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TRANSIENT RESPONSE OF A GENERAL ANISOTROPIC SOLID
TO DISLOCATION GROWTH: ALTERNATIVE FORMULATION

LOUIS MILTON BROCK

The response of an unbounded homogeneous general anisotropic solid to dislocation growth can be
obtained from a convolution of the body force equivalent of the dislocation with the Green’s function.
This work considers the transient case of a surface of discontinuity in displacement that expands with
time from a point source. The expansion rate is subsonic, but largely arbitrary otherwise. The surface
need not be planar, and if so, need not lie in a principal material plane. Some differences in procedure
from related studies are noted. The solution expressions use a dislocation description in terms of surface
geometry, and have a hybrid but somewhat more explicit form.

1. Introduction

The radiation field from a spreading dislocation is known [Nabarro 1951; Knopoff and Gilbert 1960]
to be obtainable in terms of solutions to the fundamental problems of point forces and couples and
their line load counterparts. Such loads can be generalized as the transient body-force equivalent for a
dislocation distribution on an internal surface [Burridge and Knopoff 1964]. The equivalent is valid for
the inhomogeneous, anisotropic solid, and surface and distribution are (largely) arbitrary.

This article gives an exact transient solution for the growth of a dislocation distribution in a homo-
geneous, general anisotropic and unbounded solid in terms of the Burridge–Knopoff equivalent. The
dislocation spreads at a subsonic (possibly nonuniform) rate from a point source. The dislocation distri-
bution is single valued and remains finite for finite time after its appearance. This problem is not new,
but the present study includes some alternative features.

In [Burridge and Knopoff 1964] the dislocation field is defined in terms of the components of a
prescribed displacement discontinuity in the principal material basis. For insight into the roles of climb
and glide mechanisms, two descriptions of the displacement discontinuity vector are treated here. The
first resolves the prescribed displacement discontinuity vector into components normal to, and in the plane
of, the surface. Coefficient arrays (d N S

ik , d N N
ik ) arise, and a third, d SS

ik , can be defined. Subscripts (i, k)
refer to Cartesian coordinates (x1, x2, x3) in the principal material basis, and (N , S) refer to coordinates
normal to and in the plane of the discontinuity surface. The arrays are symmetric in (N , S), and the six
elements of each array are symmetric in (i, k). The form of d N S

ik resembles the constitutive equation for
the general anisotropic solid.

The second description treated is local, that is, it is the components of the displacement discontinuity
vector with respect to surface geometry that are prescribed. Three coefficient arrays (d N T

ik , d N S
ik , d N N

ik )

arise, and arrays (dT T
ik , d SS

ik , dT S
ik ) are also defined. Here N refers to the surface normal and (T, S) are
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two perpendicular directions in the surface plane. Use of this description in the transient solutions is
demonstrated for a planar discontinuity surface, for which coefficient arrays are constant.

The analysis is similar to that for the anisotropic Green’s function. That problem is also not new, nor
is the use of integral transforms [Willis 1980; Payton 1983; Wang and Achenbach 1994; 1995; Ting and
Lee 1997]. Here unilateral temporal and bilateral spatial Laplace transforms [van der Pol and Bremmer
1950; Sneddon 1972] are employed. The spatial transforms are with respect to the Cartesian principal
basis, but quasispherical coordinates are introduced in the inversion process. This facilitates the residue
calculation process common in anisotropic Green’s function study in, for example, [Payton 1983; Wang
and Achenbach 1994; 1995; Ting and Lee 1997]. Moreover, the displacements take a hybrid form: their
components and coordinates are Cartesian, but the expressions are integrals of real-valued functions in
a unit quarter-sphere. Although lacking the simplicity of integration based on the hypercircle or unit
sphere [Synge 1957; Wang and Achenbach 1995], the integration is explicitly in terms of polar and
azimuthal angles defined in the fixed principal basis. For the uniform dislocation distribution, in fact,
integration can be transformed to the contour of the dislocation surface; see [Brock 1986]. Analytical
expressions for the poles in the residue calculation — and therefore the three anisotropic wave speeds —
are also presented; see [Wang and Achenbach 1995].

Finally, it is noted that some well-known formalisms for anisotropy, for example, [Stroh 1958; 1962;
Barnett and Lothe 1973; Ting 1996; Ting and Lee 1997], are not invoked here. However, analogous
formulas arise in the course of analysis. Solution expression development is the focus here but, for
illustration, sample wave speed calculations are given for a transversely isotropic graphite-epoxy solid.

2. Governing equations

A Cartesian basis x(x1, x2, x3) defines the principal material axes for an unbounded, homogeneous linear
anisotropic solid. In contracted notation, the stress and strain measures (σk, εk) for the solid are related
by

σk = Cklεl, Ckl = Clk . (1)

Here (k, l) take on values (1, 2, 3, 4, 5, 6) and the 21 elasticity parameters Ckl are constants. These
measures correspond to those in the Cartesian basis as follows: For k = (1, 2, 3)

σk = σkk, εk = ∂kuk . (2)

The range k = (4, 5, 6) corresponds to Cartesian shear stresses and strains:

σ4 = σ23 = σ32, ε4 = ∂2u3+ ∂3u2, (3a)

σ5 = σ31 = σ13, ε5 = ∂3u1+ ∂1u3, (3b)

σ6 = σ12 = σ21, ε6 = ∂1u2+ ∂2u1. (3c)

Equation (1) is associated with positive strain energy density when εT
k Cklεl > 0. Because Ckl constitutes

a symmetric 6× 6 matrix with real elements, it can be shown [Hohn 1964; Ting 1996] that the inequality
is satisfied when the leading principal minors of Ckl are positive, that is,
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C11 C12 · · · C1n

C12 C22 · · · C2n
...

...
. . .

...

C1n C2n · · · Cnn

∣∣∣∣∣∣∣∣> 0 (n ≤ 6). (4)

In (1)–(3) uk are the components of u in the xk-direction, and ∂k signifies differentiation with respect to
xk . It is convenient to introduce reference shear modulus and rotational wave speed (µ, vS), where

µ=max(C44,C55,C66), vS =

√
µ

ρ
. (5)

Here ρ is the mass density, and use of (5) gives the time-dependent length measure τ = vS × (time).
Therefore uk = uk(x, τ ) and σkl = σkl(x, τ ) in (2) and (3), and for τ < 0 the unbounded solid is at rest.
For τ > 0, however, a surface < expands from point x = 0 at a subsonic rate, that is, for a given τ > 0
all parts of its boundary contour C lie within the volumes defined by the fronts of body waves radiating
from source point x = 0. Unit vector n(x) defines the normal to < and is a continuous function of x ∈ <.
Surface < remains simply connected, and contour C is continuous and piecewise smooth. The surface
exhibits a dislocation distribution described by a jump in displacement [u(x, τ )] as < is crossed in the
direction of n. Discontinuity [u] is finite and continuous in (x, τ ) for x ∈ < and finite τ > 0. Thus, for
τ < 0 initial conditions are (u,∇u)≡ 0, and for τ > 0 the linear momentum balance can, in view of (1),
be written as

∇klεl = µ∂
2uk + Qk(x, τ ). (6)

Here k = (1, 2, 3), l = (1, 2, 3, 4, 5, 6), and the summation condition applies. Operator ∂ signifies
differentiation with respect to τ , and ∇kl are spatial derivative operators:∇1l

∇2l

∇3l

=
Cl1 Cl6 Cl5

Cl6 Cl2 Cl4

Cl5 Cl4 Cl3

∂1

∂2

∂3

 , Ckl = Clk . (7)

Function Qk is the dislocation body-force equivalent of [Burridge and Knopoff 1964] for the homoge-
neous case. Discontinuity [u] is prescribed, but vector decomposition gives

[u] = [uN ]n+ [uS]s, (8a)

[uN ] = [u] · n, [uS] = |[u] − ([u] · n)n|, (8b)

s =
[u] − ([u] · n)n
|[u] − ([u] · n)n|

, n · s = 0. (8c)

Here s(x, τ ) is a unit vector in the plane of <. Thus,

1
µ

Qi (x, τ )=
∫∫
<

d AGik(x′, τ )δk(x; x′), (9a)

Gik(x′, τ )= d N S
ik (x

′, τ )[uS(x′, τ )] + d N N
ik (x′, τ )[uN (x′, τ )], (9b)

δk(x; x′)= ∂kδ(x1− x ′1)δ(x2− x ′2)δ(x3− x ′3). (9c)

Area integration is over surface < with respect to the Cartesian variable x′, and the δ symbol in (9c) is
the Dirac function. Expressions for dimensionless coefficient arrays (d N S

ik , d N N
ik ) are given in terms of
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(8) in Appendix A. Combining (1)–(3) and (5)–(9) gives the uncoupled equations for u j :

Du j = D jk Qk(x, τ ). (10)

In (9) ( j, k)= (1, 2, 3), the summation convention applies, and

D= (P11−∂
2)(P22−∂

2)(P33−∂
2)+2P12 P23 P31−P2

23(P11−∂
2)−P2

31(P22−∂
2)−P2

12(P33−∂
2), (11a)

Di i= (Pj j − ∂
2)(Pkk − ∂

2)− P2
jk, (11b)

Di j= D j i = Pik Pjk − Pi j (Pkk − ∂
2). (11c)

In (11) the subscripts (i, j, k) are not equal and take on values (1, 2, 3), and the P terms are operators,
where Pkl = Plk and P11

P22

P33

= K

∂
2
1

∂2
2

∂2
3

+ 2LT

∂1∂2

∂2∂3

∂3∂1

 , (12a)

P12

P23

P31

= L

∂
2
1

∂2
2

∂2
3

+M

∂1∂2

∂2∂3

∂3∂1

 . (12b)

In (12) the matrices (K , L, M) are given — see [Ting 1996] — by

K =

d11 d66 d55

d66 d22 d44

d55 d44 d33

 , L =

d16 d26 d45

d56 d24 d34

d15 d46 d35

 , (13a)

M =

d12+ d66 d46+ d25 d14+ d56

d46+ d25 d23+ d44 d45+ d36

d14+ d56 d45+ d36 d13+ d55

 , (13b)

dik =
Cik

µ
=

Cki

µ
. (13c)

It is noted that L is asymmetric. In addition u is finite as |x| →∞ for finite τ > 0.

3. Transform solution

To determine u(x, τ ) the unilateral Laplace transform and multiple bilateral transform are employed
[van der Pol and Bremmer 1950; Sneddon 1972]:

f̂ (p)=
∫

f (τ ) exp(−pτ) dτ, (14a)

f ∗(p, q1, q2, q3)=

∫∫∫
f̂ (p, x) exp[−p(q1x1+ q2x2+ q3x3)] dx1 dx2 dx3. (14b)

Here Re(p) > 0, the integration in (14a) is over positive τ , and the integration in (14b) is over the entire
Re(xk)-axis. Application of (14) to (6) and (9) and imposing conditions for τ < 0 and |x| →∞ gives
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the formal transform solution

u∗j =
ql

p

∫
∞

0
dτ ′

∫∫
<

d A
D jk

D
Gkl(x′, τ ′) exp(−p)(q1x ′1+ q2x ′2+ q3x ′3+ τ

′). (15)

In (15) ( j, k, l)= (1, 2, 3), the summation convention applies, and, from (11):

D = (P11−1)(P22−1)(P33−1)+ 2P12 P23 P31− P2
23(P11−1)− P2

31(P22−1)− P2
12(P33−1), (16a)

Di i = (Pj j − 1)(Pkk − 1)− P2
jk, (16b)

Di j = D j i = Pik Pjk − Pi j (Pkk − 1). (16c)

In (16) the P terms follow from (12) as functions of qk , where Pkl = Plk :P11

P22

P33

= K

q2
1

q2
2

q2
3

+ 2LT

q1q2

q2q3

q3q1

 , (17a)

P12

P23

P31

= L

q2
1

q2
2

q2
3

+M

q1q2

q2q3

q3q1

 . (17b)

4. Transform inversion

The formal inversion of (14b) is [van der Pol and Bremmer 1950; Sneddon 1972]

f̂ (p, x)=
(

p
2iπ

)3 ∫∫∫
f ∗(p, q1, q2, q3) exp p(x1q1+ x2q2+ x3q3) dq1 dq2 dq3. (18)

Barring the existence of poles or branch points in f ∗ there, integration with respect to qk can be taken
over the entire Im(qk)-axis. Consistent with an operation commonly used in equilibrium analysis, for
example, in [Ting 1996], it is convenient to introduce an orthogonal transformationx1

x2

x3

=
cosψ ′ sinφ′ cosψ ′ cosφ′ −sinψ ′

sinψ ′ sinφ′ sinψ ′ cosφ′ cosψ ′

cosφ′ −sinφ′ 0

x
y
z

 . (19)

Here |x, y, z|<∞, |ψ ′| ≤π/2, and 0≤φ′≤π/2 so that (x, ψ ′, φ′) represents a quasispherical coordinate
system, where ψ ′ and φ′ correspond to the polar and azimuthal angles. Equation (19) suggests in turn
the transformation

q1 = q cosψ ′ sinφ′, q2 = q sinψ ′ sinφ′, q3 = q cosφ′. (20)

Here |Im(q)|<∞, |ψ ′| ≤ π/2, and 0≤ φ′ ≤ π/2. Use of (15), (19), and (20) in (18) gives

û j =−
2p∂l

π2

∫
∞

0
dτ ′

∫
8

sinφ′ dφ′
∫
9

dψ ′
∫∫
<

Gkl
d A
2iπ

∫
|q|2 dq

1 jk

1
exp p[q(x − x ′)− τ ′]. (21)

In (21), Gkl = Gkl(x ′, y′, z′, ψ, φ, τ ′), ( j, k, l)= (1, 2, 3), and the summation convention applies. Sym-
bols (8,9) signify integration over, respectively, ranges |ψ ′| ≤ π/2 and 0≤ φ′ ≤ π/2, and q-integration



238 LOUIS MILTON BROCK

is over the entire Im(q)-axis. Terms (1,1 jk) are

1= III q6
− II q4

+ I q2
− 1, (22a)

1i i = (q2 B j j − 1)(q2 Bkk − 1)− q4 B2
jk, (22b)

1i j =1 j i = q4 Bik B jk − q2 Bi j (q2 Bkk − 1). (22c)

In (22) we have from (17)B11

B22

B33

= K

cos2 ψ ′ sin2 φ′

sin2 ψ ′ sin2 φ′

cos2 φ′

+ 2LT

cosψ ′ sinψ ′ sin2 φ′

sinψ ′ sinφ′ cosφ′

cosψ ′ sinφ′ cosφ′

 , (23a)

B12

B23

B31

= L

cos2 ψ ′ sin2 φ′

sin2 ψ ′ sin2 φ′

cos2 φ′

+M

cosψ ′ sinψ ′ sin2 φ′

sinψ ′ sinφ′ cosφ′

cosψ ′ sinφ′ cosφ′

 . (23b)

These elements constitute a symmetric matrix

B =

B11 B12 B31

B12 B22 B23

B31 B23 B33

 . (24)

Terms (I, II , III ) in (22a) are the first, second, and third invariants of B. In view of (20) Bkl are generated
by a rotation in terms of (ψ ′, φ′) involving array dkl . Condition (4) is equivalent to the requirement that
the principal minors of Ckl , and therefore dkl , are positive definite (see also [Hohn 1964; Ting 1996]).
This, in turn, guarantees that the principal minors of array (24) are positive definite and (22a) has three
positive real roots. Because 1 is a cubic polynomial in q2, this is equivalent to the condition α3

−β2 > 0,
and so the three positive real roots are given by [Abramowitz and Stegun 1972]:

q2
A =

1
c2

A
, q2

B =
1

c2
B
, q2

C =
1

c2
C
, (25a)

c2
A =

I
3
+ 2
√
α cos �

3
, (c2

B, c2
C)=

I
3
− 2
√
α cos 1

3
(�±π), (25b)

�= tan−1 1
β

√
α3−β2, α =

( I
3

)2
−

II
3
, β =

III
3
+

I
3

[( I
3

)2
−

II
2

]
. (25c)

When α3
−β2

= 0, two of the results in (25b) are identical. In view of (25a), (22a) can then be written
as

1= III (q2
− q2

A)(q
2
− q2

B)(q
2
− q2

C). (26)

Residue theory is now used for q-integration in (21), where it is noted that nonanalytic function |q| is
defined on the Im(q)-axis. The 111 term, for example, gives

qA111(qA)

2III (q2
A−q2

B)(q
2
A−q2

C)
exp(−p)(qA|x−x ′|+τ ′)+

qB111(qB)

2III (q2
B−q2

C)(q
2
B−q2

A)
exp(−p)(qB |x−x ′|+τ ′)

+
qC111(qC)

2III (q2
C−q2

A)(q
2
C−q2

B)
exp(−p)(qC |x − x ′| + τ ′). (27)
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The exponential argument in (27) implies the existence of three wave speeds

vA = cA(ψ
′, φ′)vS, vB = cB(ψ

′, φ′)vS, vC = cC(ψ
′, φ′)vS. (28)

Each exponential in (27) is the unilateral transform (14a) of the Dirac function [Sneddon 1972], and
analogous results hold for the other 1 terms defined by (22b) and (22c). Thus the inverse of (21) is
obtained by inspection:

u j =−
1
π2

∫
8

sinφ′ dφ′
∫
9

dψ ′
∂l∂

III

∫ τ

0
dτ ′

∫∫
<

d A1′jk Gkl(TA+ TB + TC), (29a)

TL =
τ − τ ′

|x − x ′|ML

(
τ − τ ′ >

|x − x ′|
cL

)
. (29b)

In (29b) subscript L represents A, B, or C , and

MA =

[
(τ − τ ′)2 −

( x−x ′

cB

)2
][
(τ − τ ′)2 −

( x−x ′

cC

)2
]
, (30a)

MB =

[
(τ − τ ′)2 −

( x−x ′

cC

)2
][
(τ − τ ′)2 −

( x−x ′

cA

)2
]
, (30b)

MC =

[
(τ − τ ′)2 −

( x−x ′

cA

)2
][
(τ − τ ′)2 −

( x−x ′

cB

)2
]
. (30c)

Function 1′jk follows from (22b) and (22c) as

1′i i = [B j j (τ − τ
′)2− (x − x ′)2][Bkk(τ − τ

′)2− (x − x ′)2] − B2
jk(τ − τ

′)4, (31a)

1′i j =1
′

j i = (τ − τ
′)2
(
Bik B jk(τ − τ

′)2− Bi j [Bkk(τ − τ
′)2− (x − x ′)2]

)
. (31b)

In view of (19)

x − x ′ = (x1− x ′1) cosψ ′ sinφ′+ (x2− x ′2) sinψ ′ sinφ′+ (x3− x ′3) cosφ′. (32)

The subsonic restriction on the expansion of < guarantees that no part of its boundary C at a given
0< τ ′ < τ violates the inequality in (29b).

5. Planar <: Adoption of local description

While the decomposition (8a) and (9b) allows identification of climb and glide, development of (29a)
depends on function [u(x, τ )], and use of (9b) involves time-dependent unit vector s. If a local description
of displacement discontinuity, that is, in terms of the geometry of <, is available, then a more explicit
result is possible — especially in the case of planar <. Then (8a) and (9b) are replaced by

[u] = [uT ]t + [uS]s+ [uN ]n, (33a)

Gik = Gik(t, s, τ )= d N T
ik [uT ] + d N S

ik [uS] + d N N
ik [uN ]. (33b)
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Unit vectors (t, s, n) form a fixed right-handed set (t × s = n, s× n= t, n× t = s). They are invariant
in <, but the (T, S, N ) components of u are functions of (t, s, τ ), where (t, s) correspond to (t, s) andn

t
s

=
n1 n2 n3

t1 t2 t3
s1 s2 s3

e1

e2

e3

 . (34)

Terms (nk, tk, sk) are (constant) direction cosines, ek are Cartesian basis vectors, and dimensionless
coefficient arrays (d N T

ik , d N S
ik , d N N

ik ) are given in Appendix B. Normal n is known, but vectors (t, s) in
the plane of < are somewhat arbitrary. In light of (19), a convenient choice is to define n in terms of
polar and azimuthal angles (ψ, φ), where |ψ |< π/2 and 0< φ < π/2, and introduce for integration over
< the transformation and corresponding direction cosines:x ′1

x ′2
x ′3

=
cosψ sinφ cosψ cosφ −sinψ

sinψ sinφ sinψ cosφ cosψ
cosφ −sinφ 0

0
t
s

 , (35a)

n1 = cosψ sinφ, n2 = sinψ sinφ, n3 = cosφ, (35b)

t1 = cosψ cosφ, t2 =−sinψ cosφ, t3 =−sinφ, (35c)

s1 =−sinψ, s2 = cosψ, s3 = 0. (35d)

In view of (33)–(35) the integrand of the ψ ′φ′-integration in (29a) can be written as

d N T
kl ∂

∫ τ

0
dτ ′
∫∫
<

d A[Pjk∂
′

l [uT ]−∂
′

l (Pjk[uT ])]+d N S
kl ∂

∫ τ

0
dτ ′
∫∫
<

d A[Pjk∂
′

l [uS]−∂
′

l (Pjk[uS])]

+ d N N
kl ∂

∫ τ

0
dτ ′
∫∫
<

d A[Pjk∂
′

l [uN ] − ∂
′

l (Pjk[uN ])], (36a)

where
Pjk =1

′

jk(TA+ TB + TC). (36b)

Here ∂ ′l represents differentiation with respect to x ′l in (32), and (d N T
kl , d N S

kl , d N
kl ) are independent of

(t, s, τ ′). From (35a), Pjk and ([uT ], [uS], [uN ]) depend on (t, s, τ ′) and

∂ ′1→ cosψ sinφ ∂
∂t
− sinψ ∂

∂s
, ∂ ′2→ sinψ cosφ ∂

∂t
+ cosψ ∂

∂s
, ∂ ′3→ sinφ ∂

∂t
. (37)

Use of (37) in (36) and application of Stokes’s theorem [Hay 1953] allows the second terms in (36) to
be replaced by line integrals around contour C . For example, the first integral over < in (36) gives for
l = (1, 2, 3), respectively,∫∫

<

d APjk

(
cosψ sinφ ∂

∂t
− sinψ ∂

∂s

)
[uT ] +

∮
C

dcPjk[uT ](sinψ t + cosψ sinφs) · tC , (38a)∫∫
<

d APjk

(
sinψ cosφ ∂

∂t
+ cosψ ∂

∂s

)
[uT ] −

∮
C

dcPjk[uT ](cosψ t − sinψ cosφs) · tC , (38b)

sinφ
∫∫
<

d APjk
∂

∂t
[uT ] + sinφ

∮
C

dcPjk[uT ]s · tC . (38c)
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Integration is counterclockwise around C in the ts-plane, tC is the unit vector tangent to C and in the
direction of integration, and (32) takes the form

x − x ′ = (x1 cosψ ′+ x2 sinψ ′) sinφ′+ x3 cosφ′

− [sinφ′ cosφ cos(ψ ′−ψ)− cosφ′ sinφ]t + sinφ′ sin(ψ ′−ψ)s. (39)

The subsonic restriction on the growth of < guarantees that the wave front history defined in (29b) does
not affect the limits of integration over (<,C).

6. Planar <: Traction field

A local description does not imply knowledge of the traction field (σN S, σN T , σN N ) on <. However,
with (29) and (36)–(39) in hand, this field can be obtained by evaluation of the following expressions for
x ∈ <: 

σN N

σT T

σSS

σSN

σN T

σT S


= µ



d N N
11 d N N

22 d N N
33 d N N

23 d N N
31 d N N

12

dT T
11 dT T

22 dT T
33 dT T

23 dT T
31 dT T

12

d SS
11 d SS

22 d SS
33 d SS

23 d SS
31 d SS

12

d SN
11 d SN

22 d SN
33 d SN

23 d SN
31 d SN

12

d N T
11 d N T

22 d N T
33 d N T

23 d N T
31 d N T

12

dT S
11 dT S

22 dT S
33 dT S

23 dT S
31 dT S

12





∂1u1

∂2u2

∂3u3

∂2u3+ ∂3u2

∂3u1+ ∂1u3

∂1u2+ ∂2u1


, (40a)

d SN
ik = d N S

ik , d N T
ik = dT N

ik , dT S
ik = d ST

ik . (40b)

Dimensionless coefficient arrays (d N S
ik , d N T

ik , d N N
ik ) appear in (33), and are defined in Appendix B. Defi-

nitions of coefficient arrays (dT T
ik , d SS

ik , dT S
ik ) are also found there.

7. Planar <: Two special cases with application

Dip-slip and strike-slip faulting in seismology [Canitez and Toksoz 1972] and slip mechanisms in a
crystal lattice [Read 1953] can be modeled as a spatially invariant dislocation distribution on an expanding
surface. For such a distribution on <, the terms in (38) reduce to

[uT ]

∮
C

dcPjk(sinψ t + cosψ sinφs) · tC , (41a)

−[uT ]

∮
C

dcPjk(cosψ t − sinψ cosφs) · tC , (41b)

[uT ] sinφ
∮

C
dcPjk s · tC . (41c)

The use of dislocation distributions that exhibit spatial variation to model internal cracks is well estab-
lished [Bilby and Eshelby 1968; Barber 1992]. If < represents a crack plane, then [u] = 0 (x ∈ C) and
only the integration over < in (38) remains. Results analogous to (41) exist, for example, [Brock 1986],
for a nonplanar surface in an isotropic solid.
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If the additional condition is imposed that a radial line from x = 0 to any point on C lies within <, it
is convenient to define (<,C) in terms of polar coordinates:

< : r < rC(θ
′, τ ), C : r = rC(θ

′, τ ), (42a)

t = r cos θ ′, s = r sin θ ′ (0≤ θ ′ ≤ 2π). (42b)

Here (rC , ∂rC/∂θ
′) are single-valued and continuous in θ ′. Quantities (∂rC/∂θ

′, ∂rC) are finite and, in
particular, ∂rC <min[cA(ψ, φ), cB(ψ, φ), cC(ψ, φ)]. Use of (42) in (41c), for example, gives

[uT ] sinφ
∫ 2π

0
Pjk

∂

∂θ ′
(rC sin θ ′) dθ ′. (43)

For the crack plane case, the corresponding result is

sinφ
∫ 2π

0
Pjk dθ ′

∫ rC

0
dr
(

r ∂
∂r

sin θ ′+ cos θ ′
∂

∂θ ′

)
[uT ]. (44)

In the case of (44),

x − x ′ = (x1 cosψ ′+ x2 sinψ ′) sinφ′+ x3 cosφ′− r F(φ, φ′, ψ ′−ψ, θ ′), (45a)

F = [cos θ ′ sin(ψ ′−ψ)+ cosφ sin θ ′ cos(ψ ′−ψ)] sinφ′− sin θ ′ sinφ cosφ′. (45b)

For (43), the symbol r in (45a) is replaced with rC(θ
′, τ ′).

8. Limit results

For an orthotropic solid [Ting 1996; Jones 1999] matrix K is again defined by (13a), but L = 0 and

M =

d12+ d66 0 0
0 d23+ d44 0
0 0 d13+ d55

 . (46)

For transverse isotropy with respect to the x1x2-plane [Ting 1996; Jones 1999] L = 0 and

K =

d11 d66 d55

d66 d11 d55

d55 d55 d33

 , (47a)

M =

d11− d66 0 0
0 d13+ d55 0
0 0 d13+ d55

 . (47b)

For a cubic solid [Crandall and Dahl 1959] L = 0 and

K =

d11 1 1
1 d11 1
1 1 d11

 , M = (d12+ 1)1. (48)

Here 1 is the identity tensor. For isotropy [Ting 1996; Jones 1999] L = 0, K is defined by (48), and

M = (d11− 1)1. (49)
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Equations (25), (29), and (30) still hold for the orthotropic solid. Transverse isotropy (47) yields the
more explicit results

cA =
√

d44 cos2 φ′+ d66 sin2 φ′, (50a)

(c2
A, c2

C)=
1
2 (d44+ d11 sin2 φ′+ d33 cos2 φ′)

±
1
2

√
(d33 cos2 φ′− d11 sin2 φ′− d4 cos 2φ′)2+ (d44+ d13)

2 sin2 2φ′. (50b)

Moreover, TB + TC replaces TA+ TB + TC in terms that involve (d N T
31 , d N S

31 , d N N
31 ) and (d N T

23 , d N S
23 , d N N

23 )

in (37), where

TL =
τ − τ ′

ML |x − x ′|

(
τ − τ ′ >

|x − x ′|
cL

)
, (51a)

MB = (τ − τ
′)2−

( x−x ′

cC

)2
, MC = (τ − τ

′)2−
( x−x ′

cB

)2
. (51b)

It should be noted that conditions specific to transversely isotropic solids that guarantee that α3
−β2 > 0

are given in detail in [Payton 1983]. For the cubic solid

cA = 1, (52a)

(c2
B, c2

C)=
1
2 (d11+ 1)± 1

2 sinφ′
√
(d11− 1)2 sin2 φ′+ (d12+ 1)2 cos2 φ′. (52b)

The results associated with (51) still hold. For the isotropic solid cA = cC , so only two speeds (vB, vC)=

(cB, cC)vS exist, where
cB =

√
d11, cC = 1. (53)

Thus, isotropy corresponds to the case α3
− β2

= 0 noted above, and (36) involves only terms of the
type (51).

As an illustration of wave speed variation with propagation direction, a transversely isotropic graphite-
epoxy [Jones 1999] is considered with

µ= C44 = 7.07 GPa, vS = 2546 m/s, d44 = 1.0, d66 = 0.4951,d11 d12 d31

d12 d11 d31

d31 d31 d33

=
1.9689 0.9788 0.9109

0.9788 1.9689 0.9109
0.9109 0.9109 22.73

 .
Use of these properties in (50) gives the values of dimensionless speeds (cA, cB, cC) shown in Table 1
for 0 ≤ φ′ ≤ 90◦. It is seen that the values are quite sensitive to φ′; compare [Wang and Achenbach
1994].

9. Concluding remarks

The present formulation leads to transient expressions that are multiple integrals in a unit spherical quad-
rant in terms of polar and azimuthal angles, that is, (|ψ ′|<π/2, 0≤ φ′ ≤ π/2), but are explicit functions
of Cartesian principal material coordinates. Approaches used to produce the anisotropic Green’s function,
for example, [Wang and Achenbach 1995; Ting 1996], are similar but feature integration over the surface
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cA cB cC

φ′ = 0◦ 1.0 4.8197 0.7071
15◦ 0.9829 4.6650 0.7595
30◦ 0.9348 4.2094 0.9057
45◦ 0.8646 3.4926 1.0730
60◦ 0.7882 2.5908 1.2029
75◦ 0.7272 1.7096 1.1986
90◦ 0.7036 1.4042 1.0

Table 1. Graphite-epoxy: dimensionless speeds (vS = 2546 m/s).

of a unit sphere or around a unit circle [Synge 1957]. Nevertheless, for a planar dislocation surface, the
present integration process can in fact be carried out in terms of a polar coordinate system (r, θ ′) in the
plane. Moreover, Stokes’s theorem [Hay 1953] can be invoked to replace portions of the area integration
with integration around the area contour. The description of the dislocation distribution in terms of
surface geometry does produce lengthier solution expressions. However, climb and glide mechanisms
can be identified explicitly in terms of matrix/tensor arrays that are similar to those defined in analyses
of general anisotropy; see [Ting 1996], for example. Related arrays that characterize the orientation of
the dislocation surface and its climb and glide components with respect to the principal material axes
arise, and resemble in form the constitutive relation for the solid itself. In summary, the disadvantages of
the length and complexity of these solutions, and their combination of standard coordinate systems, may
be compensated for by a more explicit nature. This nature may be of advantage in cases where solution
response to particular dislocation features is of interest.

Appendix A

The dimensionless coefficient array d N S
ik (x

′, τ ) is defined by

d N S
11

d N S
22

d N S
33

d N S
23

d N S
31

d N S
12


=



d1 d12 d13 d14 d15 d16

d12 d22 d23 d24 d25 d26

d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d46

d15 d25 d35 d45 d55 d56

d16 d26 d36 d46 d56 d66





s1n1

s2n2

s3n3

s2n3+ s3n2

s3n1+ s1n3

s1n2+ s2n1


, (A.1a)

d N S
ik = d N S

ki . (A.1b)

Here sl(x′, τ ) and nl(x′) are the direction cosines of (s, n) in the principal material basis. It is noted that
(A.1) resembles constitutive equations (1)–(3), with d N S

ik playing the role of (dimensionless) stresses, and
(si ni , si nk + skni ) acting as strains (∂i ui , ∂i uk + ∂kui ). Coefficients d N N

ik follow by replacing sl with nl .
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Appendix B

Dimensionless coefficient array d N T
ik is defined by

d N T
11

d N T
22

d N T
33

d N T
23

d N T
31

d N T
12


=



d11 d12 d13 d14 d15 d16

d12 d22 d23 d24 d25 d26

d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d46

d15 d25 d35 d45 d55 d56

d16 d26 d36 d46 d56 d66





t1n1

t2n2

t3n3

t2n3+ t3n2

t3n1+ t1n3

t1n2+ t2n1


, (B.1a)

d N T
ik = d N T

ki . (B.1b)

Terms (tl, nl) are direction cosines of (t, n) in the principal material basis. For planar <, of course,
direction cosines are constant. Results for (d N S

ik , d N N
ik ) follow from (B.1) by replacing direction cosine

tl with, respectively, direction cosine (sl, nl).
Another set of dimensionless coefficients (dT S

ik , dT T
ik , d SS

ik ) can also be defined, where

dT S
11

dT S
22

dT S
33

dT S
23

dT S
31

dT S
12


=



d11 d12 d13 d14 d15 d16

d12 d22 d23 d24 d25 d26

d13 d23 d33 d34 d35 d36

d14 d24 d34 d44 d45 d46

d15 d25 d35 d45 d55 d56

d16 d26 d36 d46 d56 d66





t1s1

t2s2

t3s3

t2s3+ t3s2

t3s1+ t1s3

t1s2+ t2s1


, (B.2a)

dT S
ik = dT S

ki . (B.2b)

Terms (dT T
ik , d SS

ik ) follow from (B.2) by, respectively, replacing sl with tl and tl with sl .
Equations (B.1) and (B.2) also show that

dT N
ik = d N T

ki , d SN
ik = d N S

ik , dT S
ik = d ST

ik . (B.3)

Equations (B.1) and (B.2) resemble (A.1), so that the forms of (d N T
ik , d N S

ik , dT S
ik ) also resemble constitutive

equations (1)–(3).
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