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A DIFFUSE COHESIVE ENERGY APPROACH TO FRACTURE
AND PLASTICITY: THE ONE-DIMENSIONAL CASE

GIANPIETRO DEL PIERO, GIOVANNI LANCIONI AND RICCARDO MARCH

In the fracture model presented in this paper, the basic assumption is that the energy is the sum of
two terms, one elastic and one cohesive, depending on the elastic and inelastic part of the deformation,
respectively. Two variants are examined: a local model, and a nonlocal model obtained by adding
a gradient term to the cohesive energy. While the local model only applies to materials which obey
Drucker’s postulate and only predicts catastrophic failure, the nonlocal model describes the softening
regime and predicts two collapse mechanisms, one for brittle fracture and one for ductile fracture.

In its nonlocal version, the model has two main advantages over the models existing in the literature.
The first is that the basic elements of the theory (the yield function, hardening rule, and evolution laws)
are not assumed, but are determined as necessary conditions for the existence of solutions in incremental
energy minimization. This reduces to a minimum the number of independent assumptions required to
construct the model. The second advantage is that, with appropriate choices of the analytical shape of the
cohesive energy, it becomes possible to reproduce, with surprising accuracy, a large variety of observed
experimental responses. In all cases, the model provides a description of the entire evolution, from the
initial elastic regime to final rupture.

1. Introduction

Since the pioneering paper [Francfort and Marigo 1998], the variational approach to fracture has been the
object of intense research. A reason for this is the availability of numerical instruments supporting the
theory, which are capable of solving practical problems in fracture mechanics. One such instrument is
the regularization technique of Ambrosio and Tortorelli [1990], initially conceived for the image segmen-
tation problem [Mumford and Shah 1989], and applied to fracture problems by Bourdin, Francfort and
Marigo [2000]. The regularization consists in approximating the energy of a fractured body, which by its
own nature is defined on discontinuous deformations with bounded variation, by a family of functionals
defined in a Sobolev space. This makes it possible to solve fracture problems using standard finite
element techniques.

The original paper [Francfort and Marigo 1998] and the subsequent developments were based on the
brittle fracture model of Griffith [1920], in which the presence of singular discontinuity surfaces for the
displacement is allowed at the interior of an elastic body. In fact, long before the appearance of [Franc-
fort and Marigo 1998], more sophisticated models, based on Barenblatt’s cohesive fracture hypothesis
[Barenblatt 1962], were used in fracture mechanics. They were particularly efficient in situations in which
fracture is preceded by a regime of large inelastic deformation, like in the rupture of concrete and other
nonmetallic materials [Hillerborg 1991; Carpinteri and Massabò 1997]. In this respect, a fundamental
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role was played by the cohesive crack model of [Hillerborg et al. 1976]. The development of the theories
of rupture for concrete over the following decades is documented in the review papers [Carpinteri 1982;
Bažant and Chen 1997; Bažant and Jirásek 2002; Bažant and Le 2009].

With the cohesive energy model, two basic aspects of energy minimization became evident. The first
is the relevance of local, versus global, minimization. This point has received significant attention in
the recent literature [Dal Maso and Toader 2002; Marigo and Truskinovsky 2004], and is now generally
accepted. The second aspect is the relevance of the role played by energy dissipation. Indeed, with a min-
imization constrained by a dissipation inequality it is possible to reproduce some sophisticated aspects of
material response such as, for instance, elastic unloading in plasticity [Del Piero and Truskinovsky 2009].

The present paper originates from a reflection on similarities and differences between the cohesive en-
ergy scheme and the Ambrosio–Tortorelli approximation. For both, the energy functional depends on the
elastic deformation plus a second variable which provides a regularized representation of fracture. But,
while the cohesive energy is usually assumed to be a surface energy, the regularizing term in [Ambrosio
and Tortorelli 1990] is a volume integral.

The question naturally arises, of whether or not it is convenient to assume a cohesive energy con-
centrated on singular surfaces. In ductile materials, before rupture, the appearance of a process zone
is observed, in which the material becomes weaker and more deformable. This phenomenon can be
described by damage [Babadjian 2011] or plasticity [Dal Maso and Toader 2010] theories. Cohesive
energies diffused over the volume were recently considered in the modeling of brittle fracture [Volokh
2004] and damage [Benallal and Marigo 2007; Pham et al. 2011], and in the variational theory of fracture
[Freddi and Royer-Carfagni 2010]. In particular, [Pham and Marigo 2010a] deals with a model of energy
minimization, in which rupture is preceded by progressive damage. In it, the one-dimensional energy
functional has the form ∫ l

0

(
w(u′(x), γ (x))+ θ(γ (x))

)
dx, (1-1)

where w is the bulk energy density, u′ is the axial deformation, and γ is an internal variable representing
the intensity of damage. In the present paper we consider the special case∫ l

0

(
w(ε(x))+ θ(γ (x))

)
dx, (1-2)

in which ε(x)= u′(x)− γ (x) is the elastic part of the deformation. Of the two energy densities w and θ ,
the first is assumed to be reversible and the second is assumed to be totally dissipated. By assuming w
independent of γ , we purposely renounce any description of damage. Though our initial purpose was to
construct something more general than a plasticity theory, to our surprise we realized that, as we shall
see below, the energy (1-2) provides exactly the classical incremental theory of plasticity exposed, for
example, in [Hill 1950].

A weak point of the model is that it fails to describe the strain-softening response which, as well-
known from the literature, is associated with localization of the plastic deformation. These effects can
be captured by adding a nonlocal term of the gradient type∫ l

0

(
w(ε(x))+ θ(γ (x))

)
dx + 1

2
α

∫ l

0
γ ′

2
(x) dx, (1-3)
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which successfully captures some specific effects of material response in a large variety of models, like
the van der Waals model for capillarity [van der Waals 1893; Casal 1972], the Cahn–Hilliard model for
phase transition [Cahn and Hilliard 1958], Mumford–Shah image segmentation theory [Mumford and
Shah 1989], some theories of liquid crystals [Frank 1958; Ericksen 1990], and some numerical models for
the rupture of concrete [Borst and Pamin 1996]. A nonlocal term was also used in [Truskinovsky 1996]
to construct a cohesive zone model starting from the energy of interatomic attraction (Lennard-Jones
potential).

The addition of a gradient term renders the expression (1-3) of the energy similar to the Ambrosio–
Tortorelli functional∫ l

0
(s2(x)+ κα)w(u′(x)) dx + 1

2
α

∫ l

0

(
s ′2(x)+

c
α2 (1− s(x))2

)
dx . (1-4)

Indeed, in both cases the total energy is the sum of a basic energy and a perturbing gradient term, and
in both cases the deformation is accompanied by a second independent variable. The main difference is
that in (1-3) the second variable is the inelastic part of the deformation, while in (1-4) the scalar field
s ∈ [0, 1] measures the fracture intensity in the regularized model. Also different is the nature of the
smallness parameter α. In (1-4), α is the coefficient of a singular perturbation, and what is important is
the asymptotic behavior of the solution when α→ 0. In fracture theory, α is a fixed material constant,
usually interpreted as an internal length determined by the microscopic structure of the material [Bažant
and Pijaudier-Cabot 1989; Bažant and Jirásek 2002; Pham et al. 2011].

The value of α strongly influences the material’s response. Indeed, the ratio between internal length
and the length l of the bar is an indicator of the brittleness of the fracture. A reduction of α has the
same effect as an increase of l, that is, a transition from rupture preceded by a long regime of gradual
weakening to sudden catastrophic failure. For fixed α and varying l, this is the well-known size effect of
fracture mechanics.

The requirement of nonnegativeness of the first variation leads to Kuhn–Tucker conditions very similar,
and sometimes identical, to the governing equations of the gradient theories of plasticity [Aifantis 1992;
Fleck and Hutchinson 2001; Gurtin and Anand 2005] and damage [Benallal and Marigo 2007; Pham and
Marigo 2010b; Pham et al. 2011], which, starting from the pioneering paper [Aifantis 1984], have been
developed by several authors in the last two decades. In particular, the expression of the first variation of
the energy given in Section 3.2 is the one-dimensional counterpart of the expression of the virtual power
currently assumed in the theories of strain-gradient plasticity [Gurtin 2003; Gudmundson 2004; Gurtin
and Anand 2005].

An accurate review, analysis, and comparison of such theories can be found in [Jirásek and Rolshoven
2009a; 2009b]. Most theories include a number of assumptions which fix the basic physical aspects of
plastic response:

- the stress-strain elastic law,

- the hardening rule,

- the evolution laws,

- the loading-unloading conditions,

- the yield function.
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The underlying continuum can be either a classical or a generalized continuum. In a classical con-
tinuum the plastic deformation is regarded as a state variable, the Cauchy stress is the unique stress
measure, and supplementary generalized forces are defined as the conjugates of the gradients of the plastic
deformation. In a generalized continuum, higher-order stresses appear as conjugates of the higher-order
deformation gradients.

The two cases are analyzed in [Jirásek and Rolshoven 2009b] and [2009a], respectively. The number
and variety of theories reported therein shows by itself that there is yet no agreement about the choice of a
fully satisfactory model. The present paper has the ambition of presenting a mathematically sound model,
based on very simple assumptions, and providing a very flexible description of the entire evolution from
the initial elastic regime to final rupture.

The basic assumptions are the forms of the elastic energy and of the dissipative cohesive energy.
Proceeding by incremental energy minimization, all classical hypotheses listed above are obtained as
necessary conditions for a minimum. The analytical forms of the functions defined in the above hy-
potheses are already contained in the assumed form of the cohesive energy. In particular, the dissipative
character assumed for the cohesive energy provides the basis for the description of elastic unloading, and
the shape of the cohesive energy can be chosen to reproduce a large variety of responses, hardening or
softening, and with the plastic strain diffusing over the body or localizing on small regions.

Surface cohesive energies have proved to be an efficient tool for formulating and solving fracture
problems. Here we show that volume cohesive energies can be a very natural way for describing fracture
as a terminal event in an evolution involving plasticity or damage. Of course, there is no claim of
generality for the model presented here. It can be generalized in several directions. We just like to
compare the simplicity of the starting assumptions and of the incremental minimizing procedure, with
the richness of the responses that can be obtained by acting on the analytical shape of the cohesive energy.

Our analysis is restricted to the one-dimensional case. This allows us to get the basic results avoiding a
number of technical complications, at the cost of neglecting some important aspects congenital to higher
dimension. The paper is divided into four sections. After the present introduction, Sections 2 and 3 deal
with the local and nonlocal models, respectively, and Section 4 reports some numerical simulations on
the nonlocal model and compares them with experiments. The local model is introduced in Section 2.1,
and in Section 2.2 the equilibrium configurations are identified with the stationary points of the energy
(1-2). Due to the unilateral character of the dissipation constraint, the Euler equation is replaced by an
inequality. This inequality provides an upper bound for the axial force, depending on the current value
of the plastic deformation. In this way, the yield condition is obtained.

The minimum properties of the stationary points are investigated in Section 2.3. The following sub-
sections deal with the quasistatic evolution of the inelastic deformation under varying load, along a path
made of energy minimizers. For simplicity, we only consider a bar under a hard device, for which the
load consists of displacements applied at the endpoints. Section 2.4 is devoted to incremental energy
minimization. In a first-order approximation, the minimization consists in determining the direction of
steepest descent under the given load increment. The result is that along that direction the inelastic
deformation does not change in the elastic regime, that is, when the yield condition is satisfied as a strict
inequality. On the contrary, in the inelastic regime the inelastic strain rate remains unspecified.

For its determination, a second-order minimization is required. In it, some basic properties of classical
plasticity, such as the hardening rule, the consistency condition for the inelastic deformation at loading,
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and the property of elastic unloading are obtained as necessary conditions for a minimum. The minimiza-
tion leads to a first-order differential problem, involving the current values of the inelastic deformation
and of the inelastic strain rate. This problem is studied in Section 2.5. In the inelastic regime, at each
time t the response is determined by the sign of the second derivative of θ at the current deformation γt :
the response is work-hardening for θ ′′(γt) > 0 and perfectly plastic for θ ′′(γt)= 0. For θ ′′(γt) negative,
the deformation concentrates at a single point, determining catastrophic rupture.

The local model provides a classical incremental plasticity theory [Hill 1950], obeying Drucker’s
material stability postulate [Drucker 1952]:

σ̇t γ̇t ≥ 0, (1-5)

which does not allow for a strain-softening response. Within this restricted context, the model correctly
describes a plastic response followed by brittle fracture in the sense of Griffith’s theory.

The nonlocal model based on the energy (1-3) is discussed in Section 3. Due to the presence of
a gradient term, more regularity and supplementary boundary conditions are required. The additional
regularity assumptions are made in Section 3.1, and two different options for the supplementary boundary
conditions are considered in Section 3.2. The choice of the supplementary boundary conditions is a
delicate problem; see, for example, the discussion in [Jirásek and Rolshoven 2009b, §3.4]. Our choice
of imposing a null inelastic deformation γ at the boundary is motivated by a closer adherence to the
constraint devices used in laboratory tests.

The minimum properties of the equilibrium configurations, still identified with the stationary points
of the energy, are investigated in Section 3.3. Due to the stabilizing effect of the nonlocal term, the
necessary conditions for a minimum are weaker than in the local model. In particular, moderate negative
values of θ ′′(γ (x)) become acceptable, and this renders admissible a strain-softening response. In the
language of [Jirásek and Rolshoven 2009a; 2009b], the nonlocal term acts as a localization limiter, since
it opposes the localization of the inelastic deformation.

The quasistatic evolution under a given load process is studied in Section 3.4. A first-order minimiza-
tion still provides the direction of steepest descent for the energy functional. Along this direction, the
inelastic strain rate γ̇t(x) is zero in the elastic zone, that is, at points x at which the yield condition
is satisfied as a strict inequality. Surprisingly enough, this conclusion is partially contradicted in the
second-order minimization, in which nonnull inelastic strain rates are allowed inside the elastic zone, at
points sufficiently close to the interface with the inelastic zone.

The second-order minimization provides a set of Kuhn–Tucker conditions, which governs the qua-
sistatic evolution of the inelastic deformation. Due to the presence of the nonlocal terms, closed-form
solutions can be found only in some special cases. One of them is the onset of the inelastic regime, studied
in detail in Section 3.5. In the determination of the incremental response at the onset, a fundamental role
is played by the nondimensional ratio l/ li , where

li
.
= 2π

√
α

−θ ′′(0)
(1-6)

is the internal length of the material at the onset. Indeed, the response is work-hardening if l < li/2 and
strain-softening if l > li/2. Moreover, for l < li the response is full-size, that is, the inelastic strain rate
is diffused over the whole bar, while for l > li the inelastic strain rate localizes on a region of length li .
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It is possible that catastrophic failure occurs just at the onset of the inelastic regime. This circumstance,
which we call totally brittle fracture, depends on a second nondimensional ratio l/ lc, where

lc
.
= 2π

√
α

w′′(βc)
(1-7)

is the characteristic length at the onset and βc is the value of the load β at the onset. In fact, totally
brittle fracture occurs when l/ lc is less than a given function of l/ li .

A qualitative analysis of the response in the inelastic regime is made in Section 3.6. In it, internal
length and characteristic length are considered as functions of the current inelastic and elastic deformation

li t = 2π
√

α

−θ ′′t
, lct = 2π

√
α

w′′(εt)
, (1-8)

respectively, where θ ′′t is an average of θ ′′(γt(x)) over the bar in the current inelastic deformation γt . In
this way, by extrapolation of the exact results obtained at the onset, it is possible to obtain an approximate
picture of the bar’s evolution up to final rupture.

In particular, from this qualitative analysis two fundamental types of evolution emerge. They depend
on the convexity-concavity properties of the derivative θ ′ of the cohesive energy, and determine two very
different collapse mechanisms. If θ ′ is concave, an increasing load produces a progressive localization
of the inelastic deformation, and a progressive increase of the negative slope of the force-elongation
response curve. In the limit, an extreme localization and an infinite slope of the response curve produce
catastrophic failure. On the contrary, if θ ′ is convex, under increasing load the inelastic deformation
diffuses over larger and larger zones, and the negative slope of the curve decreases. In the limit the slope
tends to zero, and the bar elongates indefinitely at constant force.

The two collapse mechanisms are typical of materials with crystalline structure and with random
structure, respectively. In Section 4 both are investigated by means of numerical simulations, with the
purpose of reproducing the response curves of two real materials, concrete and steel. The correspondence
of the simulations with the experimental curves is obtained by fitting a very small number of parameters,
that is, the material constants necessary to represent the cohesive energy θ as a piecewise polynomial
function. The result is impressive. It shows that an appropriate choice of the expression of the cohesive
energy can indeed capture not only the overall behavior, but also many detailed features of the response
curve, in the whole evolution from the initial natural state up to rupture.

Roughly, the main results of the present study can be summarized as follows.

- In its nonlocal version, the diffuse cohesive energy model captures both brittle and ductile fracture
modes. In brittle fracture the inelastic deformation tends to localize on singular surfaces, and in
ductile fracture it tends to spread over the whole bar. Brittle fracture may also take place without
any preliminary regime of inelastic deformation.

- A convex cohesive energy produces a full-size work-hardening response. A concave energy may
produce a full-size or localized, work-hardening or strain-softening response, depending on the ratio
between the current internal length and the length of the bar.

- For θ concave, a convex θ ′ produces brittle fracture, and a concave θ ′ produces ductile fracture.
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- Brittle fracture occurs when the current internal length reaches a critical value depending on the
current characteristic length.

Some of these results, reflecting an earlier stage of the present research, were announced in [Del Piero
et al. 2012]. But even the present results are not complete, since many problems are left open. Specifically,
it seems very difficult to reach the same level of detail in a two or three-dimensional context. Also, a
big challenge is how to find general, physically motivated correlations between the convexity-concavity
properties of θ and θ ′ and the microstructural properties of real materials. This would require a truly
interdisciplinary effort, far beyond the domain of classical continuum mechanics.

2. The local model

2.1. Basic assumptions. Consider a straight bar of length l, homogeneous, with a constant cross-section,
subject to prescribed axial displacements at the endpoints

u(0)= 0, u(l)= βl, (2-1)

and free of applied loads. In what follows, the term load will be used to denote the relative elongation β.
A deformed configuration is described by the axial displacements u(x) of the points x of the bar’s axis,
and the derivative u′(x) is a measure of the axial deformation at x .

We make four basic assumptions. The first is that at every x the deformation can be split into the sum
of an elastic part ε(x) and an inelastic part γ (x):

u′(x)= ε(x)+ γ (x), x ∈ (0, l). (2-2)

A pair (ε, γ ) of functions continuous in [0, l] is a configuration of the bar. By integration, from the
boundary conditions (2-1) it follows that

β = ε̄+ γ̄ , (2-3)

with

ε̄ =
1
l

∫ l

0
ε(x) dx, γ̄ =

1
l

∫ l

0
γ (x) dx . (2-4)

Our second assumption is that the strain energy of the bar has the form

E(ε, γ )=
∫ l

0

(
w(ε(x))+ θ(γ (x))

)
dx, (2-5)

where w and θ are the volume densities of the elastic strain energy and of the cohesive energy, respec-
tively. We assume that w is C2 and strictly convex, and that

w(0)= w′(0)= 0. (2-6)

Then w′ is strictly increasing, and

w(ε) > 0, ∀ε 6= 0, w′(ε)

{
> 0, ∀ε > 0,
< 0, ∀ε < 0,

w′′(ε) > 0, ∀ε ∈ R.
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We also assume that θ is C2 and monotonic increasing, and that

θ(0)= 0, θ ′(0) > 0, lim
γ→+∞

θ(γ ) <+∞. (2-7)

The third assumption is that the elastic part of the deformation is related to the axial force σ by the
constitutive equation

σ = w′(ε), (2-8)

and the fourth assumption is that w can be stored, while θ is totally dissipated. That is, in every defor-
mation process t 7→ (εt , γt), at every x the cohesive power is nonnegative:

θ ′(γt(x))γ̇t(x)≥ 0. (2-9)

Here and in the following, a superimposed dot denotes the right derivative with respect to the parameter t .
Due to the rate-independent character of the model, t may be any monotonic nondecreasing function of
the physical time. In what follows we consider the case of θ strictly monotonic, for which the dissipation
inequality

γ̇t(x)≥ 0 (2-10)

holds at all x and for all t .

2.2. Equilibrium. For a given configuration (ε, γ ), a perturbation is a pair (δε, δγ ) such that

δε(x)= ε̇t(x), δγ (x)= γ̇t(x),

in some deformation process with (εt , γt)= (ε, γ ). While δε is unrestricted, δγ is subject to the condition

δγ (x)≥ 0, ∀x ∈ (0, l), (2-11)

due to the dissipation inequality (2-10). We say that (ε, γ ) is an equilibrium configuration if the first
variation of the energy

δE(ε, γ, δε, δγ )= lim
λ→0+

1
λ
(E(ε+ λ δε, γ + λ δγ )− E(ε, γ ))

=

∫ l

0

(
w′(ε(x)) δε(x)+ θ ′(γ (x)) δγ (x)

)
dx

(2-12)

is nonnegative for all perturbations which preserve the length of the bar

δε̄+ δγ̄ = 0, δε̄ =
1
l

∫ l

0
δε(x) dx, δγ̄ =

1
l

∫ l

0
δγ (x) dx . (2-13)

In particular, for perturbations with δγ = 0 the first variation is

δE(ε, γ, δε, 0)=
∫ l

0
w′(ε(x)) δε(x) dx .

By (2-13), δε̄ = 0 for such perturbations. Then, a standard argument of the calculus of variations leads
to the conclusion that the first variation is nonnegative if and only if w′(ε(x)) is a constant.
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By the constitutive equation (2-8), this implies that the axial force σ is constant. Moreover, by the
strict convexity of w, the derivative w′ is strictly increasing and, therefore, invertible. Then, ε is constant
as well:

ε = (w′)−1(σ ). (2-14)

By (2-13), for constant ε the first variation reduces to

δE(ε, γ, δε, δγ )=
∫ l

0

(
θ ′(γ (x))−w′(ε)

)
δγ (x) dx,

and because δγ (x) is arbitrary nonnegative, the condition

w′(ε)≤ θ ′(γ (x)), ∀x ∈ (0, l), (2-15)

follows. Conversely, for every configuration (ε, γ ) obeying this condition the first variation is nonnegative.
Therefore, an equilibrium configuration is a configuration (ε, γ ), with constant ε, which satisfies condi-
tion (2-15) for all x.

An equilibrium configuration is equilibrated with the load β given by (2-3). Then inequality (2-15),
rewritten in the form

w′(β − γ̄ )≤ θ ′(γ (x)), ∀x ∈ (0, l), (2-16)

shows that an equilibrium configuration can be defined alternatively as a pair (β, γ ) which satisfies
(2-11) and (2-16). There are many γ for which (β, γ ) is an equilibrium configuration. Indeed, by the
assumptions made on w and θ , all configurations (β, γ ) with γ̄ > β satisfy inequality (2-16), because
the right side of the inequality is nonnegative, while for β < γ̄ the left side is negative.

With every equilibrium configuration (β, γ ) are associated the axial force

σ = w′(β − γ̄ ) (2-17)

and the energy

Eeq(β, γ )
.
= lw(β − γ̄ )+

∫ l

0
θ(γ (x)) dx . (2-18)

The set of all x at which inequality (2-16) is strict is the elastic zone

E(β, γ )
.
= {x ∈ (0, l) | w′(β − γ̄ ) < θ ′(γ (x))}, (2-19)

and the complementary set
J(β, γ )

.
= (0, l) \ E(β, γ )

at which (2-16) is verified as an equality is the inelastic zone. We say that the bar is in the elastic regime
if E(β, γ )= (0, l), and that it is in the inelastic regime otherwise.

The equilibrium condition (2-16), rewritten in the form

σ ≤ θ ′(γ (x)), ∀x ∈ (0, l), (2-20)

shows that there is an upper limit for σ . In the language of plasticity, this inequality is a yield condition,
which imposes that the current stress σ not be greater than the yield limit θ ′. The difference θ ′− σ is the
yield function.
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2.3. Energy minimizers. Among all inelastic deformations γ equilibrated with a given β, of interest are
those which minimize the energy Eeq(β, · ). A necessary condition for a minimum at γ is that, in the
expansion

Eeq(β, γ + λ δγ )− Eeq(β, γ )= λ

∫ l

0

(
θ ′(γ (x))−w′(β − γ̄ )

)
δγ (x) dx

+
1
2
λ2
∫ l

0

(
θ ′′(γ (x)) δγ 2

+w′′(β − γ̄ ) δγ̄ 2) dx + o(λ2),

the first variation be nonnegative for all perturbations δγ and for all positive values of the smallness
parameter λ. By (2-11) and (2-16), this is true if and only if (β, γ ) is an equilibrium configuration.
Therefore, all minimizers for Eeq(β, · ) are equilibrium configurations.

A second necessary condition is that the second variation be nonnegative for all δγ for which the
first variation is zero. In particular, it must be nonnegative for all δγ with support in the inelastic zone
J(β, γ ). For this, it is necessary that

θ ′′(γ (x))≥ 0, a.e. x ∈ J(β, γ ). (2-21)

Indeed, if θ ′′(γ (x)) is negative on a subset of J(β, γ ) with nonnull measure, a negative second variation
is obtained by concentrating δγ on that set. The existence of perturbed configurations (β, γ + δγ ) with
arbitrarily large negative energy characterizes a fractured configuration. Then, (2-21) is in fact a safety
condition against fracture.

The nonnegativeness of the first variation joined with the stronger condition

θ ′′(γ (x)) > 0, ∀x ∈ (0, l), (2-22)

is sufficient for a local minimum at γ with respect to the L∞ norm:

‖δγ ‖ = sup
x∈(0,l)

|δγ (x)|. (2-23)

Indeed, since θ is C2 and γ is continuous in the closed set [0, l], the map θ ′′(γ ( · )) is uniformly
continuous. Then for all ε > 0 there is a δ > 0 such that

|a|< δ H⇒ |θ ′′(γ (x)+ a)− θ ′′(γ (x))|< ε, ∀x ∈ (0, l).

Consider the finite expansion of Eeq(β, · ) with Lagrange remainder

Eeq(β, γ + δγ )

= Eeq(β, γ )+ δEeq(β, γ, δγ )+
1
2

∫ l

0

(
θ ′′(γ (x)+ ξ(x) δγ (x)) δγ 2(x)+w′′(β − γ̄ − ξ̄ δγ̄ ) δγ̄ 2) dx,

with ξ̄ and all ξ(x) in (0, 1). For every perturbation δγ with ‖δγ ‖< δ, from the nonnegativeness of the
first variation and the positiveness of w′′ we have

Eeq(β, γ + δγ )− Eeq(β, γ )≥
1
2

∫ l

0

(
θ ′′(γ (x))− ε

)
δγ 2(x) dx .
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If (2-22) holds, the map θ ′′(γ ( · )) is positive and continuous, and therefore it has a positive minimum c
in [0, l]. It is then sufficient to take ε < c to have a nonnegative right-hand side. Because this holds for
all δγ with ‖δγ ‖< δ, γ is a local minimizer with respect to the norm (2-23).

2.4. Quasistatic evolutions. A load process is a continuous function t 7→ βt . A quasistatic evolution
from γ0 associated with t 7→ βt is a family t 7→ γt of inelastic deformations such that

(i) γt = γ0 at the initial time t = t0,

(ii) for all t the function x 7→ γt(x) is continuous, for all x the function t 7→ γt is nondecreasing, and
the family t 7→ γt is continuous in L∞(0, l), and

(iii) for all t ≥ t0, γt is a local minimizer for Eeq(βt , · ).

In (ii), the requirement of γt nondecreasing is imposed by the dissipation inequality (2-10), and con-
tinuity in L∞(0, l) means that for every t ≥ t0 and for every δ > 0 there is a τo > 0 such that

‖γt+τ − γt‖< δ, ∀τ ∈ (0, τo),

where ‖ · ‖ is the L∞ norm (2-23). By consequence, in the time interval (0, τo) the evolution τ 7→ γt+τ

takes place inside the ball B(γt , δ) of L∞(0, l) of radius δ centered at γt .
Assume that γt( · ) is a deformation with constant value γ̄t , and that θ ′′(γ̄t) is positive. Then it is

possible to choose δ such that θ ′′(γ (x)) > 0 for all γ in B(γ̄t , δ), so that the restriction of the energy to
B(γ̄t , δ) is strictly convex for all τ < τo. Therefore, by Jensen’s inequality,

Eeq(βt+τ , γt+τ )≥ Eeq(βt+τ , γ̄t+τ ), ∀τ ∈ (0, τo),

where γ̄t+τ is the homogeneous deformation defined as in (2-4), and equality holds only if γt+τ = γ̄t+τ .
That is, the unique minimizer of the energy at time t + τ is a homogeneous deformation. Consequently,
for every quasistatic evolution from a homogeneous deformation γ̄t with θ ′′(γ̄t) > 0 there is a time interval
(0, τo) in which γt+τ is a homogeneous deformation.

From here onwards we consider homogeneous deformation processes t 7→ γt , and we identify the
functions γt( · ) and γ̇t( · ) with their constant values, which we denote by γt and γ̇t . For θ ′′(γt) > 0 and
for δ and τo as above, the determination of a quasistatic evolution from (βt , γt) reduces to the following
incremental minimization problem: for a given τ ≤ τo, find the homogeneous deformation γt+τ which
minimizes the energy Eeq(βt+τ , · ) in B(γt , δ).

An approximate solution is obtained by replacing βt+τ and γt+τ by the piecewise linear approxima-
tions

βt+τ ≈ βt + τ β̇t , γt+τ ≈ γt + τ γ̇t , (2-24)

and then determining γ̇t as the minimizer for the first-order approximation

Et+τ (γ̇ )≈ Et + τ Ėt(γ̇ ) (2-25)

of the energy Eeq(βt+τ , γt+τ ), where

Et = Eeq(βt , γt)= l(w(εt)+ θ(γt)), Ėt(γ̇ )= l(σt(β̇t − γ̇ )+ θ
′(γt)γ̇ ), (2-26)
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with σt = w
′(εt) and εt = βt − γt . This minimization determines the direction of steepest descent for the

energy. Because Et and β̇t are known, the problem reduces to the minimization of the linear function

I (γ̇ )= (θ ′(γt)− σt)γ̇ , (2-27)

under the condition γ̇ ≥ 0. In the elastic regime, in which (θ ′(γt)− σt) is positive, the minimum is zero
and is attained at γ̇ = 0. In the inelastic regime, I (γ̇ ) is identically zero because (θ ′(γt)− σt) is zero.
That is, the direction of steepest descent is undetermined.

The determination of a quasistatic evolution in the inelastic regime then requires a second-order ap-
proximation of the energy

Et+τ (γ̇ )≈ Et + τ Ėt(γ̇ )+
1
2 τ

2 Ët(γ̇ ), (2-28)

where
Ët(γ̇ )= l(w′′(εt)(β̇t − γ̇ )

2
+ θ ′′(γt)γ̇

2). (2-29)

After elimination of the terms independent of γ̇ , the problem reduces to the minimization of the quadratic
function

J (γ̇ )= (θ ′(γt)− σt − τw
′′(εt)β̇t)γ̇ +

1
2 τ(θ

′′(γt)+w
′′(εt))γ̇

2, (2-30)

under the condition γ̇ ≥ 0. The sum (θ ′′(γt)+w
′′(εt)) is positive by the strict convexity of w and the

necessary condition (2-21) on θ ′′(γ ). Then, J is strictly convex. If the bar is in the elastic regime,
θ ′(γt)− σt > 0, the coefficient of γ̇ is positive for sufficiently small τ . Then the global minimum is zero,
and is achieved at γ̇ = 0. In this case, the elastic incremental response

σ̇t = w
′′(εt)β̇t (2-31)

follows from the incremental force-elongation relation

σ̇t = w
′′(εt)(β̇t − ¯̇γt), (2-32)

obtained by time differentiation of (2-17). This confirms the result of the first-order minimization, that
there is no increase of inelastic deformation in the elastic regime.

In the inelastic regime, θ ′(γt)= σt , the minimum is still achieved at γ̇ = 0 at unloading, β̇t ≤ 0. Then,
there is no increase of inelastic deformation at unloading. At loading, β̇t > 0, the minimum of J is
achieved at

γ̇t =
w′′(εt)

θ ′′(γt)+w′′(εt)
β̇t , (2-33)

and, by (2-32), the inelastic response is

σ̇t =
θ ′′(γt)w

′′(εt)

θ ′′(γt)+w′′(εt)
β̇t . (2-34)

The different response at loading and unloading in the inelastic regime is a peculiar property of plastic
behavior. At loading, from (2-33) and (2-34) it follows that

σ̇t = θ
′′(γt)γ̇t , (2-35)
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whence
σt+τ ≈ σt + τ σ̇t = θ

′(γt)+ τθ
′′(γt)γ̇t ≈ θ

′(γt+τ ). (2-36)

Equation (2-35) is the hardening rule, which in classical plasticity specifies σ̇ as a function of the current
value of γ . Equation (2-36) states that, within the approximation (2-24), at time t + τ the yield condi-
tion holds as an equality. That is, the inelastic regime is preserved. This is the consistency condition
of classical plasticity. At unloading, the response (2-31) expresses the property of elastic unloading.
Classically, the hardening rule, consistency, and elastic unloading are assumptions originating from ex-
perimental observation. Here, they come as necessary conditions for a minimum in the second-order
energy minimization.

Equation (2-34) provides the slope dσt/dβt = σ̇t/β̇t of the force-elongation response curve at loading.
For θ ′′(γt) > 0 this slope is positive but smaller than the slope w′′(εt) at unloading. A positive slope at
loading characterizes a work-hardening response.

For θ ′′(γt) = 0, the restriction to homogeneous deformations is no longer possible. In the inelastic
regime, σt = θ

′(γt), the function J (γ̇ ) reduces to

J (γ̇ )=−τw′′(εt)β̇t ¯̇γ +
1
2 τw

′′(εt) ¯̇γ
2.

The minimum is achieved at ¯̇γt = β̇t , which corresponds to σ̇t = 0, that is, to perfectly plastic response.
In this case, the incremental minimization specifies the average ¯̇γt , but the punctual values γ̇t(x) are not
determined. Thus, in this case the evolution from a homogeneous configuration need not be homoge-
neous.

The case of θ ′′(γt) negative, corresponding to a negative slope, that is, to a strain-softening response,
is excluded by condition (2-21). Multiplication of (2-35) by γ̇t shows that Drucker’s postulate (1-5) is
obeyed only if θ ′′(γt) is nonnegative. This shows that the local model provides a valid response only for
materials which obey Drucker’s postulate.

The indeterminacy of the minimizers in a perfectly plastic response and the impossibility of reproduc-
ing the softening response are two major drawbacks of the local model.

2.5. Evolution from the natural configuration. Let us determine the quasistatic evolution for a load
process t 7→ βt , with β̇t > 0 for all t , from the natural configuration (β0, γ0)= (0, 0). At t = 0 we have

σ0 = 0, θ ′(γ0)= θ
′(0) > 0,

so that inequality (2-20) is strict and γ̇0 is zero. By continuity, inequality (2-20) remains strict, and
therefore γ̇t remains equal to zero, over a time interval (0, tc). Because γ0 = 0, γt is zero in this interval.
Then an elastic regime takes place, with

εt = βt , σt = w
′(βt).

This regime ends when, at some tc > 0, βt reaches the value

βc = (w
′)−1(θ ′(0)), (2-37)

at which, since σtc = w
′(βc)= θ

′(0), inequality (2-20) becomes an equality. At t = tc, all points of the
bar switch from the elastic to the inelastic zone.
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The response at t = tc is work-hardening if θ ′′(0) > 0 and perfectly plastic if θ ′′(0) = 0. In the
work-hardening regime, by (2-33), the evolution t 7→ γt is determined by the solution of the differential
equation

γ̇t =
w′′(βt − γt)

θ ′′(γt)+w′′(βt − γt)
β̇t , t ≥ tc, (2-38)

under the initial condition γtc = 0. A work-hardening regime persists as long as β̇t and θ ′′(γt) remain
positive. For β̇t ≤ 0 elastic unloading takes place, and for θ ′′(γt) = 0 the response becomes perfectly
plastic. Fracture occurs as soon as γt becomes larger than

γr
.
= inf{γ ≥ 0 | θ ′′(γ ) < 0}. (2-39)

Indeed, for γ > γr there are perturbed configurations with arbitrarily large negative energy. Because the
energy suddenly drops from a finite value to −∞, the fracture has a catastrophic character. This fracture
mode is called brittle fracture. If θ ′′(0) < 0, fracture occurs without any intermediate inelastic regime.
This is the case of totally brittle fracture.

In conclusion, in the inelastic regime at loading the response at (βt , γt) is work-hardening if θ ′′(γt) is
positive, and perfectly plastic if θ ′′(γt)= 0. For θ ′′(γt) > 0, a quasistatic evolution from a homogeneous
deformation is made of homogeneous deformations. The fracture is always catastrophic, and occurs as
soon as γt becomes larger than γr .

3. The nonlocal model

3.1. Basic assumptions. The local model provides only a rough description of the bar’s behavior. In
particular, it does not describe ductile fracture and strain-softening response. These phenomena are
captured by adding to the energy (2-5) a nonlocal term proportional to the square of the derivative of γ :

E(ε, γ )=
∫ l

0

(
w(ε(x))+ θ(γ (x))+ 1

2αγ
′2(x)

)
dx,

with α a positive constant. The new term requires a stronger regularity of γ . We assume that γ is C1

on [0, l] and piecewise C2, that is, that γ ′′ is continuous except at a finite number of jump points xi , at
which the left limit γ ′′(xi−) and the right limit γ ′′(xi+) exist. The difference

[[γ ′′]](xi )
.
= γ ′′(xi+)− γ

′′(xi−) (3-1)

is the jump of γ ′′ at x .
Like in the local model, the part of the energy depending on the inelastic deformation is supposed to

be dissipative. That is, the cohesive power

θ ′(γt(x))γ̇t(x)+αγ ′t (x)γ̇
′

t (x) (3-2)

is assumed to be nonnegative in every deformation process t 7→ γt . For this, it is necessary that the
product θ ′(γt(x))γ̇t(x) be nonnegative at all x . Indeed, if it is negative at some xo, since γ̇ ′t (xo) may
have opposite signs in different deformation processes from γt(xo), for at least one choice the power
(3-2) is negative.
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By the assumed strict monotonicity of θ ′, the dissipation inequality γ̇t(x) ≥ 0 is necessary for dis-
sipativity. In the following subsection we show that, if the yield limit is nonnegative, this condition is
sufficient to guarantee the global dissipativity, that is, the nonnegativeness of the integral of (3-2) over
(0, l), in every equilibrium process.

3.2. Equilibrium. In the nonlocal model, an equilibrium configuration is a configuration (ε, γ ) at which
the first variation

δE(ε, γ, δε, δγ )=
∫ l

0

(
w′(ε(x)) δε(x)+ θ ′(γ (x)) δγ (x)+αγ ′(x) δγ ′(x)

)
dx

is nonnegative for all C1([0, l]) and piecewise C2 perturbations (δε, δγ ), which satisfy the dissipation
inequality (2-11) and the boundary condition (2-13). Proceeding as in Section 2.2, using perturbations
with δγ = 0 we find that σ and ε must be constant over the bar. Then setting w′(ε)= σ and δε =−δγ̄
and integrating by parts, we get

δE(ε, γ,−δγ̄ , δγ )=
∫ l

0

(
θ ′(γ (x))− σ −αγ ′′(x)

)
δγ (x) dx +α

[
γ ′(x) δγ (x)

]l
0.

The nonnegativeness of the first variation for all nonnegative δγ requires

σ ≤ θ ′(γ (x))−αγ ′′(x), (3-3)

in (0, l), and
γ ′(l) δγ (l)≥ 0, γ ′(0) δγ (0)≤ 0, (3-4)

at the boundary. Inequality (3-3) is the nonlocal version of the yield condition (2-20). The difference
with the local model is that, while the yield limit θ ′(γ (x)) of the local model depends only on the value of
γ at x , the additional term αγ ′′(x) introduces a dependence on the values taken by γ at the neighboring
points.

There are two ways of satisfying the boundary conditions (3-4). If δγ is allowed to take arbitrary
positive values at the boundary, these conditions reduce to γ ′(l) ≥ 0 and γ ′(0) ≤ 0, respectively. The
alternative is to require that

γ (l)= γ (0)= 0, (3-5)

and, therefore, to take perturbations δγ such that

δγ (l)= δγ (0)= 0. (3-6)

We choose this second possibility, which better describes the standard experimental conditions. Indeed,
while this choice keeps the inelastic deformations away from the boundary, the other choice favors the
concentration of the inelastic deformation at the boundary. For a similar effect in different models, see
[Yalcinkaya et al. 2011, Figures 9 and 10], [Benallal and Marigo 2007, Figure 3a], and the discussion in
[Jirásek and Rolshoven 2009b]. In laboratory tests this effect is carefully avoided, either by reinforcing
the specimen’s end sections, or by weakening the central part of the bar, for example, with the creation
of a notch.

Thus, our choice allows for a comparison, at least qualitative, with the standard experimental curves.
The alternative possibility of imposing a null derivative γ ′ was chosen in [Benallal and Marigo 2007;
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Pham and Marigo 2010b; Pham et al. 2011]. This choice has the advantage of allowing for homogeneous
inelastic equilibrium configurations, and this greatly facilitates the study of the inelastic regime. Unfor-
tunately, due to the devices used to fix the bar’s ends in real experiments, this circumstance is hardly
reproducible in practice.

In conclusion, for the nonlocal model an equilibrium configuration is a pair (ε, γ ), with ε a constant
and γ a C1([0, l]) and piecewise C2 function, which satisfies inequality (3-3) at the interior points and
conditions (3-5) at the boundary.

Assume that the dissipation inequality (2-10) holds, and that the yield limit θ ′(γ )−αγ ′′ is nonnegative.
After integrating over (0, l), an integration by parts yields

0≤
∫ l

0

(
θ ′(γ (x))−αγ ′′(x)

)
γ̇ (x) dx =

∫ l

0

(
θ ′(γ (x))γ̇ (x)+αγ ′(x)γ̇ ′(x)

)
dx −α

[
γ ′(x)γ̇ (x)

]l
0.

On the right side the integral is the total cohesive power. Moreover, by (3-4), the remaining term is
nonpositive in any equilibrium process. This proves that, if the yield limit is nonnegative, the dissipation
inequality (2-10) guarantees the global dissipativity in every equilibrium process.

An equilibrium configuration (ε, γ ) is equilibrated with the load β given by (2-3). Alternatively, an
equilibrium configuration can be defined as a pair (β, γ ), and the energy can be redefined by

Eeq(β, γ )= lw(β − γ̄ )+
∫ l

0
θ(γ (x)) dx + 1

2
α

∫ l

0
γ ′

2
(x) dx . (3-7)

For an equilibrium configuration (β, γ ) defined in this way, the elastic and inelastic zones are

E(β, γ )= {x ∈ (0, l) | w′(β − γ̄ ) < θ ′(γ (x))−αγ ′′(x)}, J(β, γ )= (0, l) \ E(β, γ ), (3-8)

respectively. As in the local model, we say that the bar is in the elastic regime if E(β, γ )= (0, l), and
that it is in the inelastic regime otherwise.

3.3. Energy minimizers. To determine the inelastic deformations γ which minimize the energy Eeq(β, · ),
consider the expansion

Eeq(β, γ + δγ )− Eeq(β, γ )=

∫ l

0

(
θ ′(γ (x)) δγ (x)−w′(ε) δγ̄ +αγ ′(x) δγ ′(x)

)
dx

+
1
2

∫ l

0

(
θ ′′(γ (x)) δγ 2(x)+w′′(ε) δγ̄ 2

+α δγ ′
2
(x)
)

dx + o(‖δγ ‖2),

with ε = β − γ̄ , and with perturbations δγ nonnegative and satisfying the boundary conditions (3-6). A
necessary condition for a minimum is the nonnegativeness of the first variation. Because this requirement
characterizes an equilibrium configuration, all minimizers are equilibrium configurations.

Another necessary condition is that the second variation be nonnegative for all δγ for which the first
variation is zero, and in particular, for all δγ with support in the inelastic zone J(β, γ ). If (a, a+ l )
is an interval in the inelastic zone, the second variation is nonnegative only if the smallest eigenvalue of
the eigenvalue problem∫ a+l

a

(
θ ′′(γ (x)) δγ 2(x)+ l

l
w′′(ε) δγ̄ 2

+α δγ ′
2
(x)
)

dx = αρ
∫ a+l

a
δγ 2(x) dx, (3-9)
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is nonnegative for all perturbations δγ with support in this interval. This problem can be identified with
problem (A.15), with H as in (A.9) due to the presence of the constraint δγ (x)≥ 0, and with

a = 0, l = L , θ ′′(γ (x))= αh(x), δγ (x)= y(x), δγ̄ =
l
l

ȳ.

The last equality follows from the definitions

ȳ = 1
l

∫ a+l

a
y(x) dx, δγ̄ =

1
l

∫ l

0
δγ (x) dx = 1

l

∫ l

0
δγ (x) dx,

which hold for δγ (x)= y(x) with support in (0, l ). Then, from the identification

l
l
w′′(ε) δγ̄ 2

= αω ȳ2,

comes the relation

ω =
l
l
w′′(ε)

α
.

The smallest eigenvalue αρo has the upper bound (A.17). It provides the necessary condition for nonneg-
ativeness:

αλ2
o + θ

′′

o ≥ 0, (3-10)

where λo is a solution of (A.14), now rewritten in the form

λ2
o =

l
l
w′′(ε)

α
ψo(λo l ), (3-11)

with ψo as in (A.13). Moreover, θ ′′o is defined as in (A.16),

θ ′′o =

∫ a+l

a
θ ′′(γ (x))y2

o (x) dx∫ a+l

a
y2

o (x) dx
, (3-12)

with yo given by (A.8) if ωL2
= l3

w
′′(ε)/αl ≤ 4π2, and given by (A.12) if l3

w
′′(ε)/αl > 4π2. Because

λo is a decreasing function of l , inequality (3-10) must be satisfied for the largest interval contained in
the inelastic zone.

To find a sufficient condition for a local minimum of Eeq(β, γ ), write the finite expansion with a
Lagrange remainder:

Eeq(β, γ + δγ )= Eeq(β, γ )+

∫ l

0

(
θ ′(γ (x)) δγ (x)−w′(ε) δγ̄ +αγ ′(x) δγ ′(x)

)
dx

+
1
2

∫ l

0

(
θ ′′(γ (x)+ ξ(x) δγ (x)) δγ 2(x)+w′′(ε− ξ̄ δγ̄ ) δγ̄ 2

+α δγ ′
2
(x)
)

dx,

with 0≤ ξ(x)≤ 1 for all x and 0≤ ξ̄ ≤ 1. The first integral, which is the first variation, is nonnegative.
We wish to find conditions for which the second integral is nonnegative as well.
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By the continuity of θ ′′ and w′′, for every ε > 0 there is a positive δ such that

sup
x∈(0,l)

|θ ′′(γ (x)+ ξ(x) δγ (x))− θ ′′(γ (x))|< ε, |w′′(ε− ξ̄ δγ̄ )−w′′(ε)|< ε,

for all δγ with ‖δγ ‖< δ. For all such δγ , the second integral is greater than or equal to∫ l

0

(
θ ′′(γ (x)) δγ 2(x)+w′′(ε) δγ̄ 2

+α δγ ′
2
(x)
)

dx − ε
∫ l

0
(δγ 2(x)+ δγ̄ 2) dx .

The first integral is the same as in (A.15), with

l = L , δγ = y, w′′(ε)= αω, θ ′′(γ (x))= αh(x).

Therefore,

Eeq(β, γ + δγ )≥ Eeq(β, γ )+ (αρo− 2ε)
∫ l

0
δγ 2(x) dx .

By the arbitrariness of ε, γ is a minimizer if the smallest eigenvalue ρo is strictly positive. By (A.19), a
sufficient condition for a minimum is

αλ2
o+ θ

′′

min > 0, (3-13)

with λo the solution of (A.14) for the given ω, and with θ ′′min the smallest value of θ ′′(γ (x)) in (0, l).
Conditions (3-10) and (3-13) improve the corresponding conditions (2-21) and (2-22) of the local

model. In particular, they show that moderate negative values of θ ′′(γ (x)) are allowed in an energy
minimizer. As remarked in the Appendix, the two conditions can be far away from each other. In the
special case of l = l and constant θ ′′(γ (x)) they coincide, save for the fact that the second inequality is
strict.

3.4. Quasistatic evolutions. For a given load process t 7→ βt , a quasistatic evolution from a given de-
formation γ0 at t = t0 is a family t 7→ γt of inelastic deformations such that

(i) γt0 is equal to γ0,

(ii) for all t ≥ t0, the function γt( · ) is C1 and piecewise C2 in [0, l],

(iii) for all t ≥ t0, γt is a local minimizer for Eeq(βt , · ).

The regularity of the time derivative γ̇t is determined by Hadamard’s kinematic compatibility condi-
tion:

[[γ̇ ′t ]](x)=−[[γ
′′

t ]](x)
dx
dt
,

where dx/dt is the velocity of a moving jump of γ ′t . This condition tells us that for a moving jump
of γ ′′t there is a corresponding moving jump of γ̇ ′t . Therefore, if γt is C1 and piecewise C2, γ̇t is only
continuous, piecewise C1, and piecewise C2.

Like in the local model, item (iii) implies that all configurations (βt , γt) are equilibrium configurations.
Note that, because of the boundary conditions (3-5), γt is homogeneous only if γt = 0. Therefore, while
in the local model it is sometimes possible to restrict the analysis to quasistatic evolutions made of
homogeneous deformations, here there are no homogeneous deformations besides γt = 0.
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Repeating the procedure followed for the local model, fix a time step τ and consider the piecewise
linear approximations (2-24) of t 7→ βt and t 7→ γt . For them, we first determine the direction γ̇t of
steepest descent, by minimizing the first-order approximation (2-25) of the energy. The problem reduces
to the minimization of the linear functional

I (γ̇ )=
∫ l

0

(
θ ′(γt(x))γ̇ (x)− σt ¯̇γ +αγ

′

t (x)γ̇
′(x)

)
dx =

∫ l

0
ft(x)γ̇ (x) dx,

where σt = w
′(βt − γ̄t), and

ft(x)
.
= θ ′(γt(x))− σt −αγ

′′

t (x) (3-14)

is the yield function. The domain of I is the set of all γ̇ which satisfy the dissipation inequality (2-10)
and the boundary conditions

γ̇ (0)= γ̇ (l)= 0, (3-15)

which follow from (3-6). In the first variation

δ I (γ̇t , δγ̇ )=

∫ l

0
ft(x) δγ̇ (x) dx,

the perturbations δγ̇ satisfy the boundary conditions

δγ̇ (0)= δγ̇ (l)= 0, (3-16)

and the inequality
γ̇t(x)+ δγ̇ (x)≥ 0, ∀x ∈ (0, l). (3-17)

This is because, in a quasistatic evolution, (γ̇t + δγ̇ ) is the derivative of γt in some deformation process
starting from (βt , γt), and therefore it obeys the boundary conditions (3-15) and the dissipation inequality
(2-10). The nonnegativeness of the first variation requires that

ft(x) δγ̇ (x)≥ 0, a.e. x ∈ (0, l).

By (3-17), at points at which γ̇t(x) = 0 the perturbation δγ̇ (x) is arbitrary nonnegative, and therefore
ft(x)must be nonnegative. At points at which γ̇t(x)> 0 the perturbation may have any sign, and therefore
ft(x) must be zero. Together with the dissipation inequality (2-10) and the yield condition (3-3), this
leads to the Kuhn–Tucker conditions

γ̇t(x)≥ 0, ft(x)≥ 0, ft(x)γ̇t(x)= 0, a.e. x ∈ (0, l), (3-18)

as necessary conditions for a minimum of I at γ̇t . The last equality, called the complementarity condition,
requires that γ̇t(x)= 0 if ft(x) > 0, that is, at all points in the elastic zone E(βt , γt).

For all γ̇t which satisfy conditions (3-18), I (γ̇t) is zero and Ėt(γ̇t) is equal to lσt β̇t . Thus, like in
the local model, the direction γ̇t of steepest descent is not determined in the inelastic zone. For this,
it is necessary to minimize the second-order approximation (2-28) of the energy. This reduces to the
minimization of the functional

J (γ̇ )=
∫ l

0
ft(x)γ̇ (x) dx+ 1

2
τ

(∫ l

0

(
θ ′′(γt(x))γ̇ 2(x)+w′′(εt) ¯̇γ

2
+αγ̇ ′2(x)

)
dx−2lw′′(εt)β̇t ¯̇γ

)
, (3-19)



128 GIANPIETRO DEL PIERO, GIOVANNI LANCIONI AND RICCARDO MARCH

with respect to all perturbations δγ̇ which satisfy conditions (3-16) and (3-17). For the minimizers of
J we keep the same symbol γ̇t used for the minimizers of I . While a minimizer for I is a direction of
steepest descent, a minimizer for J will be called a continuation of the quasistatic evolution at t . The
first variation of J is

δ J (γ̇t , δγ̇ )=

∫ l

0
ft(x) δγ̇ (x) dx + τ

∫ l

0

(
θ ′′(γt(x))γ̇t(x) δγ̇ (x)− σ̇t δγ̇ (x)+αγ̇ ′t (x) δγ̇

′(x)
)

dx

=

∫ l

0
ft(x) δγ̇ (x) dx+τ

(∫ l

0

(
θ ′′(γt(x))γ̇t(x)−σ̇t−αγ̇

′′

t (x)
)
δγ̇(x) dx−α

∑
i

[[γ̇ ′t ]](xi ) δγ̇(xi )

)

=

∫ l

0
( ft(x)+ τ ḟt(x)) δγ̇ (x) dx − τα

∑
i

[[γ̇ ′t ]](xi ) δγ̇ (xi ).

The derivative γ̇ ′′t (x) which appears in ḟt(x) is the regular part of the distributional derivative of γ̇ ′t ,
while the singular part is given by the jumps [[γ̇ ′t ]](xi ) at the jump points xi . The necessary conditions
for a minimum at γ̇ = γ̇t are

( ft(x)+ τ ḟt(x)) δγ̇ (x)≥ 0, a.e. x ∈ (0, l),

[[γ̇ ′t ]](x) δγ̇ (x)≤ 0, ∀x ∈ (0, l).
(3-20)

The jump condition has been imposed at all x and not only at the jump points, since [[γ̇ ′t ]](x) is zero at
all x which are not jump points.

By (3-17), at points at which γ̇t(x) = 0 a perturbation δγ̇ (x) is arbitrary positive, and therefore
( ft(x)+ τ ḟt(x)) must be nonnegative and [[γ̇ ′t ]](x) must be nonpositive. At points at which γ̇t(x) > 0
a perturbation may have any sign, and therefore the same terms must be zero. Then, the sets of Kuhn–
Tucker conditions for ft

γ̇t(x)≥ 0, ft(x)+ τ ḟt(x)≥ 0, ( ft(x)+ τ ḟt(x))γ̇t(x)= 0, a.e. x ∈ (0, l), (3-21)

and for the jumps of γ̇ ′t ,

γ̇t(x)≥ 0, [[γ̇ ′t ]](x)≤ 0, [[γ̇ ′t ]](x)γ̇t(x)= 0, ∀x ∈ (0, l), (3-22)

follow. At every jump point xo for γ̇ ′t ,

[[γ̇ ′t ]](xo)= γ̇
′

t (xo+)− γ̇
′

t (xo−)= lim
ε→0+

γ̇t(xo+ ε)− γ̇t(xo)

ε
− lim
ε→0−

γ̇t(xo+ ε)− γ̇t(xo)

ε
.

For γ̇t(xo)= 0 the right-hand side is nonnegative, and therefore [[γ̇ ′t ]](xo) is nonnegative. But it is also
nonpositive by (3-22)2. Hence, a point at which γ̇t(xo) = 0 cannot be a jump point for γ̇ ′t . On the
other hand, when γ̇t(xo) is positive, [[γ̇ ′t ]](xo) is zero by the complementarity condition (3-22)3. Then
[[γ̇ ′t ]](xo) is zero in all cases, that is, there is no creation of new jump points for γ̇ ′t in the second-order
minimization. In particular, if γ ′t is continuous at initial time t0, it remains continuous at all subsequent t .
In what follows, we only consider processes in which γ̇ ′t is continuous instead of piecewise continuous.

The assumed continuity of γ̇ ′t requires a couple of comments. The first is that it does not imply the
continuity of γ ′′t . Indeed, by Hadamard’s condition, this is true only if dx/dt 6= 0. That is, a discontinuity
of γ ′′t is possible, provided that it does not change its position with t . The second comment is that the
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continuity of γ ′′t has been deduced only for the discretized problem. It need not be preserved in the limit
when the time step τ tends to zero. In fact, in the numerical simulations in Section 4 we will find a
situation in which the continuity is not preserved in the limit.

The solutions of (3-21) and (3-22) depend on the time step τ , and do not imply the conditions obtained
from the first-order minimization. Specifically, the complementarity condition (3-18)3 does not hold in
the second-order minimization. Therefore, the solutions for τ > 0 are not, in general, directions of
steepest descent.

Another necessary condition for a minimum of J at γ̇t is that the second variation

δ2 J (δγ̇ )=
∫ l

0

(
θ ′′(γt(x)) δγ̇ 2(x)+w′′(εt) δ ¯̇γ

2
+α δγ̇ ′

2
(x)
)

dx (3-23)

be nonnegative for all δγ̇ for which the first variation

δ J (γ̇t , δγ̇ )=

∫ l

0
( ft(x)+ τ ḟt(x)) δγ̇ (x) dx

is zero. For x in the elastic zone, ft(x) is positive, and ( ft(x)+τ ḟt(x)) is positive for sufficiently small τ .
Then, by (3-20)1, for sufficiently small τ the first variation is zero only for perturbations with δγ̇ (x)= 0
almost everywhere in the elastic zone.

In the inelastic zone, where ft(x)= 0 by definition, conditions (3-21) reduce to

γ̇t(x)≥ 0, ḟt(x)≥ 0, ḟt(x)γ̇t(x)= 0, a.e. x ∈ J(βt , γt), (3-24)

and, by (3-20)1, the first variation is zero only if

ḟt(x) δγ̇ (x)= 0 (3-25)

almost everywhere in the inelastic zone. In any interval at which γ̇t(x)= 0, we have

ḟt(x)= θ ′′(γt(x))γ̇t(x)− σ̇t −αγ̇
′′

t (x)=−σ̇t .

Because ḟt(x)≥ 0 by (3-24)2, such intervals do not exist in a hardening response, σ̇t > 0, and may exist
only with ḟt(x)= 0 in a perfect plastic response or only with ḟt(x) > 0 in a softening response. Then
in a softening response condition (3-25) requires δγ̇ (x) = 0. Leaving aside the exceptional case of a
perfectly plastic response, we conclude that the first variation is zero only if δγ̇ (x) is zero in the elastic
zone and at almost all points of the inelastic zone at which γ̇t(x)= 0.

Therefore, it is sufficient to consider perturbations δγ̇ with support in the part of the inelastic zone at
which γ̇t > 0. Let (a, a+ l ) be an interval in this region. A necessary condition for a minimum is that
the integral ∫ a+l

a

(
θ ′′(γt(x)) δγ̇ 2(x)+ l

l
w′′(εt) δ ¯̇γ

2
+α δγ̇ ′

2
(x)
)

dx (3-26)

be nonnegative for all perturbations δγ̇ with δγ̇ (a)= δγ̇ (a+ l )= 0. This corresponds to the nonnega-
tiveness of the smallest eigenvalue ρ1 of problem (A.15), with H as in (A.5), and with

a = 0, l = L , θ ′′(γt(x))= αh(x),
l
l
w′′(εt)= αω, δγ̇ (x)= y(x), δ ¯̇γ =

l
l

ȳ.
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The last equality follows from the definitions

ȳ = 1
l

∫ l

0
y(x) dx, δ ¯̇γ =

1
l

∫ l

0
δγ̇ (x) dx = 1

l

∫ l

0
δγ̇ (x) dx,

which hold for δγ̇ (x) = y(x) with support in (0, l ). Then the relation between w′′(εt) and ω comes
from the identification

l
l
w′′(εt) δ ¯̇γ

2
= αω ȳ2.

The upper bound (A.17) for ρ1 provides the necessary condition

αλ2
o + θ

′′

o ≥ 0, (3-27)

where λo is the smallest eigenvalue of problem (A.1). It is the solution of (A.7), now rewritten in the
form

l
l
w′′(εt)

α
l2
 =

λ3
o l

3


λo l − 2 tan λo l/2
,

and θ ′′o is as in (3-12), with yo given by (A.8).
Because the first variation δ J (γ̇t , yo ) is zero and J is quadratic, one has

J (γ̇t + cyo )= J (γ̇t)+
1
2
τc2 δ2 J (γ̇t , yo )= J (γ̇t)+

1
2
τc2ρ1

∫ l

0
y2

o (x) dx,

for every positive constant c. Therefore, ρ1 ≥ 0 is a necessary condition for a minimum of J . Moreover,
for any other perturbation with support in (0, l ), since the first variation is nonnegative and ρ1 is the
smallest eigenvalue,

J (γ̇t + δγ̇ )≥ J (γ̇t)+
1
2
τ δ2 J (γ̇t , δγ̇ )≥ J (γ̇t)+

1
2
τρ1

∫ l

0
δγ̇ 2(x) dx .

Therefore, ρ1 ≥ 0 is also a sufficient condition for a minimum. The lower bound (A.19) for ρ1 provides
the explicit sufficient condition

αλ2
o + θ

′′

min ≥ 0, (3-28)

with
θ ′′min = inf

x∈(0,l )
θ ′′(γt(x)).

For ρ1 negative, J (γ̇t + cyo ) can take unlimited negative values. Like in the local model, this event
corresponds to brittle fracture. Therefore, ρ1 ≥ 0 is a necessary and sufficient condition for a minimum
of J , and a negative ρ1 corresponds to brittle fracture.

It is of interest to see in which cases the continuations are elastic, γ̇t = 0. From (3-19),

J (γ̇ )=
∫ l

0
( ft(x)− τw′′(εt)β̇t)γ̇ (x) dx + 1

2
τ

∫ l

0

(
θ ′′(γt(x))γ̇ 2(x)+w′′(εt) ¯̇γ

2
+αγ̇ ′2(x)

)
dx

≥

∫ l

0
( ft(x)− τw′′(εt)β̇t)γ̇ (x) dx + 1

2
ταρ1

∫ l

0
γ̇ 2(x) dx ≥

∫ l

0

(
cγ̇ (x)+ 1

2
ταρ1γ̇

2(x)
)

dx,
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where

c .= fmin− τw
′′(εt)β̇t , fmin

.
= inf

x∈(0,l)
ft(x).

Because J (0) = 0, γ̇ = 0 is a minimizer if the right-hand side of the inequality is nonnegative. In
particular, γ̇ = 0 is a minimizer if both ρ1 and c are nonnegative.

There are two remarkable cases in which c is positive. The first is the case of β̇t < 0. That γ̇t = 0 for
β̇t < 0 is the nonlocal version of the property (2-31) of elastic unloading for the local model. The second
is the case of a strictly elastic regime, that is, of configurations (βt , γt) for which fmin > 0. Indeed, in
this case c is positive for sufficiently small τ . This is a relaxed version of the condition found in the local
model, that there is no increase of inelastic deformation in the elastic regime. Here, the same is true only
in a strictly elastic regime.

The foregoing discussion can be summarized as follows:

ρ1 ≥ 0 ⇐⇒ there are minimizers,

ρ1 < 0 ⇐⇒ brittle fracture.

ρ1 ≥ 0 and β̇t < 0 H⇒ γ̇t = 0 is a minimizer,

ρ1 ≥ 0 and fmin > 0 H⇒ γ̇t = 0 is a minimizer.

(3-29)

The last two implications tell us that, in a quasistatic evolution, fracture may occur only at loading, β̇t ≥ 0,
and in a regime which is not strictly elastic.

To determine the explicit form of a continuation γ̇t when c < 0 is not as easy as it was in the local
model. Indeed, in the region at which γ̇t(x) = 0, the introduction of the nonlocal term transforms the
incremental equilibrium equation σ̇t = θ

′′(γt(x))γ̇t(x) into the differential equation

σ̇t = θ
′′(γt(x))γ̇t(x)−αγ̇ ′′t (x).

This region is not known a priori, since its determination is a part of the solution of the problem. Moreover,
only in some special cases is a closed-form solution available. One of them is the onset of the inelastic
regime, studied in the next subsection.

3.5. The onset of the inelastic regime. Consider a load process t 7→ βt from the natural configuration
(βt0, γt0)= (0, 0), with β̇t > 0 for all t . At t = t0 we have

ft0(x)= θ
′(γt0(x))− σt0 −αγ

′′

t0 (x)= θ
′(0) > 0,

so that the whole bar is in a strictly elastic regime. By continuity, this regime persists over a finite time
interval (t0, tc). In this interval γ̇t = 0 by (3-29)4, and γt = 0 because of the initial condition γt0 = 0. The
deformation of the bar is homogeneous, with

u′(x, t)= εt = βt , σt = w
′(βt), ft = θ

′(0)−w′(βt). (3-30)

The elastic regime ends at the time tc at which β reaches the critical value βc given by (2-37). At this
time ft becomes zero, and all points of the bar switch from the elastic to the inelastic zone. This is the
onset of the inelastic regime.
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To determine the continuation γ̇t at t = tc, we start from the complementarity condition (3-24)3:

0= ḟ (x)γ̇ (x)= θ ′′(0)γ̇ 2(x)− σ̇ γ̇ (x)−αγ̇ ′′(x)γ̇ (x). (3-31)

Here and in the following, for simplicity, we omit all subscripts tc. Integrating over (0, l) and recalling
that γ̇ ′ has no jumps if γ̇ is a minimizer for J , we get

σ̇

∫ l

0
γ̇ (x) dx =

∫ l

0
(θ ′′(0)γ̇ 2(x)+αγ̇ ′2(x)) dx .

If θ ′′(0)≥ 0, the right-hand side is positive and therefore σ̇ is positive. Moreover, γ̇ (x) is strictly positive
almost everywhere in (0, l). Indeed, if γ̇ (x)= 0 in some interval (a, b), from inequality (3-24)2 on that
interval we have

0≤ ḟ (x)=−σ̇ ,

in contradiction with the positiveness of σ̇ . Therefore, γ̇ is a solution of the differential problem

θ ′′(0)γ̇ (x)− σ̇ −αγ̇ ′′(x)= 0, ∀x ∈ (0, l), γ̇ (0)= γ̇ (l)= 0, (3-32)

subject to the dissipation condition γ̇ (x)≥ 0. For θ ′′(0) > 0 the solution is

γ̇ (x)=
σ̇

θ ′′(0)

(
1−

cosh κ(l/2− x)
cosh κl/2

)
, (3-33)

with κ = (θ ′′(0)/α)1/2. By integration over (0, l),

¯̇γ =
σ̇

θ ′′(0)
ϕ(κl), ϕ(κl) .= 1−

tanh κl/2
κl/2

,

and, because σ̇ = w′′(βc)(β̇ − ¯̇γ ),

σ̇ =
θ ′′(0)w′′(βc)

θ ′′(0)+ϕ(κl)w′′(βc)
β̇. (3-34)

Comparing with the solution (2-34) of the local model, we see that the nonlocal effect is concentrated in
the factor ϕ(κl). Because this factor is positive and less than one, the slope σ̇ /β̇ of the response curve
(σ, β) is positive and greater than the slope predicted by the local model, but smaller than the slope
w′′(βc) at unloading.

For θ ′′(0)= 0, the solution is
γ̇ (x)= σ̇

2α
x(l − x). (3-35)

By integration over (0, l),

¯̇γ =
σ̇ l2

12α
, (3-36)

and from σ̇ = w′′(βc)(β̇ − ¯̇γ ),

σ̇ =
12αw′′(βc)

12α+ l2w′′(βc)
β̇. (3-37)

Thus, for θ ′′(0)= 0 the perfectly plastic response σ̇ = 0 of the local model is replaced by a work-hardening
response.
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For θ ′′(0) < 0, the solution is

γ̇ (x)=
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)

(
1−

cos k(l/2− x)
cos kl/2

)
, (3-38)

with k = (−θ ′′(0)/α)1/2. Integrating over (0, l) we find

¯̇γ =
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)
ψ(kl), ψ(kl)= 1−

tan kl/2
kl/2

, (3-39)

and, therefore,

¯̇γ =
ψ(kl)w′′(βc)

θ ′′(0)+ψ(kl)w′′(βc)
β̇. (3-40)

Again, the difference with (2-33) is due to a single factor, which now is ψ(kl). This factor is negative
for kl < π and positive for π < kl < 2.861π , with a jump from −∞ to +∞ at kl = π .

The solution (3-38) satisfies the dissipation inequality (2-10) for all x only if kl ≤ 2π . Indeed, for
kl > 2π , γ̇ (x) takes negative values near the boundary. For such kl, let us consider the possibility
of localized solutions, that is, of solutions of (3-31) which satisfy the differential equation (3-32) in a
subinterval (a, a+ li ) of (0, l) and are zero outside. Without loss of generality, we take the interval (0, li ),
with li < l. The boundary conditions are

γ̇ (0)= γ̇ (li )= 0, γ̇ ′(li )= 0, (3-41)

where γ̇ (0) = 0 is condition (3-15)1, and the two remaining conditions are due to the continuity of γ̇
and γ̇ ′, which are zero on (li , l). The first two conditions determine a solution of the form (3-38) with l
replaced by li , and the third determines the length

li = 2π/k. (3-42)

Therefore, the solution is

γ̇ (x)=
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)
(1− cos kx), x ∈ (0, li ). (3-43)

It holds for li < l, that is, for kl > 2π . For kl = 2π , it coincides with (3-38). By integration over (0, li )

it follows that

l ¯̇γ = li
w′′(βc)(β̇ − ¯̇γ )

θ ′′(0)
,

and, therefore,

¯̇γ =
w′′(βc)

w′′(βc)+ θ ′′(0)l/ li
β̇. (3-44)

It is convenient to introduce the positive constant

ψ f
.
=−

θ ′′(0)
w′′(βc)

. (3-45)

With this constant, and with ψo as in (A.13), (3-40) and (3-44) take the common form

¯̇γ =
ψo(kl)

ψo(kl)−ψ f
β̇. (3-46)
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For kl < π , ψo(kl) is negative. Therefore, the condition ¯̇γ ≥ 0 is satisfied. For kl > π the numerator
becomes positive, and ¯̇γ is positive only if

ψo(kl) > ψ f . (3-47)

From (3-46), using (2-32), we get the incremental response law

σ̇ =
θ ′′(0)

ψo(kl)−ψ f
β̇. (3-48)

The slope σ̇ /β̇ of the response curve is positive if kl < π , and negative if kl > π and condition (3-47)
holds. Therefore, at the onset of the inelastic regime, for θ ′′(0) negative the continuation is

work-hardening if kl < π,
strain-softening if kl > π and ψo(kl) > ψ f .

In the separating case kl = π the continuation is perfectly plastic. For kl >π and ψo(kl)≤ψ f , by (3-47),
there is no continuation obeying the dissipation inequality (2-10).

We already know that in the solution (3-40) γ̇ (x) is zero only at the boundary, while in the solution
(3-43) γ̇ (x) is zero on a portion of (0, l) of positive length (l − li ). We say that the first is a full-size
solution, and that the second is a localized solution. Therefore, for θ ′′(0) negative, at the onset of the
inelastic regime the continuations are

full-size if kl ≤ 2π,
localized if kl > 2π.

From (3-34) and (3-37) it is clear that for θ ′′(0)≥ 0 all continuations are work-hardening and full-size.
The continuations (3-38) and (3-43) have been determined using the Kuhn–Tucker conditions (3-21)

and (3-22), which are necessary for a minimum for the functional J defined in (3-19). It remains to check
whether or not these continuations are indeed minimizers. At the onset, ft is zero. Then, neglecting the
factor τ/2, J has the form

J (γ̇ )=
∫ l

0
(θ ′′(0)γ̇ 2(x)+w′′(βc) ¯̇γ

2
+αγ̇ ′2(x)− 2w′′(βc)β̇t γ̇ (x)) dx,

and direct computation yields

J (γ̇ + δγ̇ )= J (γ̇ )+ 2
∫ l

0
ḟt(x) δγ̇ (x) dx +

∫ l

0
(θ ′′(0) δγ̇ 2(x)+w′′(βc) δ ¯̇γ

2
+α δγ̇ ′2(x)) dx .

On the right side, the first integral is nonnegative by (3-20)1, and the second integral has the form (3-26).
Then we can use the results of Section 3.4. In the present case, both constants θ ′′o and θ ′′min which appear
in the bounds (3-27) and (3-28) are equal to θ ′′(0), and the two bounds coincide. They provide the
necessary and sufficient condition αλ2

o ≥−θ
′′(0), that is,

λ2
o ≥ k2, (3-49)

where λ2
o is the smallest eigenvalue of problem (A.1), with H as in (A.5).
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Consider first the case π < kl ≤ 2π , for which the continuation (3-38) is positive over (0, l). In this
case, λo is the solution of (A.7) with

L = l, ω = w′′(βc)/α, y(x)= δγ̇ (x),

that is,
w′′(βc)

α
l2
=

λ2
ol2

ψ(λol)
. (3-50)

Recalling the definition (3-45) of ψ f , we have

w′′(βc)

α
=
−θ ′′(0)
αψ f

=
k2

ψ f
, (3-51)

and, therefore,

ψ f =
k2

λ2
o
ψ(λol).

If k ≤ λo, then
ψ(λol)≤ ψ(kl)= ψo(kl),

because ψ is a decreasing function and, by (A.13), coincides with ψo for π < kl ≤ 2π . Then, k ≤ λo

implies inequality (3-47). Conversely, if k > λo the above inequality is reversed. That is, for π < kl ≤ 2π
the condition (3-49) for a minimum coincides with the condition (3-47) for a nonnegative ¯̇γ .

Now consider the case kl > 2π , for which the continuation (3-43) is positive only on (0, li ), with
li = 2π/k < l. In this case, λo is the solution of (A.7) with

L = li , ω =
li

l
w′′(βc)

α
, y(x)= δγ̇ (x), ȳ = l

li
δ ¯̇γ,

as shown in Section 3.4. Using (3-51), (A.7) takes the form

li

l
k2

ψ f
l2
i =

λ2
ol2

i

ψ(λoli )
.

Recalling that for kl > 2π , by (A.13),

ψo(kl)= 2π
kl
=

li

l
,

we finally get

ψ f =
k2

λ2
o
ψo(kl)ψ(λoli ).

If k ≤ λo, then λoli ≥ kli = 2π . Therefore,

ψ(λoli )≤ ψ(2π)= 1,

and inequality (3-47) follows. If k > λo, then 2π > λoli , and the reversed inequality holds. Thus, the
coincidence of (3-47) with (3-49) is proved for all kl > π .

The incremental response law (3-48) shows that, when these inequalities are satisfied as equalities,
the slope σ̇ /β̇ of the response curve becomes infinite. This is the totally brittle fracture, that is, the
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catastrophic fracture at the onset of the inelastic deformation already described by the local model. The
difference is that, while in the local model brittle fracture occurs as soon as θ ′′ ceases to be positive, here
it occurs at negative values of θ ′′. Therefore, the sharp inequality (3-47) is a safety condition against
totally brittle fracture.

It is commonly asserted that the nonlocal energy term introduces an internal length of the material.
Here, this length can be identified with the length li defined by (3-42), which is the length of the
localization zone in a localized continuation. As seen before, the ratio l/ li = kl/2π determines the
quality of the response, hardening or softening, full-size or localized.

The present analysis suggests the definition of a second characteristic length

lc = 2π
√

α

w′′(βc)
, (3-52)

with which the no-fracture condition (3-47) takes the form ψo(2πl/ li ) > l2
c/ l2

i , that is,

l/ lc >
l/ li

√
ψo(2πl/ li )

.
=9(l/ li ). (3-53)

The parameters which determine the response at the onset are the bar length l and the material constants
w′′(βc), θ ′′(0), and α. With the above definitions, they reduce to the ratios l/ lc and l/ li . A complete
representation of the response is given in Figure 1. In it, each point of the plane represents a bar. The
points located below the curve l/ lc =9(l/ li ) correspond to bars which undergo totally brittle fracture
at the onset of the inelastic deformation. The region above the curve is divided into three subregions,

hardening
full-size

softening
full-size

softening
localized

brittle fracture

(1)

(2)

Y

c
ll

i
ll

0 ½

1

0

1

Figure 1. The response at the onset of the inelastic deformation. The three regions above
the curve correspond to hardening full-size, softening full-size, and softening localized
responses. The region below the curve corresponds to totally brittle fracture. Lines (1)
and (2) represent families of bars made of the same material and with varying length.



DIFFUSE COHESIVE ENERGY FOR FRACTURE AND PLASTICITY 137

corresponding to full-size and hardening (l/ li < 1/2), full-size and softening (1/2 < l/ li < 1), and
localized and softening (l/ li > 1) continuations, respectively.

The straight lines from the origin represent families of bars made of the same material and with l
growing with the distance from the origin. All families have full-size hardening continuations for small
l, softening continuations for intermediate l, and catastrophic failure for large l. Moreover, for families
with slope li/ lc > 1 the softening continuations may be both full-size and localized, while for those
with li/ lc < 1, corresponding to straight lines which do not cross the third region above the curve, the
softening continuations can only be full-size.

3.6. Collapse mechanisms. In the nonlocal model there are two possible collapse mechanisms, brittle
fracture and ductile fracture. Both are characterized by the slope σ̇ /β̇ of the response curve, which is
−∞ for brittle fracture and zero for ductile fracture. Brittle fracture coincides with the unique collapse
mode provided by the local model. As shown in the next section, the two collapse modes are observed
in steel and in concrete, respectively.

In a quasistatic evolution t 7→ (βt , γt), assume that θ ′′(γt(x)) is negative at all x , and that it can be
approximated by a negative constant θ ′′t . Define the current values of k and ψ f :

kt
.
=

√
−θ ′′t

α
, ψ f t

.
=
−θ ′′t

w′′(εt)
. (3-54)

With them, the relations (3-46) and (3-48), obtained for the onset of the inelastic regime, can be extrap-
olated to the subsequent evolution

¯̇γt =
ψo(kt l)

ψo(kt l)−ψ f t
β̇t , σ̇t =

θ ′′t

ψo(kt l)−ψ f t
β̇t , (3-55)

and condition (3-47) against brittle fracture can be replaced by

ψo(kt l) > ψ f t . (3-56)

This extrapolation helps us to understand some general features of the bar’s response in the softening
regime. Of course, the conclusions are purely qualitative, since the exact values of θ ′′t and kt are not
known. More precise results can only be obtained from numerical simulation.

Assume that −θ ′′ is monotonic increasing. For all x , the function t 7→ −θ ′′(γt(x)) is increasing as
well, because t 7→ γt(x) is increasing by the dissipation inequality (2-10). Then the average −θ ′′t is
increasing, kt is increasing, and ψo(kt l) is decreasing. Supposing w′′(εt) substantially independent of t ,
ψ f t is increasing. Therefore, the positive denominator in (3-55) decreases with t . When it becomes zero,
the negative slope of the response curve becomes infinite, and catastrophic failure takes place.

On the contrary, for −θ ′′ monotonic decreasing, −θ ′′t decreases with t , and the slope |σ̇t/β̇t | in (3-55)
decreases as well. If −θ ′′t tends to zero, the slope tends to zero, and this corresponds to ductile fracture.
Thus, brittle fracture takes place for −θ ′′ increasing, that is, for θ ′ concave, and ductile fracture takes
place for θ ′ convex. In spite of some early statements and more recent observations, see [Hillerborg 1991]
and [Jirásek and Rolshoven 2009b, Figure 16], respectively, this correlation between fracture modes and
the concavity-convexity properties of θ ′ has not received adequate attention in the literature.

This correlation is illustrated by Figure 1. If θ ′′t increases with t , the internal length li t = 2π/kt

decreases and the ratio l/ li t increases, while l/ lc stays approximately constant. The point representing
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the current status of the bar moves horizontally to the right, tending to brittle fracture which, at the onset,
occurs at the curve 9. On the contrary, if θ ′′t decreases with t the point moves to the left, tending to the
perfectly plastic response which, at the onset, takes place at the line l/ li = 1/2.

The function θ ′ cannot be concave for all γ > 0. Indeed, concavity implies

θ ′(γ )≤ θ ′(0)+ γ θ ′′(0),

and for θ ′′(0) < 0 the assumption θ ′(γ ) > 0 is violated for sufficiently large γ . On the other hand, the
assumption (2-7)3 that θ has a finite limit at +∞ requires that

lim
γ→+∞

θ ′′(γ )= 0.

Then −θ ′′ has a maximum at a finite γ . Brittle fracture occurs only if this maximum produces a kt

sufficiently large to violate inequality (3-56).

4. Numerical simulations

For the nonlocal model, quasistatic evolution in the inelastic regime has been investigated by performing
a number of numerical simulations. An iterative procedure was used: after fixing a time step τ , for each
t = nτ the continuation γ̇t at (βt , γt) was determined approximately by solving a sequence of discretized
minimum problems, with the data taken from the solution at t = (n− 1)τ .

In the case of loading, β̇ > 0, the parameter t is identified with the load β, so that β̇ = 1, and the time
step τ is in fact a load step. The discretized problem consists in minimizing a quadratic approximation
of the energy Eeq(βt + τ β̇, γt + τ γ̇ ). For convenience, we refer to the more general functional

F(β, γ, τ, δγ )=
∫ l

0

(
θ(γ (x))+w(β − γ̄ )+ 1

2
αγ ′

2
(x)
)

dx

+ τ

∫ l

0

(
θ ′(γt(x)) δγ (x)+w′(β − γ̄ )(1− δγ (x))+αγ ′(x) δγ ′(x)

)
dx

+
1
2
τ 2
(∫ l

0

(
θ ′′(γ (x)) δγ 2(x)+α δγ ′2(x)

)
dx + lw′′(β − γ̄ )(1− δγ̄ )2

)
,

(4-1)

such that F(βt , γt , 0, 0) coincides with Eeq(βt , γt), and F(βt , γt , τ, γ̇ ) coincides with the second-order
approximation (2-28) of Eeq(βt + τ β̇, γt + τ γ̇ ) for the given τ .

4.1. The algorithm. In the solution procedure an iterative algorithm, implemented in an ad hoc finite
element code, was used. At each iteration step, for a given initial configuration (β0, γ0), with γ0 a
local minimizer for F(β0, · , 0, 0), the configuration (β0+ τ, γ0+ τ γ̇0) is determined by minimizing the
function F(β0, γ0, τ, · ), constrained by the dissipation inequality (2-10) and by the boundary conditions
(3-6). At each load step, the solution accuracy is refined through an iterative procedure acting on the
quadratic approximation

F2(β0, γ, δγ )
.
= F(β0, γ, 0, 0)+

∂

∂(δγ )
F(β0, γ, 0, 0) δγ + 1

2
∂2

∂(δγ )2
F(β0, γ, 0, 0) δγ 2

of F(β0, γ, 0, δγ ). The algorithm runs as follows.
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1. Incremental step.

(i) Compute

γ̇0 = argmin{F(β0, γ0, τ, · ) | δγ (x)≥ 0, δγ (0)= δγ (l)= 0}.

(ii) Set β1 = β0+ τ , γ 0
1 = γ0+ τ γ̇0.

2. Iterative refinement.

(i) Compute

δγ 1
= argmin{F2(β1, γ

0
1 , · ) | δγ (x)≥ γ0(x)− γ 0

1 (x), δγ (0)= δγ (l)= 0},

and set γ 1
1 = γ

0
1 + δγ

1.

(ii) Compute

δγ i
= argmin{F2(β1, γ

i−1
1 , · ) | δγ (x)≥ γ0(x)− γ i−1

1 (x), δγ (0)= δγ (l)= 0},

and set γ i
1 = γ

i−1
1 + δγ i .

(iii) Stop when the L2 norm of (γ i
1 − γ

i−1
1 ) is less than a given tolerance γ̂ .

3. End.

(i) Take as γ1 the last γ i
1 in the preceding iteration.

(ii) If the L2 norm of (γ1− γ0) is less than a given tolerance γ̃ , perform a new incremental step from
(β1, γ1). Otherwise, repeat the computation with τ replaced by τ/2.

The last control avoids the overcoming of energy barriers due to exceedingly large incremental steps.
In the numerical code, the spatial variable x is discretized using linear finite elements. The quadratic
programming problems involving the minimization of F2 are solved using the projection method [Polak
1971; Gill et al. 1981] implemented in the quadprog.m function of MATLAB. The code generates a
mesh refinement when the number of elements in the inelastic zone is smaller than a certain number
(100 in the simulations presented below). In this case, each element is split into two subelements.

4.2. Choice of energy densities. For the elastic strain energy density we take the quadratic expression

w(ε)= 1
2 E Aε2, (4-2)

where the axial stiffness E A is the product of the Young modulus E of the material and the area A of
the cross-section. For the cohesive energy density we take the piecewise cubic function

θ(γ )= Ai + Biγ +
1
2 Ciγ

2
+

1
6 Diγ

3, γ ∈ [γi−1, γi ], (4-3)

where

{[γi−1, γi ], i = 1, . . . , n, }
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is a subdivision of the interval [γ0, γn] into n adjacent subintervals, with γ0 = 0 and γn ≤ +∞. The
coefficients Ai , Bi , Ci and Di satisfy the 3(n− 1) conditions

Bi+1 = Bi − 3(Ai+1− Ai )γ
−1
i ,

Ci+1 = Ci + 6(Ai+1− Ai )γ
−2
i ,

Di+1 = Di − 6(Ai+1− Ai )γ
−3
i ,

i = 1, . . . , (n− 1),

which guarantee the continuity of θ , θ ′, and θ ′′ at γi . We fix A1= θ(0)= 0, while B1= θ
′(0), the value of

the axial force at the onset of the inelastic regime, is identified on the experimental curve. The remaining
constants are determined by fixing n + 1 coefficients, for example, C1, D1, and A j for j = 2, . . . , n.
In the following simulations these constants are selected with the purpose of reproducing the response
curves of two specific experimental tests, one on a steel bar and one on a concrete specimen.

4.3. Simulation 1: The tensile response of a steel bar. For the first simulation, the data were obtained
from a test on a steel bar, stretched to rupture under controlled end displacements. The test was made
in Ancona, at the Laboratorio Prove Materiali e Strutture of the Università Politecnica delle Marche.
The specimen was a ribbed bar, made of B450C (FeB44k) steel, with diameter φ = 16 mm and length
l = 200 mm. The axial stiffness

E A = 42× 103 kN

is the product of the Young modulus of steel, E = 210 kN/mm2, and the cross-sectional area A = πφ2/4.
The axial force at the onset of the inelastic deformation, measured on the response diagram, is

B1 = 109.5 kN.

With the purpose of investigating the size effect, simulations with three different lengths,

l = 100, 200, 300 mm,

were made. The nonlocality parameter α was taken equal to

α = 10 kN mm2.

This is a tentative value. The criteria for choosing the value of α are still under investigation.
For the time step τ , mesh size h, and tolerances γ̂ and γ̃ introduced in Section 4.1, the values

τ = 10−4, h = 0.5 mm, γ̂ = 10−6, γ̃ = 10−3,

were chosen. These values provide good accuracy and, at the same time, keep a moderate size for the
discretized problem. For the cohesive energy density a function θ1 of the form (4-3) was taken, with

n = 4, γi = (0.10, 1.62, 2.01, 10), C1 = 380 kN,

D1 =−3800 kN, Ai = (0,−0.61, 499.69, 223.74) kN.

This energy, plotted at the top in Figure 2, is convex for γ < 0.1 and concave for γ > 0.1.
In Figure 3, the experimental response curve (the dotted line) is compared with the response curves of

simulations with lengths l = 100, 200, 300 mm. In the experimental curve, the initial hardening regime is
followed by a softening regime, in which the negative slope of the curve increases with β, and becomes
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Figure 2. Simulation 1: the cohesive energy θ1 (top) and its derivative θ ′1 (bottom).
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Figure 3. Simulation 1: the experimental response curve (dotted line), and the response
curves of simulations with different values of l. The dashed line shows the model’s
response to unloading and reloading.

infinite at rupture. In the model, this behavior is reproduced by taking θ1 initially convex, and then
concave with growing concavity.
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Figure 4. Simulation 1 with l = 200 mm. Evolution of γ (left column) and γ̇ (right
column) for increasing β.

The response curve of the simulation with l = 200 mm, which is the specimen’s length, is very close
to the experimental curve. Of course, this is due to an appropriate choice of the material constants.
Anyway, it is remarkable that a small number of constants is sufficient to reproduce the evolution of
the bar’s deformation from the natural configuration to final rupture. Also remarkable is the perfect
reproduction of the elastic unloading, shown by the dashed line in the figure, and obtained by reversing
the sign of β̇ up to complete unloading, σ = 0, and then reloading. As shown in the figure, the reloading
curve traces back the unloading line and then continues along the loading curve of monotonic loading.

In the three simulations shown in Figure 3, the hardening parts of the response curves are identical.
The hardening regime ends at β ≈ 0.102, where the force σ reaches its maximum and a softening regime
starts. Shortly after, strain localization begins, and the three curves separate. The figure shows that for
longer bars the softening regime produces larger negative slopes, and rupture occurs at smaller β. This
size effect agrees with the theoretical preview (3-55)2.

The evolution of γ and γ̇ in the simulation with l = 200 mm is shown in Figure 4. In the initial
hardening regime, represented in the upper part of the figure, both γ and γ̇ are constant, except near the
boundary, where γ (x)= γ̇ (x)= 0 as required by the boundary conditions.

The regime of full-size softening response is very short. Indeed, it starts at β ≈ 0.102 and ends at
β ≈ 0.103 when, as shown in the two right panels in the figure, localization takes place. For larger β,
the deformation concentrates at shorter and shorter central zones of the bar. The left half of Figure 5
reproduces the curves of Figure 4, bottom left; note the close similarity of these diagrams with the results
of experiments made long ago by Miklowitz [1950], shown on the right in Figure 5. Also, the evolution
curves for γ are qualitatively the same as the curves in [Jirásek and Rolshoven 2009b, Figure 17.1].
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Figure 5. Left: detail of Figure 4, bottom left. Right: experiments on a cylindrical bar
of medium-carbon steel, taken from [Miklowitz 1950].

4.4. Simulation 2: The tensile response of a concrete specimen. The aim of our second simulation
was to reproduce the experimental force-elongation curve of a prismatic specimen made of lightweight
concrete, taken from [Hordijik 1992, Figure 38]. The specimen is prismatic, with dimensions of 50×50×
150 mm, Young’s modulus E = 18 kN/mm2, and maximum aggregate size of 8 mm. In the simulation
we take

E A = 45× 103 kN, B1 = 6.3 kN,

with B1 the axial force at the onset of the inelastic regime, read on the experimental curve. We consider
the three lengths

l = 100, 150, 200 mm.

For the nonlocality parameter α we take

α = 3497 kN mm2.

This value corresponds to an internal length li = 2π/k = 8 mm, equal to the maximum aggregate size.
For the time step τ , mesh size h, and tolerances γ̂ and γ̃ we choose

τ = 10−7, h = 0.25 mm, γ̂ = 10−6, γ̃ = 10−3.

For the cohesive energy we take the function θ2 represented in Figure 6. This is an energy of the form
(4-3), with

n = 4, γi = (0.7, 1.2, 65.0, 100.0)× 10−4,

and with

C1 = 18× 103 kN, D1 =−25.7143× 107 kN, Ai = (0,−0.12,−0.25, 154.27)× 10−4 kN.

This energy is convex for γ < 0.7× 10−4 and concave for γ > 0.7× 10−4.
The force-elongation response curves for the three considered values of l are shown in Figure 7. The

correspondence with the experimental curve is good, but not as good as in the preceding simulation.
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Figure 6. Simulation 2: the cohesive energy θ2 (top) and its derivative θ ′2 (bottom).
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Figure 7. Simulation 2: the experimental (dotted line) and the numerical response
curves (solid line).

This may be due to the fact that in the experimental curve in [Hordijik 1992] the elongation βmlm was
measured on a central zone of the bar, of length lm = 35 mm, while here the total elongation was evaluated
with the approximate formula

βl ≈ βmlm + (l − lm)(β − γ̄ ),

obtained by neglecting the inelastic deformation outside the central zone.
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Another cause of discrepancy is that in the experiment the specimen had a central notch, which was
not considered in the simulation. Generally, the data fitting was more difficult than in Simulation 1,
where all data came from our own experiment and not from one taken from the literature.

As in the preceding simulation, the three numerical curves coincide in the elastic regime and in the
subsequent hardening and full-size softening regimes. They start to differ at the onset of localization,
at β ≈ 2.23× 10−4. In the localized softening regime, in accordance with the size effect, the negative
slope of the response curve is larger for longer bars. The curve for l = 200 mm exhibits brittle fracture
at the onset of localization. This agrees with the safety condition (3-56) against brittle fracture, which
now takes the form

2π
kt l

>
αk2

t

E A
.

Indeed, in a localized solution ψo(kt l) is equal to 2π/kt l by (A.13), and ψ f t is equal to αk2
t /E A by

(3-54) and (4-2). Setting kt = 2π/ lt , with lt = 8 mm equal to the maximum aggregate size, condition
(3-56) becomes

l <
2πE A

k3
t α
=

E Al3
t

4π2α
≈ 167 mm.

For the bars with l = 100 mm and 150 mm, the convex shape of θ ′2 determines a ductile fracture mech-
anism. For l = 150 mm, as shown in Figure 8, at β ≈ 2.22× 10−4 the inelastic strain rate γ̇ begins
to localize and the force starts to decrease. The length of the localized zone attains a minimum of
about 8 mm at β ≈ 2.25 ×10−4, and then steadily increases. Numerical investigations not reported here
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Figure 8. Simulation 2: evolution of the inelastic deformation for l = 150 mm.
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show that the localization zone eventually diffuses over the whole bar. For the bar with l = 200 mm,
catastrophic failure occurs at β ≈ 2.24× 10−4.

The evolution of γ and γ̇ is shown in Figure 8. The asymmetries of the diagrams of γ̇ in the bottom
right panel of Figure 8 are purely numerical, and random in nature. This is confirmed by the symmetry of
their time integral γ in the bottom left panel. For β ≈ 10−3 the inelastic deformation γ is concentrated
on a portion of the bar of length of about 20 mm. This agrees with an estimate given in [Bažant and
Pijaudier-Cabot 1989], according to which the characteristic length of concrete is about 2.7 times the
maximum aggregate size.

By effect of the expansion of the inelastic zone the force decreases, and tends to a horizontal asymptote.
In [Jirásek 1998; Jirásek and Rolshoven 2009a], the expansion of the inelastic zone is considered as
unphysical, and the stress locking, that is, the convergence of the force to a positive limit, is considered
as a proof of this.

While the horizontal asymptotes of the response curve shown in [Jirásek 1998, Figure 3], are about
80% of the maximum σ , a numerical investigation, not reported here, shows that in the present simulation
the horizontal asymptote is only about 2% of the maximum σ . This modest residual force cannot be
eliminated. Indeed, looking at the diagrams of γ in the bottom left panel of Figure 8 we see that, for
β > 4.5× 10−4, the largest value γ (l/2) of γ is greater than 6× 10−3. Therefore, as shown by the
constitutive curve of Figure 6, bottom, the corresponding value of θ ′ is zero. Because the point x = l/2
is in the inelastic zone, from the yield condition (3-2) with θ ′ = 0 it follows that

σ =−αγ ′′(l/2),

with γ ′′(l/2) strictly negative because γ has a maximum at x = l/2.

Appendix: Solution of some eigenvalue problems

Consider the eigenvalue problem∫ L

0
(y′2(x)+ω ȳ2) dx = λ2

∫ L

0
y2(x) dx, y ∈ H, (A.1)

with ω a given positive constant, and

ȳ = 1
L

∫ L

0
y(x) dx . (A.2)

The eigenfunctions are the solutions of the Euler equation

y′′(x)−ω ȳ+ λ2 y(x)= 0, (A.3)

and have the form
y(x)= A sin λx + B cos λx +ωλ−2 ȳ. (A.4)

We wish to determine the smallest eigenvalue λ2
o and the corresponding eigenfunctions yo, for two dif-

ferent choices of the domain H .

(i) Let H be the set
H = {y ∈ H 1(0, L) | y(0)= y(L)= 0}. (A.5)
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In this case, the constants A and B are

A =−ωλ−2 ȳ tan λL/2, B =−ωλ−2 ȳ. (A.6)

Moreover, integrating (A.4) over (0, L) we get

L ȳ = ωλ−3 ȳ((cos λL − 1) tan λL/2− sin λL + λL)= ωλ−3 ȳ(λL − 2 tan λL/2),

that is,

ωL2
=

λ3L3

λL − 2 tan λL/2
=

λ2L2

ψ(λL)
, (A.7)

with ψ as in (3-39)2. The right-hand side is an increasing function of λL , and is equal to zero at λL = π
and to +∞ at λL ≈ 2.861π . Therefore, for every ωL2 > 0 there exists a unique λL in (π, 2.861π)
which satisfies (A.7). It determines the smallest eigenvalue λ2

o for given ω and L . The corresponding
eigenfunctions are the scalar multiples of

yo(x)= cos λo(L/2− x)− cos λo L/2. (A.8)

The problem has been formulated in H 1(0, L), which is the largest space in which the integrals which
appear in (A.1) exist. However, the eigenfunction yo belongs to C∞[0, L]. So the solution does not
change if H is taken to be any space included between C∞[0, L] and H 1(0, L).

(ii) Now let H be the set

H = {y ∈ H 2(0, L) | y(0)= y(L)= 0, y(x)≥ 0,∀x ∈ (0, L)}. (A.9)

In (A.8), yo satisfies condition y(x)≥ 0 only for λo L ≤ 2π . By (A.7), this corresponds to ωL2
≤ 4π2.

For larger values of ωL2, yo(x) becomes negative near the boundary.
For ωL2 > 4π2 we look for solutions y which are of the form (A.4) in a subinterval (0, L y) of (0, L)

and zero outside. To belong to H 2(0, L), they must satisfy the conditions

y(0)= y(L y)= 0, y′(L y)= 0.

By (A.4), the first two conditions are satisfied by

A =−ωλ−2 ȳ tan λL y/2, B =−ωλ−2 ȳ,

and the third condition is satisfied if A = 0. This implies tan λL y/2= 0, that is,

λL y = 2π. (A.10)

Because L y is smaller than L , this solution is possible only for λL > 2π , that is, for ωL2 > 4π2. But
this is exactly the range not covered by the solution (A.7) and (A.8). For A = 0 and B =−ωλ−2 ȳ, the
integration of (A.4) yields

ωL2
=
λ2L3

L y
=
λ3L3

2π
. (A.11)
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Therefore, for all ωL2> 4π2 the smallest eigenvalue is the solution λ2
o of this equation. The corresponding

eigenfunction

yo(x)=

{
1− cos λox, if x ≤ 2π/λo,

0, if x > 2π/λo,
(A.12)

satisfies the condition yo(x) ≥ 0 for all x . Therefore, λ2
o is the smallest eigenvalue, and yo is a corre-

sponding eigenfunction.
In conclusion, the smallest eigenvalue of problem (A.1) with H as in (A.9) is the solution of (A.7) if

ωL2
≤ 4π2, and of (A.11) if ωL2 > 4π2. By defining

ψo(λL) .=

ψ(λL), if 0≤ λL ≤ 2π,

2π
λL
, if 2π < λL ,

(A.13)

both (A.7) and (A.11) take the form

λ2
= ωψo(λL), (A.14)

and the smallest eigenvalue λ2
o is the unique solution of this equation. The function ψo is C∞ in (π,+∞),

except at the point λL = 2π , where it is continuous and has a continuous derivative.

Now consider the eigenvalue problem∫ L

0
(y′2(x)+ω ȳ2

+ h(x)y2(x)) dx = ρ
∫ L

0
y2(x) dx, y ∈ H, (A.15)

with ω a given positive constant and h an integrable function. We wish to determine upper and lower
bounds for the smallest eigenvalue ρo, both for H as in (A.5) and as in (A.9).

For H as in (A.5), let λ2
o be the smallest eigenvalue of problem (A.1) and let yo be a corresponding

eigenfunction. Define

ho
.
=

∫ L

0
h(x)y2

o(x) dx∫ L

0
y2

o(x) dx
. (A.16)

Then, by (A.1), ∫ L

0
(y′o

2
(x)+ω ȳ2

o + ho y2
o(x)) dx = (λ2

o+ ho)

∫ L

0
y2

o(x) dx .

That is, (λ2
o + ho) is an eigenvalue of (A.15) and yo is a corresponding eigenfunction. Therefore, an

upper bound for ρo is

λ2
o+ ho ≥ ρo. (A.17)

To get a lower bound, set

hmin = inf
x∈(0,L)

h(x). (A.18)
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Then the left-hand side of (A.15) is greater than or equal to∫ L

0
(y′2(x)+ω ȳ2

+ hmin y2(x)) dx ≥ (λ2
o+ hmin)

∫ L

0
y2(x) dx, ∀ y ∈ H,

and the lower bound
ρo ≥ λ

2
o+ hmin (A.19)

follows. Depending on the given function h, the two bounds can be far away from each other. On the
other hand, they coincide if h is a constant, h(x)= h̄. Indeed, in this case ho = hmin = h̄ and, therefore,

ρo = λ
2
o+ h̄. (A.20)

For H as in (A.9) the same bounds hold, with λ2
o and yo replaced by the smallest eigenvalue of problem

(A.1) and by a corresponding eigenfunction, respectively.
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