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A DIFFUSE COHESIVE ENERGY APPROACH TO FRACTURE
AND PLASTICITY: THE ONE-DIMENSIONAL CASE

GIANPIETRO DEL PIERO, GIOVANNI LANCIONI AND RICCARDO MARCH

In the fracture model presented in this paper, the basic assumption is that the energy is the sum of
two terms, one elastic and one cohesive, depending on the elastic and inelastic part of the deformation,
respectively. Two variants are examined: a local model, and a nonlocal model obtained by adding
a gradient term to the cohesive energy. While the local model only applies to materials which obey
Drucker’s postulate and only predicts catastrophic failure, the nonlocal model describes the softening
regime and predicts two collapse mechanisms, one for brittle fracture and one for ductile fracture.

In its nonlocal version, the model has two main advantages over the models existing in the literature.
The first is that the basic elements of the theory (the yield function, hardening rule, and evolution laws)
are not assumed, but are determined as necessary conditions for the existence of solutions in incremental
energy minimization. This reduces to a minimum the number of independent assumptions required to
construct the model. The second advantage is that, with appropriate choices of the analytical shape of the
cohesive energy, it becomes possible to reproduce, with surprising accuracy, a large variety of observed
experimental responses. In all cases, the model provides a description of the entire evolution, from the
initial elastic regime to final rupture.

1. Introduction

Since the pioneering paper [Francfort and Marigo 1998], the variational approach to fracture has been the
object of intense research. A reason for this is the availability of numerical instruments supporting the
theory, which are capable of solving practical problems in fracture mechanics. One such instrument is
the regularization technique of Ambrosio and Tortorelli [1990], initially conceived for the image segmen-
tation problem [Mumford and Shah 1989], and applied to fracture problems by Bourdin, Francfort and
Marigo [2000]. The regularization consists in approximating the energy of a fractured body, which by its
own nature is defined on discontinuous deformations with bounded variation, by a family of functionals
defined in a Sobolev space. This makes it possible to solve fracture problems using standard finite
element techniques.

The original paper [Francfort and Marigo 1998] and the subsequent developments were based on the
brittle fracture model of Griffith [1920], in which the presence of singular discontinuity surfaces for the
displacement is allowed at the interior of an elastic body. In fact, long before the appearance of [Franc-
fort and Marigo 1998], more sophisticated models, based on Barenblatt’s cohesive fracture hypothesis
[Barenblatt 1962], were used in fracture mechanics. They were particularly efficient in situations in which
fracture is preceded by a regime of large inelastic deformation, like in the rupture of concrete and other
nonmetallic materials [Hillerborg 1991; Carpinteri and Massabò 1997]. In this respect, a fundamental

Keywords: nonlocal plasticity, strain localization, variational fracture, ductile fracture, incremental energy minimization.
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role was played by the cohesive crack model of [Hillerborg et al. 1976]. The development of the theories
of rupture for concrete over the following decades is documented in the review papers [Carpinteri 1982;
Bažant and Chen 1997; Bažant and Jirásek 2002; Bažant and Le 2009].

With the cohesive energy model, two basic aspects of energy minimization became evident. The first
is the relevance of local, versus global, minimization. This point has received significant attention in
the recent literature [Dal Maso and Toader 2002; Marigo and Truskinovsky 2004], and is now generally
accepted. The second aspect is the relevance of the role played by energy dissipation. Indeed, with a min-
imization constrained by a dissipation inequality it is possible to reproduce some sophisticated aspects of
material response such as, for instance, elastic unloading in plasticity [Del Piero and Truskinovsky 2009].

The present paper originates from a reflection on similarities and differences between the cohesive en-
ergy scheme and the Ambrosio–Tortorelli approximation. For both, the energy functional depends on the
elastic deformation plus a second variable which provides a regularized representation of fracture. But,
while the cohesive energy is usually assumed to be a surface energy, the regularizing term in [Ambrosio
and Tortorelli 1990] is a volume integral.

The question naturally arises, of whether or not it is convenient to assume a cohesive energy con-
centrated on singular surfaces. In ductile materials, before rupture, the appearance of a process zone
is observed, in which the material becomes weaker and more deformable. This phenomenon can be
described by damage [Babadjian 2011] or plasticity [Dal Maso and Toader 2010] theories. Cohesive
energies diffused over the volume were recently considered in the modeling of brittle fracture [Volokh
2004] and damage [Benallal and Marigo 2007; Pham et al. 2011], and in the variational theory of fracture
[Freddi and Royer-Carfagni 2010]. In particular, [Pham and Marigo 2010a] deals with a model of energy
minimization, in which rupture is preceded by progressive damage. In it, the one-dimensional energy
functional has the form ∫ l

0

(
w(u′(x), γ (x))+ θ(γ (x))

)
dx, (1-1)

where w is the bulk energy density, u′ is the axial deformation, and γ is an internal variable representing
the intensity of damage. In the present paper we consider the special case∫ l

0

(
w(ε(x))+ θ(γ (x))

)
dx, (1-2)

in which ε(x)= u′(x)− γ (x) is the elastic part of the deformation. Of the two energy densities w and θ ,
the first is assumed to be reversible and the second is assumed to be totally dissipated. By assuming w
independent of γ , we purposely renounce any description of damage. Though our initial purpose was to
construct something more general than a plasticity theory, to our surprise we realized that, as we shall
see below, the energy (1-2) provides exactly the classical incremental theory of plasticity exposed, for
example, in [Hill 1950].

A weak point of the model is that it fails to describe the strain-softening response which, as well-
known from the literature, is associated with localization of the plastic deformation. These effects can
be captured by adding a nonlocal term of the gradient type∫ l

0

(
w(ε(x))+ θ(γ (x))

)
dx + 1

2
α

∫ l

0
γ ′

2
(x) dx, (1-3)
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which successfully captures some specific effects of material response in a large variety of models, like
the van der Waals model for capillarity [van der Waals 1893; Casal 1972], the Cahn–Hilliard model for
phase transition [Cahn and Hilliard 1958], Mumford–Shah image segmentation theory [Mumford and
Shah 1989], some theories of liquid crystals [Frank 1958; Ericksen 1990], and some numerical models for
the rupture of concrete [Borst and Pamin 1996]. A nonlocal term was also used in [Truskinovsky 1996]
to construct a cohesive zone model starting from the energy of interatomic attraction (Lennard-Jones
potential).

The addition of a gradient term renders the expression (1-3) of the energy similar to the Ambrosio–
Tortorelli functional∫ l

0
(s2(x)+ κα)w(u′(x)) dx + 1

2
α

∫ l

0

(
s ′2(x)+

c
α2 (1− s(x))2

)
dx . (1-4)

Indeed, in both cases the total energy is the sum of a basic energy and a perturbing gradient term, and
in both cases the deformation is accompanied by a second independent variable. The main difference is
that in (1-3) the second variable is the inelastic part of the deformation, while in (1-4) the scalar field
s ∈ [0, 1] measures the fracture intensity in the regularized model. Also different is the nature of the
smallness parameter α. In (1-4), α is the coefficient of a singular perturbation, and what is important is
the asymptotic behavior of the solution when α→ 0. In fracture theory, α is a fixed material constant,
usually interpreted as an internal length determined by the microscopic structure of the material [Bažant
and Pijaudier-Cabot 1989; Bažant and Jirásek 2002; Pham et al. 2011].

The value of α strongly influences the material’s response. Indeed, the ratio between internal length
and the length l of the bar is an indicator of the brittleness of the fracture. A reduction of α has the
same effect as an increase of l, that is, a transition from rupture preceded by a long regime of gradual
weakening to sudden catastrophic failure. For fixed α and varying l, this is the well-known size effect of
fracture mechanics.

The requirement of nonnegativeness of the first variation leads to Kuhn–Tucker conditions very similar,
and sometimes identical, to the governing equations of the gradient theories of plasticity [Aifantis 1992;
Fleck and Hutchinson 2001; Gurtin and Anand 2005] and damage [Benallal and Marigo 2007; Pham and
Marigo 2010b; Pham et al. 2011], which, starting from the pioneering paper [Aifantis 1984], have been
developed by several authors in the last two decades. In particular, the expression of the first variation of
the energy given in Section 3.2 is the one-dimensional counterpart of the expression of the virtual power
currently assumed in the theories of strain-gradient plasticity [Gurtin 2003; Gudmundson 2004; Gurtin
and Anand 2005].

An accurate review, analysis, and comparison of such theories can be found in [Jirásek and Rolshoven
2009a; 2009b]. Most theories include a number of assumptions which fix the basic physical aspects of
plastic response:

- the stress-strain elastic law,

- the hardening rule,

- the evolution laws,

- the loading-unloading conditions,

- the yield function.
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The underlying continuum can be either a classical or a generalized continuum. In a classical con-
tinuum the plastic deformation is regarded as a state variable, the Cauchy stress is the unique stress
measure, and supplementary generalized forces are defined as the conjugates of the gradients of the plastic
deformation. In a generalized continuum, higher-order stresses appear as conjugates of the higher-order
deformation gradients.

The two cases are analyzed in [Jirásek and Rolshoven 2009b] and [2009a], respectively. The number
and variety of theories reported therein shows by itself that there is yet no agreement about the choice of a
fully satisfactory model. The present paper has the ambition of presenting a mathematically sound model,
based on very simple assumptions, and providing a very flexible description of the entire evolution from
the initial elastic regime to final rupture.

The basic assumptions are the forms of the elastic energy and of the dissipative cohesive energy.
Proceeding by incremental energy minimization, all classical hypotheses listed above are obtained as
necessary conditions for a minimum. The analytical forms of the functions defined in the above hy-
potheses are already contained in the assumed form of the cohesive energy. In particular, the dissipative
character assumed for the cohesive energy provides the basis for the description of elastic unloading, and
the shape of the cohesive energy can be chosen to reproduce a large variety of responses, hardening or
softening, and with the plastic strain diffusing over the body or localizing on small regions.

Surface cohesive energies have proved to be an efficient tool for formulating and solving fracture
problems. Here we show that volume cohesive energies can be a very natural way for describing fracture
as a terminal event in an evolution involving plasticity or damage. Of course, there is no claim of
generality for the model presented here. It can be generalized in several directions. We just like to
compare the simplicity of the starting assumptions and of the incremental minimizing procedure, with
the richness of the responses that can be obtained by acting on the analytical shape of the cohesive energy.

Our analysis is restricted to the one-dimensional case. This allows us to get the basic results avoiding a
number of technical complications, at the cost of neglecting some important aspects congenital to higher
dimension. The paper is divided into four sections. After the present introduction, Sections 2 and 3 deal
with the local and nonlocal models, respectively, and Section 4 reports some numerical simulations on
the nonlocal model and compares them with experiments. The local model is introduced in Section 2.1,
and in Section 2.2 the equilibrium configurations are identified with the stationary points of the energy
(1-2). Due to the unilateral character of the dissipation constraint, the Euler equation is replaced by an
inequality. This inequality provides an upper bound for the axial force, depending on the current value
of the plastic deformation. In this way, the yield condition is obtained.

The minimum properties of the stationary points are investigated in Section 2.3. The following sub-
sections deal with the quasistatic evolution of the inelastic deformation under varying load, along a path
made of energy minimizers. For simplicity, we only consider a bar under a hard device, for which the
load consists of displacements applied at the endpoints. Section 2.4 is devoted to incremental energy
minimization. In a first-order approximation, the minimization consists in determining the direction of
steepest descent under the given load increment. The result is that along that direction the inelastic
deformation does not change in the elastic regime, that is, when the yield condition is satisfied as a strict
inequality. On the contrary, in the inelastic regime the inelastic strain rate remains unspecified.

For its determination, a second-order minimization is required. In it, some basic properties of classical
plasticity, such as the hardening rule, the consistency condition for the inelastic deformation at loading,
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and the property of elastic unloading are obtained as necessary conditions for a minimum. The minimiza-
tion leads to a first-order differential problem, involving the current values of the inelastic deformation
and of the inelastic strain rate. This problem is studied in Section 2.5. In the inelastic regime, at each
time t the response is determined by the sign of the second derivative of θ at the current deformation γt :
the response is work-hardening for θ ′′(γt) > 0 and perfectly plastic for θ ′′(γt)= 0. For θ ′′(γt) negative,
the deformation concentrates at a single point, determining catastrophic rupture.

The local model provides a classical incremental plasticity theory [Hill 1950], obeying Drucker’s
material stability postulate [Drucker 1952]:

σ̇t γ̇t ≥ 0, (1-5)

which does not allow for a strain-softening response. Within this restricted context, the model correctly
describes a plastic response followed by brittle fracture in the sense of Griffith’s theory.

The nonlocal model based on the energy (1-3) is discussed in Section 3. Due to the presence of
a gradient term, more regularity and supplementary boundary conditions are required. The additional
regularity assumptions are made in Section 3.1, and two different options for the supplementary boundary
conditions are considered in Section 3.2. The choice of the supplementary boundary conditions is a
delicate problem; see, for example, the discussion in [Jirásek and Rolshoven 2009b, §3.4]. Our choice
of imposing a null inelastic deformation γ at the boundary is motivated by a closer adherence to the
constraint devices used in laboratory tests.

The minimum properties of the equilibrium configurations, still identified with the stationary points
of the energy, are investigated in Section 3.3. Due to the stabilizing effect of the nonlocal term, the
necessary conditions for a minimum are weaker than in the local model. In particular, moderate negative
values of θ ′′(γ (x)) become acceptable, and this renders admissible a strain-softening response. In the
language of [Jirásek and Rolshoven 2009a; 2009b], the nonlocal term acts as a localization limiter, since
it opposes the localization of the inelastic deformation.

The quasistatic evolution under a given load process is studied in Section 3.4. A first-order minimiza-
tion still provides the direction of steepest descent for the energy functional. Along this direction, the
inelastic strain rate γ̇t(x) is zero in the elastic zone, that is, at points x at which the yield condition
is satisfied as a strict inequality. Surprisingly enough, this conclusion is partially contradicted in the
second-order minimization, in which nonnull inelastic strain rates are allowed inside the elastic zone, at
points sufficiently close to the interface with the inelastic zone.

The second-order minimization provides a set of Kuhn–Tucker conditions, which governs the qua-
sistatic evolution of the inelastic deformation. Due to the presence of the nonlocal terms, closed-form
solutions can be found only in some special cases. One of them is the onset of the inelastic regime, studied
in detail in Section 3.5. In the determination of the incremental response at the onset, a fundamental role
is played by the nondimensional ratio l/ li , where

li
.
= 2π

√
α

−θ ′′(0)
(1-6)

is the internal length of the material at the onset. Indeed, the response is work-hardening if l < li/2 and
strain-softening if l > li/2. Moreover, for l < li the response is full-size, that is, the inelastic strain rate
is diffused over the whole bar, while for l > li the inelastic strain rate localizes on a region of length li .
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It is possible that catastrophic failure occurs just at the onset of the inelastic regime. This circumstance,
which we call totally brittle fracture, depends on a second nondimensional ratio l/ lc, where

lc
.
= 2π

√
α

w′′(βc)
(1-7)

is the characteristic length at the onset and βc is the value of the load β at the onset. In fact, totally
brittle fracture occurs when l/ lc is less than a given function of l/ li .

A qualitative analysis of the response in the inelastic regime is made in Section 3.6. In it, internal
length and characteristic length are considered as functions of the current inelastic and elastic deformation

li t = 2π
√

α

−θ ′′t
, lct = 2π

√
α

w′′(εt)
, (1-8)

respectively, where θ ′′t is an average of θ ′′(γt(x)) over the bar in the current inelastic deformation γt . In
this way, by extrapolation of the exact results obtained at the onset, it is possible to obtain an approximate
picture of the bar’s evolution up to final rupture.

In particular, from this qualitative analysis two fundamental types of evolution emerge. They depend
on the convexity-concavity properties of the derivative θ ′ of the cohesive energy, and determine two very
different collapse mechanisms. If θ ′ is concave, an increasing load produces a progressive localization
of the inelastic deformation, and a progressive increase of the negative slope of the force-elongation
response curve. In the limit, an extreme localization and an infinite slope of the response curve produce
catastrophic failure. On the contrary, if θ ′ is convex, under increasing load the inelastic deformation
diffuses over larger and larger zones, and the negative slope of the curve decreases. In the limit the slope
tends to zero, and the bar elongates indefinitely at constant force.

The two collapse mechanisms are typical of materials with crystalline structure and with random
structure, respectively. In Section 4 both are investigated by means of numerical simulations, with the
purpose of reproducing the response curves of two real materials, concrete and steel. The correspondence
of the simulations with the experimental curves is obtained by fitting a very small number of parameters,
that is, the material constants necessary to represent the cohesive energy θ as a piecewise polynomial
function. The result is impressive. It shows that an appropriate choice of the expression of the cohesive
energy can indeed capture not only the overall behavior, but also many detailed features of the response
curve, in the whole evolution from the initial natural state up to rupture.

Roughly, the main results of the present study can be summarized as follows.

- In its nonlocal version, the diffuse cohesive energy model captures both brittle and ductile fracture
modes. In brittle fracture the inelastic deformation tends to localize on singular surfaces, and in
ductile fracture it tends to spread over the whole bar. Brittle fracture may also take place without
any preliminary regime of inelastic deformation.

- A convex cohesive energy produces a full-size work-hardening response. A concave energy may
produce a full-size or localized, work-hardening or strain-softening response, depending on the ratio
between the current internal length and the length of the bar.

- For θ concave, a convex θ ′ produces brittle fracture, and a concave θ ′ produces ductile fracture.
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- Brittle fracture occurs when the current internal length reaches a critical value depending on the
current characteristic length.

Some of these results, reflecting an earlier stage of the present research, were announced in [Del Piero
et al. 2012]. But even the present results are not complete, since many problems are left open. Specifically,
it seems very difficult to reach the same level of detail in a two or three-dimensional context. Also, a
big challenge is how to find general, physically motivated correlations between the convexity-concavity
properties of θ and θ ′ and the microstructural properties of real materials. This would require a truly
interdisciplinary effort, far beyond the domain of classical continuum mechanics.

2. The local model

2.1. Basic assumptions. Consider a straight bar of length l, homogeneous, with a constant cross-section,
subject to prescribed axial displacements at the endpoints

u(0)= 0, u(l)= βl, (2-1)

and free of applied loads. In what follows, the term load will be used to denote the relative elongation β.
A deformed configuration is described by the axial displacements u(x) of the points x of the bar’s axis,
and the derivative u′(x) is a measure of the axial deformation at x .

We make four basic assumptions. The first is that at every x the deformation can be split into the sum
of an elastic part ε(x) and an inelastic part γ (x):

u′(x)= ε(x)+ γ (x), x ∈ (0, l). (2-2)

A pair (ε, γ ) of functions continuous in [0, l] is a configuration of the bar. By integration, from the
boundary conditions (2-1) it follows that

β = ε̄+ γ̄ , (2-3)

with

ε̄ =
1
l

∫ l

0
ε(x) dx, γ̄ =

1
l

∫ l

0
γ (x) dx . (2-4)

Our second assumption is that the strain energy of the bar has the form

E(ε, γ )=
∫ l

0

(
w(ε(x))+ θ(γ (x))

)
dx, (2-5)

where w and θ are the volume densities of the elastic strain energy and of the cohesive energy, respec-
tively. We assume that w is C2 and strictly convex, and that

w(0)= w′(0)= 0. (2-6)

Then w′ is strictly increasing, and

w(ε) > 0, ∀ε 6= 0, w′(ε)

{
> 0, ∀ε > 0,
< 0, ∀ε < 0,

w′′(ε) > 0, ∀ε ∈ R.
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We also assume that θ is C2 and monotonic increasing, and that

θ(0)= 0, θ ′(0) > 0, lim
γ→+∞

θ(γ ) <+∞. (2-7)

The third assumption is that the elastic part of the deformation is related to the axial force σ by the
constitutive equation

σ = w′(ε), (2-8)

and the fourth assumption is that w can be stored, while θ is totally dissipated. That is, in every defor-
mation process t 7→ (εt , γt), at every x the cohesive power is nonnegative:

θ ′(γt(x))γ̇t(x)≥ 0. (2-9)

Here and in the following, a superimposed dot denotes the right derivative with respect to the parameter t .
Due to the rate-independent character of the model, t may be any monotonic nondecreasing function of
the physical time. In what follows we consider the case of θ strictly monotonic, for which the dissipation
inequality

γ̇t(x)≥ 0 (2-10)

holds at all x and for all t .

2.2. Equilibrium. For a given configuration (ε, γ ), a perturbation is a pair (δε, δγ ) such that

δε(x)= ε̇t(x), δγ (x)= γ̇t(x),

in some deformation process with (εt , γt)= (ε, γ ). While δε is unrestricted, δγ is subject to the condition

δγ (x)≥ 0, ∀x ∈ (0, l), (2-11)

due to the dissipation inequality (2-10). We say that (ε, γ ) is an equilibrium configuration if the first
variation of the energy

δE(ε, γ, δε, δγ )= lim
λ→0+

1
λ
(E(ε+ λ δε, γ + λ δγ )− E(ε, γ ))

=

∫ l

0

(
w′(ε(x)) δε(x)+ θ ′(γ (x)) δγ (x)

)
dx

(2-12)

is nonnegative for all perturbations which preserve the length of the bar

δε̄+ δγ̄ = 0, δε̄ =
1
l

∫ l

0
δε(x) dx, δγ̄ =

1
l

∫ l

0
δγ (x) dx . (2-13)

In particular, for perturbations with δγ = 0 the first variation is

δE(ε, γ, δε, 0)=
∫ l

0
w′(ε(x)) δε(x) dx .

By (2-13), δε̄ = 0 for such perturbations. Then, a standard argument of the calculus of variations leads
to the conclusion that the first variation is nonnegative if and only if w′(ε(x)) is a constant.
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By the constitutive equation (2-8), this implies that the axial force σ is constant. Moreover, by the
strict convexity of w, the derivative w′ is strictly increasing and, therefore, invertible. Then, ε is constant
as well:

ε = (w′)−1(σ ). (2-14)

By (2-13), for constant ε the first variation reduces to

δE(ε, γ, δε, δγ )=
∫ l

0

(
θ ′(γ (x))−w′(ε)

)
δγ (x) dx,

and because δγ (x) is arbitrary nonnegative, the condition

w′(ε)≤ θ ′(γ (x)), ∀x ∈ (0, l), (2-15)

follows. Conversely, for every configuration (ε, γ ) obeying this condition the first variation is nonnegative.
Therefore, an equilibrium configuration is a configuration (ε, γ ), with constant ε, which satisfies condi-
tion (2-15) for all x.

An equilibrium configuration is equilibrated with the load β given by (2-3). Then inequality (2-15),
rewritten in the form

w′(β − γ̄ )≤ θ ′(γ (x)), ∀x ∈ (0, l), (2-16)

shows that an equilibrium configuration can be defined alternatively as a pair (β, γ ) which satisfies
(2-11) and (2-16). There are many γ for which (β, γ ) is an equilibrium configuration. Indeed, by the
assumptions made on w and θ , all configurations (β, γ ) with γ̄ > β satisfy inequality (2-16), because
the right side of the inequality is nonnegative, while for β < γ̄ the left side is negative.

With every equilibrium configuration (β, γ ) are associated the axial force

σ = w′(β − γ̄ ) (2-17)

and the energy

Eeq(β, γ )
.
= lw(β − γ̄ )+

∫ l

0
θ(γ (x)) dx . (2-18)

The set of all x at which inequality (2-16) is strict is the elastic zone

E(β, γ )
.
= {x ∈ (0, l) | w′(β − γ̄ ) < θ ′(γ (x))}, (2-19)

and the complementary set
J(β, γ )

.
= (0, l) \ E(β, γ )

at which (2-16) is verified as an equality is the inelastic zone. We say that the bar is in the elastic regime
if E(β, γ )= (0, l), and that it is in the inelastic regime otherwise.

The equilibrium condition (2-16), rewritten in the form

σ ≤ θ ′(γ (x)), ∀x ∈ (0, l), (2-20)

shows that there is an upper limit for σ . In the language of plasticity, this inequality is a yield condition,
which imposes that the current stress σ not be greater than the yield limit θ ′. The difference θ ′− σ is the
yield function.
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2.3. Energy minimizers. Among all inelastic deformations γ equilibrated with a given β, of interest are
those which minimize the energy Eeq(β, · ). A necessary condition for a minimum at γ is that, in the
expansion

Eeq(β, γ + λ δγ )− Eeq(β, γ )= λ

∫ l

0

(
θ ′(γ (x))−w′(β − γ̄ )

)
δγ (x) dx

+
1
2
λ2
∫ l

0

(
θ ′′(γ (x)) δγ 2

+w′′(β − γ̄ ) δγ̄ 2) dx + o(λ2),

the first variation be nonnegative for all perturbations δγ and for all positive values of the smallness
parameter λ. By (2-11) and (2-16), this is true if and only if (β, γ ) is an equilibrium configuration.
Therefore, all minimizers for Eeq(β, · ) are equilibrium configurations.

A second necessary condition is that the second variation be nonnegative for all δγ for which the
first variation is zero. In particular, it must be nonnegative for all δγ with support in the inelastic zone
J(β, γ ). For this, it is necessary that

θ ′′(γ (x))≥ 0, a.e. x ∈ J(β, γ ). (2-21)

Indeed, if θ ′′(γ (x)) is negative on a subset of J(β, γ ) with nonnull measure, a negative second variation
is obtained by concentrating δγ on that set. The existence of perturbed configurations (β, γ + δγ ) with
arbitrarily large negative energy characterizes a fractured configuration. Then, (2-21) is in fact a safety
condition against fracture.

The nonnegativeness of the first variation joined with the stronger condition

θ ′′(γ (x)) > 0, ∀x ∈ (0, l), (2-22)

is sufficient for a local minimum at γ with respect to the L∞ norm:

‖δγ ‖ = sup
x∈(0,l)

|δγ (x)|. (2-23)

Indeed, since θ is C2 and γ is continuous in the closed set [0, l], the map θ ′′(γ ( · )) is uniformly
continuous. Then for all ε > 0 there is a δ > 0 such that

|a|< δ H⇒ |θ ′′(γ (x)+ a)− θ ′′(γ (x))|< ε, ∀x ∈ (0, l).

Consider the finite expansion of Eeq(β, · ) with Lagrange remainder

Eeq(β, γ + δγ )

= Eeq(β, γ )+ δEeq(β, γ, δγ )+
1
2

∫ l

0

(
θ ′′(γ (x)+ ξ(x) δγ (x)) δγ 2(x)+w′′(β − γ̄ − ξ̄ δγ̄ ) δγ̄ 2) dx,

with ξ̄ and all ξ(x) in (0, 1). For every perturbation δγ with ‖δγ ‖< δ, from the nonnegativeness of the
first variation and the positiveness of w′′ we have

Eeq(β, γ + δγ )− Eeq(β, γ )≥
1
2

∫ l

0

(
θ ′′(γ (x))− ε

)
δγ 2(x) dx .
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If (2-22) holds, the map θ ′′(γ ( · )) is positive and continuous, and therefore it has a positive minimum c
in [0, l]. It is then sufficient to take ε < c to have a nonnegative right-hand side. Because this holds for
all δγ with ‖δγ ‖< δ, γ is a local minimizer with respect to the norm (2-23).

2.4. Quasistatic evolutions. A load process is a continuous function t 7→ βt . A quasistatic evolution
from γ0 associated with t 7→ βt is a family t 7→ γt of inelastic deformations such that

(i) γt = γ0 at the initial time t = t0,

(ii) for all t the function x 7→ γt(x) is continuous, for all x the function t 7→ γt is nondecreasing, and
the family t 7→ γt is continuous in L∞(0, l), and

(iii) for all t ≥ t0, γt is a local minimizer for Eeq(βt , · ).

In (ii), the requirement of γt nondecreasing is imposed by the dissipation inequality (2-10), and con-
tinuity in L∞(0, l) means that for every t ≥ t0 and for every δ > 0 there is a τo > 0 such that

‖γt+τ − γt‖< δ, ∀τ ∈ (0, τo),

where ‖ · ‖ is the L∞ norm (2-23). By consequence, in the time interval (0, τo) the evolution τ 7→ γt+τ

takes place inside the ball B(γt , δ) of L∞(0, l) of radius δ centered at γt .
Assume that γt( · ) is a deformation with constant value γ̄t , and that θ ′′(γ̄t) is positive. Then it is

possible to choose δ such that θ ′′(γ (x)) > 0 for all γ in B(γ̄t , δ), so that the restriction of the energy to
B(γ̄t , δ) is strictly convex for all τ < τo. Therefore, by Jensen’s inequality,

Eeq(βt+τ , γt+τ )≥ Eeq(βt+τ , γ̄t+τ ), ∀τ ∈ (0, τo),

where γ̄t+τ is the homogeneous deformation defined as in (2-4), and equality holds only if γt+τ = γ̄t+τ .
That is, the unique minimizer of the energy at time t + τ is a homogeneous deformation. Consequently,
for every quasistatic evolution from a homogeneous deformation γ̄t with θ ′′(γ̄t) > 0 there is a time interval
(0, τo) in which γt+τ is a homogeneous deformation.

From here onwards we consider homogeneous deformation processes t 7→ γt , and we identify the
functions γt( · ) and γ̇t( · ) with their constant values, which we denote by γt and γ̇t . For θ ′′(γt) > 0 and
for δ and τo as above, the determination of a quasistatic evolution from (βt , γt) reduces to the following
incremental minimization problem: for a given τ ≤ τo, find the homogeneous deformation γt+τ which
minimizes the energy Eeq(βt+τ , · ) in B(γt , δ).

An approximate solution is obtained by replacing βt+τ and γt+τ by the piecewise linear approxima-
tions

βt+τ ≈ βt + τ β̇t , γt+τ ≈ γt + τ γ̇t , (2-24)

and then determining γ̇t as the minimizer for the first-order approximation

Et+τ (γ̇ )≈ Et + τ Ėt(γ̇ ) (2-25)

of the energy Eeq(βt+τ , γt+τ ), where

Et = Eeq(βt , γt)= l(w(εt)+ θ(γt)), Ėt(γ̇ )= l(σt(β̇t − γ̇ )+ θ
′(γt)γ̇ ), (2-26)
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with σt = w
′(εt) and εt = βt − γt . This minimization determines the direction of steepest descent for the

energy. Because Et and β̇t are known, the problem reduces to the minimization of the linear function

I (γ̇ )= (θ ′(γt)− σt)γ̇ , (2-27)

under the condition γ̇ ≥ 0. In the elastic regime, in which (θ ′(γt)− σt) is positive, the minimum is zero
and is attained at γ̇ = 0. In the inelastic regime, I (γ̇ ) is identically zero because (θ ′(γt)− σt) is zero.
That is, the direction of steepest descent is undetermined.

The determination of a quasistatic evolution in the inelastic regime then requires a second-order ap-
proximation of the energy

Et+τ (γ̇ )≈ Et + τ Ėt(γ̇ )+
1
2 τ

2 Ët(γ̇ ), (2-28)

where
Ët(γ̇ )= l(w′′(εt)(β̇t − γ̇ )

2
+ θ ′′(γt)γ̇

2). (2-29)

After elimination of the terms independent of γ̇ , the problem reduces to the minimization of the quadratic
function

J (γ̇ )= (θ ′(γt)− σt − τw
′′(εt)β̇t)γ̇ +

1
2 τ(θ

′′(γt)+w
′′(εt))γ̇

2, (2-30)

under the condition γ̇ ≥ 0. The sum (θ ′′(γt)+w
′′(εt)) is positive by the strict convexity of w and the

necessary condition (2-21) on θ ′′(γ ). Then, J is strictly convex. If the bar is in the elastic regime,
θ ′(γt)− σt > 0, the coefficient of γ̇ is positive for sufficiently small τ . Then the global minimum is zero,
and is achieved at γ̇ = 0. In this case, the elastic incremental response

σ̇t = w
′′(εt)β̇t (2-31)

follows from the incremental force-elongation relation

σ̇t = w
′′(εt)(β̇t − ¯̇γt), (2-32)

obtained by time differentiation of (2-17). This confirms the result of the first-order minimization, that
there is no increase of inelastic deformation in the elastic regime.

In the inelastic regime, θ ′(γt)= σt , the minimum is still achieved at γ̇ = 0 at unloading, β̇t ≤ 0. Then,
there is no increase of inelastic deformation at unloading. At loading, β̇t > 0, the minimum of J is
achieved at

γ̇t =
w′′(εt)

θ ′′(γt)+w′′(εt)
β̇t , (2-33)

and, by (2-32), the inelastic response is

σ̇t =
θ ′′(γt)w

′′(εt)

θ ′′(γt)+w′′(εt)
β̇t . (2-34)

The different response at loading and unloading in the inelastic regime is a peculiar property of plastic
behavior. At loading, from (2-33) and (2-34) it follows that

σ̇t = θ
′′(γt)γ̇t , (2-35)



DIFFUSE COHESIVE ENERGY FOR FRACTURE AND PLASTICITY 121

whence
σt+τ ≈ σt + τ σ̇t = θ

′(γt)+ τθ
′′(γt)γ̇t ≈ θ

′(γt+τ ). (2-36)

Equation (2-35) is the hardening rule, which in classical plasticity specifies σ̇ as a function of the current
value of γ . Equation (2-36) states that, within the approximation (2-24), at time t + τ the yield condi-
tion holds as an equality. That is, the inelastic regime is preserved. This is the consistency condition
of classical plasticity. At unloading, the response (2-31) expresses the property of elastic unloading.
Classically, the hardening rule, consistency, and elastic unloading are assumptions originating from ex-
perimental observation. Here, they come as necessary conditions for a minimum in the second-order
energy minimization.

Equation (2-34) provides the slope dσt/dβt = σ̇t/β̇t of the force-elongation response curve at loading.
For θ ′′(γt) > 0 this slope is positive but smaller than the slope w′′(εt) at unloading. A positive slope at
loading characterizes a work-hardening response.

For θ ′′(γt) = 0, the restriction to homogeneous deformations is no longer possible. In the inelastic
regime, σt = θ

′(γt), the function J (γ̇ ) reduces to

J (γ̇ )=−τw′′(εt)β̇t ¯̇γ +
1
2 τw

′′(εt) ¯̇γ
2.

The minimum is achieved at ¯̇γt = β̇t , which corresponds to σ̇t = 0, that is, to perfectly plastic response.
In this case, the incremental minimization specifies the average ¯̇γt , but the punctual values γ̇t(x) are not
determined. Thus, in this case the evolution from a homogeneous configuration need not be homoge-
neous.

The case of θ ′′(γt) negative, corresponding to a negative slope, that is, to a strain-softening response,
is excluded by condition (2-21). Multiplication of (2-35) by γ̇t shows that Drucker’s postulate (1-5) is
obeyed only if θ ′′(γt) is nonnegative. This shows that the local model provides a valid response only for
materials which obey Drucker’s postulate.

The indeterminacy of the minimizers in a perfectly plastic response and the impossibility of reproduc-
ing the softening response are two major drawbacks of the local model.

2.5. Evolution from the natural configuration. Let us determine the quasistatic evolution for a load
process t 7→ βt , with β̇t > 0 for all t , from the natural configuration (β0, γ0)= (0, 0). At t = 0 we have

σ0 = 0, θ ′(γ0)= θ
′(0) > 0,

so that inequality (2-20) is strict and γ̇0 is zero. By continuity, inequality (2-20) remains strict, and
therefore γ̇t remains equal to zero, over a time interval (0, tc). Because γ0 = 0, γt is zero in this interval.
Then an elastic regime takes place, with

εt = βt , σt = w
′(βt).

This regime ends when, at some tc > 0, βt reaches the value

βc = (w
′)−1(θ ′(0)), (2-37)

at which, since σtc = w
′(βc)= θ

′(0), inequality (2-20) becomes an equality. At t = tc, all points of the
bar switch from the elastic to the inelastic zone.
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The response at t = tc is work-hardening if θ ′′(0) > 0 and perfectly plastic if θ ′′(0) = 0. In the
work-hardening regime, by (2-33), the evolution t 7→ γt is determined by the solution of the differential
equation

γ̇t =
w′′(βt − γt)

θ ′′(γt)+w′′(βt − γt)
β̇t , t ≥ tc, (2-38)

under the initial condition γtc = 0. A work-hardening regime persists as long as β̇t and θ ′′(γt) remain
positive. For β̇t ≤ 0 elastic unloading takes place, and for θ ′′(γt) = 0 the response becomes perfectly
plastic. Fracture occurs as soon as γt becomes larger than

γr
.
= inf{γ ≥ 0 | θ ′′(γ ) < 0}. (2-39)

Indeed, for γ > γr there are perturbed configurations with arbitrarily large negative energy. Because the
energy suddenly drops from a finite value to −∞, the fracture has a catastrophic character. This fracture
mode is called brittle fracture. If θ ′′(0) < 0, fracture occurs without any intermediate inelastic regime.
This is the case of totally brittle fracture.

In conclusion, in the inelastic regime at loading the response at (βt , γt) is work-hardening if θ ′′(γt) is
positive, and perfectly plastic if θ ′′(γt)= 0. For θ ′′(γt) > 0, a quasistatic evolution from a homogeneous
deformation is made of homogeneous deformations. The fracture is always catastrophic, and occurs as
soon as γt becomes larger than γr .

3. The nonlocal model

3.1. Basic assumptions. The local model provides only a rough description of the bar’s behavior. In
particular, it does not describe ductile fracture and strain-softening response. These phenomena are
captured by adding to the energy (2-5) a nonlocal term proportional to the square of the derivative of γ :

E(ε, γ )=
∫ l

0

(
w(ε(x))+ θ(γ (x))+ 1

2αγ
′2(x)

)
dx,

with α a positive constant. The new term requires a stronger regularity of γ . We assume that γ is C1

on [0, l] and piecewise C2, that is, that γ ′′ is continuous except at a finite number of jump points xi , at
which the left limit γ ′′(xi−) and the right limit γ ′′(xi+) exist. The difference

[[γ ′′]](xi )
.
= γ ′′(xi+)− γ

′′(xi−) (3-1)

is the jump of γ ′′ at x .
Like in the local model, the part of the energy depending on the inelastic deformation is supposed to

be dissipative. That is, the cohesive power

θ ′(γt(x))γ̇t(x)+αγ ′t (x)γ̇
′

t (x) (3-2)

is assumed to be nonnegative in every deformation process t 7→ γt . For this, it is necessary that the
product θ ′(γt(x))γ̇t(x) be nonnegative at all x . Indeed, if it is negative at some xo, since γ̇ ′t (xo) may
have opposite signs in different deformation processes from γt(xo), for at least one choice the power
(3-2) is negative.



DIFFUSE COHESIVE ENERGY FOR FRACTURE AND PLASTICITY 123

By the assumed strict monotonicity of θ ′, the dissipation inequality γ̇t(x) ≥ 0 is necessary for dis-
sipativity. In the following subsection we show that, if the yield limit is nonnegative, this condition is
sufficient to guarantee the global dissipativity, that is, the nonnegativeness of the integral of (3-2) over
(0, l), in every equilibrium process.

3.2. Equilibrium. In the nonlocal model, an equilibrium configuration is a configuration (ε, γ ) at which
the first variation

δE(ε, γ, δε, δγ )=
∫ l

0

(
w′(ε(x)) δε(x)+ θ ′(γ (x)) δγ (x)+αγ ′(x) δγ ′(x)

)
dx

is nonnegative for all C1([0, l]) and piecewise C2 perturbations (δε, δγ ), which satisfy the dissipation
inequality (2-11) and the boundary condition (2-13). Proceeding as in Section 2.2, using perturbations
with δγ = 0 we find that σ and ε must be constant over the bar. Then setting w′(ε)= σ and δε =−δγ̄
and integrating by parts, we get

δE(ε, γ,−δγ̄ , δγ )=
∫ l

0

(
θ ′(γ (x))− σ −αγ ′′(x)

)
δγ (x) dx +α

[
γ ′(x) δγ (x)

]l
0.

The nonnegativeness of the first variation for all nonnegative δγ requires

σ ≤ θ ′(γ (x))−αγ ′′(x), (3-3)

in (0, l), and
γ ′(l) δγ (l)≥ 0, γ ′(0) δγ (0)≤ 0, (3-4)

at the boundary. Inequality (3-3) is the nonlocal version of the yield condition (2-20). The difference
with the local model is that, while the yield limit θ ′(γ (x)) of the local model depends only on the value of
γ at x , the additional term αγ ′′(x) introduces a dependence on the values taken by γ at the neighboring
points.

There are two ways of satisfying the boundary conditions (3-4). If δγ is allowed to take arbitrary
positive values at the boundary, these conditions reduce to γ ′(l) ≥ 0 and γ ′(0) ≤ 0, respectively. The
alternative is to require that

γ (l)= γ (0)= 0, (3-5)

and, therefore, to take perturbations δγ such that

δγ (l)= δγ (0)= 0. (3-6)

We choose this second possibility, which better describes the standard experimental conditions. Indeed,
while this choice keeps the inelastic deformations away from the boundary, the other choice favors the
concentration of the inelastic deformation at the boundary. For a similar effect in different models, see
[Yalcinkaya et al. 2011, Figures 9 and 10], [Benallal and Marigo 2007, Figure 3a], and the discussion in
[Jirásek and Rolshoven 2009b]. In laboratory tests this effect is carefully avoided, either by reinforcing
the specimen’s end sections, or by weakening the central part of the bar, for example, with the creation
of a notch.

Thus, our choice allows for a comparison, at least qualitative, with the standard experimental curves.
The alternative possibility of imposing a null derivative γ ′ was chosen in [Benallal and Marigo 2007;
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Pham and Marigo 2010b; Pham et al. 2011]. This choice has the advantage of allowing for homogeneous
inelastic equilibrium configurations, and this greatly facilitates the study of the inelastic regime. Unfor-
tunately, due to the devices used to fix the bar’s ends in real experiments, this circumstance is hardly
reproducible in practice.

In conclusion, for the nonlocal model an equilibrium configuration is a pair (ε, γ ), with ε a constant
and γ a C1([0, l]) and piecewise C2 function, which satisfies inequality (3-3) at the interior points and
conditions (3-5) at the boundary.

Assume that the dissipation inequality (2-10) holds, and that the yield limit θ ′(γ )−αγ ′′ is nonnegative.
After integrating over (0, l), an integration by parts yields

0≤
∫ l

0

(
θ ′(γ (x))−αγ ′′(x)

)
γ̇ (x) dx =

∫ l

0

(
θ ′(γ (x))γ̇ (x)+αγ ′(x)γ̇ ′(x)

)
dx −α

[
γ ′(x)γ̇ (x)

]l
0.

On the right side the integral is the total cohesive power. Moreover, by (3-4), the remaining term is
nonpositive in any equilibrium process. This proves that, if the yield limit is nonnegative, the dissipation
inequality (2-10) guarantees the global dissipativity in every equilibrium process.

An equilibrium configuration (ε, γ ) is equilibrated with the load β given by (2-3). Alternatively, an
equilibrium configuration can be defined as a pair (β, γ ), and the energy can be redefined by

Eeq(β, γ )= lw(β − γ̄ )+
∫ l

0
θ(γ (x)) dx + 1

2
α

∫ l

0
γ ′

2
(x) dx . (3-7)

For an equilibrium configuration (β, γ ) defined in this way, the elastic and inelastic zones are

E(β, γ )= {x ∈ (0, l) | w′(β − γ̄ ) < θ ′(γ (x))−αγ ′′(x)}, J(β, γ )= (0, l) \ E(β, γ ), (3-8)

respectively. As in the local model, we say that the bar is in the elastic regime if E(β, γ )= (0, l), and
that it is in the inelastic regime otherwise.

3.3. Energy minimizers. To determine the inelastic deformations γ which minimize the energy Eeq(β, · ),
consider the expansion

Eeq(β, γ + δγ )− Eeq(β, γ )=

∫ l

0

(
θ ′(γ (x)) δγ (x)−w′(ε) δγ̄ +αγ ′(x) δγ ′(x)

)
dx

+
1
2

∫ l

0

(
θ ′′(γ (x)) δγ 2(x)+w′′(ε) δγ̄ 2

+α δγ ′
2
(x)
)

dx + o(‖δγ ‖2),

with ε = β − γ̄ , and with perturbations δγ nonnegative and satisfying the boundary conditions (3-6). A
necessary condition for a minimum is the nonnegativeness of the first variation. Because this requirement
characterizes an equilibrium configuration, all minimizers are equilibrium configurations.

Another necessary condition is that the second variation be nonnegative for all δγ for which the first
variation is zero, and in particular, for all δγ with support in the inelastic zone J(β, γ ). If (a, a+ l )
is an interval in the inelastic zone, the second variation is nonnegative only if the smallest eigenvalue of
the eigenvalue problem∫ a+l

a

(
θ ′′(γ (x)) δγ 2(x)+ l

l
w′′(ε) δγ̄ 2

+α δγ ′
2
(x)
)

dx = αρ
∫ a+l

a
δγ 2(x) dx, (3-9)



DIFFUSE COHESIVE ENERGY FOR FRACTURE AND PLASTICITY 125

is nonnegative for all perturbations δγ with support in this interval. This problem can be identified with
problem (A.15), with H as in (A.9) due to the presence of the constraint δγ (x)≥ 0, and with

a = 0, l = L , θ ′′(γ (x))= αh(x), δγ (x)= y(x), δγ̄ =
l
l

ȳ.

The last equality follows from the definitions

ȳ = 1
l

∫ a+l

a
y(x) dx, δγ̄ =

1
l

∫ l

0
δγ (x) dx = 1

l

∫ l

0
δγ (x) dx,

which hold for δγ (x)= y(x) with support in (0, l ). Then, from the identification

l
l
w′′(ε) δγ̄ 2

= αω ȳ2,

comes the relation

ω =
l
l
w′′(ε)

α
.

The smallest eigenvalue αρo has the upper bound (A.17). It provides the necessary condition for nonneg-
ativeness:

αλ2
o + θ

′′

o ≥ 0, (3-10)

where λo is a solution of (A.14), now rewritten in the form

λ2
o =

l
l
w′′(ε)

α
ψo(λo l ), (3-11)

with ψo as in (A.13). Moreover, θ ′′o is defined as in (A.16),

θ ′′o =

∫ a+l

a
θ ′′(γ (x))y2

o (x) dx∫ a+l

a
y2

o (x) dx
, (3-12)

with yo given by (A.8) if ωL2
= l3

w
′′(ε)/αl ≤ 4π2, and given by (A.12) if l3

w
′′(ε)/αl > 4π2. Because

λo is a decreasing function of l , inequality (3-10) must be satisfied for the largest interval contained in
the inelastic zone.

To find a sufficient condition for a local minimum of Eeq(β, γ ), write the finite expansion with a
Lagrange remainder:

Eeq(β, γ + δγ )= Eeq(β, γ )+

∫ l

0

(
θ ′(γ (x)) δγ (x)−w′(ε) δγ̄ +αγ ′(x) δγ ′(x)

)
dx

+
1
2

∫ l

0

(
θ ′′(γ (x)+ ξ(x) δγ (x)) δγ 2(x)+w′′(ε− ξ̄ δγ̄ ) δγ̄ 2

+α δγ ′
2
(x)
)

dx,

with 0≤ ξ(x)≤ 1 for all x and 0≤ ξ̄ ≤ 1. The first integral, which is the first variation, is nonnegative.
We wish to find conditions for which the second integral is nonnegative as well.
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By the continuity of θ ′′ and w′′, for every ε > 0 there is a positive δ such that

sup
x∈(0,l)

|θ ′′(γ (x)+ ξ(x) δγ (x))− θ ′′(γ (x))|< ε, |w′′(ε− ξ̄ δγ̄ )−w′′(ε)|< ε,

for all δγ with ‖δγ ‖< δ. For all such δγ , the second integral is greater than or equal to∫ l

0

(
θ ′′(γ (x)) δγ 2(x)+w′′(ε) δγ̄ 2

+α δγ ′
2
(x)
)

dx − ε
∫ l

0
(δγ 2(x)+ δγ̄ 2) dx .

The first integral is the same as in (A.15), with

l = L , δγ = y, w′′(ε)= αω, θ ′′(γ (x))= αh(x).

Therefore,

Eeq(β, γ + δγ )≥ Eeq(β, γ )+ (αρo− 2ε)
∫ l

0
δγ 2(x) dx .

By the arbitrariness of ε, γ is a minimizer if the smallest eigenvalue ρo is strictly positive. By (A.19), a
sufficient condition for a minimum is

αλ2
o+ θ

′′

min > 0, (3-13)

with λo the solution of (A.14) for the given ω, and with θ ′′min the smallest value of θ ′′(γ (x)) in (0, l).
Conditions (3-10) and (3-13) improve the corresponding conditions (2-21) and (2-22) of the local

model. In particular, they show that moderate negative values of θ ′′(γ (x)) are allowed in an energy
minimizer. As remarked in the Appendix, the two conditions can be far away from each other. In the
special case of l = l and constant θ ′′(γ (x)) they coincide, save for the fact that the second inequality is
strict.

3.4. Quasistatic evolutions. For a given load process t 7→ βt , a quasistatic evolution from a given de-
formation γ0 at t = t0 is a family t 7→ γt of inelastic deformations such that

(i) γt0 is equal to γ0,

(ii) for all t ≥ t0, the function γt( · ) is C1 and piecewise C2 in [0, l],

(iii) for all t ≥ t0, γt is a local minimizer for Eeq(βt , · ).

The regularity of the time derivative γ̇t is determined by Hadamard’s kinematic compatibility condi-
tion:

[[γ̇ ′t ]](x)=−[[γ
′′

t ]](x)
dx
dt
,

where dx/dt is the velocity of a moving jump of γ ′t . This condition tells us that for a moving jump
of γ ′′t there is a corresponding moving jump of γ̇ ′t . Therefore, if γt is C1 and piecewise C2, γ̇t is only
continuous, piecewise C1, and piecewise C2.

Like in the local model, item (iii) implies that all configurations (βt , γt) are equilibrium configurations.
Note that, because of the boundary conditions (3-5), γt is homogeneous only if γt = 0. Therefore, while
in the local model it is sometimes possible to restrict the analysis to quasistatic evolutions made of
homogeneous deformations, here there are no homogeneous deformations besides γt = 0.
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Repeating the procedure followed for the local model, fix a time step τ and consider the piecewise
linear approximations (2-24) of t 7→ βt and t 7→ γt . For them, we first determine the direction γ̇t of
steepest descent, by minimizing the first-order approximation (2-25) of the energy. The problem reduces
to the minimization of the linear functional

I (γ̇ )=
∫ l

0

(
θ ′(γt(x))γ̇ (x)− σt ¯̇γ +αγ

′

t (x)γ̇
′(x)

)
dx =

∫ l

0
ft(x)γ̇ (x) dx,

where σt = w
′(βt − γ̄t), and

ft(x)
.
= θ ′(γt(x))− σt −αγ

′′

t (x) (3-14)

is the yield function. The domain of I is the set of all γ̇ which satisfy the dissipation inequality (2-10)
and the boundary conditions

γ̇ (0)= γ̇ (l)= 0, (3-15)

which follow from (3-6). In the first variation

δ I (γ̇t , δγ̇ )=

∫ l

0
ft(x) δγ̇ (x) dx,

the perturbations δγ̇ satisfy the boundary conditions

δγ̇ (0)= δγ̇ (l)= 0, (3-16)

and the inequality
γ̇t(x)+ δγ̇ (x)≥ 0, ∀x ∈ (0, l). (3-17)

This is because, in a quasistatic evolution, (γ̇t + δγ̇ ) is the derivative of γt in some deformation process
starting from (βt , γt), and therefore it obeys the boundary conditions (3-15) and the dissipation inequality
(2-10). The nonnegativeness of the first variation requires that

ft(x) δγ̇ (x)≥ 0, a.e. x ∈ (0, l).

By (3-17), at points at which γ̇t(x) = 0 the perturbation δγ̇ (x) is arbitrary nonnegative, and therefore
ft(x)must be nonnegative. At points at which γ̇t(x)> 0 the perturbation may have any sign, and therefore
ft(x) must be zero. Together with the dissipation inequality (2-10) and the yield condition (3-3), this
leads to the Kuhn–Tucker conditions

γ̇t(x)≥ 0, ft(x)≥ 0, ft(x)γ̇t(x)= 0, a.e. x ∈ (0, l), (3-18)

as necessary conditions for a minimum of I at γ̇t . The last equality, called the complementarity condition,
requires that γ̇t(x)= 0 if ft(x) > 0, that is, at all points in the elastic zone E(βt , γt).

For all γ̇t which satisfy conditions (3-18), I (γ̇t) is zero and Ėt(γ̇t) is equal to lσt β̇t . Thus, like in
the local model, the direction γ̇t of steepest descent is not determined in the inelastic zone. For this,
it is necessary to minimize the second-order approximation (2-28) of the energy. This reduces to the
minimization of the functional

J (γ̇ )=
∫ l

0
ft(x)γ̇ (x) dx+ 1

2
τ

(∫ l

0

(
θ ′′(γt(x))γ̇ 2(x)+w′′(εt) ¯̇γ

2
+αγ̇ ′2(x)

)
dx−2lw′′(εt)β̇t ¯̇γ

)
, (3-19)
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with respect to all perturbations δγ̇ which satisfy conditions (3-16) and (3-17). For the minimizers of
J we keep the same symbol γ̇t used for the minimizers of I . While a minimizer for I is a direction of
steepest descent, a minimizer for J will be called a continuation of the quasistatic evolution at t . The
first variation of J is

δ J (γ̇t , δγ̇ )=

∫ l

0
ft(x) δγ̇ (x) dx + τ

∫ l

0

(
θ ′′(γt(x))γ̇t(x) δγ̇ (x)− σ̇t δγ̇ (x)+αγ̇ ′t (x) δγ̇

′(x)
)

dx

=

∫ l

0
ft(x) δγ̇ (x) dx+τ

(∫ l

0

(
θ ′′(γt(x))γ̇t(x)−σ̇t−αγ̇

′′

t (x)
)
δγ̇(x) dx−α

∑
i

[[γ̇ ′t ]](xi ) δγ̇(xi )

)

=

∫ l

0
( ft(x)+ τ ḟt(x)) δγ̇ (x) dx − τα

∑
i

[[γ̇ ′t ]](xi ) δγ̇ (xi ).

The derivative γ̇ ′′t (x) which appears in ḟt(x) is the regular part of the distributional derivative of γ̇ ′t ,
while the singular part is given by the jumps [[γ̇ ′t ]](xi ) at the jump points xi . The necessary conditions
for a minimum at γ̇ = γ̇t are

( ft(x)+ τ ḟt(x)) δγ̇ (x)≥ 0, a.e. x ∈ (0, l),

[[γ̇ ′t ]](x) δγ̇ (x)≤ 0, ∀x ∈ (0, l).
(3-20)

The jump condition has been imposed at all x and not only at the jump points, since [[γ̇ ′t ]](x) is zero at
all x which are not jump points.

By (3-17), at points at which γ̇t(x) = 0 a perturbation δγ̇ (x) is arbitrary positive, and therefore
( ft(x)+ τ ḟt(x)) must be nonnegative and [[γ̇ ′t ]](x) must be nonpositive. At points at which γ̇t(x) > 0
a perturbation may have any sign, and therefore the same terms must be zero. Then, the sets of Kuhn–
Tucker conditions for ft

γ̇t(x)≥ 0, ft(x)+ τ ḟt(x)≥ 0, ( ft(x)+ τ ḟt(x))γ̇t(x)= 0, a.e. x ∈ (0, l), (3-21)

and for the jumps of γ̇ ′t ,

γ̇t(x)≥ 0, [[γ̇ ′t ]](x)≤ 0, [[γ̇ ′t ]](x)γ̇t(x)= 0, ∀x ∈ (0, l), (3-22)

follow. At every jump point xo for γ̇ ′t ,

[[γ̇ ′t ]](xo)= γ̇
′

t (xo+)− γ̇
′

t (xo−)= lim
ε→0+

γ̇t(xo+ ε)− γ̇t(xo)

ε
− lim
ε→0−

γ̇t(xo+ ε)− γ̇t(xo)

ε
.

For γ̇t(xo)= 0 the right-hand side is nonnegative, and therefore [[γ̇ ′t ]](xo) is nonnegative. But it is also
nonpositive by (3-22)2. Hence, a point at which γ̇t(xo) = 0 cannot be a jump point for γ̇ ′t . On the
other hand, when γ̇t(xo) is positive, [[γ̇ ′t ]](xo) is zero by the complementarity condition (3-22)3. Then
[[γ̇ ′t ]](xo) is zero in all cases, that is, there is no creation of new jump points for γ̇ ′t in the second-order
minimization. In particular, if γ ′t is continuous at initial time t0, it remains continuous at all subsequent t .
In what follows, we only consider processes in which γ̇ ′t is continuous instead of piecewise continuous.

The assumed continuity of γ̇ ′t requires a couple of comments. The first is that it does not imply the
continuity of γ ′′t . Indeed, by Hadamard’s condition, this is true only if dx/dt 6= 0. That is, a discontinuity
of γ ′′t is possible, provided that it does not change its position with t . The second comment is that the
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continuity of γ ′′t has been deduced only for the discretized problem. It need not be preserved in the limit
when the time step τ tends to zero. In fact, in the numerical simulations in Section 4 we will find a
situation in which the continuity is not preserved in the limit.

The solutions of (3-21) and (3-22) depend on the time step τ , and do not imply the conditions obtained
from the first-order minimization. Specifically, the complementarity condition (3-18)3 does not hold in
the second-order minimization. Therefore, the solutions for τ > 0 are not, in general, directions of
steepest descent.

Another necessary condition for a minimum of J at γ̇t is that the second variation

δ2 J (δγ̇ )=
∫ l

0

(
θ ′′(γt(x)) δγ̇ 2(x)+w′′(εt) δ ¯̇γ

2
+α δγ̇ ′

2
(x)
)

dx (3-23)

be nonnegative for all δγ̇ for which the first variation

δ J (γ̇t , δγ̇ )=

∫ l

0
( ft(x)+ τ ḟt(x)) δγ̇ (x) dx

is zero. For x in the elastic zone, ft(x) is positive, and ( ft(x)+τ ḟt(x)) is positive for sufficiently small τ .
Then, by (3-20)1, for sufficiently small τ the first variation is zero only for perturbations with δγ̇ (x)= 0
almost everywhere in the elastic zone.

In the inelastic zone, where ft(x)= 0 by definition, conditions (3-21) reduce to

γ̇t(x)≥ 0, ḟt(x)≥ 0, ḟt(x)γ̇t(x)= 0, a.e. x ∈ J(βt , γt), (3-24)

and, by (3-20)1, the first variation is zero only if

ḟt(x) δγ̇ (x)= 0 (3-25)

almost everywhere in the inelastic zone. In any interval at which γ̇t(x)= 0, we have

ḟt(x)= θ ′′(γt(x))γ̇t(x)− σ̇t −αγ̇
′′

t (x)=−σ̇t .

Because ḟt(x)≥ 0 by (3-24)2, such intervals do not exist in a hardening response, σ̇t > 0, and may exist
only with ḟt(x)= 0 in a perfect plastic response or only with ḟt(x) > 0 in a softening response. Then
in a softening response condition (3-25) requires δγ̇ (x) = 0. Leaving aside the exceptional case of a
perfectly plastic response, we conclude that the first variation is zero only if δγ̇ (x) is zero in the elastic
zone and at almost all points of the inelastic zone at which γ̇t(x)= 0.

Therefore, it is sufficient to consider perturbations δγ̇ with support in the part of the inelastic zone at
which γ̇t > 0. Let (a, a+ l ) be an interval in this region. A necessary condition for a minimum is that
the integral ∫ a+l

a

(
θ ′′(γt(x)) δγ̇ 2(x)+ l

l
w′′(εt) δ ¯̇γ

2
+α δγ̇ ′

2
(x)
)

dx (3-26)

be nonnegative for all perturbations δγ̇ with δγ̇ (a)= δγ̇ (a+ l )= 0. This corresponds to the nonnega-
tiveness of the smallest eigenvalue ρ1 of problem (A.15), with H as in (A.5), and with

a = 0, l = L , θ ′′(γt(x))= αh(x),
l
l
w′′(εt)= αω, δγ̇ (x)= y(x), δ ¯̇γ =

l
l

ȳ.
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The last equality follows from the definitions

ȳ = 1
l

∫ l

0
y(x) dx, δ ¯̇γ =

1
l

∫ l

0
δγ̇ (x) dx = 1

l

∫ l

0
δγ̇ (x) dx,

which hold for δγ̇ (x) = y(x) with support in (0, l ). Then the relation between w′′(εt) and ω comes
from the identification

l
l
w′′(εt) δ ¯̇γ

2
= αω ȳ2.

The upper bound (A.17) for ρ1 provides the necessary condition

αλ2
o + θ

′′

o ≥ 0, (3-27)

where λo is the smallest eigenvalue of problem (A.1). It is the solution of (A.7), now rewritten in the
form

l
l
w′′(εt)

α
l2
 =

λ3
o l

3


λo l − 2 tan λo l/2
,

and θ ′′o is as in (3-12), with yo given by (A.8).
Because the first variation δ J (γ̇t , yo ) is zero and J is quadratic, one has

J (γ̇t + cyo )= J (γ̇t)+
1
2
τc2 δ2 J (γ̇t , yo )= J (γ̇t)+

1
2
τc2ρ1

∫ l

0
y2

o (x) dx,

for every positive constant c. Therefore, ρ1 ≥ 0 is a necessary condition for a minimum of J . Moreover,
for any other perturbation with support in (0, l ), since the first variation is nonnegative and ρ1 is the
smallest eigenvalue,

J (γ̇t + δγ̇ )≥ J (γ̇t)+
1
2
τ δ2 J (γ̇t , δγ̇ )≥ J (γ̇t)+

1
2
τρ1

∫ l

0
δγ̇ 2(x) dx .

Therefore, ρ1 ≥ 0 is also a sufficient condition for a minimum. The lower bound (A.19) for ρ1 provides
the explicit sufficient condition

αλ2
o + θ

′′

min ≥ 0, (3-28)

with
θ ′′min = inf

x∈(0,l )
θ ′′(γt(x)).

For ρ1 negative, J (γ̇t + cyo ) can take unlimited negative values. Like in the local model, this event
corresponds to brittle fracture. Therefore, ρ1 ≥ 0 is a necessary and sufficient condition for a minimum
of J , and a negative ρ1 corresponds to brittle fracture.

It is of interest to see in which cases the continuations are elastic, γ̇t = 0. From (3-19),

J (γ̇ )=
∫ l

0
( ft(x)− τw′′(εt)β̇t)γ̇ (x) dx + 1

2
τ

∫ l

0

(
θ ′′(γt(x))γ̇ 2(x)+w′′(εt) ¯̇γ

2
+αγ̇ ′2(x)

)
dx

≥

∫ l

0
( ft(x)− τw′′(εt)β̇t)γ̇ (x) dx + 1

2
ταρ1

∫ l

0
γ̇ 2(x) dx ≥

∫ l

0

(
cγ̇ (x)+ 1

2
ταρ1γ̇

2(x)
)

dx,
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where

c .= fmin− τw
′′(εt)β̇t , fmin

.
= inf

x∈(0,l)
ft(x).

Because J (0) = 0, γ̇ = 0 is a minimizer if the right-hand side of the inequality is nonnegative. In
particular, γ̇ = 0 is a minimizer if both ρ1 and c are nonnegative.

There are two remarkable cases in which c is positive. The first is the case of β̇t < 0. That γ̇t = 0 for
β̇t < 0 is the nonlocal version of the property (2-31) of elastic unloading for the local model. The second
is the case of a strictly elastic regime, that is, of configurations (βt , γt) for which fmin > 0. Indeed, in
this case c is positive for sufficiently small τ . This is a relaxed version of the condition found in the local
model, that there is no increase of inelastic deformation in the elastic regime. Here, the same is true only
in a strictly elastic regime.

The foregoing discussion can be summarized as follows:

ρ1 ≥ 0 ⇐⇒ there are minimizers,

ρ1 < 0 ⇐⇒ brittle fracture.

ρ1 ≥ 0 and β̇t < 0 H⇒ γ̇t = 0 is a minimizer,

ρ1 ≥ 0 and fmin > 0 H⇒ γ̇t = 0 is a minimizer.

(3-29)

The last two implications tell us that, in a quasistatic evolution, fracture may occur only at loading, β̇t ≥ 0,
and in a regime which is not strictly elastic.

To determine the explicit form of a continuation γ̇t when c < 0 is not as easy as it was in the local
model. Indeed, in the region at which γ̇t(x) = 0, the introduction of the nonlocal term transforms the
incremental equilibrium equation σ̇t = θ

′′(γt(x))γ̇t(x) into the differential equation

σ̇t = θ
′′(γt(x))γ̇t(x)−αγ̇ ′′t (x).

This region is not known a priori, since its determination is a part of the solution of the problem. Moreover,
only in some special cases is a closed-form solution available. One of them is the onset of the inelastic
regime, studied in the next subsection.

3.5. The onset of the inelastic regime. Consider a load process t 7→ βt from the natural configuration
(βt0, γt0)= (0, 0), with β̇t > 0 for all t . At t = t0 we have

ft0(x)= θ
′(γt0(x))− σt0 −αγ

′′

t0 (x)= θ
′(0) > 0,

so that the whole bar is in a strictly elastic regime. By continuity, this regime persists over a finite time
interval (t0, tc). In this interval γ̇t = 0 by (3-29)4, and γt = 0 because of the initial condition γt0 = 0. The
deformation of the bar is homogeneous, with

u′(x, t)= εt = βt , σt = w
′(βt), ft = θ

′(0)−w′(βt). (3-30)

The elastic regime ends at the time tc at which β reaches the critical value βc given by (2-37). At this
time ft becomes zero, and all points of the bar switch from the elastic to the inelastic zone. This is the
onset of the inelastic regime.
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To determine the continuation γ̇t at t = tc, we start from the complementarity condition (3-24)3:

0= ḟ (x)γ̇ (x)= θ ′′(0)γ̇ 2(x)− σ̇ γ̇ (x)−αγ̇ ′′(x)γ̇ (x). (3-31)

Here and in the following, for simplicity, we omit all subscripts tc. Integrating over (0, l) and recalling
that γ̇ ′ has no jumps if γ̇ is a minimizer for J , we get

σ̇

∫ l

0
γ̇ (x) dx =

∫ l

0
(θ ′′(0)γ̇ 2(x)+αγ̇ ′2(x)) dx .

If θ ′′(0)≥ 0, the right-hand side is positive and therefore σ̇ is positive. Moreover, γ̇ (x) is strictly positive
almost everywhere in (0, l). Indeed, if γ̇ (x)= 0 in some interval (a, b), from inequality (3-24)2 on that
interval we have

0≤ ḟ (x)=−σ̇ ,

in contradiction with the positiveness of σ̇ . Therefore, γ̇ is a solution of the differential problem

θ ′′(0)γ̇ (x)− σ̇ −αγ̇ ′′(x)= 0, ∀x ∈ (0, l), γ̇ (0)= γ̇ (l)= 0, (3-32)

subject to the dissipation condition γ̇ (x)≥ 0. For θ ′′(0) > 0 the solution is

γ̇ (x)=
σ̇

θ ′′(0)

(
1−

cosh κ(l/2− x)
cosh κl/2

)
, (3-33)

with κ = (θ ′′(0)/α)1/2. By integration over (0, l),

¯̇γ =
σ̇

θ ′′(0)
ϕ(κl), ϕ(κl) .= 1−

tanh κl/2
κl/2

,

and, because σ̇ = w′′(βc)(β̇ − ¯̇γ ),

σ̇ =
θ ′′(0)w′′(βc)

θ ′′(0)+ϕ(κl)w′′(βc)
β̇. (3-34)

Comparing with the solution (2-34) of the local model, we see that the nonlocal effect is concentrated in
the factor ϕ(κl). Because this factor is positive and less than one, the slope σ̇ /β̇ of the response curve
(σ, β) is positive and greater than the slope predicted by the local model, but smaller than the slope
w′′(βc) at unloading.

For θ ′′(0)= 0, the solution is
γ̇ (x)= σ̇

2α
x(l − x). (3-35)

By integration over (0, l),

¯̇γ =
σ̇ l2

12α
, (3-36)

and from σ̇ = w′′(βc)(β̇ − ¯̇γ ),

σ̇ =
12αw′′(βc)

12α+ l2w′′(βc)
β̇. (3-37)

Thus, for θ ′′(0)= 0 the perfectly plastic response σ̇ = 0 of the local model is replaced by a work-hardening
response.
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For θ ′′(0) < 0, the solution is

γ̇ (x)=
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)

(
1−

cos k(l/2− x)
cos kl/2

)
, (3-38)

with k = (−θ ′′(0)/α)1/2. Integrating over (0, l) we find

¯̇γ =
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)
ψ(kl), ψ(kl)= 1−

tan kl/2
kl/2

, (3-39)

and, therefore,

¯̇γ =
ψ(kl)w′′(βc)

θ ′′(0)+ψ(kl)w′′(βc)
β̇. (3-40)

Again, the difference with (2-33) is due to a single factor, which now is ψ(kl). This factor is negative
for kl < π and positive for π < kl < 2.861π , with a jump from −∞ to +∞ at kl = π .

The solution (3-38) satisfies the dissipation inequality (2-10) for all x only if kl ≤ 2π . Indeed, for
kl > 2π , γ̇ (x) takes negative values near the boundary. For such kl, let us consider the possibility
of localized solutions, that is, of solutions of (3-31) which satisfy the differential equation (3-32) in a
subinterval (a, a+ li ) of (0, l) and are zero outside. Without loss of generality, we take the interval (0, li ),
with li < l. The boundary conditions are

γ̇ (0)= γ̇ (li )= 0, γ̇ ′(li )= 0, (3-41)

where γ̇ (0) = 0 is condition (3-15)1, and the two remaining conditions are due to the continuity of γ̇
and γ̇ ′, which are zero on (li , l). The first two conditions determine a solution of the form (3-38) with l
replaced by li , and the third determines the length

li = 2π/k. (3-42)

Therefore, the solution is

γ̇ (x)=
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)
(1− cos kx), x ∈ (0, li ). (3-43)

It holds for li < l, that is, for kl > 2π . For kl = 2π , it coincides with (3-38). By integration over (0, li )

it follows that

l ¯̇γ = li
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)
,

and, therefore,

¯̇γ =
w′′(βc)

w′′(βc)+ θ ′′(0)l/ li
β̇. (3-44)

It is convenient to introduce the positive constant

ψ f
.
=−

θ ′′(0)
w′′(βc)

. (3-45)

With this constant, and with ψo as in (A.13), (3-40) and (3-44) take the common form

¯̇γ =
ψo(kl)

ψo(kl)−ψ f
β̇. (3-46)
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For kl < π , ψo(kl) is negative. Therefore, the condition ¯̇γ ≥ 0 is satisfied. For kl > π the numerator
becomes positive, and ¯̇γ is positive only if

ψo(kl) > ψ f . (3-47)

From (3-46), using (2-32), we get the incremental response law

σ̇ =
θ ′′(0)

ψo(kl)−ψ f
β̇. (3-48)

The slope σ̇ /β̇ of the response curve is positive if kl < π , and negative if kl > π and condition (3-47)
holds. Therefore, at the onset of the inelastic regime, for θ ′′(0) negative the continuation is

work-hardening if kl < π,
strain-softening if kl > π and ψo(kl) > ψ f .

In the separating case kl = π the continuation is perfectly plastic. For kl >π and ψo(kl)≤ψ f , by (3-47),
there is no continuation obeying the dissipation inequality (2-10).

We already know that in the solution (3-40) γ̇ (x) is zero only at the boundary, while in the solution
(3-43) γ̇ (x) is zero on a portion of (0, l) of positive length (l − li ). We say that the first is a full-size
solution, and that the second is a localized solution. Therefore, for θ ′′(0) negative, at the onset of the
inelastic regime the continuations are

full-size if kl ≤ 2π,
localized if kl > 2π.

From (3-34) and (3-37) it is clear that for θ ′′(0)≥ 0 all continuations are work-hardening and full-size.
The continuations (3-38) and (3-43) have been determined using the Kuhn–Tucker conditions (3-21)

and (3-22), which are necessary for a minimum for the functional J defined in (3-19). It remains to check
whether or not these continuations are indeed minimizers. At the onset, ft is zero. Then, neglecting the
factor τ/2, J has the form

J (γ̇ )=
∫ l

0
(θ ′′(0)γ̇ 2(x)+w′′(βc) ¯̇γ

2
+αγ̇ ′2(x)− 2w′′(βc)β̇t γ̇ (x)) dx,

and direct computation yields

J (γ̇ + δγ̇ )= J (γ̇ )+ 2
∫ l

0
ḟt(x) δγ̇ (x) dx +

∫ l

0
(θ ′′(0) δγ̇ 2(x)+w′′(βc) δ ¯̇γ

2
+α δγ̇ ′2(x)) dx .

On the right side, the first integral is nonnegative by (3-20)1, and the second integral has the form (3-26).
Then we can use the results of Section 3.4. In the present case, both constants θ ′′o and θ ′′min which appear
in the bounds (3-27) and (3-28) are equal to θ ′′(0), and the two bounds coincide. They provide the
necessary and sufficient condition αλ2

o ≥−θ
′′(0), that is,

λ2
o ≥ k2, (3-49)

where λ2
o is the smallest eigenvalue of problem (A.1), with H as in (A.5).
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Consider first the case π < kl ≤ 2π , for which the continuation (3-38) is positive over (0, l). In this
case, λo is the solution of (A.7) with

L = l, ω = w′′(βc)/α, y(x)= δγ̇ (x),

that is,
w′′(βc)

α
l2
=

λ2
ol2

ψ(λol)
. (3-50)

Recalling the definition (3-45) of ψ f , we have

w′′(βc)

α
=
−θ ′′(0)
αψ f

=
k2

ψ f
, (3-51)

and, therefore,

ψ f =
k2

λ2
o
ψ(λol).

If k ≤ λo, then
ψ(λol)≤ ψ(kl)= ψo(kl),

because ψ is a decreasing function and, by (A.13), coincides with ψo for π < kl ≤ 2π . Then, k ≤ λo

implies inequality (3-47). Conversely, if k > λo the above inequality is reversed. That is, for π < kl ≤ 2π
the condition (3-49) for a minimum coincides with the condition (3-47) for a nonnegative ¯̇γ .

Now consider the case kl > 2π , for which the continuation (3-43) is positive only on (0, li ), with
li = 2π/k < l. In this case, λo is the solution of (A.7) with

L = li , ω =
li

l
w′′(βc)

α
, y(x)= δγ̇ (x), ȳ = l

li
δ ¯̇γ,

as shown in Section 3.4. Using (3-51), (A.7) takes the form

li

l
k2

ψ f
l2
i =

λ2
ol2

i

ψ(λoli )
.

Recalling that for kl > 2π , by (A.13),

ψo(kl)= 2π
kl
=

li

l
,

we finally get

ψ f =
k2

λ2
o
ψo(kl)ψ(λoli ).

If k ≤ λo, then λoli ≥ kli = 2π . Therefore,

ψ(λoli )≤ ψ(2π)= 1,

and inequality (3-47) follows. If k > λo, then 2π > λoli , and the reversed inequality holds. Thus, the
coincidence of (3-47) with (3-49) is proved for all kl > π .

The incremental response law (3-48) shows that, when these inequalities are satisfied as equalities,
the slope σ̇ /β̇ of the response curve becomes infinite. This is the totally brittle fracture, that is, the
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catastrophic fracture at the onset of the inelastic deformation already described by the local model. The
difference is that, while in the local model brittle fracture occurs as soon as θ ′′ ceases to be positive, here
it occurs at negative values of θ ′′. Therefore, the sharp inequality (3-47) is a safety condition against
totally brittle fracture.

It is commonly asserted that the nonlocal energy term introduces an internal length of the material.
Here, this length can be identified with the length li defined by (3-42), which is the length of the
localization zone in a localized continuation. As seen before, the ratio l/ li = kl/2π determines the
quality of the response, hardening or softening, full-size or localized.

The present analysis suggests the definition of a second characteristic length

lc = 2π
√

α

w′′(βc)
, (3-52)

with which the no-fracture condition (3-47) takes the form ψo(2πl/ li ) > l2
c/ l2

i , that is,

l/ lc >
l/ li

√
ψo(2πl/ li )

.
=9(l/ li ). (3-53)

The parameters which determine the response at the onset are the bar length l and the material constants
w′′(βc), θ ′′(0), and α. With the above definitions, they reduce to the ratios l/ lc and l/ li . A complete
representation of the response is given in Figure 1. In it, each point of the plane represents a bar. The
points located below the curve l/ lc =9(l/ li ) correspond to bars which undergo totally brittle fracture
at the onset of the inelastic deformation. The region above the curve is divided into three subregions,

hardening
full-size

softening
full-size

softening
localized

brittle fracture

(1)

(2)

Y

c
ll

i
ll

0 ½

1

0

1

Figure 1. The response at the onset of the inelastic deformation. The three regions above
the curve correspond to hardening full-size, softening full-size, and softening localized
responses. The region below the curve corresponds to totally brittle fracture. Lines (1)
and (2) represent families of bars made of the same material and with varying length.
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corresponding to full-size and hardening (l/ li < 1/2), full-size and softening (1/2 < l/ li < 1), and
localized and softening (l/ li > 1) continuations, respectively.

The straight lines from the origin represent families of bars made of the same material and with l
growing with the distance from the origin. All families have full-size hardening continuations for small
l, softening continuations for intermediate l, and catastrophic failure for large l. Moreover, for families
with slope li/ lc > 1 the softening continuations may be both full-size and localized, while for those
with li/ lc < 1, corresponding to straight lines which do not cross the third region above the curve, the
softening continuations can only be full-size.

3.6. Collapse mechanisms. In the nonlocal model there are two possible collapse mechanisms, brittle
fracture and ductile fracture. Both are characterized by the slope σ̇ /β̇ of the response curve, which is
−∞ for brittle fracture and zero for ductile fracture. Brittle fracture coincides with the unique collapse
mode provided by the local model. As shown in the next section, the two collapse modes are observed
in steel and in concrete, respectively.

In a quasistatic evolution t 7→ (βt , γt), assume that θ ′′(γt(x)) is negative at all x , and that it can be
approximated by a negative constant θ ′′t . Define the current values of k and ψ f :

kt
.
=

√
−θ ′′t

α
, ψ f t

.
=
−θ ′′t

w′′(εt)
. (3-54)

With them, the relations (3-46) and (3-48), obtained for the onset of the inelastic regime, can be extrap-
olated to the subsequent evolution

¯̇γt =
ψo(kt l)

ψo(kt l)−ψ f t
β̇t , σ̇t =

θ ′′t

ψo(kt l)−ψ f t
β̇t , (3-55)

and condition (3-47) against brittle fracture can be replaced by

ψo(kt l) > ψ f t . (3-56)

This extrapolation helps us to understand some general features of the bar’s response in the softening
regime. Of course, the conclusions are purely qualitative, since the exact values of θ ′′t and kt are not
known. More precise results can only be obtained from numerical simulation.

Assume that −θ ′′ is monotonic increasing. For all x , the function t 7→ −θ ′′(γt(x)) is increasing as
well, because t 7→ γt(x) is increasing by the dissipation inequality (2-10). Then the average −θ ′′t is
increasing, kt is increasing, and ψo(kt l) is decreasing. Supposing w′′(εt) substantially independent of t ,
ψ f t is increasing. Therefore, the positive denominator in (3-55) decreases with t . When it becomes zero,
the negative slope of the response curve becomes infinite, and catastrophic failure takes place.

On the contrary, for −θ ′′ monotonic decreasing, −θ ′′t decreases with t , and the slope |σ̇t/β̇t | in (3-55)
decreases as well. If −θ ′′t tends to zero, the slope tends to zero, and this corresponds to ductile fracture.
Thus, brittle fracture takes place for −θ ′′ increasing, that is, for θ ′ concave, and ductile fracture takes
place for θ ′ convex. In spite of some early statements and more recent observations, see [Hillerborg 1991]
and [Jirásek and Rolshoven 2009b, Figure 16], respectively, this correlation between fracture modes and
the concavity-convexity properties of θ ′ has not received adequate attention in the literature.

This correlation is illustrated by Figure 1. If θ ′′t increases with t , the internal length li t = 2π/kt

decreases and the ratio l/ li t increases, while l/ lc stays approximately constant. The point representing
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the current status of the bar moves horizontally to the right, tending to brittle fracture which, at the onset,
occurs at the curve 9. On the contrary, if θ ′′t decreases with t the point moves to the left, tending to the
perfectly plastic response which, at the onset, takes place at the line l/ li = 1/2.

The function θ ′ cannot be concave for all γ > 0. Indeed, concavity implies

θ ′(γ )≤ θ ′(0)+ γ θ ′′(0),

and for θ ′′(0) < 0 the assumption θ ′(γ ) > 0 is violated for sufficiently large γ . On the other hand, the
assumption (2-7)3 that θ has a finite limit at +∞ requires that

lim
γ→+∞

θ ′′(γ )= 0.

Then −θ ′′ has a maximum at a finite γ . Brittle fracture occurs only if this maximum produces a kt

sufficiently large to violate inequality (3-56).

4. Numerical simulations

For the nonlocal model, quasistatic evolution in the inelastic regime has been investigated by performing
a number of numerical simulations. An iterative procedure was used: after fixing a time step τ , for each
t = nτ the continuation γ̇t at (βt , γt) was determined approximately by solving a sequence of discretized
minimum problems, with the data taken from the solution at t = (n− 1)τ .

In the case of loading, β̇ > 0, the parameter t is identified with the load β, so that β̇ = 1, and the time
step τ is in fact a load step. The discretized problem consists in minimizing a quadratic approximation
of the energy Eeq(βt + τ β̇, γt + τ γ̇ ). For convenience, we refer to the more general functional

F(β, γ, τ, δγ )=
∫ l

0

(
θ(γ (x))+w(β − γ̄ )+ 1

2
αγ ′

2
(x)
)

dx

+ τ

∫ l

0

(
θ ′(γt(x)) δγ (x)+w′(β − γ̄ )(1− δγ (x))+αγ ′(x) δγ ′(x)

)
dx

+
1
2
τ 2
(∫ l

0

(
θ ′′(γ (x)) δγ 2(x)+α δγ ′2(x)

)
dx + lw′′(β − γ̄ )(1− δγ̄ )2

)
,

(4-1)

such that F(βt , γt , 0, 0) coincides with Eeq(βt , γt), and F(βt , γt , τ, γ̇ ) coincides with the second-order
approximation (2-28) of Eeq(βt + τ β̇, γt + τ γ̇ ) for the given τ .

4.1. The algorithm. In the solution procedure an iterative algorithm, implemented in an ad hoc finite
element code, was used. At each iteration step, for a given initial configuration (β0, γ0), with γ0 a
local minimizer for F(β0, · , 0, 0), the configuration (β0+ τ, γ0+ τ γ̇0) is determined by minimizing the
function F(β0, γ0, τ, · ), constrained by the dissipation inequality (2-10) and by the boundary conditions
(3-6). At each load step, the solution accuracy is refined through an iterative procedure acting on the
quadratic approximation

F2(β0, γ, δγ )
.
= F(β0, γ, 0, 0)+

∂

∂(δγ )
F(β0, γ, 0, 0) δγ + 1

2
∂2

∂(δγ )2
F(β0, γ, 0, 0) δγ 2

of F(β0, γ, 0, δγ ). The algorithm runs as follows.
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1. Incremental step.

(i) Compute

γ̇0 = argmin{F(β0, γ0, τ, · ) | δγ (x)≥ 0, δγ (0)= δγ (l)= 0}.

(ii) Set β1 = β0+ τ , γ 0
1 = γ0+ τ γ̇0.

2. Iterative refinement.

(i) Compute

δγ 1
= argmin{F2(β1, γ

0
1 , · ) | δγ (x)≥ γ0(x)− γ 0

1 (x), δγ (0)= δγ (l)= 0},

and set γ 1
1 = γ

0
1 + δγ

1.

(ii) Compute

δγ i
= argmin{F2(β1, γ

i−1
1 , · ) | δγ (x)≥ γ0(x)− γ i−1

1 (x), δγ (0)= δγ (l)= 0},

and set γ i
1 = γ

i−1
1 + δγ i .

(iii) Stop when the L2 norm of (γ i
1 − γ

i−1
1 ) is less than a given tolerance γ̂ .

3. End.

(i) Take as γ1 the last γ i
1 in the preceding iteration.

(ii) If the L2 norm of (γ1− γ0) is less than a given tolerance γ̃ , perform a new incremental step from
(β1, γ1). Otherwise, repeat the computation with τ replaced by τ/2.

The last control avoids the overcoming of energy barriers due to exceedingly large incremental steps.
In the numerical code, the spatial variable x is discretized using linear finite elements. The quadratic
programming problems involving the minimization of F2 are solved using the projection method [Polak
1971; Gill et al. 1981] implemented in the quadprog.m function of MATLAB. The code generates a
mesh refinement when the number of elements in the inelastic zone is smaller than a certain number
(100 in the simulations presented below). In this case, each element is split into two subelements.

4.2. Choice of energy densities. For the elastic strain energy density we take the quadratic expression

w(ε)= 1
2 E Aε2, (4-2)

where the axial stiffness E A is the product of the Young modulus E of the material and the area A of
the cross-section. For the cohesive energy density we take the piecewise cubic function

θ(γ )= Ai + Biγ +
1
2 Ciγ

2
+

1
6 Diγ

3, γ ∈ [γi−1, γi ], (4-3)

where

{[γi−1, γi ], i = 1, . . . , n, }



140 GIANPIETRO DEL PIERO, GIOVANNI LANCIONI AND RICCARDO MARCH

is a subdivision of the interval [γ0, γn] into n adjacent subintervals, with γ0 = 0 and γn ≤ +∞. The
coefficients Ai , Bi , Ci and Di satisfy the 3(n− 1) conditions

Bi+1 = Bi − 3(Ai+1− Ai )γ
−1
i ,

Ci+1 = Ci + 6(Ai+1− Ai )γ
−2
i ,

Di+1 = Di − 6(Ai+1− Ai )γ
−3
i ,

i = 1, . . . , (n− 1),

which guarantee the continuity of θ , θ ′, and θ ′′ at γi . We fix A1= θ(0)= 0, while B1= θ
′(0), the value of

the axial force at the onset of the inelastic regime, is identified on the experimental curve. The remaining
constants are determined by fixing n + 1 coefficients, for example, C1, D1, and A j for j = 2, . . . , n.
In the following simulations these constants are selected with the purpose of reproducing the response
curves of two specific experimental tests, one on a steel bar and one on a concrete specimen.

4.3. Simulation 1: The tensile response of a steel bar. For the first simulation, the data were obtained
from a test on a steel bar, stretched to rupture under controlled end displacements. The test was made
in Ancona, at the Laboratorio Prove Materiali e Strutture of the Università Politecnica delle Marche.
The specimen was a ribbed bar, made of B450C (FeB44k) steel, with diameter φ = 16 mm and length
l = 200 mm. The axial stiffness

E A = 42× 103 kN

is the product of the Young modulus of steel, E = 210 kN/mm2, and the cross-sectional area A = πφ2/4.
The axial force at the onset of the inelastic deformation, measured on the response diagram, is

B1 = 109.5 kN.

With the purpose of investigating the size effect, simulations with three different lengths,

l = 100, 200, 300 mm,

were made. The nonlocality parameter α was taken equal to

α = 10 kN mm2.

This is a tentative value. The criteria for choosing the value of α are still under investigation.
For the time step τ , mesh size h, and tolerances γ̂ and γ̃ introduced in Section 4.1, the values

τ = 10−4, h = 0.5 mm, γ̂ = 10−6, γ̃ = 10−3,

were chosen. These values provide good accuracy and, at the same time, keep a moderate size for the
discretized problem. For the cohesive energy density a function θ1 of the form (4-3) was taken, with

n = 4, γi = (0.10, 1.62, 2.01, 10), C1 = 380 kN,

D1 =−3800 kN, Ai = (0,−0.61, 499.69, 223.74) kN.

This energy, plotted at the top in Figure 2, is convex for γ < 0.1 and concave for γ > 0.1.
In Figure 3, the experimental response curve (the dotted line) is compared with the response curves of

simulations with lengths l = 100, 200, 300 mm. In the experimental curve, the initial hardening regime is
followed by a softening regime, in which the negative slope of the curve increases with β, and becomes
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Figure 2. Simulation 1: the cohesive energy θ1 (top) and its derivative θ ′1 (bottom).
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Figure 3. Simulation 1: the experimental response curve (dotted line), and the response
curves of simulations with different values of l. The dashed line shows the model’s
response to unloading and reloading.

infinite at rupture. In the model, this behavior is reproduced by taking θ1 initially convex, and then
concave with growing concavity.
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Figure 4. Simulation 1 with l = 200 mm. Evolution of γ (left column) and γ̇ (right
column) for increasing β.

The response curve of the simulation with l = 200 mm, which is the specimen’s length, is very close
to the experimental curve. Of course, this is due to an appropriate choice of the material constants.
Anyway, it is remarkable that a small number of constants is sufficient to reproduce the evolution of
the bar’s deformation from the natural configuration to final rupture. Also remarkable is the perfect
reproduction of the elastic unloading, shown by the dashed line in the figure, and obtained by reversing
the sign of β̇ up to complete unloading, σ = 0, and then reloading. As shown in the figure, the reloading
curve traces back the unloading line and then continues along the loading curve of monotonic loading.

In the three simulations shown in Figure 3, the hardening parts of the response curves are identical.
The hardening regime ends at β ≈ 0.102, where the force σ reaches its maximum and a softening regime
starts. Shortly after, strain localization begins, and the three curves separate. The figure shows that for
longer bars the softening regime produces larger negative slopes, and rupture occurs at smaller β. This
size effect agrees with the theoretical preview (3-55)2.

The evolution of γ and γ̇ in the simulation with l = 200 mm is shown in Figure 4. In the initial
hardening regime, represented in the upper part of the figure, both γ and γ̇ are constant, except near the
boundary, where γ (x)= γ̇ (x)= 0 as required by the boundary conditions.

The regime of full-size softening response is very short. Indeed, it starts at β ≈ 0.102 and ends at
β ≈ 0.103 when, as shown in the two right panels in the figure, localization takes place. For larger β,
the deformation concentrates at shorter and shorter central zones of the bar. The left half of Figure 5
reproduces the curves of Figure 4, bottom left; note the close similarity of these diagrams with the results
of experiments made long ago by Miklowitz [1950], shown on the right in Figure 5. Also, the evolution
curves for γ are qualitatively the same as the curves in [Jirásek and Rolshoven 2009b, Figure 17.1].
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Figure 5. Left: detail of Figure 4, bottom left. Right: experiments on a cylindrical bar
of medium-carbon steel, taken from [Miklowitz 1950].

4.4. Simulation 2: The tensile response of a concrete specimen. The aim of our second simulation
was to reproduce the experimental force-elongation curve of a prismatic specimen made of lightweight
concrete, taken from [Hordijik 1992, Figure 38]. The specimen is prismatic, with dimensions of 50×50×
150 mm, Young’s modulus E = 18 kN/mm2, and maximum aggregate size of 8 mm. In the simulation
we take

E A = 45× 103 kN, B1 = 6.3 kN,

with B1 the axial force at the onset of the inelastic regime, read on the experimental curve. We consider
the three lengths

l = 100, 150, 200 mm.

For the nonlocality parameter α we take

α = 3497 kN mm2.

This value corresponds to an internal length li = 2π/k = 8 mm, equal to the maximum aggregate size.
For the time step τ , mesh size h, and tolerances γ̂ and γ̃ we choose

τ = 10−7, h = 0.25 mm, γ̂ = 10−6, γ̃ = 10−3.

For the cohesive energy we take the function θ2 represented in Figure 6. This is an energy of the form
(4-3), with

n = 4, γi = (0.7, 1.2, 65.0, 100.0)× 10−4,

and with

C1 = 18× 103 kN, D1 =−25.7143× 107 kN, Ai = (0,−0.12,−0.25, 154.27)× 10−4 kN.

This energy is convex for γ < 0.7× 10−4 and concave for γ > 0.7× 10−4.
The force-elongation response curves for the three considered values of l are shown in Figure 7. The

correspondence with the experimental curve is good, but not as good as in the preceding simulation.
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Figure 6. Simulation 2: the cohesive energy θ2 (top) and its derivative θ ′2 (bottom).
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Figure 7. Simulation 2: the experimental (dotted line) and the numerical response
curves (solid line).

This may be due to the fact that in the experimental curve in [Hordijik 1992] the elongation βmlm was
measured on a central zone of the bar, of length lm = 35 mm, while here the total elongation was evaluated
with the approximate formula

βl ≈ βmlm + (l − lm)(β − γ̄ ),

obtained by neglecting the inelastic deformation outside the central zone.
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Another cause of discrepancy is that in the experiment the specimen had a central notch, which was
not considered in the simulation. Generally, the data fitting was more difficult than in Simulation 1,
where all data came from our own experiment and not from one taken from the literature.

As in the preceding simulation, the three numerical curves coincide in the elastic regime and in the
subsequent hardening and full-size softening regimes. They start to differ at the onset of localization,
at β ≈ 2.23× 10−4. In the localized softening regime, in accordance with the size effect, the negative
slope of the response curve is larger for longer bars. The curve for l = 200 mm exhibits brittle fracture
at the onset of localization. This agrees with the safety condition (3-56) against brittle fracture, which
now takes the form

2π
kt l

>
αk2

t

E A
.

Indeed, in a localized solution ψo(kt l) is equal to 2π/kt l by (A.13), and ψ f t is equal to αk2
t /E A by

(3-54) and (4-2). Setting kt = 2π/ lt , with lt = 8 mm equal to the maximum aggregate size, condition
(3-56) becomes

l <
2πE A

k3
t α
=

E Al3
t

4π2α
≈ 167 mm.

For the bars with l = 100 mm and 150 mm, the convex shape of θ ′2 determines a ductile fracture mech-
anism. For l = 150 mm, as shown in Figure 8, at β ≈ 2.22× 10−4 the inelastic strain rate γ̇ begins
to localize and the force starts to decrease. The length of the localized zone attains a minimum of
about 8 mm at β ≈ 2.25 ×10−4, and then steadily increases. Numerical investigations not reported here
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Figure 8. Simulation 2: evolution of the inelastic deformation for l = 150 mm.
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show that the localization zone eventually diffuses over the whole bar. For the bar with l = 200 mm,
catastrophic failure occurs at β ≈ 2.24× 10−4.

The evolution of γ and γ̇ is shown in Figure 8. The asymmetries of the diagrams of γ̇ in the bottom
right panel of Figure 8 are purely numerical, and random in nature. This is confirmed by the symmetry of
their time integral γ in the bottom left panel. For β ≈ 10−3 the inelastic deformation γ is concentrated
on a portion of the bar of length of about 20 mm. This agrees with an estimate given in [Bažant and
Pijaudier-Cabot 1989], according to which the characteristic length of concrete is about 2.7 times the
maximum aggregate size.

By effect of the expansion of the inelastic zone the force decreases, and tends to a horizontal asymptote.
In [Jirásek 1998; Jirásek and Rolshoven 2009a], the expansion of the inelastic zone is considered as
unphysical, and the stress locking, that is, the convergence of the force to a positive limit, is considered
as a proof of this.

While the horizontal asymptotes of the response curve shown in [Jirásek 1998, Figure 3], are about
80% of the maximum σ , a numerical investigation, not reported here, shows that in the present simulation
the horizontal asymptote is only about 2% of the maximum σ . This modest residual force cannot be
eliminated. Indeed, looking at the diagrams of γ in the bottom left panel of Figure 8 we see that, for
β > 4.5× 10−4, the largest value γ (l/2) of γ is greater than 6× 10−3. Therefore, as shown by the
constitutive curve of Figure 6, bottom, the corresponding value of θ ′ is zero. Because the point x = l/2
is in the inelastic zone, from the yield condition (3-2) with θ ′ = 0 it follows that

σ =−αγ ′′(l/2),

with γ ′′(l/2) strictly negative because γ has a maximum at x = l/2.

Appendix: Solution of some eigenvalue problems

Consider the eigenvalue problem∫ L

0
(y′2(x)+ω ȳ2) dx = λ2

∫ L

0
y2(x) dx, y ∈ H, (A.1)

with ω a given positive constant, and

ȳ = 1
L

∫ L

0
y(x) dx . (A.2)

The eigenfunctions are the solutions of the Euler equation

y′′(x)−ω ȳ+ λ2 y(x)= 0, (A.3)

and have the form
y(x)= A sin λx + B cos λx +ωλ−2 ȳ. (A.4)

We wish to determine the smallest eigenvalue λ2
o and the corresponding eigenfunctions yo, for two dif-

ferent choices of the domain H .

(i) Let H be the set
H = {y ∈ H 1(0, L) | y(0)= y(L)= 0}. (A.5)
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In this case, the constants A and B are

A =−ωλ−2 ȳ tan λL/2, B =−ωλ−2 ȳ. (A.6)

Moreover, integrating (A.4) over (0, L) we get

L ȳ = ωλ−3 ȳ((cos λL − 1) tan λL/2− sin λL + λL)= ωλ−3 ȳ(λL − 2 tan λL/2),

that is,

ωL2
=

λ3L3

λL − 2 tan λL/2
=

λ2L2

ψ(λL)
, (A.7)

with ψ as in (3-39)2. The right-hand side is an increasing function of λL , and is equal to zero at λL = π
and to +∞ at λL ≈ 2.861π . Therefore, for every ωL2 > 0 there exists a unique λL in (π, 2.861π)
which satisfies (A.7). It determines the smallest eigenvalue λ2

o for given ω and L . The corresponding
eigenfunctions are the scalar multiples of

yo(x)= cos λo(L/2− x)− cos λo L/2. (A.8)

The problem has been formulated in H 1(0, L), which is the largest space in which the integrals which
appear in (A.1) exist. However, the eigenfunction yo belongs to C∞[0, L]. So the solution does not
change if H is taken to be any space included between C∞[0, L] and H 1(0, L).

(ii) Now let H be the set

H = {y ∈ H 2(0, L) | y(0)= y(L)= 0, y(x)≥ 0,∀x ∈ (0, L)}. (A.9)

In (A.8), yo satisfies condition y(x)≥ 0 only for λo L ≤ 2π . By (A.7), this corresponds to ωL2
≤ 4π2.

For larger values of ωL2, yo(x) becomes negative near the boundary.
For ωL2 > 4π2 we look for solutions y which are of the form (A.4) in a subinterval (0, L y) of (0, L)

and zero outside. To belong to H 2(0, L), they must satisfy the conditions

y(0)= y(L y)= 0, y′(L y)= 0.

By (A.4), the first two conditions are satisfied by

A =−ωλ−2 ȳ tan λL y/2, B =−ωλ−2 ȳ,

and the third condition is satisfied if A = 0. This implies tan λL y/2= 0, that is,

λL y = 2π. (A.10)

Because L y is smaller than L , this solution is possible only for λL > 2π , that is, for ωL2 > 4π2. But
this is exactly the range not covered by the solution (A.7) and (A.8). For A = 0 and B =−ωλ−2 ȳ, the
integration of (A.4) yields

ωL2
=
λ2L3

L y
=
λ3L3

2π
. (A.11)
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Therefore, for all ωL2> 4π2 the smallest eigenvalue is the solution λ2
o of this equation. The corresponding

eigenfunction

yo(x)=

{
1− cos λox, if x ≤ 2π/λo,

0, if x > 2π/λo,
(A.12)

satisfies the condition yo(x) ≥ 0 for all x . Therefore, λ2
o is the smallest eigenvalue, and yo is a corre-

sponding eigenfunction.
In conclusion, the smallest eigenvalue of problem (A.1) with H as in (A.9) is the solution of (A.7) if

ωL2
≤ 4π2, and of (A.11) if ωL2 > 4π2. By defining

ψo(λL) .=

ψ(λL), if 0≤ λL ≤ 2π,

2π
λL
, if 2π < λL ,

(A.13)

both (A.7) and (A.11) take the form

λ2
= ωψo(λL), (A.14)

and the smallest eigenvalue λ2
o is the unique solution of this equation. The function ψo is C∞ in (π,+∞),

except at the point λL = 2π , where it is continuous and has a continuous derivative.

Now consider the eigenvalue problem∫ L

0
(y′2(x)+ω ȳ2

+ h(x)y2(x)) dx = ρ
∫ L

0
y2(x) dx, y ∈ H, (A.15)

with ω a given positive constant and h an integrable function. We wish to determine upper and lower
bounds for the smallest eigenvalue ρo, both for H as in (A.5) and as in (A.9).

For H as in (A.5), let λ2
o be the smallest eigenvalue of problem (A.1) and let yo be a corresponding

eigenfunction. Define

ho
.
=

∫ L

0
h(x)y2

o(x) dx∫ L

0
y2

o(x) dx
. (A.16)

Then, by (A.1), ∫ L

0
(y′o

2
(x)+ω ȳ2

o + ho y2
o(x)) dx = (λ2

o+ ho)

∫ L

0
y2

o(x) dx .

That is, (λ2
o + ho) is an eigenvalue of (A.15) and yo is a corresponding eigenfunction. Therefore, an

upper bound for ρo is

λ2
o+ ho ≥ ρo. (A.17)

To get a lower bound, set

hmin = inf
x∈(0,L)

h(x). (A.18)
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Then the left-hand side of (A.15) is greater than or equal to∫ L

0
(y′2(x)+ω ȳ2

+ hmin y2(x)) dx ≥ (λ2
o+ hmin)

∫ L

0
y2(x) dx, ∀ y ∈ H,

and the lower bound
ρo ≥ λ

2
o+ hmin (A.19)

follows. Depending on the given function h, the two bounds can be far away from each other. On the
other hand, they coincide if h is a constant, h(x)= h̄. Indeed, in this case ho = hmin = h̄ and, therefore,

ρo = λ
2
o+ h̄. (A.20)

For H as in (A.9) the same bounds hold, with λ2
o and yo replaced by the smallest eigenvalue of problem

(A.1) and by a corresponding eigenfunction, respectively.
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CONTINUUM DEPLOYABLE SHELLS MADE OF THIN PLATES

VLADIMIR A. GRACHEV AND YURIY S. NEUSTADT

This paper investigates deployable systems assembled from trapezoidal plates. When the plate package
is unwrapped, a net shell with six loop cells is formed. Additional degrees of freedom appear when
correlations are present between the sizes of the six loop faces. When thin plates are used, the continuum
approximation of the deployed net can be interpreted as a shell with a wide variety of local curvatures.
The kinematics of the continuum model are analyzed using the Cartan moving hedron method. Several
practical applications of the continuum nets are demonstrated.

1. Introduction

A great deal of interest has been directed to the subject of deployable (transformed) mechanical systems
over the past several decades. Deployable mechanisms can be easily “packed into a small box” and can
create a surface with a large area after deployment [Gantes 2001; Jensen and Pellegrino 2002; Gan and
Pellegrino 2006; Leung and Guest 2007; Chen and You 2008a; 2008b]. With a variety of designs, these
systems have numerous potential engineering applications.

Transformed systems have one specific feature: all known stable deployable systems are standard
machines; that is, they are a set of absolute solids connected with cylindrical and spherical hinges. The
hinges are “internal degrees of freedom” that make controlled transformation of the mechanism possible.
Thus, the design of the links does not matter for deployment (kinematics) of the relevant mechanism.
The elements of the system could be given any rigidity, and the required internal degrees of freedom
could be achieved using a sufficient number of hinges. Until recently, new forms of deployable systems
have been limited to mechanisms with rigid parts and few degrees of freedom [Vepa 2010; Sclater and
Chironis 2011].

Basically, standard machines are prestressed systems [Otto and Rasch 1995; Luchsinger et al. 2004]
because the latter can be interpreted as continuum sets consisting of infinitely small rigid members
(frameworks or shells) connected with spherical hinges. Such systems have numerous degrees of freedom
and can sustainably move (or balance) at prestressed and special loads. This is why it would be an
interesting challenge to make machines with additional degrees of freedom by replacing absolutely rigid
parts with flexible ones. At the same time the number of degrees of freedom should not be large, in order
to ensure sustainable control over the structure. State-of-the-art technologies allow the making of such
machines.

When elastic and flexible thin plates were used as loops that could twist, the system had additional
degrees of freedom that enabled a nonstandard mechanism to be deployed. In this case, a minimum
amount of energy was required for a system with a high bearing capacity. The current paper describes a

Keywords: continuum deployable shells, manifold, Cartan moving hedron, homogenization, Gauss–Codazzi equations,
practical application.
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similar type of mechanism, and the systems presented in this paper consist of 3D six-link loops that are
not simply mechanisms arbitrarily correlated between their sizes. For this reason, the six-link loops with
internal degrees of freedom are extracted first. Next, a continuum model (subsequently referred to as
the continuum net or continuum shell) that approximates the finite-dimensional net of the six-link loops
is constructed. The mechanical behavior of the continuum nets is studied, assuming that the cylindrical
hinges between the plates are ideal and have no friction.

The paper contains an illustration of possible applications of continuum nets in engineering.

2. Kinematics of deployable shells assembled from trapezoidal plates

If a net constructed by sticking several paper six-link loops together consists of equal rectangular plates
(shown in Figure 1, Sketch 2), unwrapping the package would cause the middle lines of the plates to
form a plane. The same result would be observed if rectilinear strips of hinged rectangles were used
instead of six-link loops (Figure 1, Sketch 1).

The net represents a mechanism with sides of arbitrary sizes, regardless of the number of plates it
includes. The hinged hexagon has six degrees of freedom on the plane, while each glued face removes
three degrees of freedom.

Sketch 1 Sketch 2
b Ck

Ψ

a

Figure 1. Net of rectangles connected with cylindrical hinges.
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ψ

Figure 2. Net of strips assembled from trapezoids.

If undistorted rectangles in the cell were replaced with trapezoids using cylindrical hinges as a con-
nection, the assembled net would not deploy because a six-link loop of absolute solids is usually a rigid
body, while a net of N six-link loops (as shown in Figure 1, Sketch 2) has 12N redundant constraints.

Assuming that the cell is symmetrical (the cell consists of two part types) and the plates are thin (their
rigidity for twist and bending is small), the package can be deployed into a shell (Figure 2).

The present structure was invented by Swank [1991] (in the USA) and Grachev and Neustadt [1999a]
(in Russia). The research of the latter [Grachev and Neustadt 1995; 1996] covers the mechanical funda-
mentals of deployable systems assembled from identical trapezoidal plates. The concepts of the above-
mentioned articles and [Grachev and Neustadt 1999a; 1999b] are represented in a general geometrical
context that enables larger classes of transformed shells to be reviewed from a common standpoint.

Making a net of trapezoidal plates according to Figure 1, Sketch 1, is more technically feasible;
however, it is more convenient to construct theoretical designs according to Figure 1, Sketch 2. Therefore,
the second option is used in the subsequent presentation.

Let us consider the mirror-symmetrical six-link loop that is symmetrical against two planes and is
assembled from two types of trapezoids (light and dark) connected with cylindrical hinges (Figure 3).
The black points are located on the middle lines of the trapezoids. Point O is the center of gravity of
trapezoids 2 and 5. Vector Eβ1 is tangential to the circumference passing through the intersection of the
middles lines of trapezoids 2 and 5, and vector Eβ2 is tangential to the arc of the circle passing through
points 4, O , and 1.

First, it must be confirmed that the mirror-symmetrical six-link loop is a mechanism with one degree
of freedom, and the surface built on the middle lines of the trapezoids serves as an approximation of
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2

5

4

1

β2
β1

0

Figure 3. Six-link loop cell.

the smooth shell. For this reason, the cell shown with relevant projections in Figure 4 is considered.
The values in the circles refer to the numbers of the trapezoids that comprise the hinged six-link loop.
Intersections of the trapezoid centerlines are denoted with Arabic numerals.

The same values describe a linear hinge between the faces. The radius vectors of the middle lines
are designated by Eri , i = 1, . . . 6, while vector Er0 connects the center of gravity of the cell with point 1
(Figure 5).

The angular velocity vector of the side number i relative to the side (i+1) is designated with Eωi , while
the vectors of dihedral angles between the neighboring plates are designated by E9i , i = 1, 2, . . . , 6. The
length of the middle line of sides 1, 3, 4, and 6 is equal to a, while the length of sides 2 and 5 is equal
to b. The thickness of all plates is considered to be the same and equal to t . Cartesian X and Y axes are
located along the plane of the vectors Er2, whereas Er0 and the Z axis are perpendicular to the X and Y
axes, respectively.
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Figure 4. Sizes of the six-link loop cell.
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Figure 5. Middle lines of the trapezoid within the cell.

It should be noted that if the sides of the six-link loop are absolutely rigid plates connected with linear
cylindrical hinges, the structure is not actually a mechanism. In fact, the number of degrees of freedom
in the six-link loop is equal to

F = 6× 6− 6× 5= 6

because each rigid plate has six degrees of freedom, and the linear hinge subtracts five degrees of freedom.
Thus, the arbitrarily scaled six-link loop can move through space only as an absolute solid. For additional
degrees of freedom to appear, the mechanism should be specially designed. The symmetrical six-link
loop needs at least one degree of freedom, which could be angle 9 (Figure 4).

Limitations are set on the six angular velocities Eωi [Lurye 1961] in this study. The closure of the
polyhedron and the theorem of composition of angular velocities give

i=6∑
i=1

Eωi = 0. (1)

The three equations (1) are supplemented with another triple representing the fact that the velocity of the
point located at the intersection of the sides is identical regardless of the side upon which it is calculated:

Eω1× Er1+ ( Eω1+ Eω2)× Er2+ ( Eω1+ Eω2+ Eω3)× Er3+ ( Eω1+ Eω2+ Eω3+ Eω4)× Er4

+ ( Eω1+ Eω2+ Eω3+ Eω4+ Eω5)× Er5+ ( Eω1+ Eω2+ Eω3+ Eω4+ Eω5+ Eω6)× Er6 = 0.

The last equality with
i=6∑
i=1

Eri = 0, (2)

implies that the sum of Eωi vector moments with respect to point O is equal to zero. When Eri is constant,
(1) and (2) prove that there is always a trivial solution

Eωi = 0

when the six-link loop remains geometrically unchanged. However, nontrivial solutions exist with addi-
tional limitations. It will be demonstrated that (1) and (2) allow for a nontrivial solution for a cell that is
symmetrical with respect to the X axis.
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Assuming Eω1, Eω2, Eω3, and Eω6 are unknown, the Y -axis projection equation and two moment equations
with respect to the X and Y axes can be identically satisfied by symmetry of vectors. Thus, only three
independent equations exist for four unknown vectors. Therefore, a symmetrical cell is a mechanism
with one degree of freedom, due to

d E9i

dt
= Eωi (3)

and the symmetrical configuration at the initial instant.
This conclusion can be reached if a three-link loop consisting of plates 1, 2, and 3 is considered (the

plates generally have arbitrary sizes), and the initial position on the X O Z axis (Figure 4) is located on
the fixed axis 1. The position of axis 4 is a function of the three dihedral angles E91/2, E92, and E93.

If the angle E91 is determined arbitrarily, the other two can be determined such that axis 4 is on the
X O Z plane. Flipping the three-link loop against this plane proves that the six-link loop is a system with
one degree of freedom.

The same result can be obtained if a cell has two axes of symmetry. In this case, | Eω3| = | Eω6|, and
| Eω1| = | Eω2|. Only one equation (the equation for the angular velocity of the Z -axis projection) out of
six for two unknown vectors is not identically satisfied. The angle 9 is chosen as the only generalized
coordinate of the cell’s symmetrical deformation (Figure 4). With this angle, all angles of the cell can
be calculated. The calculated cells will be designated by 9i , i = 1, 2, . . . , 6, for 94 =9. The dihedral
angle between plates 3 and 4 | E91| =9 (Figure 4) is considered the only generalized coordinate of the
cell with symmetrical distortion. Knowing this angle, all of the other dihedral angles of the cell can be
calculated.

The set of cells can be connected according to Figure 1, Sketch 2, by gluing trapezoids of the same
size. This operation is feasible when 9 = 0. If the plates are thin, and the sizes of the six-link loops are
small compared to the shell dimensions (the net contains a large number of mirror-symmetrical cells),
then the strip package can be unwrapped into a two-dimensional surface almost without applying any
external forces.

Because the plates comprising the net are thin (the t/δ ratio is small), only a small amount of force
is required to twist and bend them. Thus, the twist angles of the plates to a first approximation can be
considered to be additional degrees of freedom of the lattice system.

The size of the honeycombs is assumed to be small. This assumption is equivalent to the distances
between close points regarded as differentials of the relevant functions. Therefore, it is possible to
parameterize and homogenize a system that contains a large number of honeycombs.

Let us connect 2n strips from the trapezoids (the strips are numbered with Arabic numerals) at the
initial instant shown in Figure 1, Sketch 1 (gluing even and odd strips), and unwrap the package (refer
to Figure 6).

Broken lines connecting the middle lines of the odd strips (shown with a dotted line) are termed
coordinate lines α1. Similarly, the lines α2 are drawn through the centers of the glued trapezoids. The
Lagrangian coordinate lines α1 are considered equal to the actual length along the middle lines of the
trapezoids measured from the fixed point B. When moving to the neighboring cell, the change in the
coordinate α2 is equal to 2b. The discrete coordinate net formed in this manner is supplemented with
continuous points of two-dimensional manifolds.
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Figure 6. Lagrangian coordinates of the shell.

If the coordinate lines are closely spaced, it is possible to linearly approximate the joint coordinates
of the net that are located on the middle lines of the trapezoids across the entire two-dimensional man-
ifold; the first and second quadratic forms of the built continuum surface can also be calculated. The
approximation results in a surface, a small section of which is shown in Figure 7. The lines of the main
curvature are designated by β1 and β2. The tangent plane passing through the center of gravity of the
middle cell O is designated 5.

The map consisting of projections of the middle lines of the five cells on plane5 (Figure 7) has 3×(8−
6)= 6 degrees of freedom in space (assuming that it is possible to rotate the osculating trapezoids against
the middle lines). Because all cells are mirror-symmetrical, the map (Figure 7) can be supplemented with
two more cells (marked as 6 and 7 in circles in Figure 8) such that the seven cell units have six degrees
of freedom in space.

The middle line between points 2 and 3 of cell 6 coincides with the relevant line of the middle cell
and ensures two degrees of freedom in the entire system. This number is sufficient to combine the line
between points 3 and 4 of cell 6 with the system assembled earlier in Figure 7 without applying extra
forces. The other lines are matched automatically, due to the symmetry of the map along the X and Y

Π
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β
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0

β
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β
2

Figure 7. Section of the continuum shell.
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Figure 8. Local map of the shell.

axes. In other words, the distance between points A and B (with coordinates (α1A, α2A) and (α1B, α2B),
respectively) within the small map 5 (Figure 8) is defined by the opening of only one angle 9.

Homogenization of the discrete system is performed in two steps. First, the free deformation of
one cell and the small map 5 (that is, the deformation that does not have any external limitations) are
considered. Second, the cells are joined into the continuum net using a specific rule.

For the first step, we consider that the sharp angle α0 is close to a straight angle. The assumption
is that angle α0 6= π/2, and the square of the cosine of this angle, α = cosα0, can be neglected in the
calculations below.

Let us identify the projections of the unit length vectors:

Ee4 = {0, 0, 1}, Ee1 = {1, 0, 0}, Ee2 = {−a1α, a2α, a3}, Ee = {−ψ1, ψ2,−αψ3},

Ee′ = {−ψ1,−ψ2,−αψ3}, and Ee3 = {−αa′1, 0, a′3}.

Considering the relations

Ee2 · Ee =−α, Ee1 · Ee2 =−α, Ee3 · Ee = α, Ee2
1 = Ee

2
= Ee2

2 = Ee
2
3 = 1,

and the fact that vectors Ee, Ee2, and Ee3 are located on the same plane, or

(Ee2× Ee) · Ee3 = 0,

we have
a1 = 1, −a1ψ1+ a2ψ2− a3ψ3 = 1, ψ1a′1−ψ3a′3 = 1,

α2ψ2
3 +ψ

2
1 +ψ

2
2 = 1, a2

1α
2
+ a2

2α
2
+ a2

3 = 1, α2a′21+ a′23 = 1,

a2ψ3α
2
+ a3a′1ψ2+ a′3a1ψ2+ a′3a2ψ1 = 0.

(4)

There are eight unknowns in the seven equations. If all the unknowns are expressed through one
parameter ψ1, and α is a small number that allows the underlined elements in (4) to be omitted, the
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result is

a1 = 1, a2
3 = a′23 = 1, ψ2

1 +ψ
2
2 = 1,

ψ3 =−ψ
3
1 +ψ

2
1 −ψ

2
2ψ1+ψ

2
2 , a′1 =

1−ψ3

ψ1
, a2 =

1−ψ3−ψ1

ψ2
.

The angle between the Z axis and vector (Ee+ Ee′) is designated by λ, while the angle between surfaces 2
and 5 is expressed as 2β (Figure 4). According to the designations introduced earlier, we obtain

λ= αψ3 and β = αa2.

The length of the line between the centers of sides 2 and 5 equals 2bψ2, while the length between
points 1 and 4 (measured along the middle line of the trapezoid) equals b(1+ 2ψ1). Therefore, the
principal curvature radii can be grouped with the symmetrical free cell (and with the small map 5) by

ρ1 =
b(1+ 2ψ1)

2αψ3
and ρ2 =

bψ2

αa2
. (5)

When ψ1→ 1, the values of a2 and ψ3 approach zero; furthermore, the curvature radii at the location
where the “folded” shape of the cell meets are equal to infinity.

When the coordinate α1 is changed by b within the small map 5 (Figure 8) without connecting the
incorporated cells, the distance along the line β1 on the tangent plane 5 is equal to b(1+ψ1)/2; when
the coordinate α2 is changed by b, the segment is equal to bψ2.

Therefore, when the cells are only in contact along the middles lines of the osculating trapezoids
close to point O (including the small number of free cells that are inside map 5), the first and the second
quadratic forms of the surface can be calculated using

ds2
= A2

1 dα2
1 + A2

2 dα2
2, (6)

A1 = (1+ψ1)/2, A2 = ψ2, (7)

B(dα1, dα2)=
A2

1 dα2
1

ρ1
+

A2
2 dα2

2

ρ2
. (8)

The written correlations define the connectivity described with the quadratic forms ωi and ω j
i [Cartan

1945] that are linear against the differentials d Eβ1 and d Eβ2. In addition,

dEr = ωi Eβi and d Eβi = ω
j
i
Eβ j . (9)

Equation (9) and the subsequent formulas use a tensor notation and contracted repetitive indices, where dEr
means a vector of destination between the points on surface 5 that differ by the Lagrangian coordinates
of (dα1, dα2).

In the second step of homogenization, the basic assumption describing the global transformation of
the net containing mirror-symmetrical six-link loops is made. The cells connected according to the
sketch in Figure 2 deploy into a shell in such a way that the connectivity (expressed by (9)) is locally
converted, with both surfaces 5 and 51 being smooth manifolds. This is performed by rigidly displacing
the small free segment of the tangent plane from initial position 5 (the fragment of which is shown in
Figure 9) to position 51, which is shown on the left side of the same picture. This requirement ensures
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Figure 9. Movement of the local map in space.

the deformation of the shell without stretching the middle surface. Only those plates that connect the
strips can be twisted.

Because the thickness of any plate is insignificant compared to its length and width, the potential
energy of the elastic deformation of the shell is minimal; the deployment method described above would
therefore require less extra energy than any other deployment technique.

To specify the forms of ωi and ω j
i relative to surface 51, it is sufficient to convert vectors d Eαi , Eαi ,

and dEr by making them consistent with the Euler angles that appear after aligning points O and O1.
The converted forms of ωi and ω j

i should satisfy the three Gauss–Codazzi relations, which are equations
ensuring the system integrability condition (9) [Novozhilov 1962].

Due to the linearity of the forms (9) against d Eβ1, d Eβ2, Eβ1, and Eβ2 and the basic assumption on defor-
mation of the net described above, the Euler angles would not be a part of the Gauss–Codazzi equations.
Therefore, the resolved system of three equations would only have one variable function 9 and would
become overdetermined. To ensure the integrability of the Gauss–Codazzi equations without changing
the symmetry of the cells and the metrics of the shell, plate-twisting should be considered.

Equations (5) and (8) can be expressed in terms of plate-twisting as

b11 =
A2

1(2aψ3−φ11)

b(1+ 2ψ1)
, b12 = 0, and b22 =

A2
2(αa2−φ22)

bψ2
, (10)

where b11, b12, and b22 are coefficients of the second quadratic form of surface B(dα1, dα2)= bi j dαi dα j

(indices i and j are 1 and 2, respectively); the functions φ11 and φ22 will be defined. The coefficient b12

is considered equal to zero because the curvature lines in symmetrical cells are always orthogonal.
The coefficients of the first and second quadratic forms from (6) and (10) depend on three functions

(φ11, φ22, and 9), and they need to meet the criteria of the three Gauss–Codazzi compatibility equations

∂

∂α2

(
∂A1

A2∂α2

)
+

∂

∂α1

(
∂A2

A1∂α1

)
=−

A1 A2
ρ1ρ2

,
∂

∂α2

(
∂A1
ρ1

)
=

∂A1
ρ2∂α2

,
∂

∂α1

(
A2
ρ2

)
=

∂A2
ρ1∂α1

. (11)
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Therefore, (5)–(8), (10), and (11) enable the shape of the surface to be uniquely defined (continuously
approximating the location of the trapezoid middle line in space) when the coordinates of the shell
reference contour are known. Basically, three differential equations (11) for the three functions ψ1, φ11,
and φ22 define the field (smooth manifold) in the coordinates α1 and α2, spread in three-dimensional
space. The solution to (11) makes it possible to study the kinematics of the lattice shells without prior
stress analysis of small plates.

3. Application to specific problems

Let us apply general correlations to the rotational shells. Equation (11) is simplified, and the derivatives
with respect to argument α2 disappear; nevertheless, φ11 = 0. Therefore, two equations remain, and ρ2

can be determined from the first equation:

1
ρ2
=−

ρ1

A1 A2

∂

∂α1

(
∂A2

A1∂α1

)
. (12)

If this expression is substituted into the second equation in (11), we have an ordinary differential equation
of the second order for the function ψ0 = ∂ψ2/∂α1:

∂

∂α1

(
ρ1∂

A1∂α1

(
ψ0

A1

))
=−

ψ0

ρ1
. (13)

Once ψ2 is determined from this equation (up to two constants), the twisting parameter for the plate φ22

can be calculated only based on (11) and (12).
Knowing the function ψ2(α1), we can find the coordinates of the shell surface. In this equation, the

closed shell is a finite-dimensional mechanism with the geometry dependent on the opening of only two
cells located on the curvatures of D1 and D2 (Figure 10). It is also important to address the structure (13),
which is close to the differential equation of second order with a large coefficient on the top derivative,
and a rotational curvature that is close to the chain line approximating a straight line when the α angle
is small.

The maximum opening of the cell is limited, and the closed rotational shell has the following interest-
ing feature (Figure 10). If the shell is turned over with its cells open to the limit on the bottom, and the
“bases” D1 and D2 are switched, the shell has to take the original shape because of its gravity and the
lack of friction on base D2.

D1

D2

D1

D2

D1

D2

Figure 10. Change in shape of the hyperbolic shell under gravitation.
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As (5) shows, the honeycomb shells could increase the curvature during the deployment of simply
connected packages in Figure 2, much like a crayfish squeezing a victim with its claw within the volume V
(Figure 11).

The simply connected honeycomb shell can occupy an extremely small volume. If ψ2= 0, then A2= 0,
and the area of the shell is zero. This situation is possible in two cases: when 9 = 0 or when 9 = 2π .
The first option corresponds to the initial position of the package in Figure 1, while the second option
corresponds to a wrapped “crib sheet” (or “cheat sheet”). The process of the shell “collapsing” into a
point is shown in Figure 12 for one strip. The picture would not change if one strip was replaced with
the simply connected lattice shell.

The stated features can serve as the basis for an advanced transportation technology of lattice systems:
the wrapped strips are packed into a small box with dimensions similar to (a+ b) and transported at a
long distance; the strips can subsequently be connected according to Figure 1 and unwrapped into the
designed position.

The model shown in Figures 13–15 demonstrates the abovementioned features.

A

A

0

0

V Intersecting line arise at deployment.

The volume V within the surface reduces

Figure 11. Reduction in internal volume when the shell is deployed. On the right, the
arrow indicates the intersection line arising at deployment. The volume V within the
surface reduces when the shell deploys.

0 X

Y

Mn+1

Mn+1

Mn Mn+2

Mn+2

Mn+3

Mn+3

Mn

b ba

2α*

2α*

α*

2α*

Figure 12. Strip packaged as a “crib sheet”.



CONTINUUM DEPLOYABLE SHELLS MADE OF THIN PLATES 165

Figure 13. Strip in initial, intermediate, and packed states.

Figure 14. Cell at different 9 angles.

Figures 13 and 14 show a strip and a cell at the stage of preliminary assembly. The strips are put
together from 0.2 mm-thick plates (the trapezoid middle line is 115 mm long and 30 mm high, the sharp
angle at the base is 75◦) that are made of high-carbon steel with a yield strength of 1000 MPa. The
hinged loops, which are 0.8 mm thick, are made of mild steel.

The loops and the plates are glued at 170◦C with a special film adhesive after preliminary assembly
in the casing ensuring 0.1 mm accuracy of linear dimensions.

Figure 13 shows the consistent process of packing the strip into a coil-globule that looks like a school
crib.

Figure 14 demonstrates the deformation of the mirror-symmetric six-link loop when the dihedral angle
9 is changed. When 9 = 2π , the cell’s area is maximal. Further increase in this angle results in collapse
of the cell (and the entire shell) because the area of any simply connected section of the lattice surface
becomes negligibly small.

Figure 15, left, shows a model of the lattice shell comprising twenty strips joined into a single system
with diameter 3 mm nylon thermoplastic rivets. The contacting surfaces are put together with six rivets:
by two via hinged loops and by two along the middle line. The boundary conditions on the contours of
the rotational shells are met by rigid rings where the hinged loops are attached.

If there were quite a few strips, then the arbitrarily set boundary conditions (diameters of the top and
bottom rings) could change over a wide range and the lattice shell could simulate the situation represented
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Figure 15. Left: model of the lattice shell. Right: Shell with a variable surface.

in Figure 10. If the cylinder was cut along the generating line, the crayfish behavior shown in Figure 11
would be reproduced.

If the rigid top ring was replaced with a flexible hose, as shown in red in Figure 15, right, then by
injecting air inside this chamber, we would create a surface of variable area simulating a piston-free press
or a pump. Obviously, such a surface can be used as a kagome structure upside down (a basketball hoop)
with very few degrees of freedom. It would be much more difficult for players to shoot a ball through
this basket than in a normal basketball game.

Figures 10–15 do not encompass all of the possible thin wall six-link loop structures [Hutchinson et al.
2003; Grachev and Neustadt 2008; 2009].

It should be emphasized once again that the deployable systems described above are not classic mech-
anisms with absolute rigid links. Their deployment is possible only if the plates are thin and durable,
which explains why the proposed mechanisms based on the principles of mobility of the Bricard and
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Schatz six-link loops [Bricard 1927; Schatz 1975; Phillips 1984] have not been widely applied. Materials
developed in recent decades, including shape memory alloys, encourage the development of new mech-
anisms of deployable systems and new applications in such fields as traditional engineering, medicine,
and biotechnology.
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SELF-FOLDING OF A SLENDER MICROBEAM
AND THIN FILM: AN ELASTICA MODEL

JIANLIN LIU AND JUNG HOON LEE

Thin wires or films can be spontaneously folded into different shapes, and such phenomena hold promis-
ing applications in engineering, especially at micro and nanoscales. Based upon the established potential
energy functional, we derived the governing equation and adhesive boundary condition for a self-folding
system. Considering the inextensible condition of the structure, a closed-form solution for the deflection
of a racket-like structure was obtained in terms of elliptical integrals, which applies for both macro
and nanodimensions. We then determined the critical adhesive length under specified geometric and
energetic constraints. The results show that self-folding is energetically favorable and thermodynami-
cally stable with the cohesive work being strong enough and the structure being sufficiently flexible. As
soon as the self-folding configuration is formed, the slender structure must possess an initial adhesive
length. These conclusions are beneficial for the design of nanostructures, and the enhancement of their
mechanical, chemical, optical, and electronic properties.

1. Introduction

Self-folding phenomena of thin films and wires, spanning the micro, macro, and nanoscales, are widely
observable in nature and daily life. For example, when a piece of paper is coiled up in a tube, it does not
make complete contact near its ends but makes a certain angle with the inner tube wall [Romero et al.
2008]. In addition, a flexible thin sheet can be self-folded or wrapped by capillary forces; Py et al. [2007;
2009] and Pineirua et al. [2010] carried out a series of experimental studies on such processes. They
found that the surface tension of a droplet or a liquid film can cause the thin sheet to fold, origami-
like, into different geometric shapes. They also provided numerical solutions to calculate the adhered
configuration, which are consistent with their experimental results.

Nature often miraculously creates similar phenomena at different length scales; likewise, self-folding
exists widely in the nanoworld. On the one hand, the creation of self-folded structures is technologically
important in such practical applications as the self-assembly of nanostructures. A typical example is that
silicon–germanium nanotubes can be formed by the self-folding of a thin film through an inexpensive
label method [Schmidt and Eberl 2001]. During this process, the freed thin film is rolled up, with one of
the film edges being brought into contact with the film itself and finally stuck by van der Waals forces
[Glassmaker and Hui 2004]. Moreover, folding a two-dimensional graphene will significantly alter its
properties, because the deformed morphology modifies the electronic band structure of the graphene and
creates localized electronic states in the folded regions [Kim et al. 2011]. Using the folding method,
one can control the shape of a graphene sheet, and then tailor its mechanical, chemical, optical, and
electronic properties. On the other hand, self-folding or cross-section collapse can induce undesirable

Keywords: self-folding, elastica, adhesive boundary condition, energetic constraint, deflection.
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deformation or even failure of micro/nanosized devices and systems. For example, the circular cross
section of a carbon nanotube (CNT) with a large diameter may collapse into a ribbon or dumbbell shape
under van der Waals forces [Pantano et al. 2004]. Through molecular dynamic (MD) simulations, Gao
et al. [1998] discovered that there are two possible configurations for a CNT in equilibrium state, one
circular and one collapsed, corresponding to two determinate radius ranges, respectively. Recently, Tang
et al. [2005] and Tang and Glassmaker [2010] studied the energetics of self-collapse of a single CNT by
using the continuum mechanics method, and also calculated the critical radius for collapse.

The self-folding of thin films or microbeams may lead to different shapes, especially at micro and
nanoscales [Cohen and Mahadevan 2003]. Like a microtubule inside a vesicle buckling into a racket-like
shape [Fygenson et al. 1997], CNTs with a similar shape were also observed in a sample of high-pressure
carbon monoxide single-walled nanotubes after 30 minutes of sonication in dichloroethane [Cohen and
Mahadevan 2003]. The occurrence of self-folding in such small scaled materials as nanowires, micro-
tubules, nanotubes, and thin films is mainly attributed to their high aspect ratios. More precisely, the
maximal size (for example, the length of nanowire or the length/width of a thin film) is much larger than
the persistence length [Zheng et al. 2004; Lee et al. 2007]. Due to carbon–carbon covalent bonding and
seamless hexagonal network architecture, a CNT can be easily bent into an arc shape with significant
curvature [Buehler et al. 2004]. This special racket-like configuration is actually an energetically favor-
able state, with the interplay of elastic deformation and van der Waals attraction between different parts
of the CNTs.

Much effort has been directed toward understanding the physical mechanisms of self-folding processes.
The first atomistic simulation of single-wall CNTs with very large aspect ratios subject to compressive
loading was carried out in Buehler et al. [2004]. They investigated the shell-rod-wire transition of the
mechanical behavior of CNTs with increasing aspect ratios. Following this work, Buehler et al. [2006]
utilized atomistic simulation to study the deformation of a highly flexible nanotube forming a thermo-
dynamically stable self-folded structure, and presented the critical length and critical temperature for
folding or unfolding. Zhou et al. [2007] obtained the critical length for the self-folding of CNTs by MD
simulations and infinitesimal deformation analysis. Mikata [2010] then derived an approximate solution
for the self-folding of CNTs on the assumption that the curvature at the adhesion point is zero. Glassmaker
and Hui [2004] modeled the CNT as an elastica, presented the close-formed differential equation set, and
gave the numerical results. Similar to CNT folding, Cranford et al. [2009] studied the self-folding of
mono and multilayer graphene sheets, utilizing a coarse-grained hierarchical multiscale model derived
directly from atomistic simulation. Although the aforementioned studies have been devoted to self-
folding problems, to date there is still a lack of systematic theoretical analysis on the underlying physical
mechanisms, which involve very large deformation and strong geometric nonlinearity. In this paper,
we present an elastica model to quantitatively study the mechanism of self-folding. Our motivation is
to provide the explicit solution of the considered problem, then develop a new method to analyze the
racket-like shape of self-folded structures via the classical elastica solution. This landmark theory, which
can be traced back to the historic contribution of Euler [Love 1906], has been successfully used to solve
some finite deformation problems of slender structures [Bisshopp and Drucker 1945; Liu and Feng 2007;
Majidi 2007; Neukirch et al. 2012].

This article is organized as follows. In Section 2, we present a mechanics model to analyze the self-
folding of structures in terms of energy, and derive the nonlinear governing equation and the adhesive
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boundary condition. In Section 3, we discuss the critical adhesive length under specified geometric and
energetic constraints. Finally, we present the explicit solution for the deflection of a flexible structure.

2. Elastica model

2.1. Model formulation. First, we analyze the physical mechanisms of self-folding of a flexible struc-
ture, such as a filament or a thin film, by means of scaling laws. If the typical length of a planar structure
is denoted as Lc, then the interfacial or surface energy US ∝ Lc, the elastic strain energy UE ∝ L2

c , and
the potential energy due to gravity UG ∝ L3

c [Roman and Bico 2010]. As the dimension of a macroscopic
fiber or film shrinks to nanometers, the effect of surface energy becomes significant and should be taken
into account. Therefore, it can naturally be assumed that the effect of gravity is negligible. Given a
sufficiently large flexibility or aspect ratio, the structure can reach an energetically stable self-folding
shape like a tennis racket. For instance, a CNT can experience a shell-rod-wire transition as its aspect
ratio increases [Buehler et al. 2004]. If a straight and slender CNT is subject to two compressive loads
with magnitude of P exerted at its two ends, it will buckle when the load is bigger than a critical value:

Pcr =

(
π

L

)2
EI, (1)

where L is the total length of the CNT, EI the bending stiffness of the CNT, E the Young’s modulus of
the material, and I the moment of inertia of the cross section of the beam. After it buckles, the CNT may
become a ring-shaped structure [Bigoni 2012, 52–69] with radius R, and it can continue to be self-folded
if the van der Waals force q exceeds a critical value:

qcr =
3EI
R3 . (2)

In this situation, the van der Waals force between the upper and lower portions of the CNT will attract
each other, and the interfacial energy actually plays the role of a transmural pressure. In the present
study, we only concentrate on the folded morphology of the glued CNT.

In what follows, we consider a slender filament or a sheet stuck by the adhesion force of the solid
contact surface or a trapped liquid film, as shown in Figure 1a. Due to the symmetry and smoothness of
this configuration, the upper half portion of the structure can be modeled as a beam with two clamped
ends, as shown in Figure 1b. The total length of the rod is L/2, and the adhered segment is l. We
introduce a Cartesian coordinate system (o-xy). Besides the Euler coordinates x and y, the arc length s,
a Lagrange coordinate, is also employed as a variable in our analysis. The slope angle of the beam at an
arbitrary point is φ, which continuously changes from 0◦ at its left end to −90◦ at its right end.

According to Figure 1, the fixed boundary conditions of the elastic system are prescribed as

φ(l)= 0, φ
(L

2

)
=−

π

2
, φ(L − l)=−π; (3)

y(l)= 0, y
(L

2

)
= 0. (4)

The geometric conditions of the elastica are

ẋ = cosφ, ẏ = sinφ, (5)
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Figure 1. Schematic diagram of a slender structure self-folded into a racket-like shape.
(a) The left segment is adhered by solid interface or liquid film. (b) The total length of
the rod is L , the adhered segment l, and the slope angle at an arbitrary point φ.

where a dot above a character stands for the derivative of a variable with respect to the arc length s.
The total potential energy of the system consists of two parts, namely the elastic strain energy and

surface energy. Considering the symmetry of this configuration, the energy functional of the system can
be written as

5=

∫ L/2

l
[EI φ̇2

+ λ1(ẋ − cosφ)+ λ2(ẏ− sinφ)] ds−Wa l, (6)

where λ1 and λ2 are two Lagrange multipliers, enforcing the additional geometrical relations of (5).
The second term of at the right end of (6) stands for the surface energy, and the symbol Wa is defined

as the work of adhesion between two surfaces [Dupré 1969]. It is expressed as

Wa = (γ1+ γ2− γ12)b, (7)

where b is the contact width out of the plane, γ1 and γ2 are the surface energies of the two different
phases, and γ12 the interfacial energy. In the conventional definition, the work of adhesion is actually the
work per unit area necessary to create two new surfaces from a unit area of an adhered interface, which
is a positive constant for any two homogeneous materials binding at an interface at a fixed temperature
[Tang et al. 2005]. The cohesive work can be defined as the work of adhesion between two identical
material interfaces, which reads

Wc = 2γ1b. (8)

For a slender structure with the interface adhered by a liquid film, the cohesive work or the interfacial
energy per unit length is

Wc = 2(γl + γSV− γSL)b = 2γl(1+ cos θY )b, (9)

where γSV, γSL, and γl designate the interfacial tensions of the solid/vapor, solid/liquid, and liquid/vapor
interfaces, respectively, and θY is the Young’s contact angle. At micro and nanoscales, the cohesive work
is normally termed the binding energy EB [Zhou et al. 2007].

Although the intrinsic boundary condition of the present problem is fixed, we can view it as movable,
and then the new variation scheme can be introduced (see Appendix A). During the variation operation,
we should stress that the variation of the total potential energy can be separated to two portions: the first
part δ51 is the variation when the adhesive point s = l is assumed to be fixed; the second δ52 is the
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additional variation on the movable point at s = l. The additional term of the variation for the considered
problem is because the adhesive length l is yet to be determined, which leads to the movable boundary
condition. Therefore, according to the principle of least potential energy one has

δ5= δ51+ δ52 = 0. (10)

A detailed derivation of (10) can be found in Appendix B, and we can clearly obtain the governing
equation of the elastica

2EI φ̈− λ1 sinφ+ λ2 cosφ = 0 (11)

and the adhesive boundary condition at the moving point

EI φ̇(l)2−Wc = 0. (12)

The symbols λ1 and λ2 in (11) can be easily identified as the horizontal and vertical components of the
internal forces in the beam. It can be seen that the governing equation in (11) was obtained from the
perspective energy functional, which conforms to the result derived by Tang and Glassmaker [2010],
who adopted the analysis method of force equilibrium.

The transversality boundary condition represents the balance of the strain energy and the cohesive
work, which is called the adhesive boundary condition or transversality condition in mathematical ter-
minology. It is worth mentioning that the adhesive boundary condition in (12) can also be deduced
via the concept of the J -integral in fracture mechanics, as described by Glassmaker and Hui [2004] in
their analysis of silicon–germanium nanotube formation. The stationary potential and material force
balance methods have also been adopted to derive the adhesive boundary condition [Majidi 2007]. The
discrepancy between (12) and the result of [Glassmaker and Hui 2004] is due to a difference in geometry;
the current model is symmetric in the configuration, in comparison with the single-side adhesive interface
in the reference. In addition, the framework of the energy functional variation in consideration of the
adhesive boundary condition can also be extended to solve other problems, where the boundary conditions
can also be regarded as movable. The proposed method proves efficient and essential for calculating the
contact angle of a droplet, the morphology of a cell, and the peeling of a CNT from the substrate [Seifert
and Lipowsky 1990; Oyharcalbal and Frisch 2005; Bormasshenko and Whyman 2008].

Multiplying both sides of (11) by φ̇ and integrating, one has

EI φ̇2
= D− λ1 cosφ− λ2 sinφ, (13)

where the parameter D is an integration constant. Making use of (3), one obtains

EI φ̇(l)2 = D− λ1, (14)

EI φ̇(L − l)2 = D+ λ1. (15)

The symmetry of the configuration results in φ̇(l)2 = φ̇(L − l)2, and then the Lagrange multiplier λ1 = 0.
Considering (12) and (14), one has

D =Wc. (16)
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We introduce the parameter α =
√
λ2/(2EI ), and replace D/(2EI ) with α2C , where the symbol C =

Wc/λ2. Apparently, the physical meaning of α is the square ratio between the internal force and the bend-
ing stiffness. Thus the governing equation (13) and the adhesive boundary condition (12) are respectively
transformed into

1
2 φ̇

2
= α2(C − sinφ), 1

2 φ̇(l)
2
= α2C. (17)

The combination of (14) and (17)2 gives

2α2L2
ecC = 1. (18)

Here, we have defined a new characteristic length, that is, the elastocohesive length Lec =
√

EI/Wc,
which is different from the elastocapillary length LEC used in [Roman and Bico 2010]. The elasto-
cohesive length can be equivalently written in another format, as the parameter 1/

√
Q determined in

[Glassmaker and Hui 2004]. For a slender structure adhered by a liquid film, the elastocohesive length
Lec = (

√
2/2)LEC when θY = 0. It can be seen that in this case, (14) and (18) are consistent with the

result of [Py et al. 2007].

2.2. Displacement boundary condition. As ds is always positive and the increment of the slope angle
is not monotonic, (17)1 is simplified as

α ds =
|dφ|

√
2(C − sinφ)

. (19)

For convenient integration, the variable φ is replaced with θ . They are related by

(1+C) sin2 θ = 2k2 sin2 θ = 1+ sinφ (0≤ θ ≤ π, k > 0), (20)

and
C = 2k2

− 1,
√

2(C − sinφ)= 2k|cos θ |, |dφ| =
2k|cos θ |√

1− k2 sin2 θ
dθ. (21)

In these equations, we consider the uniqueness of the solution in light of the physical meaning of the
problem.

Substituting (21)2 and (21)3 into the displacement boundary condition in (3) leads to

α
[

y
(L

2

)
− y(l)

]
=

∫
−π/2

0

sinφ|dφ|
√

2(C − sinφ)
= F(k, π)− F(k, θ0)− 2[E(k, π)− E(k, θ0)] = 0, (22)

where sin θ0 = 1/(
√

2k) and F(k, θ) and E(k, θ) are the elliptic integrals of the first and second kinds,
which are respectively defined as

F(k, θ)=
∫ θ

0

1√
1− k2 sin2 θ

dθ, E(k, θ)=
∫ θ

0

√
1− k2 sin2 θ dθ. (23)

2.3. Inextensible condition. To close this mathematical problem, we complement the inextensible con-
dition of the elastic rod [Liu and Feng 2007; Neukirch et al. 2012], which is written as

α
(L

2
− l
)
=

∫
−π/2

0

|dφ|
√

2(C − sinφ)
= F(k, π)− F(k, θ0). (24)
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3. Critical adhesion parameters

3.1. Geometric constraint. From (22), one can solve for the corresponding values of k = 0.855092 and
C = 0.462366, both of which are independent of the material parameters of the beam. Furthermore,
(18) gives the following relation between the nondimensional internal force αL and the normalized
elastocohesive length:

αL =
1

√
4k2− 2(Lec/L)

, (25)

and the function curve is exhibited in Figure 2. It can be seen that the vertically internal force of the
cross section on the beam will increase with the increase of the cohesive work. This means that the
stronger interfacial adhesion ability will produce larger reaction force and internal force. The reduced
vertical force αL can be solved from (25) provided that the elastocohesive length and the total length of
the beam are given.

Substitution of (25) into (24) yields

l
L
=

1
2
−

√
4k2− 2[F(k, π)− F(k, θ0)]

Lec

L
. (26)

The symbol l in (26) is the critical adhesive length, which is a linear function of the elastocohesive length.
This relation agrees with the previous scaling analysis [Py et al. 2007] and infinitesimal deformation
calculations [Buehler et al. 2006; Zhou et al. 2007; Mikata 2010]. However, the slope of the linear
function in (26) is about −3.03 and differs from the experimental result of −4.9 [Py et al. 2007]. In
comparison, the previous work [Py et al. 2007] deals with the function of the attached length (L − 2l)
about the elastocapillary length, and the slope is approximately obtained by a linear regression method.
The deviation between our theoretical result and their experiment may stem from their data processing
method and the zero Young’s contact angle assumption.

The linear relation in (26) also indicates that the adhesive length will be in the range of 0< l/L < 0.5,
and the elastocohesive length meets the condition
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Figure 2. Variation of the nondimensional internal force with respect to the normalized
elastocohesive length.
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0<
Lec

L
<

1

2
√

4k2− 2[F(k, π)− F(k, θ0)]
. (27)

Equation (27) is an intuitively geometric constraint for the nondimensional cohesive length to ensure the
self-folding shape. It indicates that this dimensionless length has an upper limit (as schematized in the
dotted line in Figure 2, where Lec/L = 0.165146), that is, the cohesive work must be strong enough, and
simultaneously the rod should be sufficiently slender.

3.2. Energy constraint. Besides the aforementioned geometric constraint condition for the adhesive
length, another stronger constraint can be derived from the consideration of energy. Using (17)1, (19),
(21)2, (21)2, and (25), the analytical solution of the reduced potential energy on the system can be derived
as

5L
EI
= L

∫ L/2

l
φ̇2 ds−

Ll
L2

ec
=

2
√

4k2− 2[F(k, π)− F(k, θ0)]

Lec/L
−

1
2(Lec/L)2

. (28)

The total potential energy is shown in Figure 3 as a function of the normalized elastocohesive length,
which is not a monotonic function but has an extreme point. For a structure with extremely large elasto-
cohesive length, its potential energy is higher than zero. In reality, the flexible structure takes a rectilinear
shape for the ground state, whose total potential energy should be zero (there is no deformation). The
thermodynamic law tells us that the self-folding is energetically favorable only if the current energy is
smaller than that of the ground state. For a very short rod or a quite low cohesive work, the nondi-
mensional elastocohesive length is very large, the total potential energy 5 can be higher than zero (see
Figure 3), and it is difficult for the driving force to change the configuration from the ground state to the
self-folding state. Therefore, there must exist a critical adhesive length to ensure a stable configuration.
On the basis of (28), the energy requirement 5< 0 leads to

Lec

L
<

1

4
√

4k2− 2[F(k, π)− F(k, θ0)]
. (29)

This energetic constraint condition gives a more strict limitation for the normalized elastocohesive
length, which can only make sense in a much narrower range than that of (27). Beyond this scope, the
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 Figure 3. The dependence relationship between the nondimensional total potential en-
ergy of the system and the normalized elastocohesive length.



SELF-FOLDING OF A SLENDER MICROBEAM AND THIN FILM: AN ELASTICA MODEL 177

racket-like shape of the structure is in a metastable state, as the dashed line shown in Figure 3. In other
words, the elastocohesive length must meet both the energy constraint in (29) (the first vertical line in
Figure 3) and the geometric constraint in (27) (the second vertical line in Figure 3), and the final adhesive
length satisfies 1/4 < l/L < 1/2. This newly presented conclusion indicates that, as soon as the self-
folding configuration is formed, the slender structure must possess an initial adhesive length larger than
L/4. Otherwise, the racket-like morphology due to self-folding is not energetically favorable, and would
seldom happen in reality. The corresponding critical total length to be self-folded is Lcr = 12.11Lec from
(29), nearly equal to the calculated value Lcr = 12.57Lec in [Zhou et al. 2007].

3.3. Deflection. After the adhesive length has been determined, the deflection of the rod can be deter-
mined by

αx = α
∫ s

0
cosφ ds = αl +

∫ θ

θ0

2k sin θ dθ = αl +
√

4k2− 2− 2k cos θ, (30)

αy = α
∫ s

0
sinφ ds = F(k, θ)− F(k, θ0)− 2[E(k, θ)− E(k, θ0)]. (31)

This is the analytical expression on the deflection of the elastica, which is different from the previ-
ous work, which was mostly conducted by numerical methods [Glassmaker and Hui 2004; Tang and
Glassmaker 2010]. Equations (30) and (31) indicate that the nondimensional deflection of the rod is
independent of the material parameters, showing the self-similarity of this racket configuration. The
analytical solution of the displacement normalized by the total length of the beam reads

x
L
=

1
2
−

√
4k2− 2[F(k, π)− F(k, θ0)]

Lec

L
+

√
4k2− 2 Lec

L

(√
4k2− 2− 2k cos θ

)
,

y
L
=

√
4k2− 2

Lec

L
{F(k, θ)− F(k, θ0)− 2[E(k, θ)− E(k, θ0)]},

(32)

and the width of the loop can also be deduced as

2ymax =
√

4k2− 2{F(k, π − θ0)− F(k, θ0)− 2[E(k, π − θ0)− E(k, θ0)]}Lec. (33)

The loop of the racket has the value 2ymax = 1.236Lec = 0.874LEC, which is quite close to the numerical
result of 0.89LEC given in [Py et al. 2007].

Comparison with the experiments in [Py et al. 2007] shows that our exact solution successfully predicts
the sheet wrapping behavior at the macro scale, and, in fact, it also applies to nanoscopic problems. For
example, if the CNT is flexible and long enough, the gain in the potential energy due to van der Waals
interaction (that is, the binding energy) is higher than the elastic strain energy necessary to bend the
CNT. Under these circumferences, the tennis racket-like shaped CNTs can be formed. To simulate the
morphology of self-folded CNTs, we select the following parameters [Mikata 2010]: Young’s modulus
E = 1000 GPa, moment of inertia I = 5.2678× 10−38 m4, binding energy EB = 8.65× 10−11 J/m.
Hence the elastocohesive length is Lec = 24.6778 nm, and the corresponding critical length of the CNT
is Lcr = 298.861 nm. We take the total length as L = 400 nm in computation. The deflection of the
CNT self-folding is determined from (32) and plotted in Figure 4 under two representative values of the
nondimensional elastocohesive length Lec/L = 0.0617 (corresponding to Lec = 24.6778 nm) and 0.05,
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 Figure 4. Normalized deflections of self-folding to a racket for a CNT, where Lec/L =
0.0617 and Lec/L = 0.05, respectively.

respectively. Clearly, the CNT will adhere more tightly with the increase of the cohesive work, and the
width of the loop will shorten further.

4. Conclusions

We have presented an exact elastica model for analyzing the self-folding of slender structures. First, the
potential energy functional of the system was constructed, which included the elastic strain energy and
surface energy. We derived the governing equation and the adhesive boundary condition of the elastica,
which stands for the balance of strain energy and surface energy at the movable boundary. Under the
inextensible condition of the rod, we obtained the closed-form solution for the deflection of the beam in
terms of elliptical integrals.

Furthermore, to ensure the self-folding of the slender structure into a tennis racket shape, the sys-
tem must satisfy both the geometric and energetic constraints. The results show that self-folding is
energetically favorable and thermodynamically stable with the cohesive work being strong enough and
the structure being sufficiently flexible. The calculated result shows that, as soon as the self-folding
configuration is formed, the structure must have an initial adhesive length after contact, of larger than
0.25L . The corresponding critical total length to be self-folded agrees well with the previous result.

This model can be used to investigate both a macroscopic sheet wrapped by a liquid film, and a CNT
self-folded by van der Waals forces. In this paper, our attention is only on planar problems, while an
extension of the presented elastica model to three-dimensional spatial problems, for example, the coiling
of DNA [Manohar et al. 2008; Huang 2011], would be of great interest.
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Appendix A

The transversality condition dealing with movable boundaries was in [Courant and Hilbert 1953, pp. 211–
214] and a more detailed deduction is presented here. A similar discussion can also be found in [Majidi
et al. 2012].

Normally, the forced or fixed boundary conditions of an energy functional are prescribed as

y(0)= y0, y′(0)= y′0; y(a)= ya, y′(a)= y′a. (A.1)

If the energy functional is expressed as

5[y(s, a)] =
∫ a

0
F[s, y(s, a), y′(s, a), y′′(s, a)] ds−

∫ L

a
W ds, (A.2)

then we consider the variation
y(s)= y0(s)+ εY (s), (A.3)

where y0(s) denotes the extreme solution to be found, and s = a is a moving point to be determined.
According to the prescribed boundary condition of (A.1), the extreme and varied solution must fulfill

y0(a0)= ya, y′0(a0)= y′a; y(a)= ya, y′(a)= y′a; Y (0)= Y ′(0)= 0. (A.4)

The unknown a can be expanded as

a(ε)= a0+ ε
da
dε

∣∣∣∣
ε=0
+ O(ε2). (A.5)

The boundary value in (A.3) can also be expanded as

y(a)= y0(a0)+ εy′(a0)
da
dε

∣∣∣∣
ε=0
+ εY (a0)+ O(ε2), (A.6)

y′(a)= y′0(a0)+ εy′′(a0)
da
dε

∣∣∣∣
ε=0
+ εY ′(a0)+ O(ε2). (A.7)

Comparing (A.3), (A.6), and (A.7), one arrives at

Y (a0)=−y′(a0)
da
dε

∣∣∣∣
ε=0
, Y ′(a0)=−y′′(a0)

da
dε

∣∣∣∣
ε=0
. (A.8)

Equations (A.8) give the variation of the “new” end point a(ε) as a function of the variation in y and the
derivatives y′ and y′′ at the “old” end point a0.

Before proceeding, we recall the formula for the derivative for an integral including a parameter α. Let

φ(α)=

∫ b(α)

a(α)
F(x, α) dx . (A.9)
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Its derivative with respect to α is

φ′(α)=

∫ b(α)

a(α)
Fα(x, α) dx + F[b(α), α]b′(α)− F[a(α), α]a′(α). (A.10)

Now let us return to the variation of the energy functional in (A.2). Substituting (A.1), (A.3), (A.4)
and (A.8) into (A.2), and using (A.9), one can obtain the derivative of the functional

d5
dε

∣∣∣∣
ε=0
= [W + F]s=a0

da
dε

∣∣∣∣
ε=0
+

∫ a0

0
[FyY + Fy′Y ′+ Fy′′Y ′′] ds

= [W + F]s=a0

da
dε

∣∣∣∣
ε=0
+ [Fy′Y + Fy′′Y ′]

a0
0 +

∫ a0

0

[
FyY −

d Fy′

ds
Y −

d Fy′′

ds
Y ′
]

ds

= [W + F]s=a0

da
dε

∣∣∣∣
ε=0
+

[
Fy′Y + Fy′′Y ′−

d Fy′′

ds
Y
]a0

0
+

∫ a0

0

[
Fy −

d Fy′

ds
+

d2 Fy′′

ds2

]
Y ds

=

[
W + F − y′Fy′ − y′′Fy′′ + y′

d Fy′′

ds

]
s=a0

da
dε

∣∣∣∣
ε=0
+

[
Fy′Y + Fy′′Y ′−

d Fy′′

ds
Y
]a0

0

+

∫ a0

0

[
Fy −

d Fy′

ds
+

d2 Fy′′

ds2

]
Y ds = 0. (A.11)

The fact that the above integral equals zero leads to the Euler–Poisson equation

Fy −
d Fy′

ds
+

d2 Fy′′

ds2 = 0. (A.12)

The remainder of (A.11) comes to the following form[
W + F − y′Fy′ − y′′Fy′′ + y′

d Fy′′

ds

]
s=a0

da
dε

∣∣∣∣
ε=0
= 0. (A.13)

This expression vanishes for arbitrary da/dε
∣∣
ε=0, which corresponds to arbitrary Y (a0) if the bracket is

zero. Then we can obtain the transversality condition for this variational problem:

W =
[

y′Fy′ + y′′Fy′′ − y′
d Fy′′

ds
− F

]
s=a0

. (A.14)

Appendix B

The detailed variation process on the energy functional proceeds as follows. Taking the variation on the
energy functional, the principle of least potential energy leads to

δ5= δ51+ δ52 = 0. (B.1)
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The first part of the variation is under the assumption that the boundary condition is fixed, namely

δ51 =

∫ L/2

l
[2EI φ̇ δφ̇+ δλ1(ẋ − cosφ)+ δλ2(ẏ− sinφ)

+ λ1 δ ẋ + λ1 sinφ δφ+ λ2 δ ẏ− λ2 cosφ δφ] ds

=

∫ L/2

l
[−2EI φ̈ δφ+ δλ1(ẋ − cosφ)+ δλ2(ẏ− sinφ)

+ λ1 sinφ δφ− λ2 cosφ δφ] ds+ [2EI φ̇ δφ+ λ1 δx + λ2 δy]L/2l . (B.2)

In view of the fixed boundary conditions (3) and (4), (B.2) can be reduced to

δ51 =

∫ L/2

l
[δλ1(ẋ − cosφ)+ δλ2(ẏ− sinφ)− (2EI φ̈− λ1 sinφ+ λ2 cosφ) δφ] ds− λ1 δl. (B.3)

Then we consider the corresponding variation on the movable boundary condition at the point s = l,
which is written as

δ52 =−[EI φ̇2
+ λ1(ẋ − cosφ)+ λ2(ẏ− sinφ)− 2φ̇(EI φ̇)− ẋλ1− ẏλ2]s=l δl −Wc δl

= [EI φ̇(l)2−Wc+ λ1] δl. (B.4)

Considering the arbitrariness of the variation, one can obtain the following governing equation:

2EI φ̈− λ1 sinφ+ λ2 cosφ = 0, (B.5)

and the transversality boundary condition at the moving point:

EI φ̇(l)2−Wc = 0. (B.6)
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DISPERSION OF GUIDED WAVES IN INITIALLY STRESSED LAYERED PLATES

JIANGONG YU AND SHENLEI LI

Based on the theory of the mechanics of incremental deformations, guided wave propagation in multi-
layered plates under initial stresses in the thickness and wave-propagation directions is investigated. The
Legendre polynomial series method is used to solve the coupled wave equations and its convergence is
discussed along with numerical examples. The effects of initial stresses on Lamb-like waves and SH
waves are analyzed, and numerical results show that they are quite distinct. The frequency variation is
not linear with the increase of the initial stresses in both directions. The effects of the initial stress in the
thickness direction are very different from those in the longitudinal direction.

1. Introduction

Because of the limitations of manufacturing and assembling technology, initial stresses in structural
elements, especially in layered structures, are inevitable. The working loads on structures can be taken
as the initial stresses. Thus, the problem of initially stressed structures is very common and it is very
important to study it in both the practical and the theoretical sense.

Wave propagation in structures with initial stresses has received considerable attention. Chen and
Wright [1966] derived the frequency equations for wave propagation in an initially stressed circular
cylinder. Murdoch [1977] considered the effect of interfacial stress on the propagation of Stoneley waves.
Ogden and Sotiropoulos [1995] studied interfacial waves in prestressed layered incompressible elastic
solids. Gei [2008] investigated small-amplitude interfacial waves along a thin film between two pre-
stressed, incompressible elastic media. Rayleigh waves in a magnetoelastic initially stressed conducting
medium with a gravity field were investigated in [El-Naggar et al. 1994]. Abd-Alla and Ahmed [1999]
investigated Love wave propagation in a nonhomogeneous orthotropic elastic layer with initial stress over-
lying a semiinfinite medium. Abd-Alla [1999] presented the effect of initial stress on axisymmetric waves
in an orthotropic hollow cylinder. Qian et al. [2004] studied the effect of initial stress on Love waves
in an elastic substrate with a piezoelectric layer and a piezoelectric substrate with an elastic layer. Du
et al. [2007] studied Love wave propagation in layered magnetoelectroelastic structures with initial stress.
Garg [2007] considered the effect of initial stress on harmonic plane waves in viscoelastic anisotropic
media. Gupta et al. [2012] investigated torsional surface waves in an initially stressed heterogeneous
half-space covered by a homogeneous layer. Bigoni et al. [2008] studied the filtering and band gap
characteristics of a prestressed, stiff layer on an elastic half-space.

The above investigations are all about surface waves, subsurface waves, and interfacial waves. Guided
wave propagation in structures with initial stresses has also received attention. Akbarov and Guliev
[2009] studied axisymmetric longitudinal waves in a prestrained compound circular cylinder. Akbarov
et al. [2011b] studied the case of torsional waves. Akbarov and Guliev [2010] investigated axisymmetric

Keywords: multilayered plate, guided waves, initial stress, orthogonal polynomial, dispersion curves.
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longitudinal waves in a prestrained circular cylinder embedded in a prestrained compressible infinite
medium. These three papers are all about circular cylinders. As they are more common structures,
initially stressed multilayered plates have received more attention. Kayestha et al. [2010] obtained disper-
sion curves for a perfectly bonded prestressed compressible elastic bilayered plate. Wijeyewickrema and
Leungvichcharoen [2009] investigated the influence of imperfections in the contact conditions between
the layers of a prestrained three-layered plate. These two investigations do not allow readers to draw any
concrete conclusions about the influence of the initial strains on the wave propagation velocity or on wave
dispersion in layered media. Akbarov et al. [2008; 2011a] and Zamanov and Agasiyev [2011] investigated
these issues. Akbarov et al. [2008] and Zamanov and Agasiyev [2011] studied the influence of initial
strains in the wave-propagation direction on the Lamb wave dispersion curves. Akbarov et al. [2011a]
studied the influence of initial strains in the thickness direction on the Lamb wave dispersion curves.
Furthermore, small-amplitude waves in prestressed [Rogerson and Sandiford 1996; Gei et al. 2004; Gei
2008] and large deformed [Shmuel et al. 2012] multilayered structures have been given attention.

This paper simultaneously investigates the influence of initial stresses in two directions, the thickness
and wave-propagation directions. Their different effects are discussed. We also illustrate the case of SH
waves. The influences on Lamb waves and on SH waves are very different.

2. Mathematics and formulation of the problem

Consider an orthotropic N-layered plate with initial stresses in two directions, Sxx =−
∑N

n=1 Pnπhn−1,hn (z)
and Szz =−Q, as shown in Figure 1. The rectangular window function is

πhn−1,hn (z)=

{
1, hn−1 ≤ z ≤ hn,

0, elsewhere.

The plate is infinite in the horizontal direction and has a total thickness hN . We place the horizontal
(x, y)-plane of a Cartesian coordinate system on the bottom surface and let the plate be in the positive z
region, where the medium occupies the region 0≤ z ≤ hN .

�

Figure 1. Schematic diagram of a layered plate under initial stresses.
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According to [Biot 1965] (see also [Selim and Ahmed 2006]) the dynamic equations for the plate with
initial stresses are governed by

∂Txx

∂x
+
∂Txy

∂y
+
∂Txz

∂z
−

1
2

(
∂ux

∂z
+
∂uz

∂x

)
∂Sxx

∂z
+ Sxx

∂ωz

∂y
+ (Szz − Sxx)

∂ωy

∂z
= ρ

∂2ux

∂t2 ,

∂Txy

∂x
+
∂Tyy

∂y
+
∂Tyz

∂z
− Szz

∂ωx

∂z
+ Sxx

∂ωz

∂x
= ρ

∂2u y

∂t2 ,

∂Txz

∂x
+
∂Tyz

∂y
+
∂Tzz

∂z
+ (Szz − Sxx)

∂ωy

∂x
− Szz

∂ωx

∂y
= ρ

∂2uz

∂t2 ,

(1)

where

ωx =
1
2

(
∂uz

∂y
−
∂u y

∂z

)
, ωy =

1
2

(
∂ux

∂z
−
∂uz

∂x

)
, ωz =

1
2

(
∂u y

∂x
−
∂ux

∂y

)
. (2)

The relationships between the strain and displacement components can be expressed as

εxx =
∂ux

∂x
, εyy =

∂u y

∂y
, εzz =

∂uz

∂z
,

εyz =
1
2

(
∂u y
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+
∂uz
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)
, εxz =

1
2

(
∂ux

∂z
+
∂uz

∂x

)
, εxy =

1
2

(
∂ux

∂y
+
∂u y

∂x

)
.

(3)

Here ui , Ti j and εi j are the elastic displacements, stresses, and strains, respectively, while ρ is the
density of the plate.

By introducing the rectangular window function π0,hN (z), the stress-free boundary (Tzz = Txz = Tyz = 0
at z = 0, z = hN ) is automatically incorporated in the constitutive relations of the plate [Datta and
Hunsinger 1978]

Txx = C11εxx +C12εyy +C13εzz, Tyy = C12εxx +C22εyy +C23εzz,

Tzz = (C13εxx +C23εyy +C33εzz)π0,hN (z), Tyz = 2C44εyzπ0,hN (z),

Txz = 2C55εxzπ0,hN (z), Txy = 2C66εxy,

(4)

where Ci j are the elastic coefficients.
For the layered plate these coefficients are expressed as

Ci j =

N∑
n=1

Cn
i jπhn−1,hn (z), (5a)

where N is the number of the layers and Cn
i j is the elastic constant of the N-th material. Similarly, the

mass density can be expressed as

ρ =

N∑
n=1

ρnπhn−1,hn (z). (5b)
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For a free harmonic wave being propagated in the x direction in a plate, we assume the displacement
components to be of the form

ux(x, y, z, t)= exp(ikx − iωt)U (z), (6a)

u y(x, y, z, t)= exp(ikx − iωt)V (z), (6b)

uz(x, y, z, t)= exp(ikx − iωt)W (z). (6c)

U (z), V (z), and W (z) represent the amplitude of vibration in the x , y, and z directions, respectively,
while k is the magnitude of the wave vector in the propagation direction and ω is the angular frequency.

Substituting (3)–(6) into (1), the governing differential equations in terms of displacement components
can be obtained:

U ′′
N∑

n=1

(Cn
55+ 0.5Pn − 0.5Q)πhn−1,hn (z)+U ′

( N∑
n=1

(Cn
55+ 0.5Pn)πhn−1,hn (z)

)′
− k2U

N∑
n=1

(Cn
11+ Pn)πhn−1,hn (z)+ ikW ′

N∑
n=1

(Cn
13+Cn

55+ 0.5Pn + 0.5Q)πhn−1,hn (z)

+ ikW
( N∑

n=1

(Cn
55+ 0.5Pn)πhn−1,hn (z)

)′
=−ω2U

N∑
n=1

ρnπhn−1,hn (z), (7a)

V ′′
N∑

n=1

(Cn
44− 0.5Q)πhn−1,hn (z)+ V ′

( N∑
n=1

Cn
44πhn−1,hn (z)

)′
− k2V
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(Cn
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=−ω2V
N∑

n=1

ρnπhn−1,hn (z), (7b)

W ′′
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n=1

(Cn
33+ Q)πhn−1,hn (z)+ ikU ′

N∑
n=1

(Cn
13+Cn
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− k2W
N∑
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)′
+ ikU
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n=1

(Cn
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)′
=−ω2W

N∑
n=1

ρnπhn−1,hn (z) (7c)

where the superscript ( )′ is the partial derivative for z. Obviously, (7b) is independent of the other
two equations. It represents the antiplane SH waves. The other two, (7a) and (7c), control the in-plane
Lamb-like waves.

To solve the coupled wave (7), we expand the field quantities of each layer into one specific Legendre
orthogonal polynomial series:

• In the first layer

u1
a =

∞∑
m=0

pa
m,1 Q1

m(z) exp(ikx), (8a)
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with

Q1
m(z)=

√
2m+1

h1
Lm

( 2
h1

z− 1
)

and

u1
a(z = h1)= u1,h1

a =

∞∑
m=0

pa
m,1 Q1

m(z = h1) exp(ikx).

• In the second layer

u2
a = u1,h1

a + (z− h1)

∞∑
m=0

pa
m,2 Q2

m(z) exp(ikx), (8b)

with

Q2
m(z)=

√
2m+1
h2−h1

Lm

(
2

h2−h1
z−

h2+ h1

h2− h1

)
and

u2
a(z = h2)= u2,h2

a = u1,h1
a + (h2− h1)
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m=0

pa
m,2 Q2

m(z = h2) exp(ikx).

• The subsequent layers follow as such.

• In the last layer

uN
a = uN−1,hN−1

a + (z− hN−1)

∞∑
m=0

pa
m,N QN

m (z) exp(ikx), (8c)

with

QN
m (z)=

√
2m+1

hN−hN−1
Lm

(
2

hN−hN−1
z−

hN + hN−1

hN − hN−1

)
and

uN
a (z = hN )= uN ,hN

a = uN−1,hN−1
a + (hN − hN−1)

∞∑
m=0

pa
m,N QN

m (z = hN ) exp(ikx)

and so on.

Here, Lm is the m-th order Legendre polynomial. Theoretically, m runs from 0 to ∞. In practice,
the summation over the polynomials in (8) can be truncated at some finite value m = M , at which
higher-order terms become negligible.

The forms of ua (a = 1, 2, 3) and (ux , u y, uz) are chosen in order to automatically incorporate in
the calculation the continuity conditions at the interfaces relative to the components of the mechanical
displacement.
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Equation (7) is multiplied by Q1∗
j (z), Q2∗

j (z), . . . , QN∗
j (z), with j running from 0 to M , so that inte-

gration over z from 0 to hN yields the following 3N (M + 1) equations:

nA j,m
11 p1

m,n +
nA j,m

12 p2
m,n +

nA j,m
13 p3

m,n =−ω
2
·

nM j
m p1

m,n, (9a)
nA j,m

21 p1
m,n +

nA j,m
22 p2

m,n +
nA j,m

23 p3
m,n =−ω

2
·

nM j
m p1

m,n, (9b)
nA j,m

31 p1
m,n +

nA j,m
32 p2

m,n +
nA j,m

33 p3
m,n =−ω

2
·

nM j
m p1

m,n. (9c)

where nA j,m
αβ (α, β = 1, 2, 3) and nM j

m are the elements of a nonsymmetric matrix. They can be easily
obtained according to (7).

Equation (9) can be written as
nA j,m

11
nA j,m

12
nA j,m

13
nA j,m

21
nA j,m

22
nA j,m

22
nA j,m

31
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32
nA j,m

33




p1
m,n

p2
m,n

p3
m,n

=−ω2

nM j
m 0 0

0 nM j
m 0

0 0 nM j
m




p1
m,n

p2
m,n

p3
m,n

 . (10)

So, (10) yields a form of the eigenvalue problem. The eigenvalue ω2 gives the angular frequency of
the guided wave; eigenvectors pi

m,n (i = 1, 2, 3) allow the components of the particle displacement to
be calculated. According to V ph = ω/k and V g = dω/dk, the phase velocity and group velocity can
be obtained. Equation (10) can be solved numerically making use of standard computer programs for
the diagonalization of nonsymmetric square matrices. 3N (M + 1) eigenmodes are generated from the
order-M expansion. Acceptable solutions are those eigenmodes for which convergence is obtained as
M is increased. We determine that the eigenvalues obtained are converged when a further increase in
the matrix dimension does not result in a significant change in the eigenvalue. We consider 0.5% as a
significant change.

3. Numerical results

Based on the foregoing formulations, computer programs have been written using Mathematica to cal-
culate the dispersion curves. We take common ceramic-metal (silicon nitride (N) and steel (S)) layered
plates as examples. Their material properties are listed in Table 1. Because SH waves and Lamb-like
waves are independent, we will discuss them respectively.

3.1. Convergence of the method. In order to verify the convergence of the method, the Lamb-like wave
and SH wave dispersion curves for a three-layered plate under an uniform initial stress Q = 20 GPa are
calculated for M = 6, 7, 8, and 9, as shown in Figure 2. The stacking sequence and thickness (m) of the
plate are N/S/N-1/2/1.

Material C11 C13 C33 C44 C55 C66 ρ

Steel 282 113 282 84 84 84 7.932
Silicon nitride 380 120 380 130 130 130 2.37

Table 1. The material properties of the layered plate. Ci j values are in units of 109 N/m2,
ρ values in 103 kg/m3.
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Figure 2. Dispersion curves for the N/S/N-1/2/1 plate under uniform initial stress Q =
20 GPa for various M values. (a) SH waves and (b) Lamb-like waves.

For SH waves, the first three modes are convergent when M = 6; the first four modes are convergent
when M = 7 and 8. So, we think that at least the first M/2 SH modes are convergent. Similarly, for
Lamb-like waves, the first three modes are convergent when M = 6; the first four modes are convergent
when M = 7 and 8. So, we believe that at least the first M /2 Lamb-like wave modes are convergent.

For all the numerical calculations presented below, the series expansion is truncated at M = 16.

3.2. Effects of the initial stresses on Lamb-like waves. Figure 3 shows the phase velocity dispersion
curves for the N/S/N-1/2/1 plate under different uniform initial stresses. Figure 3a is for the plate under
initial stresses Q and Figure 3b is for the plate under uniform initial stresses P , that is, P1 = P2 = P3.
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 (a)  (a)

(b)  (b)

Figure 3. Lamb-like wave phase velocity spectra for the N/S/N-1/2/1 plate, (a) under
initial stresses Q and (b) under uniform initial stresses P .

According to Figure 3a, a tensile stress in the thickness direction usually makes the wave speed lower
at low frequencies (except for the first mode). As the frequency increases, a tensile stress makes the
wave speed higher. In many cases, the effect of the tensile stress is contrary to that of the compressive
stress. Comparing the two figures, we can see that the effect of the initial stress P is quite different from
that of the initial stress Q. In many cases, the effect of the initial stress P is almost contrary to that of
the initial stress Q.

Figure 3 reflects the relation between the effect of the initial stress and frequency. We observe the
relation between the frequency (or wave speed) and the magnitudes of initial stress Q and P , as shown
in Figures 4a and 4b, which show the frequency versus initial stress Q and P at k = 1 rad/m. In fact,
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(a)  (b) (b)
(a) (b)

Figure 4. Lamb-like wave frequency curves versus initial stresses for the N/S/N-1/2/1
plate at k = 1 rad/m, with (a) uniform initial stresses Q and (b) uniform initial stresses P .

these two figures also reflect the relation between the wave speed and initial stress because of the fixed
wave number. It can be seen that with the increase of the initial stresses in both directions, the frequency
variation is not linear and the varying trends of each mode are different. The effects of the compressive
stress and tensile stress do not always contrast. For instance, for mode 2, the highest frequency is at
about the initial stress Q = 0 and P = 0; both compressive stress and tensile stress make the wave speed
and frequency lower.

In the above examples, the initial stresses in the wave-propagation direction are uniform, that is,
P1 = P2 = P3. Now we illustrate the differences in the effects of P1 and P2. In order to facilitate the
comparison, we take an equal-thickness layered plate, N/N/N-1/1/1, as an example. We calculate three
cases: P1 = P2 = P3 = 0; P1 =−80 GPa, P2 = P3 = 0; and P2 =−80 GPa, P1 = P3 = 0. The obtained
dispersion curves and the frequency-stress curves are shown in Figures 5 and 6. It can be seen that the
effects of P1 and P2 are different. We cannot conclude that the effect of one is stronger than that of
another one. For different modes, the extents of their influence are different, and vary as the frequency
increases.

3.3. Effects of the initial stresses on SH waves. This section concerns the effects of the initial stresses
on SH waves. Figures 7 and 8 show the dispersion curves for the N/S/N-1/2/1 plate under different
uniform initial stresses P and Q. It can be seen that the effects of initial stresses are very regular. For the
case of initial stress in the wave-propagation direction, compressive stress always makes the wave speed
lower but tensile stress makes the wave speed higher. At small wavenumbers, the effect is weak. As
the wavenumber increases, the effect becomes stronger. The effect of initial stresses Q is quite different
from that of initial stresses P except that compressive stress still makes the wave speed lower. For a plate
with the initial stress in the thickness direction, the effect of initial stresses does not change significantly
as the wavenumber increases, but it becomes stronger as the mode order increases and it is very weak
on the first mode.
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Figure 5. Lamb-like wave phase velocity spectra for the N/N/N-1/1/1 plate under initial
stresses P; 1 layer stress represents P1 = −80 GPa, P2 = P3 = 0; and 2 layer stress
represents P2 =−80 GPa, P1 = P3 = 0.

(a)  (b) (b)  
(a) (b)

Figure 6. Lamb-like wave frequency curves versus initial stresses for the N/N/N-1/1/1
plate at k = 1 rad/m, with (a) initial stresses P1 and (b) initial stresses P2.

Figure 9 illustrates the curves of frequency with initial stresses P and Q for the N/S/N-1/2/1 plate at
k = 1 rad/m. It can be seen that with the increase of the initial stresses in both directions, the frequencies
of all modes approximately linearly lower. The effect of compressive stress is entirely contrary to that of
tensile stress. For the initial stresses in the wave-propagation direction, the slopes of the frequency curves
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(a) (b)(a)

(b)  (b)

Figure 7. SH wave dispersion curves for the N/S/N-1/2/1 plate under uniform initial
stresses P; (a) phase velocity spectra and (b) frequency spectra.

for all modes are similar. For the initial stresses in the thickness direction, the slope of the frequency
curve for the first mode is very small. As the mode order increases, the slope becomes larger.

4. Conclusions

Following [Biot 1965], guided wave propagation in layered plates under initial stresses in the thickness
and wave-propagation directions are investigated. The Legendre polynomial series method is used to
solve the coupled wave equations. The effects of the initial stresses on the dispersion curves are discussed.
Based on the calculated results, the following conclusions can be drawn:

(1) The effect of the initial stress on Lamb-like waves is quite different from that on the SH waves. The
effect on SH waves is very regular.
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(a)  (b)(a)

�

 (b)  (b)

Figure 8. SH wave dispersion curves for the N/S/N-1/2/1 plate under initial stresses Q;
(a) phase velocity spectra and (b) frequency spectra.

(a)  (b) (b)  
(a) (b)

Figure 9. SH wave frequency curves versus initial stresses for the N/S/N-1/2/1 plate at
k = 1 rad/m, with (a) uniform initial stresses Q and (b) uniform initial stresses P .
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(2) The effect of the compressive stress on Lamb-like waves is not always contrary to that of the tensile
stress. But the effect of the compressive stress on SH waves is almost entirely contrary to that of
the tensile stress.

(3) For Lamb-like waves, the effect of the initial stress in the thickness direction usually is contrary to
that of the initial stress in the wave-propagation direction. However, for SH waves, the effects of
initial stresses in the two directions do not contrast, but their influential patterns are different.

(4) For Lamb-like waves, with the increase of the initial stresses in both directions, the frequency
variation is not linear and the varying trends of every mode are different. For SH waves, the curves
of the frequency versus the stresses are approximately linear for all modes.
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EMPIRICAL MODELS FOR PREDICTING PROTECTIVE PROPERTIES
OF CONCRETE SHIELDS AGAINST HIGH-SPEED IMPACT

GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

We have accumulated practically all the information available in the literature regarding empirical mod-
els used for describing high-speed normal penetration of rigid strikers into concrete shields, including
recently posed models. The description of the models is unified; this includes recommendations on
the range of applicability of the models and additional restrictions implied by the used mathematical
formulations. The description of the models is quite comprehensive, and allows their direct application.
All the relevant formulas are presented in SI units. In addition to this extensive survey we include
the results of original comparative investigations on the performance of various models for describing
penetration into semiinfinite and finite-thickness shields.

Nomenclature

b Thickness of the shield

bperf Perforation thickness

bscab Scabbing thickness

BLV Ballistic limit velocity

c Maximum aggregate size of concrete

c× Half-size of the concrete aggregate

CRH Caliber radius head of a ogive-nosed projectile

d Maximum diameter of impactor, reference size

DOP Depth of penetration

ē Parameter, (24)

E Young’s modulus of material of projectile

Esteel Young’s modulus of steel

f ′c Unconfined compressive strength (Pa)

H Depth of penetration

H (i)
min,H (i)

max Parameters in functions 9perf(H) and 9scab(H), (A.1)

H (i)
∗ Parameter, (A.4)

Hexp DOP obtained in experiment

Keywords: protection, concrete, shield, penetration, impact, scabbing, perforation, ballistic limit.
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I Parameter, (36)

I∗ Parameter, (45)

I (i)min,I (i)max Parameters of penetration model, (35)

J Parameter defined in (39)

KCRH = ρog/(2R), CRH of the ogive-nosed projectile

Kshape Nose shape coefficient of impactor in Young’s model

K (1)
shape Nose shape coefficient of impactor, (18)

K (2)
shape Nose shape coefficient of impactor, (25)

K (3)
shape Nose shape coefficient of impactor, (54)

K (4)
shape Nose shape coefficient of impactor, (39)

m Mass of impactor

vimp Impact velocity

vres Residual velocity

v0 Reference velocity, 1000 m/s

vsl Scabbing limit velocity

vbl Ballistic limit velocity

αpen, βpen, γpen Parameters of penetration model, (41)

αperf, βperf, γperf Parameters of perforation model, (42)

αscab, βscab, γscab Parameters of scabbing model, (43)

α(i), β(i), γ (i) Parameters in functions 9perf(H) and 9scab(H), (A.1)

α̃
(i)
pen, β̃(i)pen Parameters of penetration model, (35)

µ Parameter of model (can be different for different models)

µ̃ Parameter, (36)

4perf Function determining dependence on b̄perf versus v̄imp

4scab Function determining dependence on b̄scab versus v̄imp

ρsh Density of concrete

ρog Radius of the arc of the ogive

φ Function determining dependence on H versus v̄imp

9perf Function determining dependence on b̄perf versus H

9scab Function determining dependence on b̄scab versus H

A bar over a parameter indicates a dimensionless parameter. Parameters having dimensions of length
are normalized by the diameter of impactor d while parameters having dimensions of velocity are nor-
malized by the characteristic velocity v0 = 1000 m/s.
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1. Introduction

Hereafter we use the term “empirical model” for formulas describing penetration which have been
obtained by statistical analysis of experimental results and are not based on physical laws. Relations
between “integral characteristics” of penetration, namely, the impact velocity and the depth of penetration
(DOP) for a semiinfinite shield and the ballistic limit velocity (BLV) and the thickness of the plate for a
shield having a finite thickness, are examples of these empirical models.

Engineering models of penetration into concrete shields, including empirical models, can be found
in the dedicated surveys [Kennedy 1976; Adeli and Amin 1985; Williams 1994; Teland 1998; Li et al.
2005]. Reviews and research papers [Walter and Wolde-Tinsae 1984; Brown 1986; Corbett et al. 1996;
Dancygier and Yankelevsky 1996; Yankelevsky 1997; Dancygier 2000; Linderman et al. 1974; Ben-
Dor et al. 2005; Vossoughi et al. 2007; Guirgis and Guirguis 2009; Daudeville and Malécot 2011],
monographs [Bulson 1997; Bangash and Bangash 2006; Ben-Dor et al. 2006; Carlucci and Jacobson
2007; Bangash 2009; Szuladziński 2009], and a publication of the Department of Energy [2006] also
include information on this topic. Few of the studies compare predictions of models with experimental
results.

In this study we have accumulated practically all the available information in the literature regarding
empirical models which are used for describing high-speed normal penetration of rigid strikers into
concrete shields, including models formulated in recent years. This comprehensive survey also has the
following characteristics: the description of the models is unified; it includes recommendations on the
range of applicability of the models and additional restrictions implied by the used mathematical formu-
lations; the descriptions of the models are quite comprehensive, allowing for their direct application; and
all the relevant formulas are presented in SI units.

In addition to this extensive survey we include the results of original comparative investigations on the
performance of various models for describing penetration into semiinfinite and finite-thickness shields.

2. Basic definitions

The local response of a shield is initiated with spalling (Figure 1a) and subsequently can result in penetra-
tion, scabbing of the shield material from the back face of the shield (Figure 1b), and eventual perforation
of the shield (Figure 1c), transporting the projectile through the shield [DOE 2006].

We consider normal penetration (with zero angle of attack) of rigid (nondeformable) projectiles into a
shield. If otherwise not indicated, we consider lightly reinforced concrete shields and flat-nosed projec-
tiles. Formulas given for projectiles with a circular cross-section may be applied for projectiles having
more complicated shapes by replacing the diameter by the equivalent diameter, based on the perimeter
[Walter and Wolde-Tinsae 1984; Barr 1990].

Hereafter the following definitions are used [Kennedy 1976; DOE 2006].

The depth of penetration (DOP), H , is defined as the depth to which a projectile penetrates into a massive
(semiinfinite) concrete shield, for a given impact velocity.

The scabbing thickness, bscab, for a given impact velocity, is defined as the shield thickness that is just
large enough to prevent the peeling off of the back face of the panel opposite the face of impact. In other
words, scabbing thickness is the minimum thickness of the shield required to prevent scabbing.



202 GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

 Scabbing 

b) Scabbing 

Spalling 

a) Penetration and spalling c) Perforation

H

(a) (b) (c)

Figure 1. Local response of a shield: (a) penetration and spalling, (b) scabbing, and (c) perforation.

The perforation thickness, bperf, for a given impact velocity, is defined as the shield thickness that is just
large enough to allow a missile to emerge from the back face of the shield with zero exit velocity. In other
words, the perforation thickness is the minimum thickness of the shield required to prevent perforation.

The ballistic limit velocity (BLV), vbl, is defined as the minimum impact (initial) velocity required to
perforate a shield with a given thickness.

Similarly to the BLV, we introduce the scabbing limit velocity, vsl, as the minimum impact (initial)
velocity required for scabbing a shield with a given thickness.

Note that [DOE 2006] recommends, for practical calculations of the shield thicknesses that prevent
scabbing and perforation, using values of bscab and bperf obtained from empirical formulas and increased
by 10% and 20%, respectively.

We assume that bscab < bperf in the range of validity of the models.

3. Unified approach

An empirical model is determined by a triad of equations having the form

H = φ(v̄imp), b̄perf =9perf(H), b̄scab =9scab(H), (1)

where φ, 9perf, and 9scab are known functions. Analysis of penetration into a finite-thickness shield
involves the DOP into a semiinfinite shield, which is not directly related with the problem. Therefore, it
is convenient to present the model for a finite-thickness shield by a pair of equations that are obtained
after eliminating H from (1):

b̄perf =4perf(v̄imp), b̄scab =4scab(v̄imp), (2)

where
4perf(z)=9perf(φ(z)), 4scab(z)=9scab(φ(z)). (3)
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Taking into account that 4perf and 4scab are increasing functions, (2) and (3) yield the formulas for
v̄bl and v̄sl:

v̄bl =4
−1
perf(b̄), v̄sl =4

−1
scab(b̄). (4)

Figure 2 illustrates the derivation of the first relationship in (4). The curve described by the equation
b̄ = 4perf(v̄imp) separates the domain of parameters v

⇀

imp and b
⇀

into two subdomains. The subdomain
under the curve corresponds to perforation of the shield while the subdomain above the curve corresponds
to nonperforation. Let b̄0 be an arbitrary thickness of the shield. Inspection of Figure 2 shows that the
minimum value of v

⇀

imp for which perforation occurs (by definition this value equals the BLV) is 4−1
perf(b̄0),

and, consequently, the first relationship in (4) is valid. The validity of the second relationship in (4) can
be proved similarly.

Therefore a model for a plate having a finite thickness is determined by a pair of relationships given
by (2) or (4). Hereafter we use this fact for shortening descriptions of models.

Some typical classes of penetration models are considered in the Appendix. This will allow us in
describing particular models to present only the values of the coefficients and avoid rewriting bulky
formulas.

4. Modified Pétry formulas

The Pétry formula [Pétry 1910] has a modified version [Kennedy 1976] which can be written similarly
to [Li et al. 2005]:

H = φ(v̄imp)=
0.0795K pm

d3 log10(1+ 50v̄2
imp), (5)

where K p is a coefficient depending on the type of the concrete. The coefficients in (5) are selected so
that the dimensional parameters m and d are measured in SI units while British units (ft3/lb) are retained
for K p in order to use generally adopted values of this parameter.

Amirikian [1950], with reference to [Samuely and Hamann 1939], prescribed the following values
of the parameter K p for different types of concrete: 0.00799 for massive concrete, 0.00426 for normal
reinforced concrete, and 0.00284 for specially reinforced concrete. This version of the model is called the
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Figure 2. BLV and perforation thickness.
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modified Pétry I model by Kennedy [1976], who recommended using an additional dependence between
K p and f ′c . For reinforced concrete this dependence has been presented in a graphical form in [Kennedy
1976], in what is called a modified Pétry II model. A convenient analytical form of this dependence was
suggested in [Walter and Wolde-Tinsae 1984]:

K p = 6.34 · 10−3 exp(−0.2937 · 10−7 f ′c). (6)

Amirikian [1950] suggested taking into account the thickness of the shield when the DOP is calculated.
He recommended using (5) if b̄ ≥ 3H , assumed that perforation begins when b̄ = 2H , that is,

b̄perf =9perf(H)= 2H , (7)

and proposed, instead of (5), the following expression for the DOP, H×, in the intermediate domain,
2H ≤ b̄ ≤ 3H :

H× =3(H)= [1+ exp(4(b̄/H − 2))]H . (8)

Kennedy [1976] proposed using the modified Pétry formulas for the scabbing thickness:

b̄scab =9scab(H)= 2.2H . (9)

Equations (7) and (9) can be written in the form given by (A.5) with the following coefficients: α(1)
perf =

α
(1)
scab = γ

(1)
perf = γ

(1)
scab = 0, β(1)

perf = 2.0, β(1)
scab = 2.2, and n = 1.

Taking into account the modifications proposed by Amirikian [1950] the expression for the DOP for
a shield with thickness b̄ can be written as

H× =


φ(v̄imp) if v̄imp ≤ φ

−1(b̄/3),

3(φ(v̄imp)) if φ−1(b̄/3) < v̄imp < φ
−1(b̄/2),

perforation if v̄imp ≥ φ
−1(b̄/2).

(10)

Other basic ballistic characteristics are determined by (A.5), (A.6), and (A.9). Amde et al. [1997]
presented the following the Pétry formula for the residual velocity referring to Gilbert Associates:

vres = vimp
√

1− (0.5b/H). (11)

It should be noted that classifying the Pétry formulas, (5), as empirical models is done here partly in
order to follow tradition. Indeed, their form implies that these formulas were derived by integrating the
equation of motion of the penetrator under the assumption of two-term quadratic dependence (without
the linear term) of drag force on velocity.

5. Ballistic research laboratory (BRL) formulas

The BRL formula does not take into account the influence of the unconfined compressive strength on the
protective properties of a shield, and the value f ′c = 20.7 MPa was assumed [Kennedy 1976]. In order
to remedy this shortcoming the modified BRL formula was suggested. Kennedy [1976] emphasized that
this modified formula, in contrast to the common approach, directly predicts the perforation thickness:

b̄perf =4perf(v̄imp)=
13m

d2.8
√

f ′c
v̄1.33

imp , (12)



PREDICTING PROTECTIVE PROPERTIES OF CONCRETE SHIELDS AGAINST HIGH-SPEED IMPACT 205

while the scabbing thickness can be estimated as

b̄scab = 2b̄perf. (13)

The BLV and scrubbing limit velocity can be calculated using the formulas

v̄bl =4
−1
perf(b̄), v̄sl =4

−1
perf(b̄/2). (14)

Chelapati et al. [1972] obtained a similar result starting from the expression for the DOP. Their formula
for the DOP, H , coincides with the right-hand side of (12) divided by 1.3, which yields b̄perf = 1.3H .

6. Whiffen formula

Bulson [1997], with reference to [Whiffen 1943], suggested the model

H = φ(v̄imp)=
2.6m

d3c̄0.1
√

f ′c
(1.87v̄imp)

ñ, ñ =
97.5

4
√

f ′c
, c̄ = c

d
, (15)

where c is the maximum aggregate size of concrete.
The latter equation is based on experiments with ogival-nosed projectiles conducted for the following

ranges of parameters: 0.8 ≤ KCRH ≤ 3.5, 5 MPa< f ′c < 70 MPa, 12 mm< d < 965 mm, 0.02< c̄ < 2,
vimp < 1130 m/s, 136 g< m < 10, 000 kg. This formula fits the experimental data within a scatter band
of the order of ±15%.

Note that Teland [1998] referred to this model as the “TBAA formula”.

7. Army corporations of engineers (ACE) formula

The ACE formula [ACE 1946; Gwaltney 1968], written using variables H and v̄imp and SI units, reads

H = φ(v̄imp)=
11.1m

d2.785
√

f ′c
v̄1.5

imp+ 0.5. (16)

There are two versions of the dependencies between the perforation/scabbing thickness and the DOP
which differ only slightly [Gwaltney 1968; Chelapati et al. 1972; Li et al. 2005]. Following [Kennedy
1976] we have selected the version of this formula with the coefficients shown in Table 1, which is
associated with the model given by (A.1).

Formulas for the other basic ballistic characteristics are given by (A.5), (A.6), and (A.9).

α(1) β(1) γ (1) H (1)
min H (1)

max

Perforation 1.24 1.32 0 1.35 13.5
Scabbing 1.36 2.12 0 0.65 11.75

Table 1. ACE model for perforation and scabbing. Coefficients in (A.1), n = 1.



206 GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

8. Ammann and Whitney formula

The Ammann and Whitney formula was suggested for predicting perforation by small explosively gen-
erated fragments having impact velocity larger than 300 m/s [Kennedy 1976]:

H = φ(v̄imp)=
15K (1)

shapem

d2.8
√

f ′c
v̄1.8

imp, (17)

where

K (1)
shape =


0.72 for a flat nose,

0.84 for a blunt nose,

1.00 for an average nose (spherical end),

1.14 for a very sharp nose.

(18)

9. Modified national defense research committee (NDRC) formula

The modified NDRC formula can be written in a commonly accepted form as an implicit function with
respect to the DOP [NDRC 1946; Kennedy 1976]. Using the dimensionless variables H and v̄imp and SI
units for the dimensional parameters this formula reads

G(H)= µv̄1.8
imp, (19)

where

µ= 9.55
K (1)

shapem

d2.8
√

f ′c
, (20)

G(H)=

{
0.25H 2 if H ≤ 2,

H − 1 if H > 2,
(21)

and the effect of the unconfined compressive strength is included in the model following the suggestion
of Kennedy [1976].

In the universal form given by (1), this model can be rewritten as

H = φ(v̄imp)=

{
2
√
µv̄0.9

imp if v̄imp ≤ 1/µ5/9,

µv̄1.8
imp+ 1 if v̄imp > 1/µ5/9.

(22)

The modified NDRC model for perforation and scabbing [Kennedy 1976] can be written in the form
of (A.1) with coefficients from Table 2. The dependencies b̄perf and b̄scab versus v̄imp as well as v̄bl and
v̄sl versus b̄ are given by (A.5)–(A.9), where

φ−1(z)=

{
(0.5z/

√
µ)10/9 if z ≤ 2,

[(z− 1)/µ]5/9 if z ≥ 2.
(23)

Inspection of Table 2 shows that the inequalities given by (A.4) are satisfied.
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i β(i) α(i) γ (i) H (i)
min H (i)

max H (i)
∗

Perforation 1 0 3.19 0.718 – 1.35 2.22
2 1.32 1.24 0 1.35 13.5 –

Scabbing 1 0 7.91 5.06 – 0.65 0.78
2 2.12 1.36 0 0.65 11.75 –

Table 2. Modified NDRC model for perforation and scabbing. Coefficients in (A.1), n = 2.

According to [DOE 2006], the NDRC formula was derived for the following ranges of impact param-
eters: vimp > 152 m/s, 2.54 cm< b < 40.6 cm and b/d ≥ 3. However, as suggested by Kennedy [1976],
this formula can be extrapolated beyond these ranges.

10. Kar’s formula

Kar’s formula [Kar 1978; Bangash and Bangash 2006] is an improved modified NDRC formula that
takes into account the size of the aggregates of concrete and the type of the projectile material.

In the universal form given by (1), Kar’s formula is given by (22) where

µ= 9.55
K (2)

shapemē6.25

d2.8
√

f ′c
, ē =

( E
Esteel

)0.2
, (24)

and E and Esteel are the Young’s moduli of the material of the projectile and steel. The nose shape
parameter, K (2)

shape, is calculated as

K (2)
shape =

{
0.72 for a flat-nosed projectile,

min(K̂nose, 1.17) for an ogive-nosed projectile,
(25)

where
K̂nose = 0.72+ 0.25

√
KCRH− 0.25. (26)

Kar’s model for perforation and scabbing can be written in the form of (A.1) where the coefficients
are presented in Table 3 and c̄× is the half-size of the concrete aggregate.

The dependence of b̄perf and b̄scab on v̄imp, and of v̄bl and v̄sl on b̄, is given by (A.5)–(A.9) with φ−1(z)
calculated from (23).

i β(i) α(i) γ (i) H (i)
min H (i)

max H (i)
∗

Perforation 1 c̄× 3.19 0.718 – 1.35 2.22
2 c̄×+ 1.32 1.24 0 1.35 13.5 –

Scabbing 1 c̄× 7.91ē 5.06ē – 0.65 0.71
2 c̄×+ 2.12ē 1.36ē 0 0.65 11.75 –

Table 3. Kar’s model for perforation and scabbing. Coefficients in (A.1), n = 2.
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11. Healey–Weissman formula

The Healey–Weissman penetration formula [Healey and Weissman 1974; Li et al. 2005] can be consid-
ered as a version of Kar’s formula where the expression for µ given by (24) is replaced by

µ= 10.95
( E

Esteel

)K (2)
shapem

d2.8
√

f ′c
. (27)

The formula for the residual velocity reads [Healey et al. 1975; Kar 1979]:

vres

vimp
=

{
[1− (b/bperf)

2
]
0.555 if b ≤ 2d,

[1− (b/bperf)]
0.555 if b > 2d.

(28)

12. Bechtel formula

The Bechtel Corporation proposed the following formula for scabbing thickness that is valid for a hard
cylindrical projectile [Rotz 1975; 1977; Bangash and Bangash 2006]:

b̄scab =4scab(v̄imp)=
1.23 · 103m0.4

d1.2
√

f ′c
v̄0.5

imp. (29)

This equation is based on twelve tests with solid missiles and nine tests with half-pipe missiles. The
tests were conducted for the following ranges of parameters: [Teland 1998]: 37 m/s< vimp < 144 m/s,
20.3 cm< d < 21.8 cm, and 30.5 cm< b < 61 cm; and 7.6 cm< b < 22.9 cm, 30 MPa< f ′c < 40 MPa,
and 3.6 kg< m < 97.1 kg.

13. Stone and Webster formula

The following formula was proposed for calculating the scabbing thickness [Jankov et al. 1977; Li et al.
2005; Bangash and Bangash 2006]:

b̄scab =4scab(v̄imp)=
100
d

( m
K b̄

)1/3
v̄

2/3
imp, (30)

where K b̄ is the dimensionless coefficient which can be approximated by the formula [Li et al. 2005]

K b̄ = 0.013b̄+ 0.33, 1.5≤ b̄ ≤ 3. (31)

The equation is based on seven tests with solid missiles and 21 tests with half-pipe missiles. The
tests were conducted for the following ranges of parameters [Teland 1998]: 27 m/s< vimp < 157 m/s,
4.1 cm< d < 8.9 cm, 11.4 cm< b < 15.2 cm, 22 MPa< f ′c < 30 MPa, and 1.9 kg< m < 12.8 kg.

14. CEA-EDF formula

The CEA-EDF (Commissariat à l’énergie atomique et Électricité de France) formula [Berriaud et al.
1978] reads:

b̄perf =4perf(v̄imp)=
146m0.5

d1.5( f ′c)0.375ρ0.125
c

v̄0.75
imp , (32)
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where ρsh is the density of concrete.
This model is valid in the following ranges of parameters: vimp < 200 m/s, 150 kg/m3 < ρsh <

300 kg/m3, 20 kg< m < 300 kg, 0.35< b/d < 4.17, and 23 MPa< f ′c < 46 MPa.

15. Degen’s formula

Based on the available experimental data, Degen [1980] suggested a formula for the perforation thickness
that can be written in the form given by (A.1) with the coefficients shown in Table 4, where H is
determined from the modified NDRC model, (22). The dependence v̄sl versus b̄ is given by (A.6) where
φ−1(z) is determined by (23).

The tests were conducted in the following ranges of parameters: 25 m/s< vimp < 310 m/s, 15 kg<
m < 134 kg, 28 MPa < f ′c < 43 MPa, 10 cm < d < 31 cm, and 15 cm < b < 60 cm. The concrete
reinforcement varied in the range between 160 kg/m3 and 350 kg/m3, and penetrators having flat, conical,
and hemispherical nose shapes were used.

16. Chang’s formula

Chang’s formulas [Chang 1981] for flat-nosed projectiles penetrating into a reinforced concrete shield
read:

b̄perf =4perf(v̄imp)=
497
d1.5

√
m
f ′c
v̄0.75

imp , (33)

b̄scab =4scab(v̄imp)=
321
d1.2

(
m
f ′c

)0.4

v̄
2/3
imp. (34)

These formulas are based on experiments conducted in the following ranges of parameters: 17 m/s<
vimp<312 m/s, 110 g<m<344 kg, 23 MPa< f ′c <46 MPa, 5.1 cm<b<61 cm, and 2 cm<d<30.5 cm.

17. Haldar–Miller formula

The Haldar–Miller model for penetration [Haldar and Miller 1982] can be described as

H = φ(v̄imp)=


α̃
(1)
pen I + β̃(1)pen if

√
I (1)min/µ̃≤ v̄imp ≤

√
I (1)max/µ̃,

α̃
(2)
pen I + β̃(2)pen if

√
I (2)min/µ̃≤ v̄imp ≤

√
I (2)max/µ̃,

α̃
(3)
pen I + β̃(3)pen if

√
I (3)min/µ̃≤ v̄imp ≤

√
I (3)max/µ̃,

(35)

i β(i) α(i) γ (i) H (i)
min H (i)

max H (i)
∗

Perforation 1 0 2.2 0.3 – 1.52 3.67
2 0.69 1.29 0 1.52 13.42 –

Table 4. Degen’s model for perforation. Coefficients in (A.1), n = 2.
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where

I = µ̃v̄2
imp, µ̃= 106

K (1)
shapem

d3 f ′c
, (36)

with the coefficients presented in Table 5.
Haldar and Miller considered their model an improved modified NDRC model.

18. Haldar–Hamieh–Miller formula

This penetration model [Haldar et al. 1984; Haldar and Hamieh 1984] is described by (35) with the
coefficients shown in Table 6.

The Haldar–Hamieh–Miller formula yields the following expression for the scabbing thickness:

b̄scab = 0.0342µ̃v̄2
imp+ 3.3437, 4.58

/√
µ̃≤ v̄imp ≤ 19.6

/√
µ̃. (37)

19. Hughes’ formula

Hughes’ formula for penetration [Hughes 1984] reads:

H = 0.19K (4)
shape

J
1+ 12.3 ln(1+ 0.03J )

, (38)

where

J = 106
mv̄2

imp

d3 ft
, K (4)

shape =


1.00 for a flat nose,

1.12 for a blunt nose,

1.26 for a spherical nose,

1.39 for a very sharp nose,

(39)

and ft is the tensile strength of concrete. With reference to [ACI 1978], Hughes [1984] recommended
using the relationship between ft and f ′c :

ft = 630
√

f ′c . (40)

i α̃
(i)
pen β̃

(i)
pen I (i)min I (i)max

1 0.22024 −0.02725 0.3 2.5
2 0.446 −0.592 2.5 3.0
3 0.06892 0.53886 3.0 21.0

Table 5. Haldar–Miller model for penetration. Coefficients in (35).

i α̃
(i)
pen β̃

(i)
pen I (i)min I (i)max

1 0.2251 −0.0308 0.3 4.0
2 0.0567 0.6740 4.0 21.0
3 0.0299 1.1875 21.0 455

Table 6. Haldar–Hamieh–Miller model for penetration. Coefficients in (35).
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The dependencies b̄perf versus H and b̄scab versus H are the same as given by (A.1) (n = 2) with the
coefficients shown in Table 7.

Hughes [1984] noted that his formulas are valid in the range J < 3500 but they will be conservative
for J < 40 and b̄ < 3.5.

20. Adeli–Amin formula

Using a large set of experimental data from [Sliter 1980], Adeli and Amin [1985] proposed a model that,
similarly to the Haldar–Miller and Haldar–Hamieh–Miller models, is based on the factor I given by (36).
This model can be written as

H = ψ(αpen, βpen, γpen; I ), (41)

b̄perf = ψ(αperf, βperf, γperf; I ), (42)

b̄scab = ψ(αscab, βscab, γscab; I ), (43)

where
ψ(α, β, γ ; I )= β +α I − γ I 2 (44)

and parameters α, β, and γ for penetration, perforation, and scabbing are given in Table 8. The parameter

I∗ = 0.5α/γ (45)

is shown in the last column of Table 8. This parameter is the upper limit of the increasing function ψ
versus I . The requirement similar to the inequality in (A.4) reads:

I < I∗. (46)

Instead of (41), Adeli and Amin suggested using

H = 0.0123+ 0.196I − 0.008I 2
+ 0.0001I 3, (47)

i β(i) α(i) γ (i) H (i)
min H (i)

max

Perforation 1 0 3.6 0 – 0.7
2 1.4 1.58 0 0.7 –

Scabbing 1 0 5.0 0 – 0.7
2 2.3 1.74 0 0.7 –

Table 7. Hughes’ model for perforation and scabbing. Coefficients in (A.1), n = 2.

β α γ I∗
Penetration 0.0416 0.1698 0.0045 18.8
Perforation 0.906 0.3214 0.0106 15.1
Scabbing 1.8685 0.4035 0.0114 17.7

Table 8. Adeli–Amin model. Coefficients in (41)–(43).



212 GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

where the function H(I ) increases when I < I∗ = 19.1.
The Adeli–Amin formulas are valid in the following ranges of parameters [Adeli and Amin 1985]:

27 m/s< vimp < 312 m/s, 110 g< m < 344 kg, 0.7< b/d < 18, d < 30 cm, H < 2.0, and 0.3< I < 21.
The range for the parameter I should be decreased taking into account (46) and values of I∗ in Table 8.

21. CRIEPI formula

The model of the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan gives the
following relationship for the DOP [Ohnuma et al. 1985; Li et al. 2005]:

H = φ(v̄imp)=
26.1m

d1.8

(
16.7 · 104

( f ′c)2/3
− 1

)[
d + 0.25

(1.25b̄+ 1)b̄

]
v̄2

imp. (48)

Ohnuma et al. [1985] recommended using (48) for vimp ≤ 50 m/s. Clearly, the constraints f ′c < 68.2
and H ≤ b̄ must be satisfied.

They also proposed the following formulas for calculating perforation and scabbing thicknesses:

b̄perf =4perf(v̄imp)=
447
d1.5

√
m
f ′c
v̄0.75

imp , (49)

b̄scab =4scab(v̄imp)=
306
d1.2

(
m
f ′c

)0.4

v̄
2/3
imp. (50)

These formulas differ from (33) and (34) (Chang’s model) by the values of the coefficients.

22. Vretblad (British) formula

Teland [1998], with reference to [Vretblad 1988], presented the following penetration model, also known
as the “British formula”:

H = φ(v̄imp)=
0.76 · 10−3(1− 0.6 · 10−8 f ′c)m

d3c̄×
v̄1.5

imp. (51)

23. UKAEA-CEBG-NNC formulas

This section is mainly based on the guidelines given in [Barr 1990]. Some additional information on
this subject can be also found in [Fullard and Barr 1989; Fullard et al. 1991]. According to [Barr 1990],
major contributions to this model were made by the UK Atomic Energy Authority (UKAEA), the Central
Electricity Generating Board (CEGB), and the National Nuclear Corporation (NNC), so we refer to this
model by the names of these organizations.

For calculation of the DOP of a solid missile penetrating into a reinforced concrete barrier with suffi-
cient thickness so as to suffer no scabbing, the following model is recommended:

g(H)= µv̄1.8
imp, (52)
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where

µ= 9.55
K (3)

shapem

d2.8
√

f ′c
, (53)

K (3)
shape =


0.72 for a flat nose,

0.84 for a spherical nose,

1.00 for a blunt (conic frustum or ogive) nose,

1.14 for a sharp (conical) nose,

(54)

g(H)=


0.55H − H 2 if H < 0.22,

0.25H 2
+ 0.0605 if 0.22≤ H ≤ 2,

H − 0.9395 if H > 2.

(55)

In the unified form given by (1), the UKAEA-CEBG-NNC model can be rewritten as

H = φ(v̄imp)=


0.275−

√
0.0756−µv̄1.8

imp if v̄imp < 0.233/µ5/9,

2
√
µv̄1.8

imp− 0.0605 if 0.233/µ5/9
≤ v̄imp ≤ 1.033/µ5/9,

µv̄1.8
imp+ 0.9395 if v̄imp > 1.033/µ5/9.

(56)

The ranges of parameters in this formula are as follows: +20% to −20% for H > 0.75 and +100%
to −50% for H < 0.75, 25 m/s< vimp < 300 m/s, 5 · 103 kg/m3 <m/d3 < 2 · 105kg/m3, and 22 MPa<
f ′c < 44 MPa.

For predicting the scabbing thickness the following formula was suggested:

b̄scab =4scab(v̄imp)= 5.3µ1/3v̄0.6
imp. (57)

The accuracy of this formula is ±40% for 2< b̄scab < 5.6 within the following ranges of parameters:
29 m/s< vimp < 238 m/s, 26 MPa< f ′c < 44 MPa, and 1.5 · 103 kg/m3 < m/(d2bscab) < 4 · 104 kg/m3.

The formula for the BLV of a flat-nosed missile with a circular or noncircular cross-section against a
reinforced concrete shield reads:

v̄bl =

{
v̄∗bl if v̄∗bl ≤ 0.07,

v̄∗bl(4 · v̄
∗2
bl + 1) if v̄∗bl > 0.07,

(58)

where

v̄∗bl =
1.3 · 10−3kRk2/3

p ρ
1/6
sh d2

√
f ′∗c

m2/3

√
r + 0.3 b̄4/3, (59)

f ′∗c =

{
f ′c if f ′c ≤ 37 MPa,

37 MPa if f ′c > 37 MPa,
(60)
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kR =

{
1.2− 0.6cR/b if 0.12≤ cR/b ≤ 0.49,

1 if cR/b < 0.12 or cR/b > 0.49,
(61)

r = 100
b

(
aF

3cF
+

2aR

3cR

)
, kp = p/(πd). (62)

Here aF (aR) is the cross-sectional area of a single front (rear) rebar; cF (cR) is a front (rear) rebar
spacing (see Figure 3; a steel plate at the distal face of the shield is lacking in the considered model); p
is the perimeter of the impactor; f ′c is the characteristic compressive strength of concrete measured for
150 mm diameter, 300 mm long cylinders; and kp = 1 for a missile with a circular cross-section.

This model is valid in the following ranges of parameters: 11 m/s < vbl < 300 m/s, 0 < r < 0.75,
0.2< p/(πb) < 3, 150 kg/m3 < m/(p2b) < 104 kg/m3, and f ′c > 15 MPa.

In the case in which a steel plate is installed at the distal face of the shield (Figure 3) to improve its
protective effectiveness, the following formula is recommended instead of (88):

v∗bl =
1.3ρ1/6

sh

√
f ′∗c

m2/3

( p
π

)2/3√
B+ 0.3b4/3, (63)

where
B = r + 100bsteel/b (64)

and bsteel is the steel plate thickness.
This formula is valid in the following ranges of parameters: 45 m/s< vbl < 300 m/s, 0< r < 0.75,

150 kg/m3 < m/(p2b) < 104 kg/m3, 1.2< B < 4.3, 0.2< p/(πb) < 3, and f ′c > 15 MPa.

24. Young’s formula

24.1. Original model. After some algebra, Young’s equation [Young 1997] can be written as

H = φ(v̄imp)=
KS KshapeKm

d2.4 P(v̄imp), (65)
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Figure 3. Reinforced concrete barrier, with notation.
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where the coefficients KS and Kshape will be defined subsequently, and

P(v̄imp)=

{
Pa(v̄imp) if v̄imp < v̄∗,

Pb(v̄imp) if v̄imp ≥ v̄∗,
(66)

Pa(v̄imp)= α1 ln(1+α2v̄
2
imp), α1 = 9.48 · 10−4, α2 = 215, (67)

Pb(v̄imp)= k(v̄imp− v̄0), k = 0.0213, v̄0 = 0.0305, (68)

v̄∗ = 0.061, (69)

Km =

{
0.46m0.85 if m < 182,

m0.7 if m ≥ 182.
(70)

Coefficient Kshape depends on the shape of the impactor and is determined as

Kshape =

{
0.18Lnose− 0.091Lnose+ 0.56 for an ogive nose,

0.25Lnose− 0.1251Lnose+ 0.56 for a conic nose,
(71)

where Lnose and 1Lnose are the dimensionless (measured in impactor’s diameter units) length of the nose
and reduction of this length because of the bluntness (if any), respectively.

For sharp ogive-nosed shapes, the following equation can also be used:

Kshape = 0.56+ 0.18
√

KCRH− 0.25. (72)

If the nose of the impactor is neither ogive nor cone, Young [1997] recommended approximating the
actual nose shape with ogive or conic shapes. If the bluntness is less than 10% of the penetrator diameter,
it can be ignored.

Coefficient KS depends on the properties of the concrete and is determined as

KS =
0.247Ke(11− K D)

(t ′cb̄′)0.06( f ′c)0.3
, (73)

where

t ′c =min(tc, 1), b̄′ =min(b̄, 6), Ke =max
[(

KF F

W

)0.3

, 1
]
, (74)

KF =

{
0.5 if b̄ ≤ 2,

1 if b̄ > 2,
F =

{
20 for reinforced concrete,

30 for nonreinforced concrete.
(75)

K D is the volumetric rebar content, tc is the cure time in days, and W is the shield thickness. Bars over
variables denote dimensionless parameters which are normalized as indicated in the beginning of this
section.

If there is no available data for calculating the coefficient KS , the default value, KS = 0.9, can be
used.

This model is recommended for 7 MPa< f ′c < 124 MPa, m > 5 kg, H ≥ 3, and vimp < 1220 m/s.
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24.2. Modifications of the models. Function P(v̄imp) is discontinuous at the point v̄imp = v̄∗, which
has no physical meaning and can cause problems when applying these relations. Ben-Dor et al. [2008a;
2008b] proposed two modifications of the model that improve the smoothness of P(v̄imp).

The first modification [Ben-Dor et al. 2008a] is based on the correction of the parameters α1, α2, and
v̄∗ in (67)–(69). In order to satisfy the requirements that Pa(v̄∗) = Pb(v̄∗) and P ′a(v̄∗) = P ′b(v̄∗), their
new values of these parameters are selected as

v̄∗ = 0.065, α1 = 6.092 · 10−3, α2 = 30.34. (76)

In the second modification [Ben-Dor et al. 2008b], a more smooth approximation of the function
P(v̄imp) is proposed. This approximation is continuous and has continuous first and second derivatives
for v̄ = v̄∗ (and, consequently, for all v̄imp > 0). Toward this end, Ben-Dor et al. [2008b] modified the
model for relatively small v̄imp while keeping the Young’s approximation for large v̄imp. Specifically, the
function Pb(v̄imp) is given by (68) while the following approximation of Pa(v̄imp) for small values of
v̄imp is used:

Pa(v̄imp)= (−4.95v̄2
imp+ 0.196)v̄2

imp, v̄imp ≤ v̄∗, v̄∗ = 0.0813. (77)

25. UMIST formulas

This section is based on [Li et al. 2005; 2006], which refer to the approach suggested in the studies
conducted at the University of Manchester Institute of Science and Technology (UMIST) [Reid and Wen
2001; BNFL 2003].

25.1. Penetration model. The formula for the DOP reads [Li et al. 2005]:

H = φ(v̄imp)=
0.88 · 106K (3)

shapem

σt(v̄imp)d3 v̄2
imp, (78)

where σt is the rate-dependent characteristic strength of concrete,

σt(v̄)= ζ0( f ′c)+ ζ1( f ′c)v̄, (79)

ζ0( f ′c)= 4.2 f ′c + 1.35 · 108, ζ1( f ′c)= 14 f ′c + 0.45 · 108. (80)

Equation (78) has been validated in the following ranges of parameters: H < 2.5, 3 m/s < vimp <

66 m/s, 35 kg< m < 2500 kg, and 5 cm< d < 60 cm.

25.2. Perforation and scabbing model and its analysis. On the basis of formulas presented in [Li et al.
2005] (in [Li et al. 2006] a similar model is described for flat-nosed projectiles when the concrete rein-
forcement is ignored), the relations for the BLV and the scabbing limit velocity can be written as

v̄2
bl

κσt(v̄bl)
=


χ
(1)
perf(b̄) if 0.5< b̄ ≤ 1,

χ
(2)
perf(b̄) if 1≤ b̄ < 5,

χ
(3)
perf(b̄) if b̄ ≥ 5,

(81)

v̄2
sl

κσt(v̄sl)
=

{
χ
(1)
scab(b̄) if 0.5< b̄ < 5,

χ
(2)
scab(b̄) if b̄ ≥ 5,

(82)
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where

χ
(1)
perf(b̄)= η(1.506b̄2

− 0.506b̄), χ
(2)
perf(b̄)= η(2b̄3

− b̄),

χ
(3)
perf(b̄)= 78.5b̄− 235.5, χ

(2)
scab(b̄)= (56.52b̄− 24.3)K (3)

shape,

χ
(1)
scab(b̄)= η(1.386b̄2

− 0.5441b̄)/K (3)
shape, κ = 2 · 10−8d3/m.

(83)

Parameter η is associated with the reinforcement of the shield and is given by

η =

{
1.5r(d/cF R)+ 0.5 if d/cF R <

√
d/dF R,

1.5r(d/dF R)+ 0.5 if d/cF R ≥
√

d/dF R,
(84)

where r = 100aF R/(cF Rb) is determined by (62) with aF = aR = aF R = πd2
F R/4 and cF = cR = cF R;

aF R and dF R are the cross-sectional area and the diameter of the rebar, respectively; and cF R is the rebar
spacing (see Figure 3).

These scabbing and perforation models are valid for 2.2 cm < d < 60 cm, 1 kg < m < 2622 kg,
20 MPa< f ′c < 79 MPa, 0< r < 4, 5.1 cm< b < 64 cm, and 0< vimp < 427 m/s [Li et al. 2005].

Since σt is a linear function of v̄, determining v̄ = v̄bl or v̄ = v̄sl in terms of b̄ requires solving the
quadratic equation f (v̄)= 0, where

f (v̄)= v̄2
− (κζ12)v̄− κζ02, (85)

and 2 is the right-hand side of (81) or (82). It can be easily shown that the equation f (v̄) = 0 has a
single positive root:

v̄ = ω(2), ω(2)= 0.5κζ12+
√
κ2(0.25κζ12+ ζ0). (86)

Taking into account (86), v̄bl and v̄sl, which are determined by (81) and (82), can be expressed as
increasing functions of b̄. Consequently, the suggested model adequately describes the physics of pen-
etration, and the single-valued inverse functions b̄perf(v̄imp) and b̄scab(v̄imp) exist. Since the functions
determined by (81) and (82) are discontinuous at the point b̄ = 5, the function v̄bl = v̄bl(b̄) assumes
different values, v̄′bl and v̄′′bl, to the left and to the right of this point. Therefore the inverse function,
b̄perf =4perf(v̄imp), cannot be defined in the interval v̄′bl < v̄imp < v̄

′′

bl. The discontinuity of the function
v̄sl = v̄sl(b̄) causes similar problems.

26. Malaysia models

Zaidi et al. [2010], of the Universiti Tun Hussein Onn Malaysia (UTHM), proposed a linear model (here-
after, UTHM model) describing the dependence between the DOP, H , and the parameter mv2

imp/( f ′cd3)

which is valid for ogive-nosed impactors:

H =
0.5 · 106mv̄2

imp

f ′cd3 q1+ q0, (87)
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where the coefficients depend on the CRH of the impactor, KCRH:

q0 =−0.6256K 3
CRH+ 7.9656K 2

CRH− 32.892KCRH+ 48.008,

q1 = 0.014K 3
CRH− 0.1585K 2

CRH+ 0.5606KCRH− 0.5405.
(88)

This formula can be applied in the following ranges of parameters: 139 m/s < vimp < 1225 m/s,
13.5 MPa≤ f ′c ≤ 108 MPa, 64 g< m < 13.2 kg, 2≤ KCRH ≤ 6, and 13 mm< d < 76.2 mm.

Both Rahman et al. [2010] and Latif et al. [2011] considered perforation by flat-nosed (cylindrical)
impactors. Rahman et al. proposed the scabbing limit velocity

v̄sl = 10−3d

√
2 f ′cd

m
ψ1(b̄), (89)

where

ψ1(b̄)=


0.87b̄− 0.29 if 0.69≤ b̄ ≤ 3.0,

3.31b̄− 7.58 if 3.0< b̄ ≤ 6.0,

4279.181b̄− 25662.82 if 6.0< b̄ ≤ 14.86.

(90)

The latter formula is valid in the following ranges of parameters: 0.69< b/d < 14.86, 24.15 MPa≤
f ′c ≤ 50.2 MPa, 17.5 mm< d< 305.0 mm, 0.92 kg<m< 309 kg, 29 m/s<vsl< 427 m/s, and 50.8 mm<
b < 609.6 mm.

Latif et al. [2011] suggested a formula for the BLV that can be written as

v̄bl = 10−3d

√
2 f ′cd

m
ψ2(b̄), (91)

where

ψ2(b̄)= 0.174b̄3
+ 0.169b̄2

+ 0.0577b̄+ 0.2969. (92)

This formula is valid in the following ranges of parameters: 0.92 kg<m<309 kg, 29 m/s<vbl<427 m/s,
0.69< b/d < 14.86, 24.15 MPa≤ f ′c ≤ 50.2 MPa, and 17.5 mm< d < 305.0 mm.

27. TM 5-855-1 formulas

The formulas of [TM 5-855-1 1986] are proposed for describing penetration by a standard fragment
in the shape of a cylinder of diameter d and length 0.5d with a hemispherical nose. The mass of the
fragment that is used in the formulas is calculated as

m = (5π/24)ρimpd3
= 0.654ρimpd3. (93)

The model of [TM 5-1300 1990] employs the following formula for the fragment mass (after conver-
sion to SI units): m = 5.149 · 103d3, that is, the density is assumed to be ρimp = 7873 kg/m3.
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After some transformations the formulas of [TM 5-855-1 1986] can be written in the form

H =


13.46m0.37v̄0.9

imp

( f ′c)0.25 if v̄imp ≤ v̄
∗

imp,

1.09 · 103m0.4v̄1.8
imp

( f ′c)0.5
+ 0.395m0.33 if v̄imp > v̄

∗

imp,

(94)

bperf = 0.0311Hm0.033
+ 2.95m0.33, (95)

bscab = 0.0334Hm0.033
+ 4.465m0.33, (96)

v̄res =

{
v̄imp[1− (b/bperf)

2
]
0.555 if v̄imp ≤ v̄

∗

imp,

v̄imp[1− (b/bperf)]
0.555 if v̄imp > v̄

∗

imp,
(97)

where

v̄∗imp = 5.13 · 10−3( f ′c)
0.278/m0.044. (98)

28. Folsom’s model for penetration into a shield with a predrilled hole

Folsom [1987] proposed a formula for the DOP of ogive-nosed projectile into a predrilled shield that can
be written, in the interpretation of [Teland 2001], in the form

H =
17.3mv̄1.5

imp

f ′cd2.785 ·
1− 038η2

1− η2 −
4�(KCRH, η)

1− η2 +

√
KCRH− 0.25, (99)

where d0 is diameter of the hole and

�(z, η)=
(

1− η2

4
− z+ 2z2

)
g+ 1−2z

2
[
g
√

z2− g2+ z2 sin−1(g/z)
]
−

g3

3
,

g(z, η)=
√
(1− η)[z− 0.25(1− η)], η = d0/d.

(100)

29. Some other models and related problems

Walter and Wolde-Tinsae [1984] proposed a modified version of several empirical formulas that account
for the presence of a steel plate at the distal face of a shield by introducing an artificial thickness of the
shield. Riera [1989] presented the relationship between H and vimp as an implicit function and suggested
and discussed equations for determining vbl and vsl. Al-Hachamee and Azeez [2010] proposed formulas
for H , bperf, and bscab on the basis of the results of 20 experiments from the literature. Dancygier [1997]
proposed a method that allowed for including the reinforcement ratio as a parameter in the existing
semiempirical perforation formulas.

Me-Bar [1997] proposed a method for scaling ballistic penetration into concrete shields using energy
balance whereby the energy absorbed by a shield during penetration was expressed as a sum of the energy
expended for surface effects and the energy expended for volume effects. Dancygier [2000] investigated
the effects of impact by similarly (though not necessarily geometrically similar) shaped impactors on
the reinforced concrete barriers. Based on the widely known empirical formulae he derived expressions
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for the velocity ratios between the simulator (reference impactor) and the simulated impactors that are
required in order to yield the same DOP and the same perforation limit thickness.

30. Comparison between models and their experimental validations

30.1. Brief review. Plots which allow comparing the dependencies obtained using various phenomeno-
logical models can be found in [Kennedy 1976; Yankelevsky 1997; Teland 1999; Li and Tong 2003] as
well as other studies.

Analysis of the models based on comparison of their predictions with experimental results is com-
plicated for the following reasons: the small number of performed experiments, the narrow range of
parameters within which the experiments are usually conducted, and the lack of information concerning
the properties of the concrete in the shield (reinforcement, aggregate size, etc.). Also, in some cases
the accuracy of the model is evaluated using the same experimental data as used in the derivation of the
model.

Kennedy [1976] examined the ACE, NDRC, BBL, Ammann–Whitney and Pétry models using experi-
mental data and recommended the modified NDRC formula for calculating bscab and bperf in the following
ranges of the parameters: d < 41 cm, 0.02 kg/m3 < m/d3 < 0.54 kg/m3, and 30 m/s< vimp < 900 m/s.
He concluded that this formula generally agrees with the test results within an accuracy of ±20% in
these ranges of the parameters.

Sliter [1980] collected experimental data on the penetration of cylindrical projectiles into finite-thickness
shields and calculated the DOP using the NDRC model, the scabbing thickness using the NDRC, Bechtel,
and Stone–Webster models, and the perforation thickness using the NDRC and CEA-EDF models. He
found that the values of the DOP predicted by the NDRC formula are within an experimental scatter of
±25% for vimp > 152 m/s while the agreement between the predicted and the observed values of the DOP
is unsatisfactory for relatively low impact velocities. As far as scabbing thickness prediction concerns,
Sliter [1980] noted that the NDRC, Bechtel, and Stone–Webster models may all be used equally well for
missiles having relatively small diameters. Regarding perforation, he indicated that damage is predicted
better by the CEA-EDF formula than by the NDRC model.

On the basis of experimental data collected by Sliter [1980], Adeli and Amin [1985] examined the
modified NDRC, Haldar–Miller, Hughes, and Adeli–Amin models for penetration, the Pétry I, Pétry
II, ACE, modified NDRC, BRL, Bechtel, Chang, Hughes, and Adeli–Amin models for scabbing, and
the Pétry I, Pétry II, ACE, modified NDRC, BRL, CEA-EDF, Degen, Chang, Hughes, and Adeli–Amin
models for perforation. Their conclusions are as follow.

Penetration modeling. For H exp ≥ 0.6, where H exp = Hexp/d and Hexp is the experimentally observed
DOP, the modified NDRC, Haldar–Miller, Hughes, and Adeli–Amin models “tend to agree with the
experimental results within ±25%”. For H exp < 0.6, the Pétry II, Haldar–Miller, and cubic Adeli–Amin
models perform better than the other models. The ACE and Pétry I models considerably overestimate
the DOP. Consequently, for estimating the DOP Adeli and Amin [1985] recommended applying the
quadratic Adeli–Amin formula for vimp < 145 m/s and the quadratic Adeli–Amin model or modified
NDRC formula for 145 m/s≤ vimp < 305 m/s.

Scabbing modeling. The Adeli–Amin, Bechtel, and Chang models perform better and, generally, are
the least conservative among all the models. The Hughes model is the most conservative while the
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Pétry I, Pétry II, and BRL equations performance is the poorest in predicting the scabbing thickness.
Consequently, for scabbing modeling quadratic the Adeli–Amin, Bechtel, or Chang’s formulas for vimp <

310 m/s are recommended.

Perforation modeling. The CEA-EDF, Degen, Chang, and Adeli–Amin models perform better than the
other models although the predictions of the modified NDRC and Pétry I formulas also agree with the
experimental data. The predictions of the Pétry II, BRL, and ACE formulas do not exhibit good agreement
with the results of experiments. Consequently, the CEA-EDF, Degen, Chang, and Adeli–Amin models
for vimp < 310 m/s are recommended for perforation modeling.

Walter and Wolde-Tinsae [1984] used the results of 45 experiments for comparing the performance
of the basic empirical models. They concluded that among nine empirical models the best predictions of
perforation/nonperforation events are provided by the Pétry I, Pétry II, Degen, BRL, and CEA-EDF for-
mulas whereby the percentage of the correct prediction varies in the range 71–75% while the percentage
of the correct prediction is small for the NDRC and Kar’s formulas (53%).

In [DOE 2006] Chang’s formula is recommended for calculating bscab and bperf.

30.2. Evaluation of performance of different models: Finite-thickness shields. The evaluation of the
performance of different empirical models in this section is based on the results of experiments collected
in [Sliter 1980]. The input data for the evaluated models are also adopted from [ibid.], and only those
experiments that satisfy the conditions for the validity of the model are used for evaluating each of the
models. The UMIST model is not included in the list of analyzed models because most of the experiments
from [ibid.] fall outside the range of validity of this model. Comparison of the UMIST model and the
NDRC model with other sets of experimental data can be found in [Li et al. 2006].

General results on the performance of the various models are summarized in Table 9. The denominator
in the fraction in the penetration (scabbing, perforation) column denotes the number of experiments in
which penetration (scabbing, perforation) was observed, while the numerator is the number of calcula-
tions which predicted the corresponding phenomenon. The last column contains similar characteristics
for all types of damage (penetration, scabbing, and perforation) so that the numerator of the fraction
equals the sum of the numerators of the fractions in the preceding columns and the denominator is the
sum of the denominators of the fractions in the preceding columns. Clearly, only the experiments that
were calculated using the empirical models are taken into account. Parameters bperf and bscab in the
average model are determined as arithmetic means of the values of the corresponding parameters in the
models which predicted these parameters. It is assumed that penetration, scabbing, or perforation occurs
if b < bscab, bscab ≤ b < bperf, or b ≥ bperf, respectively.

Analysis of the data presented in Table 9, conducted taking into account the number of the experiments
included in the evaluation of each model, reveals the advantages of Chang’s model and the CRIEPI model
over the other models.

30.3. Evaluation of performance of different models: Semiinfinite shields. Evaluation of the perfor-
mance of different models for semiinfinite shields is based on the experimental data on ogive-nosed im-
pactors collected in [Hansson 2003]. These experiments were conducted in the following ranges of param-
eters: 13 mm≤ d ≤ 365 mm, 132 m/s≤ vimp ≤ 1050 m/s, 64 g≤m ≤ 485 kg, 21.6 MPa≤ f ′c ≤ 140 MPa,
55 mm≤ Hexp ≤ 1.96 m, and 1.5≤ KCRH ≤ 6.
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Penetration,
scabbing,

Model Penetration Scabbing Perforation perforation

Pétry II 31
35 = 89% 3

51 = 6% 2
16 = 13% 36

102 = 35%

BRL 29
35 = 83% 9

51 = 18% 4
16 = 25% 42

102 = 41%

ACE 17
19 = 89% 4

6 = 67% 5
5 = 100% 26

30 = 87%

NDRC 28
35 = 80% 11

51 = 22% 12
16 = 75% 51

102 = 50%

Chang 30
35 = 86% 41

51 = 80% 8
16 = 50% 79

102 = 77%

Adeli–Amin 20
22 = 91% 9

18 = 50% 4
5 = 80% 33

45 = 73%

CRIEPI 31
35 = 89% 48

51 = 94% 4
16 = 25% 83

102 = 81%

Average 34
35 = 97% 32

51 = 63% 6
16 = 31% 71

102 = 70%

Table 9. Comparison of empirical models based on type of shield damage with experi-
mental data from [Sliter 1980].

In the calculations for evaluating the performances of different empirical models, we included only
those models which are applicable for ogive-shaped impactors: the Ammann–Whitney model, the mod-
ified NDRC model, Degen’s model, Kar’s model, the Healey–Weissman model, the Haldar–Hamieh–
Miller model, Hughes’ model, the UKAEA-CEBG-NNC model, Young’s model, the Whiffen formula,
and the UTHM formula. The UMIST, Haldar–Miller, and Adeli–Amin formulas are not included because
most or all the experiments fall outside the range of validity of these models. A value of c̄ = 1 is used in
Whiffen’s model.

Detailed results of the calculations are shown in Figure 4, where circles indicate experiments for which
the constraints for applicability of the model (if any) are satisfied while triangles denote experiments that
fall outside the range of validity of the particular model. The average model is constructed using values
of the DOP equal to the arithmetic mean of the values of the DOPs for all models where the model’s
constraints are satisfied. The error, ε̃, is calculated for each experiment as

ε̃ =
H − Hexp

Hexp
100%, (101)

where Hexp is the DOP observed in the experiment. Horizontal lines denote the values of ε̃ which
are considered the minimum ε̃min and maximum ε̃max values of ε̃; in some cases we excluded outliers
with anomalously high deviations from the mean. Hereafter in calculating ε̃min and ε̃max (and in other
calculations) for each model, we take into account only those experiments that correspond to the range
of the validity of the model (denoted by the circles in Figure 4).

The results of calculations are summarized in Table 10, where the name of the model is indicated in
the first column. In some cases the whole range of variation of H exp is divided into two subranges. The
number of experiments in each subrange or the whole range, where the value of the parameter ε̃ falls in
the interval between ε̃min and ε̃max, is indicated in column 2 (index N ); the end-points of the range (or
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subrange) are presented in column 3; ε̃min and ε̃max in columns 4 and 5, respectively. The indexes in the
rest of the columns are described below.
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Figure 4. Comparison of DOPs predicted using empirical model with results of ex-
periments, taking (circles) and not taking (triangles) into account model constraints
(continued on next page).
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Figure 4 (cont.)

Inspection of Table 10 and Figure 4 shows that for the modified NDRC, Degen, Kar, Haldar–Hamieh–
Miller, UKAEA-CEBG-NNC, Hughes, and average models, ε̃max < 0 or slightly larger than 0. Conse-
quently, practically all predicted values of the DOP are smaller than the experimental values, and the
predictions of the models are expected to be biased towards smaller magnitudes of the DOP. Since for
the other models as well the interval of variation of ε̃ is strongly asymmetrical with respect to ε̃ = 0
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Model N H exp ε̃min ε̃max k̂ ε̂∗

Ammann–Whitney 53 2÷ 18 −50% +17% 1.20 40%
41 18÷ 65 −17% +33% 0.93 23%

NDRC, Degen 88 2÷ 65 −49% −12% 1.44 26%

Kar 91 2÷ 65 −49% −13% 1.44 26%

Healey–Weissman 92 2÷ 65 −42% 0% 1.26 27%

Haldar–Hamieh–Miller 56 2÷ 26 −57% −25% 1.70 27%

Hughes 51 2÷ 18 −50% −3% 1.36 31%

UKEA-CEBG-NNC 14 2÷ 10 −50% −18% 1.50 23%

Young’s 24 2÷ 17 −30% +62% 0.85 38%

Whiffen 44 2÷ 28 −41% +24% 1.10 35%
20 28÷ 65 −41% 0% 1.26 26%

UTHM 8 2÷ 12 −14% +95% 0.71 39%
43 12÷ 65 −27% +9% 1.10 20%

Average 92 2÷ 65 −42% +2% 1.25 27%

Table 10. Summary of data for evaluating performance of penetration models on the
basis of the indexes k̂ and ε̂∗.

(ε̃max strongly deviates from −ε̃min), predictions of the models are also biased in these cases. Therefore
in practice it is not recommended to directly use the predictions of any one of these models for the
indicated range of penetration conditions.

Let us introduce for each model the correction factor, k̂ > 0, which allows us to reduce or increase the
predicted value of the DOP, that is, replace the calculated values, H , by k̂ H . Then, taking into account
(101), the new errors of the model’s predictions, ε̂, can be expressed through the old, ε̃, as

ε̂ =
k̂ H − Hexp

Hexp
· 100%=

[
k̂
( H

Hexp

)
− 1

]
· 100%= [k̂(0.01ε̃+ 1)− 1] · 100%. (102)

The value of k̂ is selected by applying the following criterion: all values of ε̂ must fall in the inter-
val between the minimum, −ε̂∗, and the maximum, +ε̂∗, values of the errors of the corrected model.
Equation (102) implies that ε̂ increases when ε̃ is increased. Therefore, the above requirement yields the
following system of equations:

k̂(0.01ε̃min+ 1)− 1=−0.01ε̂∗, k̂(0.01ε̃max+ 1)− 1= 0.01ε̂∗, (103)

which has the solution

k̂ =
2

2+ 0.01(ε̃min+ ε̃max)
, ε̂∗ =

ε̃max− ε̃min

2+ 0.01(ε̃min+ ε̃max)
. (104)
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Figure 5. Comparison of the DOPs predicted using the recommended corrected empir-
ical model with the results of experiments.

The values of parameters k̂ and ε̂∗ for all models are presented in Table 10. Now the performances
of the corrected models can be evaluated by using only one fundamental parameter, ε̃, which is related
with their errors. In the study of the performance of a certain empirical model which is based on the
same experimental data, Hansson [2003] also suggested introducing a correction factor, although he did
not devise an unambiguous procedure for determining the correction coefficient.

In selecting the best model, we take into account the following considerations: the number of sub-
ranges; the error interval of the corrected model, 2ε̂∗; the proximity of the absolute value of the coefficient
k̂ to 1; and the number of points, N . Inspection of Table 10 shows that at the first stage it is appropriate to
select for further consideration those models which span the whole range 2≤ H exp ≤ 65 without dividing
it into subranges and having a parameter ε̂∗ that only slightly differs from the minimal (among all models)
value. These models include the modified NDRC, Degen, Kar, Healey–Weissman, and average models,
for which 26%≤ ε̂∗ ≤ 27%. Among the remaining five models the performance of the modified NDRC,
Degen, and Kar models is inferior to the rest as they are characterized by comparatively large values of k̂.

Therefore, the most appropriate models are the Healey–Weissman and average models, which are
corrected using the correction factors 1.26 and 1.25, respectively, and which are expected to have error
±27%. Figure 5 illustrates the distribution of errors for these corrected models.

We used a comparatively simple approach for the comparison and evaluation of the performance of
different penetration models. It is feasible to employ other approaches that are more heavily based on
the methods of mathematical statistics. In particular, different models can be interpreted as regression
equations, and the correction factor for each model can be interpreted as a regression coefficient. Clearly,
models with several regression coefficients can be also considered. However, in this case as well, unam-
biguous procedures for solving the problem cannot be devised [Draper and Smith 1998].

31. Concluding remarks

We would like to draw attention to some peculiarities of the procedures for evaluating the performance
and accuracy of empirical penetration models.
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Firstly, analysis of the accuracy of a model which employs the same data used for the model derivation
is questionable. Secondly, while a model with multiple parameters, based on a few experimental points,
can be quite accurate at these points, good predictive properties of the model cannot be guaranteed. In
the limiting case, one can suggest a model where the number of parameters is equal to the number of
the experimental points. The errors of the approximation at these experimental points vanish while the
accuracy of the model at other points can be inadequate. Thirdly, it is not worthwhile to overvalue
statistical estimates of the reliability of a model since many of these estimates are based on a number of
questionable assumptions.

Appendix

Most of the types of dependencies between b̄perf and H and between b̄scab and H can be described as

b̄p/s =9p/s(H)=



β(1)+α(1)H − γ (1)H 2 if H (1)
min ≤ H ≤ H (1)

max,
...

...

β(i)+α(i)H − γ (i)H 2 if H (i)
min ≤ H ≤ H (i)

max,
...

...

β(n)+α(n)H − γ (n)H 2 if H (n)
min ≤ H ≤ H (n)

max,

(A.1)

where it is assumed that all parameters α(i), β(i), and γ (i) are nonnegative and functions 9p/s are con-
tinuous at the joint points of the adjacent segments:

H (i)
max = H (i+1)

min , i = 1, 2, . . . , n− 1, (A.2)

β(i)+α(i)H (i)
max− γ

(i)
[H (i)

max]
2
= β(i)+α(i)H (i+1)

min − γ
(i)
[H (i+1)

min ]
2, i = 1, 2, . . . , n− 1. (A.3)

The subscript p/s denotes “perforation” or “scabbing”. Clearly, the parameters α(i), β(i), γ (i), H (i)
min,

and H (i)
max should have the same additional subscripts, p or s, which are omitted for simplicity.

If γ (i) = 0, then 9p/s(H) is an increasing function on the i-th interval (i = 1, 2, . . . , n). If γ (i) > 0,
then 9p/s(H) is an increasing function when

H (i)
max < H (i)

∗
, H (i)

∗
= 0.5α(i)/γ (i), i = 1, 2, . . . , n (A.4)

The constraints given by (A.4) must be taken into account when the admissible ranges of the parame-
ters are indicated.
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Taking into account (A.1), (2) and (4) can be rewritten as

b̄p/s =4p/s(v̄imp)=



β(1)+α(1)φ(v̄imp)−γ
(1)
[φ(v̄imp)]

2 if φ−1(H (1)
min)≤ v̄imp≤φ

−1(H (1)
max),

...
...

β(i)+α(i)φ(v̄imp)−γ
(i)
[φ(v̄imp)]

2 if φ−1(H (i)
min)≤ v̄imp≤φ

−1(H (i)
max),

...
...

β(n)+α(n)φ(v̄imp)−γ
(n)
[φ(v̄imp)]

2 if φ−1(H (n)
min)≤ v̄imp≤φ

−1(H (n)
max),

(A.5)

v̄bl/sl =4
−1
perf(b̄)

=



φ−1(H (1)) if β(1)+α(1)H (1)
min− γ

(1)
[H (1)

min]
2
≤ b̄ ≤ β(1)+α(1)H (1)

max− γ
(1)
[H (1)

max]
2,

...
...

φ−1(H (i)) if β(i)+α(i)H (i)
min− γ

(i)
[H (i)

min]
2
≤ b̄ ≤ β(i)+α(i)H (i)

max− γ
(i
[H (i)

max]
2,

...
...

φ−1(H (n)) if β(n)+α(n)H (n)
min− γ

(1)
[H (n)

min]
2
≤ b̄ ≤ β(n)+α(n)H (n)

max− γ
(n)
[H (n)

max]
2,

(A.6)

where the subscript bl/sl denotes the BLV and scabbing limit velocity, and H (i) is a root of the equation

β(i)+α(i)H (i)
− γ (i)[H (i)

]
2
= b̄, (A.7)

which is given by

H (i)
=

√[
α(i)

2γ (i)

]2

+
b̄−β(i)

γ (i)
−
α(i)

2γ (i)
if γ (i) > 0, (A.8)

H (i)
=

b̄−β(i)

α(i)
if γ (i) = 0. (A.9)
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TRANSIENT RESPONSE OF A GENERAL ANISOTROPIC SOLID
TO DISLOCATION GROWTH: ALTERNATIVE FORMULATION

LOUIS MILTON BROCK

The response of an unbounded homogeneous general anisotropic solid to dislocation growth can be
obtained from a convolution of the body force equivalent of the dislocation with the Green’s function.
This work considers the transient case of a surface of discontinuity in displacement that expands with
time from a point source. The expansion rate is subsonic, but largely arbitrary otherwise. The surface
need not be planar, and if so, need not lie in a principal material plane. Some differences in procedure
from related studies are noted. The solution expressions use a dislocation description in terms of surface
geometry, and have a hybrid but somewhat more explicit form.

1. Introduction

The radiation field from a spreading dislocation is known [Nabarro 1951; Knopoff and Gilbert 1960]
to be obtainable in terms of solutions to the fundamental problems of point forces and couples and
their line load counterparts. Such loads can be generalized as the transient body-force equivalent for a
dislocation distribution on an internal surface [Burridge and Knopoff 1964]. The equivalent is valid for
the inhomogeneous, anisotropic solid, and surface and distribution are (largely) arbitrary.

This article gives an exact transient solution for the growth of a dislocation distribution in a homo-
geneous, general anisotropic and unbounded solid in terms of the Burridge–Knopoff equivalent. The
dislocation spreads at a subsonic (possibly nonuniform) rate from a point source. The dislocation distri-
bution is single valued and remains finite for finite time after its appearance. This problem is not new,
but the present study includes some alternative features.

In [Burridge and Knopoff 1964] the dislocation field is defined in terms of the components of a
prescribed displacement discontinuity in the principal material basis. For insight into the roles of climb
and glide mechanisms, two descriptions of the displacement discontinuity vector are treated here. The
first resolves the prescribed displacement discontinuity vector into components normal to, and in the plane
of, the surface. Coefficient arrays (d N S

ik , d N N
ik ) arise, and a third, d SS

ik , can be defined. Subscripts (i, k)
refer to Cartesian coordinates (x1, x2, x3) in the principal material basis, and (N , S) refer to coordinates
normal to and in the plane of the discontinuity surface. The arrays are symmetric in (N , S), and the six
elements of each array are symmetric in (i, k). The form of d N S

ik resembles the constitutive equation for
the general anisotropic solid.

The second description treated is local, that is, it is the components of the displacement discontinuity
vector with respect to surface geometry that are prescribed. Three coefficient arrays (d N T

ik , d N S
ik , d N N

ik )

arise, and arrays (dT T
ik , d SS

ik , dT S
ik ) are also defined. Here N refers to the surface normal and (T, S) are

Keywords: transient 3D, dislocation, exact solution, general anisotropy, wave speeds.
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two perpendicular directions in the surface plane. Use of this description in the transient solutions is
demonstrated for a planar discontinuity surface, for which coefficient arrays are constant.

The analysis is similar to that for the anisotropic Green’s function. That problem is also not new, nor
is the use of integral transforms [Willis 1980; Payton 1983; Wang and Achenbach 1994; 1995; Ting and
Lee 1997]. Here unilateral temporal and bilateral spatial Laplace transforms [van der Pol and Bremmer
1950; Sneddon 1972] are employed. The spatial transforms are with respect to the Cartesian principal
basis, but quasispherical coordinates are introduced in the inversion process. This facilitates the residue
calculation process common in anisotropic Green’s function study in, for example, [Payton 1983; Wang
and Achenbach 1994; 1995; Ting and Lee 1997]. Moreover, the displacements take a hybrid form: their
components and coordinates are Cartesian, but the expressions are integrals of real-valued functions in
a unit quarter-sphere. Although lacking the simplicity of integration based on the hypercircle or unit
sphere [Synge 1957; Wang and Achenbach 1995], the integration is explicitly in terms of polar and
azimuthal angles defined in the fixed principal basis. For the uniform dislocation distribution, in fact,
integration can be transformed to the contour of the dislocation surface; see [Brock 1986]. Analytical
expressions for the poles in the residue calculation — and therefore the three anisotropic wave speeds —
are also presented; see [Wang and Achenbach 1995].

Finally, it is noted that some well-known formalisms for anisotropy, for example, [Stroh 1958; 1962;
Barnett and Lothe 1973; Ting 1996; Ting and Lee 1997], are not invoked here. However, analogous
formulas arise in the course of analysis. Solution expression development is the focus here but, for
illustration, sample wave speed calculations are given for a transversely isotropic graphite-epoxy solid.

2. Governing equations

A Cartesian basis x(x1, x2, x3) defines the principal material axes for an unbounded, homogeneous linear
anisotropic solid. In contracted notation, the stress and strain measures (σk, εk) for the solid are related
by

σk = Cklεl, Ckl = Clk . (1)

Here (k, l) take on values (1, 2, 3, 4, 5, 6) and the 21 elasticity parameters Ckl are constants. These
measures correspond to those in the Cartesian basis as follows: For k = (1, 2, 3)

σk = σkk, εk = ∂kuk . (2)

The range k = (4, 5, 6) corresponds to Cartesian shear stresses and strains:

σ4 = σ23 = σ32, ε4 = ∂2u3+ ∂3u2, (3a)

σ5 = σ31 = σ13, ε5 = ∂3u1+ ∂1u3, (3b)

σ6 = σ12 = σ21, ε6 = ∂1u2+ ∂2u1. (3c)

Equation (1) is associated with positive strain energy density when εT
k Cklεl > 0. Because Ckl constitutes

a symmetric 6× 6 matrix with real elements, it can be shown [Hohn 1964; Ting 1996] that the inequality
is satisfied when the leading principal minors of Ckl are positive, that is,
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C11 C12 · · · C1n

C12 C22 · · · C2n
...

...
. . .

...

C1n C2n · · · Cnn

∣∣∣∣∣∣∣∣> 0 (n ≤ 6). (4)

In (1)–(3) uk are the components of u in the xk-direction, and ∂k signifies differentiation with respect to
xk . It is convenient to introduce reference shear modulus and rotational wave speed (µ, vS), where

µ=max(C44,C55,C66), vS =

√
µ

ρ
. (5)

Here ρ is the mass density, and use of (5) gives the time-dependent length measure τ = vS × (time).
Therefore uk = uk(x, τ ) and σkl = σkl(x, τ ) in (2) and (3), and for τ < 0 the unbounded solid is at rest.
For τ > 0, however, a surface < expands from point x = 0 at a subsonic rate, that is, for a given τ > 0
all parts of its boundary contour C lie within the volumes defined by the fronts of body waves radiating
from source point x = 0. Unit vector n(x) defines the normal to < and is a continuous function of x ∈ <.
Surface < remains simply connected, and contour C is continuous and piecewise smooth. The surface
exhibits a dislocation distribution described by a jump in displacement [u(x, τ )] as < is crossed in the
direction of n. Discontinuity [u] is finite and continuous in (x, τ ) for x ∈ < and finite τ > 0. Thus, for
τ < 0 initial conditions are (u,∇u)≡ 0, and for τ > 0 the linear momentum balance can, in view of (1),
be written as

∇klεl = µ∂
2uk + Qk(x, τ ). (6)

Here k = (1, 2, 3), l = (1, 2, 3, 4, 5, 6), and the summation condition applies. Operator ∂ signifies
differentiation with respect to τ , and ∇kl are spatial derivative operators:∇1l

∇2l

∇3l

=
Cl1 Cl6 Cl5

Cl6 Cl2 Cl4

Cl5 Cl4 Cl3

∂1

∂2

∂3

 , Ckl = Clk . (7)

Function Qk is the dislocation body-force equivalent of [Burridge and Knopoff 1964] for the homoge-
neous case. Discontinuity [u] is prescribed, but vector decomposition gives

[u] = [uN ]n+ [uS]s, (8a)

[uN ] = [u] · n, [uS] = |[u] − ([u] · n)n|, (8b)

s =
[u] − ([u] · n)n
|[u] − ([u] · n)n|

, n · s = 0. (8c)

Here s(x, τ ) is a unit vector in the plane of <. Thus,

1
µ

Qi (x, τ )=
∫∫
<

d AGik(x′, τ )δk(x; x′), (9a)

Gik(x′, τ )= d N S
ik (x

′, τ )[uS(x′, τ )] + d N N
ik (x′, τ )[uN (x′, τ )], (9b)

δk(x; x′)= ∂kδ(x1− x ′1)δ(x2− x ′2)δ(x3− x ′3). (9c)

Area integration is over surface < with respect to the Cartesian variable x′, and the δ symbol in (9c) is
the Dirac function. Expressions for dimensionless coefficient arrays (d N S

ik , d N N
ik ) are given in terms of
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(8) in Appendix A. Combining (1)–(3) and (5)–(9) gives the uncoupled equations for u j :

Du j = D jk Qk(x, τ ). (10)

In (9) ( j, k)= (1, 2, 3), the summation convention applies, and

D= (P11−∂
2)(P22−∂

2)(P33−∂
2)+2P12 P23 P31−P2

23(P11−∂
2)−P2

31(P22−∂
2)−P2

12(P33−∂
2), (11a)

Di i= (Pj j − ∂
2)(Pkk − ∂

2)− P2
jk, (11b)

Di j= D j i = Pik Pjk − Pi j (Pkk − ∂
2). (11c)

In (11) the subscripts (i, j, k) are not equal and take on values (1, 2, 3), and the P terms are operators,
where Pkl = Plk and P11

P22

P33

= K

∂
2
1

∂2
2

∂2
3

+ 2LT

∂1∂2

∂2∂3

∂3∂1

 , (12a)

P12

P23

P31

= L

∂
2
1

∂2
2

∂2
3

+M

∂1∂2

∂2∂3

∂3∂1

 . (12b)

In (12) the matrices (K , L, M) are given — see [Ting 1996] — by

K =

d11 d66 d55

d66 d22 d44

d55 d44 d33

 , L =

d16 d26 d45

d56 d24 d34

d15 d46 d35

 , (13a)

M =

d12+ d66 d46+ d25 d14+ d56

d46+ d25 d23+ d44 d45+ d36

d14+ d56 d45+ d36 d13+ d55

 , (13b)

dik =
Cik

µ
=

Cki

µ
. (13c)

It is noted that L is asymmetric. In addition u is finite as |x| →∞ for finite τ > 0.

3. Transform solution

To determine u(x, τ ) the unilateral Laplace transform and multiple bilateral transform are employed
[van der Pol and Bremmer 1950; Sneddon 1972]:

f̂ (p)=
∫

f (τ ) exp(−pτ) dτ, (14a)

f ∗(p, q1, q2, q3)=

∫∫∫
f̂ (p, x) exp[−p(q1x1+ q2x2+ q3x3)] dx1 dx2 dx3. (14b)

Here Re(p) > 0, the integration in (14a) is over positive τ , and the integration in (14b) is over the entire
Re(xk)-axis. Application of (14) to (6) and (9) and imposing conditions for τ < 0 and |x| →∞ gives
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the formal transform solution

u∗j =
ql

p

∫
∞

0
dτ ′

∫∫
<

d A
D jk

D
Gkl(x′, τ ′) exp(−p)(q1x ′1+ q2x ′2+ q3x ′3+ τ

′). (15)

In (15) ( j, k, l)= (1, 2, 3), the summation convention applies, and, from (11):

D = (P11−1)(P22−1)(P33−1)+ 2P12 P23 P31− P2
23(P11−1)− P2

31(P22−1)− P2
12(P33−1), (16a)

Di i = (Pj j − 1)(Pkk − 1)− P2
jk, (16b)

Di j = D j i = Pik Pjk − Pi j (Pkk − 1). (16c)

In (16) the P terms follow from (12) as functions of qk , where Pkl = Plk :P11

P22

P33

= K

q2
1

q2
2

q2
3

+ 2LT

q1q2

q2q3

q3q1

 , (17a)

P12

P23

P31

= L

q2
1

q2
2

q2
3

+M

q1q2

q2q3

q3q1

 . (17b)

4. Transform inversion

The formal inversion of (14b) is [van der Pol and Bremmer 1950; Sneddon 1972]

f̂ (p, x)=
(

p
2iπ

)3 ∫∫∫
f ∗(p, q1, q2, q3) exp p(x1q1+ x2q2+ x3q3) dq1 dq2 dq3. (18)

Barring the existence of poles or branch points in f ∗ there, integration with respect to qk can be taken
over the entire Im(qk)-axis. Consistent with an operation commonly used in equilibrium analysis, for
example, in [Ting 1996], it is convenient to introduce an orthogonal transformationx1

x2

x3

=
cosψ ′ sinφ′ cosψ ′ cosφ′ −sinψ ′

sinψ ′ sinφ′ sinψ ′ cosφ′ cosψ ′

cosφ′ −sinφ′ 0

x
y
z

 . (19)

Here |x, y, z|<∞, |ψ ′| ≤π/2, and 0≤φ′≤π/2 so that (x, ψ ′, φ′) represents a quasispherical coordinate
system, where ψ ′ and φ′ correspond to the polar and azimuthal angles. Equation (19) suggests in turn
the transformation

q1 = q cosψ ′ sinφ′, q2 = q sinψ ′ sinφ′, q3 = q cosφ′. (20)

Here |Im(q)|<∞, |ψ ′| ≤ π/2, and 0≤ φ′ ≤ π/2. Use of (15), (19), and (20) in (18) gives

û j =−
2p∂l

π2

∫
∞

0
dτ ′

∫
8

sinφ′ dφ′
∫
9

dψ ′
∫∫
<

Gkl
d A
2iπ

∫
|q|2 dq

1 jk

1
exp p[q(x − x ′)− τ ′]. (21)

In (21), Gkl = Gkl(x ′, y′, z′, ψ, φ, τ ′), ( j, k, l)= (1, 2, 3), and the summation convention applies. Sym-
bols (8,9) signify integration over, respectively, ranges |ψ ′| ≤ π/2 and 0≤ φ′ ≤ π/2, and q-integration
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is over the entire Im(q)-axis. Terms (1,1 jk) are

1= III q6
− II q4

+ I q2
− 1, (22a)

1i i = (q2 B j j − 1)(q2 Bkk − 1)− q4 B2
jk, (22b)

1i j =1 j i = q4 Bik B jk − q2 Bi j (q2 Bkk − 1). (22c)

In (22) we have from (17)B11

B22

B33

= K

cos2 ψ ′ sin2 φ′

sin2 ψ ′ sin2 φ′

cos2 φ′

+ 2LT

cosψ ′ sinψ ′ sin2 φ′

sinψ ′ sinφ′ cosφ′

cosψ ′ sinφ′ cosφ′

 , (23a)

B12

B23

B31

= L

cos2 ψ ′ sin2 φ′

sin2 ψ ′ sin2 φ′

cos2 φ′

+M

cosψ ′ sinψ ′ sin2 φ′

sinψ ′ sinφ′ cosφ′

cosψ ′ sinφ′ cosφ′

 . (23b)

These elements constitute a symmetric matrix

B =

B11 B12 B31

B12 B22 B23

B31 B23 B33

 . (24)

Terms (I, II , III ) in (22a) are the first, second, and third invariants of B. In view of (20) Bkl are generated
by a rotation in terms of (ψ ′, φ′) involving array dkl . Condition (4) is equivalent to the requirement that
the principal minors of Ckl , and therefore dkl , are positive definite (see also [Hohn 1964; Ting 1996]).
This, in turn, guarantees that the principal minors of array (24) are positive definite and (22a) has three
positive real roots. Because 1 is a cubic polynomial in q2, this is equivalent to the condition α3

−β2 > 0,
and so the three positive real roots are given by [Abramowitz and Stegun 1972]:

q2
A =

1
c2

A
, q2

B =
1

c2
B
, q2

C =
1

c2
C
, (25a)

c2
A =

I
3
+ 2
√
α cos �

3
, (c2

B, c2
C)=

I
3
− 2
√
α cos 1

3
(�±π), (25b)

�= tan−1 1
β

√
α3−β2, α =

( I
3

)2
−

II
3
, β =

III
3
+

I
3

[( I
3

)2
−

II
2

]
. (25c)

When α3
−β2

= 0, two of the results in (25b) are identical. In view of (25a), (22a) can then be written
as

1= III (q2
− q2

A)(q
2
− q2

B)(q
2
− q2

C). (26)

Residue theory is now used for q-integration in (21), where it is noted that nonanalytic function |q| is
defined on the Im(q)-axis. The 111 term, for example, gives

qA111(qA)

2III (q2
A−q2

B)(q
2
A−q2

C)
exp(−p)(qA|x−x ′|+τ ′)+

qB111(qB)

2III (q2
B−q2

C)(q
2
B−q2

A)
exp(−p)(qB |x−x ′|+τ ′)

+
qC111(qC)

2III (q2
C−q2

A)(q
2
C−q2

B)
exp(−p)(qC |x − x ′| + τ ′). (27)
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The exponential argument in (27) implies the existence of three wave speeds

vA = cA(ψ
′, φ′)vS, vB = cB(ψ

′, φ′)vS, vC = cC(ψ
′, φ′)vS. (28)

Each exponential in (27) is the unilateral transform (14a) of the Dirac function [Sneddon 1972], and
analogous results hold for the other 1 terms defined by (22b) and (22c). Thus the inverse of (21) is
obtained by inspection:

u j =−
1
π2

∫
8

sinφ′ dφ′
∫
9

dψ ′
∂l∂

III

∫ τ

0
dτ ′

∫∫
<

d A1′jk Gkl(TA+ TB + TC), (29a)

TL =
τ − τ ′

|x − x ′|ML

(
τ − τ ′ >

|x − x ′|
cL

)
. (29b)

In (29b) subscript L represents A, B, or C , and

MA =

[
(τ − τ ′)2 −

( x−x ′

cB

)2
][
(τ − τ ′)2 −

( x−x ′

cC

)2
]
, (30a)

MB =

[
(τ − τ ′)2 −

( x−x ′

cC

)2
][
(τ − τ ′)2 −

( x−x ′

cA

)2
]
, (30b)

MC =

[
(τ − τ ′)2 −

( x−x ′

cA

)2
][
(τ − τ ′)2 −

( x−x ′

cB

)2
]
. (30c)

Function 1′jk follows from (22b) and (22c) as

1′i i = [B j j (τ − τ
′)2− (x − x ′)2][Bkk(τ − τ

′)2− (x − x ′)2] − B2
jk(τ − τ

′)4, (31a)

1′i j =1
′

j i = (τ − τ
′)2
(
Bik B jk(τ − τ

′)2− Bi j [Bkk(τ − τ
′)2− (x − x ′)2]

)
. (31b)

In view of (19)

x − x ′ = (x1− x ′1) cosψ ′ sinφ′+ (x2− x ′2) sinψ ′ sinφ′+ (x3− x ′3) cosφ′. (32)

The subsonic restriction on the expansion of < guarantees that no part of its boundary C at a given
0< τ ′ < τ violates the inequality in (29b).

5. Planar <: Adoption of local description

While the decomposition (8a) and (9b) allows identification of climb and glide, development of (29a)
depends on function [u(x, τ )], and use of (9b) involves time-dependent unit vector s. If a local description
of displacement discontinuity, that is, in terms of the geometry of <, is available, then a more explicit
result is possible — especially in the case of planar <. Then (8a) and (9b) are replaced by

[u] = [uT ]t + [uS]s+ [uN ]n, (33a)

Gik = Gik(t, s, τ )= d N T
ik [uT ] + d N S

ik [uS] + d N N
ik [uN ]. (33b)
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Unit vectors (t, s, n) form a fixed right-handed set (t × s = n, s× n= t, n× t = s). They are invariant
in <, but the (T, S, N ) components of u are functions of (t, s, τ ), where (t, s) correspond to (t, s) andn

t
s

=
n1 n2 n3

t1 t2 t3
s1 s2 s3

e1

e2

e3

 . (34)

Terms (nk, tk, sk) are (constant) direction cosines, ek are Cartesian basis vectors, and dimensionless
coefficient arrays (d N T

ik , d N S
ik , d N N

ik ) are given in Appendix B. Normal n is known, but vectors (t, s) in
the plane of < are somewhat arbitrary. In light of (19), a convenient choice is to define n in terms of
polar and azimuthal angles (ψ, φ), where |ψ |< π/2 and 0< φ < π/2, and introduce for integration over
< the transformation and corresponding direction cosines:x ′1

x ′2
x ′3

=
cosψ sinφ cosψ cosφ −sinψ

sinψ sinφ sinψ cosφ cosψ
cosφ −sinφ 0

0
t
s

 , (35a)

n1 = cosψ sinφ, n2 = sinψ sinφ, n3 = cosφ, (35b)

t1 = cosψ cosφ, t2 =−sinψ cosφ, t3 =−sinφ, (35c)

s1 =−sinψ, s2 = cosψ, s3 = 0. (35d)

In view of (33)–(35) the integrand of the ψ ′φ′-integration in (29a) can be written as

d N T
kl ∂

∫ τ

0
dτ ′
∫∫
<

d A[Pjk∂
′

l [uT ]−∂
′

l (Pjk[uT ])]+d N S
kl ∂

∫ τ

0
dτ ′
∫∫
<

d A[Pjk∂
′

l [uS]−∂
′

l (Pjk[uS])]

+ d N N
kl ∂

∫ τ

0
dτ ′
∫∫
<

d A[Pjk∂
′

l [uN ] − ∂
′

l (Pjk[uN ])], (36a)

where
Pjk =1

′

jk(TA+ TB + TC). (36b)

Here ∂ ′l represents differentiation with respect to x ′l in (32), and (d N T
kl , d N S

kl , d N
kl ) are independent of

(t, s, τ ′). From (35a), Pjk and ([uT ], [uS], [uN ]) depend on (t, s, τ ′) and

∂ ′1→ cosψ sinφ ∂
∂t
− sinψ ∂

∂s
, ∂ ′2→ sinψ cosφ ∂

∂t
+ cosψ ∂

∂s
, ∂ ′3→ sinφ ∂

∂t
. (37)

Use of (37) in (36) and application of Stokes’s theorem [Hay 1953] allows the second terms in (36) to
be replaced by line integrals around contour C . For example, the first integral over < in (36) gives for
l = (1, 2, 3), respectively,∫∫

<

d APjk

(
cosψ sinφ ∂

∂t
− sinψ ∂

∂s

)
[uT ] +

∮
C

dcPjk[uT ](sinψ t + cosψ sinφs) · tC , (38a)∫∫
<

d APjk

(
sinψ cosφ ∂

∂t
+ cosψ ∂

∂s

)
[uT ] −

∮
C

dcPjk[uT ](cosψ t − sinψ cosφs) · tC , (38b)

sinφ
∫∫
<

d APjk
∂

∂t
[uT ] + sinφ

∮
C

dcPjk[uT ]s · tC . (38c)
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Integration is counterclockwise around C in the ts-plane, tC is the unit vector tangent to C and in the
direction of integration, and (32) takes the form

x − x ′ = (x1 cosψ ′+ x2 sinψ ′) sinφ′+ x3 cosφ′

− [sinφ′ cosφ cos(ψ ′−ψ)− cosφ′ sinφ]t + sinφ′ sin(ψ ′−ψ)s. (39)

The subsonic restriction on the growth of < guarantees that the wave front history defined in (29b) does
not affect the limits of integration over (<,C).

6. Planar <: Traction field

A local description does not imply knowledge of the traction field (σN S, σN T , σN N ) on <. However,
with (29) and (36)–(39) in hand, this field can be obtained by evaluation of the following expressions for
x ∈ <: 

σN N

σT T

σSS

σSN

σN T

σT S


= µ



d N N
11 d N N

22 d N N
33 d N N

23 d N N
31 d N N

12

dT T
11 dT T

22 dT T
33 dT T

23 dT T
31 dT T

12

d SS
11 d SS

22 d SS
33 d SS

23 d SS
31 d SS

12

d SN
11 d SN

22 d SN
33 d SN

23 d SN
31 d SN

12

d N T
11 d N T

22 d N T
33 d N T

23 d N T
31 d N T

12

dT S
11 dT S

22 dT S
33 dT S

23 dT S
31 dT S

12





∂1u1

∂2u2

∂3u3

∂2u3+ ∂3u2

∂3u1+ ∂1u3

∂1u2+ ∂2u1


, (40a)

d SN
ik = d N S

ik , d N T
ik = dT N

ik , dT S
ik = d ST

ik . (40b)

Dimensionless coefficient arrays (d N S
ik , d N T

ik , d N N
ik ) appear in (33), and are defined in Appendix B. Defi-

nitions of coefficient arrays (dT T
ik , d SS

ik , dT S
ik ) are also found there.

7. Planar <: Two special cases with application

Dip-slip and strike-slip faulting in seismology [Canitez and Toksoz 1972] and slip mechanisms in a
crystal lattice [Read 1953] can be modeled as a spatially invariant dislocation distribution on an expanding
surface. For such a distribution on <, the terms in (38) reduce to

[uT ]

∮
C

dcPjk(sinψ t + cosψ sinφs) · tC , (41a)

−[uT ]

∮
C

dcPjk(cosψ t − sinψ cosφs) · tC , (41b)

[uT ] sinφ
∮

C
dcPjk s · tC . (41c)

The use of dislocation distributions that exhibit spatial variation to model internal cracks is well estab-
lished [Bilby and Eshelby 1968; Barber 1992]. If < represents a crack plane, then [u] = 0 (x ∈ C) and
only the integration over < in (38) remains. Results analogous to (41) exist, for example, [Brock 1986],
for a nonplanar surface in an isotropic solid.
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If the additional condition is imposed that a radial line from x = 0 to any point on C lies within <, it
is convenient to define (<,C) in terms of polar coordinates:

< : r < rC(θ
′, τ ), C : r = rC(θ

′, τ ), (42a)

t = r cos θ ′, s = r sin θ ′ (0≤ θ ′ ≤ 2π). (42b)

Here (rC , ∂rC/∂θ
′) are single-valued and continuous in θ ′. Quantities (∂rC/∂θ

′, ∂rC) are finite and, in
particular, ∂rC <min[cA(ψ, φ), cB(ψ, φ), cC(ψ, φ)]. Use of (42) in (41c), for example, gives

[uT ] sinφ
∫ 2π

0
Pjk

∂

∂θ ′
(rC sin θ ′) dθ ′. (43)

For the crack plane case, the corresponding result is

sinφ
∫ 2π

0
Pjk dθ ′

∫ rC

0
dr
(

r ∂
∂r

sin θ ′+ cos θ ′
∂

∂θ ′

)
[uT ]. (44)

In the case of (44),

x − x ′ = (x1 cosψ ′+ x2 sinψ ′) sinφ′+ x3 cosφ′− r F(φ, φ′, ψ ′−ψ, θ ′), (45a)

F = [cos θ ′ sin(ψ ′−ψ)+ cosφ sin θ ′ cos(ψ ′−ψ)] sinφ′− sin θ ′ sinφ cosφ′. (45b)

For (43), the symbol r in (45a) is replaced with rC(θ
′, τ ′).

8. Limit results

For an orthotropic solid [Ting 1996; Jones 1999] matrix K is again defined by (13a), but L = 0 and

M =

d12+ d66 0 0
0 d23+ d44 0
0 0 d13+ d55

 . (46)

For transverse isotropy with respect to the x1x2-plane [Ting 1996; Jones 1999] L = 0 and

K =

d11 d66 d55

d66 d11 d55

d55 d55 d33

 , (47a)

M =

d11− d66 0 0
0 d13+ d55 0
0 0 d13+ d55

 . (47b)

For a cubic solid [Crandall and Dahl 1959] L = 0 and

K =

d11 1 1
1 d11 1
1 1 d11

 , M = (d12+ 1)1. (48)

Here 1 is the identity tensor. For isotropy [Ting 1996; Jones 1999] L = 0, K is defined by (48), and

M = (d11− 1)1. (49)
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Equations (25), (29), and (30) still hold for the orthotropic solid. Transverse isotropy (47) yields the
more explicit results

cA =
√

d44 cos2 φ′+ d66 sin2 φ′, (50a)

(c2
A, c2

C)=
1
2 (d44+ d11 sin2 φ′+ d33 cos2 φ′)

±
1
2

√
(d33 cos2 φ′− d11 sin2 φ′− d4 cos 2φ′)2+ (d44+ d13)

2 sin2 2φ′. (50b)

Moreover, TB + TC replaces TA+ TB + TC in terms that involve (d N T
31 , d N S

31 , d N N
31 ) and (d N T

23 , d N S
23 , d N N

23 )

in (37), where

TL =
τ − τ ′

ML |x − x ′|

(
τ − τ ′ >

|x − x ′|
cL

)
, (51a)

MB = (τ − τ
′)2−

( x−x ′

cC

)2
, MC = (τ − τ

′)2−
( x−x ′

cB

)2
. (51b)

It should be noted that conditions specific to transversely isotropic solids that guarantee that α3
−β2 > 0

are given in detail in [Payton 1983]. For the cubic solid

cA = 1, (52a)

(c2
B, c2

C)=
1
2 (d11+ 1)± 1

2 sinφ′
√
(d11− 1)2 sin2 φ′+ (d12+ 1)2 cos2 φ′. (52b)

The results associated with (51) still hold. For the isotropic solid cA = cC , so only two speeds (vB, vC)=

(cB, cC)vS exist, where
cB =

√
d11, cC = 1. (53)

Thus, isotropy corresponds to the case α3
− β2

= 0 noted above, and (36) involves only terms of the
type (51).

As an illustration of wave speed variation with propagation direction, a transversely isotropic graphite-
epoxy [Jones 1999] is considered with

µ= C44 = 7.07 GPa, vS = 2546 m/s, d44 = 1.0, d66 = 0.4951,d11 d12 d31

d12 d11 d31

d31 d31 d33

=
1.9689 0.9788 0.9109

0.9788 1.9689 0.9109
0.9109 0.9109 22.73

 .
Use of these properties in (50) gives the values of dimensionless speeds (cA, cB, cC) shown in Table 1
for 0 ≤ φ′ ≤ 90◦. It is seen that the values are quite sensitive to φ′; compare [Wang and Achenbach
1994].

9. Concluding remarks

The present formulation leads to transient expressions that are multiple integrals in a unit spherical quad-
rant in terms of polar and azimuthal angles, that is, (|ψ ′|<π/2, 0≤ φ′ ≤ π/2), but are explicit functions
of Cartesian principal material coordinates. Approaches used to produce the anisotropic Green’s function,
for example, [Wang and Achenbach 1995; Ting 1996], are similar but feature integration over the surface
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cA cB cC

φ′ = 0◦ 1.0 4.8197 0.7071
15◦ 0.9829 4.6650 0.7595
30◦ 0.9348 4.2094 0.9057
45◦ 0.8646 3.4926 1.0730
60◦ 0.7882 2.5908 1.2029
75◦ 0.7272 1.7096 1.1986
90◦ 0.7036 1.4042 1.0

Table 1. Graphite-epoxy: dimensionless speeds (vS = 2546 m/s).

of a unit sphere or around a unit circle [Synge 1957]. Nevertheless, for a planar dislocation surface, the
present integration process can in fact be carried out in terms of a polar coordinate system (r, θ ′) in the
plane. Moreover, Stokes’s theorem [Hay 1953] can be invoked to replace portions of the area integration
with integration around the area contour. The description of the dislocation distribution in terms of
surface geometry does produce lengthier solution expressions. However, climb and glide mechanisms
can be identified explicitly in terms of matrix/tensor arrays that are similar to those defined in analyses
of general anisotropy; see [Ting 1996], for example. Related arrays that characterize the orientation of
the dislocation surface and its climb and glide components with respect to the principal material axes
arise, and resemble in form the constitutive relation for the solid itself. In summary, the disadvantages of
the length and complexity of these solutions, and their combination of standard coordinate systems, may
be compensated for by a more explicit nature. This nature may be of advantage in cases where solution
response to particular dislocation features is of interest.

Appendix A

The dimensionless coefficient array d N S
ik (x

′, τ ) is defined by

d N S
11

d N S
22

d N S
33

d N S
23

d N S
31

d N S
12


=



d1 d12 d13 d14 d15 d16

d12 d22 d23 d24 d25 d26

d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d46

d15 d25 d35 d45 d55 d56

d16 d26 d36 d46 d56 d66





s1n1

s2n2

s3n3

s2n3+ s3n2

s3n1+ s1n3

s1n2+ s2n1


, (A.1a)

d N S
ik = d N S

ki . (A.1b)

Here sl(x′, τ ) and nl(x′) are the direction cosines of (s, n) in the principal material basis. It is noted that
(A.1) resembles constitutive equations (1)–(3), with d N S

ik playing the role of (dimensionless) stresses, and
(si ni , si nk + skni ) acting as strains (∂i ui , ∂i uk + ∂kui ). Coefficients d N N

ik follow by replacing sl with nl .
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Appendix B

Dimensionless coefficient array d N T
ik is defined by

d N T
11

d N T
22

d N T
33

d N T
23

d N T
31

d N T
12


=



d11 d12 d13 d14 d15 d16

d12 d22 d23 d24 d25 d26

d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d46

d15 d25 d35 d45 d55 d56

d16 d26 d36 d46 d56 d66





t1n1

t2n2

t3n3

t2n3+ t3n2

t3n1+ t1n3

t1n2+ t2n1


, (B.1a)

d N T
ik = d N T

ki . (B.1b)

Terms (tl, nl) are direction cosines of (t, n) in the principal material basis. For planar <, of course,
direction cosines are constant. Results for (d N S

ik , d N N
ik ) follow from (B.1) by replacing direction cosine

tl with, respectively, direction cosine (sl, nl).
Another set of dimensionless coefficients (dT S

ik , dT T
ik , d SS

ik ) can also be defined, where

dT S
11

dT S
22

dT S
33

dT S
23

dT S
31

dT S
12


=



d11 d12 d13 d14 d15 d16

d12 d22 d23 d24 d25 d26

d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d46

d15 d25 d35 d45 d55 d56

d16 d26 d36 d46 d56 d66





t1s1

t2s2

t3s3

t2s3+ t3s2

t3s1+ t1s3

t1s2+ t2s1


, (B.2a)

dT S
ik = dT S

ki . (B.2b)

Terms (dT T
ik , d SS

ik ) follow from (B.2) by, respectively, replacing sl with tl and tl with sl .
Equations (B.1) and (B.2) also show that

dT N
ik = d N T

ki , d SN
ik = d N S

ik , dT S
ik = d ST

ik . (B.3)

Equations (B.1) and (B.2) resemble (A.1), so that the forms of (d N T
ik , d N S

ik , dT S
ik ) also resemble constitutive

equations (1)–(3).
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