since if v,w ∈W+ denote mechanisms corresponding to λ and µ, respectively, then sv+ tw ∈W+ is a
mechanism corresponding to sλ+ tµ ∈ 3̄. That 3 is an interval is proved similarly.

The interval 3 is situated to the left of the interval 3̄ in the sense that

if λ ∈3 and µ ∈ 3̄ then λ≤ µ. (2-10)

Hence the intersection of 3 and 3̄ can contain at most one point. To prove (2-10), we note that if µ
is kinematically admissible and v is a mechanism corresponding to it, then µ = −〈l◦, v〉 while if λ is
statically admissible and T ∈ Y ∗− a corresponding stress field, then 0≥ (T , Ê(v))= 〈l(λ), v〉 and hence
λ≤−〈l◦, v〉, which gives (2-10).

Central to our considerations are the numbers (or the symbols∞ and −∞)

λ̄W := inf{λ ∈ R : λ is W kinematically admissible} (2-11)

and

λY ∗ := sup{λ ∈ R : λ is Y ∗ statically admissible}. (2-12)

We call (2-11) the kinematic problem and (2-12) the static problem. We furthermore call λ̄W the critical
multiplier of the kinematic problem and λY ∗ the critical multiplier of the static problem. The implication
in (2-10) gives

λY ∗ ≤ λ̄W . (2-13)

We examine conditions under which we have the equality in (2-13). Example 7.12, below, shows that
under common choices of function spaces and under bounded and piecewise continuous loads we have
the strict inequality sign. In the following section we treat the equality in (2-13) by applying the duality
theory of [Ekeland and Témam 1999].

We close this section with a simple sufficient condition for the equality in (2-13). We say that the
multiplier λc ∈ R admits a strong mechanism if there exists a statically admissible stress field Tc ∈ Y ∗−

corresponding to λc and a vc ∈W such that

〈l̄, vc〉 = 1 and (T − Tc, Ê(vc))≤ 0 for every T ∈ Y ∗−.

Proposition 2.1. If λc admits a strong mechanism vc, then

λY ∗ = λ̄W = λc (2-14)

and vc is a corresponding mechanism.

Proof. The definition requires that λc be statically admissible and hence

λc ≤ λY ∗ . (2-15)



ON THE CHOICE OF FUNCTIONS SPACES IN THE LIMIT ANALYSIS FOR MASONRY BODIES 801

We have (T − Tc, Ê(vc)) ≤ 0 for every T ∈ Y ∗−; replacing T by tT where t > 0, we obtain another
element of Y ∗− and hence (tT − Tc, Ê(vc)) ≤ 0; dividing by t and letting t → ∞ we thus obtain
(T , Ê(vc))≤ 0, which by the assumed duality of the cones Y+ and Y ∗− stated in the preceding section
implies that Ê(vc) ∈ Y+, and hence vc ∈ W+. Setting T = 0 in the inequality (T − Tc, Ê(vc)) ≤ 0
we obtain (Tc, Ê(vc)) ≥ 0 and as also Tc ∈ Y ∗− and Ê(v) ∈ Y+, we have (Tc, Ê(vc)) ≤ 0 and hence
(Tc, Ê(vc))= 0. Since Tc balances the loads corresponding to λc, we have

0= (Tc, Ê(vc))= 〈l(λc), vc〉

and since 〈l̄, vc〉 = 1 as part of the definition of the strong mechanism, we see that λc is kinematically
admissible and vc a mechanism corresponding to it. Thus

λ̄W ≤ λc. (2-16)

Combining inequalities (2-15) and (2-16) with (2-13) we obtain (2-14). Then vc is a corresponding
mechanism. �

Remark 2.2. In [Del Piero 1998, IV.1], a definition is given of collapse mechanism for the general case
of a normal linear material (of which the no-tension material is a special case) which eventually leads
to the properties embodied in the present definition of strong mechanism. Indeed, as a consequence of
Del Piero’s definition and of the assumptions of his kinematic theorem in the same work, the collapse
mechanism in the sense of [Del Piero 1998] is assumed to exist. If we denote it by v̄c, it satisfies

〈l̄, v̄c〉> 0,

(T − Tc, Ê(v̄c))≤ 0 for every T ∈ Y ∗−.

(Cf. the text between Equations (42) and (43), and the second sentence after Equation (37), respectively.)
It then follows that vc := v̄c/〈l̄, v̄c〉 is a strong mechanism in the present sense. Thus Del Piero’s definition
of collapse mechanism is more restrictive than the present definition of strong mechanism and, hence
Proposition 2.1 covers all cases treated in the version of the kinematic theorem in [Del Piero 1998].

We consider the assumption of the existence of collapse mechanism as too restrictive. Indeed, in
Example 7.6 (below) we present loads which satisfy (2-14) and yet there is no collapse mechanism in
the sense of [Del Piero 1998, Definition IV.1] or strong mechanism in the present sense. In the subsequent
treatment we seek to prove (2-14) under more general assumptions.

2D. Primal and dual variational problems of convex analysis. We here outline the duality theory for
convex variational problems developed in [Ekeland and Témam 1999, Chapter III].

Consider the variational problem [loc. cit., Remark 4.2]

J̄ = inf{C(v)+ D(Ê(v)) : v ∈W }, (2-17)

where C :W → R∪ {∞}, D : Y → R∪ {∞} are general convex functions on Banach spaces W , Y and
Ê( · ) :W → Y is a general bounded linear transformation. We call (2-17) the primal problem.

The dual problem is defined by

J = sup{−C∗(−Ê∗T )− D∗(T ) : T ∈ Y ∗}, (2-18)
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where W ∗ is the dual of W and Y ∗ is a closed subspace of the dual space Y ′ of Y , C∗ :W ∗→ R∪ {∞},
D∗ : Y ∗→ R∪ {∞} are the convex conjugates of C , D, respectively, and Ê∗ : Y ∗→W ∗ is the adjoint
transformation of Ê. The convex conjugate functions are defined by

C∗(m)= sup{〈m, v〉−C(v) : v ∈W },

D∗(T )= sup{(T , F)− D(F) : F ∈ Y },

for each m ∈W ∗, T ∈ Y ∗, and the adjoint Ê∗ is a linear transformation defined by the relation

(T , Ê(v))= 〈Ê∗T , v〉

for each v ∈W , T ∈ Y ∗.
We assume that the functions C and D are proper, i.e., each of them is less than∞ somewhere and

bigger than −∞ everywhere. One has generally

−∞≤ J ≤ J̄ ≤∞.

Let H : Y → R∪ {−∞,∞} be defined by

H(F)= inf{C(v)+ D(Ê(v)− F) : v ∈W }, (2-19)

for F ∈ Y , so that H(0) = J̄ . The function H is convex. The problem (2-17) is said to be normal if
H(0) is finite and H is lower semicontinuous at 0.

Proposition 2.3. The following conditions are equivalent:

(i) The problem (2-17) is normal.

(ii) One has

J = J̄ (2-20)

and this number is finite.

The problem (2-17) is said to satisfy the qualification hypothesis if there exists a v◦ ∈W such that

C(v◦) <∞, D(Ê(v◦)) <∞ and D is continuous at Ê(v◦). (2-21)

See [Ekeland and Témam 1999, Chapter III, Remark 2.4].

Proposition 2.4. Suppose the problem (2-17) satisfies the qualification hypothesis. Then:

(i) Equation (2-20) holds.

(ii) If the number J = J̄ is finite, the dual problem has a solution, i.e., there exists a T ∈ Y ∗ such that

J =−C∗(−Ê∗T )− D∗(T ).

We emphasize that the qualification hypothesis is sufficient for (2-20) but not necessary, the necessary
and sufficient condition is the normality.
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2E. Primal and dual variational problems of limit analysis. The definition (2-11) of λ̄W is easily seen
to be equivalent to

λ̄W = inf{−〈l◦, v〉 : v ∈W+, 〈l̄, v〉 = 1}. (2-22)

Proposition 2.5. Let H : Y → R∪ {−∞,∞} be given by

H(F)= inf{−〈l◦, v〉 : v ∈W, Ê(v)− F ∈ Y+, 〈l̄, v〉 = 1}, (2-23)

F ∈ Y . Then:

(i) H is convex and nondecreasing in the sense that H(F)≤ H(G) whenever G− F ∈ Y+.

(ii) We have
λY ∗ = λ̄W ∈ R

if and only if H(0) is finite and H is lower semicontinuous at 0.

Here the finiteness of H(0) and the lower semicontinuity of H at 0 is the normality condition for (2-22).

Proof. The problem (2-22) can be rewritten as

λ̄W = inf{C(v)+ D(Ê(v)) : v ∈W } (2-24)

where
C :W → R∪ {∞}, D : Y → R∪ {∞}

are the functions defined by

C(v)=
{
−〈l◦, v〉 if v ∈W and 〈l̄, v〉 = 1,
∞ if v ∈W and 〈l̄, v〉 6= 1,

(2-25)

D(F)=
{

0 if F ∈ Y+,
∞ if F ∈ Y \ Y+.

(2-26)

The dual problem reads

λY ∗ = sup{λ ∈ R : λ is statically admissible}. (2-27)

To prove the last statement, calculate C∗ and D∗. If m ∈W ∗, then

C∗(m)= sup{〈m+ l◦, v〉 : v ∈W, 〈l̄, v〉 = 1}

and since this supremum is finite if and only if m+ l◦ and l̄ are parallel, say m+ l◦ = −λl̄ for some
λ ∈ R, and then 〈m+ l◦, v〉 = −λ, we have

C∗(m)=
{
−λ if there exists a λ ∈ R such that 〈m, v〉+ 〈l(λ), v〉 = 0 for every v ∈W,
∞ otherwise,

(2-28)

m ∈W ∗. Letting T ∈ Y ∗, setting m=−Ê∗T and noting that the finite regime in (2-28) occurs if and only
if T equilibrates the loads corresponding to λ, in the sense that

(
T , Ê(v)

)
= 〈l(λ), v〉 for each v ∈ W ,

we obtain

C∗(−Ê∗T )=
{
−λ if T equilibrates the loads corresponding to λ,
∞ otherwise.
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Furthermore, the definition (2-26) of D∗ and the fact that Y+ is a cone implies that

D∗(T )=
{

0 if T ∈ Y ∗−

∞ if T ∈ Y ∗ \ Y ∗−

T ∈ Y ∗. Thus the right-hand side of the dual variational problem (2-18) is

−C∗(−Ê∗T )− D∗(T )=
{
λ if T equilibrates the loads corresponding to λ and T ∈ Y ∗−,
−∞ otherwise,

and (2-27) follows.
The function H of (2-19) is given by (2-23).

(i) H is convex (as stated generally in Section 2D). To prove the nondecreasing character of H , it suffices
to note that if G− F ∈ Y+ then

{v ∈W, Ê(v)− G ∈ Y+, 〈l̄, v〉 = 1} ⊂ {v ∈W, Ê(v)− F ∈ Y+, 〈l̄, v〉 = 1}.

(ii) This follows from Proposition 2.3. �

Proposition 2.6. Assume that

there exists a v̄◦ in W+ satisfying 〈l̄, v̄◦〉> 0 such that Ê(v̄◦) is an interior point of Y+. (2-29)

Then
λY ∗ = λ̄W ; (2-30)

if , additionally, the number λY ∗ = λ̄W is finite, then λ̄W is statically admissible.

Condition (2-29) is the qualification hypothesis for Problem (2-22).

Proof. Consider the problem (2-24) with C and D given by (2-25) and (2-26). This problem satisfies
the qualification hypothesis if and only if there exists a v̄◦ as in (2-29). Indeed, assume that the problem
satisfies the qualification hypothesis. Then there exists a point v̄◦ such that (2-21) hold; the first of these
three conditions and the definition of C gives that 〈l̄, v̄◦〉 = 1; the second of these conditions and the
definition of D gives v̄◦ ∈ W+, and the third condition gives that D is finite in some neighborhood of
Ê(v̄◦). Then v̄◦ is as in (2-29). Conversely, if (2-29) holds, then the point v◦ := v̄◦/〈l̄, v̄◦〉 satisfies (2-21).

Then the assertion of the proposition follows from Proposition 2.4. �

Remark 2.7. Condition (2-29) is never satisfied if one uses displacements from the space BD of func-
tions of bounded deformation or if one uses displacements from the Sobolev space W 1,p of functions
integrable together with the gradient in the power p where 1 ≤ p < ∞. Indeed, we shall see that
then the cone Y+ has empty interior; see Sections 3 and 4. The cone Y+ has nonempty interior if one
uses lipschitzian displacements or continuously differentiable displacements on the closure of �, see
Sections 5 and 6. However, we shall see that in the case of continuously differentiable displacements,
(2-29) can be satisfied essentially only in the pure traction problem, when D=∅. Condition (2-29) is
only sufficient for (2-30); a necessary and sufficient condition is provided by 2.5: the finiteness of H(0)
and lower semicontinuity of H at 0. The last condition is difficult to verify in concrete cases. Only
in the cases of lipschitzian displacements or of continuously differentiable displacements, the lower
semicontinuity of H at 0 reduces to verifying lower semicontinuity of a real function of real variable.



ON THE CHOICE OF FUNCTIONS SPACES IN THE LIMIT ANALYSIS FOR MASONRY BODIES 805

Lower semicontinuity frequently holds even when (2-29) fails to hold, because in concrete cases of loads
we often have the equality (2-30).

We now address the problem of statical admissibility of a given multiplier λ ∈ R.

Proposition 2.8. A multiplier λ is Y ∗-statically admissible if and only if there exists a c <∞ such that

sup{〈l(λ), v〉 : v ∈W, Ê(v)− F ∈ Y+} ≤ c|F| (2-31)

for every F ∈ Y , where | · | denotes the norm on Y .

Condition (2-31) is the normality of the problem of static admissibility of a given λ. This condition
will be employed in Example 7.6. Clearly (2-31) implies that

〈l(λ), v〉 ≤ 0 (2-32)

for every v ∈W+. However, (2-32) does not suffice for the static admissibility of λ; see Example 7.12
and Remark 7.15, below. Inequality (2-31) says, roughly, that if we allow displacements with slightly
negative strain, then 〈l(λ), v〉 can become positive, but not too much.

Proof. Consider the problem
Ī = inf{−〈l(λ), v〉 : v ∈W+}. (2-33)

This problem takes the form
Ī = inf{C(v)+ D(Ê(v)) : v ∈W } (2-34)

with

C(v)=−〈l(λ), v〉 and D(F)=
{

0 if F ∈ Y+,
∞ otherwise,

for v ∈W , F ∈ Y , and with Ê( · ) the small strain mapping. Problem (2-34) reads explicitly

Ī =
{

0 if 〈l(λ), v〉 ≤ 0 for every v ∈W+,
−∞ otherwise.

(2-35)

Indeed, if 〈l(λ), v〉 ≤ 0 for every v ∈W+ then the infimum in (2-33) is taken over the set of nonnegative
numbers and thus Ī ≥ 0; on the other hand, setting v = 0 in (2-33) we obtain Ī ≤ 0 and thus we have
the first regime in (2-35). In the second regime we have 〈l(λ), v̄〉> 0 for some v̄ ∈W+; setting v = sv̄
where s > 0 in (2-33) we obtain

Ī ≤−s〈l(λ), v̄〉;

as this must be satisfied for all s > 0; we have the value asserted by the second regime in (2-35).
We determine the dual of (2-34). We have

C∗(m)=
{

0 if m =−l(λ),
∞ otherwise,

(2-36)

m ∈W ∗, and

D∗(T )=
{

0 if T ∈ Y ∗−,
∞ otherwise,
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T ∈ Y ∗. Setting m =−Ê∗T in (2-36), we obtain

C∗(−Ê∗T )=
{

0 if Ê∗T = l(λ),
∞ otherwise,

T ∈ Y ∗. Then

−C∗(−Ê∗T )− D∗(T )=
{

0 if Ê∗T = l(λ) and T ∈ Y ∗−,
−∞ otherwise,

T ∈ Y ∗. Noting that the conditions Ê∗T = l(λ) and T ∈ Y ∗− mean exactly that λ is Y ∗-statically
admissible, we have the following: the dual problem of (2-34) reads

I =
{

0 if λ is Y ∗ statically admissible,
−∞ otherwise.

(2-37)

The function H : Y → R∪ {−∞,∞} of (2-19) corresponding to Problem (2-34) is given by

H(F)= inf{−〈l(λ), v〉 : v ∈W, Ê(v)− F ∈ Y+};

the function H has the following properties:

(i) H is convex.

(ii) H is nondecreasing in the sense that H(F)≤ H(G) whenever G− F ∈ Y+.

(iii) H(F)≤ 0 if −F ∈ Y+.

(iv) H(s F)= s H(F) for every F ∈ Y and s > 0.

(v) either H(0)= 0 or H(0)=−∞.

Indeed, (i) follows from the convexity of the general H stated in Section 2D. (ii) follows from the fact
that if G− F ∈ Y+ then

{v ∈W, Ê(v)−G ∈ Y+} ⊂ {v ∈W, Ê(v)− F ∈ Y+}.

(iii) follows from the fact that if −F ∈ Y+ then

0 ∈ {v ∈W, Ê(v)− F ∈ Y+}.

(iv) follows from the equation

{v ∈W, Ê(v)− s F ∈ Y+} = s{v ∈W, Ê(v)− F ∈ Y+}.

(v) is proved by noting that H(0)≤ 0 by (iii) and H(0)= s H(0) for every s > 0 by (iv).
By definition, the problem (2-34) is normal if and only if H(0)= 0 and H is lower semicontinuous at

0. By Proposition 2.3 the normality is equivalent to I = Ī ∈ R and this in turn is equivalent to the statical
admissibility of λ. Thus, to prove that (2-31) is equivalent to the statical admissibility of λ, we have to
show that the conditions H(0)= 0 and H is lower semicontinuous at 0 are equivalent to (2-31).

Indeed, let H(0)= 0 and let H be lower semicontinuous at 0. Then H is bounded from below on the
unit ball in Y in the sense that there exists a c > 0 such that

H(F)≥−c for all F ∈ Y with |F| ≤ 1.
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The positive homogeneity of H asserted in (iv) then implies

H(F)≥−c|F| for all F ∈ Y, (2-38)

and the definition of H gives (2-31). Conversely, if (2-31) holds then we have (2-38) and this in turn
implies that H(0)≥ 0. As by (v) we have H(0)≤ 0, this implies H(0)= 0, and (2-38) gives that H is
lower semicontinuous at 0. �

Proposition 2.9. Let λ ∈ R. If there exists a v◦ ∈ W+ such that Ê(v◦) is an interior point of Y+ then λ
is Y ∗ statically admissible if and only if 〈l(λ), v〉 ≤ 0 for all v ∈W+.

The hypothesis of this proposition is the qualification condition for the problem of the static admissi-
bility of λ.

Proof. Problem (2-33) satisfies the qualification hypothesis if and only if there exists a v◦ ∈ W+ such
that Ê(v◦) is an interior point of Y+. This is proved in the same way as in Proposition 2.6. Under the
qualification hypothesis we have the equality I = Ī by Proposition 2.4 and the explicit forms (2-35) and
(2-37) of the primal and dual problems show that λ is Y ∗-statically admissible if and only if 〈l(λ), v〉 ≤ 0
for all v ∈W+. �

3. Displacements in BD and continuous stresses

This section presents the kinematic and static problems with the choice of displacements of bounded
deformation and with the choice of continuous tensor fields as the space of stresses. The qualification
hypothesis as a sufficient condition for the equality of the results of the kinematic and static problems
can never be satisfied with this choice.

3A. Displacements, loads, and energies in the setting of BD. We define the objects (2-8) as follows.
We put

W =WBD := {v ∈ BD(�) : v = 0 in the sense of trace on D},

Y =M(�,Sym),

so that Ê( · ), defined by (2-5), is a bounded linear transformation from WBD to M(�,Sym). (We refer to
the Appendix for an outline of the notation for the functions spaces employed here and in the subsequent
treatment.) Furthermore, we put

Y+ =M(�,Sym+) := {F ∈M(�,Sym) : F(A)≥ 0 for every Borel subset of �},

W+ =W+BD := {v ∈WBD : Ê(v) ∈M(�,Sym+)}.

Finally, we set
Y ∗ = C0(cl�,Sym)

and the duality pairing is given by

(T , F)=
∫
�

T · d F

for every T ∈ C0(cl�,Sym) and every F ∈M(�,Sym). The cone Y ∗− is given by

Y ∗− = C0(cl�,Sym−)= {T ∈ C0(cl�,Sym) : T ≤ 0 on �}.
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Remark 3.1. It is possible to introduce a duality between stresses and strains under different hypotheses
on these objects. Namely the duality theory in [Dal Maso et al. 2007, Section 3] gives the following
result (see also [Anzellotti 1983] and [Kohn and Témam 1983]): if T is a stress field in the set

S := {T ∈ L∞(�,Sym) : div T ∈ Ln(�,Rn)}

and v ∈ BD(�) then there exists a measure [T , Ê(v)] ∈M(�,R) which behaves well under the weak
convergence of T and such that [T , Ê(v)] = T · Ê(v) if T is continuous on cl�. The measure thus plays
the role of the product T · Ê(v) if T is not continuous on cl� and the value [T , Ê(v)](�) the role of∫
�

T · d Ê(v). We can define the duality pairing between any T ∈ S and F in the space

Z := {F = Ê(v)+G : v ∈ BD(�), G ∈ L1(�,Sym)}

by

(T , F)= [T , Ê(v)](�)+
∫
�

T · G d Ln.

It is easily shown that the value of (T , F) is independent of the choice of v and G. We do not follow
this possibility here, as the results under this duality are analogous to the results presented below.

To ensure that the energies of the loads, interpreted as functionals of displacements, are in W ∗, we
assume that the loads are represented by functions

s◦, s̄ ∈ L∞(S,Rn), b◦, b̄ ∈ Ln(�,Rn),

and define l◦ and l̄ classically by the integrals in (2-3) and (2-4).

3B. Limit analysis in the B D setting. We define λ̄W and λY ∗ by

λ̄W = λ̄BD := inf{λ ∈ R : λ is WBD kinematically admissible},

λ∗Y = λ◦ := sup{λ ∈ R : λ is C0(cl�,Sym) statically admissible}.
(3-1)

The sufficient condition of Proposition 2.6 for the equality λ◦ = λ̄BD (i.e., the qualification hypothesis)
is never satisfied in the present case since M(�,Sym+) has empty interior. To see the last, let F be any
element of M(�,Sym+), let � j ⊂� be a decreasing sequence of Borel sets such that Ln(� j ) > 0 for
all j and

⋂
∞

j=1� j =∅, and let the sequence Fj be defined by

Fj (A)= F(A∩ (� \� j ))−Ln(A∩� j )1

for every Borel subset A of Rn . Then Fj /∈M(�,Sym+) for all j and Fj→ F in M(�,Sym) as j→∞.
Thus every point of M(�,Sym+) is on the boundary of M(�,Sym+).

4. Displacements in W1, p, 1≤ p <∞, and stresses in Lq ,∞≥ q > 1

In Section 4A we consider the Sobolev spaces with finite exponent as the space of displacements and the
space of power integrable tensor fields as stresses. Section 4B defines the corresponding multipliers for
the kinematic and static problems, and shows that the qualification hypothesis can never be satisfied with
this choice. Finally, in Section 4C a density condition is formulated to guarantee that the infimum of the
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kinematic problem with the space of displacements of bounded deformation equals the infimum of the
kinematic problem with the Sobolev space. Section 7B gives a sufficient condition for this density.

4A. Displacements, loads, and energies in the setting of power integrable functions. We assume that
1≤ p <∞ is a given number and denote by

q :=
{

p/(p− 1) if p > 1,
∞ if p = 1,

the Hölder conjugate exponent. We define the objects (2-8) as follows. We put

W =Wp := {v ∈W 1,p(�,Rn) : v = 0 in the sense of trace on D},

Y = L p(�,Sym),

so that Ê( · ), defined by (2-5), is a bounded linear transformation from Wp to L p(�,Sym). We also put

Y+ = L p(�,Sym+) := {F ∈ Y : F ≥ 0 almost everywhere on �},

W+ =W+p := {v ∈Wp : Ê(v) ∈ L p(�,Sym+)}.

Finally, Y ∗ is set equal to the dual of Y , i.e.,

Y ∗ = Lq(�,Sym),

and the duality pairing (T , F) is given by (2-6), as is well known. The cone Y ∗− is given by

Y ∗− = Lq(�,Sym−)= {T ∈ Lq(�,Sym) : T ≤ 0 almost everywhere on �}.

To ensure that the energies of the loads, interpreted as functionals of displacements, are in W ∗, we
distinguish the cases p < n, p = n and p > n. If p < n, we assume that the loads are represented by
functions

s◦, s̄ ∈ Ls(S,Rn), b◦, b̄ ∈ L t(�,Rn), (4-1)

where

s =
(n− 1)p
n(p− 1)

, t =
np

np− n+ p
,

and define l◦ and l̄ classically by the integrals in (2-3) and (2-4). If p = n, we assume that the loads are
represented by functions as in (4-1), with some s, t satisfying

1< s ≤∞, 1< t ≤∞

and again define l◦ and l̄ classically by the integrals in Equations (2-3) and (2-4). The Sobolev imbedding
theorem [Adams and Fournier 2003, Theorem 4.12, Case C] and the trace theorem [ibid., Theorem 5.36]
imply that these definitions are well posed. If p > n, then the elements of Wp represent continuous
functions on the closure cl� of �. In this case the loads can be more general. Namely, the surface
tractions can be represented by vector-valued measures s◦ and s̄ in M(S,Rn) and the body forces by
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vector-valued measures b◦ and b̄ in M(�,Rn). For this we assume that S is a Borel set. Then l◦ and l̄
are given by

〈l◦, v〉 =
∫
�

v · d b◦+
∫

S
v · d s◦, (4-2)

〈l̄, v〉 =
∫
�

v · d b̄+
∫

S
v · d s̄, (4-3)

for each v ∈Wp. This formalism includes concentrated loads. The distributed case, when the loads are
represented by ordinary functions, is included by setting

s◦ = s◦Hn−1 S, s̄ = s̄Hn−1 S, b◦ = b◦Ln �, b̄= b̄Ln �,

where now the functions can belong to the spaces as follows:

s◦, s̄ ∈ L1(S,Rn), b◦, b̄ ∈ L1(�,Rn)

and the notation of the Appendix has been employed. Then (4-2) and (4-3) reduce to (2-3) and (2-4).

4B. Limit analysis in the setting of power integrable functions. We define λ̄W and λY ∗ by

λ̄W = λ̄p := inf{λ ∈ R : λ is Wp kinematically admissible},

λY ∗ = λq := sup{λ ∈ R : λ is Lq(�,Sym) statically admissible}.
(4-4)

The sufficient condition of Proposition 2.6 for the equality λq = λ̄p (i.e., the qualification hypothesis) is
never satisfied in the present case, since L p(�,Sym+) has empty interior for all p ∈ [1,∞). To see the
last, let F be any element of L p(�,Sym+), let � j ⊂ � be a decreasing sequence of measurable sets
such that Ln(� j ) > 0 for all j and

⋂
∞

j=1� j =∅, and let the sequence Fj be defined by

Fj =

{
F on � \� j ,

−1 on � j .

Then Fj /∈ L p(�,Sym+) for all j and Fj → F in L p(�,Sym) as j → ∞. Thus every point of
L p(�,Sym+) is on the boundary of L p(�,Sym+).

Remark 4.1. Example 7.12 (below) shows that under very tame loads of a panel in the plane one can
have λq < λ̄p.

Remark 4.2. The choice of Wp and Lq(�,Sym) with p = q = 2 plays a special role. The square
integrable admissible equilibrating stress fields have a dynamical motivation in terms of the behavior of
processes of masonry bodies with dissipation for large times [Padovani et al. 2008]: if λ < λ2, then under
the loads corresponding to λ, the processes starting from arbitrary initial data stabilize and converge to
the set of equilibrium states; on the other hand, if λ> λ2, the processes blow up in the sense of norms, i.e.,
the collapse occurs. Further, in [Lucchesi et al. 2010] it was shown that the existence of admissible square
integrable stress fields balancing the loads is a necessary and sufficient condition for the total energy of
a masonry body to be bounded from below. In [Lucchesi et al. 2011] the equilibrium of panels subjected
both to distributed loads and concentrated forces is studied, and equilibrated tensor-valued measures are
determined. Then, by using an integration procedure for parametric measures, equilibrated stress fields
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that are represented by integrable functions are explicitly determined. Note also that L2(�,Sym) is also
the space of stress fields employed in [Del Piero 1998].

4C. Comparison of the critical multipliers in the B D and W1, p settings. Let 1 ≤ p < ∞, and let
q ∈ (1,∞] be the Hölder conjugate exponent, and assume that the energies l◦ and l̄ are continuous
functionals on WBD . (See the conditions in Section 3.) Since Wp ⊂WBD and the inclusion is continuous,
the restriction of l◦ and l̄ to Wp are continuous linear functionals on Wp as well (we denote these
restrictions by the original symbols). Then in general we have

λ̄BD ≤ λ̄p

because the infimum in the definition of λ̄p is taken over a smaller set than in the definition of λ̄BD.
Similarly, we have

λ◦ ≤ λq ,

since the supremum for λq is taken over a larger set than that for λ◦. Under the condition that

for each v̄ ∈W+BD such that 〈l̄, v̄〉> 0, there exists a sequence v̄ j ∈W+p
such that v̄ j → v̄ in Ln/(n−1)(�,Rn) and v̄ j → v̄ in L1(∂�,Rn), (4-5)

we have

λ̄BD = λ̄p.

Indeed, one takes the infimum in (4-4) over a dense subset of the set in the infimum in (3-1). In particular,
if (4-5) holds for every p ∈ [1,∞), then λ̄p is independent of p and equal to λ̄BD .

It does not seem that there exists a relatively easily verifiable condition to guarantee the equality
λq = λ◦. In Section 7D, below, the function q 7→ λq is not constant and hence the equality λq = λ◦

cannot hold for all q ∈ (1,∞].

5. Lipschitzian displacements and finitely additive measures representing stresses

Sections 5A and 5B formulate the kinematic and static problems for lipschitzian displacements and for
stresses modeled as finitely additive bounded measures that are absolutely continuous with respect to
the Lebesgue measure. A necessary and sufficient condition of Section 2 is particularized to the present
choice of spaces in Theorem 5.1 and results in an examination of a real-valued function of the real variable.
The qualification hypothesis is derived in Theorem 5.2. Theorem 5.3 gives a very simple necessary and
sufficient condition for the static admissibility of a general multiplier. Finally, Section 5C gives a density
condition for the equality of the kinematic multipliers in the lipschitzian and Sobolev spaces settings.

5A. Lipschitzian displacements and the representation of stresses. We define the objects (2-8) as fol-
lows. We put

W =W∞ := {v ∈W 1,∞(�,Rn) : v = 0 in the classical sense on D},

Y = L∞(�,Sym),
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so that Ê( · ), defined by (2-5), is a bounded linear transformation from W to Y . Furthermore, we put

Y+ = L∞(�,Sym+) := {F ∈ Y : F ≥ 0 almost everywhere on �},

W+ =W+
∞
:= {v ∈W∞ : Ê(v) ∈ L∞(�,Sym+)}.

Under our assumption on �, the elements of W 1,∞(�,Rn) are represented by lipschitzian functions on
the closure cl� of �, i.e., by functions v : cl�→ Rn satisfying

|v(x)− v( y)| ≤ k|x− y|

for all x, y ∈ cl� and some k; see [Ekeland and Témam 1999, Chapter X, Section 2.2].
The loads can be represented by measures, as in the case p > n in the preceding section, and l◦ and l̄

are given by (4-2) and (4-3), respectively.
We denote by Y ∗ = Xba the dual of L∞(�,Sym). We say that T ∈ Xba is negative semidefinite if

(T , F)≤ 0 for each F ∈ L∞(�,Sym+) and denote by X−ba the set of all negative semidefinite T ∈ Xba.
We interpret X−ba as the set of admissible stress fields. The elements T of Xba are in general no longer
representable by ordinary functions. Rather, the space Xba is isomorphic to the space ba(�,M,Ln

;Sym)
of bounded finitely additive Sym valued measures that are absolutely continuous with respect to the
Lebesgue measure. Thus to each element T ∈ Xba there exists a unique element T ∈ ba(�,M,Ln

;Sym)
such that we have

(T , F)=
∫
�

F · dT (5-1)

for each F ∈ L∞(�,Sym), and conversely. We refer to [Fonseca and Leoni 2007, Sections 1.3.2 and
Theorem 2.44] for details in the scalar case (in particular to the definition of the integral in (5-1)) and to
an outline of the tensorial case in the Appendix. An important subset of ba(�,M,Ln

;Sym) consists of
measures of the form

T= TLn �

where T ∈ L1(�,Sym). In this case the measure T is actually countably additive.

5B. Limit analysis in the setting of lipschitzian displacements. We define λ̄W and λY ∗ by

λ̄W = λ̄∞ := inf{λ ∈ R : λ is W∞ kinematically admissible},

λY ∗ = λba := sup{λ ∈ R : λ is Xba statically admissible}.
(5-2)

Theorem 5.1. Let h : R→ R∪ {−∞,∞} be defined by

h(t)= inf{−〈l◦, v〉 : v ∈W∞, Ê(v)≥ t1 almost everywhere on �, 〈l̄, v〉 = 1},

t ∈ R. Then:

(i) h is nondecreasing, convex and h(0)= λ̄∞.

(ii) h(0) is finite and lim
t→0,
t<0

h(t)= h(0) if and only if λba = λ̄∞ ∈ R.

Proof. The function H defined generally in (2-23) provides h(t) = H(t1). The convexity and the
nondecreasing character of H , asserted by Proposition 2.5(i) gives the same properties of h. Furthermore,
clearly h(0)= H(0)= λ̄∞, which completes the proof of (i).



ON THE CHOICE OF FUNCTIONS SPACES IN THE LIMIT ANALYSIS FOR MASONRY BODIES 813

(ii) By Proposition 2.5(ii) then λba = λ̄∞ ∈ R if and only if H(0) = h(0) is finite and H is lower
semicontinuous at 0. If the last holds, then h(0) ∈ R and h is lower semicontinuous at 0 and as h is
nondecreasing, this in turn implies that

lim
t→0
t<0

h(t)= h(0). (5-3)

Conversely, let h(0) be finite and let (5-3) hold. If |F| denotes the L∞ norm of a general F ∈ L∞(�,Sym)
then −|F|1≤ F and hence the monotonicity of H implies

h(−|F|)≡ H(−|F|1)≤ H(F)

and thus
H(0)≡ h(0)= lim

F→0
h(−|F|)≡ lim

F→0
H(−|F|1)≤ lim inf

F→0
H(F).

Thus H is lower semicontinuous at 0. �

Theorem 5.2. Assume that

there exists a v̄◦ in W+
∞

satisfying 〈l̄, v̄◦〉> 0

such that Ê(v̄◦)≥ α1 for some α > 0 and almost every point of �. (5-4)

Then λba = λ̄∞; if additionally λba = λ̄∞ ∈ R then λ̄∞ is statically admissible, i.e., there exists a bounded
finitely additive negative semidefinite measure T that is absolutely continuous with respect to Ln such
that ∫

�

Ê(v) · dT= 〈l(λ̄∞), v〉

for all v ∈W∞.

Paroni [2012], dealing with inextensible nets with slack, and applying the duality theory of Ekeland &
Témam, obtained balancing stresses represented by bounded finitely additive measures that are “almost
absolutely continuous” with respect to the Lebesgue measure (see the cited paper for a precise statement).

Proof. If (5-4) holds, Ê(v̄◦) is an interior point of L∞(�,Sym+). Indeed, the interior of L∞(�,Sym+)
consists of all F ∈ L∞(�,Sym) which satisfy F(x) ≥ α1 for some positive α and almost every point
x of �. To see the sufficiency of this condition, note that if G ∈ L∞(�,Sym) satisfies |F−G|< α/2,
where | · | is the L∞ norm on L∞(�,Sym), then G(x)≥ 1

2α1 for almost every x ∈�. The necessity is
proved similarly.

Thus v̄◦ satisfies (2-29) and Proposition 2.6 implies the present proposition. �

Next we consider the statical admissibility of a general multiplier λ ∈ R.

Theorem 5.3. A multiplier λ ∈ R is Xba-statically admissible if and only if

sup{〈l(λ), v〉 : v ∈W∞, Ê(v)≥−1 almost everywhere on �}<∞. (5-5)

The proof will show that (5-5) implies that 〈l(λ), v〉 ≤ 0 for every v ∈W+
∞

.
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Proof. Assume that λ is Xba-statically admissible and denote by T ∈ X−ba an admissible equilibrating
stress field. If v ∈W∞ is such that Ê(v)≥−1 almost everywhere on � then

〈l(λ), v〉 = (T , Ê(v))≤ (T ,−1)=−(T , 1)

and thus the value of the supremum in (5-5) is less than or equal to −(T , 1). This completes the proof
of the direct implication.

Conversely, let (5-5) hold. We must prove that (2-31) also holds. We prove first that (5-5) implies

〈l(λ), v〉 ≤ 0 (5-6)

for every v ∈W+
∞

. Indeed, (5-5) asserts that there exists a c ∈ R such that

〈l(λ), v〉< c (5-7)

for every v ∈ W∞ with Ê(v) ≥ −1. Assume that v ∈ W+
∞

. Then for every t > 0 we have Ê(tv) ≥ −1
and thus (5-7) gives

〈l(λ), tv〉< c.

Fixing v, dividing by t > 0 and letting t→∞ we obtain the desired conclusion 〈l(λ), v〉 ≤ 0.
Let us now prove that (2-31) holds. Let F ∈ L∞(�,Sym), F 6= 0, and let v ∈W∞ satisfy Ê(v)≥ F

almost everywhere on �. Then Ê(v/|F|) ≥ −1 almost everywhere on �, where |F| denotes the L∞

norm of F. Thus (5-5) implies
〈l(λ), v〉 ≤ c|F|,

i.e., (2-31). If F = 0, this argument does not hold but then Ê(v)≥ 0 almost everywhere on � and (2-31)
holds again by (5-6). �

5C. Comparison of the critical multipliers in the lipschitzian and p integrable settings. Let 1≤ p<∞,
and let q ∈ (1,∞] be the Hölder conjugate exponent, and assume that the energies l◦ and l̄ are continuous
functionals on Wp. (See the conditions in Section 4.) Since W∞ ⊂Wp and the inclusion is continuous,
the restriction of l◦ and l̄ to W∞ are continuous linear functionals on W∞ as well. Then in general we
have

λ̄p ≤ λ̄∞

because the infimum in the definition of λ̄∞ is taken over a smaller set than in the definition of λ̄p.
Similarly, we have

λq ≤ λba,

since the supremum for λba is taken over a larger set than that for λq . Under the condition that

for each v̄ ∈W+p such that 〈l̄, v̄〉> 0 there exists a sequence v̄ j ∈W+
∞

such that v̄ j → v̄ in Wp, (5-8)

we have
λ̄p = λ̄∞.

Indeed, one takes the infimum in (5-2) over a dense subset of the set in the infimum in (4-4). In particular,
if (5-8) holds for every p ∈ [1,∞), then λ̄p is independent of p and equal to λ̄∞.
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As in the preceding choices of function spaces, it does not seem that there exists a condition to
guarantee the equality λq = λba.

6. Smooth displacements and countably additive measures representing stresses

Sections 6A and 6B formulate the kinematic and static problems within the context of smooth displace-
ments and stress fields modeled as countably additive measures. The qualification hypothesis specialized
in Theorem 6.1 is shown to hold only in the case of the pure traction problem. Theorem 6.3 provides
a necessary and sufficient condition for the equality of the results of the kinematic and static problems
and Theorem 6.4 a necessary and sufficient condition for the static admissibility of a general multiplier.
Sections 6C and 6D provide sufficient conditions for the equality of the kinematic multiplier as defined
here with those defined in the preceding sections.

6A. Smooth displacements and the representation of stresses. We define the objects (2-8) as follows.
We put

W = C1 := {v ∈ C1(cl�,Rn) : v = 0 in the classical sense on D},

Y = C0(cl�,Sym),

so that Ê( · ), defined by (2-5), is a bounded linear transformation from C1 to C0(cl�,Sym). Further-
more, we put

Y+ = C0(cl�,Sym+) := {F ∈ C0(cl�,Sym) : F ≥ 0 on cl�},

W+ = C+1 := {v ∈ C1 : Ê(v) ∈ C0(cl�,Sym+)}.

The loads can be represented by measures as in the case p > n in Section 4; l◦ and l̄ are given by
(4-2) and (4-3), respectively.

We denote by Y ∗ = XM the dual of C0(cl�,Sym). We say that T ∈ XM is negative semidefinite if
(T , F)≤ 0 for each F ∈ C0(cl�,Sym+), and denote by X−M the set of all negative semidefinite T ∈ YM.
We interpret the elements T of X−M as admissible stress fields. The elements T of XM are in general not
representable by ordinary functions. Rather, the space XM is isomorphic with the space M(cl�,Sym) of
bounded countably additive Sym-valued Borel measures on cl�. Thus for each element T ∈ XM there
exists a unique element T ∈M(cl�,Sym) such that

(T , F)=
∫
�

F · d T

for each F ∈ C0(cl�,Sym), and conversely. We refer to [Fonseca and Leoni 2007, Theorem 1.196]
for details in the scalar case and to the Appendix. for the tensorial case. Recalling Section 5, we note
that neither of the sets ba(�,M,Ln

;Sym) and M(cl�,Sym) is a subset of the other, since the measures
from XM need not be absolutely continuous with respect to the Lebesgue measure and the measures from
ba(�,M,Ln

;Sym) need not be countably additive. With general elements of M(cl�,Sym) there may
be stresses concentrated on sets of dimension strictly less than n. An important subset of M(cl�,Sym)
consists of measures of the form

T = TLn �
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where T ∈ L1(�,Sym).
The set X−M is just the set of all Borel measures on cl� which take negative semidefinite values on

every Borel subset of cl�.

6B. Limit analysis in the setting of smooth displacements. We define λ̄W and λY ∗ by

λ̄W = λ̄◦ := inf{λ ∈ R : λ is C1 kinematically admissible},

λY ∗ = λM := sup{λ ∈ R : λ is XM statically admissible}.

Theorem 6.1. Assume that

there is v̄◦ in C+1 such that 〈l̄, v̄◦〉> 0 and Ê(v̄◦)≥ α1 for some α > 0 and every point of cl�. (6-1)

Then we have λM = λ̄◦; if , additionally, this number is finite, then λ̄◦ is statically admissible, i.e., there
exists a bounded countably additive negative semidefinite Borel measure T such that∫

�

Ê(v) · d T = 〈l(λ̄◦), v〉

for all v ∈ C1.

Proof. The interior of C0(cl�,Sym+) consists of all F ∈ C◦ such that there exists a positive α satisfying
F ≥ α1 for all points of cl�. We thus see that the displacement v̄◦ as in (6-1) satisfies the hypothesis of
Proposition 2.6. The same proposition then gives the assertions of the present proposition. �

Remark 6.2. Let v ∈ C1, and let x be a point in D and t a vector that is tangent to D in the sense that
there is a smooth curve γ contained in D and containing x with the tangent vector t at x. Differentiating
the equation v = 0 along γ at x we obtain ∇v(x)t = 0. Thus Ê(v)(x)t · t = 0 and (6-1) cannot hold.
This applies also to points of D at the corners or edges. Thus (6-1) can be effective essentially only in
the case of the pure traction problem, when D=∅.

Negative semidefinite measures with nonzero singular part equilibrating the loads in no-tension ma-
terials were proposed in [Lucchesi et al. 2006]. The general theory of stresses represented by Borel
measures is given in [Šilhavý 2008].

The following two results are proved in essentially the same way as Theorems 5.1 and 5.3. The proofs
are therefore omitted.

Theorem 6.3. Let h : R→ R∪ {−∞,∞} be defined by

h(t)= inf{−〈l◦, v〉 : v ∈ C1, Ê(v)≥ t1 on cl�, 〈l̄, v〉 = 1},

t ∈ R. Then:

(i) h is nondecreasing, convex and h(0)= λ̄◦.

(ii) h(0) is finite and lim
t→0
t<0

h(t)= h(0) if and only if λM = λ̄◦ ∈ R.

Theorem 6.4. A multiplier λ ∈ R is XM-statically admissible if and only if

sup{〈l(λ), v〉 : v ∈ C1, Ê(v)≥−1 on �<∞} (6-2)

This condition implies that 〈l(λ), v〉 ≤ 0 for every v ∈ C1, but it is stronger.
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6C. Comparison of the critical multipliers in the smooth and p integrable settings. Let 1 ≤ p <∞,
and let q ∈ (1,∞] be the Hölder conjugate exponent, and assume that l◦ and l̄ are continuous functionals
on Wp and hence also on C1. Then in general we have

λ̄p ≤ λ̄◦,

because the infimum in the definition of λ̄◦ is taken over a smaller set than in the definition of λ̄p.
Similarly, we have

λq ≤ λM.

Under the condition that

for each v̄ ∈W+p such that 〈l̄, v̄〉> 0 there is a sequence v̄ j ∈ C+1 such that and v̄ j → v̄ in Wp, (6-3)

we have
λ̄p = λ̄◦.

This is completely analogous to (5-8).
Lucchesi et al. [2008b; 2011] have given conditions and examples under which the loads equilibrated

by measures from a certain class can be also equilibrated by stress fields represented by ordinary functions
from L∞(�,Sym+).

6D. Comparison of the critical multipliers in the smooth and lipschitzian settings. Assume that l◦ and
l̄ are continuous functionals on W∞ and hence also on C1. Then in general we have

λ̄∞ ≤ λ̄◦

because the infimum in the definition of λ̄◦ is taken over a smaller set than that in the definition of λ̄∞.
Under the condition that

for each v̄ ∈W+
∞

such that 〈l̄, v̄〉> 0 there is a sequence v̄ j ∈C+1 such that v̄ j→ v̄ in L∞(�,Rn), (6-4)

we have
λ̄∞ = λ̄◦.

This is completely analogous to (5-8) and (6-3).
We have

λba ≤ λM

Indeed, each Xba-statically admissible multiplier is also XM-statically admissible, because if an admissi-
ble stress field T ∈ X−ba balances the loads corresponding to λ then the restriction T̃ of T to C0(cl�,Sym)
is XM statically admissible and balances the same loads.

Remark 6.5. Returning to the functionals T and T̃ from the preceding paragraph, we note that cor-
responding to T there exists a bounded finitely additive Sym-valued measure T on the class M of all
Lebesgue measurable subsets of �, absolutely continuous with respect to the Lebesgue measure, such
that

(T , F)=
∫
�

F · dT
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for all F ∈ L∞(�,Sym). It appears that generally T need not be countably additive, despite the extra
information of balancing. At the same time there exists a finite, countably additive measure T on the
class B of all Borel subsets of cl�, such that

(T̃ , F)≡ (T , F)=
∫

cl�
F · d T

for all F ∈ C0(cl�,Sym). It appears that generally T need not be absolutely continuous with respect
to the Lebesgue measure. A natural question arises of what is the relationship between T and T . Easy
examples based on the extension of T̃ by using the Hahn Banach theorem show that without the conditions
of negative semidefiniteness and of balancing, there need not be any immediate relationship. However,
with the two extra conditions just mentioned, the situation does not seem to be clear.

7. Monotonicity, density, and examples

Section 7A first shows that the displacements from the Sobolev spaces with positive semidefinite strain
are monotone. Next, the same section shows that each displacement with positive semidefinite strain
has to vanish, roughly speaking, on the interior of the convex hull of the set D. Section 7B proves the
density of the smooth displacements with positive semidefinite strain in the wider spaces of displacements
considered above. Some of the results of these two sections are employed in Sections 7C and 7D which
present two examples: a collapse without a corresponding mechanism, and loads for which the kinematic
and static problems give different results.

7A. Monotonicity and the convex hull. If v lies in BD(�) (in particular, if v ∈ W 1,p(�,Rn), where
1≤ p ≤∞), we define the precise representative ṽ of v on � by setting, for every x ∈ cl�,

ṽ(x)=
{

limr→0
1

Ln(B(x,r)∩�)
∫

B(x,r)∩� v d Ln if the limit exists,
0 otherwise,

(7-1)

where B(x, r) is the open ball of center x and radius r . Denote by G(v) the set of all points x ∈ cl� for
which the limit in (7-1) exists and, moreover, if x ∈ ∂�, it satisfies

lim
r→0

1
Ln(B(x, r)∩�)

∫
B(x,r)∩�

|v− ṽ(x)| d Ln
= 0. (7-2)

If v∈ BD(�) then Ln(�\G(v))=0 and Hn−1(∂�\G(v))=0. The first assertion is the standard assertion
about Lebesgue points (and actually holds for any v ∈ L1(�,Rn)); for the second assertion, see the trace
theorem in [Témam 1983, Chapter II]. If v ∈W 1,p(�,Rn) where 1≤ p≤∞ then Hn−1(cl�\G(v))= 0.
Indeed, Hn−1(� \ G(v)) = 0 by [Evans and Gariepy 1992, Theorem 1 in Section 4.8, Theorem 2 in
Section 5.6.3, and Theorem 4 in Section 4.7.2] and Hn−1(∂� \ G(v)) = 0 by [ibid., Definition and
Remark, p. 133]. For every direction t ∈ Sn−1

:= {t ∈ Rn
: |t| = 1}, and for almost every line l parallel to

t , ṽ is absolutely continuous on s := l∩ cl� (cf. [ibid., Theorem 2, Subsection 4.9.2] for lines parallel
to the coordinate axes).

Remark 7.1. Let �⊂Rn be a bounded convex set with Lipschitz boundary and v ∈ BD(�) (respectively,
v ∈W 1,p(�,Rn) where 1≤ p≤∞), and let ṽ be the precise representative. Then the following conditions
are equivalent:
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(i) Ê(v)(B)≥ 0 for every Borel subset B of � (respectively, Ê(v)≥ 0 almost everywhere on �).

(ii) We have
(ṽ(x)− ṽ( y)) · (x− y)≥ 0 (7-3)

for every x, y ∈ G(v).

Note that condition (ii) can be formulated even for nondifferentiable displacements.

Proof. Let σ be a smooth mollifier, i.e., a nonnegative class∞ function on Rn with the support in the
open ball with center 0 and radius 1, and

∫
Rn σ d Ln

= 1. For each ε > 0, let vε be the ε mollification of
v, i.e., a map vε :�ε→ Rn given by

vε(x)= ε−n
∫
�

v( y)σ ((x− y)/ε) d Ln( y)

for every x from the set
�ε := {x ∈� : B(x, ε)⊂�}.

(i)⇒ (ii) The tensor Ê(vε) is an ε mollification of Ê(v) on �ε (under either assumptions on v) and
hence Ê(vε)≥ 0 on �ε . We have

d
ds

vε(a+ s t) · t =∇vε(a+ s t)t · t = Ê(vε)(a+ s t)t · t ≥ 0

for every a ∈ Rn , every s ∈ R, and every t ∈ Sn−1 for which a+ s t ∈ int�ε . Thus the integration gives

(vε(x)− vε( y)) · (x− y)≥ 0

for every x, y ∈ int�ε . If x, y ∈�, then x, y ∈ int�ε for all sufficiently small ε. We have vε(x)→ ṽ(x)
as ε→ 0 for every x ∈ G(v)∩�. This limit gives (7-3) for every x, y ∈ G(v)∩�. Next assume that
x ∈ G(v)∩ ∂� and y ∈ G(v)∩�. By the preceding case, we have

(ṽ(x′)− ṽ( y)) · (x′− y)≥ 0

for every x′ ∈ G(v)∩�. Hence, if r > 0, we have

1
Ln(B(x, r)∩�)

∫
B(x,r)∩�

(ṽ(x′)− ṽ( y)) · (x′− y) d Ln(x′)≥ 0

and the limit r → 0 using (7-1) and (7-2) gives (7-3). Finally, if x, y ∈ G(v)∩ ∂�, we proceed in the
same way as above to establish (7-3) generally.

(ii)⇒ (i) Condition (ii) implies that if t ∈ Sn−1, and if l is a line parallel to t then the function ṽ · t ,
defined on l̃ := l∩G(v), is nondecreasing. By Fubini’s theorem we have H1((l∩�) \ l̃)= 0 for Hn−1

almost every line parallel to t . Then vε · t is nondecreasing on every closed line segment parallel to t in
�ε . Thus

0≤
d
ds

vε(a+ s t)
∣∣∣
s=0
· t = Ê(vε)(a)t · t

for every point a of �ε . We now let ε→ 0 and obtain (i) under either assumption on v. �
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Proposition 7.2. Assume that � ⊂ Rn is open and convex, let D ⊂ ∂�, denote by int D the relative
interior of D in ∂� and assume that int D is a class 1 surface. Define the sets Zi , i = 1, . . . , by

Z1 = {z ∈� : z = (1− t)x+ t y for some x, y ∈ int D, x 6= y, 0< t < 1}

and
Zi = {(1− t)x+ t y : x, y ∈ Zi−1, 0≤ t ≤ 1}

if i ≥ 2. Then:

(a) The sequence Zi is nondecreasing.

(b) Zi is open for every i = 1, . . . .

(c) Zi ⊂� for every i = 1, . . . .

(d) Zi = co Z1 for every i ≥ n+ 1, where co Z1 denotes the convex hull of Z1.

Here by the relative interior of D we mean the interior with respect to the relative topology on ∂�,
defined by intersections of ∂� with open subsets of Rn .

Proof. (a) The nondecreasing character of the sequence Zi is immediate.

(b), (c) We work by induction on i . We have Z1 ⊂ �. To prove that Z1 is open, let z ∈ Z1 and
z = (1− t)x+ t y for some x, y ∈ int D, x 6= y, 0< t < 1. Define the map 8 : int D× (0, 1)→� by

8( y′, t ′)= (1− t ′)x+ t ′ y′, (7-4)

y′ ∈ int D, t ′ ∈ (0, 1); hence
8( y, t)= z.

Then the continuity implies that 8 maps some neighborhood N of ( y, t) in int D× (0, 1) into some
neighborhood M of z that is contained in �. One then has M ⊂ Z1 by the definition of Z1. We now
employ the implicit function theorem to show that there exists a neighborhood M′ ⊂ M of z and a
class 1 map 9 : M′→ N such that 8(9(z′)) = z′ for all z′ ∈ M′. Indeed, the map 8 is continuously
differentiable. To apply the implicit function theorem, we have to prove that the derivative D8( y, t) :
Tan(int D, y)× R→ Rn is nonsingular, where Tan(int D, y) is the tangent space to int D at y. If the
local description of int D near y is ϕ( y′) = 0 where ϕ is a class 1 function with ∇ϕ( y) 6= 0, then
Tan(int D, y)= { ẏ ∈ Rn

: ∇ϕ( y) · ẏ = 0}. The equation D8( y, t)( ẏ, ṫ)= 0 reads

ṫ( y− x)+ t ẏ = 0. (7-5)

Multiplying scalarly by ∇ϕ( y) and using ∇ϕ( y) · ẏ = 0 we obtain

∇ϕ( y) · ( y− x)ṫ = 0. (7-6)

Let us now show that
∇ϕ( y) · ( y− x) 6= 0. (7-7)

Indeed, the equation ∇ϕ( y) · ( y− x)= 0 means that the vector x− y belongs to the tangent space of ∂�
at y or equivalently that x belongs to the affine space y+Tan(int D, y). Since � is convex and x ∈ ∂�,
it follows that the line segment with endpoints x and y belongs to ∂� and hence in particular z ∈ ∂�.
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However, this is a contradiction as we assume that z ∈�. This contradiction shows that we have (7-7).
Equation (7-6) then implies ṫ = 0 and (7-5) that ẏ = 0. Thus D8( y, t) is nonsingular and the implicit
function theorem gives a class 1 map 9 :M′→ N such that 8(9(z′))= z′ for all z′ ∈M′. This in turn
means that 9 maps some neighborhood of ( y, t) in int D× (0, 1) onto some neighborhood of z. Thus
Z1 is open.

Let i ≥ 2. Then (c) follows from the induction hypothesis and the convexity of �. To prove (b), let
z = (1− t)x + t y for some x, y ∈ Zi−1 and 0 ≤ t ≤ 1. To prove that there exist a neighborhood of z
that is contained in Zi , note that if x = y or t ∈ {0, 1} then z ∈ Zi−1 and the induction hypothesis says
that there exists a neighborhood of z that is contained in Zi−1 ⊂ Zi . Thus we can assume that x 6= y and
0< t < 1. Defining 0 : Zi−1→ Rn by

0( y′)= (1− t)x+ t y′

for every y′ ∈ Zi−1 we find that 0 has the inverse 1 given by

1(z′)= (z′− (1− t)x)/t,

for z′ ∈ Rn . Hence 0 maps some neighborhood N⊂ Zi−1 of y onto some neighborhood of z that is in
Zi . This completes the proof of (b) and (c).

(d) This follows from Carathéodory’s theorem on the convex hull [Rockafellar 1970, Theorem 17.1]. �

Proposition 7.3. Let 1≤ p ≤∞, let � be convex, let D⊂ ∂� and assume that int D is a class 1 surface.
Let Zi be the sequence defined in Proposition 7.2. If v ∈W+p then its precise representative ṽ satisfies

ṽ = 0 everywhere on co Z1. (7-8)

Proof. We shall prove that
ṽ = 0 everywhere on Zi (7-9)

for every i = 1, . . . by induction on i . Then (7-8) will follow from Proposition 7.2(d).
We prove (7-9) for i = 1. Note that if x ∈�∩G(v) and if y ∈ int D then

ṽ(x) · (x− y)≥ 0. (7-10)

Inequality (7-10) follows from Remark 7.1 if y∈ int D∩G(v) since then ṽ( y)= 0. Finally, if x ∈�∩G(v)
and y in D is arbitrary, we make a limit in ṽ(x) · (x− y′)≥ 0 as y′→ y and y′ ∈ int D∩G(v).

Let now z ∈ Z1 ∩G(v) and write z = (1− t)x + t y for some x, y ∈ int D, x 6= y, 0 < t < 1. Then
(7-10) implies

ṽ(z) · (z− x)≥ 0 and ṽ(z) · (z− y)≥ 0.

This reads
t ṽ(z) · ( y− x)≥ 0 and (1− t)ṽ(z) · (x− y)≥ 0,

and hence
ṽ(z) · t = 0, (7-11)

where t = ( y− x)/| y− x|. Define now a map 2 from Sn−1 to ∂�× ∂� by the requirement that for
each t ′ ∈ Sn−1 we put 2(t ′) = (x′, y′) where x′, y′ ∈ ∂� are uniquely determined by the conditions
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that t ′ = ( y′ − x′)/| y′ − x′| and that the point z is on the (closed) line segment with endpoints x′, y′.
Since int D× int D is a relatively open subset of ∂�× ∂�, the continuity of 2 yields that there exists
a neighborhood N of t in Sn−1 such that 2 maps N onto some subset of int D× int D. For all t ′ ∈ N

we have ṽ(z) · t ′ = 0, which is possible only if ṽ(z) = 0. Thus ṽ = 0 on Z1 ∩G(v) and hence ṽ = 0
everywhere on Z1.

Let i ≥ 2. Let z ∈ Zi and let z = (1− t)x+ t y where x, y ∈ Zi−1, 0≤ t ≤ 1. To prove that ṽ(z)= 0,
we can assume that x 6= y and 0 < t < 1 since otherwise z ∈ Zi−1 and the equation ṽ(z) = 0 follows
from the induction hypothesis. Let x′, y′ ∈ Zi−1 ∩G(v) be such that z = (1− t)x′+ t y′. The induction
hypothesis says that ṽ(x′)= ṽ( y′)= 0 and using this, we obtain ṽ(z) · t ′= 0 where t ′= ( y′−x′)/| y′−x′|;
varying x′ ∈ Zi−1 ∩G(v) and y′ ∈ Zi−1 ∩G(v) in such a way that z := (1− t)x′+ t y′ remains fixed,
we obtain the validity of ṽ(z) · t ′ = 0 for almost every t ′ from a nonempty open subset of Sn−1, which
is possible only if ṽ(z)= 0. �

7B. Density of monotone displacements satisfying boundary condition. Let M ⊂ C1(cl�,Rn) and
M+ ⊂ M be defined by

M := {v ∈ C1(cl�,Rn) : v = 0 in a neighborhood of D},

M+ := {v ∈ M : Ê(v)≥ 0 on cl�}.

We indicate here situations when

(α) M is dense in WBD or in Wp, 1≤ p ≤∞, in an appropriate sense, and

(β) M+ is dense in W+BD or in W+p . The following result deals with Problem (α).

Proposition 7.4. Suppose that D is relatively open in ∂�. Let 1 ≤ p ≤∞, and let u ∈ Wp. Then there
exists a sequence uk ∈ M such that

(i) if p <∞ then uk→ u in W 1,p(�,Rn);

(ii) if p =∞ then uk→ u uniformly on cl�, Ê(uk)→ Ê(u) almost everywhere on � and

sup
k=1,...

|∇uk |∞ <∞,

where | · |∞ is the L∞ norm.

This is proved in a way similar to [Témam 1977, Theorem I.1 and I.3].
Problem (β) is more difficult. The standard results for the density of C∞(cl�,Rn) in BD(�) or in

W 1,p(�,Rn), employ constructions based on the multiplication of the function v by members θi of a
suitable partition of unity. This operation does not preserve the positive semidefinite character of the
strain tensor: One has

Ê(θiv)= θi Ê(v)+ 1
2(v⊗∇θi +∇θi ⊗ v),

and the expression in the bracket is not positive semidefinite in general. It is essentially only the ho-
mothetic extension that preserves positive semidefiniteness. We are therefore forced to impose strong
hypotheses on � and D to be able to apply homothety to prove the density of M+ in W+p .

Proposition 7.5. Let �⊂ Rn be an open bounded convex set with Lipschitz boundary and let D⊂ ∂�.
Assume that one of the following conditions is satisfied:
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m
�

D

C

(1) (See figure above.) The set D is nonempty, convex, is contained in some hyperplane H of normal m,
is open in H , and

�⊂ C := {x ∈ Rn
: x = a+ sm for some a ∈ D and some s > 0}.

(2) int D is a class 1 surface and the set Z1 defined in Proposition 7.2 is nonempty.

(3) D=∅.

Let 1 ≤ p ≤∞. Let u ∈ W+p . Then there exists a sequence uk ∈ M+ such that assertions (i) and (ii) of
Proposition 7.4 are satisfied.

Proof. Suppose that (a) holds. We can assume that 0 ∈ D. For each ε > 0 let

�ε := (1+ ε)�∪ {a+ sm ∈ Rn
: a ∈ (1+ ε)D,−ε < s ≤ 0}.

We have cl�⊂�ε and �ε is convex. Let vε :�ε→ Rn be defined by

vε(x)=
{

u(x/(1+ ε)) if x ∈ (1+ ε)�,
0 if x ∈�ε \ (1+ ε)�.

Since u = 0 on D, we have vε ∈ BD(�ε) or vε ∈ W 1,p(�ε,Rn) for each ε > 0; moreover, Ê(vε) is
positive semidefinite. Let wε be an ε/4 mollification of vε , i.e., a map on �3ε/4 with values in Rn given
by

wε( y)= (ε/4)−n
∫
�ε

vε(x)σ
( y−x
ε/4

)
d Ln(x)

for every y ∈ cl�3ε/4. Here σ is a mollifier (see the proof of Remark 7.1). Then wε ∈ C∞(cl�ε/2,Rn),
wε( y)= 0 for every y from the set { y ∈Rn

: y= a+ sm : a ∈ (1+ε/2)D, −ε/2< s <−ε/4}. Moreover,
Ê(wε)≥ 0 on cl�3ε/4 since Ê(wε) is the ε/4 mollification of Ê(vε). Let uε :�→ Rn be defined by

uε(x)= wε(x− εm)

for every x ∈�. Then uε ∈ M+ and an argument similar to that of [Adams and Fournier 2003, proof of
Proposition 3.22, pp. 69–70] shows that uε→ u in the sense of assertions (i)–(iii) of Proposition 7.4 as
ε→ 0. This completes the proof under hypothesis (a).

Suppose that (b) takes place. We may suppose that 0 ∈ Z1 ⊂ co Z1. For each ε > 0, let

�ε := (1+ ε)�
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so that the convexity implies that cl�⊂�ε . Let vε :�ε→ Rn be defined by

vε(x)= u(x/(1+ ε)), x ∈�ε .

Since u = 0 on co Z1 by Proposition 7.3, we have

vε = 0 on Aε := (1+ ε) co Z1.

Let vε be the ε/4 mollification of vε , so that

vε ∈ C∞(�3ε/4,Rn), Ê(vε)≥ 0 on �3ε/4, vε = 0 on A3ε/4.

Then the restriction uε of vε to � satisfies uε ∈ M+ and uε→ u in the sense of assertions (i) and (ii) of
Proposition 7.4.

If (c) holds, one proceeds similarly, but the proof is easier, as no boundary condition has to be satisfied.
�

7C. Example of collapse without collapse mechanism. In the example to be given here, the value λ= 1
4

corresponds to the collapse, and yet there is no corresponding mechanism.

Example 7.6. (See figure below.) Let �= (0, 1)2 and let D= [0, 1]× {0},

s◦(r)=
{
− j if r ∈ St := (0, 1)×{1},
0 if r ∈ S \St ,

s̄(r)=
{
(4(x − 1/2)2− 1)i if r ∈ St := (0, 1)×{1},
0 if r ∈ S \St ,

and b◦ = b̄= 0 on �. (Here i = (1, 0) and j = (0, 1).) Then:

(i) λq = λ̄p =
1
4 for all p, q ∈ [1,∞].

(ii) If |λ|< 1
4 then λ is Lq(�,Sym)-statically admissible for any q ∈ [1,∞].

(iii) If |λ| = 1
4 then λ is Lq(�,Sym)-statically admissible for any q ∈ [1, 3).

(iv) If q ∈ [1,∞] then there is no Lq(�,Sym) mechanism corresponding to λ= 1
4 .

�

D

s◦

s̄

0
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Remarks. (a) We do not know if λ=± 1
4 is Lq(�,Sym)-statically admissible for q ≥ 3.

(b) The case p = q = 2 has been treated in [Lucchesi et al. 2010, Example 2.3]. It was shown that
λ2 = λ̄2 =

1
4 , and an admissible stress field T (λ) determined in [Lucchesi and Zani 2003] was shown to

balance the loads for all λ ∈ [− 1
4 ,

1
4 ]. The stress field T (λ) was shown to be bounded if |λ|< 1

4 and to
belong to L2(�,Sym) if |λ| = 1

4 . Furthermore, it was shown that no corresponding mechanism exists
in W2. Actually, T

( 1
4

)
∈ Lq(�,Sym) for all q ∈ [1, 3), as a closer examination shows, and thus (ii),

(iii) above follow from the construction in the cited references. Here we shall prove the existence of
T balancing the loads for multipliers as in (ii), (iii), without giving an explicit formula for it, by using
Proposition 2.8.

Lemma 7.7. Let either 0 ≤ λ < 1
4 and q ∈ [1,∞] or let λ = 1

4 and q ∈ [1, 3). Then λ is Lq(�,Sym)-
statically admissible.

Proof. We employ Proposition 2.8. Hence we seek to show that corresponding to λ and q there exists a
constant c such that

sup{〈l(λ), v〉 : v ∈Wp, Ê(v)≥ F almost everywhere on �} ≤ c|F|p

for every F ∈ L p(�,Sym), where p is the Hölder conjugate exponent to q and |F|p is the L p norm of
F.

Thus let F ∈ L p(�,Sym) and let v ∈Wp satisfy

Ê(v)≥ F almost everywhere on � (7-12)

and prove that
〈l(λ), v〉 ≤ c|F|p. (7-13)

Write m(α) := s(λ)(α, 1) for every α ∈ [0, 1]. For any α ∈ [0, 1] let

l(α) := {a(α)+ zm(α) : z ∈ R}

be the line through the point a(α) := (α, 1) ∈ St and of direction parallel to m(α). The line l(α) always
intersects the x-axis because m(α) is never horizontal, viz., at the point

b(α)= (β(α), 0)

where
β(α)= α+ λ(4(α− 1/2)2− 1).

One has
β(0)= 0, β(1)= 1.

If 0≤ λ≤ 1
4 , then β is a nondecreasing function on the interval [0, 1] thus

0≤ β(α)≤ 1 for every α ∈ [0, 1];

in other words, the line l(α) intersects the x-axis at some point b(α) of the base D, where the panel is fixed.
We now consider the segment s(α)= l(α)∩ cl� with endpoint a(α), b(α). The precise representative
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ṽ of v is absolutely continuous on the segment s(α) and F(α) is defined for H1-almost every point of
s(α) and F is H1 integrable on s(α). Equation (7-12) then gives

d
dz

v(a(α)+ z t) · t = Ê(v)(a(α)+ z t)t · t ≥ F(a(α)+ z t)t · t

for L1-almost every z ∈ [0, 1], where we write t = m(α) for brevity. Thus integrating with respect to z
over the interval [0, 1] and using v(a(α)+ t)≡ v(b(α))= 0, we find that

v(a(α)) · t ≤−
∫ 1

0
F(a(α)+ z t)t · t d z ≤

∫ 1

0
|F(a(α)+ z t)||t|2 d z.

We have |t| = |m(α)| ≤ d <∞ for all a(α) ∈ St and thus we obtain that

v(a(α)) ·m(α)≤ d2
∫ 1

0
|F(a(α)+ zm(α))| d z (7-14)

and hence, integrating (7-14) over Tt and using m(α) := s(λ)(α, 1) we obtain

〈l(λ), v〉 ≤ d2
∫ 1

0

∫ 1

0
|F(a(α)+ zm(α))| d z dα. (7-15)

Let us now estimate the integral

I :=
∫ 1

0

∫ 1

0
|F((α, 1)+ zm(α))| d z dα.

Consider a change of variables 8 from (z, α) to (x, y)= (α, 1)+ zm(α)), i.e.,

x = α+ zλ(4(α− 1/2)2− 1), y = 1− z.

The Jacobian of this transformation J := | det D8| is

J = 1+ 8λαz− 4λz.

Applying Hölder’s inequality to the measure J dz dα we obtain

I =
∫ 1

0

∫ 1

0
|F((α, 1)+ zm(α))|J−1 J d z dα ≤ K 1/p L1/q

where

K =
∫ 1

0

∫ 1

0
|F((α, 1)+ zm(α))|p J d z dα ≡

∫ 1

0

∫ 1

0
|F(x, y)|p d x dy ≡ |F|pp,

and

L =
∫ 1

0

∫ 1

0
J 1−q d z dα =

∫ 1

0

∫ 1

0
(1+ 8λαz− 4λz)1−q d z dα.

We now distinguish two cases.

Case (a): Let 0≤ λ < 1
4 . Then 1+ 8λαz− 4λz ≥ 1− 4λ and thus

I ≤ (1− 4λ)(1−q)/q
|F|p.
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Inequality (7-15) then yields
〈l(λ), v〉 ≤ d2(1− 4λ)(1−q)/q

|F|p

and thus we have (7-13) with c = d2(1− 4λ)(1−q)/q . Consequently, the conclusion of Proposition 7.3
holds and thus λ is Lq(�,Sym)-statically admissible for every q ∈ [1,∞].

Case (b): λ= 1
4 . Then

L =
∫ 1

0

∫ 1

0
(1+ 2zα− z)1−q d z dα (7-16)

and hence

L = (2− q)−1
∫ 1

0
(2α− 1)−1(1+ 2zα− z)2−q

∣∣z=1
z=0 dα

= (2− q)−1
∫ 1

0
(2α− 1)−1((2α)2−q

− 1) dα,

provided q 6= 2. Under this assumption, it is easily found that the integrand of the last integral has the
only singularity at α = 0, where it behaves as a constant multiple of α2−q . The apparent singularity at
α = 1/2 does not occur as

lim
α→1/2

(2α− 1)−1((2α)2−q
− 1)= 1− q/2.

Thus, if 2− q >−1, i.e., if 1≤ q < 3, and q 6= 2, the integral in (7-16) thus converges. It is easily found
that the integral in (7-16) converges also if q = 2. Thus (7-15) yields〈

l
( 1

4

)
, v
〉
≤ d2L1/q

|F|p

for every F ∈ L p(�,Sym) and we have (7-13) with c = d2L1/q . �

Remark 7.8. Assertions (ii) and (iii) follow from Lemma 7.7 by noting that any λ ∈ R is Lq(�,Sym)-
statically admissible if and only if −λ is too (it suffices to change the orientation of the x-axis). It also
follows from (ii) (or from Lemma 7.7) that λq ≤

1
4 for each q ∈ [1,∞].

Lemma 7.9. For each λ > 1
4 and p ∈ [1,∞] there exists a Wp mechanism corresponding to λ.

Proof. Let p ∈ [1,∞] be arbitrary. If ω : R→ R is any nonincreasing C1 function vanishing on (1,∞)
that does not vanish identically on (0, 1) then v :�→ R2, given by

v(r)= ω(x/y)r⊥, (7-17)

r = (x, y) ∈ �, r⊥ := (−y, x) satisfies v ∈ Wp and Ê(v) ∈ L p(�,Sym+). Indeed, one finds that
v ∈W 1,p(�,R2) and since ω vanishes on (1,∞), v vanishes on

�− := {r ∈� : x/y > 1}

and thus in particular on D (in the sense of trace). Hence v ∈Wp. Furthermore,

Ê(v)(r)=−y−2ω′(x/y)r⊥⊗ r⊥
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r ∈�, and as ω′ ≤ 0 we have Ê(v) ∈ L p(�,Sym+). One has

〈l◦, v〉 = −
∫

T
ω(x/y)x d H1(r)=−

∫ 1

0
ω(x)x d x

〈l̄, v〉 = 4
∫

T
ω(x/y)yx(1− x) d H1(r)= 4

∫ 1

0
ω(x)x(1− x) d x;

noting that the last expression and the hypotheses on ω imply that 〈l̄, v〉 > 0, we thus deduce that the
value

λ=−
〈l◦, v〉
〈l̄, v〉

= 4−1
∫ 1

0
ω(x)x d x

/∫ 1

0
ω(x)x(1− x) d x (7-18)

is a kinematically admissible multiplier. Fixing ε ∈ (0, 1) and taking a sequence of functions of the type
of ω that converges to the function ωε given by

ωε(t)=
{

1 if t ≤ ε,
0 otherwise,

t ∈ R, we deduce from (7-18) by evaluating the integrals that the value

λ= 1
4(1− 2ε/3)

is kinematically admissible. Varying ε ∈ (0, 1) we obtain the interval
( 1

4 ,
3
4

)
. �

Remark 7.10. It follows from Lemma 7.9 that λ̄p ≤
1
4 for each p ∈ [1,∞]. Combining 1

4 ≤ λ̄p ≤ λq ≤
1
4

we obtain (i).

Lemma 7.11. If λ= 1
4 and p ∈ [1,∞] then there is no corresponding Wp mechanism.

Proof. We prove that if v ∈W+p and 〈l
(1

4

)
, v〉 = 0 then v = 0 almost everywhere on �. For any α ∈ [0, 1]

let a(α) ∈ St and b(α) ∈ D be as in the proof of Lemma 7.7. Then for L1-almost every α ∈ [0, 1] we
have (

v(a(α))− v(b(α))
)
·
(
a(α)− b(α)

)
≥ 0;

using that v(b(α))= 0, we obtain
v(a(α)) · s

( 1
4

)
(α, 1)≤ 0.

Comparing this with 〈
l
( 1

4

)
, v
〉
=

∫ 1

0
v · s

( 1
4

)
(α, 1) dα = 0

we obtain
v(a(α)) · s

(1
4

)
(α, 1)= 0 (7-19)

for L1-almost every α ∈ (0, 1). Furthermore, for almost every α ∈ (0, 1) we have(
v(a(α))− v(0)

)
· a(α)≥ 0,

(
v(a(α))− v(i)

)
·
(
a(α)− i

)
≥ 0,

which reduces to
v(a(α)) · a(α)≥ 0, v(a(α)) ·

(
a(α)− i

)
≥ 0 (7-20)
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for L1-almost every α ∈ (0, 1). It is now easily seen that (7-19) and (7-20) imply that v(a(α))= 0 for
L1-almost every α ∈ (0, 1). We thus have v = 0 on St and on D and thus Proposition 7.3 implies that
v = 0 on co Z1 which is �. �

7D. Example of the violation of the kinematic theorem. We here give an example in which the supre-
mum of statically admissible multipliers depends dramatically on the choice of function spaces.

Example 7.12. (See figure below.) Let �= (0, 1)2, D= (0, 1)×{0}, S= ∂� \D,

s(λ)(r)=


(1− λ)r if r ∈ St := (0, 1)×{1},
(λ/2− 1)(i + j) if r ∈ Sr := {1}× (0, 1),
0 if r ∈ Sl := {0}× (0, 1),

b(λ)= 0 on �,

for λ ∈ R. Then
λ̄p = 2 for all p ∈ [1,∞], (7-21)

λq =

{
2 if q ∈ [1, 2),
1 if q ∈ [2,∞].

(7-22)

λq , λ̄p

2

1

1 2 q

λ̄p = 2

Lemma 7.13. For any λ ∈ R, let T (λ) :�→ Sym be defined by

T (λ)(r)=
{
(1− λ)r ⊗ r/y3 if r ∈�+ := {r ∈� : y/x > 1},
(λ/2− 1)(i + j)⊗ (i + j) if r ∈�− := {r ∈� : y/x < 1}.

Then T (λ) equilibrates the loads in the sense that

(T (λ), v)= 〈l(λ), v〉 (7-23)

for each v from the set

M := {v ∈ C1(cl�,R2) : v = 0 near D};

moreover,

T (λ) ∈ Lq(�,Sym) for all q ∈ [1, 2) and all λ ∈ R,
T (1) ∈ Lq(�,Sym) for all q ∈ [1,∞],
T (λ) /∈ Lq(�+,Sym) for all q ∈ [2,∞] and all λ ∈ R, λ 6= 1,

 (7-24)
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and
T (λ)≤ 0 L2-almost everywhere on � ⇐⇒ 1≤ λ≤ 2. (7-25)

Proof. One finds that (a) T (λ) can be continuously extended to ∂�+ \ {0} and also to ∂�−; (b) T (λ)
satisfies the boundary condition

T (λ)n= s(λ) on S \ {0},

in the classical sense; (c) T (λ) is discontinuous across the segment l := {r ∈� : y = x}, but the normal
component of T (λ) is continuous across l; (d) T (λ) is of class ∞ on �+ and �− with the classical
divergence vanishing on each of these two regions:

div T (λ)= 0 on �±.

If v ∈ M then there exists an ε > 0 such that v vanishes on the line segment {r ∈� : y = ε}. Applying of
the classical divergence theorem to �+ε = {r ∈�+ : y > ε} and �−ε = {r ∈�− : y > ε} separately (using
of the properties (a)–(d)), and adding the results gives (7-23).

To prove the properties (7-24), we note that T (λ) is bounded on �− while T (λ) has a singularity on
�+ at 0. Thus we have T (λ) ∈ Lq(�,Sym) if and only if T (λ) ∈ Lq(�+,Sym). We have

|1− λ|/y ≤ |T (λ)(r)| ≤
√

2|1− λ|/y

for each r ∈�+. Thus

|1− λ|q Iq ≤

∫
�+
|T (λ)|q d L2

≤ (
√

2)q |1− λ|q Iq

where

Iq =

∫
�+

y−q d L2.

One has Iq <∞ if and only if q ∈ [1, 2) and (7-24) follows.
Assertion (7-25) is immediate. �

Lemma 7.14. All λ satisfying 1≤ λ < 2 are Wp-kinematically inadmissible for all p ∈ [1,∞], and every
λ ∈ (2, 7) is Wp-kinematically admissible. In particular, we have (7-21).

Proof. Let 1≤ λ < 2. By (7-23) and (7-25) we have

0≥ (T (λ), Ê(v))= 〈l(λ), v〉

for all v ∈M+ := {v ∈M : Ê(v)≥ 0 on cl�}. The continuity of the loads on Wp for every p ∈ [1,∞] and
the density of M+ in W+p (Proposition 7.5(a)) then imply that the inequality 〈l(λ), v〉 ≤ 0 can be extended
to W+p , i.e., we have 〈l(λ), v〉 ≤ 0 for all v ∈ W+p , and all λ ∈ [1, 2). This implies that no λ ∈ [1, 2) is
kinematically admissible, as we now show. Indeed, one easily verifies from the definition that if λ ∈ R

is kinematically admissible then for every µ > λ there exists a v ∈ W+p such that 〈l(µ), v〉 > 0. Thus
the hypothesis that some λ ∈ [1, 2) is kinematically admissible would imply that for every µ > λ there
is a v ∈W+p such that 〈l(µ), v〉> 0. However, we have shown that 〈l(λ), v〉 ≤ 0 for all v ∈W+p , and all
λ ∈ [1, 2); in particular 〈l(µ), v〉 ≤ 0 for all v ∈W+p , and all µ ∈ (λ, 2). Thus λ cannot be kinematically
admissible.
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Next we prove that every λ ∈ (2, 7) is Wp-kinematically admissible for every p ∈ [1,∞] by exhibiting
a mechanism corresponding to λ which is in all Wp. Let s be a number satisfying 0< s < 1, put

m = (1, s),

denote by �s the set

�s = {r : y ≥ 1− sx},

and define vs by

vs(r)=
{
(r ·m− 1)m if r ∈�s,

0 if r ∈� \�s .

Then vs ∈W+p for all p ∈ [1,∞] with

Ê(vs)=

{
m⊗m on �s,

0 on � \�s .

Calculations give

〈l(λ), vs〉 =
1
6

(
(−2s3

− 3s2
+ 3+ 3s)λ+ 2s3

+ 3s2
− 6s− 6

)
,

〈l◦, vs〉 =
1
6(−2s3

− 3s2
+ 3+ 3s).

If s ∈ (0, 1) then one finds that

〈l(λs), vs〉 = 0

for

λs =
2s3
+ 3s2

− 6s− 6
2s3+ 3s2− 3s− 3

.

The function s 7→ λs is increasing and maps the interval (0, 1) onto the interval (2, 7), as one easily finds.
Moreover,

〈l◦, vs〉> 0

for all s ∈ (0, 1). It therefore follows that for every λ ∈ (2, 7) there exist a sλ such that vsλ is a mechanism
corresponding to λ. This proves that every λ ∈ (2, 7) is kinematically admissible. �

Remark 7.15. The proof of Lemma 7.14 shows that if 1≤ λ≤ 2 and p ∈ [1,∞] then 〈l(λ), v〉 ≤ 0 for
each v ∈W+p . Despite of this, for q ∈ [2,∞] the multiplier λ is not statically admissible, which shows
that the condition that 〈l(λ), v〉 ≤ 0 for each v ∈ W+p is only necessary, but not sufficient for the static
admissibility. Cf. the discussion following Proposition 2.8.

Lemma 7.16. A λ ∈ R is Lq(�,Sym)-statically admissible if and only if

λ ∈3q :=

{
[1, 2] if 1≤ p < 2,
{1} if 2≤ p ≤∞.

In particular, we have (7-22).
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Proof. All λ < 1 are Lq(�,Sym)-statically inadmissible for all q ∈ [1,∞]. Indeed, if they were to be
statically admissible, then we would have s(λ) · n ≤ 0 on St by [Lucchesi et al. 2010, Proposition 2.1(i)],
where n is the outer normal to � on St , while we have s(λ) · n> 0 everywhere on St for λ < 1.

Further, λ= 1 is Lq(�,Sym)-statically admissible for all q ∈ [1,∞]. Indeed, the stress field T (1) is
bounded on �, is admissible, and equilibrates the loads l(1).

If 1≤ q < 2, then every λ ∈ [1, 2] is Lq(�,Sym)-statically admissible. Indeed, the stress field T (λ) is
admissible, is in Lq(�,Sym), and equilibrates the loads in the sense that (7-23) holds for every v ∈Wp

where p is the Hölder conjugate of q . This is proved by using (7-23) for v ∈ M and applying the density
of M in Wp (Proposition 7.4) and the continuity of loads on Wp.

If 2≤ q ≤∞, then every λ∈ (1, 2) is Lq(�,Sym) statically inadmissible. Let 1<λ≤ 2 and prove that
there is no admissible stress field in Lq(�,Sym) equilibrating the loads l(λ). Assume, on the contrary,
that T is an admissible stress field equilibrating the loads. If ω : R→ R is any nonincreasing C1 function
vanishing on (1,∞) and with ω′ < 0 on (0, 1), let v : �→ R2, defined by (7-17). As in the proof of
Lemma 7.9, we have v ∈W+p . Furthermore, one finds that

〈l(λ), v〉 = 0.

From 〈l(λ), v〉 = (T , Ê(v))= 0 and T ≤ 0, Ê(v)≥ 0 on � we derive that T · Ê(v)= 0 for L2 a.e. point
of �. We have ω′(x/y) 6= 0 for every point of �+. Then T (r) · (r⊥⊗ r⊥)= 0 for a.e. point of �+ and
must be proportional to r ⊗ r and hence we write

T (r)= η(r)r ⊗ r/y3

for L2 a.e. r = (x, y) ∈�+ where η :�+→ R is a L2 measurable function.
As in [Lucchesi et al. 2010, proof of Example 2.4], we deduce from div T = 0 in �+ and T n= s(λ)

on St that

T (r)= T (λ) on �+ . (7-26)

Indeed, the equation div T = 0 gives r(r · ∇η)+ 3rη = 0 which gives

r · ∇η+ 3η = 0.

The substitution η = η̂/y3 then provides

r · ∇η̂ = 0.

Thus the directional derivative of η̂ along any segment {r ∈�+ : r = cd, 0< c < d} is constant for any
d ∈ St . The segment is completely characterized by the slope y/x and thus there exists a function η̃ on
(1,∞) such that η̂(r)= η̃(y/x) for every r ∈�+. Thus

T (λ)(r)= η̃(y/x)r ⊗ r/y3 on �+.

The boundary condition T n = s(λ) on St then leads to η̃(d) = (λ− 1) for any d ∈ St and we obtain
finally (7-26). The argument above applies to the case when T is continuously differentiable. The general
argument in case T is only measurable is given in [Lucchesi et al. 2010, proof of Example 2.4]. This
part of the proof is omitted.
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To complete the proof, we note that T (λ) /∈ Lq(�+,Sym) and thus we arrive at a contradiction:
Starting from arbitrary balancing stress field in Lq(�,Sym) we obtain that T /∈ Lq(�,Sym). Thus λ is
not Lq(�,Sym)-statically admissible. �

8. Summary

(i) A decreasing continuous sequence of function spaces

WBD ⊃ · · · ⊃Wp1 ⊃Wp2 ⊃ · · · ⊃W∞ ⊃ C1

(1≤ p1 < p2 <∞) has been presented. The kinematic problem with this decreasing sequence is more
and more restrictive in the competitors space which results in apriori inequalities for the corresponding
critical multipliers of the kinematic problems

λ̄BD ≤ λ̄p1 ≤ λ̄p2 ≤ · · · ≤ λ̄∞ ≤ λ̄◦. (8-1)

Density conditions have been given which guarantee that the sequence (8-1) is constant.
(ii) A continuous sequence of function spaces C0(cl�,Sym), Lq(�,Sym), Xba, XM for static prob-

lems has been given. This sequence is better wieved as increasing if the parameter q is decreasing:

C0(cl�,Sym)⊂ · · · ⊂ Lq1(�,Sym)⊂ Lq2(�,Sym)⊂ · · · ⊂ Xba ⊂ XM (8-2)

(∞≥ q1 > q2 > 1). (With this way of ordering of the set of all q’s, we can consider q1 and q2 as the
Hölder conjugates of p1 and p2 above, respectively.) The static problem with the sequence (8-2) admits
wider and wider competitors space which results in apriori inequalities for the corresponding critical
multipliers of the static problems

λ◦ ≤ · · · ≤ λq1 ≤ λq2 ≤ · · · ≤ λba ≤ λM. (8-3)

In the case of the choice of the spaces W∞ or C1 in the kinematic problem, the set of all admissible
stresses has to be enlarged to contain stresses represented by either finitely or countably additive tensor-
valued measures. No condition is currently available to the authors that would guarantee that the sequence
(8-3) is constant. We also note in passing that all the multipliers in (8-1) and (8-3) coincide if

λ◦ = λ̄◦ (8-4)

that is, if the supremum of the statically admissible multipliers over the continuous stress fields coincides
with the infimum of the kinematically admissible multipliers over the smooth displacement fields. In this
case, the critical multipliers become independent of the choice of the function spaces. However, we do
not know any condition guaranteeing (8-4).

(iii) A necessary and sufficient condition has been given under which the supremum of statically
admissible multipliers equals the infimum of kinematically admissible multipliers. Two sufficient condi-
tions for the last equality have been given. A simple sufficient condition involves the assumption of the
existence of the strong mechanism. An example is given to show that this is not always satisfied, even
with very regular loads.

(iv) An example has been given of loads in which the function q 7→ λq (∞≥ q > 1) has an increasing
jump at q = 2 as q moves along [1,∞] from right to left. Moreover, λq < λ̄p for q ∈ [1, 2).
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The above shows that the limit analysis problems are sensitive to the choice of function spaces.

Appendix: Notation for function spaces

We here describe briefly and somewhat informally the function spaces used in the main text. All spaces
below are Banach spaces but we do not specify the corresponding norms.

If Z is a finite dimensional real inner product space and 1 ≤ p ≤∞ then L p(�, Z) is the set of all
Lebesgue measurable functions β :�→ Z such that{∫

�
|β|p d Ln <∞ if p <∞,

ess sup{|β(x)| : x ∈�}<∞ if p =∞.

The spaces L p(S, Z) are defined analogously, with the Lebesgue measure replaced by the Hausdorff
measure Hn−1. See, e.g., [Fonseca and Leoni 2007, Chapter 2] for the scalar-valued case. In the general
case the space Z is isometrically isomorphic to Rk for a suitable k, and one employs the procedures of
the scalar case to components. The same applies also to the other objects with values in Z , Rn or Sym
to be considered below, without mentioning it. (The references we give below deal exclusively with the
scalar case.)

If 1≤ p≤∞ then W 1,p(�,Rn) denotes the Sobolev space of all v :�→Rn such that v ∈ L p(�,Rn)

and ∇v ∈ L p(�,Lin). See e.g., [Adams and Fournier 2003, Chapter 3].
If Z is as above and A a Borel subset of cl� then M(A, Z) denotes the space of all countably additive

Z -valued measures, i.e., functions µ :B→ Z , where B is the set of all Borel subsets of Rn , such that

µ

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

µ(Bi )

for each disjoint sequence of Borel subsets of Rn , and

µ(B)= 0

if B is a Borel subset of Rn such that A ∩ B = ∅. The elements µ ∈ M(A, Z) are called Z -valued
countably additive measures on A. See, e.g., [Fonseca and Leoni 2007, Section 1.3.1]. Furthermore, if
µ stands for the Lebesgue measure in Rn or for the n− 1 dimensional Hausdorff measure and A is a µ
measurable subset of Rn , then µ A denotes the restriction of µ to A, defined as the measure on Rn by

(µ A)(B)= µ(A∩ B)

for every µ measurable set B. In this context, if β is a µ A integrable function with values in Z then
βµ A denote the multiple of µ A by β, defined as an element of M(A, Z), by

(βµ A)(B)=
∫

A∩B
β dµ

for all µ measurable sets B.
The space ba(�,M,Ln

;Sym) of bounded finitely additive Sym-valued measures that are absolutely
continuous with respect to the Lebesgue measure is the set of all T :M→ Sym, where M is the system
of all Lebesgue measurable subsets of Rn , such that
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(a) T(A∪ B)= T(A)+T(B) for every A, B ∈M with A∩ B =∅;

(b) sup
{∑ j

i=1 |T(Ai )| : {Ai } ⊂M is a finite partition of Rn
}
<∞;

(c) T(A)= 0 for each A ∈M with Ln(A)= 0;

(d) T(A)= 0 for each A ∈M with A∩�=∅.

See, e.g., [Fonseca and Leoni 2007, pp. 169–171].
BD(�) is the set of all v ∈ L1(�,Rn) such that Ê(v), interpreted as a distribution, is in M(�,Sym).

See [Témam 1983, Chapter II].
C1(cl�,Rn) is the set of all continuously differentiable functions v :�→ Rn such that both v and
∇v have continuous extensions from � to the closure cl� of �. We often identify v and ∇v with these
extensions.

C0(cl�,Sym) is the space of all continuous functions F : cl�→ Sym. See, e.g., [Fonseca and Leoni
2007, p. 126].

Acknowledgment

We thank the anonymous referee for many valuable remarks and suggestions.

References

[Adams and Fournier 2003] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics 140,
Elsevier/Academic Press, Amsterdam, 2003.

[Anzellotti 1983] G. Anzellotti, “Pairings between measures and bounded functions and compensated compactness”, Ann. Mat.
Pura Appl. (4) 135 (1983), 293–318.

[Anzellotti 1985] G. Anzellotti, “A class of convex noncoercive functionals and masonry-like materials”, Ann. Inst. H. Poincaré
Anal. Non Linéaire 2:4 (1985), 261–307.

[Dal Maso et al. 2007] G. Dal Maso, A. Demyanov, and A. DeSimone, “Quasistatic evolution problems for pressure-sensitive
plastic materials”, Milan J. Math. 75 (2007), 117–134.

[Del Piero 1989] G. Del Piero, “Constitutive equation and compatibility of the external loads for linear elastic masonry-like
materials”, Meccanica (Milano) 24:3 (1989), 150–162.

[Del Piero 1998] G. Del Piero, “Limit analysis and no-tension materials”, Int. J. Plast. 14 (1998), 259–271.

[Di Pasquale 1992] S. Di Pasquale, “New trends in the analysis of masonry structures”, Meccanica (Milano) 27 (1992), 173–
184.

[Ekeland and Témam 1999] I. Ekeland and R. Témam, Convex analysis and variational problems, Classics in Applied Mathe-
matics 28, Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[Evans and Gariepy 1992] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca
Raton, FL, 1992.

[Fonseca and Leoni 2007] I. Fonseca and G. Leoni, Modern methods in the calculus of variations: L p spaces, Springer, New
York, 2007.

[Giaquinta and Giusti 1985] M. Giaquinta and E. Giusti, “Researches on the equilibrium of masonry structures”, Arch. Ration.
Mech. Anal. 88:4 (1985), 359–392.

[Gurtin 1981] M. E. Gurtin, An introduction to continuum mechanics, Mathematics in Science and Engineering 158, Academic
Press, New York, 1981.

[Kohn and Témam 1983] R. Kohn and R. Témam, “Dual spaces of stresses and strains, with applications to Hencky plasticity”,
Appl. Math. Optim. 10:1 (1983), 1–35.



836 MASSIMILIANO LUCCHESI, MIROSLAV ŠILHAVÝ AND NICOLA ZANI

[Lucchesi and Zani 2003] M. Lucchesi and N. Zani, “Some explicit solutions to plane equilibrium problem for no-tension
bodies”, Struct. Eng. Mech. 16:3 (2003), 295–316.

[Lucchesi et al. 2006] M. Lucchesi, M. Šilhavý, and N. Zani, “A new class of equilibrated stress fields for no–tension bodies”,
J. Mech. Mater. Struct. 1 (2006), 503–539.

[Lucchesi et al. 2008a] M. Lucchesi, C. Padovani, G. Pasquinelli, and N. Zani, Masonry constructions: mechanical models
and numerical applications, Springer, Berlin, 2008.

[Lucchesi et al. 2008b] M. Lucchesi, M. Šilhavý, and N. Zani, “Integration of measures and admissible stress fields for masonry
bodies”, J. Mech. Mater. Struct. 3 (2008), 675–696.

[Lucchesi et al. 2010] M. Lucchesi, C. Padovani, and M. Šilhavý, “An energetic view on the limit analysis of normal bodies”,
Quart. Appl. Math. 68:4 (2010), 713–746.

[Lucchesi et al. 2011] M. Lucchesi, M. Šilhavý, and N. Zani, “Integration of parametric measures and the statics of masonry
panels”, Ann. Solid Struct. Mech. 2 (2011), 33–44.

[Padovani et al. 2008] C. Padovani, G. Pasquinelli, and M. Šilhavý, “Processes in masonry bodies and the dynamical signifi-
cance of collapse”, Math. Mech. Solids 13:7 (2008), 573–610.

[Paroni 2012] R. Paroni, “An existence theorem for inextensible nets with slack”, Math. Mech. Solids 17 (2012), 460–472.

[Rockafellar 1970] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series 28, Princeton Univ. Press, Princeton, NJ,
1970.

[Šilhavý 2008] M. Šilhavý, “Cauchy’s stress theorem for stresses represented by measures”, Contin. Mech. Therm. 20:2 (2008),
75–96.

[Témam 1977] R. Témam, Navier–Stokes equations: theory and numerical analysis, Studies in Math. and its Applications 2,
North-Holland, Amsterdam, 1977.

[Témam 1983] R. Témam, Problèmes mathématiques en plasticité, Méthodes Mathématiques de l’Informatique 12, Gauthier-
Villars, Montrouge, 1983.

[Témam and Strang 1980] R. Témam and G. Strang, “Duality and relaxation in the variational problems of plasticity”, J. Méc.
19:3 (1980), 493–527.

Received 1 Jun 2012. Revised 27 Sep 2012. Accepted 4 Oct 2012.

MASSIMILIANO LUCCHESI: massimiliano.lucchesi@unifi.it
Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze, Piazza Brunelleschi 6, I-50121 Firenze, Italy

MIROSLAV ŠILHAVÝ: silhavy@math.cas.cz
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

NICOLA ZANI: nicola.zani@unifi.it
Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze, Piazza Brunelleschi 6, I-50121 Firenze, Italy

mathematical sciences publishers msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 7, No. 8-9, 2012

dx.doi.org/10.2140/jomms.2012.7.837 msp

EDGE STIFFNESS EFFECTS ON THIN-FILM LAMINATED DOUBLE GLAZING
SYSTEM DYNAMICAL BEHAVIOR BY THE OPERATIONAL MODAL ANALYSIS

ALI AKROUT, MARIEM MILADI CHAABANE, LOTFI HAMMAMI AND MOHAMED HADDAR

We apply operational modal analysis (OMA) to determine the eigenfrequencies and the eigenmode
shapes of a thin-film laminated double glazing system. For this purpose, the dynamic behaviors of
both a laminate alone and a coupled system (double-wall structure) for specific boundary conditions are
investigated. Here, the laminated plate which is composed of two elastic skins joined with an adhesive
ultra-thin film is bonded by an elastic joint. Thus, two configurations of the thin-film laminated glass
plate elastic boundary conditions are considered. The first one assumes that the structure is bonded
by a translational stiffness (linear springs). In the second one, besides the translational stiffness, a ro-
tational stiffness (angular springs) is introduced in order to improve the developed model. The modal
recombination results of a thin-film laminated glass plate as well as those of the thin-film laminated
double glazing system are presented and compared to the estimated modes achieved by OMA. Since
a good agreement is obtained, the OMA technique can be used to determine the modal parameters by
considering the experimental vibratory responses of the studied system. In addition, the vibration’s
amplitude of two laminated glass plates linked from edge to edge with both linear and angular springs
can be much reduced compared to the one of the same structure bonded only by linear springs.

1. Introduction

In recent years, several structural damping calculations have been carried out in order to control vibration
amplitudes and sound transmissions through windows. Thus, as presented in works such as [Antonio
et al. 2003] and [Cheng et al. 2005], double panel systems offers improved vibro-acoustic behaviors and
can be used in building constructions, medication equipments, automobiles and aeronautical industries.
In fact, to calculate the dynamic responses of a fluid-structure coupled problem, some mathematical
models can be mixed. In this context, Bouhioui [1993] combined a finite element model with an integral
equation formulation in order to determine the sound transmission loss through an elastic double glazing
system. This model is recently improved by Basten et al. [2001] who developed an acousto-elastic model
for a double elastic panel in which the viscothermal fluid cavity effects are taken into account. Besides,
in [Akrout et al. 2008b; 2009; 2010], a structural damping model of simple and laminated plates is
coupled to the viscothermal fluid model developed by Basten et al. in order to obtain a new configuration
of fluid-structure coupled system. In this case, the classical modal analysis is mixed with an iterative
procedure in order to calculate the vibro-acoustic modes.

Furthermore, the lamination effects give more damping to a considered vibrating panel excited by
mechanical force and/or acoustical pressure; see for example [Zenkert 1995; Reddy 1997; Khdeir and

Keywords: thin-film laminated double glazing, rotational stiffness, translational stiffness, operational modal analysis, blind
source separation, eigenmodes.
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Reddy 1999; Carrera 2004]. In this context, Assaf [1991] analyzed the dynamic effects of a viscoelastic
core on standard sandwich plate vibratory behavior by taking into account essentially the shearing work
in the core and the coupling between membranous and bending effects. In the same context, Abdennadher
et al. [2005b] developed a dynamic model in order to characterize the modal damping induced by a double
sandwich panels. Recently, Akrout et al. [2008a] showed that the lamination process based on ultra-thin
film at the skin’s interface let’s to provide reduced plate’s deflection amplitudes. Additionally, stiffness
boundary conditions have considerable effects on dynamic responses of plates. In fact, the study of a
double panel system dynamic behavior for various boundary conditions have been carried out by many
researchers; see for example [Abbès et al. 2011; Abdennadher et al. 2005a]. Then, if a damping and/or
a stiffness of plate edge is considered, the vibro-acoustic responses amplitude can be much reduced. For
this purpose, Park et al. [2003] examined the effect of viscoelastic supports at the level of plate’s edges.
It has been shown that the plate’s velocity and the sound energy are effectively affected by the damping
on the level of the edges inducing reduced vibration amplitudes. Also, Vallaban et al. [1997] considered
a structural joint at the level of a glass panel edges. It has been concluded that the dynamic behavior of
the plate-joint can be improved by increasing the stress in the joint produced by the shearing forces on
the level of the edges.

As a resolution method, we can use especially the Operational Modal Analysis (OMA) formulation
which has been previously established by many researchers in neuroscience and signal processing; see
for example [Hérault and Ans 1984; 1985; Nguyen et al. 1994]. In this context, independent compo-
nent analysis, one of the major techniques of the BSS method, can be exploited in order to solve BSS
problems in the case of linear or nonlinear convolutive mixtures as presented in [Zarzoso and Comon
2008; Antoni et al. 2004; 2005]. This method needs to know only the sensor’s measurement or the FE
vibratory responses in order to estimate the eigenfrequencies of a studied structure. It’s defined by a
separation procedure applied on independent linear mixture signal by using only the measured vibratory
response of the system. Poncelet et al. [2007] used ICA in order to exploit the virtual source theory by
studying an output-only modal analysis. Kerschen et al. [2007] used the modal assurance criterion to
establish the relation between exact and estimated modes. In this work, the OMA method is presented and
exploited in order to extract the eigenmodes of a thin-film laminated double glazing system with elastic
boundary conditions. In this case, both translational and rotational stiffness are considered at the level
of the plate’s edges. The model validation is obtained by comparing the exact (numerical) and estimated
eigenfrequencies of a thin-film laminated glass plate for two cases of elastic boundary conditions: the
first model assumes that the laminated plate is fixed only by a linear springs. In the second one, the same
structure is fixed by both linear and angular springs. Moreover, the dynamic responses of each case
are presented and discussed. Also, the exact and estimated eigenmodes shapes of a thin-film laminated
double glazing system are presented and compared. Thus, the influence of the system’s edge stiffness
can be analyzed.

2. Mathematical formulation

2.1. The OMA method. As presented in [Hérault and Ans 1984; 1985; Nguyen et al. 1994], the op-
erational modal analysis (OMA) method is based on independent component analysis (ICA), a recent
approach used in signal treatment. We briefly describe the setup. Consider Ns source signals emitted
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Figure 1. Separation procedure: ICA concept.

through a dynamic system modeled by a mixture matrix of dimension Ns × Nc and received by Nc

sensors. Then, the model equation can be expressed as (see [Abbès et al. 2011; Zarzoso and Comon
2008; Poncelet et al. 2007])

xi =

Ns∑
j=1

hi j s j + bi , i = 1, . . . , Nc. (1)

Equation (1) can be written in matrix form as

{x} = [H ]{s}+ {b}, (2)

where {x} = 〈x1, . . . , xNc〉
T represents the Nc observations vector, {s} = 〈s1, . . . , sNs 〉

T represents the
Ns signals sources vector, [H ] = [{h1}, . . . , {hNs}] is the mixture matrix of dimension Nc× Ns , {h j } =

〈h1 j , . . . , hNcj 〉
T , j = 1, . . . , Ns , is the j-th column vector of the mixture matrix [H ], {b} is a possible

additive noise.
When ICA is applied in OMA, the structure physical responses defined as virtual sources with different

spectral contents can be interpreted. In this case, ICA provides the mixing matrix and the modal response
of the structure (Figure 1).

The dynamic response of a given mechanical system can be obtained by the modal recombination
method as (see [Akrout et al. 2008a; Abbès et al. 2011])

{x} = [9]{y}, (3)

where {x} is the measured nodal vector, [9] represents the modal matrix and {y} is the vector containing
the modal responses. Then, by using only the output signal {x}, OMA is carried out in order to determine
the eigenmode shapes existing in the modal matrix [9] and the eigenfrequencies contained in the modal
response vector {y}.

2.2. Thin-film laminated plate dynamic model. As presented in Figure 2, the kinematical behavior of
the laminate is based on the theory that introduce a specific behavior law for an ultra-thin adhesive film
of stiffness kfilm confined at the interface of two skin plies of thicknesses (h1, h2) which satisfy for the
Kirchhoff plate’s theory. In this case, `x and `y are the half dimensions of the laminate with respect to
directions x and y.

Then, the vibratory behavior of the laminated glass plate is described by both dynamics of skins and
the ultra-thin adhesive film.
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Figure 2. In plane (x, z) thin-film laminate kinematic model.

Consequently, the displacement field in the thin-film laminated glass plate can be expressed as follows
[Akrout et al. 2008a]:

x-direction :

{
u1 = um +

[uτ ]
2 + (z− zm)βx

u2 = um −
[uτ ]

2 + (z− zm)βx
(4)

y-direction :

{
v1 = vm +

[vτ ]
2 + (z− zm)βy

v2 = vm −
[vτ ]

2 + (z− zm)βy
(5)

z-direction : w(x, y, z)= w(x, y) (6)

The dynamic of the ultra-thin film can be written as a function of the shear interfacial displacements with
respect to directions x and y ([uτ ] = u1|z=0− u2|z=0 and [vτ ] = v1|z=0− v2|z=0) as follows:

τx = kfilm[uτ ]

τy = kfilm[vτ ]
(7)

where (τx , τy) are the shear interfacial stresses [Akrout et al. 2008a].
Consequently, we can use the stress-strain relations in order to determine the energy functional of the

laminate as follows:

ϑL = (Estr.+ Ekin.)skins+ Efilm (8)

where (Estr.)skins, Efilm and (Ekin.)skins are respectively the skin’s strain energy, the film strain energy and
the skin’s kinetic energy (by neglecting inertial terms of rotations) calculated as follows [Akrout et al.
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2008a]:

(Estr.)skins =
1
2

∫
6

( ∫ 0

−h2

〈σ 〉2{ε}2 dz+
∫ h1

0
〈σ 〉1{ε}1 dz

)
d6 (9)

Efilm =
1
2

∫
6

〈[uτ ][vτ ]〉
[

kfilm 0
0 kfilm

]{
[uτ ]
[vτ ]

}
d6 (10)

Ekin. =
1
2

2∑
i=1

∫
6

( ∫ h1

−h2

ρi (u̇2
i + v̇

2
i + ẇ

2) dz
)

d6 (11)

The homogenous energy functional of the laminated glass plate can be obtained by integrating (9) and
(11) with respect to z.

As sketched in Figure 3, the homogenous laminate energy functional is discretized by a four nodes
linear quadrilateral finite element (FE). In this case, the laminate nodal vector at node ‘i’ contain seven
degrees of freedom:{U }node ‘i’ = 〈um,vm, [uτ ], [vτ ], w, βx , βy〉

T
node ‘i’.

The FE discretization of the thin-film laminated plate energy functional gives after minimization the
following eigenmodes symmetrical matrix system:

([KL ] −ω
2
[ML ]){UL} = {0} (12)

where [KL ] and [ML ] are respectively the stiffness and mass matrices of the thin-film laminated plate.
{UL} is the laminate nodal displacement vector.

2.3. Elastic joint model. As discussed in [Vallaban et al. 1997; Park et al. 2003; Abbès et al. 2011], the
modal characteristics of a given structure (beams or plates) are strongly affected by specified boundary
conditions. Then, an elastic joint model can be considered in order to confer better vibratory behavior to
the thin-film laminate. So, the dynamic model developed in this work is based on both translational and
rotational stiffness modeled by both linear and angular springs at the level of its edge (see Figure 4).

By taking into account the stiffness effects introduced above, the dynamic behavior law of the elastic
joint can be defined via the relation between the force and displacements (translation w and rotations
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Figure 4. Thin-film laminate elastic boundary conditions.

(βx , βy)) at node ‘Ni ’ of the laminate edge as follows:

FT z·Ni = kT zwNi

FRx ·Ni = kRxβx ·Ni

FRy·Ni = kRyβy·Ni

(13)

Relations (13) can be written in matrix form as follows:

{FNi } = [K Je]{UNi } (14)

where {UNi }=〈wNi βx ·Ni βy·Ni 〉
T is the transversal displacement and deflection rotations vector. {FNi }=

〈FT z·Ni FRx ·Ni FRy·Ni 〉
T represents the force vector applied by the joint on the plate boundary. [K Je]

is an elementary elastic joint matrix written as follows:

[K Je] =

kT z 0 0
0 kRx 0
0 0 kRy

 (15)

Thus, when the laminate edge contains Nn nodes, a global matrix [K J ] of the elastic joint effect at the
edge of the laminate can be derived as follows:

[K J ] =



[
[0]4×4 [0]4×3

[0]3×4 [K Je]

]
nodeN1

[0]7×7 · · · · · · [0]7×7

[0]7×7

[
[0]4×4 [0]4×3

[0]3×4 [K Je]

]
nodeN2

[0]7×7 · · · [0]7×7

... [0]7×7
. . .

...
...

...
. . . [0]7×7

[0]7×7 [0]7×7 · · · [0]7×7

[
[0]4×4 [0]4×3

[0]3×4 [K Je]

]
nodeNn


(16)

The developed model of the elastic joint is combined with the thin-film laminated plate model allow
modeling a new configuration of laminated double glazing system.

2.4. Dynamic model of a thin-film laminated double glazing system. The considered double glazing
system is composed of two thin-film laminated plate bonded by the elastic joint defined in Section 2.3.
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Figure 5. In plane (x, z) double laminate-joint model.

In this case, the two laminates are coupled by elastic linear and angular springs of stiffness k0·T z and
k0·Rx . The obtained coupled system is related to a rigid body by two elastic joints (k1·T z, k1·Rx) and
(k2·T z, k2·Rx)as presented in Figure 5.

The double glazing system energy functional can be obtained by calculating the associated energy of
each part composing the system. Then, we can write:

ϑD.G.S =
( 2∑

i=1

[(Estr.+ Ekin.)skins+ Efilm]L i

)
+
( 2∑

i=1

(Estr.)Ji0

)
+ (Ecoupling)J0·L1·L2 (17)

where (Estr.)Ji0 (i = 1, 2) and (Ecoupling)J0·L1·L2 represent respectively the strain energies due to the joint
effect at the edge of the laminate Li (i = 1, 2) and the laminates-joint coupling energy expressed as
follows:

(Estr.)Ji0 =
1
2 [(k0·T z + ki ·T z)

∫
`

w2
i d`+ (k0·Rx + ki ·Rx)

∫
`

β2
xi d`+ (k0·Ry + ki ·Ry)

∫
`

β2
yi d`]

(18)

(Ecoupling)J0·L1·L2 =−
1
2 [(2k0·T z

∫
`

w1w2 d`)+ (2k0·Rx

∫
`

βx1βx2 d`)+ (2k0·Ry

∫
`

βy1βy2 d`)] (19)

The discretization and the minimization of the double glazing system energy functional by the finite
element method (FE) give the following symmetrical coupled matrix equation:([

[KL1] + [K J10] −[K J0·L1·L2]

−[K J0·L1·L2]
T
[KL2] + [K J20]

]
−ω2

[
[ML1] [0]
[0] [ML2]

]){
{U1}

{U2}

}
=

{
{0}
{0}

}
(20)
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where ([KL1], [KL2]) and ([ML1], [ML2]) represent respectively the stiffness and mass matrices of the
laminates. [K J10] and [K J20] are respectively the stiffness matrices due to the joints effects at the edge
of the laminates; obtained from the FE discretization of Equation (18) and expressed as follows:

[K J10] = [K J1] + [K J0]

[K J20] = [K J2] + [K J0]
(21)

with: [K J0], [K J1] and [K J2] represent respectively the stiffness matrices of the elastic joints J0, J1, and
J2 defined at the laminate boundary nodes.
[K J0·L1·L2] is a stiffness matrix resulting from the coupling between the boundaries of two laminates

(L1, L2) and the joint J0 obtained from the FE discretization of Equation (19).
{U1} and {U2} represent respectively the nodal displacement vectors of laminates 1 and 2.

2.5. Modal analysis of the laminated double glazing system. The eigenmodes of the coupled system
are solution of Equation (20) which can be written in the following form:[

[KS1] −ω
2
[MS1] [CS]

[CS]
T

[KS2] −ω
2
[MS2]

]{
{U1}

{U2}

}
=

{
{0}
{0}

}
(22)

where [KSi ] = [KL i ] + [K Ji0], [MSi ] = [ML i ] (i = 1, 2), [CS] = −[K J0·L1·L2].
The eigenmodes [8S1] and [8S2] of each laminate alone can be used in order to reduce the size of the

coupled system (22). Then, the modal matrices of each plate alone can be written as follows:

[KSi ] = [8Si ]
T
[KSi ][8Si ] =


. . .

ω2
r ·Si

. . .

 for

{
r = 1 . . . Neig

i = 1, 2
(23)

[MSi ] = [8Si ]
T
[MSi ][8Si ] =


. . .

1
. . .

 for

{
r = 1 . . . Neig

i = 1, 2
(24)

Neig represent the number of eigenmodes retained.
Consequently, the coupled matrix system (22) can be much reduced and written as follows:[

ω2
r ·S1
−ω2

[CS]

[CS]
T ω2

r ·S2
−ω2

]{
{U1}

{U2}

}
=

{
{0}
{0}

}
(25)

where {U1} and {U2} represent, respectively the modal displacement vectors of laminates 1 and 2 defined
by:

{U1} = [8S1]
T
{U1}

{U2} = [8S2]
T
{U2}

(26)

[CS] represents the laminate-joint modal coupling matrix written as follows:

[CS] = [8S1]
T
[CS][8S2] (27)
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Figure 6. Laminated plate dynamic response nodes.

As discussed in [Akrout et al. 2008b; 2009; 2010], the resolution of the coupled system (25) allows
determining the coupled eigenfrequencies ωr ·C (r = 1, . . . . . . NC ·eig) and a coupled eigenmodes basis
[8C ] = [{81} . . . . . . . . . {8NC ·eig}]. So, we can calculate the modal responses of the laminated double
glazing system which is in free vibration and under initial excitations of the first laminate. The considered
initial conditions are the following:

for t = 0,

{
〈{U1}{U2}〉t=0 = 〈{U10}{0}〉

〈{U̇1}{U̇2}〉t=0 = 〈{U̇10}{0}〉
(28)

In this case, the nodal vibratory responses are obtained by the modal recombination method.
Hence, the calculated numerical responses are used as inputs in the ICA concept which is applied in

the OMA method in order to obtain estimated results of the eigenfrequencies and eigenmode shapes.

3. Numerical procedure validation: case of thin-film laminated plate alone

In this part, the OMA approach is used in order to estimate the eigenmodes of a thin-film laminated glass
plate alone for two cases of elastic boundary conditions:

• only a linear springs is considered at the level of the edge.

• both linear and angular springs are considered at the level of the edge.

In order to estimate the eigenfrequencies and the eigenmode shapes by the OMA method, 16 vibratory
responses of the laminate x (1, . . . , 16) are calculated at the indicated nodes (see Figure 6). Note that,
the plate is in free vibration under initial conditions.

The physical and geometrical properties of the studied structure are the following:

• skin’s laminate properties: in-plane dimensions: `x = 0.6 m, `y = 0.4 m, Young modulus: E1 =

E2= 7.2×104 MPa, Poisson’s ratio: ν1= ν2= 0.22, density: ρ1= ρ2= 2500 Kg/m3 skin’s thickness:
h1 = h2 = 3 mm.

• ultra-thin film stiffness: kfilm = 1.362× 107 N/mm3 (Araldite),

• linear stiffness per length unit: kT z = 0.264× 104 N/m2,
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Figure 7. Laminated plate bonded by translational joint.

• angular stiffness per length unit: kRx = kRy = 0.264× 104 N/rad.

In the next sections, the ICA results can be compared to those obtained numerically (by the classical
modal analysis). Also, the effect of angular springs added to the linear spring is presented and analyzed.

3.1. Case of translational stiffness ‘T’. In this section, the considered laminate is supported only by a
translational joint as sketched in Figure 7. The laminate is supposed to be in free vibration and under
arbitrary initial conditions satisfying to a standard statistical rule.

The eigenmodes of the laminate bonded by translational joint are solution of the following matrix
system:

([[KL ] + [K J ]] −ω
2
[ML ]){UL} = {0}

for t = 0

{
{UL} = {UL0}

{U̇L} = {U̇L0}

(29)

where ([KL ], [K J ]) and [ML ] are respectively the laminate-joint stiffness matrices and the mass matrix
of the structure. {UL0} and {U̇L0} are respectively the initial displacement and velocity vectors applied
on the laminate.

Figure 8 presents the observed signals at nodes x(3): node 11, x(10): node 166, x(12): node 176
and x(14): node 246 which are used for the eigenmodes estimation. In analyzing the spectrum of those
observed signals, we remark the existence of four dominant picks characteristics of the main natural
frequencies of the laminate.

Table 1 regroups the exact and estimated eigenfrequencies of the laminated glass plate with transla-
tional boundary conditions (linear springs). The OMA results are validated by calculating the following
performance criteria [Zhou and Chelidze 2007; Abbès et al. 2011]:

• The Modal Assurance Criterion defined as follows:

MACi =
(ψT

i ψ̄i )

(ψT
i ψi )(ψ̄

T
i ψ̄i )

(30)

where ψi and ψ̄i are respectively the numerical (exact) and estimated eigenmodes of the laminate.

• The Euclidean distance between two vectors of the modal matrix in order to calculate the approxi-
mation error of eigenmodes as follows:

Eri = ‖ψi − ψ̄i‖ (31)
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Figure 8. Some observed signals: case of laminated plate bonded by translational joint.

• The relative error E fi between the exact and estimated eigenfrequencies present good performance
criteria defined as follows:

E fi (%)= 100
fi − f̄i

fi
(32)
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Mode
Exact

eigenfreq.
(Hz)

Estimated
eigenfreq.

(Hz)
Er MAC E f (%)

1 23.7771 24 0.0006 0.9979 0.9376
2 41.7990 42 0.0014 0.9996 0.4810
3 62.5867 62.5 0.0007 0.9999 0.1385
4 70.7569 71 0.0008 0.9966 0.3436
5 77.8571 78 0.0002 1.0000 0.1836
6 104.2231 104 0.0007 1.0000 0.2141
7 111.5364 111.5 0.0003 1.0000 0.0326
8 121.9734 122 0.0006 0.9998 0.0218
9 135.7371 135.5 0.0004 0.9999 0.1747

10 142.7350 142.5 0.0001 1.0000 0.1647
11 159.7369 159.5 0.0001 1.0000 0.1483
12 166.2010 166 0.0005 0.9998 0.1209
13 195.1359 195 0.0030 0.9557 0.0696
14 195.3606 195.5 0.0003 1.0000 0.0714
15 201.8061 202 0.0040 0.9972 0.0961
16 214.2604 214.5 0.0024 0.9666 0.1118

Table 1. Eigenfrequencies of a laminated plate alone bonded by translational joint.

where fi and f̄i represent respectively the exact and estimated eigenfrequencies.

Then, the performance criteria presented in Table 1 show that an excellent accord is achieved by com-
paring the numerical (exact) and the estimated eigenfrequencies (obtained by OMA).

As a next result, we present in Figure 9 the exact and estimated eigenmode shapes for the tree first
eigenfrequencies of the laminate. Hence, a good accord is obtained.

3.2. Case of both translational and rotational stiffness ‘T + R’. The model of the structure is pre-
sented in Figure 4. In this case, the same nodes {x(3): node11, x(10): node 166, x(12): node 176
and x(14): node 246} are used for the estimation of the laminate eigenmodes. So, according to those
nodes, Figure 10 present the observed signals and the corresponding spectra. In analyzing the evolution
of the dynamic responses versus time, we can see a reduced vibration amplitude for the laminate fixed by
both translational and rotational joints compared to the one fixed only by translational joint. Also, some
eigenfrequencies have vanished in the spectrum of joint ‘R+T’ (Figure 10) compared to the spectrum
of joint ‘T’ presented in Figure 8.

Table 2 contains the numerical and estimated eigenfrequencies of the laminated glass plate with elastic
(translational and rotational) boundary conditions. The OMA results are validated by calculating the
same performance criteria [Zhou and Chelidze 2007; Abbès et al. 2011] defined by (30), (31) and (32).
Also, the eigenfrequencies of the laminate-joint ‘R+T’ (Table 2) increased compared to those of the
laminate-joint ‘T’ (Table 1). Thus, more rigidity can be conferred to the structure.
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Figure 9. Eigenmode shapes of a laminated plate bonded by translational joint. (a) Ex-
act eigenmode shapes. (b) Estimated eigenmode shapes.

In addition, Figure 11 shows the numerical (exact) and estimated eigenmode shapes of a thin-film lam-
inated glass plate bonded by both translational and rotational joints. The same form is observed by com-
paring each corresponding mode presented in Figure 11(a) (exact) to the one presented in Figure 11(b)
(estimated).

4. OMA application: case of thin-film laminated double glazing system

In this section, the OMA method is applied in order to identify the modal characteristics of a laminated
double glazing system bonded by an elastic joint. Figure 12 presents the corresponding nodes used for
the calculation of 32 vibratory responses corresponding to the coupled system.

The double glazing system is composed of two identical laminated glass plate which each one is made
of two similar skins connected by an adhesive ultra-thin film.

The physical and geometrical properties of the laminate are given in Section 3.
A same elastic joint is used as boundary conditions of the coupled system (see Figure 5):

• linear stiffness per length unit: ki ·T z = kT z, (i = 0, 1, 2).

• angular stiffness per length unit: ki ·Rx = ki ·Ry = kRx = kRy, (i = 0, 1, 2).

The value of kT z , kRx and kRy are given in Section 3.
In the next sections, the ICA results can be compared to those obtained numerically (by the classical

modal analysis). Also, the effect of angular springs added to the linear spring is presented and analyzed.
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Figure 10. Some observed signals: case of laminated plate bonded by both translational
and rotational joints.
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Mode
Numerical
eigenfreq.

(Hz)

Estimated
eigenfreq.

(Hz)
Er MAC E f (%)

1 37.1843 37 0.0051 0.9779 0.4956
2 57.2723 57.5 0.0002 1.0000 0.3975
3 84.6944 84.5 0.0008 0.9999 0.2295
4 90.1553 90 0.0001 1.0000 0.1722
5 101.7795 102 0.0007 0.9997 0.2166
6 131.6648 131.5 0.0003 1.0000 0.1251
7 135.7660 136 0.0029 0.9999 0.1723
8 148.7430 149 0.0001 1.0000 0.1727
9 166.0922 166 0.0001 1.0000 0.0555

10 175.4942 175.5 0.0010 1.0000 0.0033
11 193.3816 193.5 0.0002 1.0000 0.0612
12 196.6265 196.5 0.0001 1.0000 0.0643
13 222.3098 222.5 0.0003 0.9999 0.0855
14 234.4725 234.5 0.0002 1.0000 0.0117
15 238.1860 238 0.0006 0.9999 0.0780
16 243.3318 243.5 0.0002 1.0000 0.0691

Table 2. Eigenfrequencies of a laminated plate alone bonded by both translational and
rotational joints.

4.1. Observed signals of the laminated double glazing system. As observed signals, we report in the
same graph (Figures 13, 14, 15 and 16) the dynamic responses of both a thin film laminated double
glazing fixed by ‘T’ joint and the same system fixed by ‘R+T’ joint. These vibratory responses are
determined at nodes: 166: x(10) and 246: x(14) for laminate 1 and at nodes: 417: x(25) and 502: x(30)
for laminate 2.

By analyzing the vibratory responses of the laminated double glazing system with translational stiff-
ness boundary conditions (dashed line, ‘T’) to those of the same system with both translational and
rotational stiffness boundary conditions (solid line, ‘R+T’), we remark a reduced vibration amplitude
for the ‘R+ T’ system compared to the one for the ‘T’ system. Also, the rotational stiffness can be
clearly seen in the observed signals of laminate 1 (Figures 13 and 14) on which the initial excitation
conditions are applied.

4.2. Eigenfrequencies of the coupled system. Table 3 regroups the numerical (exact) and estimated
(via OMA) eigenfrequencies of the two configurations ‘T’ and ‘R+T’ laminated double glazing system.
Besides the obtained good agreement between the exact and estimated values, one can clearly see that
the eigenfrequencies of the coupled system have increased when a rotational stiffness is added.

4.3. Eigenmodes shapes of the laminated double glazing system bonded by ‘R + T’ joint. In this sec-
tion, the exact and estimated eigenmode shapes of the laminated double glazing system are presented and
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Translational stiffness ‘T’ Translational + Rotational stiffness ‘R+T’

Mode
Num.
Efreq.
(Hz)

Estim.
Efreq.
(Hz)

Er MAC E f (%)
Num.
Efreq.
(Hz)

Estim.
Efreq.
(Hz)

Er MAC E f (%)

1 23.77 23 0.0095 0.7819 3.2394 37.18 37 0.0019 0.9976 0.4955
2 24.02 24 0.0263 0.8856 0.0833 37.81 38 0.0023 0.9994 0.4973
3 41.79 41.5 0.0019 0.9994 0.6939 57.27 57.5 0.0086 0.9913 0.3976
4 42.37 42.5 0.0006 0.9986 0.3068 58.21 58 0.0022 0.9969 0.3634
5 62.58 62.5 0.0163 0.8626 0.1278 84.69 84.5 0.0032 0.9963 0.2295
6 63.86 64 0.0001 1.0000 0.2192 88.28 88.5 0.0008 1.0000 0.2423
7 70.75 71 0.0053 0.9999 0.3534 90.15 90 0.0024 1.0000 0.1723
8 71.94 72 0.0025 0.9959 0.0834 91.96 92 0.0058 0.9883 0.0335
9 77.85 78 0.0061 0.9765 0.1927 101.77 102 0.0106 0.9602 0.2166

10 79.94 80 0.0022 1.0000 0.0751 105.34 105.5 0.0019 1.0000 0.1517
11 104.22 104 0.0037 0.9999 0.2111 131.66 131.5 0.0006 1.0000 0.1252
12 107.66 107.5 0.0058 0.9796 0.1486 135.52 135.5 0.0011 0.9995 0.0147
13 111.53 111.5 0.0102 0.6315 0.0269 135.76 136 0.0133 0.9035 0.1723
14 113.92 114 0.0025 0.9989 0.0702 139.91 140 0.0030 0.9989 0.0606
15 121.97 122 0.0319 0.8447 0.0246 148.74 149 0.0016 0.9997 0.1728
16 126.59 126.5 0.0267 0.1735 0.0711 162.01 162 0.0028 0.9949 0.0099
17 135.73 135.5 0.0093 0.9840 0.1695 166.09 166 0.0006 1.0000 0.0555
18 141.78 142 0.0011 0.9998 0.1552 175.49 175.5 0.0052 0.9965 0.0033
19 142.73 142.5 0.0018 0.9994 0.1611 177.83 178 0.0020 0.9994 0.0941
20 148.30 148.5 0.0026 0.9708 0.1349 180.59 180.5 0.0024 0.9962 0.0530
21 159.73 195.5 0.0057 0.9798 0.1440 193.38 193.5 0.0005 0.9999 0.0612
22 166.20 166 0.0003 1.0000 0.1203 196.62 196.5 0.0012 1.0000 0.0643
23 168.15 168 0.0037 0.9999 0.0892 204.28 204.5 0.0011 1.0000 0.1069
24 171.05 171 0.0033 0.9931 0.0292 205.99 206 0.0047 0.9922 0.0032
25 195.13 195 0.0959 0.1494 0.0666 222.30 222.5 0.0067 0.9841 0.0856
26 195.36 195.5 0.0046 0.9999 0.0717 234.47 234.5 0.0030 0.9999 0.0117
27 201.80 202 0.0011 1.0000 0.0991 238.18 238 0.0010 1.0000 0.0781
28 204.22 204 0.0426 0.4764 0.1077 242.95 243 0.0065 0.9850 0.0196
29 207.22 207 0.0675 0.0235 0.1062 243.33 243.5 0.0278 0.6943 0.0691
30 214.26 214.5 0.0385 0.7989 0.1120 248.59 248.5 0.0285 0.9056 0.0369
31 215.83 216 0.0421 0.8065 0.0788 259.04 259 0.0089 0.9902 0.4955
32 230.33 230.5 0.1840 0.8029 0.0738 265.25 265.5 0.0224 0.7569 0.4973

Table 3. Eigenfrequencies of the ‘T’ and ‘R+T’ coupled systems.
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      Mode 1: f1 = 37 Hz                      Mode 2: f2 = 57.5 Hz                Mode 3: f3 = 84.5 Hz 
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Figure 11. Eigenmode shapes of a laminated plate bonded by both translational and
rotational joints. (a) Exact eigenmode shapes. (b) Estimated eigenmode shapes.

 

Figure 12. Coupled system vibratory response nodes.

commented. Consequently, the considered 32 coupled system vibratory response nodes let’s to construct
the investigated eigenmodes (Figures 17 and 18).

Here, four eigenmode shapes are estimated and presented and then, a good accord is obtained when
comparing with numerical results. As discussed in [Basten et al. 2001; Akrout et al. 2009; 2010], two
categories of eigenfrequencies are found. The first one regroups those of a laminate alone bonded by
‘R+T’ joint. In this case, the two plates are vibrating in-phase. In fact, the middle joint doesn’t generate a
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Figure 13. Observed signals of the first laminate at node 166.
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Figure 14. Observed signals of the first laminate at node 246.

coupling with laminates. The second category regroups the coupled eigenfrequencies which are affected
by the coupling laminate-joint and where the two plates are vibrating in opposition.
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Figure 15. Observed signals of the second laminate at node 417.
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Figure 16. Observed signals of the second laminate at node 502.

5. Conclusion

In this work, the dynamic modal behavior of a thin-film laminated double glazing system is investi-
gated. In this case, the edge stiffness boundary conditions associated to an elastic joint (translational and
rotational effects) are modeled and its influence on a given structure (laminated plate alone or double
glazing system) can be analyzed. For this purpose, the OMA method is presented and exploited in
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� Figure 17. Exact eigenmodes shapes of the laminated double glazing system.
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Figure 18. Estimated eigenmodes shapes of the laminated double glazing system.

order to determine the modal characteristics (eigenfrequencies and eigenmode shapes) of the coupled
system. The modal procedure validation is based on the calculation of three performance criteria defined
by the Modal Assurance Criterion (MAC), the approximation error of the eigenmode shapes (Er) and
the relative error between numerical and estimated eigenfrequencies (E f ). Hence, a good agreement
is achieved by comparing the exact (obtained by FE) and estimated (obtained by OMA) eigenmodes.
Then, from the calculated results, it’s deduced that when angular springs are added to linear springs at
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the laminate’s edges, the vibratory behavior of the studied system becomes much better. In fact, reduced
vibration amplitudes are obtained and an improved rigidity can be conferred to the considered structure
due to the increasing of its natural frequencies.
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NETWORK EVOLUTION MODEL OF ANISOTROPIC STRESS
SOFTENING IN FILLED RUBBER-LIKE MATERIALS: PARAMETER

IDENTIFICATION AND FINITE ELEMENT IMPLEMENTATION

ROOZBEH DARGAZANY, VU NGOC KHIÊM, UWE NAVRATH AND MIKHAIL ITSKOV

A purely micromechanical network evolution theory granting new insight into the damage mechanism
was proposed previously by the authors (Dargazany and Itskov, 2009). In this follow-up paper, we
further formulate the network evolution model for implementation into finite element simulations. To
this end, a general internal variable formulation is developed which determines the inelastic response
of the microstructure on the basis of the free energy function. The thermodynamical consistency of the
network evolution model is then verified analytically. Next, the predictive capabilities of the model are
demonstrated by means of several experiments especially designed to capture stress softening, permanent
set, and induced anisotropy. Finally, the influence of the filler concentration on material parameters is
studied.

1. Introduction

Constitutive modeling of the macroscopic behavior of rubber-like materials has long been the subject of
interest; see [Treloar 2005] or [Mark and Erman 2007] for an introduction. In the behavior of rubbers,
hyperelasticity and stress softening are the most studied phenomena.

Investigations of inelastic effects in rubber materials, as, for example, stress softening, date back to
the beginning of the last century, starting with [Bouasse and Carrière 1903; Holt 1932]. Later, Mullins
and his coworkers investigated rubber-like materials in detail and reported different inelastic features of
filled rubbers [Mullins and Tobin 1957; 1965], which still can hardly be modeled micromechanically.

Bueche [1960; 1961] associated the Mullins effect with the breakage of weak bonds between polymer
chains and filler particles (see [Aksel and Hübner 1996]). This assumption was redefined by some
authors as the slippage of polymer chains on filler clusters [Houwink 1956; Killian et al. 1994]. This
concept has been further developed by describing the chain entanglements between particles [Hamed and
Hatfield 1989] and has consequently been employed as a basis for the thermodynamical representation
of continuum damage mechanics [Simo 1987; Miehe and Keck 2000]. Following the lead of Bueche,
Govindjee and Simo [1991; 1992] decomposed the rubber matrix into a pure rubber network and a
polymer-filler network, the latter being subjected to damage. The model was based on the isotropic three-
chain model [James and Guth 1943], in which the damage depends on the largest principal stretch. The
main assumption of their model is that damage takes place only in the presence of fillers. Indeed, recent
experiments show that only filled elastomers that can crystallize show stress softening [Diani et al. 2009].

Rajagopal and Wineman [1992] developed a set of integral-type constitutive equations governing the
microstructural damage induced by the rupture of molecular bonds and recreation of new ones. Based

Keywords: Mullins effect, stress softening, constitutive behavior, microstructures, anisotropic material, rubber material.
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on this approach, stress softening and permanent set in some applications were calculated based on a
neo-Hookean-type model [Huntley et al. 1996]. Using a similar technique, Demirkoparan et al. [2009]
generalized the two-reference configuration theory proposed in [Wineman and Rajagopal 1990] to fibrous
soft matter by considering the material as a composition of two components, in which the microstructure
change only occurs in the fibrous component. The resulting model was able to capture stress softening
and permanent set in fibrous materials.

By categorizing polymer chains into two types, flexed and extended, Drozdov and Dorfmann [2001]
developed a micromechanically motivated model that can take stress softening and permanent set into
account.

Based on the concept of pseudoelasticity, Dorfmann and Ogden [2004] proposed a phenomenological
approach to account for permanent set. Combining the three-chain [James and Guth 1943] and eight-
chain [Arruda and Boyce 1993] models, Elías-Zúñiga and Beatty [2002] proposed a model that suc-
cessfully predicted the constitutive behavior of rubber under multiaxial loading conditions. The model
had a relatively simple formulation and only three model parameters. Next, by redistributing of the
representative chains in all possible orientations, the full network model was attained [Beatty 2003]. In
another approach, Elías-Zúñiga and Rodríguez [2010] proposed a phenomenological damage function
and substituted it into the non-Gaussian full-network model. The final model showed good agreement
with experimental results on equibiaxial tension tests.

Hanson et al. [2005] associated the anisotropic Mullins effect with the removal of the chain entangle-
ments during slippage of chains on each other. Thus, despite the constant number of active chains, the
density of entanglements changes under deformation.

In order to describe the anisotropic Mullins effect, the idea of network decomposition of [1991] was
exploited by Göktepe and Miehe [2005]. They further presented a microsphere model with 21 material
directions instead of the three principal directions proposed by Govindjee and Simo [1991; 1992]. By
considering nonaffinity in the polymer–polymer network, the developed model is also efficient for unfilled
elastomers. Zimmermann and Wineman [2005] derived the constitutive theories that characterize the
implications of polymer chains debonding on the mechanical properties of the rubber matrix, particularly
induced anisotropy, and permanent set.

In another approach, Diani et al. [2006] further generalized the one-dimensional network alteration
model into a three-dimensional model. Then, by proposing a phenomenological damage function, the
losses of energy in different directions were taken into account. The so-obtained model was then
compared with quasistatic experiments and agreed well with the measured residual strain and induced
anisotropy.

In [Dargazany and Itskov 2009], we proposed a micromechanical constitutive model for carbon black
filled rubber-like materials, which can describe such anisotropic inelastic phenomena as the Mullins
effect, permanent set, and induced anisotropy. The model is based on the idea of network decomposition
of [Govindjee and Simo 1991], where the rubber network is decomposed into a pure rubber network and
a polymer-filler network. Damage in the polymer-filler network is considered as a consequence of chain
sliding on or debonding from aggregates. In contrast to previous works on anisotropy of the Mullins
effect, no phenomenological damage function is introduced. Damage in different directions is governed
by a network evolution concept which describes changes in the interaggregate distribution of polymer
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chains. The proposed model demonstrates very good agreement with experimental data with respect to
the above-mentioned inelastic effects, although it considers filler aggregates as rigid bodies.

Moreover, the model benefits from its simplicity, small number of physically motivated material pa-
rameters, and fast fitting procedure. However, the predictions of the model were validated by only one set
of experimental data and, furthermore, the thermodynamical consistency and implementation procedure
of the model into finite element code were not discussed. Addressing these issues is the main goal of
this work.

The paper is organized as follows. The fundamentals of the network evolution model are reviewed
in Section 2. Then, the constitutive modeling approach is discussed in Section 3. In Section 4, the
thermodynamical consistency of the model is studied and verified analytically. In order to implement the
network evolution model into finite element simulations, the tangent tensor is derived using a linearization
procedure discussed in Section 5. Section 6 describes the experimental procedure which is used later
in Section 7 for evaluation of the material parameters. The implementation of the proposed constitutive
model into commercial FE code (ABAQUS) is presented in Section 8. Finally, the Appendix provides
details of the derivation of the tangent tensor.

2. Network evolution model

2.1. Statistical mechanics of a single chain. According to Gaussian statistics, the probability that a
segment of a freely rotating chain with n segments and end-to-end distance R exists is given by

PG(n, R) d R =

√
α′

πnl2 exp
(
−
α′R2

nl2

)
d R, (1)

where l denotes the segment length and α′ = 3
2 (1 − cos θ)/(1 + cos θ) is expressed in terms of the

supplement to the valence angle θ = 70.5◦. Accordingly, the probability of existence of a polymer chain
connecting two constrained segments, so that none of the segments between numbers 1 and n is joined
to an aggregate surface, is given by (see [Dargazany and Itskov 2009])

P(n, R)= κ

√
α′

πn
exp A, with

A =−α′ R
2

n
− κ

√
α′

π

[
2
√

n exp
(
−α′

R2

n

)
+ 2R
√
πα′

(
erf
(

R

√
α′

n

)
− erf

(
R
√
α′
))
− 2 exp(−α′R2)

]
,

(2)

where κ denotes the average area of active adsorption sites available for one bond.
(A bar over a parameter denotes its normalized value with respect to the segment length l: thus

R̄ = R/ l, and so on.)
Let us denote the vectors connecting the two ends of the chain in the reference and deformed config-

urations by R and r , and their lengths by R and r , respectively. Accordingly, one has

r = Fm R, r =
D
λR, (3)

where Fm denotes the deformation gradient at the microscale, and
D
λ=

√
DFT

m Fm D the microstretch in
the direction specified by the unit vector D. Hereafter, the following font styles are used: for a scalar X ,
a vector X , a second-order tensor X, and a fourth-order tensor X.
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Based on non-Gaussian statistics, the strain energy density of a freely rotating chain is written as

ψc(n, r̄)= bnK T
( r̄

abn
β + ln β

sinhβ

)
, (4)

where the coefficients a and b are calculated by [Treloar 2005]

a =
3

2α′
cos−1

(
θ

2

)
, b = 2

3
α′cos2

(
θ

2

)
, (5)

and β = L−1(r̄/abn) is expressed in terms of the inverse Langevin function L−1, while K and T denote
Boltzmann’s constant and the absolute temperature.

2.2. Strain energy of the rubber matrix. By considering rubber as a nearly incompressible material, its
strain energy function 9N (C) can be decoupled into isochoric and volumetric parts by (see, for example,
[Holzapfel 2000])

9N (C)=9M(C)+U (J ), (6)

where C denotes the right Cauchy–Green tensor, J 2
= det C, and C= J−2/3C.

The rubber matrix is then decomposed into a pure rubber network (CC) and a polymer-filler network
(PP) which act parallel to each other (for details see [Dargazany and Itskov 2009]). Accordingly, the
isochoric strain energy of the rubber matrix 9M can be represented as

9M =9cc+9pp, (7)

where 9cc and 9pp denote the strain energies of the CC and PP networks per unit reference volume of
the material (see Figure 1).

2.3. Pure rubber network. The pure rubber network is considered as an ideally elastic network with
affine motion of cross-links and identical chains that are initially in the unperturbed state, in which the
mean end-to-end distance of a freely rotating chain is R0 = a

√
bn. Accordingly, the entropic energy of

a single chain subjected to elongation is represented by

ψ(n, D
χ) := ψc(n,

D
λR0), (8)

Figure 1. Illustration of the network decomposition concept.
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where we keep in mind that in the CC network the microstretch
D
λ is equal to the macrostretch D

χ . In
order to obtain the strain energy of the CC network, Nc chains with nc segments are considered in each
spatial direction, so that

9cc =
1
As

∫
S

Ncψ(nc,
D
χ) d Du, (9)

where As represents the surface area of the microsphere S, and Du the unit area of the surface with the
normal direction D.

2.4. Polymer-filler network. The evolution of the polymer-filler network is assumed to be responsible
for the already mentioned stress softening. Let Ñ (n, r̄) be the number of chains with number of segments
(relative length) n, relative end-to-end distance r̄ , and end-to-end direction specified by the unit vector
D. The integration over the whole set DA of relative chain lengths n available in the direction D further
yields the free energy of chains in this direction as

D
9 =

∫
DA

Ñ (n, r̄)ψc(n, r̄) dn. (10)

The network evolution was described as an interaction of two simultaneous processes of aggregate-
polymer debonding and network rearrangement. In the course of deformation, polymer chains begin
to slide on or debond from the aggregates. This debonding starts with the shortest chain and gradually
involves longer and longer chains. Under unloading, the debonded chains do not reattach back to the
aggregate’s active sites, and thus the maximal microstretch previously reached in the loading history,

D
λm = max

τ∈(−∞,t]

D
λ(τ), (11)

is crucial for the description of the polymer-filler debonding. Accordingly, the length of the shortest
available chain in the deformed subnetwork is then obtained by (see also [Dargazany and Itskov 2009])

nc− f (
D
λm)=

ν
D
λm R
ab

, (12)

where ν > 1 denotes a sliding ratio and is a material parameter.
Furthermore, we assume an upper limit for the length of a chain between two aggregates, denoted in

the following by nmax (for details see [Dargazany and Itskov 2009]). Accordingly, the set of available
relative lengths of chains bonded to aggregates in the direction D can be expressed by

DA(
D
λm)= {n | nc− f (

D
λm)≤ n ≤ nmax}. (13)

By these means, the material behavior in the direction D is influenced by the loading history.
The concept of chain rearrangement in a rubber network suggests that the detachment of chains from

the aggregate surface does not necessarily result in the complete loss of their role in the network entropic
energy, but it may also lead to the activation of some new segments. Thus, all in all, one can assume that
the total number of active segments remains constant. This assumption yields

Ñ (n, r̄)= N08(
D
λm)P(n, R)= N08(

D
λm)P̂(n), (14)

where

8(x)=
(∫

DA(x)
P̂(n)n dn

)−1

. (15)
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We consider R as a material constant, and introduce the notation P̂(n) := P(n, R). The variable N0

represents the number of active chains per unit undeformed volume, and will also be considered as a
material parameter. Finally, considering (14) and (13) in (10), the energy of a subnetwork in direction
D is obtained as

D
9 = N08(

D
λm)

∫
DA(

D
λm)

P̂(n)ψc(n,
D
λR) dn. (16)

3. Constitutive modeling

3.1. Three-dimensional generalization. Assuming an isotropic spatial distribution of polymer chains
in the rubber matrix, the macroscopic energy of a three-dimensional network can be written as

9cc =
1
As

∫
S

Ncψ(nc,
D
χ) d Du, 9pp =

1
As

∫
S

D
9 d Du. (17)

The integration is carried out numerically by

9cc ∼=

k∑
i=1

Ncψ(nc,
Di
χ)wi , 9pp ∼=

k∑
i=1

Di
9wi , (18)

where wi are weight factors corresponding to the collocation directions Di (i = 1, 2, . . . , k). As shown in
[Ehret et al. 2010], the numerical scheme of [Heo and Xu 2001] demonstrates the least error in prediction
of the induced anisotropy in comparison with the number of integration points and thus is used in this
study. Accordingly, a set of k = 45 integration points on the half-sphere is chosen. Substitution of (16)
into (18) yields the energy of the rubber matrix as

9M =9cc+9pp =
Ñc

K T

k∑
i=1

wiψ(nc,
Di
χ),+

Ñ0

K T

k∑
i=1

wi

∫
DA(

Di
λm)

8(
Di
λm) P̂(n)ψc(n,

Di
λR) dn, (19)

where
Ñc = Nc K T, Ñ0 = N0K T . (20)

3.2. Strain amplification. In a filler-reinforced rubber network, the stretch of the polymer chains be-
tween aggregates (microstretch) generally exceeds the stretch applied to the rubber matrix (macrostretch).
This strain amplification concept is based on the fact that filler aggregates are considerably stiffer than
the polymer chains connecting them together [Rault et al. 2006]. This inhomogeneity of the material
leads to the inhomogeneity in the microstretch distribution. Accordingly, the amplification function X is
defined to establish a relationship between the microstretch

D
λ and the macrostretch D

χ , and is written as
D
λ= X ( D

χ)=

D
χ −Cp

1−Cp
, (21)

where C ∈ (0, 1) represents the volume fraction of filler per unit volume of rubber matrix (C < 0.3 in
most studies), and p depends on the structure of the filler network. Bueche [1961] showed that p= 1

3 in
the case of a statistically homogeneous distribution of spherical particles (see, for example, [Govindjee
1997; Bergström and Boyce 1999]).

The strain amplification concept is based on the following assumptions.
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(1) Filler aggregates are distributed and colonized randomly in three dimensions.

(2) The stiffness of the rubber matrix is negligible in comparison to that of the filler aggregates, and
thus the filler aggregates can be considered as rigid inclusions.

(3) Changes in the aggregate’s volume under deformation are negligible.

(4) There is no energy dissipation in the aggregates.

Let us represent parameters related to fillers, polymers, additives, and the rubber matrix by subscript
f , p, a, and r , respectively. Then

C =
Vf

Vr
, Vr = Vf + Vp + Va, (22)

where V• denotes the volume. In industrial applications, the amount of filler in a rubber sample is given
by C f which denotes the mass parts of filler per hundred parts of rubber (phr):

C f =
Mf

Mp
=

Vf

Vp

ρ f

ρp
, Mr = Mf +Mp +Ma, (23)

where ρ• and M• represent the density and mass of the corresponding ingredients, respectively. The
amount of additive, which is mainly composed of processing agents, can be considered to be around
5–10 phr. Accordingly, one can simply express C as

C =
Vf /Vp

Vf /Vp + 1+Ma/(ρa Vp)
=

C f ρp/ρ f

(1+ 0.1ρp/ρa)+C f ρp/ρ f
. (24)

Note that (21) is valid as far as D
χ > Cp, otherwise the deformation of aggregates should also be taken

into account. Experimental results, however, show that the validity range of (21) lies within the elasticity
range of samples.

The implementation of the strain amplification concept does not introduce any additional parameters
into the model. It applies to microstretches and does not contradict the incompressibility constraint valid
for the macroscale deformations. Indeed, this constraint is a purely macroscopic phenomenon and does
not necessarily hold for microscopic deformations.

3.3. Macroscale behavior. Now, the total strain energy of the rubber matrix is given in (19). The con-
stitutive equation for the first Piola–Kirchhoff stress tensor P can be written as

P =
∂9M

∂F
=
∂9pp

∂F
+
∂9cc

∂F
, (25)

where

∂9cc

∂F
=

k∑
i=1

Ncwi
∂ψ(nc, x)

∂x

∣∣∣∣∣
x=

Di
χ

1

2
Di
χ

∂Di CDi

∂F
:
∂F
∂F ,

∂9pp

∂F
=

k∑
i=1

wi
∂

Di
9

∂
Di
λ

∂
Di
λ

∂
Di
χ

1

2
Di
χ

∂Di CDi

∂F
:
∂F
∂F .

(26)
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These equations can be further simplified by means of the following identities:

∂ψc(n, x R)
∂x

=
1
a

RK T L−1
( x R

abn

)
, (27)

∂ψ(n, x)
∂x

=
√

bnK T L−1
(

x
√

bn

)
, (28)

∂
D
9

∂
D
λ
= N08(

D
λm)

∫
DA(

D
λm)

P̂(n)
∂ψc(n, x R)

∂x

∣∣∣∣∣
x=

D
λ

dn, (29)

∂
D
λ

∂
D
χ
=

1
1−Cp

, (30)

∂DCD
∂F

:
∂F
∂F = 2F(D⊗ D) : J−1/3I= 2J−1/3F(D⊗ D). (31)

Thus, (25) yields

P=
k∑

i=1

(Pcc(Di )+ Ppp(Di ))
wi
Di
χ

J−1/3F(Di ⊗ Di ), (32)

where

Pcc(x)= Ñc
√

bnc L−1
( x

χ
√

bnc

)
, (33)

Ppp(x)=
R
a

Ñ0

1−Cp
8(

x
λm)

∫
DA(

x
λm)

P̂(n)L−1
( x
λR
abn

)
dn. (34)

A proper approximation approach for the inverse Langevin function can be chosen depending on
the elongation range of polymer chains. In this study, the elongation ratio at which the chains are
debonded from the aggregate surface is described by ν. Depending on its value, two different functions
approximating the inverse Langevin function are utilized.

In cases of moderate and large deformations, Taylor expansion is more favorable (see [Itskov et al.
2012]). However, if chain breakage occurs very close to the fully stretched state of the chains ν < 1.04,
then Padé approximants [Puso 2003] show better agreement with the exact values. Accordingly

L−1(x)∼=


n∑

i=0

Ci x i if ν ≥ 1.04,

3x
1− x3 if ν < 1.04,

(35)

where the number of terms n and the values of Ci are given in [Itskov et al. 2012].

4. Thermodynamic consistency

Since the strain energy of the rubber matrix 9M is influenced by a number of internal variables, namely
D
λm , one can rewrite 9M as

9M := 9̂M(C,�)= 9̃M(F,�), (36)
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where
�= {

D
λm : D ∈ V3

∧ |D| = 1}. (37)

Accordingly, the Clausius–Duhem inequality resulting from the second law of thermodynamics can be
reduced to

−∂D
λm

9M · (
Ḋ
λm)≥ 0 for all D. (38)

Under unloading and reloading
Ḋ
λm = 0 while

Ḋ
λm > 0 in primary loading. Thus, the Clausius–Duhem

inequality is satisfied if during the primary loading, the following inequality:
∂9M

∂
D
λm

≤ 0 for all D (39)

holds. With respect to (7) and (18), (38) yields

∂
D
9

∂
D
λm

≤ 0 for all D. (40)

We will prove (40) for an arbitrary direction D and for the sake of brevity denote
D
λm by x . Using (16)

we further obtain
d8(x)

dx

∫ nmax

nc− f (x)
P̂(n)ψc(n, λR) dn−

dnc− f (x)
dx

8(x)P̂(nc− f (x))ψc(nc− f (x), λR)≤ 0, (41)

where
d8(x)

dx
=−x

(
υR
ab

)2
82(x)P̂(nc− f (x)). (42)

Since (41) should be verified just during the primary loading (
D
λm =

D
λ), it can be rewritten as

nc− f (x)
(∫ nmax

nc− f (x)
P̂(n)ψc(n, λR) dn

)
−

(∫ nmax

nc− f (x)
P̂(n)n dn

)
ψc(nc− f (x), λR)≤ 0, (43)

which holds since, in view of (2), we have the following inequalities:

nc− f (x)≤ n for all n ∈ {nc− f (x), nmax}, hence nc− f (x)<
∫ nmax

nc− f (x)
P̂(n)n dn;

and
ψc(nc− f (x), x R)≥ ψc(n, x R) for all n ∈ {nc− f (x), nmax},

hence ∫ nmax

nc− f (x)
P̂(n)ψc(n, x R) dn <ψc(nc− f (x), x R).

5. Finite element linearization

In the following we derive the tangent tensor defined by

C= 2 ∂S
∂C , (44)

where S denotes the second Piola–Kirchhoff stress tensor. By using the fourth-order deviatoric projection
tensor in the Lagrangian description

PDev = Is
−

1
3 C−1

�C, (45)
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for a nearly incompressible material S is formulated as

S= 2
∂9N (C, �)

∂C
= 2

∂9M

∂C
:
∂C
∂C + 2∂U

∂ J
∂ J
∂C = J−2/3(PDev : S)︸ ︷︷ ︸

Siso

+U ′ JC−1︸ ︷︷ ︸
Svol

, (46)

where S= 2∂9M/∂C.
Accordingly, the tangent tensor of the rubber matrix is given by

C= 2 ∂S
∂C = 2∂Siso

∂C︸ ︷︷ ︸
Ciso

+ 2∂Svol

∂C︸ ︷︷ ︸
Cvol

. (47)

Substituting (46) into (47) gives

Ciso
= J−4/3PDev : C : P

T
Dev−

2
3 J−2/3

[C−1
�S+S�C−1

] +
2
3 (S : C)Z, (48)

Cvol
= J

(
U ′′ J + 5

3 U ′
)
C−1
�C−1

− 2U ′ JZ, (49)

where the fourth-order tensor products are defined in [Itskov 2009].
Finally, the tangent tensor is obtained in view of (47) as

C= J−4/3PDev : C : P
T
Dev−

2
3 J−2/3(C−1

�S+S�C−1)

+
2
3 (S : C− 3U ′ J )Z+ J

(
U ′′ J + 5

3 U ′
)
C−1
�C−1, (50)

where Z=
[ 1

3 C−1
�C−1

+ (C−1
⊗C−1)

s] and C is given by (see details in the Appendix)

C= 2
∂S
∂C
+ 2

k∑
i=1

∂S(C, �)

∂
Di
λm

�
∂

Di
λm

∂C
. (51)

6. Experiment

The experimental study1 presented here consists of three parts: loading in two orthogonal directions to
capture induced anisotropy, multiaxial tension tests to evaluate model accuracy, and cyclic tension tests
on a compound with different filler concentrations to investigate the influence of material parameters.

6.1. Loading in two orthogonal directions. In this experiment we used a cross-shaped specimen (Figure 2)
made of 50 phr carbon black filled polychloroprene rubber (CR). The exact composition of the elastomer
used in this experiment is given in Table 1. The experiment was performed at room temperature with a
strain rate of 40% /min.

The four arms of the cross-shaped specimens have multiple slits parallel to the sides to obtain a nearly
homogeneous state of uniaxial tension in the measurement area (see, for example, [Pawelski 2001]).
The specimens were loaded by a spindle-driven two-pillar universal tensile test machine. The machine
provides a constant clamping force, which is important for measurement reproducibility [Itskov et al.
2006]. Fast clamping and unclamping procedures furthermore reduced the influence of time-dependent

1The experimental part of this work is a result of cooperation with Professor E. Haberstroh (Institute of Rubber Technology,
RWTH Aachen University) whose contribution is gratefully acknowledged.
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Figure 2. A cross-shaped specimen in its virgin and deformed states. The measurement
area retains its rectangular form, which implies a homogeneous strain distribution there.

effects such as relaxation. Using an optical measuring system, stretches in the measurement area were
evaluated by a noncontact method.

The experimental procedure was as follows: the virgin specimen was subjected to loading-unloading
cycles of uniaxial tension (in the x-direction) with increasing stretch amplitudes of 1.15, 1.30, 1.45, 1.60,
and 1.75. Five cycles were conducted for each stretch amplitude.

After unloading to the stress-free state, the sample was unclamped and reclamped for consequent
loading in the orthogonal direction (the y-direction). Despite resulting residual strains from the previous
loading cycles, the new configuration is considered as the reference configuration for the loading in the
y-direction. The above-described loading procedure was repeated again in the y-direction.

The nominal stress P is plotted versus stretch χ in Figure 3a. Under tension in the x-direction, the
classical Mullins effect and permanent set can be seen after the first loading cycle. Under tension in the
y-direction, the strong anisotropy of the Mullins effect can be observed.

In order to resume the ideal Mullins effect, the hysteresis observed in the second and subsequent
cycles is eliminated from the experimental data. Accordingly, Figure 3b illustrates the idealized Mullins
effect, permanent set, and induced anisotropy.

Compound phr Density (kg/m3)

Polychloroprene (CR) 100 1210
Carbon black (N330) 50 1800
Antioxidant 2 990
Processing aids 1.5 1230
Activator 2 3600
Cross-linker 5 2000
Plasticizer 2 970

Table 1. Compound specifications of the rubber sample used for the cross-shaped specimen.
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Figure 3. (a) Initial and (b) treated experimental results of the uniaxial tension test of
the cross-shaped specimen in the two orthogonal directions.

6.2. Multiaxial tension test. To investigate the evolution of the deformation-induced anisotropy, its mag-
nitude was studied by loading in different directions, in the following experiment.

A large specimen was elongated up to a certain stretch level then unloaded (one complete uniaxial
tension cycle). Then, a small dumbbell-shaped specimen was cut from the prestretched specimen at an
angle 8 inclined to the initial tension direction, with 8= 0◦, 15◦, 22.5◦, 45◦, 67.5◦, 90◦ (see Figure 4).
The small samples were then loaded up to the same stretch level as the large sample and then unloaded.

Using this approach, one can study the mechanical response of the material in different directions.
The comparison of the responses of the large and small specimens for 8= 0◦ is shown in Figure 5.

The samples were made of 50 phr (24% by volume) carbon black filled polychloroprene rubber (CR)
with the composition given in Table 2. The mechanical responses of the small samples for different

Figure 4. Sample preparation for multiaxial tension test. Small samples were cut under
a certain angle 8 to the prestretch direction of the large sample.
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Figure 5. The mechanical response of the large sample in comparison with the smaller one.

Compound phr Density (kg/m3)

Polychloroprene (CR) 100 1210
Carbon black (N330) 50 1800
Antioxidant 1 990
Processing aids 4 1230
Activator 1 3600
Cross-linker 5 2000
Plasticizer 10 970

Table 2. Compound specifications of the rubber sample used in the multiaxial experiment.

directions are depicted in Figure 6. One observes that the Mullins effect decreases with increasing
angle 8.

6.3. Influence of the filler concentration. It is expected that stress softening increases in compounds
with higher filler concentrations. In this experiment, a compound with three different filler concentrations
was used. The ingredients of the compound are given in Table 2, and the filler concentrations are 20, 40,
and 60 phr (11, 20, and 28% by volume). The transverse loading experiment described in Section 6.1 is
then applied to each sample. The results plotted in Figure 7 confirm that the Mullins effect, permanent
set, and hysteresis are more pronounced in samples with higher filler concentrations.

7. Comparison with experimental results

The objective of this section is to assess the predictive capabilities of the proposed constitutive model by
comparing it with the experimental data presented in Section 6.
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Figure 6. Experimental results of uniaxial tensile tests on small samples cut under dif-
ferent angles 8 from the large sample.
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Figure 7. Experimental results of the uniaxial deformation of samples with different
filler concentrations in the (left) x and (right) y-directions.

7.1. Transverse loading. By means of seven material parameters, the model was fitted to the transverse
loading experimental data presented in Section 6.1. To this end, the least-square error function was
minimized with the aid of the Levenberg–Marquardt algorithm. The obtained values of the material
parameters are given in Table 3, while the predicted stress-stretch curves are plotted in Figure 8 against
the experimental diagrams for the x and y-directions.
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Figure 8. Comparison of the nominal stress-stretch curves of the model and the experi-
ment for the uniaxial tension test in the (left) x and (right) y-directions.

κ ν R nmax nc Ñ0 (MPa) Ñc (MPa)

14.824 1.0065 6.406 24.9135 100 2.8356 1.8141

Table 3. Parameters of the network evolution model for 50 phr CR used in the transverse
loading experiment.

κ ν R nmax nc Ñ0 (MPa) Ñc (MPa)

4.218 1.0057 5.558 26.425 100 6.722 1.167

Table 4. Parameters of the network evolution model for 50 phr CR used in the multiaxial
loading experiment.

The loading-unloading cycle of the 1.6 stretch amplitude in the x-direction was used for the fitting.
Thus, good agreement with other unloading curves in the x-direction and all loading-unloading curves
in the y-direction was obtained automatically.

7.2. Multiaxial tension test. In the multiaxial tension test, the residual stretches in the small samples
were taken into account in their new reference configurations.

The material parameters given in Table 4 were obtained by fitting the model to the experimental data
on the large sample. Then, using these parameters, the multiaxial loading experiment was simulated and
compared to the experimental data as shown in Figure 9.

7.3. Influence of the filler concentration. The aim of this experiment was to check the capabilities of
our model to simulate rubbers with different filler concentrations. To this end, samples made of the same
compound and different filler concentrations were analyzed.
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8= 0◦, 45◦, 90◦ small samples.

C f (phr) κ ν R nmax nc Ñ0 (MPa) Ñc (MPa)

60 1.6203 1.0050 4.8700 24.7144 100 8.5121 1.0372
40 0.8094 1.0050 5.6747 38.7337 100 8.5121 1.0372
20 0.002552 1.0050 6.7090 97.1366 100 8.5121 1.0372

Table 5. Parameters of the network evolution model for fitting to compounds with dif-
ferent filler concentrations. Constant material parameters are shaded.

Since the sample materials differed from each other just in filler concentration, the material parameters
independent of the filler concentration should remain constant for all simulations.

To verify this concept, we first calculated the seven material parameters of the model by fitting to the
uniaxial loading result of 60 phr CR in the x-direction (see Table 5). Then, the model simulations were
compared to the experimental results for this material in the x and y-directions (see Figure 10).

The parameters {κ, R, nmax} are directly influenced by the concentration of filler and ν by the type of
filler. The parameters {nc, Ñ0, Ñc} highly depend on the cross-linking and monomer properties, which
are constant in the three samples. In addition, the number of active segments in a network, namely
{Ñ0, Ñc}, slightly changes with the filler concentration due to the immobilization of some segments
around the aggregates, which are generally referred to as bound rubber. However, by excluding the
effect of the bound rubber, the parameters {ν, nc, Ñ0, Ñc} can be assumed to be independent of the filler
concentration.

In the next step, simulating the behavior of 40 and 20 phr CR, the material parameters {ν, nc, Ñ0, Ñc}

were taken from the fitting to 60 phr CR experimental data, and the rest, {κ, R, nmax}, approximated by
phenomenological relations which take the forms of power functions in terms of the filler concentration.
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Figure 10. Comparison of the model predictions with the experimental results of sam-
ples with different filler concentrations. A transverse loading experiment is applied to
each sample and the results in the (left) x and (right) y-directions are compared.

Despite the error induced by neglecting the effect of bound rubber, the predictions of the model using
the aforementioned set of parameters show relatively good agreement with experimental results (see
Figure 10). This further suggests that the changes in material parameters for different filler concentrations
can be obtained by performing only one fitting procedure and enables one to simulate rubbers of the same
compound with various filler concentrations based on only one set of fitting parameters.

8. Application examples

In this section, our model, implemented into the commercial FE code ABAQUS, is illustrated by two
examples with large inhomogeneous deformations. First, the behavior of a thin rubber sheet with a hole
in the middle is simulated and compared with experimental results under uniaxial tension. In the second
test, the model predicts the behavior of an industrial damper under cyclic loading.

8.1. Rectangular rubber specimen with a central hole under uniaxial tension. The objective of this
experiment is to assess the accuracy of the proposed constitutive model in predicting complex strain
fields.

The specimen is made of a 60 phr carbon black filled rubber, with the exact compound given in Table 5.
It has a rectangular shape (100× 35× 2 mm) with a hole of D = 14 mm at its center (see Figure 11). The
hole was punched out by a mechanical cutting device.

The experiment is performed at room temperature with a strain rate of ε̇ = 0.4 /s and stretch amplitude
of ε= 0.75. The strain field on the surface of the specimen is accurately measured by an optical measuring
system (GOM Aramis), where the displacements of several points on the sample are captured and a
detailed displacement field is provided.
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Figure 12. Comparison between strains in the loading direction from the FE results and
the experimental data.

Five points on the specimen surface are chosen, as shown in Figure 11. Strains at these points are
compared with the numerical results of the model simulations with 922 cubic elements. Good agreement
between the experimental data and the numerical simulation is observed (see Figure 12).

8.2. Rubber suspension system. In another example, the model is used to simulate the behavior of a
rubber component in an industrial application. To this end, cyclic loading of a cylindrical rubber string2,
shown in Figure 13, is simulated and compared with the measured data. The specimen is part of a
suspension unit that is generally used as an impact stop, oscillation damper, or pivot bearing in machine
constructions. The housing and the shaft of the bearing are made of steel. The string is made of carbon

2The samples used in this experiment are manufactured and provided by ROSTA AG.
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Figure 13. Assembled rubber suspension unit with housing (1), string (2), and shaft (3).
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Figure 14. Comparison of the model predictions with the experimental results for the
material of the string.
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black filled rubber with material constants obtained by fitting to the experimental data provided by the
manufacturer, ROSTA AG (Figure 14).

Due to the symmetry of the structure, appropriate boundary conditions were applied to one-quarter of
the rubber suspension unit, which was discretized by 2094 linear cubic elements. The simulation of the
rubber suspension unit started with the assembly process from undeformed state (Figure 13), following
by rotation of the shaft inside the bearing.

In Figure 15, the model predictions for the moment normalized with respect to the length of the string
are plotted versus the angle and compared with the experimental data for the reaction moment. This was
measured after five loading-unloading cycles, which corresponds to the unloading curve of our model.
This curve demonstrates good agreement with the above-mentioned experimental data (see Figure 15).

9. Concluding remarks

The previously proposed network evolution model for carbon black filled rubbers exhibiting anisotropic
Mullins effect is implemented here for finite elements simulations. To this end, the tangent moduli for
elastic and nonelastic regimes are formulated in terms of internal variables. Additionally, the thermody-
namical consistency of the model is proved.

In the next part, the concepts and predictive capabilities of the model are validated experimentally. The
performance of the model is illustrated by comparing it to different sets of experimental data particularly
designed to reveal the anisotropic Mullins effect and permanent set. Next, the predictive capabilities
of the model are verified by comparing compounds with different filler concentrations. The model is
also implemented into the FEM commercial code ABAQUS and its predictions for complex loading and
geometrical problems are compared with the experimental data.

Everywhere, the model illustrated very good agreement with the experimental data. This fact, in
addition to the simplicity of the proposed model, makes it a suitable option for commercial and industrial
applications.

Appendix: Derivation of tangent tensors

In view of (36), the second Piola–Kirchhoff stress tensor S is a nonlinear tensor valued-tensor function
of state variables C and �, defined as follows:

S(C, �)= 2
∂9̂M(C, �)

∂C
= 2

∂9cc

∂C
+ 2

∂9pp

∂C
= Scc+Spp. (A.1)

Accordingly, in view of (27) one has

Scc = 2
∂9cc

∂C
=

k∑
i=1

wi Ñc
√

bnc L−1
( Di

χ
√

bnc

)
1
Di
χ
(Di ⊗ Di ),

Spp = 2
∂9pp

∂C
=

k∑
i=1

wi Ñ08(
Di
λm)

µξi
Di
χ
(Di ⊗ Di ), (A.2)
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where µ= 1
1−Cp . Furthermore, the parameter ξi is defined by

ξi =
R
a

∫
DA(

Di
λm)

P̂(n)L−1
( Di
λR
abn

)
dn. (A.3)

The standard Newton–Raphson procedure in finite element analysis requires a linearization of the
relation between the second Piola–Kirchhoff stress tensor S and the state variables C and �. The modified
tangent tensor C is formulated by dropping the higher-order terms of the following Taylor expansion:

S(C+ dC, �+ d�)= S(C, �)+ dS

= S(C, �)+
∂S(C, �)
∂C

: dC+
k∑

i=1

∂S(C, �)

∂
Di
λm

d
Di
λm +2(dC2, d

Di
λm

2).

Thus, the linearization process yields

dS=
∂S(C, �)
∂C

: dC+
k∑

i=1

∂S(C, �)

∂
Di
λm

d
Di
λm =

∂S(C, �)
∂C

: dC+
k∑

i=1

∂S(C, �)

∂
Di
λm

(
∂

Di
λm

∂C
: dC

)

= 2

[
∂S(C, �)
∂C

+

k∑
i=1

∂S(C, �)

∂
Di
λm

�
∂

Di
λm

∂C

]
:

1
2

dC, (A.4)

which finally gives C as

C= 2
∂S
∂C
+ 2

k∑
i=1

∂S(C, �)

∂
Di
λm

�
∂

Di
λm

∂C
. (A.5)

In view of (A.1) and (A.5), the first part of the tangent tensor is given by

2
∂S
∂C
= 2

∂Scc

∂C
+ 2

∂Spp

∂C
= Ccc+Cpp. (A.6)

Next, Ccc is calculated by using (A.2) as

Ccc = 2
k∑

i=1

wi Ñc
√

bnc(Di ⊗ Di )�
∂

∂
Di
χ

[
1
Di
χ

L−1
( Di

χ
√

bnc

)]
∂

Di
χ

∂C

=

k∑
i=1

wi Ñc1i (Di ⊗ Di )� (Di ⊗ Di ), (A.7)

where the parameter 1i is written as

1i =−

√
bnc

χ3
i

β +
1

Di
χ 2

β2 sinh2 β

sinh2 β −β2
, (A.8)
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by knowing
d L−1(y)

dy
=

1
d L(β)/dβ

=
β2 sinh2 β

sinh2 β −β2
.

Furthermore, with respect to (A.2), one has for Cpp:

Cpp = 2
k∑

i=1

wi Ñ0µ8(
Di
λm)(Di ⊗ Di )�

∂

∂C

[
ξi
Di
χ

]

=

k∑
i=1

wi Ñ0µ8(
Di
λm)

[
−
ξi

Di
χ 3
+
µγi
Di
χ 2

]
(Di ⊗ Di )� (Di ⊗ Di ), (A.9)

where γi = dξi/d
Di
λ .

Finally, (A.6) is simplified to

2
∂S
∂C
=

k∑
i=1

wi

(
Ñc1i + Ñ0µ8(

Di
λm)

[
−
ξi
Di
χ 3
+
µγi
Di
χ 2

])
Di , (A.10)

where Di = (Di ⊗ Di )� (Di ⊗ Di ).
For the second term of the tangent tensor, one has

∂
Di
λm

∂C
=


∂

Di
λ

∂C
=
µ

2
Di
χ
(Di ⊗ Di ),

Di
λ =

Di
λm (in primary loading),

0, (in unloading or reloading),

(A.11)

which consequently gives

2
k∑

i=1

∂S(C, �)

∂
Di
λm

�
∂

Di
λm

∂C
= 2

k∑
i=1

∂S(C, �)

∂
Di
λm

�
µ

2
Di
χ
(Di ⊗ Di )δ(Di ), (A.12)

where

δ(Di )=

1 if
Di
λ =

Di
λm,

0 if
Di
λ 6=

Di
λm .

Since the second term of the tangent tensor is nonzero just in the case of primary loading, one obtains
the following identity based on (A.2):

∂S(C, �)

∂
Di
λm

=
∂Scc

∂
Di
λm

+
∂Spp

∂
Di
λm

=
∂

∂
Di
λm

(
wi Ñ08(

Di
λm)

µξi
Di
χ
(Di ⊗ Di )

)

= wi Ñ0
µ
Di
χ
(Di ⊗ Di )

[
8(

Di
λm)

∂ξi

∂
Di
λm

+ ξi
∂8(

Di
λm)

∂
Di
λm

]
. (A.13)
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Next, substituting (42) and
∂ξi

∂λm
=−

υR2

a2b
P̂
(
nc− f (λm)

)
L−1

( 1
υ

)
, (A.14)

into (A.13) gives
∂S(C, �)

∂
Di
λm

= wi Ñ08(
Di
λm)ηi

1
Di
χ
(Di ⊗ Di ), (A.15)

where

ηi =−

(
υR
ab

)2
P̂
(
nc− f (

Di
λm)

)[ b
υ

L−1
( 1
υ

)
+ ξi

Di
λm8(

Di
λm)

]
. (A.16)

Finally, the expanded formulation of the tangent tensor is obtained as

C=

k∑
i=1

wi

(
Ñc1i + Ñoµ8(

Di
λm)

[
−
ξi
Di
χ 3
+µ

γi + ηiδ(Di )
Di
χ 2

])
Di . (A.17)
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