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PREDICTING THE EFFECTIVE STIFFNESS
OF CELLULAR AND COMPOSITE MATERIALS

WITH SELF-SIMILAR HIERARCHICAL MICROSTRUCTURES

YI MIN XIE, ZHI HAO ZUO, XIAODONG HUANG AND XIAOYING YANG

Many natural and man-made materials exhibit self-similar hierarchical microstructures on several length
scales. The effective macroscopic mechanical properties of such materials or composites are affected by
the number of hierarchical levels and the topology of microstructures. Although the effective mechanical
properties can be determined numerically using homogenization techniques, the computational costs can
become prohibitively high as the level of hierarchy increases. This paper proposes an analytical approach
to predicting the effective stiffness of a class of materials and structures with self-similar hierarchical
microstructures. For each microstructural configuration, a simple relationship between the effective
stiffness and the hierarchical level is established and verified against results of finite element analysis or
data in the literature. It is found that the simple relationships we have developed provide quite accurate
stiffness predictions of various hierarchical materials and composites including the Menger sponge. For
composites, the predicted effective stiffness is accurate even when one of the phases is near its incom-
pressibility limit, with its Poisson ratio close to 0.5. Inspired by the Menger sponge and informed by our
topology optimization result, we propose a lighter yet stiffer “cross sponge”.

1. Introduction

Hierarchical solids contain structural elements which themselves have structures on more than one length
scale [Lakes 1993]. Multilevel structural hierarchy, as observed in many living organisms, seems to be a
universal strategy adopted by natural evolution for realizing remarkable properties and functions [Currey
1984; Aizenberg et al. 2005; Zhang et al. 2011].

According to Currey [1977; 1984] and Gao [2010], a sea shell has two to three levels of lamellar
structure while bone has seven levels of structural hierarchy. It has been observed from many biological
materials that the microstructures at different hierarchical levels often exhibit striking self-similarity
[Jäger and Fratzl 2000; Puxkandl et al. 2002; Gao 2010; Zhang et al. 2011]. A mineralized tendon
fiber, for example, has four levels of hierarchy with a highly ordered, self-similar structure at every level
[Puxkandl et al. 2002; Zhang et al. 2011].

Among 3D solids with self-similar hierarchical structures or microstructures, the Menger sponge
shown in Figure 1 is perhaps the most famous example. Starting from a solid cubic that is divided
equally into 3× 3× 3 subcubes, the Menger sponge is created by simply removing the seven subcubes at
the body and face centers of each remaining solid cube from the previous level. If the voids are replaced
with an inclusion material, the Menger sponge becomes a composite with two phases. The Menger
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Fig. 1. The first three levels of Menger sponges and Menger sponge composites. 
Figure 1. The first three levels of Menger sponges and Menger sponge composites.

sponge presents self-similar structural hierarchy since each subcube has the same topology as that of the
cube of the previous level.

Figure 2 shows a level-three Menger sponge composite we have fabricated using the Connex350
3D printer [Stratasys 2012] which allows the simultaneous printing of two different materials. The
transparent inclusion material is a rubber-like elastomer and the white matrix material is an acrylic-based
glassy polymer.

There has been extensive research on the estimation of the macroscopic effective mechanical properties
of load-carrying media [Watt et al. 1976; Sánchez-Palencia 1980; Coussy 1991; Tan et al. 1999; Liu et al.
2009]. For this purpose, numerical methods have been commonly applied; for instance, Hashin and
Shtrikman [1962; 1963] proposed a variation approach for polycrystals and multiphase media, Cleary

 

 

Fig. 2. A level 3 Menger sponge composite fabricated using a multi-material 3D printer. 
Figure 2. A level-three Menger sponge composite fabricated using a multimaterial 3D printer.
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et al. [1980] used techniques of self-consistent approximations for heterogeneous media, Day et al. [1992]
implemented a discretized-spring scheme for a sheet with circular inclusions, Garboczi and Day [1995]
analyzed the mechanical properties of 3D composite using a finite element (FE) algorithm, and Poutet
et al. [1996] applied a multiple-scale expansion scheme to random porous media including some hier-
archical media. Apart from these, numerical homogenization techniques (for example, [Bakhvalov and
Panasenko 1984; Nemat-Nasser and Hori 1993]) have been frequently used. Similarly, Steven [1997]
and Tan et al. [2000] set up appropriate boundary conditions on a material base cell to attain elastic
properties by using finite element analysis.

There has been limited work on the prediction of the effective physical and mechanical properties of
hierarchical materials and structures. Thovert et al. [1990] studied the thermal conductivity of regular
fractals and Poutet et al. [1996] examined elastic constants of a variety of porous media. However,
due to the limitations of computer capacities of the time, only very low levels of the hierarchy were
solved. This is because, as the level of hierarchy increases, computational cost can become prohibitively
high. Oshmyan et al. [2001] studied the elastic properties of a special kind of self-similar hierarchical
structures (2D Sierpinski-like structures) using FE-based simulations. They also considered Sierpinski
composites with rigid inclusions. Our current work will cover general 3D self-similar hierarchical cellular
structures as well as composites with deformable inclusions. Simple formulas for predicting the elastic
moduli have been derived using the renormalization argument [Bergman and Kantor 1984; Poutet et al.
1996]. From the renormalization argument, Poutet et al. [1996] found that the ratio of the Young’s
moduli between two adjacent levels should be 2/3. Since then, this result has been accepted and cited
by other researchers [Picu and Soare 2009]. We shall show in this paper that the prediction from the
renormalization argument is inaccurate with an error of more than 20%. Indeed, even if one compares the
numerical results of [Poutet et al. 1996] with the renormalization prediction, one can see differences of
the same magnitude. In other words, the renormalization argument can be highly inaccurate. Therefore
a new and more accurate approach to the prediction of the effective stiffness of self-similar hierarchical
media needs be established. This will be the focus and the main contribution of the present paper. In
addition, we shall propose a lighter yet stiffer hierarchical material than the Menger sponge.

2. Preliminary basics

2.1. Terminology for mechanical properties. In the literature, various terms are used to express the
same item, such as the stiffness constitutive matrix, which can be denoted as a tensor C or E. The term
stiffness may also refer to different mechanical quantities. For clarity, we shall first briefly define the
terminology for mechanical properties. The following formula expresses Hooke’s law in stiffness form
with C as the stiffness matrix:

σ = C · ε or



σ11

σ22

σ33

σ12

σ23

σ13


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26
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Very often, Hooke’s law may be expressed using the engineering constants. Since the hierarchical
media addressed in this paper are all symmetric with respect to the three middle planes, the orthotropic
elasticity can be defined as

ε11

ε22

ε33

ε12

ε23

ε13


=



1/E11 −ν12/E22 −ν13/E33 0 0 0
1/E22 −ν23/E33 0 0 0

1/E33 0 0 0
1/G12 0 0

Sym. 1/G23 0
1/G13





σ11

σ22

σ33

σ12

σ23

σ13


, (2)

where E11, E22, and E33 denote the effective Young’s moduli in the three axial directions; ν12, ν23, and
ν13 the Poisson’s ratios; and G12, G23, and G13 the shear moduli. The stiffness discussed in this paper
refers to the moduli E11, E22, and E33. Note that these moduli can also be calculated from the elastic
constants as [Poutet et al. 1996]

E11 = C11−
2C2

12

C11+C12
. (3)

Further, for a material with cubic symmetry, that is, with three mutually perpendicular symmetry
planes (E11 = E22 = E33 = E , ν12 = ν23 = ν13 = ν, and G12 = G23 = G13 = G), such as the Menger
sponge, the effective stiffness refers to the unique effective Young’s modulus E .

2.2. Numerical homogenization through designed boundaries on unit cell. A simple description of the
numerical homogenization technique used in this study is presented here for 3D macroscopic mechanical
characterization of an arbitrary structure or material microstructure. More details can be found in [Steven
1997; Tan et al. 2000].

The symmetry of the elastic stiffness matrix in (1) leaves 21 unknown constants to be determined.
With six specified strain vectors, each with one strain component being unit and others being zero, we
can calculate six elastic matrix constants easily. For example,

σ11

σ22

σ33

σ12

σ23

σ13


=



C11

C21

C31

C41

C51

C61


, using the input strain ε∗ =



ε11

ε22

ε33

ε12

ε23

ε13


=



1
0
0
0
0
0


. (4)

In the numerical realization, six finite element analyses are required with unit strains expressed as
prescribed displacements on the boundaries in order to get the corresponding stresses determined from
the reaction forces. Two types of boundary conditions are involved: one with normal strain and the other
with shear strain. Figure 3 demonstrates the two types of boundary conditions.

This simple and straightforward approach is capable of obtaining highly accurate results for the macro-
scopic mechanical properties of materials and structures, as suggested in [Steven 1997; Tan et al. 2000].
However, a sufficiently fine mesh is needed if the unit cell contains complex geometries such as arbitrary
cavities or multiple phases. As an example, Figure 4 illustrates the effective stiffness obtained from
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(a) (b) 

Fig. 3. Boundary conditions used in the numerical homogenization: (a) with normal strain; (b) with 
Figure 3. Boundary conditions used in the numerical homogenization: with (a) normal
strain and (b) shear strain.
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Fig. 4. Numerical results of the stiffness of level 1 Menger sponge using different finite element Figure 4. Numerical results of the stiffness of a level-one Menger sponge using different

finite element meshes.

numerical homogenization using various finite element meshes. The chosen microstructure is the level-
one Menger sponge shown in Figure 1 with a base material of E0 = 1 and ν = 0.2. The convergence
of the stiffness results through mesh refinement is shown below. It is seen that even for the relatively
simple shape of the level-one Menger sponge, a dense mesh (at least 27× 27× 27 or, to be more prudent,
81× 81× 81) should be used in order to obtain an accurate stiffness result.

3. Derivation of a stiffness prediction scheme

3.1. The renormalization argument. Several simplified models were presented in [Poutet et al. 1996]
for stiffness predictions of various hierarchical media, including the Menger sponge. The basic idea of
the renormalization argument is to decompose the Menger sponge into three homogeneous layers. Each
layer’s stiffness is simply assumed to be proportional to the cross-sectional area. The stiffness for the
whole sponge can then be calculated through a simple force and deformation relationship. However, the
prediction failed to match with the numerical results, in which the stiffness ratio between two adjacent
levels ranged from 0.53 to 0.58, significantly different from the renormalization prediction of 2/3.
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If we look carefully at the simplified model of the Menger sponge within the renormalization argument,
we will find that the force from one face to the opposite face is not transmitted evenly through the three
layers, that is, stress concentrations will be found at the actual connections between layers. In this sense,
the simplified model overestimates the effective stiffness.

3.2. Stiffness prediction through a bounded estimation scheme. Due to the nonuniform geometry, it is
difficult or inaccurate to use only one simplified model to describe the force and deformation relationship
of a hierarchical material such as the Menger sponge. However, one may set up multiple simplified
models to predict the real value within a certain range. In this vein, we propose a scheme to calculate
the stiffness based on the under and overestimates.

As an example, the Menger sponge can be simplified in two different ways, as shown in Figure 5. In the
first model, eight white-colored blocks in the top and bottom layers are ignored, as shown in Figure 5(a).
This is based on the assumption that under vertical pressure loading on the top and bottom surfaces these
eight blocks are only weakly stressed. In this case, the Menger sponge is simplified and transformed into
a parallel connection of four columns in the force direction. Since this parallel decomposition ignores the
existence of the removed parts and thus ignores their stiffness, this simplified model underestimates the
actual stiffness of the Menger sponge. The underestimate of stiffness is approximated as proportional to
the cross-sectional area. Note that each constitutive block of a level-n Menger sponge is a level-(n− 1)
Menger sponge due to the self-similarity, and that the stiffness of a full cube model with all such blocks
is naturally equal to the stiffness of a level-(n− 1) Menger sponge. Since four out of the nine columns
of the full cube model are left, the stiffness of a level-n Menger sponge can be simply determined as
4/9 of that of the level-(n− 1) Menger sponge. In (5) the subscript denotes the level and the superscript

 

(a) 

   

(b) 

    

Fig. 5. Simplified models of the level 1 Menger sponge: (a) parallel connection model; (b) serialFigure 5. Simplified models of the level-one Menger sponge: (a) parallel connection
model and (b) serial-connection model.
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denotes the underestimate:

E−n =
4En−1

9
. (5)

The aforementioned renormalization argument is referred to for the second model, which consists of
three homogenized layers. This decomposition using serial connections, as in Figure 5(b), overestimates
the stiffness as mentioned earlier and as supported by the numerical results from [Poutet et al. 1996].
The effective Young’s moduli of each layer can be simplified as 8En−1/9, 4En−1/9, and 8En−1/9, re-
spectively. With p being the pressure acting on the top and bottom faces of the Menger sponge, and a
being the thickness of each layer, the normal strain is calculated as

εxx =
p

En
=

dxx

3a
=

1
3

(
dxx,1+ dxx,2+ dxx,3

a

)
=

1
3
(εxx,1+ εxx,2+ εxx,3)

=
1
3

(
p

8En−1/9
+

p
4En−1/9

+
p

8En−1/9

)
,

(6)

where the second subscript in the displacement and strain denotes the layer number. Hence we obtain
the effective stiffness of the overestimation model as

E+n =
2En−1

3
. (7)

The Reuss [1929] bound and the Voigt [1889] bound have been believed to be the lower and upper
bounds of the effective stiffness of composites. These two bounds correspond to the serial and parallel-
connection models, respectively, which seems contrary to the proposal in this paper. However, being
different from the Reuss and Voigt models, the model decomposition in this paper is valid also for
cellular hierarchical materials, and building blocks are deliberately removed or added to form a weaker
or stronger simplified model for analytical calculation of the stiffness. As a result, artificial upper and
lower estimates are obtained that actually work as the bounds for the effective stiffness.

The overestimated stiffness is obviously larger than the underestimated stiffness. The real value of the
stiffness is deemed to lie between the above under and overestimates. Hence we can set up the following
framework for an effective approximation using an interpolation scheme:

En = (1−α)E−n +αE+n , with 0≤ α ≤ 1, (8)

and particularly for the Menger sponge:

En =
2
3
αEn−1+

4
9
(1−α)En−1 =

4+2α
9

En−1. (9)

The interpolation parameter α in the above formula applies to all levels of the hierarchy in theory.
Therefore α can be simply calculated by substituting the stiffnesses of levels-zero and one Menger
sponges. A level-zero Menger sponge refers to the solid, isotropic base material. The stiffness of the level-
one Menger sponge is obtained numerically using the numerical homogenization approach introduced in
Section 2. Due to the cavities in the level-one Menger sponge, a very fine finite element mesh 34

×34
×34

is used in finite element analysis (FEA) to get accurate results, as mentioned earlier. With E0 = 1 and
ν0 = 0.2, the FEA result gives E1 = 0.5450. From (9), α is obtained as 0.4525. Therefore, the stiffness
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Level Numerical E−n E+n Predicted Difference [Poutet et al. 1996] RA

1 0.5450 0.4444 0.6666 0.5450 0.00% 0.53298 0.6666
2 0.3077 0.1975 0.4444 0.2970 3.48% 0.29771 0.4444
3 0.1718 0.0878 0.2963 0.1619 5.76% 0.1737 0.2963
4 0.0960 0.0390 0.1975 0.0882 8.13% N/A 0.1975

Table 1. Summary of stiffnesses of Menger sponges of different levels, with E0 = 1 and
ν0 = 0.2.

prediction formula is further simplified as

En = 0.5450En−1 or En = 0.5450n E0. (10)

In order to examine the accuracy of the proposed prediction of effective stiffness, further levels of
the Menger sponge have been solved using numerical homogenization. The numerical results are sum-
marized in Table 1 with comparison to the under and overestimated stiffnesses, the predicted stiffness
values using (10), the numerical results of [Poutet et al. 1996], and the predictions of the renormalization
argument (RA).

Through the hierarchical level increasing, the stiffness under and overestimates differ more and more
from the numerical results due to the built-up errors caused by the model simplifications. Nevertheless,
the bounds give a practical estimate of the effective stiffness before any accurate homogenization tech-
nique is applied. The renormalization argument actually gives an upper bound of the effective stiffness.
The predicted effective stiffnesses match well with the numerical results, and with the previous numerical
results of [Poutet et al. 1996]. In contrast, the renormalization argument gives values that are at least 20%
different from the numerical results. Due to limited computer power in the 1990s, Poutet et al. [1996]
only solved the first three levels of the Menger sponge. In our study, the meshes we have used for levels-
one to three Menger sponges are 34

×34
×34, 34

×34
×34, and 35

×35
×35, respectively. Since the Menger

sponge is cubic symmetric, a one-eighth model is used for level four with a (2×35)× (2×35)× (2×35)

mesh to balance the numerical accuracy and computational cost. Note that due to voids in the Menger
sponges, the actual numbers of solid elements in the above four meshes are 34

× 34
× 34
× 20/27,

34
× 34
× 34
× (20/27)2, 35

× 35
× 35
× (20/27)3, and (2× 35)× (2× 35)× (2× 35)× (20/27)4. It is

seen that the basic building block — a unit structure with a level-one Menger sponge pattern — is much
more coarsely meshed in the level-four Menger sponge than in the level-one Menger sponge. In other
words, an extremely fine mesh, 37

× 37
× 37, should be used for level four in order to achieve an equal

numerical accuracy to level one. However even a supercomputer would have difficulty in handling such
a fine mesh. Nevertheless, if such a fine mesh is achieved, the numerical stiffness is expected to decrease
as indicated in Figure 4. In this case, it is envisaged that the numerical results will match the predicted
values even better.

4. Stiffness prediction for hierarchical composites

Stiffness of hierarchical composites can be predicted in the same way as for hierarchical media of a single
base material as discussed in Section 3. Taking the Menger sponge composite in Figure 6 for example,
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(a) 

   

(b) 

    

 Simplified models for a Menger sponge composite of level one: (a) parallFigure 6. Simplified models for a Menger sponge composite of level one: (a) parallel-
connection model and (b) serial-connection model.

two simplified models are similarly introduced for stiffness estimates. The composite is assumed to have
two base materials, with Em being the Young’s modulus for the matrix base material (green) and Ei for
the inclusion material (red). Note that a level-n Menger sponge composite of stiffness En consists of
20 blocks of level-(n− 1) Menger sponge composite of En−1 and seven blocks of pure inclusion base
material of Ei .

The first simplified model decomposes the level-n Menger sponge composite into nine parallel columns.
The Young’s moduli for the four corner columns and the central column are En−1 and Ei , respectively,
while the Young’s modulus of the remaining four columns is estimated by a simple force and defor-
mation relationship. Suppose a pressure p is applied on one of these four columns that is composed
of three blocks with Young’s moduli En−1, Ei , and En−1, respectively, the strain will be calculated as
(p/En−1+ p/Ei+ p/En−1)/3. On the other hand, the strain can also be calculated as the pressure divided
by the homogenized Young’s modulus of the whole column. Therefore the effective Young’s modulus
for these columns can be obtained based on a simple calculation and given as 3En−1 Ei/(En−1+ 2Ei ).
Finally, we have the first estimate of the effective stiffness of the whole composite as

E−n =
1
9

(
4En−1+ Ei + 12

En−1 Ei

En−1+ 2Ei

)
. (11)

Similarly as in the single base material case, the second simplified model decomposes a level-n Menger
sponge composite into three serial-connected homogenized layers. With a simplification of stiffness
proportional to the cross-sectional areas, the estimated Young’s moduli for the three layers are 8En−1/9+
Ei/9, 4En−1/9+ 5Ei/9, and 8En−1/9+ Ei/9, respectively. With p being the pressure applied to the top
and bottom faces of the composite, the total deformation in the force direction is calculated similarly as
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Level Numerical E−n E+n Predicted Difference

1 0.5647 0.4586 0.6712 0.5647 0.00%
2 0.3311 0.2177 0.4520 0.3228 2.51%
3 0.2000 0.1101 0.3059 0.1884 5.80%

Table 2. Summary of stiffnesses of Menger sponge composites with E0 = 1, ν0 = 0.2,
Ei = 0.01, and νi = 0.4.

Numerical Predicted Difference

4.3616× 1010 4.3616× 1010 0.00%
2.7862× 1010 2.7428× 1010 1.56%
1.8235× 1010 1.7490× 1010 4.09%

Table 3. Summary of stiffnesses of Menger sponge composites with E0 = 70× 109,
ν0 = 0.33, Ei = 1× 109, and νi = 0.49.

in (6):

εxx =
p

En
=

1
3

(
p

8En−1/9+ Ei/9
+

p
4En−1/9+ 5Ei/9

+
p

8En−1/9+ Ei/9

)
. (12)

Hence we obtain the second estimated stiffness as

E+n =
32E2

n−1+ 44En−1 Ei + 5E2
i

48En−1+ 33Ei
. (13)

Within the framework established by (8), we get the stiffness prediction

En =
1
9
(1−α)

(
4En−1+ Ei + 12

En−1 Ei

En−1+ 2Ei

)
+α

32E2
n−1+ 44En−1 Ei + 5E2

i

48En−1+ 33Ei
. (14)

It is worth pointing out that the Menger sponge is a special case of the Menger sponge composite. If
the inclusion base material is replaced with void, that is, Ei = 0, the stiffness prediction in (14) reduces
to that in (9).

The parameter α is determined by the stiffnesses of levels-zero and one Menger sponge composites,
where accurate results can be obtained with feasible fine meshes. In fact, no computation is required for
level zero as it refers to the solid matrix base material. In the first case, it is assumed that the matrix
base material has E0 = 1 and ν0 = 0.2, and the inclusion base material has Ei = 0.01 and νi = 0.4. The
FEA result gives E1 = 0.5647. From (14), α is obtained as 0.4987. Table 2 presents the stiffnesses of
various Menger sponge composites composed of these two base materials, with comparison between the
numerical values and the predicted stiffnesses from (14). Meshes of 33

× 33
× 33, 34

× 34
× 34, and

35
× 35
× 35 are used for levels one to three, respectively. In another case, the composite is assumed to

have aluminum as the matrix base material, with E0 = 70× 109 and ν0 = 0.33, and silicon rubber as the
inclusion base material, with Ei = 1× 109 and νi = 0.49. For the latter case, α is obtained as 0.7599 and
the results summary is given in Table 3.
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More computational effort is needed for composites than for single-base material media because the
finite element model is always a full model without any voids. Therefore only the first three levels of the
Menger sponge composites are solved. Again through the hierarchical level increasing, the stiffness under
and overestimates expand to make a wider and wider range into which the numerical result falls. The
predicted stiffness values match well with the numerical results, even when the inclusion base material is
almost incompressible, with its Poisson’s ratio close to 0.5. This finding is of special importance because
when one of the phases of the composite is near its incompressibility limit, it is usually necessary to use
a different and more sophisticated analytical model in order to predict the effective stiffness accurately
[Liu et al. 2006; 2009]. However, our proposed simple formula in (14) does not have this problem.

5. Stiffness prediction for a different self-similar hierarchical medium

Similar to the Menger sponge, whose basic topology can be defined based on a cube divided into 3×3×3
blocks, various other self-similar hierarchical media can be created by specifying different recursive rules
for block removal. We propose an alternative hierarchical “sponge” that is obtained by removing eight
corner blocks as well as the central one, as shown in Figure 7. Since this hollow material presents a cross
shape in all three faces, we name it the “hollow cross sponge”. The base material is selected as E0 = 1
and ν0 = 0.2.

To predict the stiffness of such a hierarchical material, two simplified models in Figure 8 with parallel
and serial connections are employed, as we have done with the Menger sponge.

In the first simplified model, the whole structure is decomposed into four columns since the other parts
form no direct connection in the axial force direction. The parts removed make the simplified model
underestimate the actual stiffness. Similarly as in the case described in (5), four out of nine columns of
the full-cube model are left and the stiffness of this underestimation model is easily determined based
on the cross-sectional area:

E−n =
4En−1

9
. (15)

For the serial-connection model, the Young’s moduli of the three homogenized layers are estimated
as 5En−1/9, 8En−1/9, and 5En−1/9, respectively, based on the areas. In a simple derivation of the force
and deformation relationship as in (6), the overestimated stiffness of the whole sponge is found as

E+n =
40En−1

63
. (16)

 

Level 1 Level 2 Level 3 Figure 7. The first three levels of an alternative hierarchical material: the hollow cross sponge.
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(a) 

   

(b) 

    

Fig. 8. Simplified models of the Hollow Cross sponge with all eight corner blocks and the central Figure 8. Simplified models of the hollow cross sponge, with all eight corner blocks
and the central block removed: (a) parallel-connection model and (b) serial-connection
model.

In the framework set up in (8), the effective stiffness of the sponge is predicted as

En =
4
9
(1−α)En−1+

40
63
αEn−1 =

28+12α
63

En−1. (17)

Assume that the base material has E0 = 1 and ν0 = 0.2. The parameter α can be determined from E1,
which is found to be equal to 0.5087 from the numerical homogenization applied to the level-one sponge
in Figure 7. This results in α = 0.3373. Table 4 shows the stiffnesses of various levels of the hollow cross
sponge using E0 = 1 and ν0 = 0.2 for the purpose of examining the accuracy of the predicted effective
stiffness. It is seen that the under and overestimates give effective bounds for the effective stiffness, and
that the predictions from the simple formula in (17) are reasonably accurate.

6. Proposing a lighter yet stiffer material than the Menger sponge

The stiffness of a hierarchical medium depends on the topology and the amount of base material. To
find a design with a higher stiffness for a predefined amount of material usage, topology optimization
techniques can be employed. Figure 9 shows an optimal material base cell for maximizing the effective

Level Numerical E−n E+n Predicted Difference

1 0.5087 0.4444 0.6349 0.5087 0.00%
2 0.2538 0.1975 0.4031 0.2588 1.98%
3 0.1253 0.0878 0.2560 0.1316 5.05%
4 0.0617 0.0390 0.1625 0.0670 8.63%

Table 4. Summary of stiffnesses of the first four levels of the hollow cross sponge.
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 Figure 9. Optimal topology for maximizing the effective stiffness for a given amount of volume.

stiffness we have obtained using the ESO/BESO topology optimization technique [Xie and Steven 1993;
1997; Huang and Xie 2007; 2010; Yang et al. 2013]. The optimization is based on the volume fraction
of 19/27 and the cubic symmetric constraint, that is, the effective stiffnesses in the three directions are
set equal to each other. The elastic properties of the base material are E0 = 1 and ν0 = 0.2. The effective
stiffness of this design is 0.5864.

Informed by the above optimal topology, we propose to construct a new sponge as shown in Figure 10.
Starting from a cube with 3× 3× 3 blocks, we remove the eight corner blocks. This will create a design
of a similar topology to, and with the same volume as, the optimal solution shown in Figure 9. Since
this model presents a cross in a 2D view from all three faces, we name it the “cross sponge”. From this
basic configuration, we can recursively create a series of self-similar sponges of any level.

The under and overestimates of the cross sponge stiffness can be derived from the two simplified
models shown in Figure 11:

E−n =
5En−1

9
, (18)

E+n =
15En−1

23
, (19)

and the stiffness prediction formula is defined as

En =
5
9
(1−α)En−1+

15
23
αEn−1 =

115+20α
207

En−1. (20)

The parameter α is then determined from the level-zero (assuming E0 = 1 and ν0 = 0.2) and level-one
sponges (E1 = 0.5816 from numerical results). This results in α = 0.2696. The stiffness of the cross

 
Level 1 Level 2 Level 3 

Fig. 10. The proposed Cross sponge which is lighter yet stiffer than the Menger sponge.

Figure 10. The proposed cross sponge, which is lighter yet stiffer than the Menger sponge.
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(a) 

   

(b) 

    

 Simplified models of the Cross sponge: (a) parallel connection model; (b) serial connected 

� D

� �

Figure 11. Simplified models of the cross sponge: (a) parallel-connection model and
(b) serial-connection model.

Level Numerical E−n E+n Predicted Difference

1 0.5816 0.5556 0.6522 0.5816 0.00%
2 0.3321 0.3086 0.4253 0.3383 1.87%
3 0.1914 0.1715 0.2774 0.1967 2.77%
4 0.1085 0.0953 0.1809 0.1144 5.44%

Table 5. Summary of stiffnesses of the first four levels of the cross sponge.

sponge is higher than that of the Menger sponge (0.5816 versus 0.5450) even though the cross sponge
is lighter (19/27 versus 20/27). Table 5 compares the stiffnesses of various levels of the cross sponge. It
is seen that the predicted stiffnesses using the simple formula in (20) are quite accurate.

7. Concluding remarks

This paper has presented an analytical approach for stiffness prediction of hierarchical media. Unlike
the previous renormalization argument, which uses only one simplified model and thus yields highly
inaccurate stiffness predictions, the proposed approach employs two simplified models that under and
overestimate the effective stiffness. The predicted stiffness is calculated as an interpolation between the
under and overestimates. As the prediction presents the relationship between the stiffness of two adja-
cent levels, the interpolation parameter is determined based on the two lowest levels for which accurate
numerical values can be easily obtained. The proposed approach for stiffness prediction is applicable to
a whole class of self-similar hierarchical media, including composites, as demonstrated by a range of
examples in this paper. The simple formulas developed have been found to give accurate predictions of
stiffnesses of self-similar hierarchical media of various levels. For composites, the predicted effective
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stiffness is accurate even when one of the phases is near its incompressibility limit, with its Poisson’s
ratio close to 0.5.

Inspired by the Menger sponge and informed by our topology optimization result, we have proposed
a lighter yet stiffer cross sponge.

It is interesting to note that Lakes [1993] predicted that the effective stiffness of hierarchical materials
should follow the relationship

En

E0
= kn

[
ρn

ρ0

]r

, (21)

where k and r are coefficients depending on the type of structure, ρ is the density, and ρ0 is the density
of the solid phase. If we look at (9), (17), and (20), we will find that the proposed stiffness prediction
formulas agree with Lakes’ assumption, given in (21). Take the Menger sponge as an example. The
mass density can be calculated as

ρn =

(20
27

)n
ρ0. (22)

Thus (10) may be transformed into the same format as that of Lakes’ formula if we assign r = 1 and
k = 0.7358:

En

E0
= 0.7358n

[
ρn

ρ0

]
= 0.5450n. (23)

In fact, according to the proposed scheme based on the simplified models in this paper, the stiffness
prediction for hierarchical media with one base material can be generalized into

En

E0
= βn, (24)

where β is a constant. One can determine the β value to make the prediction explicit; on the other hand,
one may also use the effective stiffnesses of the simplified models proposed in this paper as bounds for
a rough estimation.
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